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Abstract

Nowadays, valuable big data are generated and collected rapidly from numerous rich data sources. Following the initiatives of open
data, many organizations including municipal governments are willing to share their data such as open big data regarding parking
violations. While there have been models to preserve privacy of sensitive personal data like patient data for health informatics,
privacy of individuals who violated parking regulations should also be protected. Hence, in this article, we present a model for
supporting privacy-preserving big data analytics on temporal open big data. This temporally hierarchical privacy-preserving model
(THPPM) adapts and extends the traditional temporal hierarchy to generalize spatial data generated within a time interval with an
aim to preserve privacy of individuals who violated parking regulations during some time intervals at certain geographic locations.
Evaluation on open big data from two North American cities demonstrates the usefulness of our model in supporting privacy-
preserving big data analytics on temporal open big data.
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1. Introduction

In the current technological era, big data are everywhere. From a wide variety of rich data sources huge amounts
of data have been produced. Different levels of veracity (e.g., precise data, imprecise and uncertain data [1, 25, 36])
characterized these big data. Examples of big data include financial time series [8, 33, 45], social network data [23,
26, 32, 37, 41], transportation data [6, 2, 34, 35, 40], omic (e.g., genomic) data [3, 44], as well as disease reports

* Corresponding author. Tel.: +39-0984-492501
E-mail address: alfredo.cuzzocrea@unical.it

1877-0509 © 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-ne-nd/4.0)
Peer-review under responsibility of the Conference Program Chairs

10.1016/j.procs.2021.12.217


http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2021.12.217&domain=pdf

Alfredo Cuzzocrea et al. / Procedia Computer Science 198 (2022) 112—121 113

[21, 46, 48], epidemiological data and statistics. Big data management and mining provide the methods to deal with
these data [10, 22, 11, 12, 17].

Open data are becoming more and more popular in the recent years. Consequently, more big data are openly
available on open data platforms or portals. Transparency and enabling a better understanding of the services provided
by government to its citizens and/or by organizations to their service recipients are two of the advantages provided
by the accessibility of open data. In open data, sensitive attributes that may uniquely identify individuals within
the published records (e.g., such as names and identification numbers, social insurance number and social security
number) are usually de-identified. This leads to the demand for privacy-preserving data publishing.

The privacy-utility trade off is a major setback in privacy-preserving model. In fact, techniques used utilized by
most syntactic models such as suppression of attributes and/or generalization may not prevent re-identification of
individual records [30, 42, 43].

In particular, temporal and spatial attributes may be joined with other data from heterogeneous sources to re-
identify the individual records. For instance, it is possible to re-identification of individual owners of the parking
tickets by considering a combination of the plotted spatial data of parking ticket and data from other different sources
over the internet. Nevertheless, in some application the volumes of records may big enough to make individual records
too specific for providing meaningful information related to the big data. Aggregated data may provide generalization
of specific data for more meaningful knowledge for big data analytics.

Some noise is added to preserve data privacy in techniques such as differential privacy models [19, 5]. This may
alter the utility of the data and in extreme case lead them to be useless. To keep a good balance of data privacy and
utility, we present temporal hierarchy privacy-preserving model (THPPM) in this paper. Specifically, the privacy of
temporal big data is preserved by the THPPM while maintains utility of the data. It is worth noting that despite the
presented use case on parking ticket data, the same model can be used in all the real-life applications and services
needing to preserve privacy of temporal big data. As an example, consider activities of an individual for a particular
day, which starts with a visit to a pharmaceutical store, a retail store, and a health insurance agency; then parking;
and ends the day with airline booking. By using temporal and/or spatial attributes from each activity analysts can
link together these disjointed activities. Nevertheless, in several cases the individual records does not provide useful
information. A pharmacist and a store manager, for example, are more interested in the shopper purchase patterns
(e.g., for inventory purposes). Similarly, booking patterns are the main interest of travel agencies (for promotional
purposes of some tourist attractions and/or tourist activities). Thus, privacy preserving of temporal big data is the
main topic of the present work. In particular, we focus on preserving the association of individual to a record by using
temporal hierarchy. Enabling aggregated ad-hoc queries over anonymized dataset without revealing the underlying
associations to any individual is the mian characteristic of the proposed THPPM. The contributions of this paper are
several. First, we describe the THPPM model. Second, we also extend the concept of temporal hierarchy to other
areas of data publishing. Third, we show that by using the proposed methodology, it is possible to maintain data utility
while preserving the privacy of individual entity within the dataset. Finally, the THPPM is extendable to other forms
of generalization with and without the spatial attribute. For instance, we combine the temporal hierarchy model with
location generalization for the city of Toronto dataset. The temporal aggregation of activities by using the frequency
count query is the basic idea of the framework:

SELECT COUNT (%)
FROM dataset name
GROUP BY temporal aggregation level

The paper is organised as follows: in Section 2 we provide background and related works. We presents the THPPM
model in Section 3. Finally, Section 4 describes the experimental evaluation and Section 5 draws the conclusions.

2. Background and Related Work

Over the past decades, space and time efficiency are the motivation for many data mining algorithms such as the
efficient frequent itemset mining [31], bitwise pattern mining [27], and scalable vertical mining [39, 28]. Nowadays,
anonymization is included in data mining as a step within the data mining tasks to ensure the outcome is privately
preserved. For instance, in [20] the authors propose a surrogate vectors and length-based frequent pattern tree (LFP-
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tree) for anonymizing data; instead in [47] authors add noise to trajectory preserving privacy dealing with uncertain
data mining while [38] and [50] study the keyword search on encrypted outsourced data. They combined LFP-tree and
surrogate vectors models to publish anonymized trajectory database. In contrast, our approach is not using surrogate
vectors or LFP-tree but it make good usage of temporal hierarchy to preserve privacy of temporal big data.

As another instance, Wang et al. [49] utilized sequence exponential mechanism (SEM) to extend maximal frequent
itemsets mining on sensitive data. In [24] a generalization of stay of points to preserve privacy of trajectories is
presented. The differential privacy is proposed in [19]; its main idea is ensuring that the probability outcome of any
aggregate function by adding or removing individual record from the original database must not have significant
differences.

Lee et al. [29] discussed current issues and solutions to manage and control the privacy level (e.g., k-anonymity
[18], I-diversity [43], t-closeness [42], differential privacy) in big data de-identification, with focus on preserving
privacy of health related applications. Instead, parking applications are considered in this paper.

3. An Innovative Temporal Hierarchy Privacy-Preserving Model

In this section, we present our temporal hierarchy privacy-preserving model (THPPM). In particular, the key con-
cept behind the THPPM are presented; they are: temporal hierarchy (with extension to time generalization), temporal
representative points, and location generalization. By using temporal hierarchy, THPPM is able to preserve privacy
of temporal data of fine granularity while maintaining the information of the data by aggregating temporal data to an
appropriate temporal hierarchical level. Moreover, temporal representative points enable the THPPM to represent a
collection of points within a specific level of temporal hierarchy. Moreover, temporal representative points are adapted
to spatial data and representative points over spatial data to generalize spatial locations are computed.

Second > Minute —> Hour — Day > Month —>{ Quarter —> Year

N
N
N

Block

Street City

Province (or state) Country

Fig. 1: Architecture for our THPPM, with extended temporal hierarchy for time generalization (up), and extended hierarchy for spatial data for
location generalization (down)

3.1. Temporal Hierarchy and Time Generalization

Temporal hierarchy is the aggregation of time series data to a predefined periodic level. For example, we can
aggregate daily information dj to obtain monthly information m; which can be further be aggregated to get quarterly
information ¢;. Finally, the quarterly information ¢; can be aggregated to obtain yearly information y, and so on with
the various level of time hierarchy (see Fig. 1). Mathematically, temporal hierarchy can be represented as:
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where d is the number of days within a month (e.g., d € {28,29, 30, 31}). In order to preserve privacy of health related
real-life applications, temporal hierarchy from day up to year (i.e., date generalization) are effective. Nevertheless,
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details of data are need to a much finer granularity (e.g., with timestamp) for non-health related applications such
as parking. Thus, we extend our temporal hierarchy to time generalization for each day. The extended temporal
hierarchy for time generalization is shown in Fig. 1. There, both daytime dr and nighttime nt are aggregated to obtain
daily information dy. In particular aggregating 12 hourly information hh; from daytime (say, 06:00-18:00) we compute
dt while aggregating the remaining 12 hourly information ih; from nighttime (say, 18:00-06:00) we compute nt. By
following this direction, we compute hourly information /; by aggregating information from its 60 minutes mm;,
each of which is obtained by aggregating information from its 60 seconds ss;. Mathematically, this extended temporal
hierarchy can be represented as:

dy = dt +nt @)
12
dt (and nf) = Z hh (5)
i=1
60
hhy = Z mm; (©6)
J=1
60
mm; = Z SSk. 7)
k=1

In order to preserve the privacy of individual record within the dataset, the detailed time of the events is generalized
to the next level in the hierarchy.

3.2. Temporal Representative Points

A temporal representative point is a point representing all points (a line, multipoints or polygon) within a spe-
cific level of temporal hierarchy. We define weighted and unweighted temporal representative point. In particular,
a weighted representative point R(x,y) is computed by using weighted mean centre of the n coordinates x- and y-
coordinates; when all the weights are equal we obtain the sample means of the set of points as in Eq. (8).

Z,‘:1 Xi Z,’:1 Yi) ®)

R(X,y) = (—7 -

n n

A weighted representative can also be computed using the minimum square distance within existing points. Eq. (9)
recall the minimum square distance Dist,,;,.

Distyyin = jirllinn ; [(xj - x,v)2 + (yj - y,-)z] )

From a geometric point of view, a weighted representative point is a centroid if it is the centre of gravity of the
geographical region considered regardless of whether the representative point is inside the region or not.

An unweighted representative point is a loosely computed point that optimally represents geographical points,
polygon or multipoints. In contrast to weighted representative point, it guarantee to be inside the considered region.
Usually, It is chosen as a randomly selected point among the one belonging to the region.

3.3. Location Generalization

Temporal representative point (weighted or unweighted) can be computed over spatial data. However, using the
proposed THPPM, other location attributes such as street, blocks or city, can be generalized and aggregate. Fig. 1
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depict a typical location generalization. A country is depicted as an hierarchy of locations: blocks, street, city, and
state/province. For instance, the attributes attributes census block (which is is the smallest geographic unit used by the
United States Census Bureau) and street information are the ones of the parking contravention dataset of the city of
Buffalo. The raw dataset has several other location information. By using the data, the reader can observe that for a
parking violation occurred on Washington Street located at (42.891484°N, 78.871482°W) within the US census block
1006 the summons number A5508230 was issued at 01:04 on January 01, 2007.

3.4. Temporal Hierarchy Model

After describing key components of our THPPM, let us non-trivially integrating them to form our model.
Given a dataset D (e.g., parking dataset), first a temporal hierarchy for date generalization is created, then it is
extended temporal hierarchy for time generalization and a extended hierarchy for spatial data for location gen-
eralization is created. A general representation of the architecture econmpassing these three key components in
the temporal hierarchy is provided in Fig. 1. For each item (e.g., each parking violation), our THPPM general-
izes date, time and location for preserving privacy of individuals (e.g., parking violators). Then, the frequency
of the generalized data, time and location to report the aggregated information for big data analytics is counted
by the THPPM. By doing so, the proposed THPPM preserves privacy of temporal big data while maintaining
the sufficient information for the analytics. The pseudocode of the model model can be found in Algorithm 1.

Algorithm 1: Temporal Hierarchy and Location Generalization

Input: Dataset B
Result: Privacy-preserving dataset B’
Date = create temporal hierarchy (for date generalization);
Time = create time generalization ;
Location = create location generalization ;
foreach temporal hierarchy do
foreach item in temporal hierarchy in B do
select location generalization;
group by Time, Location;
compute frequency count;
end
end

4. Experimental Assessment and Analysis
4.1. Setup: Development Environment and Tools

For evaluation, we implemented our THPPM in Python on Spyder scientific development environment. A laptop
computer with 2.6 GHz Intel(R) core™ i7 64-bit operating system and 8 GB installed memory has been used for the
experimental evaluations.

4.2. Datasets

We conducted our experimental evaluation by using two real-world datasets for our evaluations. The first dataset
considers non-identifiable information relating to parking tickets for the city of Toronto in the Canadian province of
Ontario '. It consists of 1.47 GB dataset containing 11,096,751 violation records registered in the period from January
2014 to December 2018 by the Toronto Police Services as well as by people certified and authorized to issue tickets.
Table 1 provides some detailed descriptions of the dataset, enabling the readers to interpret data about infractions.

1 https://open.toronto.ca/dataset/parking-tickets/
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The second dataset records parking tickets for the city of Buffalo in the New York State, USA 2. This 413 MB
dataset contains 2,283,838 parking summonses for a 13-year period from January 2007 to December 2019, issued by
the Division of Parking Enforcement, the Buffalo Police Department, and other agencies permitted to write summonses
on behalf of the City of Buffalo.

Fig. 1 represent the temporal hierarchy, together with its time generalization and location generalization. The two
datasets are preprocessed as follows. Each data is aggregated with respect to daytime and nighttime levels capturing
tickets issued from the 12-hour periods of 06:00-18:00 and 18:00-06:00, respectively. Since the census block is a
geographic unit used only in the US, while census blocks are used for the Buffalo parking tickets, street are used for
the Toronto parking. An aggregation of address in group of hundred addresses is create in order to mimic the census
blocks.

Table 1: RECORD IN DATASET

Hierarchy Experiment
Level 1 2 3
Year 5735185 | 5364835 | 4232982
Quarter | 2094890 | 1748291 | 1214532
Month 1364165 | 1111379 | 760382
Day 794882 | 632295 | 426096

4.3. Evaluation Results

For evaluation of our THPPM, we conducted three sets of experiments. In the first experiment, the location details
are kept constant, generalized the time component, and varied the temporal hierarchy. The corresponding SQL query
is

SELECT province, street, block, time, (S1|S2|S3|S4), COUNT(*)
FROM ...

WHERE ...

GROUP BY province, street, block, time (S1|S2|S3|S4)

where S1, S2, S3 and S4 are the temporal hierarchy level representing day, month, quarter and year, respectively. In the
second experiment, the location generalization is combined with a temporal hierarchy without the time generalization:

SELECT province, street, block, (S1|S2|S3|S4), COUNT(*)
FROM ...

WHERE ...

GROUP BY province, street, block, (S1|S2|S3|S4)

Finally, in the third experiment, we used only the street for location generalization and varied the temporal hierarchy.
In the three sets of aforementioned experiments, we measure the impact of variation in hierarchy level. For the various
hierarchical level, the reduction in number of record in the dataset is measured at each level and the uniqueness
percentage for each level is computed.

For the Toronto parking dataset, the number of records at each temporal hierarchy for Experiment 1 is presented
in Fig. 2. By moving up in the hierarchy level, the number of records in the aggregated dataset decreases. In partic-
ular, there are 5,735,185 aggregated daily observation, that becomes 2,094,890 if aggregated monthly, 1,364,165 if
aggregated quarterly and finally, 794,882 if yearly aggregated.

As shown in Fig. 2, the number further reduces in Experiment 2 because of the suppression of the time generaliza-
tion. The number of aggregated data is further reduced by suppressing the time generalization (i.e., not distinguishing

2 https://data.buffalony.gov/Transportation/Parking-Summonses/yvvn-sykd
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the daytime and nighttime data). In particular, we have 5,364,835 aggregated daily counts, that can be reduced to
1,748,291 aggregated monthly counts, to 1,111,379 aggregated quarterly counts, and finally to 632,295 aggregated
yearly counts. This number of aggregated yearly counts is less than 80% of that with time generalization. In the third
experiment, the number of aggregated is further reduced by using the location generalization to street level; the results
are shown in Fig. 2. Specifically, it drops to 4,232,982 aggregated daily counts, then to 1,214,532 aggregated monthly
counts, further 760,382 aggregated quarterly counts, and finally to 426,096 aggregated yearly counts of infractions in
Toronto. Thus, a reduction in the number of aggregated of more than the 32% and of more than the 46% with respect
to the first and second experiments can be observed. This is a major outcomes of the benefits coming from the location
generalization. These aggregated counts for the three experiments are summarized in Fig. 2.

Impact of Variation in Hierarchy Level: Numbers of Impact of Variation in Hierarchy Level: Numbers of
Aggregated Counts in Toronto Data Aggregated Counts in Buffalo Data

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000

Experiment3 M Experiment2 M Experiment t1 Experiment3 W Experiment2 M Experiment 1

Fig. 2: Impact of Variation in Hierarchy Level: Numbers of Aggregated Counts in Toronto Data (left) and Buffalo Data (right)

For Buffalo parking data, Table 1 shows the reduction in the number of record for each experiment. As afore-
mentioned, the number of records decreases as we consider higher hierarchical levels. Specifically, in the first ex-
periment with time generalization, the number of aggregated data drops from 1,519,895 aggregated daily counts to
899,988 aggregated monthly counts, then to 646,959 aggregated quarterly counts, and finally to 411,032 aggregated
yearly counts when we move up the temporal hierarchy level for day to month to quarter and finally to year. Similarly,
in the second experiment is shown that, without time generalization, the number of aggregated data decreases further
to 1,501,133 aggregated daily counts, to 839,468 aggregated monthly counts, to 579,298 aggregated quarterly counts,
and to 347,334 aggregated yearly counts. Furthermore, the third experiment reports that applying the location general-
ization, the number of aggregated data further decreases to 1,117,809 aggregated daily counts, to 442,392 aggregated
monthly counts, to 279,799 aggregated quarterly counts, and to 152,305 aggregated yearly counts. This number of
aggregated yearly counts is less than 44% and less than 37% of those in Experiment 2 and Experiment 1, respectively,
which both without location generalization. Experiment 3 again shows the benefits of location generalization. Fig. 2
summarizes these quantities.

The unique record percentage is also measured. Note that the unique record is the frequency count of record where
the count of ticket remains one despite aggregation, which can be obtained by running a SQL query:

COUNT(*) ... HAVING COUNT (ticket) < 2

The unique record percentage drops decrease fom 30% to 1.8% for the Toronto dataset when varying the hierarchy
level, as shown in Fig. 3. Instead for the Buffalo dataset, Fig. 3 reports that the unique percentage reduced from 48%
in the lowest level of temporal hierarchy to 3% for the year level.

As our third evaluation metrics, we measured data compression ratio. The data compression ratio DCR is computed
as the ratio of the anonymized dataset B’ to the original dataset B at a specific temporal hierarchy:

/

DCR(B,B) = % (10)

Fig. 4 shows that by aggregating to the finer temporal hierarchy resulted in preserving privacy of individual record
and at least half of data compression.
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Toronto, ON Buffalo, NY

- m date & location m date & location
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Fig. 3: Unique record percentage in Toronto Data (left) and Buffalo Data (right)
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Fig. 4: Data compression ratio in Toronto Data (left) and Buffalo Data (right)

Moreover, for each temporal hierarchy level to measure the utility of the anonymized published dataset count
queries is measured by performing series of count queries (histogram) over the aggregated dataset. It is worth noting
that the results of the aggregation is the same over the protected and over the original dataset since temporal hierarchy
is a bottom-up aggregation of record. The query execution time for each experiment at various levels of the hierarchy
is presented in Table 2 and Table 3. The computed query result for the lowest level of the temporal hierarchy is used
such that the original dataset is read only once. The remaining queries are computed from the lower level of the
temporal hierarchy, this reduces the query execution time.

Table 2: QUERY EXECUTION TIME: TORONTO DATA

Hierarchy Time[s]
Level Date | Date and Time Hierarchy | Location
Year 2.72% 1.53 0.83
Quarter 4.25 4.33 1.41
Month 4.9 4.4 1.5
Day 8.57 591 4.2

Table 3: QUERY EXECUTION TIME: BUFFALO DATA

Hierarchy Time[s]
Level Date | Date and Time Hierarchy | Location
Year 2.13 1.62 1.41
Quarter 2.11 1.58 1.31
Month 2.14 2.03 1.31
Day 341 343 2.73
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5. Conclusions and Future Work

Nowadays, valuable big data are generated and collected rapidly from numerous rich data sources. Following the
initiatives of open data, many organizations including municipal governments are willing to share their data such as
open big data regarding parking violations. While there have been models to preserve privacy of sensitive personal
data like patient data for health informatics, privacy of individuals who violated parking regulations should also be
protected. Hence, in this article, we presented a model for supporting privacy-preserving big data analytics on temporal
open big data. To preserve privacy of individuals who violated parking regulations during some time intervals at
certain geographic locations, our temporally hierarchical privacy-preserving model (THPPM) adapts and extends the
traditional hierarchy (which generalizes the day dimension) to generalize spatial data generated within a time interval
(i.e., to generalize both the time dimension and location dimension) into temporal representative points. Evaluation
on open big data from (a) City of Toronto (in province of Ontario, Canada) and (b) City of Buffalo (in New York state,
USA) demonstrated the usefulness of our model in supporting privacy-preserving big data analytics on temporal open
big data.

As ongoing and future work, we exploit and transfer the learned knowledge from the current work to support
privacy-preserving big data analytics on other open big data, for instance by exploiting OLAP methodologies (e.g,
[16, 15,9, 13, 14, 7]). Moreover, we incorporate relevant techniques into the model to further enhance results of our
privacy-preserving big data analytics, for instance following recent and correlated approaches (e.g., [4]).
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