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Starting from the literature about the invariant mass, we will discuss the expression of 

the generalized additivity of masses in the special relativity for a system of particles. 

 

In special relativity the mass is an invariant quantity and therefore is the same for all 

observers in all reference frames. Besides this invariant, we find in literature the 

“relativistic mass”, which is defined as dependent on the velocity. We can find the 

relativistic mass given as: 

𝑚𝑟𝑒𝑙 =
𝑚

√1 − 𝑣2 𝑐2⁄
 

It is fundamental to remember that energy and momentum are linked to the invariant 

mass by: 

𝐸2 − (𝑝𝑐)2 = (𝑚𝑐2)2 

Let us consider some literature. 

Hecht, 2009, discusses mass and energy in Einstein’s thought. “Early on, Einstein 

embraced the idea of a speed-dependent mass but changed his mind in 1906 and 

thereafter carefully avoided that notion entirely. He shunned, and explicitly rejected, 

what later came to be known as ‘relativistic mass’. Nonetheless many textbooks and 

articles credit him with the relation E=mc2, where E is the total energy, m is the 

relativistic mass, and c is the vacuum speed of light. Einstein never derived this 

relation, at least not with that understanding of the meaning of its terms. He consistently 

related the ‘rest energy’ of a system to its invariant inertial mass.” This is what we can 

find in the abstract by Hecht, 2009. It is therefore required to read something more 

from the article.  

“Einstein’s first paper on relativity appeared when the concept of a speed-dependent 

electromagnetic mass had already become a topic of considerable interest. He accepted 

this idea but changed his mind after being confronted by a far more compelling 



insight". Hecht shows "that after reading Planck’s 1906 article in which the concept of 

relativistic momentum was introduced, Einstein came to realize that it was the 

relativistic equations for energy and momentum that were primary. From that 

perspective it became clear that the inertial mass m was invariant, and he never again 

spoke of mass as being speed dependent. Over the next several years, no doubt unaware 

of Einstein’s change of mind, a number of researchers continued to elaborate on the 

idea that inertial mass varied with relative speed v. For them Newtonian mass had to 

be replaced by the idea of “relativistic mass” mrel(v), where: 

𝑚𝑟𝑒𝑙 = 𝑚0(1 − 𝑣2 𝑐2⁄ )−1 2⁄  

Here m0 is the object's rest mass, the inertial mass when v=0. It was already 

commonplace to represent (1 − 𝑣2 𝑐2⁄ )−1 2⁄  by 𝛾, whereupon 𝑚𝑟𝑒𝑙 = 𝑚0𝛾 or just 

𝑚𝑟𝑒𝑙 = 𝑚𝛾. After 1908 there were two conflicting interpretations of relativistic 

dynamics: Einsteins's invariant-mass perspective and the relativistic mass formulation. 

Meanwhile Einstein had shown that the energy of a system at rest was proportional to 

its inertial mass. Over the decades that followed, this extremely significant discovery 

took on the symbolic form E=mc2, wherein E is the total energy and m is the relativistic 

mass. Surprisingly, Einstein never derived nor ever accepted this relation. As E=mc2 

was becoming the most widely recognized symbol of the Atomic Age, Einstein 

maintained that this general statement was formulated 'somewhat inexactly' ” (Hecht, 

2009, Einstein, 1976). Among many others, Hecht is referring to Lev B. Okun, 1989, 

and his “concept of mass (mass, energy, relativity)”. 

Okun hopes that he will “succeed to convince the reader that the term "rest mass" m0 

is superfluous, that instead of speaking of the "rest mass" m0 one should speak of the 

mass m of a body which for ordinary bodies is the same, in the theory of relativity and 

in Newtonian mechanics, that in both theories the mass m does not depend on the 

reference frame, that the concept of mass dependent on velocity arose at the beginning 

of the twentieth century as a result of an unjustified extension of the Newtonian relation 

between momentum and velocity to the range  of velocities comparable to the velocity 

of light in which it is invalid, and that at the end of the twentieth century one  should 

bid a final farewell to the concept of mass dependent on velocity” (Okun, 1989). 

“The fundamental relations of the theory of relativity for a freely moving particle 

(system of particle, body) are: 𝐸2 − (𝑝𝑐)2 = (𝑚𝑐2)2 (5.1) , 𝑝 = 𝑣⃗ 𝐸 𝑐2⁄  (5.2) , where 

E is the energy, p the momentum, m is the mass, and v the velocity of the particle (or 

system of particles, or body). It should be emphasized that the mass m and the velocity 

v for a particle or a body are the same quantities with which we deal in Newtonian 

mechanics. Like the four-dimensional coordinates t and r, the energy E and the 

momentum p are the components of a four-dimensional vector. They change on the 

transition from one inertial system to another in accordance with the Lorentz 



transformation. The mass, however, is not changed - it is a Lorentz invariant” (Okun, 

1989). 

In addition, as in Newtonian mechanics, the energy and momentum are additive — the 

total energy and total momentum of n free particles are, respectively,  𝐸 = ∑ 𝐸𝑖
𝑛
𝑖=1  ,  

𝑝 = ∑ 𝑝𝑖⃗⃗⃗ ⃗
𝑛
𝑖=1  (5.3). With regard to the mass, in theory of relativity the mass of an isolated 

system is conserved (does not change with the time), but does not possess the property 

of additivity" (Okun, 1989). However, it is necessary “to include among the bodies not 

only "matter," say atoms, but also "radiation" (photons).” (Okun, 1989). 

"For massive particles (as we shall call all particles with nonzero mass, even if they are 

very light) the relations for the energy and momentum can be conveniently expressed 

in terms of the mass and velocity. For this we substitute (5.2) in (5.1): 

𝐸2(1 − 𝑣2 𝑐2⁄ ) = 𝑚2𝑐4 (6.2) and, taking the square root, we obtain 𝐸 =

𝑚𝑐2(1 − 𝑣2 𝑐2⁄ )−1 2⁄ . (6.3) Substituting (6.3) in (5.2), we obtain 𝑝 = 𝑚𝑣⃗(1 −

𝑣2 𝑐2⁄ )−1 2⁄ . (6.4). It is obvious from (6.3) and (6.4) that a massive body (with 𝑚 ≠ 0) 

cannot move with the speed of light, since then the energy and momentum of the body 

would have to be infinite" (Okun, 1989).  

"In the theory of relativity the mass of a system is not equal to the mass of the bodies 

that make up the system. This assertion can be illustrated by several examples." (Okun, 

1989). Here a case: “Consider two photons moving in opposite directions with equal 

energies E. The total momentum of such a system is zero, and the total energy (it is the 

rest energy of the system of the two photons) is 2E. Therefore, the mass of this system 

is 2E/c2. It is easy to show that a system of two photons will have zero mass only when 

they move in the same direction” (Okun. 1989).  

Let us consider a system consisting of n particles. “The mass of this system is 

determined by: 

𝑚 = [(∑
𝐸𝑖
𝑐2

𝑛

𝑖=1

)

2

− (∑
𝑝𝑖⃗⃗⃗ ⃗

𝑐

𝑛

𝑖=1

)

2

]

1 2⁄

 

(9.1) 

where ∑𝐸𝑖 is the sum of the energies of these bodies, and ∑𝑝𝑖⃗⃗⃗ ⃗ is the vector sum of 

their momenta" (Okun. 1989). For further discussions, see please Landau and Lifshitz, 

1973. 

As an example, let us pass to the "Notes on Relativistic Dynamics" by Styer, 2021. 

"Two-particle system. Two particles move on the x-axis. Particle A has mass mA and 

velocity (relative to frame F) vA, particle B has mass mB and velocity (relative to frame 

F) vB. a) Show that the two-particle system has mass M, where 



𝑀2 = 𝑚𝐴
2 +𝑚𝐵

2 + 2𝑚𝐴𝑚𝐵

1 − 𝑣𝐴 𝑣𝐵 𝑐2⁄

√(1 − (𝑣𝐴 𝑐⁄ )2)(1 − (𝑣𝐵 𝑐⁄ )2)
 

(4.3) 

Frame F' moves relative to frame F at velocity V, so in this frame the two particles have 

velocities 

𝑣′𝐴 =
𝑣𝐴 − 𝑉

1 − 𝑣𝐴 𝑉 𝑐2⁄
  and   𝑣′𝐵 =

𝑣𝐵 − 𝑉

1 − 𝑣𝐵 𝑉 𝑐2⁄
 

(4.4) 

b) Show that in the frame F', the system has the same mass M given above" (Styer, 

2021). 

 

Note that, in (4.3), when the velocities are all equals, the additivity is the usual one. 

 

For b), let us use WolframAlpha and calculate: 

1 −
(𝑣𝐴 − 𝑉) (𝑣𝐵 − 𝑉) 𝑐2⁄

(1 − 𝑣𝐴 𝑉 𝑐2⁄ )(1 − 𝑣𝐵 𝑉 𝑐2⁄ )
 

It is equal to: 

𝐴 =
(𝑉2 − 𝑐2)(𝑣𝐴𝑣𝐵 − 𝑐2)

(𝑣𝐴𝑉 − 𝑐2)(𝑣𝐵𝑉 − 𝑐2)
 

And 

√(1 −
((𝑣𝐴 − 𝑉) 𝑐⁄ )2

(1 − 𝑣𝐴 𝑉 𝑐2⁄ )2
)(1 −

((𝑣𝐵 − 𝑉) 𝑐⁄ )2

(1 − 𝑣𝐵 𝑉 𝑐2⁄ )2
) 

It is equal to 

𝐵 = √
(𝑣𝐴

2 − 𝑐2)(𝑣𝐵
2 − 𝑐2)(𝑐2 − 𝑉2)2

(𝑣𝐴𝑉 − 𝑐2)2(𝑣𝐵𝑉 − 𝑐2)2
 

 

Therefore: 



𝐴 𝐵⁄ =

−(𝑐2 − 𝑉2)(𝑣𝐴𝑣𝐵 − 𝑐2)
(𝑣𝐴𝑉 − 𝑐2)(𝑣𝐵𝑉 − 𝑐2)

√
(𝑣𝐴

2 − 𝑐2)(𝑣𝐵
2 − 𝑐2)(𝑐2 − 𝑉2)2

(𝑣𝐴𝑉 − 𝑐2)2(𝑣𝐵𝑉 − 𝑐2)2

=
−(𝑣𝐴𝑣𝐵 − 𝑐2)

√(−𝑣𝐴
2 + 𝑐2)(−𝑣𝐵

2 + 𝑐2)

=
1 − 𝑣𝑎 𝑣𝑏 𝑐2⁄

√(1 − 𝑣𝐴
2 𝑐2⁄ )(1 − 𝑣𝐵

2 𝑐2⁄ )
 

 

Accordingly, we have invariance. 

Let us pass to point a), using (9.1) 𝑚 = [(∑
𝐸𝑖

𝑐2
𝑛
𝑖=1 )

2
− (∑

𝑝𝑖⃗⃗ ⃗⃗

𝑐

𝑛
𝑖=1 )

2

]
1 2⁄

. 

 

𝑀 = √(𝐸𝐴 𝑐2⁄ − 𝐸𝐵 𝑐2⁄ ) − (𝑝𝐴 𝑐⁄ + 𝑝𝐵 𝑐⁄ )2 

𝑀2 = (𝑚𝐴(1 − 𝑣𝐴
2 𝑐2⁄ )−1 2⁄ +𝑚𝐵(1 − 𝑣𝐵

2 𝑐2⁄ )−1 2⁄ )
2

− (𝑚𝐴(𝑣𝐴 𝑐⁄ )(1 − 𝑣𝐴
2 𝑐2⁄ )−1 2⁄ +𝑚𝐵(𝑣𝐵 𝑐⁄ )(1 − 𝑣𝐵

2 𝑐2⁄ )−1 2⁄ )
2
 

𝑀2 = 𝑚𝐴
2(1 − 𝑣𝐴

2 𝑐2⁄ )−1 +𝑚𝐵
2(1 − 𝑣𝐵

2 𝑐2⁄ )−1 + 2𝑚𝐴𝑚𝐵(1 − 𝑣𝐴
2 𝑐2⁄ )−1 2⁄ (1 −

𝑣𝐵
2 𝑐2⁄ )−1 2⁄  −𝑚𝐴

2(𝑣𝐴 𝑐⁄ )2(1 − 𝑣𝐴
2 𝑐2⁄ )−1 −𝑚𝐵

2(𝑣𝐵 𝑐⁄ )2(1 − 𝑣𝐵
2 𝑐2⁄ )−1 −

2𝑚𝐴𝑚𝐵(𝑣𝐴 𝑣𝐵 𝑐2⁄ )(1 − 𝑣𝐴
2 𝑐2⁄ )−1 2⁄ (1 − 𝑣𝐵

2 𝑐2⁄ )−1 2⁄  

 

Therefore 

 

𝑀2 = 𝑚𝐴
2 +𝑚𝐵

2 + 2𝑚𝐴𝑚𝐵(1 − (𝑣𝐴 𝑣𝐵 𝑐⁄ )2)(1 − 𝑣𝐴
2 𝑐2⁄ )−1 2⁄ (1 − 𝑣𝐵

2 𝑐2⁄ )−1 2⁄  

 

that is 

𝑀2 = 𝑚𝐴
2 +𝑚𝐵

2 + 2𝑚𝐴𝑚𝐵

1 − 𝑣𝐴 𝑣𝐵 𝑐2⁄

√(1 − (𝑣𝐴 𝑐⁄ )2)(1 − (𝑣𝐵 𝑐⁄ )2)
 

 

This is a “generalized” additivity of masses in special relativity. The meaning is the 

following: this expression is making the “additivity” applicable in a wider manner. 

Generalization of additivity for integer numbers has been proposed in 2019 by 

Sparavigna.  



In the case that we have three particles: 

 

𝑀2 = 𝑚𝐴
2 +𝑚𝐵

2 +𝑚𝐶
2 + 2𝑚𝐴𝑚𝐵

1 − 𝑣𝐴 𝑣𝐵 𝑐2⁄

√(1 − (𝑣𝐴 𝑐⁄ )2)(1 − (𝑣𝐵 𝑐⁄ )2)

+2𝑚𝐴𝑚𝐶

1 − 𝑣𝐴 𝑣𝐶 𝑐2⁄

√(1 − (𝑣𝐴 𝑐⁄ )2)(1 − (𝑣𝐶 𝑐⁄ )2)
+ 2𝑚𝐵𝑚𝐶

1 − 𝑣𝐵 𝑣𝐶 𝑐2⁄

√(1 − (𝑣𝐵 𝑐⁄ )2)(1 − (𝑣𝐶 𝑐⁄ )2)

 

 

In general: 

𝑀2 =∑𝑚𝑖
2

𝑛

𝑖=1

+∑ ∑ 𝑚𝑖𝑚𝑗

1 − 𝑣𝑖 𝑣𝑗 𝑐2⁄

√(1 − (𝑣𝑖 𝑐⁄ )2) (1 − (𝑣𝑗 𝑐⁄ )
2
)

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

 

That is: 

𝑀2 =∑∑𝑚𝑖𝑚𝑗

1 − 𝑣𝑖 𝑣𝑗 𝑐2⁄

√(1 − (𝑣𝑖 𝑐⁄ )2) (1 − (𝑣𝑗 𝑐⁄ )
2
)

𝑛

𝑗=1

𝑛

𝑖=1

 

 

Let us introduce 𝑣 𝑐⁄ = tanh𝛽. T hen 𝛾 = 1 √1 − tanh
2𝛽⁄ = cosh𝛽 (Dray, 2012): 

𝑀2 =∑∑𝑚𝑖𝑚𝑗

𝑛

𝑗=1

𝑛

𝑖=1

cosh𝛽𝑖cosh𝛽𝑗(1 − tanh𝛽𝑖tanh𝛽𝑗) 

𝑀2 =∑∑𝑚𝑖𝑚𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(cosh𝛽𝑖cosh𝛽𝑗 − sinh𝛽𝑖sinh𝛽𝑗) 

Consequently, when 𝛽𝑖 = 𝛽𝑗 = 𝛽, we find immediately  𝑀2 = ∑ ∑ 𝑚𝑖𝑚𝑗
𝑛
𝑗=1

𝑛
𝑖=1 . 

 

References 

Dray, T. (2012). The geometry of special relativity (Vol. 6). Boca Raton: CRC Press. 

Einstein, A. (1976).“E=Mc2, Ideas and Opinions. Dell, New York, 1976,  p. 330.  

Hecht, E. (2009). Einstein on mass and energy. American Journal of Physics, 77(9), 

799-806. 



Landau, L. D., & Lifshits, E. M. (1976). Teoria dei campi Editori Riuniti. 

Landau, L. D., & Lifshitz, E. M. (1973). Field theory. Theoretical physics, Nauka 

Moscow. 

Okun, L.B. (1989). The concept of mass (mass, energy, relativity), Sov.  Phys. Usp. 

32, 629–638.  

Planck, M. (1906).Das Prinzip der Relativität und die Grundgleichungen der  

Mechanik, Verh. Dtsch. Phys. Ges. 8, 136–141 1906. 

Sparavigna, A.C. (0219).  Composition Operations of Generalized Entropies Applied 

to the Study of Numbers. International Journal of Sciences, 8(04), 87-92. 

Styer, D.F. (2021). Relativistic Dynamics. Oberlin College and Conservatory, 

https://www2.oberlin.edu/physics/dstyer/Modern/RelativisticDynamics.pdf 

 

 

https://www2.oberlin.edu/physics/dstyer/Modern/RelativisticDynamics.pdf

