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ABSTRACT: We present the full Lagrangian and supersymmetry transformation rules for the
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valid in arbitrary symplectic frames. We also analyze the conditions for the critical points
of the scalar potential and specify the full spectrum of the quadratic fluctuations about
Minkowski vacua. This allows us also to exclude the appearance of quadratic divergences
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equations and the quadratic constraints for the fermion shifts characterizing the gauging
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1 Introduction

Half-maximal supergravities in four dimensions have played an important role in under-
standing several key aspects of string theory, like dualities [1], the microscopic origin of
black hole entropy [2, 3] and the existence of entire orbits of purely non-geometric string
compactifications [4]. The main reason for the interest in these theories lies in the fact
that they provide models with the maximum number of supersymmetries compatible with
a consistent coupling of the gravity multiplet to matter multiplets. This means that they
enjoy the strong constraints deriving from supersymmetry, while keeping the freedom of
adding an arbitrary number of matter vector multiplets.

While the first instances of four-dimensional pure N' = 4 supergravities were con-
structed almost 50 years ago in [5-8], the coupling of N/ = 4 supergravity to vector mul-
tiplets, as well as some of its gaugings, were analyzed a few years later in [9-14]. More
recently, sparked by the renewed interest in flux compactifications of string theory, various
gauged N = 4 supergravity models originating from type IIB or ITA orientifold compacti-
fications [15, 16] were studied in detail [17-25], but always on a case by case basis.

Currently, the most general analysis of the structure of the gauged theory is pro-
vided by [26], where one can find a systematic discussion of the consistency conditions for
the gauging procedure as well as various results concerning the bosonic Lagrangian, the
supersymmetry transformations of the fermions and the relation of such models to flux
compactifications. However, as we will argue in the following, such analysis is incomplete
and a proper general and unified framework for all possible gaugings of N' = 4 supergravity
is not readily available yet.

The contemporary understanding of four-dimensional gauged supergravities relies on
the fact that any model is fully specified by the choice of symplectic frame and of embedding
tensor. The first ingredient is related to the fact that one can formulate different equivalent
classical ungauged supergravity models according to the different realizations of the rigid
symmetry group of the Lagrangian G, which is a subgroup of the duality group G (for
N = 4 supergravity coupled to n vector multiplets, with a total of n, = 6 +n vector fields,
G = SL(2,R) x SO(6,n)). The group G is determined by the choice of which among the
vector fields present in the theory, Aﬁ, A=1,...,ny, and their magnetic duals, Ay, have
a local description in the Lagrangian. This choice in turn determines the embedding of G
inside the symplectic group Sp(2n,, R). Different choices of symplectic frames are indeed
connected to one another by symplectic rotations and yield in general different Lagrangians
that are not related to each other by local field redefinitions but are on-shell equivalent,
as they lead to sets of Bianchi identities and equations of motion that can be mapped
into each other by field redefinitions [27-30]. The second ingredient, the embedding tensor



O, provides a duality covariant formulation of the gauging procedure, and specifies the
decomposition of the gauge group generators in terms of the generators of G, of which
the gauge group must be a subgroup. The advantage of this description of the gauging is
twofold. On the one hand, minimal couplings contain both electric and magnetic gauge
fields in G-covariant combinations through the components of the embedding tensor, which
ensures that the Bianchi identities and field equations of the gauged theory are formally
invariant under global duality transformations, provided we treat the embedding tensor as
a spurionic object that transforms under G. On the other hand, the gauge group is no
longer required to be a subgroup of the rigid symmetry group of the original ungauged
Lagrangian, which depends on the choice of the symplectic frame. This duality covariant
method for gauging a supergravity theory was introduced in [31-33] and further developed
in [34-37] (see also [28-30] for reviews), while it was applied (with some limitations) to the
cases of the gauged four- and five-dimensional N = 4 supergravities in [26].

In detail, [26] analyzed the consistency constraints on the embedding tensor, lead-
ing to the conclusion that all possible gaugings of N' = 4 supergravity in four spacetime
dimensions are parametrized by two real constant SL(2,R) x SO(6,n) tensors, {,nr and
JaMNP = foimnp), which are subject to a specific set of quadratic constraints that we will
review in the following. However, only partial results for the Lagrangian and supersymme-
try transformations were presented, also forcing a specific choice of symplectic frame, such
that G, = SO(1,1) x SO(6,n). While this is a legitimate choice, it is so constraining that
not even the maximally supersymmetric anti-de Sitter vacuum can be obtained by a pure
electric gauging in this frame [38].

Our work overcomes these limitations by providing the full Lagrangian and supersym-
metry rules for the gauged four-dimensional N = 4 supergravity in an arbitrary symplectic
frame. This implies that any known (as well as yet unknown) vacuum of such a theory
can be obtained from an electrically gauged theory, which will be incorporated in our gen-
eral Lagrangian. Our general analysis allows us also to discuss the general structure of
the vacua of any such theory and we therefore discuss both the conditions for the critical
points of the scalar potential, as well the spectrum of the quadratic fluctuations about
Minkowski vacua. We then use this result to prove that the quadratic supertrace of the
mass matrices is vanishing for any Minkowski vacuum that breaks all supersymmetries
of any consistent N/ = 4 gauged supergravity. This is a rather non-trivial result, which
extends what has already been found in the case of the much more constrained maximal
supergravity theory [39] and gives us a first insight into the quantum corrections of this
class of theories.

All these results have been obtained by a careful reinterpretation of the quadratic
consistency constraints in terms of the fermion shifts, which we also present in detail. They
will constitute the basis of possible further applications of this work, like the computation of
the spectrum of fluctuations about anti-de Sitter vacua or the computation of higher-order
supertrace relations.

This paper is organized as follows: in section 2, we give the field content of the four-
dimensional N/ = 4 supergravity coupled to n vector multiplets and describe the geometry



of the coset space SSLC()Q(QD? X So?g(fé?g(n), parametrized by the scalar fields of the theory.

In section 3, we briefly discuss the electric/magnetic duality in N/ = 4 supergravity, we
introduce projectors, acting on symplectic vectors, which parametrize the choice of the
symplectic frame and we give their explicit expressions for some of the symplectic frames in
which the D = 4, N = 4 supergravity has been formulated in the literature. In section 4, we
describe the SL(2, R) x SO(6, n)-covariant formulation of the gauging procedure, which has
also been discussed in detail in [26], to keep our presentation self-contained. In section 5, we
give the complete Lagrangian in an arbitrary symplectic frame and the local supersymmetry
transformation rules for the gauged D = 4, N' = 4 Poincaré supergravity coupled to n
vector multiplets, as well as some of the corresponding Bianchi identities and field equations
and we compute the commutator of two consecutive local supersymmetry transformations.
We end the section by discussing the relevant gauge fixings and by providing a constructive
definition of the symplectic matrix which connects the chosen symplectic frame to the
intrinsic electric frame of the embedding tensor. In section 6, we derive the conditions
satisfied by the critical points of the scalar potential, we specify the mass matrices of all
the fields in the theory and we compute the supertrace of the squared mass eigenvalues
for Minkowski vacua that completely break N = 4 supersymmetry. We summarize our
conventions in appendix A, while in appendix B, we point out a discrepancy of our results
with those of [26] and we compare our notation with that of [14]. In appendix C, we provide
the full derivation of the local supersymmetry transformations and of the Lagrangian for
the ungauged and the gauged D = 4, N' = 4 matter-coupled Poincaré supergravities in
an arbitrary symplectic frame, using the rheonomic approach. Finally, in appendix D, we
derive the quadratic constraints satisfied by the T-tensor by appropriately dressing the
quadratric constraints on the embedding tensor with the coset representatives.

2 The ingredients of A/ = 4 supergravity

The N = 4 Poincaré supergravity in four dimensions is based on the Poincaré superalgebra
with four spinorial generators and U(4) R-symmetry group. We shall label the fundamental
representation 4 of the latter by the indices 4,7,--- = 1,...,4. The theory allows for only
two kinds of supermultiplets containing fields with spin not exceeding 2: the gravity and the
vector ones. The gravity multiplet contains the graviton g, , four gravitini QZJL, six vectors

A”ﬁ{ = —A{f, four spin-1/2 fermions y; (dilatini) and a complex scalar 7, parameterizing the

coset manifold SSL&’QD;) . This multiplet can be coupled to n vector multiplets, which contain

n vector fields A%, a=1,...,n, 4n gaugini \¥, and 6n real scalar fields, parameterizing
SO(6,n)

the scalar manifold SO(6)xS0() * Overall, the scalar o-model is described by the coset
space [9, 10, 12]
G SL(2,R) SO(6,n)

M=45= SO(2) " SO(6) x SO(n)

(2.1)

In the next two subsections, we shall focus on the scalar sector and describe the coset
geometry of M. Subsequently, in subsection 2.3, we shall fix the relevant notations as far
as the fermion fields are concerned.



2.1 The scalar sector of the gravity multiplet

As mentioned above, the two real scalar fields contained in the gravity multiplet are the
coordinates of the SL(2,R)/SO(2) factor of the coset (2.1). As a homogeneous manifold,
SL(2,R)/SO(2) can be described in terms of a coset representative S € SL(2,R), which
transforms under the isometry group SL(2,R) and the (local) isotropy group SO(2) as

S — gSh(z), (2.2)

where global SL(2,R) transformations g act on S from the left, while local SO(2) transfor-
mations h(x) act on S from the right. Following [26], we will actually use the convenient
representation in terms of a complex SL(2,R) vector

Vo = S0, (2.3)

where o = +, — is an SL(2,R) index, a = 1,2 is an SO(2) index and v, = (1,7)T. From
the definition (2.3), one can immediately deduce that the V, vector satisfies

VQVE — V;V/B = —2i€ng , (2.4)

where €,5 = —€go and e = 1. Since conjugate 2-dimensional representations of SL(2,R)
are equivalent, we can raise and lower SL(2,R) indices according to the following convention

V¥ =V3e, Vo =eapV’, (2.5)

where €’ = —¢#* with et~ =1 and €eg, = 05
The SO(2) = U(1) action on S implies that V, transforms as a charge +1 object

Vo = 9@y, (2.6)
for a standard parameterization of
cosf sind
h(z) = . (2.7)
—sin# cosf
In addition, it is useful to introduce the positive definite symmetric matrix
Mg = Sa®Sp2 605 = Re(Va V), (2.8)

which satisfies
M Mg, =65 (2.9)

Using standard coset geometry, we can compute, for SL(2,R)/SO(2), the following
complex vielbein

P= %eaﬁ VadVs, (2.10)
in terms of which the metric on this manifold can be written as

ds* = 2 P P*, (2.11)



and SO(2)-connection

1
A= —560‘5 VadVj, (2.12)

which follow from the usual decomposition of the left-invariant one-form ¥ = S~1dS along
the basis {01,402, 03} of the Lie algebra s((2, R), where ioy spans its compact so(2) factor.
The corresponding Maurer-Cartan equation d¥ + W A ¥ = 0 yields the relation

DP=dP —-2iANP =0 (2.13)
and provides the SO(2)-curvature
F=dA=iP*A\NP. (2.14)
With a little algebra, one can also derive the useful identity
DV, =dV, —iAV, = PV}, (2.15)
which captures the full differential structure of the coset geometry.

2.2 The scalar sector of the vector multiplets

The coset space parametrized by the scalars of the vector multiplets can be described
by means of a coset representative Ly = (Lp/™, Ly%), where M = 1,...,n +6 is a
vector index of SO(6,n), m = 1,...,6 and a = 1,...,n are indices of the fundamental
representations of SO(6) and SO(n) respectively, while M is an index which, decomposed
as M = (m,a), bears the local action of SO(6) x SO(n).

The matrix L itself is an element of SO(6,n), meaning that

nun = mun Iy LY = D™ Ly = L™ Lvm + Lu®La, (2.16)

where Ny v = nun = diag(—1,-1,-1,-1,-1,-1,1,...,1). The constant matrices nasn
and ny v and their inverses nMY and nM can be used as metrics to raise and lower the
corresponding indices.

As for the scalar sector of the gravity multiplet, it is useful to introduce the positive
definite symmetric matrix M = LLT with elements

Myn = —L]\/[mLNm + L]\/[QLNg (217)
and its inverse MMN
MMN iy p = 6M. (2.18)

In this case, the o-model geometry can be described in terms of a vielbein matrix P,™,
together with SO(6) and SO(n) connections w,,™ and w,? respectively, constructed from
the left-invariant one-form

Q=L"'dL, (2.19)
which, in the fundamental representation of SO(6,n), has the following matrix representa-
npb

M b
P web

tion

(2.20)



In terms of the vielbein matrix, the metric on the coset manifold SO(6,n)/(SO(6) x SO(n))
has the form
ds® = —P™%p,,.

Notice that ) satisfies
QY = _QMM (2.21)

and hence P,% = —P%,,. The 50(6,n) Maurer-Cartan equations dQu~ + Q2 A QpY = 0
also imply the following relations

DP,™ = dP,™ + w A By™ + w™, A P2 =0, (2.22)
Rp™ = dwp™ + w2 A wp™ = =Py A P, (2.23)
Rl =dwl +wfAwb = —P2 AP, (2.24)

which provide the definitions for the SO(6) and SO(n) curvatures R,,” and R,%, respec-
tively.

The SO(6) factor in the coset has to be identified with the Zs quotient of the SU(4)
factor of the R-symmetry group. It is therefore useful to note that an SO(6)-vector v™ can
alternatively be described by an antisymmetric SU(4)-tensor v = —v?% i,j = 1,...,4,
subject to the pseudo-reality constraint

|
vij = (v7)" = §€ijklvkl- (2.25)

The map v™ — v* can be constructed explicitly by using six antisymmetric 4 x4 matrices
'™ interpolating between the two representations,

v = TRy, | (2.26)
normalized in such a way that

m,

1 g g g
VW, = —ieijklv”wkl = —vw; = —vijwY . (2.27)

Using this representation, equation (2.16) can be written as
g 1 .
nuN = —Ly Lyij + Li*Lng = —§6¢jkzLM”LNkl + Ly*Lng, (2.28)

implying
, 1 1
L™ Ly = 2 85 (MmN — Lm*Ling) = 1 8t L™ L (2.29)

while the Bianchi identity for the vielbein 1-forms, now P,%, (2.22) may be written as
DP,"7 = dP,"7 + w ARV —w iy NP =0, (2.30)

where
Wy = T 9T g W™ (2.31)



Since w plays the role of an SU(4) connection, it can be shown that

Jl

Wy = Qw["[kél} , (2.32)
with w?; = 0 and w;? = (w';)* = —w’;, so that (2.30) becomes
DP,7 = dP," + wb A B9 — wip AP — Wi AP = 0. (2.33)

In the same fashion, we can define the SU(4) curvature as
Rij = Rikjk = dwij — wik A wkj = pik A Py, (2.34)

where RV}, = FmijFleRM, R, =0, R’ = (R'j)* = —R/;, and the last equality in (2.34)
follows from equation (2.23). Also, the expression for the SO(n) curvature in terms of the
new vielbein 1-forms is

Ro2 = —Pyj N PYI (2.35)

We close this section by giving some useful relations following from the previous defi-
nitions. These are the derivatives of the coset representatives, which satisfy

DLy = dLa" — W'y Lye™ — w? i L™ = LRy, (2.36)

DLy = dLy® + w% Ly = Ly P . (2.37)

2.3 The fermion fields

As usual in supergravity theories, the fermion fields transform in representations of the
holonomy group of the scalar manifold, which in our case, locally coincides with the isotropy
group H = SO(2) x SO(6) x SO(n). More precisely, the gravitini, the dilatini and the
gaugini transform in the fundamental representation of SU(4), which is the universal cover
of SO(6), while the gaugini alone transform in the fundamental representation of SO(n) as
well. Moreover, the SO(2) = U(1) factor of H acts on the fermions as a multiplication by

a complex phase €@ where the charges ¢ of wz, X' and A% are
i 1 i 3 i 1

respectively. More details about fermions and their properties can be found in appendix A.
We only remind here that @Z)L and A% are left-handed, while x* are right-handed, i.e.

A L e N (2.39)

and that their charge conjugates v, = (LZJ;)C, xi = (x)¢ and \¢ = (\%)¢ have opposite
chiralities

Yoin = —Yin,  V5Xi = Xiy VAL = — A (2.40)



3 Duality and symplectic frames

The sector of the ungauged Lagrangian specifying the vector field couplings at the 2-
derivative level can be written as [30]

B 1 L1 , 1 _
R O Ay T SR

where e = det(ej,), Af}, A =1,...,n+6, are the vector fields, ij = 28[#141/}] and (*FA)W =
%GWWF Apo are the vector field strengths and their Hodge duals respectively. Furthermore,
Zas, and R are real symmetric matrices that depend on the scalar fields, with Zxx, being
negative definite, O}” is an antisymmetric field dependent tensor that does not involve any
of the vector fields and contains at most a single derivative and L,est represents all the
terms that do not depend on the vector fields.

If we associate a magnetic dual Gy, to each field strength F) /j\l, by defining

) oL

B E;U/paanAU = RAEFEV - IAZ(*FE);U/ - (*OA)uua (32)

GAMV = —€

the Bianchi identities and equations of motion of the vector fields can be condensed in the

{ 8[NF;Xp] == 0,
I Gap) = 0,

simple system

(3.3)

which also implies that for each vector field Aﬁ there is a dual magnetic vector Ay,
local solution of the equations of motion, whose field strength is G5,,,. The vector fields
Al/}, which are those appearing in the ungauged Lagrangian, will be referred to as electric
vectors.

The set of equations (3.3) is invariant, in principle, under general GL(2(n + 6),R)
transformations mixing FA and G

A A A AX P
o) (g ) = (A () (3.4)
GA,uV Apv CAZ DA GZ;W

which are restricted to the symplectic group Sp(2(n + 6),R) once we require that the G’
definition in terms of F’ is the same as (3.2), possibly for a modified lagrangian £ (see [30]
for a review and [27] for the original derivation).

A consistent choice of n + 6 electric vector fields among the 2(n + 6) vectors and dual
vectors is called a choice of symplectic frame.

Once one also takes into account the equations of motion of the scalar fields, one finds
that, since Lyegt is only invariant under the symmetry group of the scalar o-model, the U-
duality group, which is the group of transformations that leave the full system of Bianchi
identities and equations of motion of N/ = 4 supergravity invariant (up to possible suitable
modifications of the Lagrangian), reduces to

G = SL(2,R) x SO(6,n) C Sp(2(n +6),R). (3.5)



Clearly, SL(2,R) x SO(6,n) is a global symmetry group of the Bianchi identities and equa-
tions of motion but not of the Lagrangian, which is only invariant (up to a total derivative)
under an electric subgroup G, C SL(2,R) x SO(6,n).

Different choices of the symplectic frame give rise to different Lagrangians with different
off-shell invariance groups G, which are however on-shell equivalent in the sense that they
lead to sets of Bianchi identities and equations of motion that can be mapped into each
other by field redefinitions.

In the theory at hand, the electric vector fields Aﬁ together with their magnetic
duals A, form an SL(2,R) x SO(6,n) vector Aﬁ/la = (AS,AA#), which is also a sym-
plectic vector of Sp(2(6 + n),R). Following [26], we can therefore introduce a composite
SL(2,R) x SO(6,n) index M = M« and an antisymmetric symplectic form Cns defined by

Cmn = Cpang = NuN€as, (3.6)
whose inverse is the opposite of

([:MN — CMaNB = ,),]MNeoz,B7 (37)

so that
CMNCprp = CMONBC N gp, = —M 62 = —ap. (3.8)

Every electric/magnetic split Aﬁ/‘ = Aﬁ/[" = (Aﬁ, App), such that the 2(n 4 6) x 2(n + 6)
matrix CMV decomposes as

CAE (DA 0 5A
CV= ("5 )= 5. (3.9)

Cpr” Cax —0y 0
defines a symplectic frame and any two symplectic frames are related by a symplectic rota-
tion. Note that composite SL(2,R) x SO(6,n) indices are lowered and raised according to

Vit = Vita = nuneagV? = Can VY, VM = VM = VgV M = v eV M (3.10)

where VM is an arbitrary SL(2,R) x SO(6,n) vector.

It is convenient to parametrize the choice of the symplectic frame by means of projectors
ITA v and I v that extract the electric and magnetic components of a symplectic vector
VM = (VA V) respectively, according to

vA =1 VM, Vy = My VM. (3.11)

In particular, we have that Aﬁ = A MALV‘ and Ay, = I MALV‘. Since the symplectic
form CMV decomposes as in (3.9) in any symplectic frame, these projectors must satisfy

T 1= CMY = 0, (3.12)
ITA s p CMV = 68 (3.13)



On the other hand, for an object W= (W, W) in the representation of SL(2,R) xSO(6,n)
that is dual to the fundamental representation, we have

Wy =M, WA = 11t WM. (3.15)
Furthermore, for any two symplectic vectors YM = (YA Yy) and ZM = (Z%, Z)) we have
YMZy = CapnYMZN
=YAZy -2t
= (I pI gy — T I 0) YMZY
therefore
T\ an — Ha Ty = Conr (3.16)

Once the choice of frame has been made, the kinetic matrices for the electric vectors follow
from decomposing the 2(6 + n) x 2(6 + n) matrix

Mmn = MopMun (3.17)
as .
Mps MAE —(I—i—RIflR)AZ (’R,Ifl)/\
Mo = - , (3.18)
MAZ MAE (I—IR)AE _(I—l)AE
where the identifications are determined by
(YA = —1A = e MMV (3.19)
(RI™Y)p” = —IIp p(IE gy MMV (3.20)
(ZT'R)A, = -1 s MMV (3.21)
(T+RI'R)ps = g Iy MMV (3.22)
This decomposition gives the most general form of a matrix M satisfying
MumpCPeMop = C, (3.23)
leading to the definition of the inverse as
MMN = CMPCNCAL L, (3.24)
Moreover, the complex kinetic matrix of the vector fields
Nas = Ras +iIas (3.25)
satisfies the following useful relations
NasITZ o VELMI = T p o VELME (3.26)
NasIT pa (V) LME = Tl o (V) LM, (3.27)

which are proven in appendix C.

~10 -



3.1 Examples of symplectic frames

Since the decomposition (3.18) can be obtained in several inequivalent ways, we discuss
now the projectors II* 37, IIxase and the kinetic matrices of the electric vectors for some
of the symplectic frames in which the D = 4, N’ = 4 matter-coupled supergravity has been
formulated in the literature.

The standard frame. The first such symplectic frame follows from requiring that
the global symmetry group of the ungauged Lagrangian is G = SO(1,1) x SO(6,n) C
SL(2,R) x SO(6,n). This symplectic frame, which we shall refer to as standard frame or
SO(1,1)xSO(6, n)-frame, corresponds to the electric/magnetic split Aﬁ/["‘ = (Ai\fﬂ AMtp),
where the electric vector fields Aﬁ/f * form an SO(6,n) vector and carry SO(1,1) charge +1,
while their dual magnetic vector fields Apry, = Ap~,, which also form an SO(6,n) vec-
tor, carry SO(1,1) charge —1. The two factors in the on-shell global symmetry group are
embedded in the symplectic one as follows:

L,
@0) corno,R) - (AL D) o gno(64n),R), ad—be=1,
cd cn d1n+6

g €S0(6,n) — (g 0 ) € Sp(2(6+n),R), (3.28)
0ngn
where 1,46 is the (n 4+ 6) x (n 4 6) identity matrix. It is apparent, from the above
embeddings, that the off-shell global symmetry group is SO(1,1) x SO(6, n), as stated
earlier.
It is in this symplectic frame that the A” = 4 Poincaré supergravity has been described
in [9-11, 14, 26] and in our notation with projectors we have

A =M N, AN Ay =Ty ne A, (3.29)
where
HM+Na = (5%(52, HM-i—NOz =1NMNC€+q - (330)

It is straightforward to show that these projectors satisfy conditions (3.12)—(3.14)
and (3.16). Moreover, using equations (3.19) and (3.20), we find that the kinetic matrices
for the electric vectors Aﬁ/f T are given by

IM+N+ = —(ImT)MMN, RM+N+ = —(RGT)UMN, (3.31)
where
IRV Vi i
_ (e 3.32
T 2<V_+Vi>+|v_|2 (3.82)

is the complex scalar of the N/ = 4 supergravity multiplet. Therefore, the Lagrangian for
the ungauged theory in this symplectic frame contains the following kinetic terms for the
electric vector fields

1 1
e LD —Z(ImT)MMNF%+FN+“” - ge“”p"(ReT)nMNF%JrF;XJF, (3.33)

where Fl%+ = 26[MAM+.

V]
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While this simple choice allows for a clear distinction between electric and magnetic
vectors and maintains SO(6,n) covariance, it has been shown [38] that one cannot perform
a simple electric gauging in this symplectic frame leading to a maximally supersymmetric
AdS vacuum.

Any consistent electric/magnetic split Aﬁ/lo‘ = (AQ,AAM) can be obtained from the
standard frame by means of a symplectic rotation

A A ~AM M+
A} = (Bw 70 (A (3.34)
Any Dpy Ep AMyp

and the corresponding projectors are
HAMa = BAM5$ —|—CAM6+O” A = l)/\]\/[(g;r + Eapi€ta - (335)

The expressions for the matrices Zyy;, Rax in an arbitrary symplectic frame can be ob-
tained from those in the SO(1,1) x SO(6,n)-frame, given by (3.31), by using the general
transformation property of the complex kinetic matrix My, under the symplectic transfor-
mation relating the two frames (we suppress all indices):

N = (BN, + D) (CAy+B) ! =

(3.36)
= [-E (Re(r)n +ilm(r) M) + D] [B — C (Re(r)n +ilm(r) M) ",
where E = (ExM), C = (CM), B = (B");),D = (D) and
N() = (NOM+N+) = —(Re(T)n—f—iIm(T) M) (3.37)

is the complex kinetic matrix in the standard frame.

The standard frame naturally originates from compactifying heterotic superstring the-
ory on a six-torus 7. In this case, on a generic point in moduli space, the resulting D = 4
supergravity is an A/ = 4 model with 22 vector multiplets (n = 22) which, at the classical
level, features the global symmetry group SL(2, R) xSO(6,22) [40]. The vector fields, in this
case, consist of the six Kaluza-Klein vectors G/, m = 1,...,6, six vectors By, originating
from the D = 10 Kalb-Ramond field, and 16 vectors Aﬁ, A=1,...,16, gauging the Cartan
subalgebra of the ten-dimensional gauge group. The SL(2,R)/SO(2) factor in the scalar
manifold of the classical theory is spanned by the four-dimensional dilaton field ¢4 and the
axion dual to the 2-form B,,,, while the SO(6,22)/[SO(6) x SO(22)] factor is parametrized
by the internal metric moduli G, the scalars B,,,, and Aﬁl, originating from the internal
components of the Kalb-Ramond field and the internal components of the ten-dimensional
gauge fields respectively.

Below, we discuss various other instances of symplectic frames, besides the standard
one, and their occurrence in superstring compactifications.

Frame in which SL(2,R) is an off-shell symmetry. Another interesting symplectic
frame is the one in which the SL(2,R) factor of the U-duality group SL(2,R) x SO(6,n)
is a global symmetry of the ungauged Lagrangian. This occurs when n = 6 and the
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fundamental representation of SO(6,6) branches with respect to the GL(6,R) maximal
subgroup as follows:

/
12 = 6/, +6_;,

where the grading refers to the O(1,1) factor in GL(6,R). Let us denote by A=1,...,6
the index labeling the fundamental representation of GL(6,R) (and its conjugate). The
symplectic frame in which SL(2,R) is a global symmetry of the Lagrangian is the one in
which this group has a block-diagonal action and is obtained by rotating a vector V™M in
the standard frame as follows:

(V[\+7 V[\+, V]\+, V]\—i-) — (V[\+7 VA-F: V/~\+> _V/~\+)7

where i i
VA = rhe ) VME v = HMMBVMB, (3.38)

with the projectors TThe mp and IIz ./ s that characterize this frame having the following
forms:
T e = T o = T80, Tanra = Wigppa = Hipcas- (3.39)

Thus, conditions (3.12)—(3.14) and (3.16) are equivalent to
I I MY =105, Te ™Y =0, Ty n™Y = —64 (3.40)

and i i
HAMH]\N—FHAMHAN: —MNMN- (341)

The 12 x 12 matrix IV, = (HA M, 1I5,,) satisfying the above constraints takes the fol-
lowing form

iy, = \}5 (16 26), Ty = \1@ (16 1¢) (3.42)

1 being the 6x6 identity matrix. IV ; is nothing but the matrix which transforms the
original basis of the 12 of SO(6,6) in which nysn is diagonal and an SO(6,6) vector has
components VM = (V™ V) into the one in which GL(6, R) has a block-diagonal action,
7 is off-diagonal and an SO(6,6) vector has components VM = (VA, Vi)

The kinetic matrices for the electric vector fields Ai}a are given by
Tioss = —(M DisMap,  Riass = —€aplliy I v MY (Mg, (3.43)

where (M~1);5 is the inverse of MAE = TIA yTI= y MM and 5, TIE y MMN (M 1)z is
antisymmetric in its indices. The ungauged Lagrangian for the D = 4, N' = 4 supergravity
coupled to six vector multiplets in this symplectic frame has a global SL(2,R) x GL(6,R) C
SL(2,R) x SO(6,6) symmetry and originates from compactification of type IIB supergravity
on a T%/Z5 orientifold [15, 16]. This corresponds to the (T° x T°)/Z, case reviewed, in
more detail, at the end of this section. The model and its electric gaugings have been
studied in [17-19].
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Electric gaugings with maximally supersymmetric AdS; vacua. The most gen-
eral gaugings of an N’ = 4 model which feature maximally supersymmetric anti-de Sitter
vacua were studied in [38] and their electric frame is different from the standard one. The
simplest of these models involves no vector multiplets (n = 0) and we shall characterize here
its electric frame. In this model the only components of the embedding tensor that need to
be turned on are fi193 and f_456, where the indices run on the vector representation of the
SO(6) R-symmetry group, which is broken to the SO(3) 4 x SO(3)_ subgroup. This gauging
is purely electric in the symplectic frame where the electric vectors are Al‘} = (AZ”, AZF)
and their magnetic duals are Ay, = (Apyp; Am—p), where we have split the SO(6) index
M (recall n = 0) as M = (rh,m), where 7 = 1,2,3 and m = 4,5,6 label the vector
representations of two distinct SO(3) groups. The projectors defining this frame are

I o = (I o, ™ aa) = (33058, 05 000), (3.44)
Oaria = st vias Win—ma) = (€xafmmr, €—almnr) (3.45)

and it is straightforward to show that they satisfy the properties (3.12)—(3.14) and (3.16).
In this symplectic frame, the kinetic matrices for the electric vectors are

Tinti+ Lintn— i 0
IM:( L >:Im7<n0 ) ) (3.46)

Im,fﬁ, Im_ﬁ_ anﬁ

and

Ritnt Rinti— — i 0

Rag = (0 == ) —Rer [ T : (3.47)

Rin—n+ Rm—n— U

This result can be written in a more compact form in terms of the complex kinetic matrix:
_ 1
Nitat = Toma » Nip—nie = —= O 5

with all other entries being zero. The above expression for N is to be contrasted with the
expression of the same matrix Nj in the original standard frame: Ny vo = Toun-

Symplectic frames from Type IIB compactified on (T?~3 x T?~P) /Z2-orientifolds.
We now consider the D =4, N’ =4 supergravity models discussed in [20], which originate
from Type IIB supergravity compactified on (TP~3 x T97P) /Z5-orientifolds, in the presence
of Dp-branes, whose worldvolume fills the whole non-compact D =4 spacetime (spacetime-
filling branes) as well as p— 3 directions (defining the sub-torus 7~3) in the internal torus.
We shall write the projection matrices defining the corresponding symplectic frames, while
the kinetic matrices of the vector fields have been computed in this reference. As in [20], we
shall restrict ourselves to the bulk sector, which is described by a half-maximal theory with
six vector multiplets (n=6). The Z3 is generated by the involution Iy_, [(—1)FL][9_TP]

where € is the wordsheet parity, Iy_, denotes the inversion on the directions of the trans-
verse torus Ty, and {g%p} the integer part of (9 —p)/2. This quotient signals the presence
of Op-planes, parallel to the spacetime-filling Dp-branes. The directions of the internal
six-torus split into p — 3 Neumann (i.e. parallel to the Dp-branes), labeled by indices
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i,j,---=1,...,p— 3, and 9 — p Dirichlet directions (i.e. transverse to the Dp-branes),
labeled by indices a,b, -+ = p—3+1,...,6.5 Consequently, the GL(6,R), group acting
transitively on the metric moduli Gij, Gia, Gap of the torus in the un-orbifolded theory, is
broken to GL(p — 3,R) x GL(9 — p, R) acting on Gj, Gap, which is contained in the global
symmetry group of the four-dimensional Lagrangian.

It is useful to describe the fundamental representation of SO(6,6) in the basis in which
the diagonal blocks describe the subgroup GL(6, R) and n is off-diagonal. In this basis, the
electric vector fields in the standard frame are Aﬁ = (Af}*,A itw) = (Aﬁ*, —A;_,) and

n At AAJF#) = (A]\JFN,AI/}*), where we recall that the
index A = 1,...,6 labels the fundamental representation of GL(6,R) C SO(6,6) and

their magnetic duals are Ay, = (A

Aje =Ty AP Ag = TR AN, (3.48)
where HAO‘MB and Il /5 are defined by equations (3.39) and (3.42). A distinctive feature
of these models is that this GL(6,R) does not coincide in general with GL(6,R),, but
intersects the latter in the subgroup GL(p — 3, R) x GL(9 — p, R) mentioned above. Indeed,
GL(6,R) acts transitively on the moduli Gij, Bia, Gap. Finally, we notice that in its first
p — 3 values, the index A coincides with i labeling the Neumann directions of 7P~3, while
in the last 9 — p values, it coincides with the index a of the dimensionally reduced fields,
labeling the Dirichlet directions along T97P, though in the opposite position, due to the

peculiar way GL(9 — p,R) is embedded in GL(6,R). Below we discuss the different cases.

Case (T% x TY)/Z5: this is a compactification in the presence of D9-branes and O9-planes.
The complex scalar in the SL(2,R)/SO(2) factor is 7 = ¢ + iet Vs, ¢ being the four-
dimensional dual to the RR tensor C},, ¢ the ten-dimensional dilaton and Vg the volume
of T in the Einstein frame. The scalars Gij, Cij, on the other hand, span the coset space
SO(6,6)/[SO(6) x SO(6)]. In this case, the indices A and i coincide and the symplectic
frame is defined by the electric vectors Aff = g;, Ai+# = —A;_,, = Cyy, where g; are the
Kaluza-Klein vectors. The projectors are given by?

HAMa - (H:H_MomHi—Moc) - (HiMd(—)t:HiMe—a% (349)
Oaria = Wit nra, I pa) = (—Hinseqa, T ar0y), (3.50)

where 1Y), = HAM and Iy, = IIz,, are given by (3.42). This symplectic frame is
equivalent to the standard electric/magnetic split A{Y > = (Aﬁ/[ *, Apyy), since it is related
to the latter by a symplectic rotation of the form (3.34) that is block-diagonal, i.e. CAM =
Dpy =0.

Case (T x T%)/Z5: this is a compactification in the presence of D3-branes and O3-planes.
The scalars consist of 7 = C(g) + i e~ parametrizing SL(2,R)/SO(2), C(g) being the ten-

dimensional RR axion, and Gap,, C® = 32124 O, . spanning the % submani-

fold (C4, .. a, are the internal components of the RR 4-form field). In this case, the index A

!Notice that we use a special font for the indices i, j,... and a,b,..., not to confuse them with 4, j, ...
and a,b, ..., which, in the present paper, have a different meaning.
2Here and in the following we always define the projectors as acting on the basis in which 7 is diagonal.
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of the GL(6,R) and the index a of the dimensionally reduced string modes coincide, aside
from their upper/lower positions, as commented above. The symplectic frame is defined
by the electric vectors Aff = Bay, A*+ = Af = Cyy. The projection matrices are:

T 0 = P00 = 120002, Tapra = Haprre = Manreas (3.51)

where 112, = H]\M and I,y = Iz, are given by (3.42). This is the model constructed
in [15, 16] and studied, in its gauged version, in [17-19], as mentioned above.

Case (T? x T*)/Zy: this is a compactification in the presence of D5-branes and O5-
planes. The scalars consist of 7 = Cij + ie% Vo parametrizing SL(2,R)/SO(2) and
Gij, Gab, Cab, Bia, Ciapc, ¢ spanning SO(6,6)/[SO(6) x SO(6)]. The symplectic frame
is defined by the electric vectors A" = Gi, A%t = B, A'y, = A~ = 9Cy,, A1, =

—Aa_;, = €4 Cyeqy. The projection matrices are:

T 10 = (T pre, T v e ara) = (I 000 T 00 Tanrea), (3.52)

Oanta = (U3 proo iema: I ma) = (1 €40, —Ilinea, P06, ), (3.53)

where the GL(6,R) index A is decomposed as A = (i,a), II*); and Il ), are the 2 x
12 matrices that consist of the first two rows of the matrices TIA v and Iz, of (3.42)
respectively, while TI#); and ITaps are the 4 x 12 matrices consisting of the last four rows
of IT" y; and II A respectively.

Case (T* x T?)/Z5: the compactification is perfomed in the presence of D7-branes and
OT-planes. The scalars consist of 7 = Cijiu + @ V4 parametrizing SL(2,R)/SO(2) and
Gij, Gab, Cia, Bia, C(g), Cijab spanning the coset manifold SO(6,6)/[SO(6) x SO(6)]. The

symplectic frame is defined by the electric vectors Ajt = Gi A% = B, ,, A*, = AL~ =
eijlejklﬂ, Ay =—Aa = 2P Cyy- The projection matrices are:
T o = (T b, T aas Taara) = (00067 T ar6, Tanrea), (3.54)
HAMa = (HA—l—Moﬂ Hi—MOM Ha_MOc) = (_H]\ME-"-OM _HiME—Cw HaM(S(;)v (355)

where again A= (i,a), [T and I3, are the 4 x 12 matrices that consist of the first four
rows of the matrices HAM and IIz,, of (3.42) respectively, while I1*); and II,5; are the
2 x 12 matrices consisting of the last two rows of h m and I3, respectively. Gaugings of
these models, originating from internal fluxes, were studied in [20, 41].

4 Duality covariant gauging

The gauging procedure consists in promoting a suitable subgroup G of the global symmetry
group G of the Lagrangian to a local symmetry group gauged by a subset of the electric
vector fields Aﬁ of the theory. Gauging a group Gy requires the introduction of minimal
couplings of the gauge fields to the other fields and the modification of the Lagrangian
and the local supersymmetry transformation rules in such a way that the resulting theory
features the same amount of supersymmetry (AN = 4) as the original ungauged one.
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The choice of the symplectic frame is not physically relevant in the ungauged theory,
as it affects the Lagrangian description, but not the set of equations of motion and Bianchi
identities. However, the introduction of minimal couplings explicitly breaks the original
on-shell global SL(2,R) x SO(6,n) invariance of the ungauged model, and the initial choice
of the symplectic frame has physical implications on the resulting gauged theory because
different frames correspond to different Lagrangians with different global symmetry groups
G C SL(2,R) x SO(6,n) and thus different choices of possible gauge groups G,.

Nevertheless, there exists an SL(2,R) x SO(6,n)-covariant formulation of the gauging
procedure that does not depend on the symplectic frame in which the ungauged theory
is written. This formulation involves the introduction of gauge fields Aﬁ/‘ that decom-
pose into electric gauge fields Aﬁ and magnetic gauge fields Ap, and gauge group gen-
erators X = (X, X A). Since the gauge group G, is a subgroup of the duality group
SL(2,R) x SO(6,n), these generators can be expressed as linear combinations of the gen-
erators t4 of SL(2,R)xSO(6,n), where A is an index labeling the adjoint representation of
SL(2,R) x SO(6,n), according to

XM:@MAtA, (4.1)

where O 4 = (© A4, G)AA) is a constant tensor, called the embedding tensor, which en-
codes all the information about the embedding of G, in SL(2,R) x SO(6,n). The index A
decomposes as A = ([M N, (af)), where [M N| labels the adjoint representation of SO(6,n)
and (af) labels the adjoint representation of SL(2,R), so equation (4.1) can be written as

Xm = @MNPth + @MBWtB,\/, (4.2)

where typ = t[yp] and tg, = t(g,) are the generators of SO(6,n) and SL(2,R) respectively
and O NP = OV while © %" = 0. Furthermore, the gauge connection is
defined by

Qg = gAY X, (4.3)

where g is the gauge coupling constant.

The main advantage of this description of the gauging is that the Bianchi identi-
ties and equations of motion of the gauged theory are formally invariant under global
SL(2,R) x SO(6,n) transformations, as is the case in the ungauged theory, provided we treat
the embedding tensor © o as a spurionic object that transforms under SL(2,R) x SO(6,n).
When freezing © " to a constant, this formal on-shell SL(2,R) x SO(6,n)-invariance is
broken.

This procedure of gauging a supergravity theory has been introduced in [31-33] and
developed, in the form presented here, in [34-37] (see also [28-30] for reviews). We should
note that a quite detailed discussion of this procedure for A/ = 4 supergravity has been
given in [26], though with some clear limitations, as discussed in the introduction. In any
case, our presentation aims at being self-contained.

Consistency of the gauging procedure, namely the possibility of constructing a lo-
cally Gg-invariant and N' = 4 supersymmetric action, requires the embedding tensor
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(OMNF 077 to satisfy a set of linear and quadratic SL(2,R) x SO(6,n)-covariant con-
straints. The linear constraint is

Xounp) = Xoun 2Cpyo =0, (4.4)

where Xyn”? = @MQR(tQR)NP + @Még(t&)NP are the matrix elements of the gauge
generators Xy in the fundamental representation of SL(2,R) x SO(6,n). The linear con-
straint restricts the embedding tensor to a particular representation of SL(2,R) x SO(6,n).
More precisely, the embedding tensor (Qqar™", Oanr??) formally transforms in the ten-
sor product of the fundamental (2,n + 6) and the adjoint (3,1) + (1, i(n+6)(n+ 5))
representations of SL(2,R) x SO(6,n), which decomposes according to

(2.4 6) x [(3,1) + (1, %(n+6)(n+ 5))]

= 2.(2,n+6)+ (4,n+6)+ <2, (n;LG)) + (2,;(n+6)((n+6)2—4)). (4.5)

The linear constraint (4.4) removes all the representations in the above decomposition that
are contained in the 3-fold symmetric product of the (2,n + 6) representation

X(MN’P) € ((2,n+ 6) X (2,1’1+6) X (2,1’1+ 6))sym.

! (n+6)((n+6)% - 4)) (4.6)

=(2,n+6)+ (4,n+6)+ (2,3

4 (4, S+ 6)(n+ 10)(n + 5)) .

3
representation of SL(2,R) x SO(6,n), and the possible gaugings of the four-dimensional

Hence, the linear constraint restricts the embedding tensor to the (2,n + 6) + (2, (n+6))

N = 4 supergravity are therefore parametrized by two real constant SL(2,R) x SO(6,n)
tensors, {anr and famnp = famunp), corresponding to these representations [26]. Once
we make explicit this constraint, the components of the embedding tensor are expressed in
terms of the £ and f tensors as

P
Oarr™ = for" — N0y, Oan® =006 (4.7)
Thus, the quantities X " are given by
1
Xon” = Xppang™? = =6) faran®™ + 5 (5ﬂ5g§azv — ONOLEam — nuNOEY + 5ﬁ6af3€}4)
(4.8)
and satisfy the constraint (4.4) by construction [26].

Gauge invariance requires the embedding tensor to be invariant under the action of
the gauge group G, that it defines. This implies the quadratic constraint

0=0,"tgON" = OAE(tr)NT 0P + O PONC fRcA, (4.9)

where we used the fact that the generators of SL(2,R) x SO(6,n) in the adjoint repre-
sentation are given by (tB)CA — — fgc?, where fpc? are the structure constants of the
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Lie algebra of SL(2,R) x SO(6,n) defined by [ta,t5] = fap®tc. By contracting the last
equation with the generators t4, we obtain

[XMvXN] = _XMNPX'P7 (410)

which amounts to the closure of the gauge algebra. It was found in [26] that the above con-
straint is equivalent to the following quadratic constraints on the tensors &,as and foprnp

Mesr =0, (4.11)

€@fg)pMN =0, (4.12)

3farmnfoipa)™ + 2 fipiveg =0, (4.13)

(&L fapmn + Eanrépn) =0, (4.14)

e (farinrfor" = & fappapnai = o fanipe + Eapifaun) = 0. (4.15)
These quadratic constraints also solve

Ve uten” =0, (4.16)

which implies the existence of a symplectic frame in which the magnetic components 44
of the embedding tensor vanish (electric frame). Equation (4.16) is known as the locality
constraint on the embedding tensor and guarantees that the dimension of the gauge group
G4 does not exceed the number n + 6 of the vector fields that are present in the ungauged
Lagrangian and are available for the gauging.

In the gauged theory, the ordinary exterior derivative d is replaced by a gauge-covariant
one which acts on objects (p-forms) in an arbitrary representation of SL(2,R) x SO(6,n) as

Cz =d-— gAMXM =d-— gAMa@aMNPtNP + gAM(aé’B)’yvataﬁ N (4.17)

where we have introduced the connection one-forms AM = AMo — Afy 2dx*, which we
assume to transform under a gauge transformation with infinitesimal parameters (M (z) =
¢M(z) as

S AM = deM = dcM 4 gXpp™M AN (P (4.18)

Using the relation for the closure of the gauge algebra for the generators in (4.10)

Xmo® Xns™ — Xno® Xus™ = —Xan” Xpo®, (4.19)
we find that
B = —gFMX \y, (4.20)
where 1
PM = SEMde A da” = dAM + gXNpMAN A AP (4.21)

are the usual non-abelian field strengths of the vector fields (in form notation). This can

also be rewritten as
fMa _ gaMa %fBNPMANﬁ/\AP“, (4.22)
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where we have defined
. 3
farNpP = famnp = SaMNPIN — 5EaNTIMP; (4.23)

following [26].
It is important to stress that the field strengths (4.21) do not transform covariantly
under gauge transformations, because

S M = —gXpnp™MNEP 1 gX (prpy™M (2gN FP — AN A 6§A7’) £ —gXpnpMNEP,
(4.24)
In order to construct gauge covariant quantities describing the vector fields, we introduce
the two-form gauge fields BMN = BIMN] — %B%Nd:v“/\dx” and B8 = B(@h) — %Bﬁ,/ﬁdx“/\
dz¥, transforming in the adjoint representations of SO(6,n) and SL(2,R) respectively and
we modify the field strengths as follows® [26, 35, 36, 45]

]_ N
HM = SHC et A da = FM® g@aM npBNF 4+ 3524 B, (4.25)

These modified field strengths transform covariantly under gauge transformations
S HM = —gXprpM N HP, (4.26)
provided the two-form gauge fields transform as (see for example [29])
8¢ BMN = eqp (—2¢MIeHINI 4 AMIo & g AINI) (4.27)

8¢ B = naw (2§M(Q‘HN|B) — AMElA 5<ANW)> ‘ (4.28)

A consistent definition of the two-form gauge fields BMY and B®? requires the theory to
also be invariant under tensor gauge transformations parametrized by one-forms EMYN =
gIMN] — Eﬁ/[N dz* and 2 = 5(@8) — Egﬁdx/‘ acting on the vector and two-form gauge

fields as [26]

Sz AMe — g@aM NpENP ggé” zaB, (4.29)
5= BMN — q=MN ¢ s AMIe A 52 AN, (4.30)
5EBa’8 = JEQB — 7]]\/[]\7141\4(0‘| VAN 5EAN|ﬁ), (4.31)
where
I=EMN = g=MN 4 240, poMIATY A =INIQ (4.32)

3While it is clear that in four dimensions one can always dualize a massless tensor field to a scalar and
a massive tensor field to a massive vector, very often the natural low-energy Lagrangians of supergravity
theories that come from string compactifications contain tensor fields from the beginning [42]. This sparked
the necessity to be able to clearly identify the gauged supergravity theories containing tensor fields as
physical degrees of freedom [43] and for a better analysis of the corresponding gauge structure, which takes
the form of a free differential algebra [44]. As we will see later, the embedding tensor formulation we present
here allows for an elegant and general solution to these issues.
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and
d=oP = q=f — ge@M gy NEPY — ge  AM@ A =P (4.33)

The transformation rules (4.29)—(4.31) ensure that = HM® = 0.

In the scalar sector, gauging a subgroup of the duality group means gauging the isome-
tries of the scalar o-model. This can be accounted for by constructing gauged Maurer-
Cartan forms from which we recover the gauged vielbeins and connections of the scalar
manifold. For the coset space SL(2,R)/SO(2), the gauged Maurer-Cartan left-invariant
one-form is given by

Bo? = (57 a0 = (5)a" 052+ J0(S ™" €art AMPS52 + 2g(S "M ArraSs?
(4.34)
and, in our conventions, has the following expansion
¥ = (ReP)os + (ImP)oy 4+ iAoy, (4.35)
where we have suppressed the SO(2) indices. We then see that
P= %eaﬁvacivﬁ (4.36)
is the gauged SL(2,R)/SO(2) zweibein and
A= 5 vadvs (4.37)
is the gauged SO(2) connection, where
dVa = dVa + %ggaMAMﬁvﬁ + %g&MBAMaW : (4.38)
The one-form (4.34) satisfies the gauged Maurer-Cartan equation
AV + U AT = %gfaM [Vavg — (va)*vg} HMB 5
+ %gaM Vavs + (v vs| HY oy (4.39)
+ %g&?@ (VaVi+Vivs) HY 0y,
which implies the relation
DP=dP —2iANP = %gﬁanavﬁHMﬂ (4.40)
and gives the following expression for the gauged SO(2) curvature
P=dA=iP* AP+ 53¢t (VaVs+Vivs) HYP. (4.41)
Once again, with some algebra, one can also derive the useful identity
DV, =dV, —iAv, = PV*. (4.42)



On the other hand, the gauged Maurer-Cartan left-invariant one-form for the coset
space SO(6,n)/SO(6) x SO(n) is given by

QMM = LMJMCZL]\/[M = LMMdLME + gAMa@aMNPLMNLPM, (4.43)

which satisfies QMM = —QMM and has the following matrix form in the fundamental
representation of SO(6,n)

AN O ]579
Q= (PT” &;:b> , (4.44)

where &, is the gauged SO(6) connection, &, is the gauged SO(n) connection and P,
is the gauged SO(6,n)/SO(6) x SO(n) vielbein. The one-form (4.43) satisfies the gauged
Maurer-Cartan equations

A0 ™ + QP A QpY = g0 N Ly N LpYHM, (4.45)
which, using the gauged SU(4) connection
o = oy (4.46)
and the SU(4) covariant expressions for the vielbeins
P, = L, MdLyY, (4.47)

imply that

DP9 =dP, 7 + 0P A B — &' A PR — I AP = 00N Lo Lp HMO,  (4.48)

RZ] = deZ] _ (:Jlk A (.:ka — Pﬂik A Pg]k T g@aMNPLNikLijHMa, (449)
AQQ EdAQQ—f— AQQ/\ AQQ — _pgij A ]f)éij 4 gGaMNPLNgLPbHMa, (450)

where ]%ij and 1:229 are the gauged SU(4) and SO(n) curvatures respectively. Again, one
can also derive the following useful relations

DLy = dLy" — &' L™ — &7, L™ = Ly 2P, (4.51)

DLy® = dLy® + &% L = Ly P2y . (4.52)

5 The Lagrangian and supersymmetry transformation rules

The full procedure to build the supersymmetric Lagrangian and derive the supersymmetry
transformation rules of the gauged D = 4, N’ = 4 matter-coupled Poincaré supergravity in
an arbitrary symplectic frame using the geometric approach can be found in appendix C.
Here we provide the results, namely the Lagrangian and the local supersymmetry trans-
formations of the fields, and comment on both the equations of motion and the closure of
the supersymmetry algebra.
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5.1 The Lagrangian

The N = 4 supergravity Lagrangian can be split in 6 terms as follows
L= Ekin + [/Pauli + Lf%rgis%n + Epot + ACtop + £4fermi y (51)

where Ly, contains the kinetic terms of the various fields, Lp,yu; the Pauli-like couplings
of the scalar and vector field strengths to the fermions, Lermion mass iS the self-explanatory
fermion mass part, Lo the scalar potential, Lo, the necessary couplings of the 2-form
fields that, according to the embedding tensor choice, lead to non-dynamical field equations
that ensure that we did not add new degrees of freedom by changing the explicit Lagrangian
and, finally, L4fermi are the remaining 4-fermion couplings.

We now list all the terms and the corresponding relevant definitions.

_ 1 L
e 1£kin = iR + §€,u1/p0' (I/}:fyl/pipa - ?ﬁm’Yup,lm)
1 . ~ ~ .
-3 (X" Dyxs + Xiv" Dux’) = (N Dyl + Ny D) (5.2)
S S W T N R H)\ H),
o 5 arj Z AY v + ge AY po
—IL :P* ol A MY ﬁ) TV S 11 K )
€ Pauli w \X 1/)2 XY i ) + [ Xi¥ XiY '(/)y
- 2Paz‘ju (j\giwju - j\gi,y,uuwi) 2 piin ( ai¥ju — )\az'YWﬂD ) (5'3)
+ g O,

9w

- _ o 92
e—lcf%isosn = — 294290 Agj + 29 A2% % Agj + 29 A TNENS + 3 gATXEN,;

9o A, 2
+ 3942 X'V )+ 29 A2 NV UL — S9Au L + e (5.4)
1 o (1 jij L iz L
€ ['pot =g §A1 Alij - §A2 AQZ']' - §A2@' AQ* i s (55)
1
e Liop = gge'LWPUHAMaHANB (@a €MBM)

(20,457 — gfsns ¥ A AT - deﬁNRsB;,z.s + 106 B2 )

- égew" (I Rl + 2MTa gl T ¢ ) Xngas ™ AN AN (5.6)
(3;»145( + igXPanscAva?a :

e Lagermi = — XaWl, X — AXFj gl — e”f'le\giwjuj\%W — eiALpI ATk ylh

+ %)ZinDZin - %W;%mg — X'AEGAL — 2>\l Y

— XAGMNY + 2ANENN, — NG Pyt ad, — N A gy,

(1 . -
+ ietP? (2%‘%)(“/’2%%0 + XN ie — AN %%%U)
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— - U oo — -
+ €K (XN”%‘ VP — §€u pUXi’Vu@Z’jvwkpwlo) (5.7)

T e (x P, 4+ K ) )
+ Xi’ylw)‘ AJ’YHIZJ] +X 'Yuu)\azA]'Y ¢]V

— 2%y, )Xy “d} —2)] V“@b”/\*vwﬂ

— 20l + (I‘UAEOAWOQ",

where

Onpw =TasIT® na (= 200V LMy — i pupe (V) LM L7
+ VOLMIN iy, X — VO LMER iy, N + 2(va)*LMijxiy[u¢§]
+ iEquU(Va)*LM inwpﬁ’ja + ZVQLMQS‘@W[MQM/] (5:8)
+ i€pe VELMEN i " + c.c.),

Zxy, and Ry follow from the solution of (3.19) and (3.20) in the chosen symplectic frame
specified by the projectors II* 574 and ITx z,. Moreover, IA’M and ]5@]-# are the components of
the spacetime one-forms P and ﬁyj defined in (4.36) and (4.47) respectively, i.e. P = ﬁ’ud:ﬁ“
and p@-j = P@-j#dm“. In addition, we have defined H ;}V = Ay H NMV , where the field
strengths Hl%a were introduced in (4.25).

The field strengths of the fermionic fields have the following expressions

. 1
Piw =20 Pipy) + S0 Ple, V) Yathip) — 1A i) — 2607 [yt (5.9)
A _ 1 ab 31 4 ~ g
D, xi =0uxi + Tl (€, V)YabXi + 5&»@ — O X (5.10)
) 1 i, v
Dyudai =0 Mai + Zw,ﬂb(e, V) YapAai + iAuxgi — O Aaj + DN s (5.11)

where flu, O p and (JJQQH are the components of the spacetime one-forms /l 7 and @QQ
respectively, i.e. A = /l“d:v“, O = @ udat, and @b = @z, daH and Wyab(e, 1) is the
solution of the supertorsion constraint (C.33), 7% = 0, projected on spacetime for the spin
connection as a function of the vielbein and gravitini.

Finally, the fermion mass matrices, which also appear in the scalar potential, are

AY = farenp (V) LM g INFLPT (5.12)
Asei? = farinpVOLM LYy LPIF — ia{ganaLgM, (5.13)
AY = JarrwpV LM LVFLPI 4 2 v LM (5.14)
A = faranpVOLM LV, LY. (5.15)
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Using the quadratic constraints (4.11)—(4.15) one can show that

2 - 2 ki - 1. /2 - 2 - -

§A{ Agi — §A2]A2ki — Agai® AxYy, = 155 <3A’flA1kz - §A]2dA2kl — A2aklA2akl> . (5.16)
Note that we explicitly introduced factors of g for the terms arising from the gauging
procedure.
5.2 The supersymmetry transformation rules

Using the geometric approach presented in appendix C, one can also deduce, from the
spacetime projections of the Lie derivatives of the various superfields, the local super-

symmetry transformations of the corresponding spacetime fields. For the fermionic fields
we find

1 1 <
ewz,u —Duﬁz + 4IAZHAM0¢V LMZJ,HVp’V 7#5] - Eeijkl(/\]gﬁﬂw)‘gk)’yyel

1 _ . 1 _ . 1 _ .
+ Z(Xi’Yqu)ej - Z(Xj')’uXJ )ei — E(XWVX])’YWEJ‘
1, . 1 - ) 1 - )
+ 306" )i + 5 XnA)e — 5 (N A (5.17)
1 - . - 1 _ .
+ 1()\%7”)@%1/61‘ — €ijrX’ €Y, — ggAlij'Yufjv
(56)\g = — *IAEH Ma(va) LM ,HMV")/“VQ
— Y€ (Paijp + 2Mai¥i + Eijriritdl,) (5.18)
o 1
+ (Xi)\é) - i(Xj)‘ )62 + 9A2a i€5,5
deXi = — *IAEH Ma(VY)* LMZJHWV“”Ej
. 9
+ ’Y“Ei(PH - Xﬂ%) - (/\gi)\;)ej + ggAgije], (5.19)

while for the bosonic fields we have

de€y, = Ei’Yal/%p + Eﬂaiﬁiy (5.20)
0V =ViEx', (5.21)
SeLntij = Lata(2€5X5) + €ijia@ A2, (5.22)
S La® =2LnYE XS + c.c., (5.23)
S AN = (V) LM ey — VOLMEEy A gy + 2V LM @) + c.c., (5.24)

6 BMa =2 @OCMNPLNGLP”Q%UV)\ + gﬁ (Va) (Vﬁ)*ngyﬂyxz

22@°‘MNPLN“LPWE 7,“,)\ + £MV°“V'86 Vv Xi

— 4Z@aMNPLleLij (6 7[M|wi|l’} + Gi’)/[,uw,,}) (5.25)
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+ &y MeP (gi’)/[,uﬂ/}i v + & ulﬂfj])
— 0°M ypeg, ANO ALY — Y unp Al fala APB)

|v]

where BMC“ =— 1@)0‘MNPB/JX,P +3 B;ofz'?v
N 1
D,e; = 0pe; + iw“ab(e,lﬁ)'y“bei — .A € — w7 Me], (5.26)

and ﬁﬁy = HAMO[H% , Where
N o 1 o
L = HIL + | = 200%) LM y,0p5, + §VQLMWAWWA§.
1 . iy )
- 5(];04) LMaX Vv Aai + 2(VY) LMinZV[uwf,} (5.27)

- 2VQLM25‘Qi’y[#¢Zi/] +c.c.|.

Introducing the symplectic vector g =(H W, Gauv), where
Gapw = —¢ ! 0L  RanHE, — Tys(xH” 0 5.28
Apy = —€ GMVPUW = Ay, — AE(* )MV - (* A)ulla ( : )

we can write the terms in the local supersymmetry transformations of the fermions that
involve 7—22,/ in a manifestly SL(2,R) x SO(6,n)-covariant form as

1 )
dexi D = §IAEH Ma(V) LYy

. 1
V Lszg#y 7“115] +'Y/u/€ X[iY ¢ ez]kllylwej"p,uww (5.29)
) /\az D — *ZAzﬂ Ma(Va) LM ’Hw/"}/'uyéi
* ;w 1
7V LMag € + 2’}/ EZ ny;ﬂ/}z/a (530)
5¢m D) IAZHAMaVaLMz],Hup’Y 7u

1 .
—eiuY Py . (5.31)

i 1 .
— —VaLniiGosy P yue’ + §7Vp7uﬁjwiu¢jp — 2

8
We note that Q%O‘ satisfies the twisted self-duality condition
€ppa G P =2MN P My p Mg, GIY + 2( = 2i(V*) LM a5,
+ €upe (V) LMIYLYT — iV LMIN iy A — iV LMy, A,
+ Qi(Va)*LMz'in’Y[M/JV] = €upe (V) LM X A PyI° (5.32)
+ 20V LMy )) — €upo VO LM NGy P + cc)
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The Lagrangian (5.1) is invariant, up to a total derivative, under the local supersym-
metry transformations (5.17)—(5.25) and under vector-gauge transformations, provided the
transformation rules (4.27) and (4.28) for the two-form gauge fields are modified as [29, 36|

MN _ Mlag|N [Mlee s 4|N]B

6 BMN = ~2eqs ((MIegINIS — alMlIos AN (5.33)
Q « M(«x N

0cBaS = 2muy (MG — Al Cls TPy, (5.34)

It is also invariant under the tensor-gauge transformations (4.29)—(4.31). Furthermore,

there is an additional gauge invariance parametrized by rank-2 tensors A%N 2= ALA,{N]E

and Agl/fx = A,(f;ﬂ )* which acts only on the antisymmetric tensor fields TT* MQBI%O‘ as [37, 46]

5A(HAM@B%Q) = AAE'OP (Gow — Heww) — 6A(Az)p[pl (gEIMV] - HEI/M) ’ (5.35)

where
AN = T oM N p ANFY + T o & A (5.36)

5.3 Bianchi identities and field equations
The field strengths of the two-form gauge fields are defined by [45]

3 M| g Pa plINIQ
Hl(ﬂ’)ﬁ’ 3a[ﬂBup] + GQGaPQ[ |A[ Bup]
+ 6604514%”‘ |o (8VAL] 184 gXPny§| }ﬁA| vAlc;Q]é) (5.37)

i =300, 306 M Ay, BT — Bogun AL BT

/
— G Ay (6|VAP]| )+ 3XPWQ5N5>A|TA§5> . (5.38)

The field strengths of the vector and the two-form gauge fields satisfy the Bianchi identities

aM M 3)a
Dy Hyf = % L (0°M N pHENT — e HE), (5.39)
—0°M o Dy HOY + Y D MDY = 3Xypp, MOHN I HDY (5.40)

where the covariant derivatives of the field strengths appearing in the above equations are
defined as follows

D H)I* = 0, M + gXngp M AN HL, (5.41)
D HEMN = g HEIMN 1 290, poM ALHGINIQ, (5.42)
D HDE = 9, M1 BP — geM gy HEOOT — e\ AM B, (5.43)

The equations of motion for the two-form gauge fields BM N and Bﬁ‘f , which do not

have kinetic terms, take the following form

HAMa@aMNP (HAMV - gAuu)

% 0ra8s) (Haw = Gaw) =

0,
0

M
where HAMV = HAMQHW,O‘

_97 —



The field equations for the vector gauge fields Aﬁ/f * are

1 .
577 DuGog® = g I M, (5.46)

where we have used the property
Xpos™® (HE = G57) =0, (5.47)

which holds on-shell by virtue of (5.44) and (5.45). The current on the right-hand side
of (5.46) is defined as

JMen = @My p[ LN L5 Pt 4 LNy LPIF (x4 2X9# 0, + 207§l y,00 )
+ 2LNELPEN iyt N + 2LV (L35 (i — Reiqiry])
+oLN, P (5\1%2-‘ — S\Z.%ijy) } +&f [;Vavﬁ(ﬁu)* _ %(ya)*(vﬁ)*f?u

+ MeP (3

4>m X'+ A* AL+

1 vpo
26“ P wyfypww> (5.48)

= VW (T = ) + S0 ) (Rt - X |

Multiplying (5.46) by the projectors 1" 3o, we obtain the equations of motion for the
magnetic vector fields A,. Using the Bianchi identity (5.39), the linear constraint (4.4)
on the embedding tensor and the on-shell condition (5.47), we can write the latter as

1
- EE;u/pal—[A [eaM HV?;))(;VP ngHupJ

+6HEPVXMOCNIBP’YAI]/V’B (Hng — gng> } = HAMQJMQM . (549)
Furthermore, the equations of motion for the fermionic fields are

’YMZA);LXz Yy ¢zu ( ijj> + 2IAEH Ma(va) Lsz’H;w ’Yuwjy

1 y - 3 .
— —IAZHA o (VO LM TL A NE — AP Agi XS+ 1"] XiX; (5.50)
- *)\ )‘aXZ AP )\an + 5912121‘]‘7“?” —29A5%  Mgj + 29 45% jMi
VHﬁuAgi =—7 ’YV¢J ( Am]l/ + 2)\ 1/)]]1, + emkl>‘a¢y)

+ Ias I o (V) LM A1) + IAEH Ma(VO) LM G AN

_ 1 .
+ IAEHAMMLM aHi 1" X+ XNy — S i (5.51)
i<b 1 1 .
5%/\5@ = MApiA] + 2X A A — XX Aai = 5 XX g

o . . _ 9 .
+ g A2 Vi — 9 A2’ X5 + 9A2a57 Xi + 29 Aarii N + ggAQ(ij))‘]gv
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Y P = Xi ( — X 1/1]11) + 20Y (Pazjy + 22X %5 + Gijkl/_\gw;l/)
+ TasT aa VLM A0S (030 = o))
— Ias Ty VELM JFU AN + Tas T o (V) LM 1 vy
%ewm ¢M‘Aﬂ|u]p>\ + 16”1@11? Py A
Vi Xir X + iv“%uimx” - iwupwé‘ X!
- évywimv“xj - %v“wuiﬂyxj + %wuptbé‘ XX
F V(5 AN + lv“wjﬂ?%& — lwupvﬁf XvPAL
-1 <Wl}w + M%) NN + lmw,ﬂb“ XjYPAL
— €y X VR, — 5%)\@‘5\%Xj +gAu; (%{ - ;’YWW“)
+ éAjS’Yqu + gAoei? WA - (5.52)

The terms on the right-hand sides of equations (5.50)—(5.52) that contain 7—2,‘; can be
written in a manifestly SL(2,R) x SO(6,n)-covariant form in terms of Q%a as

VDyuxi D 2Ly T apo (V) LM 1 AP b — fIAzH Ma(VO) LM o A NG

2 * ] 1 i T ;o

= ValnisGup 'y Pl — Sy Uil + P weti X v (5.53)
G 4 P

Y Dpdai D Ias T ara (V) LM JH Ay + IAEH Ma(V*) LM G H AN

+ 4IAEHAMQVC“LM " i

(. 1 < ;
= gValntaGu, V" "Yin + 57 ipAai vty (5.54)

2
+ V*LMUQW YN + %eijkl'yﬂy/\g@zﬁ@bf/ Y N X Y o
+ gvaLMgQW"’y“”m - %v“”xz-/_\iwwju,
Vbiww O Ias T ppa VLM 0T (W” - “pi/)j)
— Ins Ty VELM JFL AN + Tas T o (V) LM 1 vy
= — VaLmiiGh v v v, + %'y“'y”"%% (wzp%a - 1€zgle Yol ) (5.55)
VaLnaGup ™" P + %v”pvuﬂ}iw%p

1
quprVX (Q]klw “1/1 A= 2X[17M¢]])

i
o8
i
o8
i
8 4

V*LMU gup fYMprVXJ +
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5.4 Closure of the supersymmetry algebra

Let us now discuss the closure of the supersymmetry transformation rules of section 5.2.
The commutator of two consecutive local supersymmetry transformations, dg(e1) and
5o(e2), parametrized by left-handed Weyl spinors €} and €} respectively and their charge
conjugates, has the following expression:

[0 (1), 0q(€2)] = deget (§") + OLorentz(Aab) + 0q(€3) + Iso(2)(A)
+ 6SU(4) (Az]) + 580(71) (AQQ) + 5gauge(§Ma) + 5tensor (Eﬂ/[Na E,Ofﬁ) ’ (556)

where the first term denotes a covariant general coordinate transformation with parameters
&t = Egi’yl%il + E%’y”qi, (5.57)
which is defined by [47, 48] (see [49] for a review)

5Cgct(§y) = 5gct (5“) - 5L0rent2(5”wuab) - 5Q(§H¢L) - 580(2) (quu)
— bsu(a)(€"w;’,) = Ss0(n) (§"w,L,,) — Ogange(E#ALY) (5.58)
— Jtensor (fVB%N + GaﬁéyAz[leaAgV]ﬁv 51/335 - nMNfVAy(MA;Zy‘B)) )

where dgc¢ () is a general coordinate transformation and A, w;l u and wgéu are the com-
ponents of the ungauged SO(2), SU(4) and SO(n) one-form connections A, w;7 and w,®
respectively, which have been defined in section 2. The parameters of the remaining trans-
formations that appear on the right-hand side of (5.56) are given by

1 - . N
>‘ab = <26ijklgl16%)\§’yab/\al —+ QIAgﬂAMaVaLMij?leéegegﬂfj + C.C.)
1 _ . _ N . 1 B . B N .
+ 5 (Eli’}/abcejz - 62i7abcej) Xﬂcxz - Z (Eli'YabCEIQ - €2i7ab0611) XerCX]
) . N1, o | )
+ (flzf)’abcfé - 621”7ab06{) A?’Yc)‘g - 5 (eli'yabceé - 62i’7abc€7i> )‘?‘70)‘& (559)
9 _ .
+ (-39141@'3'6%1’}/@1)6% + C.C.) s
€31 = €ijrIX €1€h (5.60)
i _— N .
A=— 3 (Eli’YuEJQ — egi’yuejl) XX, (5.61)
e ._ B - 1 -
A7 = (621"'}/“6]1 Pyl )\g + EapYuEr ATV ) — 555 EobYuEr Ay /\lg
B - - _ 1 _
— 62;@%6{)\%7“)\2 — ezwuelf)\%fy“)\]g + 562762k7u6l1A%7“)\g -1+ 2))
+e —k ZXj A@m 1 . —(j k);\l pv yam 5.62
iklm€1 €2\, + 4€zk1m61 VYuv € AgY (5.62)

ki

, _ 1 _
klm = _ a
— M E e Aai Ny, — 1€ "EL (i Y €2 ) ALY Aam
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Adb =260 (262} + e ) — (10 2) + e, (5.63)
gMa = — Q(Va)*LMijgliézj +c.c., (5.64)
EMNu :4iL[MikLN]jk (Eli7u6% - 522"7;16{) ) (5.65)
Zapn =Magp (€176h — 7€) - (5.66)

In particular, for the vector gauge fields Afy ® we have

[6o(e1), dq(e)] AN = = €°Gu™ — 8 (€"4y) AT + S (ea) AL + dgauge(CVP) AL
+ 5tensor(Elj/VPa ng)AﬂM (567)

and, since

—€"H )™ = Gy (€) AT — Ggange (€7 A7) AT
— Giensor (§7 BT + egy & ANV ALY, €0 BIT — iy per AN LATI) A (5.68)

and Qé\y = H l[}l”
electric vectors Aﬁ. It also closes on the linear combinations II*,;,0%M NpAp, and
HAM(QQ“%AAM of the magnetic vector fields, if the equations of motion (5.44) and (5.45)

respectively hold.

the commutator of two supersymmetry transformations closes on the

Furthermore, for the two-form gauge fields Bl%a we find

[Ge(e1), d(e)l Buy® =0 (€s) By + dgange(CV ) Bl + diensor (5, 257) B
+ €upol? [@aM wp (LYo LP P27 4 2LV LY 7 N
+ LN g LR X 4 2Ny LPTR X7 N, )
+ il <;v"‘vﬁ(ﬁ”)* — %(Va)*(vﬁ)*ﬁf’ (5.69)
+ ZMaﬁxiv”xi + %M aﬁX?VUAZ)]

M NB Py M NB Py
+ O npes P AL G, + 0(E) IvpE AL G,
up to terms that contain the gravitini. If the equations of motion (5.49) hold, the ac-
tion of the commutator [6¢(€1),d¢(e2)] on the antisymmetric tensor fields ITA MQBI%“
is given by (5.56) with an additional term that corresponds to a transformation of the
form (5.35) with

1 | .
AN = =3I 50 wpg ALY + ST Iy 6,419, (5.70)

In addition, the commutator [dg(e1),d¢g(e2)] closes on the fermionic fields, provided
the equations of motion for the fermions hold.
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5.5 Comments

Equations (5.44) and (5.45) relate the field strengths of the magnetic vector fields Hy,,,
to the dual field strengths Gy, at least as far as those components projected by the
embedding tensor are concerned, allowing to express the former in terms of H //}V and the
matter fields via (5.28). On the other hand, equation (5.49) is a duality equation between
the two-form gauge fields and the scalars that relates the field strengths of the former to the
gauge and the matter fields. Therefore, equations (5.44), (5.45) and (5.49) determine the
field strengths of the magnetic vectors and the two-form gauge fields in terms of the other
fields. As pointed out in [36], altogether these equations are not dynamical, but, together
with the vector and tensor gauge invariances, they ensure that the number of propagating
degrees of freedom has not changed upon the introduction of magnetic vector and two-form
gauge fields in the gauged theory. In fact, this gauge fixing can be implemented in various
ways, thus determining different descriptions of the propagating degrees of freedom in terms
of the fields of the theory. For instance, one can always dispose of the antisymmetric tensor
fields by fixing the tensor-gauge transformations and solving equations (5.44), (5.45) in the
tensor fields as functions of the other fields. The result is a theory in the electric frame
of the embedding tensor, with no tensor fields and magnetic vectors [36]. Alternatively,
in certain cases, the gauge invariance associated with the magnetic vector fields A,, can
be fixed in order to eliminate a number of scalar fields. Then equation (5.49) is solved in
Ap,, as functions of the remaining fields including the tensor ones. Upon inserting these
expressions for Ay, in the Lagrangian, the net result is a gauged supergravity, in the
original symplectic frame, in which a number of scalar fields have been dualized to tensor
ones, which now encode propagating degrees of freedom.

As is often the case in string/M-theory compactifications, the low-energy degrees of
freedom in the resulting four-dimensional consistent truncation are represented by dynam-
ical tensor fields rather than the corresponding dual scalars. Half-maximal gauged models
of this kind are obtained, within the general setting described here, by partly fixing the
gauge freedom and solving equation (5.49) along the lines explained above.

Let us end this section by expanding on the notion of the electric frame of the em-
bedding tensor. The general formulation of the gauging procedure discussed here, along
the lines of [36], features a characteristic redundancy in the description of the propagating
degrees of freedom, due to the presence of antisymmetric tensor fields and magnetic vector
potentials. Yhese extra ingredients are needed since the gauging is performed starting from
an ungauged model which is formulated in a generic symplectic frame that does not nec-
essarily coincide with the electric frame of the embedding tensor. The latter is defined as
the frame in which the gauging only involves electric vector fields and thus the embedding
tensor has only electric components. As a characteristic feature of the embedding tensor,
this frame can be defined in a G-invariant fashion as follows. The embedding tensor is
described by the rectangular matrix © ,?, where A = 1,...,dim(G) is the index of the ad-
joint representation of G: A = ((af3), [M N]). If r is its rank, this matrix can be rewritten
using the rank-factorization, in the following form [29]:

@MA = Z 19MI W[A , (5.71)
I=1
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where 9/ = (9!) are r independent vectors in the 2(6 -+n)-dimensional symplectic vector
space V,, of the electric and magnetic vector fields, while W; = (WIA) are r independent
vectors in the vector space of the Lie algebra of G. The locality constraint (4.16) then
implies:

CMNV YT =0, VILI=1,...,r, (5.72)

that is ¥/ generate an isotropic subspace of the symplectic vector space V, and thus r <
6 4+ n. We can complete Span(9!) to a Lagrangian (i.e. maximal isotropic) subspace of V,
by adding 6 + n — r vectors ¥, i=1,...,6 +n —r, to define a system of 6 + n vectors
9N = {91, '} satisfying the property:

A

CMV o MIE =0, VA, S =1,....6+n. (5.73)

The choice of ¥ is not unique and we will choose them such that 9% = 0. Given the
Lagrangian subspace Span(9*) of V, we can find another Lagrangian subspace Span (v i)
disjoint from the former, and choose their bases such that the following condition is satisfied:

CMN 9 g = 08, WA, S (5.74)
The matrix A A
EnN = a2, 9 (i) (5.75)

is then symplectic and maps the original frame to the new one labeled by the index M:
VM = (VA V3 ). The latter is the electric frame of the embedding tensor. To see this we
first write the inverse matrix (E~1) MM:

(E-)M=cMVy o, (B = _eMV A (5.76)

NA >
and then the embedding tensor in the new frame:
Ot =(E Mou?. (5.77)

We find
ot=wt, e =01=01=0. (5.78)

Since the electric frame is a characteristic feature of ©, its definition is G-invariant, being
based on the factorization (5.71) in which the index I is G-invariant.
Of the tensor fields B4, only the combinations

@AA BA,uzx = 79/\[ WIA BA,uV )
namely the r independent tensor fields
_ A
BI;W =W BA,ul/ )

enter the Lagrangian. This formulation allows us to intrinsically distinguish those vector
fields Ai which enter the gauge connection (and whose field strengths are covariantly
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closed) from those Ay, which are Stiickelberg-coupled to the tensor fields. This is done by
writing the vector potentials in the electric frame:

AM = EAMAM = (AL, AL, A, Ay,
so that the symplectic-invariant gauge connection takes the form
gALMXM :gALMXM :gAiX[,

where X; = W;A t4 are the independent gauge generators. The components of the modified

field strengths H l{‘l’}, defined in (4.25), in the electric frame are (in form-notation)

HI:FI,Hi:Fi,HI:FI—gBI,Hi:Fi. (5.79)

From (5.39) it follows that lA)[uFVIp} = ﬁ[u}%ﬁp] = ﬁ[uﬁ’il,p] = 0, while F[W are the only
components of the field strengths for which Dy, F7,, # 0. We also see that only the vectors
Arpy, which are magnetic in the electric frame, are Stiickelberg-coupled to the tensor fields
and transform, under a tensor-gauge transformation (4.29), as

S=Ap, = gam, (5.80)

where =7, = WA E L u- All other components of AM are inert under the transforma-
tions (4.29). Choosing g=r, = —2A;, we can dispose of Ar,. As explained above,
equations (5.44), (5.45) can then be solved in the transformed tensor fields B} as func-
tions of the other fields. Replacing then the resulting expressions for B} in the Lagrangian
amounts to effectively performing the rotation to the electric frame.

The rotation to the electric frame can also be done directly at the level of the field
equations and Bianchi identities, which are formally symplectic covariant, by means of
the matrix E. This amounts to replacing everywhere the index M by M. In particular,
the twisted self-duality condition implies that G; can be expressed as the variation, with
respect to QA of a new Lagrangian, in which the kinetic terms of the vector fields are
written in terms of 7; A R+ AS) QA and *QA The fact that QA H A follows directly from
equations (5.44), (5.45) and from having chosen 9% = 0.*

6 Vacua, masses, gradient flow and supertrace relations

6.1 Gradient flow relations

It is known that in gauged supergravities the scalar potential is related to the fermion shifts
of the supersymmetry transformations [30]. As noted in [50] and reviewed in [30], super-
gravity actually provides a structure of gradient flow relations between the fermion shifts
and the fermion mass matrices that are needed in establishing supersymmetry invariance,
though they are largely due to the properties and structure of the scalar o-model. Since

‘Indeed H! —G' = 9" (HM —GM) = 0, by virtue of (5.44), (5.45), while H' —=G' = 90 (HM —GgM) =
ﬁAi(HA — g") =0, since 9% =0 and G* = H® in the original frame.

~ 34—



this type of relations played a rather important role in establishing and understanding
properties of various vacua, black hole and domain-wall solutions, we give here the relevant

expressions:
DAY = A§) P 4 34,90, B, (6.1)
L . 3 T o
DAY = — 34,40 P, §A2&k’fpgw + 5613’%412,.dp + AV P, (6.2)
. . N . o 1 . .
DAQsz = — Aggsz + 55;A2gkkp + ZA@Zkajk — iéﬁAafbklPle
1. A 2 - A 2 (ik) A
= G0 AE Py — S AP gAé’k)Pﬁjk : (6.3)
1 A . . .
DA =5 Ay P — 4Ag1gu By?"* = Agigi* Py + A P, (6.4)
where
ALbC = faMNpVaLMgLNQLPQ. (6.5)

The derivation follows straightforwardly from (4.42), (4.51), (4.52) and the definition of
the various A tensors.

6.2 Vacua

The same relations can be used as a guide to compute derivatives of the scalar potential
V= e Lo = % (— 2 AV Ay + S AT Ay 4 Aggd A
= =€ Lpot =97 | —5 47 AL + 942 A2ij + 524" 4275 ) - (6.6)

In particular, the critical points of (6.6) will provide us with the vacua of the gauged
N = 4 supergravity models. In order to derive the conditions satisfied by these vacua,
we follow [51] and compute the variation of the scalar potential that is induced by the
action of an infinitesimal rigid SL(2,R) x SO(6,n) transformation that is orthogonal to the
isotropy group SO(2) x SU(4) x SO(n) on the coset representatives V, and Ly, Such a
transformation can be written as

Vo = XV5, 5L = %, Ly, SLp% = %% LY, (6.7)
where ¥ denotes the complex SL(2,R)/SO(2) scalar fluctuation and X,; = (3,9)* =
€ijua"! are the SO(6,n)/[SO(6) x SO(n)] scalar fluctuations. The variations of the A
tensors (5.12)—(5.15) under (6.7) are given by the gradient flow relations (6.1)—(6.4) with

the replacements D — 5, P = ¥ and ]5@3- — Ygij. Then, it follows that the variation of
the scalar potential is given by

OV = g% (X + X% 4 X9%,) (6.8)
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where
2ij‘ lijkl_ 1 1—1‘—@‘ 1—1‘—@
X =- §A1 Agij + T Agij Aggy — 5142@ A% + ZAQQ iA2™ j, (6.9)
B 2 ik P DT 1 gl = 1 1 il ~ a
X9 — §A[1’| Ay, 19 gA[zll Ay, §A2[Z\A22lj]k _ ZA[QZ]]AQQ N
L 1 . g 1. - 1-
— ALk A, 101, 4 ZA@”AQQkk + 6”””( — gAlklA2gkm - gAQ(kl)A2gmk (6.10)
1~ a k 1 1ab k 1 1ab k
- §A2zmA2*k + §A*klA29m + gA*lmA%k .

Note that, by construction, X%;; = (X%)* = %eijlele. The stationary points of the
scalar potential correspond to solutions of the following system of 6n 4+ 2 real equations

X=0, X% =9. (6.11)

6.3 Masses

When analyzing supergravity vacua, one important element is the resulting spectrum of
the fluctuations. We therefore focus now on the computation of the mass matrices of all
the fields in our theory, assuming a Minkowski vacuum. While most of the formulae for the
mass matrices do not depend on the value of the cosmological constant, the supersymmetry
breaking pattern depends heavily on the vacuum energy, because of the super-Higgs mech-
anism by which some or all gravitini acquire a mass, which eventually affects the correct
definition of the spin-1/2 mass matrix.

6.3.1 Scalar masses

We can compute the mass spectrum of the scalar fields by taking the second variation of the
scalar potential under (6.7), using (6.8)—(6.10) and the gradient flow equations (6.1)—(6.4).
The result however does not describe proper masses unless the scalar fluctuations are
canonically normalized. For this reason we introduce the real scalar fluctuations

Y1 =V2ReE, ¥ =+2Im%, Yun = —TmijXa, (6.12)

and substitute the expansions of the coset representatives around their vacuum expectation
values (Va), (Lp/¥) and (Lp%), namely

Vo= Vo) +(VHTZ +0(%?), (6.13)
Ly = (La) + (Lu®) %" + O(23;5) (6.14)
Ly® = (La®) + (Ly7)S%; + O(25;5) (6.15)

into the kinetic terms for the scalars,

A

AL A 1 A i
-1 * at
€ ['scalar kin — — PMPM - §P@~j#P7 a

1 1 y
> — Z(va)*vﬁa,y;a% - iLMgLNg%LMUa“LN” (6.16)
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so that the kinetic and mass terms for the scalar fluctuations take the following form:

1 1
e LD - i(OHZl)@“El) (0u32)(0"%2) — 55@5M(8u2w)(6“2@)

1
2
1 1

L) 8 — L MBS - (M) B — (MRS (617
1

- i(Mg)M7mezbﬂ7

which is the appropriate one for canonically normalized fluctuations. The explicit expres-
sion for the squared mass matrix of the scalars M3 is then given by

2 = 2 Gj) 7 2 U 5 j A _ai
(M =(M§)** =¢° <—A13A1z‘j — ZASD Ay + S A Ay 4 Agei? Ayt j) , (6.18)

9 9 9
am am \/§ A A.a AQ A AQ A mij
(Mg)hem = (Mg)emt = 792 (_A2ijA2*kk + 4A%; Ak — A*bijAzgkk) M +ce.,
(6.19)
am am Z\/Q A A.a Aa A A A mij
(MG)2em = (MG)em? = TQQ (—AzijArkk +4A%; Ag® s — A*bijAzgkk> I +c.c.,
(6.20)

1 o A o
(M2)ambn — 592 (2A29]kA2%’ _ A@ZJAQEM) le.jpnkl
1 o o o o
+ 592( — 2A49%7 Aoy 4+ 24599 At — 24548 ATy 4 A%k ALY,
o 1 A 1 .. o
+ Ag%J Ay — géklmnA{kA@mn - §€] b A AL, 4 2Agjk)A@kl

'+2A2®UAgyk*‘A@EA%§I—‘AﬂgAkf —4AggkA%mOIm%ﬂﬂw

1 _ .

+ ZngzékkAQleFmijFﬂ” (6.21)
1 1 .- .

+ 592 <3AZQJA2;€1 — 2A20l1A29k> 5@Fmijrﬁkl
1 8 - _ _ o

+ 592( — §Aj1kAlkl + 245" Ag9) — Aoy B AxY) — Aoy ARy,

8 (k) 5 g 1 - y
+ §A§]k)A2(kl))5@PmijFﬂZl + §92A2§kkA2£ll5LmeijFﬂlj

+ (a < b,m < n).
6.3.2 Vector masses

In order to identify the squared mass matrix for the vector gauge fields Aljy @ we recall

from subsection (5.3) that the equations of motion for the electric and the magnetic vectors

are given by

0,0 = ig &5 (VYD) — (Vo) (V) ) + 200N p LN L P 4

(6.22)

where the ellipses represent terms of higher order in the fields that are not relevant for the

present analysis. Using the duality relation (5.32) and that Q%a is on-shell identified with

HMa e can write (6.22) as

py
e~ 10, (eHM Iy = (MYMay s AN (6.23)
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where
1
(MM = 2g"MMPE Pl (V) (V) VsVs = VVTV3V5)
+ 6?0, porOsNsT MM MOV LC, L5 LR, [T (6.24)
is the squared mass matrix of the vector fields.

The matrix (6.24) is a (12 + 2n) x (12 + 2n) matrix. However, the locality constraint
on the embedding tensor implies that 6 4+ n vector fields are not physical. Therefore, at
least half of the eigenvalues of this matrix are zero at any vacuum.

6.3.3 Fermion masses

For the computation of the fermion mass matrices one has to focus on the subsector of the
Lagrangian reported here

1 _ 1 . _
e 1o iR(e) + (ie“”pngvﬂ?pdjw — 5)217“13“)(2- — Agv“l)ﬂ)\%

o o o 9
— 29142&71)22)\&7‘ + QgAQEZi)ZJ >‘Qj + ng@z] )‘gi)‘lgj + ggA;] Agi)\? (625)

_ 2 _ '
— g G — ggAujT/JL’YWl/J,], + c.c.) ,

where R(e) is the Ricci scalar associated with the torsion-free spin connection wjqp(e),

1
Dythiv = Oyt + 5 pab(€)Y" Vi (6.26)

and similarly for the spin-1/2 fermions and the mixing terms between the gravitini and the
spin-1/2 fields single out the combination

2. -
Gi = §A2jiX] + 24247 A}, (6.27)

which provides the goldstini of the broken supersymmetries, and the coset representatives
are understood to be replaced by their vacuum expectation values.

In order to disentangle the spin-3/2 and the spin-1/2 fields we need to fix the vacuum
and describe the super-Higgs mechanism. From now on, we therefore assume that we are
at a critical point of the scalar potential where

92 . 2 .. L
V=0 < §A11]A1ij — §A;]A2ij — AQQZ‘]AQQZJ' =0. (628)

At such points, the goldstini transform linearly under supersymmetry as

4 ,
0.G; = ggAlz‘jAjlkEk, (6.29)
where we have used that the Ward identity (5.16) and the vanishing cosmological constant
implies
2 ik 2 i+ o
gA{kAlik = §AI2€]A2M + Aggi® A% . (6.30)

— 38 —



The number of unbroken supersymmetries is equal to the number of linearly independent
SU(4) vectors ¢; that are solutions of the equation 0.G; = 0, which is the number of
zero eigenvalues of the matrix in SU(4) space fllijA{k. For computational simplicity, we
consider Minkowski vacua that completely break N' = 4 supersymmetry, which means
that the matrix /_hijA{k has no zero eigenvalue and thus is invertible, but the final results
can be easily applied to vacua with partially broken supersymmetry with the appropriate
modifications. In any case, from now on we assume that the symmetric matrix in SU(4)
space AY is invertible and we denote its inverse by (ATH);.

In order to eliminate the mass mixing terms between the gravitini and the spin-1/2

fermions,
e Lk = —glEi’y“Gi +c.c., (6.31)
we follow [52] and we perform the following redefinition of the gravitini
3, N 1, _ .
wm — Mp + @(Al l)ij (Al I)JkD#Gk — Z(Al l)ij’y“Gj, (632)
followed by a shift of the vielbein
a a 3 A—1Nigj A—1 ~k,_a
Gt (AT (A7) 5GR " i + cc.) (6.33)

and a further redefinition of the vielbein as

¢l — el + { (AT (AT (AT aGr (3(AT) ™ DGl — getGl) + c.c} . (6.34)

3
3292
After all these steps (6.25) becomes (up to terms at least quartic in the fermions)
g5 1R P74t ~, D LD AAFDL G
e LD S R(e) + (i Y Dypthio = 5X Y Duxi = A Dk

+ *(Al )ij (A;l)ikéjﬁ/‘uD#Gk — QQAQQi)Zi)\y -+ QgA_Qgii)ZjAgj (635)
o 2 . R 2 - _ .
+ 2914@”)\@)\@]' + ggAZQJ)\@/\? - ig(Al 1)”G¢Gj - ggAlijwz’y'uyl/J,J, + C.C.) .
In particular, the kinetic terms for the spin-1/2 fermions are
3

1 S a B L
e*l,c%,kin = = 5" DX’ = A DA + (4] D (ATHRGINPD, G + c.c.

- _ 1 ()Z‘ \/Qj\gi> Kiy"D v p | +c.c. (6.36)
2\ 20 TR\Vayg ’

where
(K1) (K1)by
Ki=| ° i
2 \(Kp)aij (Ki)aip
) ((s;i—é(Af)“(A;l)mAamAm — AT AT m AT Aaps? ) (6.37)
=AM AT i Azg™ i Agjic ap8] — 3(AT ) (AT )i Ang™ i Aoy
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is the kinetic matrix of the spin-1/2 fermions, while the mass terms for these fermions are

given by
€T L1 mags = — 2042 iX Ngj + 20427 i% Aaj + 2042 Agi My, (6.38)
+ %gAéjS\@-/\? — %g([lfl)ij@iGj + c.c.
:% (V' v2hai) M3 (\/’gy) +ec., (6.39)
where
My =

1
2

((/\/l;)z'j (M;)ibj)
(

M) (My)e

1
2 2

0 —V2A25; 4 /267 Aybk,

= (_\/ngaij + \/Q(;;iAQQkk 9 Aabij 4 %5@A(2ij) ) (6.40)
— 3 (AT Ay Agjy —QT\/i(Al_l)klAmAQQlj

<_2\3/§(A1_1)kl‘42jk142ali —2(AT MM Ay Agby )

is the mass matrix for the spin-1/2 fermions. In the (x;, v2A%) basis, the goldstini G* =
%A‘;ZXJ' + 2A22ij>\gj are represented by the column vectors

i 2 6.41
G'qj V245,

and they are null eigenvectors of the kinetic matrix (6.37). This can be verified using (6.30),

which implies

(K
(K

1)5GM + (

K1)"9G*,; =0, (6.42)
)aijG™ + (K

)ai? G¥p; = 0. (6.43)

N

(SIS
N

Therefore, the goldstini have disappeared from the kinetic Lagrangian. Furthermore, us-
ing (6.30), the quadratic constraints on the embedding tensor expressed in terms of the A
tensors (D.25), (D.27) and (D.34) and the critical point condition X = 0, we obtain

(M%)UGW + (M%)i@jakgj =0. (6.44)
On the other hand, by making use of (6.30), the constraints (D.31), (D.38), (D.47), (D.54)
and (D.55), as well as the vacuum conditions X%/ = 0, one finds

(M3)25GH + (My)2 Gy = 0. (6.45)

1
2
These equations show that the goldstini are also null eigenvectors of the mass matrix M.
2
Thus, the goldstini have been removed from the fermionic mass terms as well. This is

40 —



the super-Higgs mechanism, in which the goldstini are “eaten” by the gravitini, which
become massive.

The same redefinitions (6.32)—(6.34) also diagonalize the equations of motion for the
gravitini, which now become

2 _ 4
YPDyip = —ggAuﬂ‘“’%bi +.o, (6.46)
so the mass matrix of the gravitini is given by
2 _
(Ms)ij = _ggAlij- (6.47)

6.4 Supertrace relations

Having computed the mass matrices for all the fields of the theory at any supersymmetry
breaking Minkowski vacuum, it is natural to ask ourselves what is the expression of the
supertrace of the squared mass matrices

STr(M?) = > (-1 (2J + 1)Tr(M3)

spins J
=Tr (M3) - 2Tr (MEM1> +3Tr (M3) — 4Tx (MLM3> . (6.48)
2 2 3 2

This supertrace (and the analogous ones STr(M?*) for k > 1) can be used as a phe-
nomenological guide on the possible mass splittings of the vacuum, but it also gives us
some interesting information on the ultraviolet behaviour of the theory. For instance, it is
known [53, 54] that STr(M?) controls the quadratic divergences of the one-loop potential
and in N = 1 supergravity it is in general non vanishing, while the quartic supertrace
STr(M?*) controls the logarithmic divergences of the one-loop effective potential. Very lit-
tle is known on the properties of the quadratic and higher supertraces in gauged extended
supergravities. In the case of maximal (N = 8) supergravity in four spacetime dimen-
sions, it has been recently shown [39], by using the vacuum conditions and the quadratic
constraints on the embedding tensor, that STr(M?) = STr(M*) = 0 for all Minkowski
vacua that completely break N = 8 supersymmetry in general and even STr(MS%) = 0
at such vacua for special classes of gaugings. Here we make the first step in half-maximal
supergravity, proving that STr(M?) = 0 at any Minkowski vacuum with completely broken
supersymmetry.

The first step is to compute the traces of the squared mass matrices for all the fields and
then simplify them by using the constraints on the A tensors following from the quadratic
constraints on the embedding tensor (see appendix D), the critical point conditions as well
as the vanishing of the vacuum energy.

For the gravitini we have a very simple expression:

Tr (M%/\@) = (M3)" (My), = %gwmuj. (6.49)

2

For the vector fields we find

4 1 1] 1 i A _ai abij 1
Tr(M3) = (./\/l%)]\/[a]\/[CY = (3 + gn) gQA[QJ]AQZ‘j + 29214221']142* i+ gQAl]A@ij , (6.50)

where we have used the definition of MMM

and the quadratic constraint (D.26).
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For the spin-1/2 fields we have

" (MEMQ = (M) (M), +2 (M) 7 (My) = () (My)™
T %392‘4?;1”1 + 49 Agi? As® j + 3”9214(2”)212@]- (6.51)

o 32 o
+ 497 AT A gy + 39214[2”]1421‘]',

which can be shown by using the conditions (6.11), (6.28) and (6.30) satisfied by Minkowski
vacua and the quadratic constraints (D.25)—(D.27), (D.31), (D.34), (D.38), (D.47), (D.54)
and (D.55) on the A tensors.

Finally, for the scalar fields we find

Tr(Mp) = (M) + (M)*2 + Gap0pmn (MG)2m0n

4
9
+ 2ng? Aogi? Ao™; + 592 A% A5

o 4 o = 1 il -
(3n + 1)92/1113141,‘]‘ + §(3n — 1)g2A§])A22‘j + § (n + 24) gQA[QJ}AQij (6.52)

where we have used the quadratic constraint (D.26).
Altogether, we have that the supertrace of the squared mass eigenvalues is

STr(M?) =4(n—1)V =0 (6.53)

for any number of vector multiplets and for any gauging.

7 Conclusions and discussion

We have constructed the complete Lagrangian that incorporates all gauged N' = 4 matter-
coupled supergravities in four spacetime dimensions. The choice of the symplectic frame
has been conveniently parametrized by means of projectors IT* y4 and I v that extract the
electric and magnetic components of a symplectic vector VM = (VA V). These projectors
must satisfy certain properties following from the decomposition of the symplectic form
CMN in any symplectic frame. We have also proven that the supertrace of the squared mass
eigenvalues vanishes for Minkowski vacua that completely break N/ = 4 supersymmetry
irrespective of the number of vector multiplets and the choice of the gauge group. This
implies that the one-loop effective potential at such vacua has no quadratic divergence.
An interesting but quite involved computation would be that of the quartic supertrace
of the mass matrices for the same class of vacua of N/ = 4 supergravity. As mentioned in
the previous section, it has been shown in [39] that STr(M?*) = 0 for all Minkowski vacua
of any gauged four-dimensional AN/ = 8 supergravity that completely break supersymmetry.
Therefore, this should also hold for the gauged D = 4, N’ = 4 supergravities with six vector
multiplets that can be obtained by a truncation of a gauged D = 4, N' = 8 supergravity,
and, combined with STr(M") = STr(M?) = 0, it implies that the one-loop effective
potential is finite at all classical Minkowski vacua with completely broken supersymmetry of
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this particular class of N' = 4 supergravities. It has been proven in [55] that the irreducible
components fq v p of the embedding tensor that parametrizes this class of NV = 4 gaugings
satisfy two additional quadratic constraints:

MNP _

famnpefs and € fonrnpifo10RS) lgp =0, (7.1)

where the second condition picks out the self-dual part of the SO(6,6) six-form ¢ Ja[MNP|
fslors)- However, we have no reason to expect the quartic supertrace to vanish for all
Minkowski vacua of any gauged D = 4, N' = 4 supergravity that completely break super-
symmetry, unless an explicit calculation like the one presented in this work shows it.
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A Conventions

Index conventions:

wv,...=0,...,3 : spacetime indices
a,b,...=0,...,3 : Lorentz indices
o, fB,...=+,— : SL(2,R) indices
MN,...=1,...,n+6 : SO(6,n) indices
a,fB,...=1,2 : SO(2) indices
m,n,...=1,...,6 : SO(6) indices
i, J,...=1,...,4 : SU(4) indices
a,b,...=1,...,n : SO(n) indices

We also use underlined capital Latin letters M, N, ... for SO(6) x SO(n) indices, which
we decompose as M = (m,a).

We use the gamma matrix, spinor and duality conventions of [30]. The Minkowski
metric is given by

Nab = dlag(_1717171) (Al)
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The gamma matrices, v,, obey the following basic relations

{Ya: W} = 2nap 14, (A.2)
%=, W=+ = (A.3)
Yai...ap = Var Yaz - - - Vap]s (A.4)
v =° = =iy ?y? = +ivemr27s, (A.5)
(15)* =14, {75:7} =0, (A.6)

where the last of equations (A.3) means that each gamma matrix is either symmetric or
antisymmetric, as well as the duality relations

. . 1
v = i ey, iVaY5 = §6abcd’yb0d,
. . 1
VGde = 1 ﬁade%’ Y5 = Eﬁabcd'}/adev (A7)
i
,yab — §6abcd,ycd,y5’

where €44 is the totally antisymmetric epsilon tensor with
€0123 = 1. (A.8)

We define €,,,,5 as a totally antisymmetric tensor rather than a tensor density,

NS

ef)ef,l : (A.9)

€pvpo = eabcdeZe
We also introduce the charge conjugation matrix C, satisfying
cT =-—c=c1t=C", (A.10)
Yo = —CrC7 1, (A.11)
which imply the following symmetry properties

o = _c, (Cy)T = (Cy),  (Cy™)T = (Cy™),

(C’}/abc)T — —(C’)/abc), (C’}/ade)T — —(C’}/ade). (A12)

In terms of C', the charge conjugate spinor of a four-component spinor % is defined as
W = O = iCy T ", (A.13)

where
P =iyly? (A.14)
is the Dirac conjugate of 1. A Majorana spinor is then a spinor that equals its own charge
conjugate,
Y=, (Majorana condition) (A.15)

and for such a spinor the Dirac conjugate can also be written as

v=yrC. (A.16)
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We therefore find that, for anti-commuting Majorana spinors, the following symmetry
properties hold

o +@2M¢1 for M = 14, Yabe, Yabed »
ViMipp =49 (A.17)
—a My for M = va;Yab -

We also introduce chirality projectors

1
Pr = 7(144-"}/5), Pr = (114—’}/5). (A18)

1
2 2

Left- and right-handed Weyl spinors v, g satisfy the conditions

Prrirr=%rLr <<= 5Y%LRrR=FVLR, (A.19)

where the upper sign is for left-handed spinors and the lower for right-handed spinors.
We will often use chirality projections also for Majorana spinors ¢, in which case one
has the relations

(YL)*=vr,  (¥Yr)" =1L, (A.20)
where 91, g = Pr, g, which make manifest the Majorana nature of the field. We also define
U =vr="9P,=@r)"C,  Pp=1r=19Pr=(vr)"C. (A.21)

We will often need to rewrite 3 or 4-fermion terms and hence Fierz identities will be
extremely useful. We list here the main ones for two spinors:

1 1

YRXR = —5XRYR PR+ XRIab¥R v P, (A.22)
1

YRrXL = —§YL’YG¢R Ya PL; (A.23)

where, for the sake of clarity, we explicitly left the projectors on the right-hand side.
The components of a spacetime p-form w(®) are normalized as

1
w(P) _ *Wuy.-updxm A A dxMe (A.24)

p!
and we assume that the exterior derivative d acts from the left as

1
dw® = Ha#wmm#pdx“ ANdxt A - ANdatr . (A.25)

SU(4) indices are raised and lowered by complex or charge conjugation. For an SU(4)
vector v that is a scalar in spinor space, we have

(v)* = ;. (A.26)

On the other hand, for a chirally projected spinor ¢’ in the fundamental representation of
SU(4), we have
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and we define

¢'=di=i(d)" = (¢)'C,  di=d=i(¢") " = (¢)"C, (A.28)
so that
' =, $ = —dy e, § Y =~y
~i_abc 7 abc ;i 7i_abed 1j 73 ~abcd i (A29)
PP = o Pt PP = Iy
and for example - ) N ) ‘
(¢'¢")* = didhy, (¢ )" = di" ¢’ (A.30)

SO(6,n) and SO(6) x SO(n) indices are raised and lowered with the 1 metrics

M MN N M MN N
v’ =0T oN, vy =NMNVY, VT =10TTUN, UM = MMNUT, (A.31)

where nMY = nyy = MY = nyy = diag(-1,-1,-1,-1,-1,-1,1,...,1).
SL(2,R) indices are raised and lowered as

VO =Vee?* V= a5V, (A.32)
where €*? = —eP, €af = —€go and e =e,_ =1
A real SO(6) vector v can alternatively be described by an antisymmetric SU(4)
tensor v¥/ = —v7? subject to the pseudo-reality constraint
y 1
vij = (V)" = §€ijklvk17 (A.33)
by introducing the map v™ — v* defined by
v =Ty, , (A.34)
where I are intertwiners between the two representations, which satisfy
- 1
[y = )" = iﬁijszmkl, (A.35)
, 1 .
plmlikpln) , — - (A.36)
T2, = —6L 67 (A.37)
A possible explicit choice is given by the following antisymmetric 4 x4 matrices:
0100 0010
I‘lijzl —-10 0 0 ngjzl 0 00-1
21000 1|’ 2(-100 0 [’
0 0-10 0100
0 001 000
210 —-100]’ 21000 —i]|’
-1 000 00z 0
0 040 0004
1“5”:1 0 00¢ 1“617':1 0 0—0
21-i 000]|’ 210400
0 —200 -0 00
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From the definition (A.34) and equation (A.36), it also follows that
Um = —Fmijvij = —Fmijvij, (A.38)

and using the completeness relation (A.37) we find

T .

1 g .
Wy = _ieijklvl w” = —vw; = —vw". (A.39)

(%

The exterior derivative D is covariant with respect to local Lorentz, SO(2), SU(4) and
SO(n) transformations, while the exterior derivative D is covariant with respect to local
Lorentz, SO(2), SU(4), SO(n) and gauge transformations.

The Lie derivative of a p-form A, along the flow of a vector field V' is defined as

by Ay = lim + (07 Ap(ou(x)) — Ap(a)), (A40)

where o} is the pull back of the differential form along the flow generated by the vector
field V. When applied to a scalar valued p-form this reduces to

by A, = (’Lvd + d’Lv)Ap. (A.41)

For an antisymmetric tensor T}, we define the self-dual combination T ;j, and the anti-
self-dual combination T, by
i

(TW - QEMGTPU) , (A.42)

+ —
T, =

N |

which satisfy

1 oL
5e,wp(,Tif’ = +iT,. (A.43)

The generators of SO(6,n) and SL(2,R) in the fundamental representation can be cho-
sen as (tyn)p¥ = 58/[77]\,]13 and (tag)f = 5?0[65)7 respectively and there exists a 2(n + 6)-
dimensional symplectic representation of SL(2,R) x SO(6,n) with generators

(trn)p° = (tan) pr ¥ = 6[612\/[77N}P5§y7 (tap)p? = (tag) Py ™ = 6aep), 05, (A44)
which satisfy
(tun)P*Cor = (tun)Q"Cpr,  (tap)p Cor = (tap)o*Cpr. (A.45)

This representation is identified with the fundamental representation of SL(2,R) x SO(6,n).
An infinitesimal global SL(2,R) x SO(6,n) transformation acts on a symplectic vector
Vo as

SaVira = ANP (txp) ara® Vs + A (tg ) ara® Vs = =A™ Vv — A Virg,  (A.46)

where AMN — AIMN] and A2 = A(@B) are constant parameters.
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B Comparison with previous articles

When comparing our results concerning the supersymmetry transformation rules with the
ones in [26], we find a crucial difference regarding the fermion shifts of the dilatini. More
precisely, in [26] the shifts of the dilatini supersymmetry transformations are

4i

5679)(" = —ggA‘giEj, (B.1)

while in the present work
9
SegX' = 3 gAYe;. (B.2)
Furthermore, equation (2.41) of [26], which expresses the scalar potential V' in terms of the

fermion shifts, takes the form

1
3

1

AF AL — 5

I 1 o 1
A Ay — iAgykAgmk = —52%" (B.3)
g
where we have rescaled ¢V — V, while our expression for the supersymmetric Ward-
identity is
L ik 3 Loki g 1 k7 _ai Lo
§A1 Aljk - §A2 Aij - §A2@ AQ* k = —@6‘]‘/ (B4)
It is therefore clear that in the expansion of the second term we find a crucial sign difference
with respect to [26], which however disappears when tracing the expression, because of the
symmetry properties of the various terms.
For the ungauged theory, it is also useful to list a dictionary between the conventions
used in the paper by Perret [14] and ours.

Perret Our conventions
AB=1,...,4 ii=1,...,4
v —iy”
Ya +iva
Eone = g —
Ya Yi
P —P*
d —V_
Piap V2P,i;
VAWBl = vAWE — By A VAW Bl
A it
XiA %)\@
Aa —%Xi
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C The solution of the Bianchi identities and the construction of the
superspace Lagrangian

In this appendix, we provide the full derivation of the local supersymmetry transformations
and of the Lagrangian for the ungauged and the gauged D = 4, N' = 4 matter-coupled
Poincaré supergravities in an arbitrary symplectic frame, using the geometric or rheonomic
approach (for a review see [56]).

The first step is to extend the spacetime fields of the ungauged theory to superfields
in N = 4 superspace: this means that the spacetime one-forms e® = e dzt, Pt = wzd:v“,
Y = Piudt, AMa — Aﬁ/[ada:“ and wep = wyapdr?, where w,qp, is the spin connection,
and the spacetime zero-forms !, x;, A%, A, Va, Vi, LyY and Lp/2 are promoted to
super-one-forms and super-zero-forms in A/ = 4 superspace respectively. These superforms
depend on the superspace coordinates (z#, ', 0;,) (where 6%, and 64, i, = 1,2,3,4, are
anticommuting fermionic coordinates and are the components of left-handed Weyl spinors
6 and their charge conjugates 6; respectively) in such a way that their projections on the
spacetime submanifold, i.e. the §* = df* = 0 hypersurface, are equal to the corresponding
spacetime quantities.

A basis of one-forms in N’ = 4 superspace is given by the supervielbein {e®, 1,1},
where e? is the bosonic vielbein, while ¢, and 1;,, which are the spinor components of
the left-handed gravitino super-one-forms " and their charge conjugates v; respectively,
constitute the fermionic vielbein.

We start by defining the supercurvatures of the various super-p-forms in N' = 4 super-
space as follows

R = dw® 4+ w A w, (C.1)
T = de® + w® A e’ — ' Ay%p; = De® — ' A 4%, (C.2)
1 ; ;
pi = Dy = difi + 7™ Ayadi = S AN —w Ay, (C3)
1 . 3 :
Vi = Dxi = dxi + 0™ axi + 5 Axi — wil X, (C.4)
1 ; .
Agi = DAgi = dgi + Zwab%bA@' + %fv\gi — Wi Aaj + Wy, (C.5)
FMe = gAMe _ (peys [Mid pqp — VELM ai p i (C.6)
P = %eaﬁvadvﬁ, (C.7)
Puij = L™ dLj (C.8)

where A, w;7 and wgg are super-one-forms, whose projections on spacetime are the space-
time SO(2), SU(4) and SO(n) connections respectively, which have been defined in the
description of the scalar manifold in section 2 and D is the exterior derivative that is
covariant with respect to local Lorentz, SO(2), SU(4) and SO(n) transformations. The su-
percurvatures R, T% and p; have been defined in such a way that by setting them to zero
and deleting the composite connections A and w;? we obtain the Maurer-Cartan equations
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of the N = 4 super-Poincaré algebra

[May, Mea] = —NacMpd + NaaMpe + MoeMad — MoaMac , (C.9)
[Pa; Mbc] = 77ach - nacpb 5 (Cl())
. 1 ,
[(Map, Q4] = 5 (ab)o" Q5 (C.11)
1

[Map, Qia) = —5(%}))&5@@87 (C.12)
{QL, Q7Y = =6 (Pry")a Pa (C.13)
{Qim Q]ﬂ} = _55 (PL'Ya)aBPa ) (0'14)

b

)

where o, 3 = 1,2,3,4 are spinor indices, v5Q; = @Q;, 75Q° = —Q" and the one-forms w®
e, 1" and v; are dual to the generators M, P® Q' and Q; respectively.

By acting on the supercurvatures with the exterior derivative d and using the fact that
d?> = 0, we obtain the following Bianchi identities

DR™ =0, (C.15)
DT =R A e® + v Ay*p" + 0" Ay"pi, (C.16)
1 ) .
Dpi = 7R™ N yasids = F Aty = B Ay, (C.17)
1w 3i :
DV; = ZR YabXi + §FX1' - Rixj, (C.18)
1 ' ,
DAgi =5 R YapAai + %FA@ — R/ Agj + Ra® i, (C.19)

DFMe = —ya [ Mid pr popy Aipy — (V) LMEP,T A ahy Apy + 2V%)* LMy A p;
— (Va)*LMijP A 1/_11 A wj — VO‘LMQP@']‘ A 1/_11 A\ ¢j + QVQLMijTZi A pj, (0.20)
DP =0, (C.21)
DP,;; =0, (C.22)

where F, R/ and R,? are the superspace SO(2), SU(4) and SO(n) curvatures given by
equations (2.14), (2.34) and (2.35) respectively, which are now to be viewed as superspace
equations.

The solution of the Bianchi identities can be obtained as follows: first, one notes that
the one-form supercurvatures can be expanded along the supervielbein basis {e®, %", 1;a },
while the two-form supercurvatures can be expanded along the intrinsic basis of two-forms
{ea/\eb, Vi Ne? in Nel, wé/\w%, 7,/}3/\1#]-[3, VYiaAYja}in N' = 4 superspace. Then, one requires
that all the components of the supercurvatures along the basis elements that involve at least
one of ¢, 1 (outer components) be expressed in terms of the supercurvature components
along the basis elements e® and e Ae® (inner components) and the physical superfields. This
requirement is known as the rheonomy principle and ensures that no new degrees of freedom
are introduced in the theory. Furthermore, the expansions of the supercurvatures along
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the intrinsic bases of one- and two-forms in superspace are referred to as the rheonomic
parametrizations of the supercurvatures.

The next step is to write down these expansions in a form that is compatible with
all the symmetries of the theory, that is: covariance under local SO(2), SU(4), SO(n)
and Lorentz transformations. It is also very useful to take into account the invariance
of the scalar o-model equations (2.15), (2.36) and (2.37) extended to N = 4 superspace
and the Bianchi identities (C.15)—(C.22) under the following rigid rescalings of the various
super-p-forms (and the corresponding supercurvatures)

(W™ Va, Lar™, Ly — (w0, Va, L™, L), (C.23)
(e, AMe) 5 N(e, AMe), (C.24)
W Ny (C.25)

Furthermore, the spin-1/2 fermions scale as
(%) = A2 (0, 4%), (C.26)

because they must appear contracted with the gravitino super-one-forms in the rheonomic
parametrizations of the supercurvatures P and Fg;;, which are taken to be

P =Pye® + ix’, (C.27)
Paij =Puijae” + 21 Aajj] + eijuit)" N (C.28)

The most general rheonomic parametrizations of the other supercurvatures that are
compatible with the symmetries of the theory and have the correct scaling behaviours are

Vi = Viae® + bi LarigVaF oy v + ba(Aaidj)e + b3y Piabi, (C.29)
Agi = Agmea + Clpy;ja’ya'lﬂj + CQLMQV;f%a’yabwi + C3()zi)\£)¢j + C4()Zj)\é)wi7 (C.?)O)

1 - 4
FMe — i}“%o‘ea Aeb+ (dgVO‘LM”)\gifyab)\% e Aeb+ d4V°‘LMQ)_(ifyab)\’g e? A e

+dy (Va)*LMij)Zi’yaW Ae® + dg(Va)*Lng\é’}/albi Ae® + C.C.), (C.31)
1 . )
pi= §pz‘ab6“ Aebl + flLMijVa}'%avbW Aer + szMijVaEabcdfMaCdVbW Ae?
+ fa€ijrt(Nae X )y Pt A€ + fa(Xivax?) s A e® + f5(vax? i A e
+ Fo(ir X )V A €+ Fr(GY X )V A € (C.32)

+ g1 (AT M) V) A e + ga(Af1a M) i A e + ga(AFY M) Vabtds A e
+ g (XY N ) vastli A € + gseijrx’ (PF A,

where b1, b, b3, c1, ¢2, 3, ¢4, d1, da, d3, du, f1, fo, f3, [, [5, fe, f7,91, 92, 93, 94 and g5 are con-
stant coefficients. We also impose the kinematic constraint

7% =0, (C.33)
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which amounts to the vanishing of the supertorsion and relates the spin connection to
the vielbein and the gravitini, reducing the gravitational degrees of freedom to the correct
ones. By substituting the parametrizations (C.27)-(C.32) and the constraint (C.33) into
the Bianchi identities, one can determine the values of the coefficients, which are

51:—1, bp=-1, b3=1,

=-1 = ‘ 1 1
C1 = ) 02_8’ 3 =1, Cq4 = 9’

1 1

:1 :1 e —— — _

d1 s d2 5 d3 4, d4 47
/) 1 1 1 1 1

f1_17 f2_§7 f3_17 f4_17 f5__17 f6_17 f7__g)

_ 1 —0 _ 1 1 _ 1
91_2’ g2 =Y, g3_2a g4 = 4’ g5 = 9

and find that F® must satisfy
6adef'Mozcd — _9 MMNMQ,BI,%/B; (C.34)

which is a twisted self-duality constraint implying that only 6 + n vectors are physical.
Furthermore, from the Bianchi identity (C.16) one obtains the rheonomic parametrization
of the supercurvature R;:
1 _ _ .
Rab = §RcdabeC A ed + Qébc@bi N e° + eiabc'(/)l N ef
1

+ EVQLMij]:%alZi A ¢j + 3

1 Vo LrijeapeaF Mt A oy

i - _ 1 . _
= VaLar oy i by + VaLaa” eapeaF M hi A

1 _ o 1 it a _

- fijkl(}\gvabAM)iﬁk At — ZEUM()\{%M@)% Ny (C.35)
Lo e iy Lo e i\

+ 5()@7 X2 A Yabeths — Z(Xj’)’ X))V A Yabei

+ OBMP A aaethy — 3 O8NP A
where 1
Oabe = VaPble — 5%%1;- (C.36)
In addition, the Bianchi identities impose differential constraints on the inner com-
ponents of the supercurvatures, whose projections on spacetime are identified with the
equations of motion of the theory. Indeed, the closure of the Bianchi identities is equiv-
alent to the closure of the A/ = 4 supersymmetry algebra on the spacetime fields modulo
local symmetry transformations, which happens only when the equations of motion are
satisfied. In particular, the 1* A 4%); sector of the Bianchi identity (C.18) implies the
following superspace equations of motion for the dilatini

U 3 1. g~ _
NV = 1vaLMgf;"g Xy aPNE X Xixs — §A§. Nixi = MEN G, (C.37)

~52 -



while the corresponding sector of the Bianchi identity (C.19) gives the following superspace
equations of motion for the gaugini

V" Ngia = 3 VaLnijFap v X, + 3 VaLyaFay Oy by

1 .
— Xi )Z])\gj. (0.38)

1. o, - T
B 5)@ XiAai = Xy ApiAj + 20 Nidaj — X5 X Aai — 5

4

Furthermore, by considering the 1)° A v%); A e sector of the Bianchi identity (C.17), one
can specify the superspace equations of motion for the gravitini

Y piva = 5 VaLnaF 7P AE — 3 Vi Lagi; Fop “v"x
1 o .
— i’ya/\y’ )\%X] + Pyx; + QPQZ‘jQ)\JQ . (039)

Let us now study the implications of the constraint (C.34). We first define the sym-
metric 2(n + 6) x 2(n + 6) matrix

Mmn = Muyang = MynMag (C.40)

which satisfies
MMN@NPMPQ =Cmo. (C.41)

By equating the right-hand sides of (C.6), which gives the definition of the supercurvature
FMeand (C.31), which gives its rheonomic parametrization, and considering the #° =
df" = 0 projection of the resulting relation we obtain

o 1 .
e es T loico =Fn® + | — 200 LM pypj, + ivaLM”AWWA;%

1 ) * a—i ) * —i j
= VLY g + 2(V°) LM X ) (C.42)
+ QVO‘LMQS\QN[Mwi} +cc.| = f"l%a,

where F l%a = QG[MA% @, which decomposes in an arbitrary symplectic frame as

FM® = (Fiu Faw) = 2000, A0, 0y Aajw)- (C.43)

The quantities F %a are referred to as the supercovariant field strengths of the vector fields
Ai\[[a. Then, restricting the superspace equation (C.34) to spacetime, by setting 6% = 0,
we find

(FM) 0 =CMN Murp B+ (= 200V L9305 + €upo (V) L0407
— iV LMIN iy AT — iV LMy N + 2i(V) LY )Zify[uqbi]
— €upo (V) LM 35X P77 4+ 200 LM iy 0y (C.44)

— GﬂupovaLng\gi’}/pwio— + C.C.).
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The Hodge duals of the electric field strengths can be obtained by multiplying the above
equation by the projectors II* 374,

(*FA)/,LZI :MAEFEJV + MAEFEMV + HAMoc( - 2i(Va)*LMij7Ziuwju
+ €upe (VO LMIYLYT — iV LMIN iy, NG — iV LMy, N,
+ 2i(VY)* LM ijxiy[ung} — vpoe (V) LM Xy PapIe (C.45)
+ 20V LMy, ) — €uipe VO LM NG P 4 c.c),
while multiplying (C.44) by IIa . we get the Hodge duals of the magnetic field strengths
(<Fp)uw = — MasFh, — My Feyy + Tana (= 20V LY 3,005,
+ €upe (V) LMIGLYT — iV LMIN iy, NG — iV LMY, N,
+ 2i(Va)*LMij>Zi7[u¢Z} - fuvpo(va)*LMij)_(i'prja (C.46)
+ 20V LN Y0 — €upo VELM AL P + c.c.).
From equations (C.45) and (C.46) one can determine the symmetric matrices Zpy, Ry and
the antisymmetric tensor Oy, that appear in the parametrization (3.1) of the ungauged

Lagrangian. Indeed, from the expression (3.2) for the magnetic duals Gy, of the field
strengths F) lﬁ\y of the electric vectors it follows that

((*FA);W> B (I_lR)AE _(I—I)AE (FEI/ )
(+:Gw)  \T+RI Ry —(RIT 4" \Grpw
_(I_I)AE(*OE)W
+ ” .
OA;W — (RI_l)A (*OE)MV

On-shell, G, are identified with the field strengths F},,, of the magnetic vector fields Ax,,.
Therefore, by comparing the above matrix equation with the relations (C.45) and (C.46),

(C.47)

we find that the matrix My n decomposes as

b — _ Y
Mu = (V2 vhe) = (BRI BTN e
implying
(Z-HA% = —IA I\ MMV (C.49)
(RI™V)2” = g = MMV (C.50)
(T7'R)A = —TIM pIIspr MMV (C.51)
(T4 RI'R)ps = My sy MMV (C.52)
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Furthermore, we have that
Onpw =TasIT® na (= 200°) LMyt — i pupe (V) LM L7
+ VELMUN iy, AE — VLM, ] + 2(Va)*LMij>z@'W¢g]
+i€upo (V) LM i X P07 + 2V LM iy, 00 (C.53)
+ i€ pe VELMEN PP + c.c.)
and
O = (RT™) (405 = Tnsa( = 20(V) LM 0h5, + € (V) LM 50008
— VLM Ny NS — iV LMy N + 2i(V) LM xirywi]
— €upoe (V) LM Xi’ypwj”+2iVaLM25\gi’y[u¢f,] (C.54)
— EWPUVO‘LMQS\MVPWU +c.c.).
Consistency of (C.54) with (C.53) requires the complex kinetic matrix My to satisfy
NasIIE o VLM = T1 5 3o VELMY (C.55)
NasIT® ppo (V) LME =TI pp0 (V) * LM (C.56)

In addition, by multiplying equation (C.34) by II* ;. and using (C.48), we can express
the inner components Fp,, = HAMa}"aba of the supercurvatures Fp = IapaFM® of

the magnetic super-one-forms Ay = Iy o AM

in terms of the inner components ‘Fab =
HA Maf of the supercurvatures FA = I 310 FM® of the electric super-one-forms A® =

QAM @, The result is
1
Frab = —§€abchA2}'ZCd + RasFop - (C.57)

Using the above equation and (3.16), we can express all the terms in the rheonomic
parametrizations of the fermionic supercurvatures and the superspace equations of mo-
tion for the fermions that contain .7-"(%[ @ solely in terms of fé\b. We find that those terms
can be written as
i
‘/i 5 ZLMUV Ma abwj
== ZHAMaLMz‘j(VO‘)*J’é\w“b?/)J + ZNAZHAMaLMij(VO‘)*fﬁﬁ“bW ;o (C.BY)

1
Agi 5 7LMQV* Ma abwZ

8
'L’ * Z  / *
= sManra LM (V) Fipy i — SNas o LY o (V) Fiy i, (C.59)
'l .
pi > = gLatijVa o FT ey ey bl A e
- %HAMQLM G VEFAA 7 A e (C.60)

7 - )
+ gNAzHAMaLMijVa}}E’YbC%W Net,
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Vi D iVQ;LMQ]-“% ayab 2

)

Tanra LMo (V) Fy A = S NasTE ara LM o (V)" Fliy ™ XE, (C.61)

V*Agia O iV;LMijf%avabAé + éVaLMgF%afyain
= LY (V) P, — NI L 00) Fi ™y, (O62)
+ éHAMaLMQVaF&fyabxi _ éNAEHAMaLMQVaF(E;y“in,
Y piva D = éVaLMJéc”“v”%A? - év;LMijf,fc”%bcma‘

7 7
- gﬂAMaV"‘LMQ}"&'ybcfya)\% + gNAEHAMaVaLMQ}",%ybC%)\% (C.63)
+ gHAMaLMij(Va) Abeyax? — gNAEHAMaLMij(Va) Forq"qax?.

From the rheonomic parametrizations of the supercurvatures, we can also determine
the N/ = 4 local supersymmetry transformation laws for the spacetime fields of the un-
gauged theory. We recall that, from the superspace point of view, a local supersymmetry
transformation parametrized by left-handed Weyl spinors €’ and their charge conjugates ¢;
is a Lie derivative £, along the tangent vector

e=¢€D;+&D", (C.64)
where the basis tangent vectors D;, D’ are dual to the gravitino super-one-forms:
Dio (%) = D], (¥]) = o767, (C.65)

where «, 3 are spinor indices. The above equation implies that i.)’ = € and i.; = €;.

For the super-one-forms e%, 1; and AM® we have
lee® = i T 4 En%h; + ey, (C.66)
Ly = De; + iep;, (C.67)
CAMe = FMo  o(yoy  [Midga, 4 2o LM ElqpT| (C.68)

where we have used the definitions of the supercurvatures 7%, p; and FM® and

1 ] ;
De; = de; + Zwab'yabei - %Aei — wi’€;. (C.69)

For the super-zero-forms, which we denote for short by v! = (V,, V, L Mijs Lvias X4 X,
)\é, Agi), we have the simpler result

bl = (ied + di ! =i .Dvl. (C.70)

Using the parametrizations given for the supercurvatures and identifying the local su-
persymmetry transformation . of each spacetime p-form with the restriction of the Lie
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derivative £, of the corresponding super-p-form to spacetime, it is now straightforward to
derive the N' = 4 local supersymmetry transformations of all the spacetime fields. The
corresponding formulae are

6Va =ViEX", (C.71)
6ELMIJ = LMQ(QE[Z)\?] —|— Gijklgk)\gl) 3 (072)
(SCLMQZQLMijEi)\%—I—C.C. , (073)

1 . |
deXi = — §IAZHAMa(Va) LM Fp e

+ "6 (Py = X0h) — (Mair)e (C.74)
1 * i v
S ai = — ZIAZHA Ma (VLM (T e
— "€ (Paijp + 2X\ai®j + €ijuiratdl,) (C.75)
1
+ (XiNL)ej — i(Xj)\i)em
Seef, = €9 iy + €Y, (C.76)
5 AN = (V) LM ey — VOLMAE y Mg + 2V LM e + coc. (C.77)

1 . 1 _.
Seip = D€ + ZIAEHAMaVaLMiijEp’YVp’YuG] - ieijkl(/\]g’hw)\gk)’yyel

1 . 1 . 1 .
+ = (XivuX?)e5 — = (XX’ e — = (XaV"' X))V €j

4 4 4
1, _ ) 1 - . 1 - )

+ 3067 X e + 5 XA — 5 M) v (C.78)
1 - . -

+ 1()\?7”)\@’7“1/61 — €ijrx eV,

where P, and P,;;,, are the components of the spacetime one-forms P and Py;; respectively,

i.e. P = Pudat and Pyij = Pyjudat, FA, = 11" o F3 and

1 ) ;
D,e; = Oue; + Zw“ab(e’ Q,Z))’y“bei — §Auei — wijuej, (C.79)
where

wu™(e, ) =2¢10), ¥

+ iAol 4 giloatly,, 1 gilay )] (C.80)

is the solution for the spin connection w,ﬁb of the restriction of the constraint 7% = 0 to

— ey[“eb]pecﬂ&,e;

spacetime.
The terms in the local supersymmetry transformations of the fermions that contain
.7:';\” can also be written in a manifestly SL(2,R) x SO(6,n)-covariant form as

1 * a v_j
56Xi D §IAZHAMC!(VQ) LM@']"FEV’YM e

i, . - 1 o
=— ZVaLMijG%“’V“”EJ + Y€ X VY — geijm“”ewﬁwi, (C.81)
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1 * - v
0eNai D — ZZAZHAMQ(VO‘) LM Fo e

7

8
1 . ,
dethip D XIAZHAMaVaLMijIEp’YVp’VMGJ

1 _ .
ViLaaGh " e + 3 €idaj T, (C.82)

) .1 - 1 o
= — gVaLMijG%aﬁ/yp’mé + §7Vp7u€]wiu7/}jp - Zeijk17yp7u€JXk7V¢i;’ (0'83)

where we have introduced the symplectic vector G%O‘ = (F, lﬁ\y, Gapw)-

Using the rheonomic approach, one can also derive the ungauged Lagrangian for the
D = 4, N' = 4 Poincaré supergravity, coupled to n vector multiplets. In this formalism, the
action is obtained by integrating a Lagrangian £ that is a four-form in N = 4 superspace
on a four-dimensional bosonic hypersurface M* embedded in superspace,

S = L, (C.84)
MACSM

where SM is the NV = 4 superspace manifold. The super-four-form Lagrangian has to be
constructed using only differential super-p-forms, wedge products among them and their
exterior d derivatives, while it must not contain the Hodge duality operator. These re-
quirements ensure that £ is independent of the choice of hypersurface M* and invariant
under general coordinate transformations in superspace (superdiffeomorphisms). The ac-
tion (C.84) is a functional both of the super-p-forms appearing in £ and of the hypersurface
M?* on which the integration is performed and one must in principle vary the action with
respect to both of them to derive the equations of motion implied by the variational princi-
ple §S = 0. However, the variation of M* can be ignored, because any deformation of M?*
can be compensated by a superdiffeomorphism, which leaves £ invariant. As a result, the
hypersurface M?* can be chosen arbitrarily and the complete set of variational equations
associated with the action (C.84) is given by the usual equations of motion obtained by
varying S with respect to the various super-p-forms on which £ depends, while keeping the
hypersurface M* fixed. These super-(4 — p)-form equations hold not only on M?* but on
the whole A/ = 4 superspace.

The aforementioned superspace equations can be analyzed along the intrinsic bases
of (4 — p)-forms in superspace, where p = 0,1, built out of the supervielbein {e?, %, v;}
by means of the wedge product. It turns out that the analysis of these equations of mo-
tion along the basis elements that contain only the bosonic vielbein e® gives dynamical
equations for the inner components of the supercurvatures, which must coincide with the
corresponding equations implied by the Bianchi identities (equations (C.37)—(C.39)). The
projections of these equations on spacetime are the ordinary spacetime equations of mo-
tion of the theory. On the other hand, the analysis of the variational equations associated
with (C.84) along the basis elements featuring at least one of ¢, v; gives algebraic re-
lations that express the outer components of the supercurvatures in terms of their inner
components and the physical superfields (rheonomy principle). The outer components of
the supercurvatures obtained from the variational principle must be the same as those
determined by requiring closure of the Bianchi identities.
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In order to construct the superspace four-form Lagrangian for the ungauged D = 4,
N = 4 matter-coupled supergravity in an arbitrary symplectic frame, we follow the building
rules given in volume 2 of [56]. We first write down an ansatz for the super-four-form
Lagrangian in the form of a sum of terms with undetermined coefficients. Each of these
terms must be invariant under local Lorentz, SO(2), SU(4) and SO(n) transformations and
must have the same scaling behaviour as the Einstein-Hilbert term,

1
LD Zeabcdl?,ab A el A el (C.85)

which scales as A%, Also, from the super-one-forms AM® = (A% A,), only the electric
ones A must appear in the superspace Lagrangian. The most general expression for the
superspace four-form Lagrangian has the form

L= ﬁkin + ﬁPauli + [ftorsion + E4fermi ) (086)
where

Lyin = %eabcdR“b A €€ A e+ (kiips A vyap! + K5t A yapi) A e
+ €aped (k2 XiV V' + k3X'YV; + kgj\?fyaA; + k;S\;'yaA%) Ael Aet A el
+ kg€apeaSe S A e® Aef A el
— Akg€apea(S™)* (P — X'4i) + S*(P* — xib)] AeP Ae® A el
+ k5eabcngijeR9ijeea Aeb A el A el
— 8ks€apedRaij (P9 — 200 \Y — eTFapy XY A P A e A e (C.87)
+ Eabcd(kﬁf\_fAzje/}+Jz+ef + kéNAzje/}_Jz_ef)e“ Ael Aet A el

_ 1 _. .
— 48i(keNps TAT — kiNasTA7) (fz + ZHEMC,(VQ)*LMU)\;%d)\@JeC A el

1 - 1 .
+ ZHEMQVQLM” )\Qi%d)\%ec Ael — ZHEMQVO‘LMQXWCUZ)\;eC A e

1 . y . o
- ZHEMa(Va) LMaxiy g haie A e? — T1% o (V) LM ixiyehd A ef

— I VELM Iy p A € — T 30 (V) LMEN Yty A €

— HZMQVO‘LMQS\M%W A ec) Ae? A e,

Lpauti =P1P* A X Yapthi A e® A€+ paP A Xyaibi Ae® A€
+ p3llAnra (V) LMOFA Gy N i A €@ A €P
+ pallpna VO LM FANGivap NS A e A e
+ psTanra (V) LM FA A Xiyahd A et (C.88)
+ pellansa (V) LMEFY A Noyathi A e®

+ p7HAMaVaLMZ'j.FA AN 1;2 VAN wj + c.c.,
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Liorsion = t1XiYaX To A € A €® + tacapeaXiy" X' T? A e A e

£4fermi

+ tgj\?’}/a)\éTb Ae® Ael + t4eabcd5\%ﬁya)\;Tb A€l A el
+tst)" A vath; AT,

= €apea (XX XX + q2>2i>\jf>zig + qui/\%xj/\é

+ GANNN, + G AAG NN + geAENINA)e® A e A e A e

17 Na

+ (q7)\gi7abA;‘>_C ’Ycl/}j + QSeabcdS\giA?‘;(i’dej + C-C') Ner A eb A e°

+ (Q9eijk15\9i*yab/\é15k At + c.c.)Ae* A b
+ (MXYa X P A W + raXivaX P A Yt
+ 73€abedXiV XY A YYj + TaabedXiVX YT AN
+ s AV ALY A Wt + TeXTVa A A
+ T7€abed NV N A ) + Tseabea Niv ALY AyTp) Ae® A€
+ [€eabeallantall* ng (ro (V) VLM (LN i, AEN 7T X
+ 51(V) (V) LM G LN e AT N
+ SQV“VBLMULNklj\gifyef)\%S\Qkﬁyef)\lb) e Neb A el A el
+ ManraT np (s3(V) VLM o LN X yap AEX vendn
+ 54V (V) LM LN Yo XN et
+s5(V) (V) LM G LY Ay A X e
+ 56V (V) LM LN e X vap Ao e
+ 57 (VY VLM LV peapea NN Iy
+ 55 (V) VILM LV Ny A2y et
+ sV VLM 3 IV ey ap XX et
+w VA (VP) LM LN Y b Aaj N Yotk
+ w2VQVBLM“LNQS\Qi'yab)\g-j\bk%wk) Ae* Aeb A e
+ T anraIT v (w3 (V) (V) LM LNy 1hd A Ny
+ wy (V)Y VILM G IV e ppea X vExad? Ay My
+ws(V*)* V) LM LY i va? A Xt
+ we (V) VILM LN X yath? A Nyt
+wrVVILM LN My’ A Noyy)?
+ wgVa(Vﬁ)*LMQLNbeabcdj\%wc)\g&i A wdwj) Aed A el
+ AT N (20 VEVPLM G LN b AT AR Aot

+ ZQ(VQ)*VﬁLMijLNkﬂ/_J,' ATA @k A wl) + C.C.},
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where Sq, Rgija = (R74)* = %Gijklekla and jaf}] = (jal},)* are auxiliary super-zero-forms
which are identified, through their equations of motion, with the inner components P,, Py;jq
and fé\b of the supercurvatures P, FP,;; and F respectively. They provide a first-order
description of the kinetic terms of the bosonic superfields, which avoids the use of the Hodge
duality operator, whose presence would imply a dependence of the superspace Lagrangian
and the equations of motion associated with the action (C.84) on the hypersurface of
integration M* and its metric.

We then fix the coefficients by requiring that the equations of motion that arise from
the variation of the action with respect to the super-zero-forms S, Raijas jal},, x4, AL
and the super-one-forms w® and ¢’ be solved by the constraint (C.33), the rheonomic
equations (C.27)—(C.32) and the superspace equations of motion (C.37)—(C.39) (expressed
in terms of F2 only), which are obtained from the Bianchi identities. The results are

1 1 1 1 )
Imk, =1 Reky = ——, Rek3=—-— ky=— ks = — ke = ——
=S e m ey, BB T T 1Top T ag T g
‘ L L 1 1 1
= — — =1 Q = — — = — = — = — = —
b1 9’ D2 ) ps3 4’ 2 4’ Ps ) Ps y Pr )
t1 = %7 to = 3ilmks, t3 = —%7 ty = 3ilmks, t5 = —Rekq,
1 1 1 1
q1 = 645 q2 485 q3 245 44 = 48’
1 1 0 1 i
g5 24° 46 — 12’ qr =Y, qs = 67 q974a
T = %, ro =0, r3 = —iRewy, rq = i(Rewy + 3Imk,),
)
=1 = —q =—-2iR = 3ilmk = —
s 7, T6 7, r7 1hews, T8 tIm~K3, g 192,
) ) 1 1
S1=—=—, Sg=———, S3=- S4= -
1 3847 2 3847 3 47 4 47
1 1 ) 1 1
S5 = 47 56_43 ST = 87 S8 = 87 S9 = ’
1 1 C o L
wy = 47 Wz = 47 w3 = ) HHU4—4,
1 1 1
Ws _57 w6:_1, 1U7__§, Imw8217
1 1

z21 = _57 Rezy = —57 Imzy = —Rek; .

The terms that involve the undetermined Reky, Imks and Imks combine to a total derivative
and thus do not contribute to the action (C.84), while those that contain Rews and Rews
cancel.

The spacetime Lagrangian then follows from restricting the superspace four-form La-
grangian to spacetime, that is the #° = df® = 0 hypersurface. In practice, one first goes to
the second-order formalism by identifying the auxiliary super-zero-forms S,, R4;j, and J, Cf})
with P, Pyije and F, é\b respectively and setting 7% = 0. Then, one expands all the forms
along the dx# differentials and restricts the superfields to their lowest (6° = 0) components.
Using the fact that

dzt A dx” A dzP Ada® = —eeppodis (C.91)
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we find that the spacetime Lagrangian for the ungauged theory takes the form
L= Ekin + EPauli + £4fermi ) <C92)

where
B 1 o
e Luin = SR+ 5 (%%mpa - wm%pég)
1 —i_u - u i N 7 N A a
= 5 (W Duxi + X" Dux’) = (A" Dyuy + N D) (C.93)
1 y 1 1

— BiPt — Py PO 4 (Tan ) Y 4 2Ry F Fy
¢ Lpaui =P, ()Z%ZH - )Zivuylbiu) + P, ()Zi%bi“ - )Zﬂ“y%ij)

— 2Py (NipI# — Ny} — 2P2 (Mgithy = Aaivutty)  (C94)

1
+ - FAow,

2 M

L 4fermi 18 given by (5.7) and we have defined

1, , -
Pipw = 200uily) + 50 *(es V) vabit) — LA i) — 2077, Y55 (C.95)
1, 3i -
D, xi = 0uxi + 7V b(e, ) vapXi + 5%\#)@ —w/ X (C.96)
1 ) ;
Didai = 0dai + 79, (€ ) hai + %Au)\@- — w0 Agj + w0, i (C.97)

The Lagrangian (C.92) is invariant up to a total derivative under the local supersymmetry
transformations (C.71)—(C.78).

The introduction of a gauging requires the modification of the supercurvatures by
promoting the exterior differentials to gauge covariant differentials and the connections to
their gauged counterparts, as described in section 4, as well as the introduction of new
super-two-forms BMN = BIMN] and Bof = pleh),

The appropriate definitions for the gauged supercurvatures are the following

R® = dw® + w A w,, (C.98)
T% =de® + w A e® — ' Ay = De® — i Ay, (C.99)
4 1 i .
pi = Dipi = dipi + 0™ Nyapi — G AN i — &7 A, (C.100)
N 1 3i . Ny
Vi = Dxi =dxi + 3w vaXi + 5 A — @ x5, (C.101)
~ ~ 1 N )
Rai = Dhgi = dhgs + 70 b has + %AA@ — O g + By, (C.102)

yMa _ gaMa gfﬂNPMANB A AP g@aMNPBNP 4 gféwBaﬁ

— (V) LMap; A py — VLM 0t A (C.103)
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HOMN — dBMN 4 ¢ AMIe A <dAlNW + gxlw(;lwfﬂ’7 A AQ‘S) : (C.104)

HBB — dBP — AV A <dAN|/3> + gxpwéfv\ﬁmp7 A AQ5) . (C.105)
p= %eaﬁvadvg, (C.106)
Pyij = L™ dLuij, (C.107)

where A, ;7 and &, are the extensions of the gauged SO(2), SU(4) and SO(n) connections
to N/ = 4 superspace respectively and D is the exterior derivative that is covariant with
respect to local Lorentz, SO(2), SU(4), SO(n) and gauge transformations. The definitions
of the super-field strengths HGMN and HG)P of the super-two-forms BMN and B*P
respectively are constructed according to the rules in [45].

By acting on the gauged supercurvatures with the exterior derivative d and using the
fact that d?> = 0, we obtain the following Bianchi identities

DR™ =0, (C.108)
DT® = R A e+ A0 4+ ' Ay*pi, (C.109)
Dp; :%R“b/\%bwi — %Fmpi — RJ Ny, (C.110)
DV; = %Rab%bxl' + %FXi — Ry, (C.111)
DAy = %R“”%b@ + %F@ — R Aaj + R, (C.112)

DHMe = — ya LM P Aoy Adpy — (V) LMEP, W A py Ay + 2V LM ey A
— (VO LM P AP AT = VELMEP A AT 2V LMt A Y (CL113)
_ %@aMNPH(g)NP + %gé\/[?_[(fi)a,@”
1 A 1 A o
_E@aMNPD/H(B)NP + 55?3/1D7‘[(3)a6 = Xngp, M [%Nﬂ + (VO LNUap; o
+ VLN bt A W] A {Hm + (V) LMy Ay + VILE jgpF A W}, (C.114)
A A 7 o
DP =5 g&anVVeHM? — geans VO LM i A, (C.115)
DP.ij = gOurt™F Lo Lpij [%Ma + (VO LMRpy Ay + VLM F A “J)l} ,  (C.116)
where F', R/ and R, are the superspace gauged SO(2), SU(4) and SO(n) curvatures
respectively, given by equations (4.41), (4.49) and (4.50), which are now to be viewed as
superspace equations.
In the same way as in the ungauged theory, the Bianchi identities (C.108)—(C.116)

can be solved by providing suitable rheonomic parametrizations of the supercurvatures.
These can be found by starting from the corresponding results for the ungauged theory
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and focusing on the terms proportional to the gauge coupling g. The result is the following:

P =Pe® + X, (C.117)
Pgij :Pm’jaea + 21;[Z|)‘a|]] + Gijkl@ZkAlg) (0118)

~ N ay g P 2 5 j

Vi =Vige? 4LM1]V*7'[ a7 = AaiA))W + A Py + 3942597, (C.119)

A~

o 1
Agi :Agiaea azya'}’aw + 8LMaV H a'}/abwz (Xz)\ )7/] - i(Xj AJW
+ gAsg iy, (C.120)

HMe =Mt A < = VL Navan € A el 4 VI LMy dg € A !

+ (V) LM X et A et 4 (V) LMEX yathi A e + c.c. ) (C.121)
R i 4
pi =g Piave” N €" = 2 LatigVoHie ™y “yath A
1 J ak\.a,l 1 j a 1 _ j a
+ Zﬁijkl(A YA )y A e’ + 7 (XX )y Ae® = - (Xrax’ )i Ae
1, 1, .
+ 5 ("X )vans A e’ — 5 QG ) vanthi A e’ (C.122)
1
+ 50\ M) Net + (A’ “N ) Yapthj A €
1

_ ) 1 . 1 - .
- Z(A?/Ya)‘jg)’yabwi Neb— §6¢jle] (WF Ayh) — §9A1iﬂa1/1] Aef,

1 =t = .
Ray Z*Rcdabec A e+ 00000 A €€+ Oiapeth’ A €
1 o
+ flv L Hig 0" A7 + VaLasijearca M 40" A
i * z] k ’L] MOth
- ZV H % A 7/)] + V Ly eqpea i N %
1 Si o vajvgk Aol L cikL
= 7€kl (A 7ap A )P A YT — 2 e (X FYabAas) Uk A Uy (C.123)

1
+ (XY NV A Yabethj — (Xﬂ XU A Yabethi

1 e
+ z C)‘] )"/)Z A 'Yabcwj ( JVCAJ )sz)z A 7@bc¢z

+ —g At A e + *QA??/;@' A Yoo,

N — W ’“ N —

/H(?,)Ma _ @aMN 7—[( )NP+ 5 —’H( )Ma NN

abc

+ Z'@aMNPLNQLpU )\gi'Yabwj Ae® A eb

1 * * —1 a
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— 1O MNP L AL p Nyt A e A€l (C.124)
- ifi‘f VIV RiYapt' A e A e’

+ 200 MNP L R b ahd A vty A e

— VMO A e,

supplemented with the constraint T = 0. Here ’H%O‘ satisfy

€abea M = —2MM Mg HDNP, (C.125)
éébc equals
Ny 1
Oave = Valbc = 57cPa (C.126)
and the fermion shift matrices are given by [26]
y 3 g
AY = fapnpV LM LY L 4+ S VLMY, (C.127)
. , 1.
Agei? = farinpVO LM LN 3 LPIF ZagganaLgM, (C.128)
AY = farenp(V) LM LNELPIL (C.129)

Furthermore, the 1)* A y*1); sector of the Bianchi identity (C.111) implies the following
superspace equations of motion for the dilatini

N (. 3 . 1. .- _
Y Via = ZVQLM@H%‘W”’A% + XXX — 5NN — AN

— QQAQjS/\Q + 29142@]')\@', (Cl?)())
while the corresponding sector of the Bianchi identity (C.112) gives the following superspace
equations of motion for the gaugini

7" Agia = ZVQLMin(%a’Yab)\é + gVaLMgH%a’Yabxi

L3 n s 1 1
- 5%%@ = NApi A} + 2 A — XX g = XX A (C.131)
, ) _ 9 .
= 940’ Xj + 9420 Xi + 29 Aabi N + 59 4215) M
where
A’ = farnpVOIM LN, LP. (C.132)

Moreover, by considering the )" A y%); A €? sector of the Bianchi identity (C.110), one can
specify the superspace equations of motion for the gravitini in the gauged theory

R 1 i .
Y’ piva =5 VaLataHay V"N = SVaLorijHay“ "X
5 N T
+ PaXi + 2PuijaA™ = 570 dajAYX! (C.133)

1 - . .
+ 3942j1%a X + g Azai’ YaAj-
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By taking the covariant derivative D of the above equation and considering the ); sector
of the resulting one-form equation in A/ = 4 superspace we obtain the superspace Einstein
equation

1 a

- Ny 1 _; N <i A Na Ad
Rab= 5Xi%a V) = 5X Vol Vi) — AaV(alNijp) = AiV(al Mapp) =

A A PR 1
PrDy+ PPy + PYI Py + §MMNMC,5H%°‘HN51,C

1_. B A _ )
- §X17ac)\%Xj7bc)\i - 5/\@,.)/(16/\?)\19,%0/\@7 (C.134)

o o L 1 ..
— Nab (—Azgjz’)_(’/\g + Ao ix? Aaj + A" /\%)\% + gAgj)\?*/\gj + C.C.)

T T P
— 9% ab (3A1]A1ij - §AQJA2ij - 5142@']142* j) ;

where Rap = Rueh® = Rpq and we have used (5.16).
Also, the Bianchi identity (C.114) constrains the inner components of H)M to be
equal to

3)M ) . _ .
,ng,b)c @ == fabcd@aMNP (LNQLPingZ]d _ LNZkLijXZ’)’dXJ

— QLNikijkX%’yd)\é + 2LNQLPQ5\%’YUZ)\M)

1 . ) .
+ caneal’ | GVIVI(PY)T — S (V) (V) P (C.135)

3i e gy
+2M*P <8Xﬂdx’ + )¢ dA;) }

In addition, equations (C.125) and (C.48) imply the following expression for the
inner components Hpa,, = HAMQ’H%" of the super-field strengths H, = IIppaHM
of the magnetic super-one-forms Ay = ITppaAM® in terms of the inner components
H{z\b = A Ma?—[(%a of the super-field strengths H* = I HM® of the electric super-
one-forms A® = 14, AM

1
Hpaw = _§€abchAEHECd + RasH. (C.136)

Using the above equation and (3.16), we can express the terms in the rheonomic para-
metrizations of the fermionic gauged supercurvatures and the superspace equations of
motion (C.130), (C.131) and (C.133) that involve HM< solely in terms of H%,. Those
expressions are similar to the corresponding ones in the ungauged theory and are given
by equations (C.58)—(C.63) with Vi, Au, pi, Via, Agia, pive and ]-"C/L\b replaced by Vi, /A\@-,
Di, Vi, Agia, Piva and Hf}b respectively. Furthermore, using equations (3.16), (3.19)—(3.22)
and (C.136) we can write the fourth term on the right-hand side of (C.134) as

1
iMMNMaﬁH%aHNBbC = 2T\ Mo MYy (C.137)
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From the rheonomic parametrizations of the gauged supercurvatures, we can derive
the local supersymmetry transformations of the spacetime fields in the gauged D = 4,
N = 4 Poincaré supergravity, as we specified the corresponding transformations in the
ungauged theory. The Lie derivatives of the super-one-forms e?, 1; and AM® along the
tangent vector (C.64) are given by

lee® = (ied + di)e® = i T + Exp; + E7Y° (C.138)
bepi = (ied + dic)ipi = Dei +icpi (C.139)
CAM = (iod + dig) AM™ = i 1M 4 2(V)* LMgp; + 2V LM e | (C.140)

where we have used the definitions of the superspace curvatures 7%, p; and HM* and
De: = Lo ab Ga . C
€ = de; + Wby e — 5.,461' — ;€. (C.141)
For the super-zero-forms v! = (V,, Vi, L Mij> Lias X% X, /\ig, Agi) we have the simpler result
tev! = (ied + di)v! =i DV’ (C.142)

Furthermore, for the super-two-forms BM® = —%@“MNPBNP + %fé\/[B“/B we find

£€BMa = (ied + dig)BMa :ing(?y)Ma _ %@aMNPGB'yANﬁ A EgAP’Y
- %g% np AN A g AP, (C.143)

Using the parametrizations given for the gauged supercurvatures and identifying the local
supersymmetry transformation 0. of each spacetime p-form with the projection of the
Lie derivative £, of the corresponding super-p-form on spacetime it is straightforward to
determine the A/ = 4 local supersymmetry transformations of all the spacetime fields in
the gauged theory. The results have been presented in section 5.

Using the rheonomic approach, one can also construct the spacetime Lagrangian for
the gauged D = 4, N = 4 matter-coupled Poincaré supergravity in an arbitrary symplectic
frame. As we have already mentioned, in this approach the gauged action is given by the
integral of a superspace four-form Lagrangian £ on a four-dimensional bosonic hypersurface
M* immersed in N = 4 superspace,

S = . (C.144)
MACSM

The superspace Lagrangian £ for the gauged theory contains the corresponding Lagrangian
for the ungauged theory, which is given by equations (C.86)—(C.90) (with the coefficients
replaced by their specified values), with the supercurvatures pis Vi, Mgiy P, Py;j and FA
replaced by their gauged counterparts g, VZ7 AM, P PW and H respectively, i.e.

LD Lyin + Lpauti + Ltorsion + Lafermi » (0145)
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where
1 o
Lyin = ZfabcdRab AeC At +i(P; Avap — 0" A vapi) A e

1 . N _ N N
— —€abed(XiV" V" + X' Vi + 20 AL + 2007 AY) A NN

12
1 N
+ ﬂeabcdS:Seea Ael A el A el
1 pon A e
— geabcd[(S“) (P — x"i) + S(P* — xiv")] Ael Aef A e

1 R .
+ deabcngijeR@]eea Ael Ael A el

1 A Ny . I
— gﬁabcngija(P@] — 2 \Y — EZJM?M)\%) Ael Ael A el (C.146)
1

— %eabcd(/\_/AgICé\fICE“f — NAE/Cé\f_Iszef)ea VAN eb A e’ A 6d

1, 1 . .
— 5(/\fAE/CQ; + NaskA7) <?—LE + ZHE Ma(V) LM Ny gAY e A e

1 - 1 .

+ ZHE MoV LM X giveg gl A e — ZHE Ma VLMY yeqNae® A e
1 . . .

= M (V) LY e haie® A e = T o (V) LM 5 et A ef

— I 0 VLM I xiyet A €€ = T 0 (V) LMEN i A e

— HEMQVQLMQS\Qiycz/Ji A ec> Ae? A e,

Lpauli = — %P* A X Yapthi A € A€ + Py AN yaph; A e A e
1 )
B ZHAMa(Va)*LMQ%AY’Yab)\@ Aed A e
1 . _
+ ZHAMaVaLMZ]HA/\gi’Yab)\? Ae® A el

- HAM&(VQ)*LMU/HA A )Zi')/a¢j N e’ (C.147)
— Manra (V) LMEHN A Niyath; A €
— Tppa VAL HA At AT + coc,

»Ctorsion = %Xi'anin A et A 6b - %S‘%Ya)‘;Rb Ner A eba (0148)
1 . . » o 1 . B .
L gfermi = Eabcd<64XzXJX’in - @XU\%XMJQ — QXZA%Xj)\JQ

T RN
NN - S ALY + mAfA?A@Ag) e Aeb Aet A el

1 _ . .
+ <6eabcd)\ai)\?xzfyd¢3 + c.c.) Ae® Ael e’
U Sai ik Al ar b
+ <el~jkl>\ YabAgP" A"+ c.c.> Net Ne

4
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— V“VﬁLMijLNkl/_\aiﬁyef/\?j\bk’yef)\w e® Ael A e A el
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—
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+ HAMaHANB( — (V) OV LM LY T A Mg

(Va) VBLMz] NH Eabcdxi’Ychd_}j A 'Ydd}l
VY (WY LM LN Xy A xEyp!
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where we have dropped a total derivative and S‘a, }?@ja = (P@ija)* = %eijklﬁgkla and
Ké\b = (lCé\b)* are auxiliary super-zero-forms that are identified, through their equations of
motions, with the inner components ]3@, Pgija and Hé\b of the supercurvatures ]3, ]?’gij and
HA respectively. They provide a first-order description of the kinetic terms of the bosonic
superfields which avoids the use of the Hodge duality operator.

The equations of motion that arise from the variation of the gauged action with respect
to the superforms x’, A% and 1" must be solved by the constraint 7% = 0, the rheonomic
equations (C.117)—(C.122) and the equations of motion (C.130), (C.131) and (C.133) (ex-
pressed in terms of Hf}b only), which are obtained by requiring closure of the Bianchi
identities. In order for this condition to be satisfied, the following fermionic mass terms
have to be added to the superspace Lagrangian for the gauged theory

1 o o e
Lfermion mass = Egeabcd (_AZQJiXZ)‘Q]' + A2glixj )‘Qj + A@Z] A%/\E + gAl?J >\ai)\;>

1 1 - . . L .
e e’ e Ne + 2 geaed (3A2ij>‘<’v“z/ﬂ + Agg’A?v“W) ne Aet nef

+ %gﬁuﬂﬂi Avapth? Ae® A el +cc.. (C.150)

We also require that the superspace Einstein equation obtained from the analysis of
the super-three-form equation of motion for the bosonic vielbein e® following from the
variational principle along the elements e® A e A €€ of the intrinsic basis of three-forms in
N = 4 superspace be the same as (C.134), which follows from the Bianchi identities. This
is achieved if we add the following scalar potential term to the superspace Lagrangian

1 o 1 .. - 3 L
Lpotential = 592 (A?Alij - gAzQJA%j - 2A2aijA2mj> €apcae” N e” Nef Net. (C.151)

Finally, the superspace four-form Lagrangian for the gauged D = 4, N' = 4 Poincaré
supergravity must contain the topological term [36]

1
Etop - §gHAMaHANB (@aMPQBPQ _ gyBOZ'Y) A
(199 + S0N g — I B (VO LNy Ay + VLY )
1
+ gg (HARGHASC + 2HAR6HAS§) XMaNBREAMa A ANB/\ (0152)

(dASC + ig)(p,legSCAP’y A AQ(s) .

This term ensures that the superspace equations of motion arising from the variation
of the gauged action with respect to BMN B® and A, are solved by the rheonomic
equations (C.121) and (C.124) and the constraints (C.135) and (C.136).
In summary, the superspace Lagrangian for the gauged D = 4, N’ = 4 matter-coupled
supergravity in an arbitrary symplectic frame is given by
L :['kin + ['Pauli + Etorsion + ['ferrnion mass
+ £potential + [’top + £4fermi > (0153)

where the various terms on the right-hand side are given by equations (C.146)-(C.152).
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In order to obtain the gauged spacetime Lagrangian, we restrict the superspace four-
form Lagrangian (C.153) to spacetime (§° = df® = 0 hypersurface). As we did for the
ungauged theory, we first go to the second-order formalism by identifying the auxiliary
super-zero-forms S’a, ]:Z@-ja and ICfl\b with Pa, Pgija and ’Hé\b respectively and setting 7% = 0.
Then, we expand all the forms along the dx* differentials and restrict the superfields to
their lowest (#° = 0) components. The result is given in section 5.

D T-tensor identities

In this appendix we derive the quadratic constraints satisfied by the T-tensor by appropri-
ately dressing the quadratric constraints on the embedding tensor (4.11)—(4.15) with the
representatives of the coset spaces SL(2,R)/SO(2) and SO(6,n)/SO(6) x SO(n). Many
of these constraints have been used for the derivation of the results of section 6 and
their form and structure can be analyzed by classifying them according to their H =
SO(2) x SO(6) x SO(n) representation.

D.1 The T-tensor

Let us join the coset representatives of SL(2,R) and SO(6,n) into a single object

Ly =80 L = (L)m®™ = L) ma™® = Sa®Lar™. (D.1)
We introduce a complex representative L of the coset space SSLC()Z(’QD? X SO?ﬁC))E?é?(l))(n) defined by
L =LA, (D.2)

where
Al =A@ 1,45, (D.3)

where 1,46 is the (n 4 6) x (n + 6) identity matrix and A is the unitary 2 x 2 matrix with

1 (1 4
(). o

The elements of the complex matrix L are given by

entries

LM = Ly Me = LMMSQQ(A)TEQZ ([LMQMH[LMQMQ) (D.5)
1 1

=(—=Vv'LyM —V,L M). D.6

( TgValart, Vel (D.6)

The inverse matrix is obtained from the relation [L(TR)C[I_( r) = C, where Cpn = €apnmn
(the subscript (R) indicates that we are referring to the matrix with real entries). The
inverse of the real coset representative is U_(I%l) = —(EI]_(TR)C, while the inverse of the complex
one is
L™ = (LmAD) ™ = (AN 'L = —(ANT'CL{RC
= —ACL{pC =—-ACATAL{RC = —wlC, (D.7)
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where we have defined w = ACAT = —io? @ . With indices, we have
L = el B e M, (D.8)

or equivalently
(LM ma™ = i(0®)apnun L™ on™ N e (D.9)

Therefore, the various elements of L~! are

(LY Mo = \;ivaLMij (D.10)
L Ha™ = %V“LMQ (D.11)
(L™ —%(VO‘)*LMM (D.12)
(L7 has® = =5 (V) LY, (D.13)

The T-tensor is obtained from the “dressing” of the structure constants (4.8) with the
above defined coset representatives and its explicit expression is

TawE = (LY ™MLY X P LpE. (D.14)

The T-tensor contains the expressions for all the fermion shifts that have to be added to
the rheonomic parametrizations during the gauging procedure, that is (C.127)—(C.129). To
help ourselves in the quest of extracting these expressions out of all the components of the
T-tensor, let us recall the U(1) charges of the fermion shifts:

Field | U(1) charge
Ay 1
Agg'; -1
Az ~1

Let us then consider the following component of the T-tensor with charge +1:

mnl . 1

Tijikn = NG

. 7
+ ZLMkl(Sz[m(S;'l]gaM — 2€ijlean€£/[)' (D.15)

v (2ifaMNP LM LN g Lp™ — iLMz‘j@[gm‘sf eans

This component is an element of the SU(4) algebra and, as such, can be expressed as
Tijien ™™ = 4Tij[k[m5;]L]' (D.16)
By contracting the above equation first with ¢!, and then with 6%, one can find the expres-

3 m.
sion for Tj;;":

1 1
Tiji™ = 3 <Tij1kllml1 — 652”Tij1sz18”>

_ i « PrM N ml m 7 M 1 m 7 M
i (faMN L5 L Lp™ + 0 L gy bant = 5011 ijfaM>‘ (D.17)
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By contracting (D.17) with €7*P, we precisely get
AR = /2T, e R (D.18)
Moreover, by contracting (D.17) with 6°,, we obtain

i
Tijr = —

! ya PrM_ N il | sip M Lom
2ﬂV (faMN L¥ L Lp® + 0L g j)6ant — 5L kjﬁaM) (D.19)

and by further symmetrising in (jk), we get the following relation
Ayj = =2iV2T; " (D.20)
Therefore, the tensor T;;"™ can be written as

Tijk™ (D.21)

i
———€ipp A" A
62 ijkp419 3 \[ 151k-
To derive the expression for Aggij in terms of the T-tensor, we instead need to consider
the following component of the T-tensor, with U(1) charge —1:

)
TgQijlkll = ﬁ(va)*LMg (LNZJLPklfaMN + 52 fMa)

l
= 47,5, (D.22)
where T@-k is given by
g1 kit Lok i1
Tgi = 5 TQQijl — 851 Tngll . (D23)

The explicit expression of the above tensor leads to a relation with As,*; given by (5.13):
Ao = 2V2iT, . (D.24)

D.2 Quadratic identities

The quadratic constraints (4.11)—(4.15) sit in definite irreducible representations of
SL(2,R) x SO(6,n) and their contraction with the coset representatives leads to tensorial
structures in definite irreducible representations of the isotropy group H. The resulting
expressions are quadratic constraints in terms of the scalar tensors A used for the fermion
shifts and the fermion mass matrices. We list them here according to their origin and their
representations, using the notation (Rsuy(4), Rso(n))

qu(1)> where RSU(4) and RSO(n) denote

the SU(4) and SO(n) representations respectively and qy(;y the U(1) charge.
D.2.1 From (4.11)
Irreps (1,1),,

ikt AS A’ = Aggi' A%y, (D.25)
Irreps (1,1),:

4 ] x 1A _aj
§A[2]]A2ij = Aoy A . (D.26)
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D.2.2 From (4.12)
Irreps (15,1)

2 ; 4 i - , 1 .
§6ik1mz4§]k)z4[2m — §A[2Jk]1412'k = — A9yt A%+ 155142@1@]6142%1 . (D.27)

Irreps (15,1),:

2 . 2 . _ _ 4 iy - 4 iy - _ -
eipim A A — ¢ K A it Ao, + =AY Agpig — — AFM Ay ipy = Aar® 4599, — Aggi? Ay2¥y.

9 9 9
(D.28)
Irreps (6,1) ,:
4 1
€ijim Aap ™ Aoy F = gAlQmA2g[jk€i}klm - §€ijlmA12mA2gkk- (D.29)
Irreps (6,n)_,
T T bk 25 gk 27 gk lioogg
AabigA2™ k= =3 Agfin Asa”j + 3 Agfn A2a”i + 3 Asgis) Asa k- (D.30)

Irreps (6,1),:

- 1 - 2 - 2 - 2 -
Agpij A%F + EﬁijklA@klAQQmm = gAIZmAQQk[iGj]klm + §A2[ik}A2y'k - §A2[jk]A2gik

+ éeijkl/x’;lﬁ@mm — %AQW]AW’“ . (D.31)
Irreps (1,n(n —1)/2), ,:
Ao Aot = —éeijklA;fA@kl . (D.32)
Irreps (1,n(n —1)/2)j:
Agpe A% + Agpe Ay = —%A@ijAgj - gA@M%j : (D.33)

D.2.3 From (4.13)
Irreps (15,1)_,:

%A{k/_lz(ik) +3 (AQQkAQaki - ;AQjSAZakk:> + %A{kf_b[ik] + %ijlmAZ(ik)Aﬂm =
= 267 Al Agyy + 551 <A2aklﬁ2alk - ;Aﬁk/‘xzall) . (D.34)
Irreps (15,1):
%A{kf‘_luk + ;Agjk)AQ(ik) + %A[zj H Ayiny + %Aéjk)/_lz[m] + éej 5 A ik A
+ %EiklmA{kAlzm - g
= %5{A’flflm + %&jﬁlékl)flm — 255 (A2aklA2akl — ;A2akkA2all) :

o 3 _ . 3 o 3 -
Aggr? A2k, — 5A2gikf42gjk + 1A2gijA22kk + ZAQQkkA2Q]i = (D.35)

74—



Irreps (10,n)_,:
1 m 4 A m
gAlz A2g(ik€j)klm + §A2g(ik‘41j)k + Ay A2Q(ik€j)klm =0. (D.36)
Irreps (10,n)_,:
2A5(i) A2a"k = Agli) Aza” j + Agpjn) Asa®i + 249010y Aza" j + 2455y Aza"i + 6 A A2 ).
(D.37)
Irreps (10,n),:

—2A1; A9,y = 21‘_12(¢k)A2yk + 2f_12(jk)A2gik + A2[z’k]A2gjk + Agpjxg Agy® (D.38)
— 442" A jye + 6 Agyr A2l )" — A5 Ase” €y pim — 3Aw™ A% (€5 kim -
Irreps (15,n(n —1)/2)_,:
— 4oy i Aoy — 241 i Aoy 1 — %A{kﬁ@ik
+ éﬁj Hm (2A2(¢k)14@zm + Agjirg Agbim — AleA@ik> (D.39)
= 20 R An — 2 (A = 1012, ) =0,
Irreps (15,n(n —1)/2),:
— éﬁiklmA{kA@lm + éﬁj Mm A ik Agbim
+ %AQikA@j k_ %Aékﬁibik - écsf (AleA@kl - ASIA@kl>
+ 2 Ay — 2 Ao + Aogas s + Aot Ao — 567 Aogas Ao
— Agbe (Az% - iag,izckk) + Agpe (Agcij —~ 15{A20kk> (D.40)
+ 44,9 Ay iy — 61 A Ay gy = 0.
Irreps (6,n(n —1)(n —2)/6)_,:
€kl (;A’glAabc + SAWdAC}d’“’) = —6A"" Agq ;" €ifpim - (D.41)
Irreps (6,n(n—1)(n—2)/6)_,:
3 Ao Ause + 34 oAy = 34 KAy — O Ana o A (D42
Irreps (6,n(n —1)(n —2)/6),:

1 g § .
S€ijht A3 Aabe + 5 Az(ij) Aabe + 6Aatja A% + Beijm AlaaAig ™ =

3
= —3eijia ALy Aog ™ m + 1240051 Ajpeljik + 6Ape ™ Aoy [ €itpim - (D.43)
Irreps (1,n(n —1)(n — 2)(n — 3)/24)_,:
3 g
3A§@A@]9 + 2AmA2d]iZ = ieijklA[@Z]Agi]kl' (D.44)
Irreps (1,n(n —1)(n — 2)(n — 3)/24),:
3Actab Aca® + AfabeAsdyi’ + AfabeAoa)'i = 3A1a” Acayij - (D.45)
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D.2.4 From (4.14)
Irreps (15,1):
9 , 9 o . 1. _
§€iklmAJ1kAl2m + §€” MM A ik Aoim = Aoak® AoY; + Aggi? A%y — 553 Agqr" A%
4 oG A - 8 ikl <
+ §Agj )AQ[ik] + §A[2J }AZ(Z’I@) - §A[zj }AQ[ik] (D.46)
2 . _
+ 50745 Agyy
Irreps (6,n),:
9 _ _
= Agjjig Asai® + Agjij Asar”

_ 1 B 9 _
Agpij A" — §fijklA@klA2bmm =— *Az[ik]fbyk +

3 3
2 - 1 _
- gAémAZQk[jEi]klm - gﬁijlmAIQmAQQkk : (D.47)
Irreps (1,n(n —1)/2),:
- _ A o 9 _ o2
AL[)CAQQZi — ALbCAzgiz + 2A2[g\z‘1A2@]j = gA@ijAQJ — gAlLb JAgij. (D.48)

D.2.5 From (4.15)

Irreps ((15 x 15)4,1),:
gafAlmAlkm T akAJmAl,m T 5JA“"‘>A2(,W) - fakA(f’")AQ(lm)
gfzkmn (AJmA(ln) Agjm)Aln) - gej bmn (AlimAZ(kn) - AQ(im)Alkn)
gA(]l)AZ[ik] - §A[ﬂ]fiz(¢ k) — §5f (A(lm)A2[km] + Agm}AQ(km))

+ %5;’ (AS™ Aggymy — AE™ Aggi ) + 5k (A5™ Apimy + AF™ Ag(i) )

éqkmn (Af'agn 4 4yl — AP Al) (D.49)

+ ééj bmn (AlikAZmn + Atim Adjin) — AQ[im]Alkn> + Aggi? Ag®; — Aggit Ay%,

1 ) «
- 555 (Agj )A2[km} - A[z ]AQ(km)) +

+ idf (AQQmmAZQZk + AQleAZQmm) - iﬂ (A2gmm/_122lz‘ - A2gilA2gmm>
- 252 (AQQmmA2gji + A2gij;l2gmm) + 355 (AQQmmAQij - A2gkjfi2gmm) =0,
The tensor product (15 x 15)4 of SU(4) decomposes as
(15 x 15)4 = 15 + 45 + 45. (D.50)

The component of the quadratic constraint (D.49) that transforms in the 15 of SU(4)
follows from contracting (D.49) with §F, which yields

8 , . . 9 . _ _
(15,1)p: 9 (A{kAlik — Ag]k)AQ(ik)) - §5f- (AlldAlkl - Agkl)Azkz)
+ Agar? Ag®F; — Agei® AgWy — Agyi? Ag™), — Agai® AxY, (D.51)

1 . —
+ §5gA2gk’fA2@l, =0.
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Irreps (15 x 6,1):

2, 2. 5 2 !

gAQQZ[iAlj]k B gAlkmAQQm[i(sé'] 4 g14117r542g[2.nEj]kmn + géijkmAllmAQan

2 Lo Llag m Lsig "
3 — 50iA2(jk) A2am™ + 50542(k) A2am

1 - 1- _
- §A2(ik)A2gjl + §A2(jk)A29il — 5 A2(km) Aga[i" 0
_ 1. 1. 1., -
AgjijAsar’ — §A2[ik]A29jl + §A2[jk]A2gil - 155A2[jm]A2gkm

il 3
2 (m)5 n 1
+ §A2 AQQ [i€5]kmn — g

1 I m 1~ m sl 1= m sl L~ m sl
+ ZéjA2[im}A22k + §A2[km]A2g[i 5j] + 6A2[jm]Azg[k 5i] + 6A2[im]A2g[j 5@

1 - 1 ;- 1, -

- 555142[]]@]1429mm + E(séAQ[ik‘]AQQmm + ﬂélchQ[Z]}AQQMm
1 nl 12 m mn| y

- ﬁeijkm (A[Ql ]A2g n+ A[Q ]AQan)

15 1 m|x o n mn A 1 m| 4 on
+ 6A2gl[i€j}kmnz4§"" + €ijmn (A[zl | Aoy — A A2glk) + ﬁﬁijkmA[Ql VAo (D.52)

1 = 1 - 1 _
— ﬁéfiﬁj]mnpAgpAQka + 75kmnpA;pA2gm[i5§] + ﬂ(sllceijmnAgmA2ﬂpP

12
- iéfiej]kmnAgmAQQpp + Agpij At — 2524@1'142%”1 - %5fi\A@|jlkA2Qmm
- %eijnpA@”PAgbl K+ %eijkmA@lmAzh”n — éageijmnA@m"AQ@p
+ éafieﬂ kmn Aap ™ Ao, = 0.
We have the decomposition
15x6=6+10+10+64. (D.53)

In order to specify the components of (D.52) in the 10 and 6 representations of SU(4), we
first contract (D.52) with 5lj . To obtain the 10 component, we symmetrize the resulting
identity in ¢ and k, whereas to get the 6 component, we antisymmetrize in ¢ and k. The
results are

2 T o .
(10,n)o : 32’ @A)y + 3ArnAag’s — g Aaan Azgs” + 3 Az Azai’
1 - P A )
- §A2(ij)A2gk] - 6A2[ij}A2gk] + 6A2[jk]z42y;] (D.54)

7 A 1-
— g A2t — EAQQl(kei)lmnAgm - §A2Ql(kei)lmnA@m” =0.

2 - . - 1- . )

(6,n)o: — gAQQ][iAlk]j + §A2(ij)A2gkj - §A2(jk)A22iJ

1

24
. 3 |

+ Agpi; Aoy’ + 3 Aapin Aot ™ = Seitim A" Aan™ (D.55)

1 - S | . |
+ 15 A2l A2ar’ + 5 Aopm Azar’ — 5 Asjin Azes”

1 - 1 n) = 1 _
+ EA2gl[k€i}lmnAgm - geiklmAé n)AQan - @GiklmAlzmAQQHn

1 - 3 -
+ ieiklmA@mnAQan = EeiklmA@lmAQan =0.
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Trreps (((6,1) x (6,1))4)o:
ka1 ma [k <l 1 m E <]
— 4 Aspapi) " Aojy)" ) — 245005 A2y 85y + 2A20™ 5 Ao 0

— 2 Ay Aoy 0]

m p k<] 1 [k <] mA T
j] +2A2[g‘m A2@[ [1(5 — 5(52 5] AZ[Q‘m AQ‘L)} n

hi
1 m k <l m A k<l [k <] m A n
+ 2490 " m Ay i85 + 2Aa(am™ Aoy "8y — 605 Aa(am ™ Agip)"n

1 m 1 clk sl 1 A.cm k <l]
= 50 Azem ™ A8y — o0y Ax i Aggri

0 Aac ™ A i+ 005 Ag™ A
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+ 55@5[[5 mnp AT AR + 55@5[[5 A€ Az
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+ 241 Ay iy — 46
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~ 150w (A2 Ay + AL Aoy ) + 10w} (A5 Agguny + 45" Ao

1 km) 7 km] 7 1 km) 7 km] ¢

- T85@5§ (Aé ) Apfim) + A }AZ(im)) + ﬁ5@55 (Aé ) Aofjm) + Al ]AQ(jm)>
2 40K 7 2k alim] 3 2 alkm] 7 Lok o] gmn 3

+ 342 Agbij — 30542 Al + 50042 Aablim + g0 05 A2 Agbmn

2 - 2 - 2 _ 1 _
- gAz[ij]A@kl + gél[kAQ[jm}A@”m - g5][."%12%A@”m - éaﬁkaj.]AanA@m"

+ i&’“ajJALbcAfmm - iél[kéé]fl@Aggmm —0. (D.56)
The tensor product ((6,n) x (6,n))4 of SU(4)xSO(n) decomposes as
((6,1) x (6,n))4 = (1,n(n—1)/2) + (20',n(n - 1)/2)
+(15,n(n+1)/2 1)+ (15,1) . (D.57)

In order to specify the component of (D.56) transforming in the (reducible) (15,n(n+1)/2)
representation of SU(4)xSO(n), we contract (D.56) with 6] and we then symmetrize the
resulting equation in g and b. We find
(15,n(n+1)/2)0: = Ay’ Azy)"; + Azga)j Aapy”i + Aaali* A2y’
- 1
+ As(aly? Aoy = 507 Ao

o 1 o
ol Aoyt — 0apA2e” Ay,

1 < i 1 e A, C
= JlapAsei Ao j + 200} Ases? Ap®ly — 24 Ay (D.58)
1 i 1
+ 501 Al At + g ap€imn AT A5
1 o . - .
0™ Avi Ao — 5001 (A5 Aggy + AF Aygi) = 0.

On the other hand, the (1,n(n—1)/2)g component of the quadratic constraint (D.56)

follows from contracting (D.56) with ;67 and then antisymmetrizing the resulting identity
in @ and b, which gives

(Lo —1)/2)0:  —4Aye? Ay’ + Agpali’ Aoy j + 24,7 Ay
1 i~ — i 3 1 ci 1 c.i
-3 (AQJA@']' _A2ijA@J) +§ (ALI;CAQ—Z-—ALI,CAri) =0.

(D.59)
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Irreps (15,n(n —1)/2),:
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— Agfali" Agji”i + Agpals” Aoy = 0.

Irreps (6,n(n —1)/2 x n),:

1

_ _ 1 _
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— A2 A i + %eijklﬁibiA@kl =0.
trreps (1, (n(n — 1)/2 x n(n — 1)/2) )y
— A@ijﬁg@'j + A@ijA@ij + A@A@g — ALbeAgg
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+ Azjafi’ Ajpled — A2(cli’ Aldlab — A2(a] i Ajpled + A2(¢l"iAld)ab = 0 -
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