
14 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

How to locate services optimizing redundancy: A comparative analysis of K-Covering Facility Location models / Fadda,
Edoardo; Manerba, Daniele; Tadei, Roberto. - In: SOCIO-ECONOMIC PLANNING SCIENCES. - ISSN 0038-0121. -
94:(2024), pp. 1-18. [10.1016/j.seps.2024.101938]

Original

How to locate services optimizing redundancy: A comparative analysis of K-Covering Facility Location
models

Publisher:

Published
DOI:10.1016/j.seps.2024.101938

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2990629 since: 2024-07-11T06:37:14Z

Elsevier



Socio-Economic Planning Sciences 94 (2024) 101938

A
0
n

Contents lists available at ScienceDirect

Socio-Economic Planning Sciences

journal homepage: www.elsevier.com/locate/seps

How to locate services optimizing redundancy: A comparative analysis of
𝐾-Covering Facility Location models
Edoardo Fadda a, Daniele Manerba b,∗, Roberto Tadei c

a Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy
b Department of Information Engineering, Università degli Studi di Brescia, Brescia, Italy
c Department of Control and Computer Engineering, Politecnico di Torino, Turin, Italy

A R T I C L E I N F O

Keywords:
Service redundancy
Backup-coverage problems
Double Standard Model
Ambulances location

A B S T R A C T

Redundancy aspects related to covering facility location problems are of extreme importance for many
applications, in particular those regarding critical services. For example, in the healthcare sector, facilities such
as ambulances or first-aid centers must be located robustly against unpredictable events causing disruption or
congestion. In this paper, we propose different modeling tools that explicitly address coverage redundancy for
the underlying service. We also evaluate, both theoretically and experimentally, the properties and behavior
of the models, and compare them from a computational and managerial point of view. More precisely, by
starting from three classical double-covering models from the literature (BACOP1, BACOP2, and DSM), we
define three parametric families of models (namely, 𝐾-BACOP1, 𝐾-BACOP2, and 𝐾-DSM) which generalize
the former to any possible 𝐾th coverage level of interest. The study of such generalizations allows us to derive
interesting managerial insights on location decisions at the strategic level. The CPU performance and the quality
of the solutions returned are assessed through ad-hoc KPIs collected over many representative instances with
different sizes and topological characteristics, and also by dynamically simulating scenarios involving possible
disruption for the located facilities. Finally, a real case study concerning ambulance service in Morocco is
analyzed. The results show that, in general, 𝐾-BACOP1 performs very well, even if intrinsic feasibility issues
limit its broad applicability. Instead, 𝐾-DSM achieves the best coverage and equity performances for lower
levels of redundancy, while 𝐾-BACOP2 seems the most robust choice when high redundancy is required,
showing smoother and more predictable trends.
1. Introduction

Facility location is a fundamental strategic and tactical aspect in
many decision processes, with uncountable applications in logistics,
transportation, healthcare, and many other fields [1–3]. In all these
problems, the significant decisions to be taken are about locating
facilities (where and how many) while making the underlying service
as efficient as possible. In general, objectives can relate to topological,
covering, equity, and accessibility aspects [4–7]. The p-median, p-center,
or the Simple Plant Location problem are just a few well-known exam-
ples. Inside the class mentioned above, the so-called covering location
problems (CLPs) are among the most important and adopted models [8].
Given the covering radius of each potential facility, the main goal of
such problems is to locate facilities to cover the demand centers as best
as possible in terms of service (i.e., so that they result in a reasonable
amount of time or distance to the nearest located facility). They can
be subdivided into two main groups, namely, mandatory and maximal
CLPs. The former problems seek to minimize the number of facilities
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to cover all the demand. In contrast, the latter ones seek to maximize
the total covered demand by locating a predefined number of facilities
(representing a limited available budget to invest in the service).

In this paper, we focus on maximal CLPs and their extensions. In
particular, we are interested in studying their behavior when multiple
covering of the same demand is desirable, the so-called service redun-
dancy. Problems that consider high multi-coverage levels are helpful
for settings that require pursuing more sophisticated goals than the
basic coverage, e.g., those related to the robustness or resiliency of the
service. Given their critical impact on the population, healthcare ser-
vices (e.g., ambulance location or relocation) are typical cases in which
decision-makers (e.g., municipalities, healthcare companies, hospitals)
must pay particular attention to the performance of the implemented
solutions [9–11]. This is particularly true when possible disruption or
congestion of the facilities is concerned. While healthcare applications
have been studied long since from the redundancy point of view (see,
vailable online 21 May 2024
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e.g., [12]), this aspect has gained further importance during the SARS-
CoV-2 pandemic. The location of triage or vaccine centers, ambulances,
and outstanding intensive care facilities are just a few among several
possible interesting cases of CLPs applications to deal with that kind
of healthcare crisis. Apart from healthcare, many other services are
particularly sensitive to redundancy features. For example, energetic
facilities must be carefully located to be fault tolerant, while capacity-
limited services (such as waste bins or parking areas) try to robustly
meet the demand by enlarging its possibility to be satisfied by locating
more covering facilities. Finally, even for services rarely affected by
disruptions (such as schools, markets, or green areas) covering with
redundancy is always preferred since it allows more and more different
alternatives to choose from, thus increasing social inclusion and equal
opportunities.

Facility disruption can be addressed under three main perspec-
tives: Deterministic, stochastic (at the tactical level), and dynamic
(at operational and real-time levels). The deterministic perspective
considers planning models that ignore the decision process’s intrinsic
uncertainty. However, most covering facility location models can be
solved optimally nowadays by state-of-the-art solvers, even for large
instances. Clearly, basic covering problems cannot explicitly create
robust solutions in the case of disruption related to already-located
facilities. Instead, some tailored models are available in the literature as
the BAckup COverage Problem of type 1 (BACOP1), the BAckup COverage
Problem of type 2 (BACOP2) presented in Hogan and ReVelle [13], and
the Double Standard Model (DSM) presented in Gendreau et al. [14]. All
the models try to maximize, with some differences, the number of times
a location is covered at least twice. This way, if a facility is disrupted,
then a backup one can provide the same service to the demand center.
On the contrary, the stochastic perspective explicitly considers that
facilities operate in uncertain environments. Some quantities (e.g., the
service demand or the probability of disruption) are unknown a-priori.
Usually, such models are very complex to solve, and ad-hoc heuristics
are needed. Moreover, these models are typically problem-specific and
can hardly be adapted from one context to another one. Finally, at the
operational and real-time levels, the dynamic perspective considers the
problem of relocating facilities in an optimal way over a specific time
horizon. Solutions for these problems are commonly computed by using
heuristics based on dynamic programming concepts. These models are
adopted in the presence of facilities that can be moved or reallocated
(e.g., ambulances) or to address progressive location interventions over
time. However, they do not provide robust solutions, and results are
useless for many facilities (i.e., all those that cannot be reallocated).

The purpose of this paper is to study and compare insightful mod-
eling tools able to assess redundancy aspects of facility location from
many different perspectives at the strategic level. In fact, in many
cases (e.g., during the exploratory phases of a decision process), the
problem objectives are not very clear and the choice of the right
model to use (together with its right parameterization) becomes of
utmost importance and must be, therefore, supported by a quantitative
analysis. A similar perspective has been adopted, e.g., in Klibi et al.
[15], where the authors investigate various modeling features of the
location–allocation model and compare location decisions produced by
stochastic and deterministic models, or in Fadda et al. [16], where
several deterministic covering location models are compared against
a large battery of post-optimality KPIs. In particular, the contribution
of this work is two-fold:

• We enrich the deterministic planning research stream by defining
new families of parametric models (𝐾-BACOP1, 𝐾-BACOP2, and
𝐾-DSM) which generalize the three models mentioned above
concerning redundancy. These 𝐾-covering generalizations, while
preserving the same spirit of their 2-covering counterpart, involve
decisions up to the 𝐾th level of coverage, i.e., the status of
the demand centers covered at least 𝐾 times. This allows the
2

decision-maker to better deal with applications characterized by
services of critical importance, thus pursuing robust solutions
through redundant demand coverage. The proposed models give
the decision-maker more flexible and powerful tools for deriving
location solutions with the desired redundancy.

• We assess the proposed models both from a theoretical and an
empirical perspective. More specifically, feasibility, structural,
and complexity properties are explored and derived. We also
experimentally compare the returned location solutions’ quality
using ad-hoc KPIs collected for many artificial instances (simu-
lating several different topological distributions of the centers,
covering radii, number of available facilities to locate) as well as
for a real case study concerning ambulance service in Morocco.
The experiments are run both with and without considering the
possible dynamic disruption of the locations. The analysis allowed
us to derive reliable insights into the different models’ applica-
bility within the various simulated situations and their pros and
cons against specific KPIs developed to assess the equity and re-
dundancy of the solutions. Note that the above KPI-based analysis
is doable and consistent since, despite being different in terms of
objectives and combinatorial structure, all the three families of
models proposed share a central decisional core (i.e., the facilities’
location).

We acknowledge that 𝐾-BACOP1 and 𝐾-BACOP2 models can be
obtained as special cases of the parametric formulation called COV
discussed in García and Marín [8]. Actually, 𝐾-BACOP2 is obtainable
from COV only under the simplifying assumption for which covering
the demand of each location 𝑘 times is at least as important as covering
it 𝑘 + 1 times. The 𝐾-DSM, instead, seems to have never appeared
in the specialized literature. However, the COV model is too general
and, therefore, potentially less efficient to solve than our formulations.
Moreover, to the best of our knowledge, the proposed formulations
have never been studied and analyzed in detail, nor adopted for specific
applications. Finally, while our generalizations have not been stud-
ied in the literature for covering problems, similar extensions have
been proposed for p-median and p-center models under the name of
Fault-Tolerant Facility Location Problems [17–21].

The rest of the paper is organized as follows. In Section 2, we review
the most relevant literature concerning covering location problems, em-
phasizing those addressing redundancy aspects. In Section 3, we present
and discuss the three most used 2-covering models from the literature.
Instead, in Section 4, we propose new parametric families of models
generalizing the previous ones to any 𝐾th level of desired coverage.
Then, Section 5 explores some theoretical properties of the proposed
models. Concerning the empirical comparison, Section 6 presents the
experimental setting used to compare and evaluate the models, while
Section 7 provides an insightful discussion on the results obtained over
a large number of experiments. Section 8 presents the case study and
the relative results. Finally, Section 9 concludes the paper and sketches
possible future research.

2. Literature review

In this paper, we are interested in addressing maximal covering
location problems (MCLPs) and their extensions [22]. As already said,
MCLPs can be either deterministic or stochastic. Moreover, they can
consider dynamic relocation when possible and be uncapacitated or
include some capacity constraints.

For capacitated MCLPs, the service congestion or disruption must
be explicitly addressed by taking care of coverage redundancy in the
model. Classical models doing that are the Redundant Covering Lo-
cation Problem (RCLP) [23], the Maximal Backup Coverage Location
Problems (MBCLPs), in particular BACOP1 and BACOP2 [13], and
the DSM [14]. The RCLP considers Minimum Set Covering Problem
(MSCP) solutions that maximize the demand covered at least twice.

In BACOP1, the total demand is assumed to be covered once, while
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the demand covered twice is maximized. BACOP2 instead is a multi-
objective problem that simultaneously maximizes the single and the
double coverage for the demand. At the same time, no guarantee is
given that all the demand is covered. Finally, in the DSM, two covering
radii are considered, 𝑟1 and 𝑟2 (with 𝑟1 < 𝑟2). The total demand is
covered within radius 𝑟2, while the demand covered within radius 𝑟1
is maximized. Note that all these models can only consider the second
level of coverage (i.e., only one backup in the case of disruption). Still,
they cannot provide robust solutions if the decision-maker is interested
in higher levels of coverage. However, while BACOP-1 and BACOP-2
are binary problems, DSM is an integer problem. Extensions of DSM
can be found in Doerner et al. [24],Doerner and Hartl [25] for the
minimization of the ambulance workload.

Applications of deterministic MCLPs explicitly taking into account
redundancy (e.g., MBCLP and DSM) are widely found in the emer-
gency services location [26], the design of hierarchical healthcare
systems [27,28], and the optimization of congested service systems
[29]. In all these settings, the coverage criterion becomes strategic and
highly critical. An excellent taxonomy of healthcare design is given
by Ahmadi-Javid et al. [30]. Other interesting applications of those
models can be found for the design of firefighting emergency systems
[29] and police/military systems [31–33]. However, the following
limit affects all the coverage models: An irrelevant distance difference
moves a demand from covered to uncovered due to border effects. To
address this issue, a two-threshold decay function has been introduced
by Karasakal and Karasakal [34] and gradual deterministic models
have been proposed by Berman et al. [35],Berman and Wang [36],
and Drezner et al. [37]. An interesting review of this topic can be found
in Eiselt and Marianov [38].

The most used techniques to solve MCLP, MBCLP, and DSM are
exact methods, mainly relying on Benders-like decomposition [39]
or Dynamic Programming [40]. Despite their theoretical complexity,
such models can be solved optimally in a reasonable amount of time
by state-of-the-art solvers or ad-hoc procedures, even for large in-
stances. However, many heuristics are also available in the literature, in
particular for the most complicated extensions. Lagrangian relaxation-
based heuristics can be found in Karasakal and Karasakal [34],Galvão
and ReVelle [41] for the MCLP and its partial coverage version, re-
spectively. Gendreau et al. [42,43] use tabu search for ambulances
relocation, while Doerner et al. [24] develop a tabu search method to
solve the DSM for instances representing ambulance location in Austria.
An interesting survey on covering models and optimization techniques
for emergency response facility location can be found in Li et al. [44].

Concerning stochastic MCLPs, several sources of uncertainty char-
acterize these models: Demand, service availability, and response time.
Demand uncertainty is addressed by Sung and Lee [45],MirHassani
et al. [46]. Stochastic service availability is introduced by ReVelle and
Hogan [47],Daskin [48], through the Maximum Expected Covering
Location Problem (MEXCLP). Sorensen and Church [49] integrate the
contributions of ReVelle and Hogan [47],Daskin [48] by considering a
reliable MEXCLP, while Rajagopalan et al. [50] introduce genetic algo-
rithms for solving the MEXCLP. Stochastic response time is addressed
by Chelst and Jarvis [51] by introducing the probability distribution
of travel times. Drezner et al. [52] give a random gradual covering
problem, while Drakulic et al. [53] consider fuzzy coverage radii and
distances. Stochastic models are also introduced to address capacitated
facility locations’ reliability to guarantee a minimum service level un-
der facility disruptions (see, e.g., [54–59], and [60]). Most of them are
stochastic versions of the classical Uncapacitated Fixed-charge Location
Problem (UFLP) or of the Capacitated Fixed-charge Location Problem
(CFLP). The uncertainty is generally modeled through a scenario-based
approach. When two-stage Stochastic Programming models are devel-
oped, the number and location of the facilities are determined in the
first stage. In contrast, in the second stage, after uncertainty due to
disruptions is resolved, the allocation of users to facilities is calcu-
3

lated for each disruptive scenario. Robust and distributionally robust b
approaches have also been investigated (see, e.g., [61,62], and [63]).
For extended reviews on facility location under disruption, see Snyder
et al. [64],Scaparra and Church [65].

Concerning the dynamic setting, we just point out that, in Dibene
et al. [66], the authors adopt a DSM by also considering a dynamic
service demand. The relocation of facilities, which is another way to ad-
dress dynamic demand, is considered by Brotcorne et al. [12],Gendreau
et al. [43],Carson and Batta [67],Moeini et al. [68], and Bélanger et al.
[69].

3. Double-covering models

This section presents and discusses the three most-used existing
models, namely the BACOP1, BACOP2, and the DSM, which address
redundancy by explicitly introducing a double level of service coverage.
Given their wider generality, we will consider weighted versions of
such models, i.e., where possibly different weights (demand rates)
are associated with each location. In particular, BACOP1 pursues the
maximization of the demand rate related to the locations covered twice,
while BACOP2 maximizes the convex combination of the demand rate
related to the locations covered once and twice. Finally, DSM pursues
the same objective of BACOP1 but, considering two different coverage
radii, it enforces the covering of all facilities within the largest radius
and a certain percentage of demand rate covered within the smallest
one. Let us consider the following notation:

•  : Set of locations where it is possible to locate a facility for the
considered service;

• ℎ𝑖 > 0: Demand rate associated with location 𝑖 ∈  ;
• 𝑑𝑖𝑗 : Distance between locations 𝑖, 𝑗 ∈  ;
• 𝑟

𝑖 = {𝑗 ∈  ∶ 𝑑𝑖𝑗 ≤ 𝑟}: Covering set of 𝑖 ∈  , i.e., the set of
all locations closer to location 𝑖 than a predefined radius 𝑟. The
value of 𝑟 could represent, e.g., the maximum distance that a user
is willing to drive to reach a facility;

• 𝑟1 > 0, 𝑟2 > 0: Inner and outer coverage radius, respectively
(we assume 𝑟2 > 𝑟1). While 𝑟1 is used to measure the backup
coverage in all three models, 𝑟2 is used only by DSM for ensuring
a complete single covering of the service;

• 𝑝: Predefined number of facilities to locate (we assume 1 ≤ 𝑝 ≤
| |).

oreover, let us consider the following common decision variables:

• 𝑦𝑗 : Binary variable taking value 1 if a facility is located in 𝑗 ∈  ,
and 0 otherwise;

• 𝑢(1)𝑖 , 𝑢(2)𝑖 : Binary variable taking value 1 if the demand from
location 𝑖 ∈  is covered at least once and twice within 𝑟1,
respectively.

The BACOP1, presented in Hogan and ReVelle [13], is:

ax
∑

𝑖∈
ℎ𝑖𝑢

(2)
𝑖 (1)

s.t.
∑

𝑖∈
𝑦𝑖 = 𝑝 (2)

𝑢(2)𝑖 + 1 ≤
∑

𝑗∈𝑟1𝑖

𝑦𝑗 , ∀𝑖 ∈  (3)

𝑦𝑖, 𝑢
(2)
𝑖 ∈ {0, 1}, ∀𝑖 ∈  . (4)

he objective function (1) aims at maximizing the total demand rate of
he locations that are covered twice. Constraint (2) ensures to locate
xactly 𝑝 stations while constraints (3) ensure that 𝑢(2)𝑖 = 0 when
ocation 𝑖 is not covered by more than one facility in 𝑟1

𝑖 . Note that
ACOP1 returns feasible solutions only if there are enough facilities to
over all the locations once. It is easy to see that constraints (3) cannot

e satisfied when their right-hand sides are strictly less than 1.
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The BACOP2, presented in Hogan and ReVelle [13], is:

max 𝜆(2)
∑

𝑖∈
ℎ𝑖𝑢

(2)
𝑖 + 𝜆(1)

∑

𝑖∈
ℎ𝑖𝑢

(1)
𝑖 (5)

s.t.
∑

𝑖∈
𝑦𝑖 = 𝑝 (6)

𝑢(2)𝑖 ≤ 𝑢(1)𝑖 , ∀𝑖 ∈  (7)

𝑢(2)𝑖 + 𝑢(1)𝑖 ≤
∑

𝑗∈𝑟1𝑖

𝑦𝑗 , ∀𝑖 ∈  (8)

𝑦𝑖, 𝑢
(1)
𝑖 , 𝑢(2)𝑖 ∈ {0, 1}, ∀𝑖 ∈  (9)

here 𝜆(1) and 𝜆(2) are the relative importance of the single and the
ouble coverage, respectively, with 𝜆(1), 𝜆(2) ≥ 0 and 𝜆(1) + 𝜆(2) =

1. Basically, the objective function (5) aims at maximizing a convex
combination (weighted by 𝜆(1) and 𝜆(2)) of the total demand rate of the
ocations covered once and twice, thus pursuing a trade-off between
asic and backup coverage.1 Constraints (7) enforce that if a location
s covered at least two times, then it is also covered at least once.
onstraints (8) ensure that the sum 𝑢(2)𝑖 +𝑢(1)𝑖 cannot exceed the number
f times that location 𝑖 is covered by facilities in 𝑟1

𝑖 . This means that
f 𝑢(2)𝑖 = 1, then also 𝑢(1)𝑖 = 1 and therefore the number of covering
acilities must be greater than or equal to 2, while if 𝑢(1)𝑖 = 1, the

number of covering facilities must be greater than or equal to 1.
Finally, the DSM, presented in Gendreau et al. [14], is2:

ax
∑

𝑖∈
ℎ𝑖𝑢

(2)
𝑖 (10)

s.t.
∑

𝑖∈
𝑦𝑖 = 𝑝 (11)

∑

𝑗∈𝑟2𝑖

𝑦𝑗 ≥ 1, ∀𝑖 ∈  (12)

∑

𝑖∈
ℎ𝑖𝑢

(1)
𝑖 ≥ 𝛼(1) (13)

𝑢(2)𝑖 ≤ 𝑢(1)𝑖 , ∀𝑖 ∈  (14)

𝑢(1)𝑖 + 𝑢(2)𝑖 ≤
∑

𝑗∈𝑟1𝑖

𝑦𝑗 , ∀𝑖 ∈  (15)

𝑦𝑖, 𝑢
(1)
𝑖 , 𝑢(2)𝑖 ∈ {0, 1}, ∀𝑖 ∈  (16)

where 𝛼(1) is the proportion of demand that must be covered at least
once within 𝑟1. The objective function (10) aims at maximizing the total
demand rate of locations covered at least twice within 𝑟1. Constraints
(12) state that all demand must be covered within 𝑟2, while constraints
(13) ensure that a certain proportion of all demand is covered within
𝑟1. Constraints (14) and (15), similarly to constraints (7) and (8) for the
BACOP2, express the double coverage requirement within 𝑟1.

4. 𝑲-covering models

In this section, we generalize the three models previously presented
to any possible coverage level. To this aim, we need to further define:

• 𝐾: Maximum level of coverage desired. Obviously, this value
cannot exceed the available number of facilities to locate, i.e. 𝐾 ≤
𝑝;

1 Actually, BACOP2 was born as a pure multi-objective problem. However,
o maintain uniformity with the other problems and as commonly done in the
iterature [70–72], we stick with a formulation in which the objective function
as been linearized.

2 In the original DSM version, which concerned ambulances location, deci-
ion variables might take integer values and not merely binary ones. However,
o maintain a sensible comparison with the other models, we consider a binary
SM version. This does not affect the model’s main characteristics and the
4

ssence of its location goals.
• 𝑢(𝑘)𝑖 : Binary variable taking value 1 if the demand from location
𝑖 ∈  is covered at least 𝑘 times (with 𝑘 = 1,… , 𝐾) within 𝑟1,
and 0 otherwise.

Each of the following subsections is dedicated to a specific model
generalization.

4.1. 𝐾-BACOP1

The proposed generalization to the 𝐾th level of coverage of BACOP1
(𝐾-BACOP1) is as follows:

max
∑

𝑖∈
ℎ𝑖𝑢

(𝐾)
𝑖 (17)

s.t.
∑

𝑖∈
𝑦𝑖 = 𝑝 (18)

𝑢(𝐾)
𝑖 +𝐾 − 1 ≤

∑

𝑗∈𝑟1𝑖

𝑦𝑗 , ∀𝑖 ∈  (19)

𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈  (20)

𝑢(𝐾)
𝑖 ∈ {0, 1}, ∀𝑖 ∈  . (21)

As in the BACOP1, the objective function (17) aims at maximizing the
total demand rate of the locations covered at the maximum level con-
sidered, i.e. 𝐾. Along with the usual budget constraint (18), constraints
(19) generalize constraints (3) to the 𝐾th covering level, i.e., they
ensure that 𝑢(𝐾)

𝑖 = 0 when location 𝑖 is not covered by more than
𝐾 − 1 facilities in 𝑟1

𝑖 . Clearly, the model is equivalent to the BACOP1
for 𝐾 = 2. Finally, as already mentioned in the Introduction, the 𝐾-
BACOP1 can be seen as a special case of the general model called COV
presented in García and Marín [8].

4.2. 𝐾-BACOP2

The proposed generalization to the 𝐾th level of coverage of BACOP2
(𝐾-BACOP2) is as follows:

max
𝐾
∑

𝑘=1
𝜆(𝑘)

∑

𝑖∈
ℎ𝑖𝑢

(𝑘)
𝑖 (22)

s.t.
∑

𝑖∈
𝑦𝑖 = 𝑝 (23)

𝑢(𝑘)𝑖 ≤ 𝑢(𝑘−1)𝑖 , ∀𝑖 ∈  ,∀𝑘 = 2,… , 𝐾 (24)
𝐾
∑

𝑘=1
𝑢(𝑘)𝑖 ≤

∑

𝑗∈𝑟1𝑖

𝑦𝑗 , ∀𝑖 ∈  (25)

𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈  (26)

𝑢(𝑘)𝑖 ∈ {0, 1}, ∀𝑖 ∈  ,∀𝑘 = 1,… , 𝐾 (27)

where 𝜆(𝑘) is the relative importance of the 𝑘th coverage, with 𝜆(𝑘) ≥ 0
and ∑𝐾

𝑘=1 𝜆
(𝑘) = 1.

Basically, the objective function (22) aims at maximizing a convex
combination, weighted by 𝜆(𝑘), of the demand rate of the locations
covered 𝑘 times. Along with the budget constraint (23), constraints
(24) generalize constraints (7) by enforcing that a location covered
𝑘 times must also be covered 𝑘 − 1 times, while constraints (25)
generalize constraints (8) ensuring that the sum of all the 𝑢 variables
related to location 𝑖 cannot exceed the number of times 𝑖 is covered
by facilities in 𝑟1

𝑖 . Clearly, the model is equivalent to the BACOP2 for
𝐾 = 2. Again, the 𝐾-BACOP2 can be seen as a special case of the COV
model. However, COV does not explicitly include the constraints (24)
whereas it requires a particular assumption on the objective function’s
coefficients ensuring that it is never convenient to cover 𝑘 times a
location without having covered it 𝑘 − 1 times.

4.3. 𝐾-DSM

The proposed generalization to the 𝐾th level of coverage of DSM

(𝐾-DSM) is as follows:
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max
∑

𝑖∈
ℎ𝑖𝑢

(𝐾)
𝑖 (28)

s.t.
∑

𝑖∈
𝑦𝑖 = 𝑝 (29)

∑

𝑗∈𝑟2𝑖

𝑦𝑗 ≥ 1, ∀𝑖 ∈  (30)

∑

𝑖∈
ℎ𝑖𝑢

(𝑘)
𝑖 ≥ 𝛼(𝑘), ∀𝑘 = 1,… , 𝐾 − 1 (31)

𝑢(𝑘)𝑖 ≤ 𝑢(𝑘−1)𝑖 , ∀𝑖 ∈  ,∀𝑘 = 2,… , 𝐾 (32)
𝐾
∑

𝑘=1
𝑢(𝑘)𝑖 ≤

∑

𝑗∈𝑟1𝑖

𝑦𝑗 , ∀𝑖 ∈  (33)

𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈  (34)

𝑢(𝑘)𝑖 ∈ {0, 1}, ∀𝑖 ∈  ,∀𝑘 = 1,… , 𝐾 (35)

here 𝛼(𝑘),∀𝑘 = 1,… , 𝐾 − 1 is the proportion of demand that must be
overed at least 𝑘 times within 𝑟1.

The objective function (28) maximizes the demand covered at least
times. Along with constraints (29) and (30), which are identical to

11) and (12), constraints (31) enforce a minimum percentage of ℎ𝑖
overed at least 𝑘 times, generalizing (13). Finally, constraints (32) and
33) link the 𝑢 and 𝑦 variables exactly as in the 𝐾-BACOP2, generalizing
14) and (15), respectively.3 Clearly, the model is equivalent to the
SM for 𝐾 = 2.

. Theoretical properties

In this section, we compare 𝐾-BACOP1, 𝐾-BACOP2, and 𝐾-DSM
rom a theoretical point of view by exploring some interesting mathe-
atical properties. Some of these properties will be useful to fully grasp

he experimental results presented in Section 7. In the following, we call
-DSM𝑟 the 𝐾-DSM problem in which constraints (31) are relaxed.

.1. Complexity

All the proposed problems are -hard, being generalizations of
he well-known Maximal Covering Problem (MCP). In fact, 𝐾-BACOP1
s equivalent to MCP for 𝐾 = 1 while 𝐾-BACOP1 is a particular case
f 𝐾-BACOP2 where 𝜆(𝐾) = 1 and reduced by fixing 𝑢(𝑘)𝑖 = 1, 𝑘 =
,… , 𝐾 −1. Finally, 𝐾-BACOP2 is a particular case of 𝐾-DSM in which
(𝐾) = 1 and where constraints (30) and (31) are relaxed. Notice that, as
t happens for many classical covering problems (e.g., the MCP), some
articular cases may be easy to solve. For instance, when 𝑝 = | |

hen the optimal solution can be obtained by simply locating all the
acilities, or when each facility covers only the location where it is
ocated (i.e., 𝑟

𝑖 = {𝑖},∀𝑖 ∈  ), then the optimal solution can be
btained by simply locating a facility in the 𝑝 locations with the largest
emand rate.

.2. Dimensionality

Apart from the theoretical complexity, which is the same for the
hree proposed models, it is also interesting to compare them in terms
f the number and type of variables and constraints required. In fact,
uch aspects generally affect computational performances in practice.

First, it is interesting to notice that some variables can be relaxed
o be continuous without changing the solution of the models. In
articular:

3 Another reasonable DSM generalization may consider 𝐾 different radii,
one for each coverage level. However, such a generalization would deny a
direct comparison with the other proposed models.
5

Table 1
Number of variables and constraints of the models.

𝐾-BACOP1 𝐾-BACOP2 𝐾-DSM

Binary variables | | (𝐾 + 1) ⋅ | | (𝐾 + 1) ⋅ | |

Continuous variables | | 0 0
Constraints | | + 1 𝐾 ⋅ | | + 1 (𝐾 + 1) ⋅ | | +𝐾

Property 1. Given 𝐾, all the variables 𝑢𝐾𝑖 , ∀𝑖 ∈  , can be relaxed to be
continuous in the 𝐾-BACOP1.

In fact, Eq. (19) impose an integer upper bound on each 𝑢(𝐾)
𝑖 , and,

therefore, in the case this bound is greater than 1, then the objective
function pushes each 𝑢(𝐾)

𝑖 to take the maximum value in [0, 1].

Property 2. Given 𝐾, all the variables 𝑢𝑘𝑖 , ∀𝑖 ∈  ,∀𝑘 = 1,… , 𝐾, can
be relaxed to be continuous in the 𝐾-BACOP2, when 𝜆(𝑘) < 𝜆(𝑘−1),∀𝑘 =
2,… , 𝐾.

Property 3. Given 𝐾, all the variables 𝑢𝑘𝑖 , ∀𝑖 ∈  ,∀𝑘 = 1,… , 𝐾, can be
relaxed to be continuous in the 𝐾-DSM𝑟.

Concerning the 𝐾-BACOP2, the same observation done for 𝐾-BACOP1
holds for each level of coverage 𝑘 = 1,… , 𝐾 only if it is always more
convenient to cover a location 𝑘 times than 𝑘 + 1 times, i.e., when
𝜆(𝑘) < 𝜆(𝑘−1),∀𝑘 = 2,… , 𝐾. Moreover, for a 𝐾-DSM with constraints (31)
relaxed, the objective function pushes each 𝑢(𝐾)

𝑖 to take the maximum
value in [0, 1] by following the same logic described for 𝐾-BACOP2.

Then, a detailed comparison of the models in terms of the number
of variables and constraints is reported in Table 1 (this analysis is based
also on the consequences of Property 1, which does not need additional
assumptions). The most interesting thing to notice is that, differently
from the other two models, the dimension of 𝐾-BACOP1 does not
depend on 𝐾. In fact, 𝐾-BACOP1, focuses only on the maximum desired
level of coverage, while the intermediate levels are not considered (as it
happens instead for 𝐾-BACOP2 and 𝐾-DSM). Considering the number
of variables, 𝐾-BACOP2 and 𝐾-DSM both require (𝐾 + 1) ⋅ | | binary
variables, while 𝐾-BACOP1 requires only 2⋅| | variables, half of which
can be relaxed to be continuous. Considering the number of constraints,
𝐾-BACOP1 requires the smallest number, while the number of 𝐾-DSM
constraints grows a little faster than that of 𝐾-BACOP2 as 𝐾 increases.

5.3. Feasibility properties

We now explore the behavior of the three models in terms of feasi-
bility with respect to the main input parameters, namely 𝐾, 𝑝, 𝑟1, and 𝑟2
(actually, 𝑟2 is used only for the 𝐾-DSM). We remind that 𝐾 ≤ 𝑝 ≤ | |

is assumed throughout the paper. First, note that 𝐾-BACOP2 returns
a feasible solution for any (𝐾, 𝑝, 𝑟1) combination. Instead, both 𝐾-
BACOP1 and 𝐾-DSM suffer from possible infeasibilities. This is further
explained through the following properties.

Concerning 𝐾-BACOP1, given a certain coverage level 𝐾, the model
can be infeasible for any possible value of 𝑝 depending on how small
𝑟1 is. For instance, a 𝑟1 value allowing each location to cover just itself
yields a 𝐾-BACOP1 infeasible ∀𝐾 ≥ 2 even when 𝑝 = | |. More
interesting:

Property 4. If 𝐾-BACOP1 is infeasible for a given (𝐾, 𝑝, 𝑟1), then it is also
infeasible for:

• (𝐾, �̄�, 𝑟1), with �̄� < 𝑝;
• (𝐾, 𝑝, �̄�1), with �̄�1 < 𝑟1.

A stronger implication can be derived concerning 𝐾-BACOP1 infeasi-
bility with respect to the value of 𝐾:

Property 5. Given (𝐾, 𝑝, 𝑟1) with 𝐾 ≥ 2, 𝐾-BACOP1 returns a feasible

solution if and only if all the locations are covered at least 𝐾 − 1 times.
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This highlights the importance, for a given (𝐾, 𝑟1), to estimate the
minimum number 𝑝𝐾-BACOP1

𝑚𝑖𝑛 of facilities needed to cover 𝐾−1 times all
the locations, and thus making feasible the 𝐾-BACOP1. The following
set (𝐾 − 1)-covering problem [73] returns such a threshold:

𝑝𝐾-BACOP1
𝑚𝑖𝑛 = min

∑

𝑖∈
𝑦𝑖 (36)

s.t.
∑

𝑗∈𝑟1𝑖

𝑦𝑗 ≥ 𝐾 − 1, ∀𝑖 ∈  (37)

𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈  . (38)

Concerning 𝐾-DSM, the model can be infeasible due to constraints
(30) and (31). For instance, if 𝑝 is low and there exists a location
placed at a distance greater than 𝑟2, then the relative constraints (30)
cannot be satisfied. Furthermore, according to constraints (31), there
could exist characteristic values of 𝛼(𝑘) such that the model is infeasible
even for 𝑝 = | |. Hence, to derive some interesting properties, we
need to assume that the 𝛼(𝑘) values do not affect the feasibility of
the problem, i.e. to consider 𝐾-DSM𝑟 instead of 𝐾-DSM. Note that,
although not general, this is reasonably true in practical applications,
especially when the value of 𝐾 grows. So, the following property holds:

Property 6. If 𝐾-DSM𝑟 is infeasible for a given (𝐾, 𝑝, 𝑟1, 𝑟2), then it is also
infeasible for:

• (𝐾, �̄�, 𝑟1, 𝑟2), with �̄� < 𝑝;
• (𝐾, 𝑝, �̄�1, 𝑟2), with �̄�1 < 𝑟1;
• (𝐾, 𝑝, 𝑟1, �̄�2), with �̄�2 < 𝑟2.

As before, for practical purposes, it is important to estimate the mini-
mum number 𝑝𝐾-DSM𝑟

𝑚𝑖𝑛 of facilities needed to make feasible the 𝐾-DSM𝑟
for a given (𝐾, 𝑟1, 𝑟2). This value can be found by solving the following
set-covering problem:

𝑝𝐾-DSM𝑟
𝑚𝑖𝑛 = min

∑

𝑖∈
𝑦𝑖 (39)

s.t.
∑

𝑗∈𝑟2𝑖

𝑦𝑗 ≥ 1, ∀𝑖 ∈  (40)

𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈  . (41)

nstead, it is not possible to find easily the minimum number 𝑝𝐾-DSM
𝑚𝑖𝑛

f facilities making feasible the original 𝐾-DSM, unless resorting to a
roblem as complex as the 𝐾-DSM itself. However, 𝑝𝐾-DSM𝑟

𝑚𝑖𝑛 represents
useful lower bound for 𝑝𝐾-DSM

𝑚𝑖𝑛 .

. Experimental setting for models assessment

While the core decisions of the proposed models remain the same
i.e., the location of the available facilities), their comparison is not
traightforward since they pursue different objectives and requisites.
ence, to assess their behavior, we analyze their optimal solutions
gainst some redundancy-focused performance indicators over an ex-
ensive set of random instances simulating different topological and
emographic aspects. The generation of such instances is presented in
ection 6.1, while the considered KPIs are presented in Section 6.2. For
more solid assessment, we evaluate the KPIs both (i) by assuming a

tatic planning scenario and (ii) by simulating possible disruption of the
acilities already located. Such a simulation is described in Section 6.3.

.1. Instances generation

We generate a broad set of random instances representing realistic
cenarios by adopting the method proposed in Fadda et al. [16] since
t has proven to be a reliable method for exploring the properties
f the solutions. However, our generation is enriched by the specific
ata necessary for the considered models and their generalization. We
6

pecify that all the data and the instance parameters are maintained d
roportional to derive insights not depending on the absolute values of
arameters.

Each considered location is characterized by a demand and a spatial
osition. For each location 𝑖 ∈  , a demand 𝑄𝑖 is drawn randomly in
0, 𝑄𝑚𝑎𝑥], then the demand rate ℎ𝑖 is obtained by normalizing the vector
f the demands, i.e., ℎ𝑖 = 𝑄𝑖∕

∑

𝑗∈ 𝑄𝑗 . Note that, since all the models
nd the KPIs are based only on the demand rate, the absolute values of
𝑖 and 𝑄𝑚𝑎𝑥 do not influence the following analysis. Instead, the loca-

ions’ position is generated by using different probability distributions
ithin a [−10, 10] × [−10, 10] square. By changing the distribution used

and its parameters, we can mimic specific demographic features and
service demand dispersion. In particular, we consider three topologies
with the following features:

• mono-polar: This topology simulates the case of a region where
a single main cluster of locations exists, in addition to a few
sparse locations around it (e.g., a district where there exists only
one large city surrounded by tiny satellite municipalities). The
coordinates of 80% of the location are drawn from a Student’s t
distribution with 3 degrees of freedom. Instead, the coordinates
of the remaining 20% are drawn from a Uniform distribution.

• multi-polar: This topology simulates the case of a region where
there exist several dispersed clusters of locations (e.g., a dis-
trict with small-medium cities of similar sizes). The locations’
coordinates are drawn from a sum of independent Multinomial
distributions with random mean value and a unitary standard
deviation.

• uniform: This topology simulates the case of a region where there
are no clear clusters of locations, as they are all dispersed (e.g., an
urban area where the demand is spread uniformly across the
considered region). The coordinates of the locations are drawn
randomly from a Uniform distribution.

At the end, 𝑑𝑖𝑗 is calculated as the Euclidean distance between each
air of locations 𝑖, 𝑗 ∈  . This guarantees that the triangular inequality

holds for the distances.
To simulate different budget conditions, we set the number of

available facilities to locate as a certain fraction 𝛾 of the total number
of locations, i.e., 𝑝 = | | ⋅ 𝛾. We will consider values of 𝛾 between 0.1
nd 0.9, with a 0.1 step. Furthermore, we generate the covering radii by
etting two parameters 𝜇1 and 𝜇2 such that 𝑟1 and 𝑟2 represent the 𝜇1-th
nd the 𝜇2-th percentile of the empirical distribution of the distances,
espectively. While only 𝜇1 is used for 𝐾-BACOP1 and 𝐾-BACOP2, both
alues are needed to define 𝐾-DSM. In particular:

• Concerning the inner radius 𝑟1, we consider 𝜇1 = {0.1, 0.2, 0.3}.
Values greater than 0.3 would lead to too wide service coverage,
thus generating trivial problems in which all the demand is
covered several times even by locating very few facilities. Instead,
values smaller than 0.1 would lead to problems for which a
feasible solution exists only for too small values of 𝐾.

• Concerning the outer radius 𝑟2, the value of 𝜇2 must be chosen
greater than the value of 𝜇1. In several applications, 𝜇2 could
be reasonably the double (or more)4 of 𝜇1. However, since we
want to test our models against more general conditions, we
will consider not a single proportion but several combinations of
values.

Finally, anytime a specific 𝐾-covering model is considered, addi-
ional parameters are needed, namely, 𝜆(𝑘),∀𝑘 = 1,… , 𝐾, and 𝛼(𝑘),∀𝑘 =
,… , 𝐾 − 1. The parameters 𝜆(𝑘) weight the contribution of the vari-
us levels of coverage in 𝐾-BACOP2 models. We assume that 𝜆(𝑘) is

4 In Gendreau et al. [14], the authors set 𝑟1 = 7 minutes and 𝑟2 = 15 minutes
n applying the DSM to a use case related to ambulances location. The same
as been done in several other papers. This can be used as a guideline for
eciding the proportion between the two radii.
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decreasing when 𝑘 increases, i.e., we enforce that covering once is
ore important than covering twice, and so on. More precisely, we

irst calculate 𝜆(𝑘) = 1
𝑘 ,∀𝑘 = 1,… , 𝐾, then we normalize such values to

btain a real convex combination in the 𝐾-BACOP2 objective function.
he parameters 𝛼(𝑘), instead, force the fraction of demand that must be
overed in constraints (31) for 𝐾-DSM. We set 𝛼(𝑘) = 0.5 ⋅ 10−𝑘,∀𝑘 =
1,… , 𝐾 − 1, so that the rapid decay to zero of the 𝛼(𝑘) coefficients and
our generation of the ℎ𝑖 force the model to cover half of the demand
with the first level of coverage. Then, for each other level 𝑘 > 1, just one
covered location is enough to satisfy the relative constraints. This mild
choice has been made to avoid as much as possible infeasibility issues
for 𝐾-DSM. In fact, this allows us to solve 𝐾-DSM𝑟 without excluding
any feasible solution for the 𝐾-DSM.

6.2. KPI-based analysis

Comparing families of covering models with different objective
functions may seem to be pointless. Instead, at a strategic level or dur-
ing the exploratory phases of a decision process, selecting the suitable
location model to use is a difficult task in itself, which an appropriate
quantitative analysis should support. In fact, in real settings, all the
requirements and factors to include inside the optimization process
are often not completely clear (due to externalities, uncertainty, etc.)
and several incomparable objectives (conflicting interests of different
stakeholders) should be considered. For these reasons, we resort to
assessing the models for some tailored KPIs that depend on the common
structure of the returned solutions.

Given a solution of any of the presented models, let 𝑖 be the set
of locations closer than 𝑟1 to location 𝑖 ∈  where a facility has been
located, i.e., 𝑖 = {𝑗 ∈ 𝑟1

𝑖 ∶ 𝑦𝑗 = 1}. First, we consider two important
indicators proposed in Fadda et al. [16]:

• weighted average coverage, which represents the average of the
demand rate covered, defined as

𝑎𝑣𝑔𝐶 ∶= 1
| |

∑

𝑖∈
ℎ𝑖|𝑖|; (42)

• standard deviation of the redundant coverage, which represents
the standard deviation of the number of times each location is
covered, defined as

𝑠𝑡𝑑𝐶 ∶=

√

√

√

√

√

1
| |

∑

𝑖∈

(

|𝑖| −
1

| |

∑

𝑖∈
|𝑖|

)2

. (43)

hile 𝑎𝑣𝑔𝐶 is a classical KPI measuring the service coverage on average
ver all the demand, 𝑠𝑡𝑑𝐶 is a measure of the coverage equity. In
articular, the higher the standard deviation, the higher the difference
n redundant coverage between different locations, and the lower the
quity of the service coverage.

Moreover, we propose a family of 𝑘-parametric KPIs for specifically
ssessing the quality of the redundancy provided by a location plan,
amely, the weight of the 𝑘th coverage, which represents the overall
emand rate of those locations covered at least 𝑘 times, and defined
s

(𝑘) ∶=
∑

𝑖∈∶|𝑖|≥𝑘
ℎ𝑖, 𝑘 = 1, 2,… , | |. (44)

ote that, even if 𝐶(𝑘) is potentially defined for levels of coverage up
o the number of locations | |, each instance could reveal, depending
n the 𝑝 value, a threshold �̄� < | | for which 𝐶(𝑘) = 0,∀𝑘 > �̄�.

.3. Disruption simulation

To assess the robustness of the proposed models’ solutions against
ossible disruption of the located facilities, we simulate a disruption
7

o

vent for the instances already presented in Section 6.1 and calculate
he KPI of interest before and after such an event. The degree of
isruption of each simulated event is defined by a parameter 𝜀 ∈ [0, 1]
epresenting the fraction of the 𝑝 facilities that become unavailable,
o ⌊𝜀 ⋅ 𝑝⌋ facilities are randomly removed from the solution.5 In our
xperiments, we consider values of 𝜀 ∈ [0, 0.75], with a 0.05 step, so that
he two extremes give rise to scenarios with no disruption and very high
isruption, respectively. To have statistically significant results against
he random removal disruption event, we run 100 different repetitions
nd calculate the average for each considered indicator and each tested
nstance.

Finally, in these simulations, we need to consider the models’ pos-
ible infeasibility in a more sophisticated way. While it makes sense to
ssess the models in static scenarios (Section 7.2.1) even when they do
ot return feasible solutions, a disruption simulation process without a
easible location solution is meaningless. So, we need to consider only
ombinations of values for 𝑝 and 𝐾 that always guarantee the instance
easibility for 𝐾-BACOP1 and 𝐾-DSM. Thus, given 𝐾, we consider
alues of 𝑝 greater than

𝑚𝑖𝑛 ∶= max
{

𝑝𝐾-BACOP1
𝑚𝑖𝑛 , 𝑝𝐾-DSM𝑟

𝑚𝑖𝑛

}

,

hich can be calculated using the already presented models (36)–(38)
nd (39)–(41), respectively.

. Results and discussion

In the following, we report and analyze the results obtained from
ur experimental campaign over the artificial instances. Section 7.1
ompares the model in terms of computational time and properties of
he LP relaxation, while Section 7.2 focuses on the KPI-based analysis.
urobi v9.1.1 solves all the models via its Python3 APIs. All the tests
ave been done on an Intel(R) Core(TM) i7-5500U CPU@2.40 GHz
omputer with 16 GB of RAM and running Ubuntu v20.04.

.1. Computational comparison

In the following, we analyze the computational times of the pro-
osed models concerning some of the characteristics of the instances.
he main results are shown in Fig. 1, in a logarithmic scale. Here,
ach bar represents the average CPU time in seconds for solving
ne of the three models over 10 randomly generated instances for
ach combination of budget 𝛾 and coverage radii (𝜇1, 𝜇2). Data are
rouped per topology (mono-polar, multi-polar, and uniform), | | =
50, 100, 500, 1000, 5000}, and 𝐾 = {2, 5, 10} (from bottom to top on
he horizontal axis). As expected, the CPU time to optimally solve the
odels grows as 𝐾 grows, with some big jumps when moving from
= 5 to 𝐾 = 10 (despite being less evident, this behavior is almost

lways respected also by the 𝐾-BACOP1 and 𝐾-BACOP2). Concerning
he number of locations, instead, the CPU time is almost negligible
or all the cases with | | ≤ 1000. For these instances, only two
pikes are visible (20.65s for 𝐾-BACOP2 on mono-polar instances with
 | = 500 and 𝐾 = 10, and 15.24s for 𝐾-DSM on uniform instances
ith | | = 100 and 𝐾 = 10). Instead, for | | = 5000 the CPU times

ncrease for all the models, with a particular effect on 𝐾-DSM, even if
he average CPU time never exceeds 3 min. Note that such an increment
ffects the three topologies differently. For the multi-polar instances,
he magnitude of the increment is much smaller than the one in the
ono-polar ones. At the same time, the uniform case stays in between.

inally, note that, for 𝐾-BACOP1 and 𝐾-BACOP-2, the average CPU
imes for the instances with 5000 locations are always smaller than
2 s, thus making these models applicable on a huge scale. However,
he 5-BACOP1 and 10-BACOP1 are often impossible to solve when | |

s small (this corresponds to the few missing yellow bars in the chart).

5 Defining a particular policy to shut down the already located facilities
ould result in a too arbitrary choice, thus eliminating part of the generality
f the results that we want to achieve.
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Fig. 1. CPU times.
Fig. 2. Percentage of integer variables in the LP relaxation optimal solution.
To better understand the previous results, we further analyze the
number of location variables (i.e., 𝑦𝑖, 𝑖 ∈  ) that are integers in the
optimal solution of the continuous relaxation of the models. Fig. 2
shows the average percentage of such variables in the same experiments
as above. Here, values are aggregated for each topology and different
| | (this time, the parameter 𝐾 does not influence the analysis). First,
note that the percentage of integer location variables seems to increase
as  increases, and this is particularly evident in the mono-polar case.
Second, all the reported averages are greater than 97.5%. Actually, if
we exclude the smallest mono-polar instances ( ≤ 100), such averages
never go below 99.2%. For multi-polar instances, all the models return
a percentage of integer location variables in the LP relaxation always
above the 99.7%. This justifies that almost all the models can be
solved quickly, even if the underlying instances have an enormous
number of locations or coverage levels to consider. This nice behavior
is appreciable at the tactical level when hundreds of scenarios might
need to be solved and compared.

7.2. KPI-based analysis

In the following, we report the results obtained from the KPI-based
analysis in the case of static scenarios (Section 7.2.1) and of possible
dynamic disruption of the already located facilities (Section 7.2.2).
Since our instance generation works on parameters proportional to the
instance dimension, for simplicity we focus the following analysis only
on | | = 100. The tests involve a total of 960 instances, namely,
8

10 random instances for each combination of topology (mono-polar,
multi-polar, and uniform), number of available facilities depending
on 𝛾 = {0.2,… , 0.9}, and covering radii depending on (𝜇1, 𝜇2) =
{(0.1, 0.25), (0.2, 0.3), (0.2, 0.5), (0.3, 0.5)}. For each KPI, only average val-
ues are reported and commented on. Since standard deviations are
always negligible for all parameter combinations, we can consider the
average as a trustworthy indicator.

7.2.1. KPIs results on static scenarios
Here, we discuss the KPIs presented in Section 6.2 in pure static

scenarios. The entire experiment lasted about 9 h and a half, 96% of
which was dedicated to solving the 𝐾-DSM (detailed CPU results can
be found in Appendix A). Moreover, given the too-large number of
infeasibilities returned by 𝐾-BACOP1 (see Appendix B), we will first
compare 𝐾-BACOP2 with 𝐾-DSM only, and then perform a dedicated
analysis including 𝐾-BACOP1 by focusing only on specific cases.

K-BACOP2 and K-DSM assessment through 𝑎𝑣𝑔𝐶 and 𝑠𝑡𝑑𝐶. We first
consider the weighted average coverage (𝑎𝑣𝑔𝐶) and the standard deviation
of the redundant coverage (𝑠𝑡𝑑𝐶), which are calculated as in (42) and
(43), respectively. Fig. 3 reports the values of the two above KPIs for
the optimal solution of the models averaged over all the generated
instances given a specific tuple of input parameters (𝜇1, 𝜇2, 𝛾, 𝐾). This
tuple’s value is reported on the horizontal axis from the bottom level
to the top. Each chart relates to a specific distribution of the locations.
The 𝑎𝑣𝑔𝐶 values (with the relative scale on the left) are colored in light
violet and light green for 𝐾-BACOP2 and 𝐾-DSM, respectively, while
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Fig. 3. 𝑎𝑣𝑔𝐶 and 𝑠𝑡𝑑𝐶 trends in 𝐾-BACOP2 and 𝐾-DSM solutions for mono-polar, multi-polar, and uniform instances.
𝑠𝑡𝑑𝐶 values (with the relative scale on the right) appear in the dark
shade of the relative color for the two models.

The 𝑎𝑣𝑔𝐶 KPI follows a relatively similar trend for each (𝜇1, 𝜇2, 𝛾)
combination and each model, but changes in terms of the shapes’
amplitude and of the minimum/maximum values obtained over the
different 𝐾s. The minimum and maximum KPIs values generally grow
with the increase of available facilities, i.e., when 𝛾 increases, or
with larger coverage radii. Simultaneously, their difference’s amplitude
9

seems more consistent for intermediate values of 𝛾 and the largest radii.
This behavior is expected since the 𝑎𝑣𝑔𝐶 indicator reflects the covering
capability given by the coverage radii’s width of the available facilities.
Moreover, notice that, in general, lower values of 𝛾 yield less erratic
trends for both the models when 𝐾 increases. On the other hand, given
a specific combination of (𝜇1, 𝜇2, 𝛾), the indicator over the increasing
values of 𝐾 is very interesting to analyze. First, note that 𝐾-DSM is
unaffected by the increase of 𝜇 for 𝜇 = 0.2. In mono-polar instances,
2 1
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𝑎𝑣𝑔𝐶 rapidly grows for both the models, with 𝐾-DSM achieving on
average better results for smaller values of 𝐾. However, while 𝐾-
BACOP2 steadily increases up to an asymptotic value and remains
constant for the remaining values of 𝐾, 𝐾-DSM also rapidly decreases,
after a peak, to a plateau value far worse than the corresponding for
𝐾-BACOP2. This behavior can also be found for the other instance
distributions, even with some interesting peculiarities. In particular,
for multi-polar instances, the difference between the two models in the
initial phase is exacerbated, and the decreasing trend of 𝐾-DSM is less
rapid. Moreover, the 𝑎𝑣𝑔𝐶 of both models initially decreases for several
𝐾s before starting the above-described trend, with the highest variation
for 𝐾-BACOP2. The better behavior of 𝐾-BACOP2 for minimal 𝐾s is
more evident when locating more available facilities. Concerning the
uniform instances, instead, the initial peak of 𝐾-DSM rarely outper-
forms the relative value for 𝐾-BACOP2. This makes 𝐾-DSM particularly
undesirable for uniform distributions in terms of average covering.
Interestingly enough, for all the three instance distributions, 𝐾-DSM
ppears very competitive for the largest radii and small-medium values
f 𝛾 (e.g., 𝛾 ≤ 0.5), where the 𝑎𝑣𝑔𝐶 rarely decreases below the relative
alues of 𝐾-BACOP2.

The 𝑠𝑡𝑑𝐶 KPI has a behavior surprisingly similar to the 𝑎𝑣𝑔𝐶
rends, however, in this case, a higher value corresponds to a less
quitable solution, i.e., a solution in which the worst-covered locations
re covered very much less than the best-covered ones. We also remark
hat, differently from 𝑎𝑣𝑔𝐶, the models do not actually optimize equity
easures in any way, so in this case, the 𝑠𝑡𝑑𝐶 values can be seen as
by-product of the coverage optimization. Notice that the 𝑠𝑡𝑑𝐶 KPI is
articularly affected by the instance topology when 𝛾 tends to increase.
n fact, for instances with a budget sufficient to locate a facility in
lmost all the locations, the 𝑠𝑡𝑑𝐶 can reach high values only because of
he existence of locations placed at the very border of the considered
rea and far from the central, high-density region. As for 𝑎𝑣𝑔𝐶, both
he minimum and the maximum values grow with the increase of the
vailable facilities and the radii’s width. This means that, if we are
ealing with a service with a higher coverage radius, it is in general
asier to cover more demand on average but also to provide a very
nequitable coverage. The highest values of 𝑠𝑡𝑑𝐶 are achieved for the
ono-polar instances and (𝜇1, 𝜇2, 𝛾) = (0.3, 0.5, 0.7), while the uniform

instances show lower values, even for the peaks. When looking at the
𝑠𝑡𝑑𝐶 behavior over the increase of 𝐾, almost always 𝐾-BACOP2 starts
with lower values and smoothly grows to a plateau. 𝐾-DSM instead has
a very rapid peak for the smaller values of 𝐾 and then tends to decrease
and fix to values smaller than the corresponding 𝐾-BACOP2 plateau.
Actually, this last trend is more clear for the smallest radii, while for
the larger ones, the 𝐾-DSM values are almost always higher than those
of 𝐾-BACOP2 even with the increase of 𝐾. The peak behavior in 𝐾-
DSM can be the result of its need to ensure first a total coverage
of the demand within the smaller radius. Hence, such a requirement
must be well-calibrated in order not to provide good coverage without
considering the most unfortunate locations.

K-BACOP1 assessment through 𝑎𝑣𝑔𝐶 and 𝑠𝑡𝑑𝐶. Let us now focus on
the 𝐾-BACOP1 performance, which can be compared only for a limited
number of cases. Fig. 4 has the same layout used in Fig. 3 but including
also the 𝐾-BACOP1 results (𝑎𝑣𝑔𝐶 values in bright yellow and 𝑠𝑡𝑑𝐶 ones
in darker). According to the feasibility results presented in Fig. B.10,
here we only consider 𝜇1 = 0.3, 𝜇2 = 0.5, 𝛾 ≥ 0.3, and small values
of 𝐾 (𝐾 ≤ 5 for mono-polar and 𝐾 ≤ 7 for multi-polar and uniform
instances). Note that, even if the following analysis relates to a very
small part of our experiments, it makes much sense to be deepened
since the large part of the real applications rarely consider very large
values of 𝐾.

Concerning 𝑎𝑣𝑔𝐶, we can observe that 𝐾-BACOP1 almost always
outperforms the other two models. In particular, 𝐾-BACOP1 performs
10

very well for mono-polar and uniform instances and values of 𝛾 in
between 0.3 and 0.7. The general increasing trend as 𝛾 increases,
previously observed is maintained also in this specific set of instances
and for the 𝐾-BACOP1 model. Again, middle values of 𝛾 yield the
ighest amplitude of values. In general, 𝑎𝑣𝑔𝐶 for 𝐾-BACOP1 decreases

by increasing the value of 𝐾 up to the level at which the problem
becomes infeasible. However, the values start and stay above the 𝐾-

ACOP2 ones in most cases. This means that 𝐾-BACOP1 is far from
eing a model to abandon since it can provide satisfactory results
hen the instance’s feasibility is guaranteed (i.e., in general, for large

overage radii) and the desired level of coverage is limited. Note that
his behavior is justified since 𝐾-BACOP1 has an objective function
hat, given a certain 𝐾, focuses on maximizing the coverage for that
evel, which in turn affects the coverage of lower levels. 𝐾-DSM has the
ame objective but is limited by the covering requirements on the larger
adius. At the same time, 𝐾-BACOP2 waives most of the optimization
ffort at level 𝐾 in favor of lower levels (the weighting factors in
ts objective function are such that a lower level is more important
o cover more). If we observe the 𝑠𝑡𝑑𝐶 values, instead, no models
otally outperform the others, and several cases must be discussed.
or mono-polar and multi-polar instances, 𝐾-DSM is definitely the
ost equitable model, with relative gaps with respect to the others

hat grow as 𝛾 increases. While for multi-polar instances 𝐾-BACOP1
nd 𝐾-BACOP2 perform very similarly, for mono-polar instances 𝐾-
ACOP1 appears to be the less equitable model. The scenario changes

f we consider uniform instances. Here, all the models tend to be more
quitable and show quite similar performances. Actually, up to a value
f 𝛾 = 0.5, 𝐾-DSM seems the worst model in terms of equity, with more
iscontinuous trends, while it becomes the best for a higher number of
vailable facilities.

-BACOP2 and K-DSM assessment against 𝐶(𝑘). The last part of this
nalysis is focused on the weight of the 𝑘th coverage 𝐶(𝑘), calculated as in
44). Fig. 5 reports the average value of 𝐶(𝑘) calculated in the optimal
olution of 𝐾-BACOP2 and 𝐾-DSM over all the generated instances
iven a specific combination of parameters 𝛾 and 𝐾 (horizontal axis)

and a specific value of 𝑘 (different shades of the same color). Each chart
relates to a specific distribution of the locations. Note that instances
are not distinguished by radii anymore since in the previous tests we
have seen that such trends are similar and the only difference is in
terms of the value of convergence. Moreover, even if we have calculated
𝐶(𝑘) for any 𝑘 = 1,… , | |, we show in the figure only a sample of
5 values (namely, 𝑘 = {1, 5, 10, 15, 20}). This sample is representative
since, for 𝑘 in between 21 and 47 (the maximum topological limit �̄�
for the generated instances), the 𝐶(𝑘) value becomes negligible and
does not add anything to the analysis. First, notice that the KPI values
and behaviors are not significantly affected by the topology of the
instances, even if, for the mono-polar ones, the gap between 𝑘 = 1
and 𝑘 = 5 is larger than the gap observed in the other two cases. In a
mono-polar instance, in fact, having most of the demand concentrated
around a single zone, it is more challenging to guarantee very high
coverage, even considering small values of 𝑘. Similarly, there is a more
significant gap between the values for 𝑘 = 5 and 𝑘 = 10 in multi-polar
instances, where the demand is still concentrated but around different
poles. Moreover, as for the previously presented KPIs, the minimum and
maximum values as well (as the difference between them) grow as the
number budget on facilities increases, with marked changes for middle
values of 𝛾 and higher values of 𝑘. However, the most interesting aspect
to analyze is again related to the two models’ behavior with respect to
the increase of 𝐾. Here, we can observe that the trends for the different
𝐾s are somehow similar to those observed for the 𝑎𝑣𝑔𝐶 indicator. 𝐾-
BACOP2 shows a very smooth trend, whereas 𝐾-DSM a more erratic
one. In general, for both models, the best value is obtained for a 𝐾
equal to 𝑘. Nevertheless, while 𝐾-BACOP2 tends to reach a stable
value, 𝐾-DSM rapidly decreases in most cases and reaches minima far
below the relative values of 𝐾-BACOP2. Several times, as already seen

for the 𝑎𝑣𝑔𝐶 indicator, 𝐾-DSM achieves rapidly higher peaks, but the
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Fig. 4. 𝑎𝑣𝑔𝐶 and 𝑠𝑡𝑑𝐶 trends in the three models solutions for mono-polar, multi-polar, and uniform instances.
performances also worsen rapidly after the peak. In very rare cases,
as for multi-polar instances, 𝛾 = 0.8, and 𝑘 = 10, 𝐾-DSM outperforms
𝐾-BACOP2 for higher values of 𝐾. Finally, an important thing to notice
is that 𝐾-DSM cannot guarantee total coverage in most cases even
considering 𝑘 = 1 (which relates to the fraction of demand covered
at least once within 𝑟1), with minima around 90% for small values of
𝛾. This is because 𝐾-DSM must ensure coverage for the larger radius 𝑟2
and cannot only optimize the coverage redundancy within 𝑟 .
11

1

7.2.2. KPIs results for dynamic scenarios with disruption
We now assess the three models’ performances mentioned above

of 𝐾-covering models by explicitly simulating disruption events. The
general simulation setting is the one described in Section 6.3, where,
for a given 𝐾, we consider only values of 𝛾 such that 𝑝 = | | ⋅ 𝛾 ≥ 𝑝𝑚𝑖𝑛
to guarantee always a feasible solution. The procedure is repeated 100
times to have average KPIs that are statistically meaningful. Particular
attention will be given to the parameter 𝜀, representing the degree of
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Fig. 5. 𝐶(𝑘) trends in 𝐾-BACOP2 and 𝐾-DSM solutions for mono-polar, multi-polar, and uniform instances.
disruption. As an indicator for the analysis, we consider again the 𝑘-
level weighted coverage 𝐶(𝑘) calculated as in (44), because of its easy
interpretation. It represents the percentage of demand covered at least
𝑘 times. Hence, since the demand is generated such that ∑

𝑖∈ ℎ𝑖 =
1, 𝐶(𝑘) will be equal to 1 when all locations are covered at least 𝑘
times. Moreover, by considering different values of 𝑘, it is possible
12
to investigate how the models behave concerning different coverage
levels. Fig. 6 shows the average value of 𝐶(𝑘) calculated on the optimal
solution of 𝐾-BACOP1, 𝐾-BACOP2, and 𝐾-DSM over all the generated
instances given a specific value of parameter 𝜀 (horizontal axis) and
a particular value of 𝑘 (different shades of the same color). Each chart
relates to a specific distribution of the locations. Again, even if we have
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Fig. 6. Average 𝐶(𝑘) variation of 𝐾-BACOP1, 𝐾-BACOP2 and 𝐾-DSM solutions for mono-polar, multi-polar, and uniform instances against different degrees of disruption 𝜀.
calculated 𝐶(𝑘) for any 𝑘 = 1,… , | |, we show in the figure only
a sample of 5 values (namely, 𝑘 = {1, 5, 10, 15, 20}). Note that, since
we are interested in the model properties, on the horizontal axis, it
is reported only the value of 𝜀 because each value is obtained as the
average over all the other parameters (𝛾, 𝜇1, 𝜇2, 𝐾).

The first thing we can notice is that, as expected, all the curves
have a decreasing behavior. Unexpectedly, instead, the curves for 𝐶(1)
decrease very slightly, and, for a disruption of 75%, the KPI settles
at values around or higher than 0.9. This is good news since all the
solutions cover the vast majority of the locations at least once, even
13
if a high value of disruption appears. This property is of paramount
importance in healthcare applications. The rate of decay of 𝐶(𝑘) for
any 𝑘 > 1 is greater than the one for 𝑘 = 1. This means that the
marginal value of adding a facility increases as the level of coverage
increases. In other words, the higher the coverage level considered, the
more adding a new facility is important. This is also the reason for the
different curvatures for different values of 𝑘. In fact, as the reader can
notice, the curves of the 𝐶(1) and 𝐶(5) are concave, while the curves
of 𝐶(10), 𝐶(15) and 𝐶(20) tend to a convex shape.
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Fig. 7. Case study results of 𝑎𝑣𝑔𝐶 and 𝑠𝑡𝑑𝐶 for the three models. Bars correspond to 𝑎𝑣𝑔𝐶 values (with relative scale on the left), while lines correspond to 𝑠𝑡𝑑𝐶 values (with
relative scale on the right).
Comparing the different models’ performance, we notice that the
trends for 𝑘 = 1 are almost the same for all the models. There are
just some slight differences in the multi-polar and uniform instances,
in which 𝐾-BACOP2 is slightly better than the other two models.
Nevertheless, these differences are not statistically significant since the
standard deviation of the considered values is such that the confidence
intervals overlap for reasonable confidence. Instead, the situation is
very different for the other values of 𝑘. In general, 𝐾-BACOP1 performs
better than the other two models especially for small and medium
degrees of disruption, confirming its importance despite the already
exploited intrinsic infeasibility issues. This superiority, clear in the
mono-polar instances, becomes less evident in the multi-polar and uni-
form instances. In particular, in this last case, all three models perform
very closely. To understand this result, it is essential to remember
that no one of the considered models pursues the optimization of the
𝑘-level weighted coverage or explicitly considers disruption events. Thus,
the performance difference is related to the by-product value of the
robustness of the models’ solutions. Therefore, it is reasonable that the
models perform similarly in the uniform instances, where the locations
are topologically equivalent. Instead, in the multi-polar instances, the
locations are not topologically identical, and this difference generates
the variations that we can observe from the graph. Nevertheless, since
locations are organized in clusters, most models locate facilities in the
clusters’ centers. Thus the robustness of the solution is nearly the same
for all the models. Finally, in the mono-polar instances, the locations’
topological characteristics are different (e.g., the locations in the center
of the graph are more attractive because they can cover several other
locations, while the locations on the border are less attractive because
they can cover fewer locations). Moreover, the number of locations
with similar topological importance is significant enough to let the
models choose very different solutions. This leads to the very different
performances that the reader can observe in the chart.

Finally, we want to discuss why 𝐾-BACOP1 has such a good per-
formance. The reason is the same as the one reported in Section 7.2.1.
𝐾-BACOP1 has an objective function that focuses on maximizing only
the 𝐾th coverage of the demand (and not all the levels as 𝐾-BACOP2).
Furthermore, since it does not have to fulfill other covering require-
ments (as it happens for 𝐾-DSM outer radius), it has total freedom to
concentrate the location effort on standard covering. These two charac-
teristics allow 𝐾-BACOP1 to find more robust solutions since disruption
events can hardly eliminate the entire maximum-level coverage given
by such a model to the demand locations.
14
8. A case study on ambulances location

In this section, we conduct a similar analysis for a real case study
concerning the ambulance service in the Fez-Meknes region of Mo-
rocco, which has more than 1.7 million inhabitants and includes the
second-largest city in Morocco. Being a populated region with a big
city in the center, its topology resembles a mono-polar instance. The
road network of the region provides a unique highway that goes from
East to West and five perpendicular high-speed roads. We build upon
the dataset proposed in Frichi et al. [74] that contains the set of all
the municipalities of the region (each one identified by its coordinates)
and the corresponding demand in terms of the total number of calls
received and processed by the Civil Protection Alert Processing Center.
We compute the demand rate of each city as the normalized number
of calls and we derive the distance matrix by means of the open street
map APIs. The covering sets are constructed by assuming 𝑟1 = 15 min,
𝑟2 = 10 min, and an average ambulance speed of 100 km/h.

Our analysis consists in the calculation of the proposed KPIs on
different solutions for 𝐾 = 2, 3, and 4 and for three different values of
𝑝, namely, 𝑝0 = 𝑝𝑚𝑖𝑛, 𝑝33 = 𝑝𝑚𝑖𝑛+

1
3 (| |−𝑝𝑚𝑖𝑛), and 𝑝66 = 𝑝𝑚𝑖𝑛+

2
3 (| |−

𝑝𝑚𝑖𝑛). These values represent reasonable levels of covering and budget
investment. On one side, 𝑝0 represents the minimum investment that
enables the covering of all the cities 𝐾 − 1 times, allowing us to obtain
a feasible solution for almost all the cases and models. On the other
side, | | is the greatest possible investment, i.e., an ambulance in each
location, thus 𝑝33 and 𝑝66 represent two intermediate interventions.
The results are reported in Figs. 7 and 8. As before, 𝐾-BACOP1 results
are colored in yellow, 𝐾-BACOP2 results in purple, and 𝐾-DSM results
in green. Data are grouped per values of (𝑝,𝐾).

In Fig. 7, we can see that 2-DSM is infeasible for 𝑝0, i.e., with the
considered number of facilities it is not possible to satisfy constraints
(31). Since augmenting 𝐾, also 𝑝0 increases, The model becomes fea-
sible in the other cases since 𝐾 slightly increases while 𝑝 increases by
a large amount. Analyzing 𝑎𝑣𝑔𝐶, we can notice that it increases as 𝐾
and 𝑝 increase. Interestingly, using 𝑝0 facilities with 𝐾 = 4 leads to
results comparable to the one achieved using 𝑝33 with 𝐾 = 2 or 𝐾 = 3.
These results are even more impressive if we consider that 𝑝0 = 49 for
𝐾 = 4, while 𝑝33 = 61 for 𝐾 = 2 and 𝑝33 = 75 for 𝐾 = 3. Therefore,
with a smaller number of facilities, we can achieve a better level of
𝑎𝑣𝑔𝐶. The evolution of the 𝑠𝑡𝑑𝐶 tends to decrease as 𝐾 increases for
𝑝33 and 𝑝66. This is the same behavior that can be observed in the
previous section. Therefore, from the equity point of view, a lower
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Fig. 8. Case study results of 𝐶(𝑘) for the three models. We reported 𝐶(𝑘) values for 𝑘 = {1, 3, 6, 9}. For each model, the higher the value of 𝑘, the lighter the relative color.
Fig. 9. Different solutions (a) 𝐾-BACOP1, (b) 𝐾-BACOP2, (c) 𝐾-DSM for 𝐾 = 3.
amount of facilities and higher values of 𝐾 must be preferred. The
same conclusion obtained for 𝑎𝑣𝑔𝐶 holds also for the 𝑠𝑡𝑑𝐶, where the
best model seems to be the ones with 𝑝0 = 49, 𝐾 = 4. From these
observations, we can get some first managerial insight. In fact, there
seems to be no point in allocating a quantity of ambulance 𝑝 = 𝑝33
since better results can be achieved by installing fewer ambulances. Of
course, if the available budget is enough the optimal solution would
be to install 𝑝 = 𝑝66 ambulances to increase the values of 𝑎𝑣𝑔𝐶.
Nevertheless, when installing 𝑝 = 𝑝66 ambulances, 𝑠𝑡𝑑𝐶 increases by
many times, therefore it would be nice to lower this parameter by
adding new possible stations for the ambulances. Finally, while for
𝑝 = 𝑝0 it is better to consider 𝐾 = 4 and the best model seems to be the
𝐾-DSM, for 𝑝 = 𝑝66 it is better to consider 𝐾 = 3 which presents the
better trade-off between 𝑎𝑣𝑔𝐶 and 𝑠𝑡𝑑𝐶, and the model that behaves
better is the 𝐾-BACOP1. Finally, by observing the 𝐶(𝑘) trends in Fig. 8,
similar conclusions can be drawn. Almost all the models cover all the
facilities at least once. Therefore with all the models, a good covering
is guaranteed, even with a minimal investment equal to 𝑝 = 𝑝0. In
particular, the results for the 𝐾-DSM with 𝑝 = 𝑝0 are comparable with
the ones obtained with 𝑝 = 𝑝33. This enforces the claim that a small
investment with just 𝑝𝑚𝑖𝑛 facilities, located according to the 𝐾-DSM can
have really good performances.

To better grasp the characteristics of the solutions of the different
models, we plot on the geographical map three of them with 𝑝 = 𝑝33
and 𝐾 = 3 in Fig. 9. Among all the municipalities in green, the red
beacons represent the located facilities and a circle corresponds to the
15
area covered. Note that such circles are just approximations of the real
covering sets since, due to the asymmetry of the travel distances, the
covered area has a more complex shape. As the reader can notice, the
solutions of 3-BACOP1 and 3-BACOP2 are really close to each other,
only differing for a few locations. This behavior is reasonable since, for
these small values of 𝐾, 3-BACOP2 cannot dissipate too much coverage
in favor of lower levels and thus performs very similarly to 3-BACOP1.
Instead, the solution of the 3-DSM differs significantly from the other
two since it better covers the central areas. This is due to constraints
(31) which require covering a given percentage of demand with a
smaller radius and this is accomplished by the most central area, in
which the greater city of the region is placed.

9. Conclusions

This paper has studied covering facility location problems, focusing
on coverage redundancy for the underlying service. This aspect is
particularly critical in many applications (e.g., in healthcare and emer-
gency services), where it is essential to provide robust location solutions
to avoid disruption or congestion of the already located facilities. We
introduced and studied three families of parametric models (namely,
𝐾-BACOP1, 𝐾-BACOP2, and 𝐾-DSM) that generalize three classical
double-covering models from the literature. The generalizations can ad-
dress any 𝐾th level of coverage greater than two and provide insightful
strategic location tools. The models are compared both theoretically
and empirically. In particular, apart from their efficiency, we assessed
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Table A.2
Comparison of the models in terms of CPU time (s).
𝛾 Mono-polar Multi-polar Uniform

𝐾-BACOP1 𝐾-BACOP2 𝐾-DSM 𝐾-BACOP1 𝐾-BACOP2 𝐾-DSM 𝐾-BACOP1 𝐾-BACOP2 𝐾-DSM

0.2 0.5 13.0 1255.2 1.1 10.1 653.0 2.2 11.8 4490.1
0.3 0.9 27.8 1339.1 1.7 24.0 713.8 2.3 26.5 7117.8
0.4 1.1 42.0 796.7 2.0 39.0 379.8 2.3 41.8 8334.2
0.5 1.3 57.6 407.2 2.1 54.0 187.4 2.3 59.3 5260.1
0.6 1.6 73.5 166.2 2.2 69.9 92.9 2.5 77.6 1861.4
0.7 1.9 89.1 89.1 2.4 86.6 58.0 2.7 92.3 406.6
0.8 2.2 104.7 60.2 2.5 103.6 51.1 2.7 105.7 105.3
0.9 2.6 119.1 58.2 2.7 118.4 51.5 2.7 120.5 54.6

Sum: 12.1 527.0 4171.8 16.7 505.6 2187.6 19.6 535.7 27 630.1
Avg: 1.5 65.9 521.5 2.1 63.2 273.4 2.4 67.0 3453.8
Stdev: 0.7 37.4 539.3 0.5 38.4 276.3 0.2 38.7 3298.7
o
c
a

o
i
g
i
s
𝐾
2
e
T

the solutions’ quality returned by the models concerning redundancy
aspects through a comparative simulation–optimization framework and
tailored KPIs.

Our experiments, conducted over many representative instances
with different topological characteristics and simulating disruption sce-
narios for the located facilities, allowed us to derive interesting man-
agerial insights. For example, CPU times are minimal even against huge
instances (5000 locations and 10 coverage levels to consider). More-
over, we noticed that 𝐾-DSM outperforms 𝐾-BACOP2 for small values
f 𝐾 both in terms of average coverage and equity, but its performances
ecay rapidly, making 𝐾-BACOP2 a more robust choice when consider-
ng higher levels of coverage. 𝐾-BACOP1, instead, clearly suffers from
he feasibility point of view. However, for sufficiently large radii and
mall desired levels of coverage, it performs very well in terms of av-
rage coverage (both with and without disruption simulation) because
t is focused on optimizing the highest level of coverage considered.
evertheless, its equity performance strongly depends on the instance

opology. The generality of the results obtained from this analysis has
een further validated over a real case study concerning the ambulance
ervice in Morocco.

Some future research lines can be highlighted. First, the proposed
eterministic models can be evaluated in a more sophisticated stochas-
ic setting, where some problem uncertainties (e.g., the demand) are ex-
licitly considered. Concerning the well-known multi-stage Stochastic
rogramming paradigm, the different coverage levels may be addressed
t different information stages. Since these models are challenging to
olve concerning their deterministic counterparts, tailored solutions or
pproximation methods must be derived. Second, the redundancy of
he coverage could be studied also for a time-dependent setting in
hich covering sets vary over time [75]. Third, a similar analysis could
e performed on all those services with relevant social implications
uch as the location of electric vehicle recharging stations [76,77]
r urban stops for public transportation [78]. Finally, it would be
nteresting to investigate how the topological properties, e.g. �̄� or 𝑝𝑚𝑖𝑛

(see Sections 6.2 and 6.3, respectively), interact with the solutions of
the optimization models proposed.
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Appendix A. Detailed CPU results for | |=100 instances

Table A.2 reports, for each distribution type (mono-polar, multi-
polar, and uniform) and each family of models (𝐾-BACOP1, 𝐾-BACOP2,
and 𝐾-DSM), the average CPU time needed by the MIP solver to
ptimally solve all the instances generated. It is worth noting that we
onsider only instances that are feasible for all the models. Instances
re grouped by the value of 𝛾, which affects the number 𝑝 of facilities

to locate. Note that, in each group, the number of instances is different
since the increase of 𝐾 is bounded by 𝑝. The higher the value of 𝛾, the
higher the number of considered instances.

Some clear trends can be highlighted. 𝐾-BACOP1 problems are
straightforward to solve, with an accumulated CPU time per 𝛾 of 2 s
n average and never exceeding 3 s. For this model, the mono-polar
nstances seem easier to solve, while the uniform is the hardest. In
eneral, considering that the number of problems to solve linearly
ncreases with the increase of 𝛾, we can say that 𝐾-BACOP1 is not
ignificantly affected by the value of 𝛾 in terms of CPU time. Concerning
-BACOP2 problems, they need, in general, a CPU time that is 1 or
orders of magnitude greater than those of 𝐾-BACOP1. Interesting

nough, the accumulated CPU time increases with 𝛾 with a linear trend.
his means that the difficulty of solving 𝐾-BACOP2 problems decreases

by increasing the number of facilities to locate. Unlike the other two
families of models, 𝐾-BACOP2 seems not significantly affected by the
locations’ distribution, with only slightly higher CPU times for the
uniform instances and somewhat lower for the multi-polar ones. 𝐾-DSM
problems result in the most difficult to solve. The total CPU time is
on average about 8 times, 4 times, and 50 times greater than that of
𝐾-BACOP2 for mono-polar, multi-polar, and uniform instances, respec-
tively. In particular, 𝐾-DSM seems very difficult to solve for uniform
instances. However, it is interesting to notice 𝐾-DSM concerning 𝛾,
which differs from 𝐾-BACOP1 and 𝐾-BACOP2. In particular, with small
values of 𝛾, the CPU time is already very high, rapidly increases to find
a peak, and decreases consistently for higher values of 𝛾. The peak is at
𝛾 = 0.3 for mono-polar and multi-polar instances, while it is at 𝛾 = 0.4
for the uniform ones. Interesting enough, for very high values of 𝛾 (see,
e.g., 𝛾 ≥ 0.8 for the uniform instances and 𝛾 ≥ 0.7 for mono-polar and
multi-polar ones), the resolution of 𝐾-DSM seems to be similar or even
more straightforward than that of 𝐾-BACOP2.

https://ultraoptymal.unibg.it
https://ultraoptymal.unibg.it
https://ultraoptymal.unibg.it
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Fig. B.10. Percentage of feasible instances for 𝐾-BACOP1.
Appendix B. Detailed results on 𝑲-BACOP1 infeasibility for | |

=100 instances

While 𝐾-BACOP2 cannot lead to infeasible solutions, this is not
true for 𝐾-BACOP1, for which a feasible instance requires to guarantee
the (𝐾 − 1)-covering of all the demand centers (see Section 4.1), and
for 𝐾-DSM, for which a certain percentage of the demand 𝛼(𝑘) must
be ensured for each level 𝐾 of coverage. Our generation of 𝛼(𝑘) (see
Section 6.1) has been done so that it is highly improbable to fall
into infeasible cases for 𝐾-DSM. Indeed, we never obtained infeasible
solutions from 𝐾-DSM in our experiments. Instead, 𝐾-BACOP1 returned
a significant amount of infeasible solutions, making necessary a tailored
analysis. Fig. B.10 reports, for the different distribution types, the
percentage of feasible solutions obtained by 𝐾-BACOP1 concerning the
total number of considered instances, grouped by 𝐾 (left chart) and by
covering radius 𝜇1 (right chart). The percentage of feasible solutions
rapidly decreases with the increase of the considered level of coverage
𝐾. However, there are clear differences among the three distribution
types. In mono-polar instances, only the 20% of instances are feasible
for 𝐾 = 3, and no feasible solutions can be found for 𝐾 ≥ 6. This is
reasonable since the demand is mainly concentrated around one area
while other locations could be very far from there. When the demand
is more distributed, as, in multi-polar and uniform instances, feasible
solutions appear for a more considerable value of 𝐾, even if they vanish
for values greater than 12 and 16, respectively. In total, only about the
6% of the tested instances are feasible for 𝐾-BACOP1. It can be seen
from the chart on the right, most of them relate to the medium and
the greatest radii (around 10% and 15%, respectively). This behavior
depends on the particular way in which instances have been generated.
However, 𝐾-BACOP1 can be useful in realistic settings only for small
desired levels of coverage 𝐾, medium–large coverage radii, and good
dispersion of the locations.

Finally, note that the significant amount of infeasible problems
is a clear cause for the negligible CPU times reported in Table A.2
concerning 𝐾-BACOP1. In general, MIP solvers can detect infeasibility
very fast.
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