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Abstract—In pursuit of autonomous vehicles, achieving human-
like driving behavior is vital. This study introduces adaptive
autopilot (AA), a unique framework utilizing constrained-deep
reinforcement learning (C-DRL). AA aims to safely emulate
human driving to reduce the necessity for driver intervention.
Focusing on the car-following scenario, the process involves:
(1) extracting data from the highD natural driving study,
categorizing it into three driving styles using a rule-based
classifier; (2) employing deep neural network (DNN) regressors to
predict human-like acceleration across styles; (3) using C-DRL,
specifically the soft actor-critic Lagrangian technique, to learn
human-like safe driving policies. Results indicate effectiveness in
each step, with the rule-based classifier distinguishing driving
styles, the regressor model accurately predicting acceleration,
outperforming traditional car-following models, and C-DRL
agents learning optimal policies for human-like driving across
styles.

Index Terms—ITS, Adaptive cruise control, Constrained rein-
forcement learning, Connected vehicles

1. INTRODUCTION

In recent years, the automotive industry has experienced
a digital transformation, enhancing vehicles with sensing de-
vices, electronic control units, and advanced driver assistance
algorithms, including features like blind-spot detection and
adaptive cruise control (ACC) [1]. This evolution aims to im-
prove safety, traffic efficiency, and the overall travel experience
[2]. However, consumer adoption relies on trust in automated
systems and considerations on legal issues [3].

The acceptance of these systems is also influenced by
their ability to emulate human-like driving styles [4], [5].
Toward this, distinct driver categories, like aggressive drivers
prioritizing smaller gaps with abrupt maneuvers and conserva-
tive drivers favoring larger gaps with smoother behavior [6],
require tailored controllers. Current car-following controllers
[7]–[10], despite attempts to differentiate among driving styles,
depend on predefined parameters, lacking real-world adapt-
ability. The remedy lies in data-driven controllers utilizing
real-world data, emulating diverse driving styles, and, theoret-
ically, having the potential to reduce disengagement rates [4].
In this context, machine learning (ML) plays a pivotal role
in developing models capable of making informed decisions
by analyzing complex and multi-variate data. Among ML
paradigms, reinforcement learning (RL) is well-suited for this
intricate task [11], [12], as RL agents learn by interacting with
the environment through a trial-and-error mechanism, aiming

to maximize cumulative rewards. However, traditional RL
agents often overlook safety constraints critical for real-world
applications like autonomous driving. C-DRL addresses this
limitation as, unlike traditional RL, it incorporates constraints
through cost functions, ensuring safe driving by minimizing
them during the learning process [13].

Building on C-DRL, our work introduces the adaptive
autopilot (AA) framework. This framework employs a C-DRL
approach to effectively accommodate diverse driving styles by
integrating rewards based on a human-like acceleration pre-
dictor, alongside constraints to enforce a minimum headway
among vehicles. The three main steps of the framework are:
(i) categorizing real-world driving data from the highD dataset
[14] into aggressive, normal, and conservative styles, (ii) train-
ing deep neural network-based regressors to predict human-
like vehicle acceleration tailored to each driving behavior, and
(iii) implementing the C-DRL framework to take human-like
safe actions. The trained agents, corresponding to each driving
style and based on the soft actor-critic Lagrangian algorithm
[15], are validated using real-world driving data from the
highD dataset. Results demonstrate the framework’s ability
to drive the vehicle in line with corresponding human drivers
under different styles, with the headway trend highlighting the
prioritization of safety constraints. To summarize, the main
contributions of this work are as follows:

(i) Real-world driving data is classified into aggressive, nor-
mal, and conservative styles using a rule-based approach.
Separate neural network-based regressors are then trained
for each style to predict human-like vehicle accelerations.

(ii) A novel C-DRL framework is introduced, adapting ve-
hicle acceleration to different driving styles by (safely)
mimicking human drivers. This is achieved through min-
imizing the difference between C-DRL and predicted hu-
man actions at each step. Further, a headway-based safety
constraint is imposed during training, where multiple real-
world driving traces are used to enhance generalization.

(iii) Performance results demonstrate the proposed frame-
work’s ability to adapt to diverse driving styles while
adhering to safety constraints.

In the remainder of the paper, Sec. 2 describes related
research, Sec. 3 introduces the AA framework, Sec. 4 discusses
the obtained results, and Sec. 5 presents concluding remarks.



2. RELATED WORK

While commercial ACC systems were introduced in the
early 2000s to enhance safety and driving experience [16], they
still offer limited customization options with few user-defined
parameters like desired gap and velocity. The rigidity of these
systems hampers their ability to accurately replicate human
driving styles, leading to reduced trust and increased instances
of driver intervention, thereby affecting safety benefits. Various
research directions [12], [17], [18] have been explored to
address these limitations and enhance ACC systems.

One research direction involves car-following (CF) models
to provide optimal control actions in response to lead vehicle
movements. Relevant models include the Gipps model [10],
which prioritizes a safe inter-vehicle distance, incorporating
human factors like reaction time and comfort. The intelligent
driver model (IDM) [8] considers desired velocity and inter-
vehicle distance, using different parameter values for vari-
ous driving styles [7]. However, these CF models struggle
to accurately represent real-world driving behavior due to
oversimplification, and their parameters are calibrated for
traffic scenarios and safety rather than human-like driving
behavior [17]. Our framework, compared to IDM, employs
a data-driven approach demonstrating safe and human-like
acceleration behavior across different styles.

Another research direction explores data-driven models,
optimizing vehicle control using real-world mobility traces.
For example, [18] employs a particle swarm optimization with
bi-directional long short-term memory (PSO–Bi–LSTM) to
enhance IDM model parameters and predict human driving
behavior. IDM’s learned fixed parameters limit however its
ability to accurately model driving behavior. Other works
use traditional and recurrent neural networks for accelera-
tion/velocity predictions [19], [20]. Such neural networks face
challenges in personalized driver behavior modeling due to
training data influences. Similarly, DRL has been utilized
[12], [21] for improved car-following behavior, emphasizing
safety, traffic efficiency, and comfort. Nevertheless, these DRL
approaches focus solely on generic driving behaviors, lacking
consideration for a human in their training process to achieve
human-like driving behavior.

Finally, the offline human-in-the-loop RL paradigm gains
popularity for enhancing RL frameworks’ adaptability by
incorporating the human factor [22]. This approach does not
require real-time human intervention but leverages human
experience to shape reward functions. For instance, [23] uses
Shanghai naturalistic driving study data to mimic human-
like driving behavior by designing reward functions to reduce
errors between simulated and empirical values in spacing and
velocity. It outperforms traditional neural network models in
capturing driver behavior, although safety concerns arise as
aggressive human behaviors are replicated without considering
safety. Additionally, [24] employs behavior cloning, an imita-
tion learning method, to achieve human-like driving behavior.
A major drawback of imitation learning is the accumulation
of errors over time, leading to adverse control actions.

To the best of our knowledge, our work is the first to present
a comprehensive human-in-the-loop C-DRL framework de-
signed to adapt vehicle driving behavior across diverse driving
styles along with safety constraints.

3. ADAPTIVE AUTOPILOT FRAMEWORK

In this work, the focus is on achieving human-like driving
behavior through an Adaptive Autopilot controller designed
to accommodate various driving styles while ensuring safe
conditions, especially in car-following scenarios. The proposed
AA framework addresses three interconnected problems: (i)
identifying and classifying the driver’s style into aggressive,
normal, or conservative using a rule-based approach based
on headway, lead vehicle relative velocity, and acceleration
(Sec. 3-A); (ii) training a neural network-based regressor to
predict human-like control actions, particularly acceleration
rates, of the same driving style of the driver (Sec. 3-B);
(iii) implementing a C-DRL framework for the controller,
considering vehicle states as input and ensuring safety while
minimizing the difference between the control action and
human-like acceleration predicted by the regressor (Sec. 3-C).

A. Rule-based Classifier

Inspired by [7], we categorize driving styles into aggressive,
normal, and conservative. Such classification typically utilizes
indicators related to longitudinal movements, including speed,
acceleration, headway, relative velocity, as well as steering
input and lateral acceleration [6]. Nevertheless, given the focus
on car-following scenarios, only longitudinal control-related
indicators are employed for style categorization.

Designing a model to accurately classify a driver’s entire
data trace into a unique driving style is challenging due to
potential variations within a driver’s behavior. For instance,
aggressive drivers may exhibit normal or conservative driving
at times. In this work, each control action of the driver is
tagged with a specific driving behavior. Subsequently, the ratio
of each tagged behavior across the entire trace is calculated
to categorize drivers as aggressive, normal, or conservative.
Driver actions are tagged with a specific driving behavior
based on a rule-based approach, which utilizes headway trends
as a key factor in differentiating driving styles. As suggested
by [7], aggressive drivers aim to maintain a headway of 1
second or below. Normal drivers aim for headways of around
1.5 seconds, while conservative drivers aim for a headway of
1.8 seconds and above. Based on longitudinal indicators, the
classifier’s objective is to tag the driver’s intention, analyzing
how the driver’s action will change the headway and toward
which of the three goal headways it will lead in the long term.

Considering these aspects, Fig. 1 outlines the hierarchi-
cal rule-based classification approach employed in this
work, where the leaf nodes represent the assigned driv-
ing style. Specifically, the classifier considers information
related to both lead and ego vehicles at a given time
t: X(t)={ϑ(t), ν(t), ẍego(t), ẍlead(t)}, representing headway,
relative velocity, ego vehicle acceleration, and lead ve-
hicle acceleration, respectively, to classify the behavior:
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Figure 1. A hierarchical rule-based classifier that labels the driving data into
three driving style categories: Aggressive, Normal, and Conservative.

y(t)={Aggressive,Normal, Conservative}. Headway and
relative velocity are formulated as:

ϑ(t)=
∆xlead(t)

ẋego(t)
(1)

ν(t)=ẋlead(t)−ẋego(t), (2)

where ∆xlead(t)=xlead(t)−xego(t) is the relative distance
between lead and ego vehicles, and ẋlead(t) and ẋego(t)
represent (resp.) the lead and ego vehicle’s speed.

Among the input features, headway serves as the primary
criterion for splitting the data into three leaf nodes. Sub-
sequently, for each leaf node, relative velocity becomes a
crucial factor in anticipating potential headway changes in
subsequent time steps, acting as a secondary criterion for
data segmentation. Considering the current headways and
relative velocities, the driver’s action, specifically the applied
acceleration, is categorized into one of the three driving styles.
Acceleration differences among the lead and ego vehicles
enable an understanding of future changes in relative velocity
before they manifest in the data points. This ability facilitates
the identification of future achieved headways. Matching fu-
ture achieved headways with desired headways (as per [7])
provides a straightforward mean to categorize driving actions.

B. Human-like Action Predictor

The human-like action predictor operates as a regressor
model, using relevant input data to forecast the vehicle’s
acceleration. Its purpose is to learn a non-linear function that
approximates the relationship between input data and the next
vehicle’s acceleration. To circumvent relying on past human
actions, which might be unavailable in autopilot scenarios as
the one of the AA framework, the regressor incorporates both
historical and current data related to the lead vehicle, while
utilizing only the present ego vehicle data as input. The input
dataset consists of the following set of observations:

X(t)={ẍlead(t−2∆t), ẍlead(t−∆t), ẍlead(t),

ẋlead(t−2∆t), ẋlead(t−∆t), ẋlead(t), ẋego(t), ϑ(t)},
(3)

to obtain prediction ŷ(t)=ẍpreg(t) corresponding to the ego
vehicle acceleration y(t)=ẍego(t), where t, t−∆t, and t−2∆t
represent the present and two past time instants, respectively.

In this work, a DNN-based regressor, a deep learning
technique, is utilized to predict human-like acceleration values.
The highD dataset, [14], serves as the training dataset, follow-
ing the segmentation into the three driving styles mentioned
above, achieved through the rule-based classifier outlined in
Sec. 3-A. Hence, a separate model is obtained for each driving
style. Throughout the training process, the model is optimized
to minimize the mean absolute error (MAE) loss function:

Lmae=
1

N

N∑
i=1

|yi−ŷi|, (4)

where N is the number of observations used for MAE loss
minimization, ŷi is the predicted value of the ith observation,
and yi is the actual value of the ith observation.



C. C-DRL Framework

We now introduce our C-DRL framework, inspired by a
previously proposed algorithm [15]. The C-DRL framework
utilizes pertinent vehicle data as input to decide the vehicle’s
longitudinal control action, focusing specifically on vehicle
acceleration. The control action applied guides the vehicle,
earning rewards based on its ability to emulate the desired
human-like driving behavior. Moreover, the framework inte-
grates safety constraints to guarantee that the applied control
actions maintain a safe distance between vehicles. Fig. 2
provides an overview of the proposed AA framework.

Background: Constrained RL extends traditional RL by
introducing constraints on the actions taken by the agent. C-
RL is formalized as a constrained Markov decision process
(CMDP) [13], an extension of the standard MDP frame-
work. In this form, C-RL is characterized by the tuple
(S,A,P,R, C, b, γ), representing the state space, action space,
transition probabilities, reward, cost function, safety threshold,
and discount factor, respectively. The goal of C-RL is to solve
the CMDP by learning an optimal policy π : S→A that
maximizes the expected cumulative discounted reward while
satisfying the constraints. The problem addressed by C-RL is:

max
π:(s(t),a(t))∼ρπ

E

[∑
t

γtR(s(t), a(t))

]

subject to: E

[∑
t

γtC(s(t), a(t))

]
≤ b

(5)

where ρπ denotes the trajectory distribution following policy
π, and R(s(t), a(t)) and C(s(t), a(t)) represent (resp.) the
reward and cost functions associated with state (s(t)) and
action (a(t)) at a specific time step t. As modeling the
state transition probabilities for intricate problems can be
challenging, in C-RL a model-free approach is typically used,
with the relationship between action and reward/cost implicitly
learned by interacting with the environment.

In constrained optimization problems, such as Eq. (5), C-
RL can utilize an equivalent formulation with Lagrangian
multipliers (λ) for optimization. The Lagrangian’s saddle point
is determined through iterative gradient ascent steps for the
policy function π and gradient descent on the Lagrangian
multipliers λ [15], [25], [26]. Notably, the gradient step
related to λ emphasizes the loss function associated with the
constraint. If the constraint is violated, the gradient update
increases the multiplier’s value, prioritizing the constraint over
the reward function, and vice versa. C-DRL advances upon
C-RL by incorporating deep neural network-based function
approximators to model the policy function π(s|θ), where
θ denotes the neural network parameters. This augmentation
significantly improves the C-RL framework’s capability to
navigate intricate, high-dimensional real-world environments.
In this study, we specifically adopt the Soft Actor-Critic
Lagrangian (SAC-Lagrangian) technique [15] as the C-DRL
methodology to achieve the desired outcome.

Constrained DRL modelConstrained DRL

SAC-Lagragian - Policy gradient
C-DRL algorithm
Primary goal of the C-DRL is to
avoid unsafe situations and then
focus on improving the rewads

States

Headway
Ego velocity
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acceleration
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Diverse HighD dataset's vehicle traces are used to train the C-DRL model that can simulate
human driving behavior while maintaining safety constraints.

.

Figure 2. An overview of the proposed AA methodology.

States and Action space: The C-DRL state, s(t)∈S, repre-
sents the vehicle state at any time t and is given by:

s(t)={ẍlead(t), ϑ(t), ẋego(t), ν(t), a(t−∆t), ψ(t)} (6)
where a(t−∆t) denotes the control action taken by the C-
DRL framework at time t−∆t and ψ(t) represents the value
obtained from the indicator cost function associated with the
safety constraint. The cost function is formulated as:

ψ(t)=I(ϑ(t) > ω), (7)
where ω represents the safety threshold for the distance
between the vehicles. As mentioned earlier, the action space,
a(t)∈A, corresponds to the vehicle’s acceleration (a contin-
uous variable bounded within the range [−4, 4]ms−2). Addi-
tionally, consecutive acceleration values are restricted to vary
by no more than ±0.24ms−2 [27].

Reward components: The reward signal is a scalar value
provided by the environment after each action, offering in-
sights into the agent’s performance concerning the framework
objectives. Our reward function comprises two key compo-
nents: (i) human similarity reward, which assesses the dispar-
ity between C-DRL control actions and human-like actions
predicted by the regressor model; and (ii) comfort, ensuring
smooth acceleration changes between time steps. The trends
of these reward components are illustrated in Fig. 3. Formally,
the reward is expressed as:

r(s(t), a(t))=rh(s(t), a(t))+rc(s(t), a(t)), (8)
where rh(s(t), a(t)) and rc(s(t), a(t)) represent human sim-
ilarity and comfort rewards at time step t, respectively. The
reward components are further detailed below.

Human similarity reward component: This reward compo-
nent assesses the similarity between the driving behavior of the
vehicle and that of a human. It quantifies the disparity between
the predicted acceleration values by the DNN regressor and the
ones applied by C-DRL, encouraging the agent to minimize
this difference. Specifically, the function offers a reward that
is maximum (+1) for zero error and decreases significantly
as the difference between predictions increases. The reward
formulation incorporates a tanh function for this purpose:

rh(s(t), a(t))=2 · Fh+1, with (9)
Fh=tanh(−2 · ξ(t)), (10)
ξ(t)=|a(t)−ẍpreg(t)| . (11)



Comfort reward component: Sudden acceleration changes
can lead to discomfort for passengers. To address this, the
comfort reward component considers the rate of change of
acceleration with time, known as jerk (j(t)). The reward
function is designed to decrease gradually as the absolute jerk
value increases, ranging from a maximum reward value of 0 to
a minimum of −1. This desired reward trend is crafted using a
curve-fitting function, specifically a 4PL model, as illustrated
in Fig. 3 (right), depicting the comfort reward trend.
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Figure 3. Human similarity (left) and comfort (right) reward trend.

Simulation environment: A straightforward car-following
simulation environment is created to replicate vehicle move-
ments, enabling the C-DRL agent to learn the desired behavior.
Utilizing the highD dataset, the simulation environment incor-
porates movements from the dataset for the lead vehicle, while
simulating the ego vehicle’s motions using a linear motion
model. The C-DRL agent’s predicted acceleration serves as
the control action to drive the vehicle, with a set sampling
interval of ∆t=80ms. The ego vehicle movements follow:

ẋego(t+∆t)=ẋego(t)+a(t)∆t,

xego(t+∆t)=xego(t)+ẋego(t)∆t+0.5a(t)∆t2 .
(12)

Learning process: In C-DRL, the exploration-exploitation
process is crucial, involving a balance between trying new ac-
tions and exploiting actions with high rewards. Initial training
stages necessitate thorough exploration of the action space to
discover those maximizing cumulative rewards. However, if
action values are restricted, hindering exploration, the agent
may miss identifying actions leading to higher rewards. To
mitigate this, we adopt a curriculum learning approach [28],
[29], gradually increasing difficulty during training. Initial
episodes allow unrestricted changes in subsequent actions,
with limits introduced once the agent learns the desired be-

havior. Training utilizes multiple driver traces from the highD
dataset for each driving style to ensure generalization, and it
continues until satisfactory and stable rewards are achieved.

4. PERFORMANCE EVALUATION

In this section, we introduce the dataset we used for
training and evaluating our proposed framework, and present
the performance of our solution.

A. Dataset

This work utilizes the highD dataset, comprising vehicle
trajectories recorded via a drone on German highways at six
locations, each covering 420 meters [14]. The dataset consists
of 110, 500 vehicle trajectories across 60 recordings, with an
average recording length of 17 minutes, encompassing free-
driving, car-following, and lane-changing events. To focus
on the car-following scenario, vehicle traces were filtered
based on criteria including duration (minimum 10 s of data),
absence of lane changes, consistent lead vehicle, minimum
speed (6ms−1), and vehicle type classification. The sampling
frequency used in this work is ∆t=80ms. Among the 60
recordings, 32 were selected for pre-processing, resulting in
approximately 2.6 million rows of data, balancing accuracy in
training regressor models with computational efficiency.

B. Performance Results: Rule-based Classifier

Here we showcase the performance of the rule-based clas-
sifier on the highD dataset. Based on the rules presented in
Sec. 3-A, the data points are classified into three categories:
Aggressive, Normal, and Conservative. Fig. 4 depicts the key
characteristics, in terms of longitudinal acceleration and time
headway, of each category using this rule-based setup. Overall,
aggressive, normal, and conservative driving behaviors com-
prise 924k, 1.4M, and 863k data points, respectively, with
some data double-tagged because certain behaviors coincide
with more than one driving style.

The performance results of the rule-based classifier are con-
sistent with expectations, showing large differences between
driving styles. Looking at the probability density function
(PDF) (Fig. 4 (top)) of the applied longitudinal acceleration,
conservative drivers tend to brake to increase the distance from
the lead vehicle. Specifically, the PDF mode is at −0.2 ms−2

and 85% of the conservative actions represent a braking action.
On the contrary, aggressive drivers aim to close the gap
with the lead vehicle as much as possible (the PDF mode
is at 0.2 ms−2 and 73% of the aggressive actions represent
acceleration). Normal driving follows a hybrid pattern, with
the PDF mode at around 0 ms−2.

Further, although classification happens based on the
driver’s intention to change its headway, the headway PDF
plots (Fig. 4 (bottom)) show that the mode behavior of a
specific driving style corresponds to the ones envisioned in
[7] (i.e., the PDF mode of aggressive drivers just below the
1-s mark, of normal drivers between 1 and 1.5 s, and of
conservative drivers just before the 2-s mark).
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Figure 4. Analysis of driving styles classification using the highD dataset.

Table I
DNN REGRESSOR’S HYPERPARAMETER VALUES

Driving style
Aggressive Normal Conservative

Number of
hidden units (3 layers) 256, 128, 64 256, 256, 128 256, 128, 64

Dropout rate
between hidden layers 0.2, 0.15, 0.1

Learning rate 0.0001
Batch size 32 64 64

C. Performance Results: Acceleration Prediction

This section discusses the performance of the regressor
models corresponding to the three driving behaviors. As men-
tioned earlier, we employed a traditional DNN regressor to
train the models for predicting vehicle acceleration based on
the input data. Using the categorized data obtained from the
rule-based classifier, each driver behavior dataset was divided
into training (65%), validation (15%), and testing (20%)
sets. Given the varied nature of the input, we employed a
standardization technique to scale the input features, with zero
mean and standard deviation equal to one to help the training.
Also, to mitigate overfitting, an early stopping technique was
employed to stop training if the error improvement was less
than 0.001 in the validation set for five epochs. It should be
noted that this section presents the best configurations for each
model after extensive hyperparameter trials (Tab. I).

MAE was used to compare the results obtained during
inference. In Tab. II, the results obtained by the proposed
DNN regressor model are compared with the well-known car-
following algorithm, IDM, with parameters suggested in [7].
Additionally, the IDM model was enhanced to match as closely
as possible the highD dataset. The fixed parameters used in
[7] were modified so as to obtain the best possible fitting with
the dataset data points, i.e., the IDM fixed parameters were
selected so that the MAE was minimized. The results obtained
demonstrate that the proposed regressor models outperform
the car-following algorithms for all driving styles. Further,
analyzing the CDF of the MAE (not presented in the paper
due to space limitations), the optimal performance of the
DNN predictor is also showcased by the fact that the absolute
error of the prediction, i.e., |ẍego(t)−ẍpred(t)|, is less than
0.21ms−2 in 80% of the data points for all driving styles.

Table II
MEAN ABSOLUTE PREDICTION ERRORS

Driving style DNN IDM IDM-GA
Aggressive 0.1356 2.0357 0.3936

Normal 0.1413 2.4309 0.4584
Conservative 0.1415 4.3752 0.6151

To assess the predictor’s performance on individual driver
traces, Fig. 5 displays three traces representing aggressive

(top), normal (middle), and conservative (bottom) driving be-
haviors. To evaluate their long-term performance, for both the
DNN predictor and the benchmarks, the vehicles in the traces
are moved by applying the predicted accelerations using the
motion model in Eq. 12. That is, while the lead vehicle traces
correspond to those in the highD dataset, the ego vehicle trace
disregards the driver’s applied accelerations but incorporates
the acceleration predicted by the DNN and benchmarks.

Despite some deviations, the DNN-based predicted acceler-
ation closely matches the actual driver behavior and outper-
forms existing benchmarks. The slight discrepancies observed
can be attributed to the DNN predictor leveraging data from
thousands of drivers to learn how to predict acceleration in
specific situations, while individual driver styles may vary
slightly even within the same driving behavior. Although space
constraints prevent us from presenting it, applying the wrong
driving style’s DNN regressor in Fig. 5 would yield signif-
icantly different results, with vehicle headways consistently
diverging from the true values experienced by the drivers.

Table III
C-DRL HYPERPARAMETER VALUES

SAC-Lagragian
Number of hidden layers (actor, critic) 3, 2

Number of hidden units (actor) 128, 256, 128
Number of hidden units per layer (critic) 128

Learning rate 0.0003
Replay buffer size 1,000,000

Mini-batch size 128
Discount factor 0.99

Number of random exploration episodes 100
Number of transitions between updates 5

Constraint threshold 0.1

D. Performance Results: Human-like Driving

This section discusses the results of the C-DRL models,
aiming to mimic human behavior safely. One model was
trained for each driving style, with hyperparameter values
similar to those in SAC-Lagrangian [15] (except for the
differences listed in Tab. III). Diverse traces were used for each
driving style to ensure learning generalized behavior. For each
agent, a driving trace was randomly selected from the ones
chosen for training for each episode.

The safety objective is to maintain a minimum headway
of ω=1 s between two vehicles. Hence, the final accelerations
decided by the C-DRL agent must ensure that the two vehicles
are never closer than this minimum headway. To achieve
this objective, during training, the agent primarily focuses on
finding a policy that minimizes the cost function representing
the safety constraint. After ensuring the safety constraint is
met, the agent tries to maximize the reward function, aiming to
find a comfortable acceleration profile that mimics human-like
driving behavior. Fig. 6 presents the evolution during training
of the rewards and the weights assigned to the cost (λ) and
reward (1−λ) functions for the three agents. Specifically, the
first row shows the reward trend of the evaluation episodes
during training (executed every 100 training episodes), which
is used to assess the training progress. As depicted, the reward
grows and stabilizes as training progresses. The normal and
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Figure 5. Driver-wise regressor model predictions for the three driving styles.
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Figure 6. C-DRL training: reward trend (top) and reward vs constraint
importance (bottom) for Aggressive, Normal, and Conservative driving.

conservative agents could achieve higher rewards than the
aggressive agent because the aggressive agent had to prioritize
the safety constraint cost function before maximizing rewards
(second row of Fig. 6). The conservative and normal driving
behavior agents give more importance to the rewards, as the
corresponding agents would not breach the safety constraint
(according to their driving style). However, for aggressive
drivers, who would naturally drive the headway below the
1-sec mark, the optimal cost function weight λ is not equal
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Figure 7. Inference phase: C-DRL - Aggressive driving style.
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Figure 8. Inference phase: C-DRL - Normal driving style.

to zero. This indicates that maximum reward maximization
would fail to respect the safety constraint, which is unde-
sirable. Hence, the final agent trades reward maximization
for enhanced safety. To test the performance of each agent,
we selected the best-performing model from the evaluation
episodes for the inference phase.

During inference, the agents are tested on driving traces
that were not used during training. Figures 7–9 illustrate the
agent’s performance across the three driving styles, each for



a specific trace (with similar results obtained for all tested
traces). Fig. 7 demonstrates that the aggressive agent could
safely drive the vehicle, maintaining the headway around
the 1-s mark without violating the safety threshold and also
imitating the acceleration predicted by the regressor model
whenever possible. When the headway drops below the safety
threshold, the agent starts braking smoothly to maintain a safe
distance from the lead vehicle. Once the agent has successfully
satisfied the safety constraint, its focus shifts to mimicking
the driver’s behavior, as depicted by the acceleration trend
(Fig. 7 (top right)), closely following the DNN regressor model
predictions. This is also confirmed by the human similarity
reward trend (Fig. 7 (bottom left)). To emphasize the impor-
tance of the C-DRL approach, we compared the proposed
framework with a non-constrained DRL technique (referred to
as Ego_DRL), where we excluded the cost indicator function
during training, confirming that without the safety constraint,
the aggressive driving style could lead to unsafe headway,
potentially resulting in dangerous situations.

In the normal and conservative driving styles, where the
safety constraint’s role is not crucial, the agents effectively
mimicked human driving behavior by following the DNN
regressor-predicted accelerations (Figures 8 and 9). To quan-
titatively evaluate the results, we calculated the root mean
square error between the regressor-predicted human-like ac-
celeration and the C-DRL predicted acceleration, resulting in
error values of 0.282, 0.043, and 0.013 for aggressive, normal,
and conservative driving behavior, respectively. As anticipated,
aggressive driving behavior yields a higher magnitude of error
due to safety constraints, while errors for normal and conser-
vative driving behaviors remain minimal. Additionally, it is
noteworthy that, although slight discrepancies exist between
the DNN regressor and the actual human-applied acceleration,
the overall headway profiles generated by the C-DRL agents
consistently align closely with those observed in the dataset.

5. CONCLUSION

We presented an adaptive autopilot framework utilizing C-
DRL to drive vehicles similarly to human drivers, adapting
to diverse driving styles. The adaptive autopilot framework
tackles three interconnected sub-problems: identifying driving
styles using real-world data through a rule-based approach,
predicting human-like acceleration across different driving
styles using a DNN regressor model, and proposing a C-DRL
approach to drive vehicles while considering safety constraints
and mimicking human-like behavior. Results indicate the re-
gressor model can safely mimic human-like driving behavior
effectively and outperforms state-of-the-art IDM models in
predicting acceleration. Hence, the comfortable experience
provided by the proposed adaptive autopilot has the potential
to enhance the satisfaction of human drivers, leading to a
reduced disengagement rate of the autopilot driving system.
Future work includes leveraging semi-supervised learning for
enhanced driving style categorization and extending the frame-
work to realistic vehicle dynamics-based simulation environ-
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Figure 9. Inference phase: C-DRL - Conservative driving style.

ments for handling complex scenarios like cut-ins and lane
changes.
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