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This article presents a data-driven model based on modal decomposition, applied to
approximate the low-order statistics of the spatially averaged wall-shear stress in a
turbulent channel flow over a porous wall with two anisotropic permeabilities, producing
drag increase or reduction when compared with the case of an isotropic porous wall.
The model is comparable to a neural network architecture using a linear map to a
classification. To create this model, we use high-order dynamic mode decomposition
(DMD) to identify the structures describing the main flow dynamics, and then test
different linear combinations of these modes to estimate the time evolution of the stress
at the porous interface. The coefficients of the model are obtained by training the model
against the results of direct numerical simulations over different time intervals. Depending
on the number and the way of combining the DMD modes, the reduced-order models
presented can reconstruct the wall-shear stress with relative error smaller than 0.01 %
and reproduce its statistical variations for at least 1500 time units with relative error in
the standard deviation or the mean smaller than 5 %. The model has also been tested
to approximate the statistics of the wall-shear stress over the whole wall, showing that
the regeneration of the flow structures can be reproduced by the nonlinear interaction of
modes. Finally, considering the DMD modes as communities in a neural network, we
examine the influence of the mode-to-mode interaction on the nonlinear flow dynamics,
which explains the performance of the different models.
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1. Introduction

Modelling turbulent flows and predicting their time evolution, e.g. to assess the
performance of different feedback or feedforward control strategies (Noack, Morzynski
& Tadmor 2011; Brunton & Noack 2015; Jones et al. 2015) is a challenging problem
because of the high complexity of the underlying physical problem and the need for large
computational resources. The disparate number of spatio-temporal scales involved in the
description of turbulent flows calls therefore for a high number of degrees of freedom to
define the problem, which soon raises the cost in terms of computational time and memory.
During recent years, the community has paid special attention to finding new tools that
provide low-rank high-fidelity models describing the main flow dynamics, relate inputs to
outputs for flow control (e.g. balanced truncation) and develop models for unexplored
physics (Sharma 2011; Lassila et al. 2014; Le Clainche 2019; Mendez, Balabane and
Buchlin 2019).

Data-driven equation-free models are promising tools that can provide accurate
descriptions of the flow without a priori knowledge of the underlying equations.
Depending on the main objectives, it is possible to identify two types of approaches
for data-driven models: (i) models that only focus on data forecasting, using machine
learning tools based e.g. on deep neural networks or alternative black-box approaches,
and (ii) models that also include some physical insight into the problem to construct a
reduced-order model (ROM), e.g. using pattern identification approaches such as proper
orthogonal decomposition (Sirovich 1987) or dynamic mode decomposition (DMD),
(Schmid 2010).

Using data-driven ROMs in fluid dynamics provides several advantages compared with
purely deep neural networks strategies. These methods extract relevant spatio-temporal
information about the physics, which can be used to identify the main instabilities and
mechanisms in the flow and/or to create powerful tools for optimization (Park et al. 2013)
and control (Gao et al. 2017). Gaining some additional physical insight into the problem,
it is also possible to better predict the system phase state, use more controlled and robust
strategies, reduce the computational cost of numerical simulations or limit the information
collected in experiments (Le Clainche, Vega & Soria 2017; Le Clainche & Ferrer 2018).

The use of machine learning to reduce the problem dimensionality and to predict state
variables is a data-driven strategy rapidly diffusing in the fluid dynamics community,
although these tools have already been extensively used for a large number of applications
in other fields (Dargan et al. 2019). Among these methods, deep learning has recently
been introduced as a powerful tool for system identification in fluid dynamics (Brunton,
Noack & Koumoutsakos 2020). Generally, deep-learning algorithms are introduced as a
sequence of neural network layers (usually from 9 to 10) trained by optimizing a cost
function using gradient descent algorithms (LeCun, Bengio & Hinton 2015; Lopez-Martin,
Carro & Sanchez-Esguevillas 2019). Nevertheless, only simple and general definitions of
these algorithms have been used to solve complex fluid dynamics problems. Among the
many existing studies, we mention Xiaoxiao, Wei & Iorio (2016) who used a convolutional
neural network with an encoding/decoding configuration to predict velocity fields for
steady flows. Two-dimensional convolutional neural network architectures have also been
used by several authors to estimate velocity vectors from a sequence of particle image
velocimetry data (Cai et al. 2019, 2020 ; Lee, Yang & Yin 2019). Additionally, the use of
two-dimensional convolutional neural network methods is also currently being explored by
several authors for weather forecasting in combination with dynamical system simulation
tools (Scher 2018; Agrawal et al. 2019; Scher & Messori 2019; Wang, Balaprakash &
Kotamarthi 2019). For all cases, convolutional neural network approaches show results
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similar to or better than state of the art models. Wan et al. (2018) used a recurrent neural
network to model complex dynamical systems, helping to improve a ROM in regions
where the data were known. In the same line of work, Vlachas et al. (2019) compared
the performance of recurrent neural network and Gaussian processes for forecasting
high-dimensional dynamics, the former resulting more accurate. As another alternative
to methods based on Gaussian processes, White, Ushizima & Farhat (2019) propose a
cluster network to perform simulations in fluid dynamics, although this method requires
extensive tuning. Wiewel, Becher & Thuerey (2019), similarly, suggest a model combining
convolutional and recurrent layers in an encoder–decoder architecture to predict pressure
flow fields. Recently, Lopez-Martin, Le Clainche & Carro (2020) proposed a new model
for predictions in fluid dynamics using three-dimensional convolutional neural networks
(with a low-dimensional intermediate latent space) and objectives (k-ahead velocity-field
prediction for a synthetic jet), avoiding the use of video sequences. More details about
different machine learning techniques and their application to system identification,
dimensionality reduction and feature extraction can be found in the review article by
Brunton et al. (2020).

Currently, different authors are working on the development of new tools combining
methods generally used to identify patterns in fluid dynamics and classical deep-learning
strategies. For instance, Lusch, Kutz & Brunton (2017) combined the Koopman linear
embedding representation, which contains information about the physical model, with a
modified deep auto-encoder, which is responsible for the high efficiency of a deep neural
network; Meena, Nair & Taira (2018) proposed a network community-based ROM to
predict the lift and drag forces on bodies taking advantage of the vortical interactions.
The good performance presented in these previous studies encourages the search for
new algorithms that overcome the problems generally found in deep learning, or more
specifically, in neural network (NN) architectures applied to fluid dynamic problems.
On the one hand, to provide accurate predictions of complex data, NNs are generally
composed by several layers and neurons using nonlinear activation functions. On the other
hand, the large number of degrees of freedom of fluid dynamic problems requires the
generation of large-size databases, leading to highly demanding computational problems
(high memory and computational time). Thus, algorithms combining deep learning
strategies, such as NNs, with other approaches, for instance based on data dimensionality
reduction and containing partial information on the flow physics, appear as a viable
alternative.

In the same spirit, the present work takes advantage of the physical insight into the
problem studied to construct a ROM. For the first time, to the authors’ knowledge, this
article combines the deep learning strategies introduced by Meena et al. (2018) with a
modal decomposition, specifically DMD modes, representing the main flow instabilities
and energy-producing mechanisms modelling the large-scale most-energetic turbulent
flow structures. The model proposed is equivalent to a NN architecture formed by a
single neuron using a linear activation function. The input data consist of several DMD
modes and their multiple nonlinear interactions, which represent the large-scale flow
motions. Hence, the DMD modes provide a data dimensionality reduction based on the
physics associated with the most energetic flow structures. This new method is applied
to approximate the statistics of the wall-shear stress over long time periods in a turbulent
channel flow over an anisotropic porous wall. The wall-shear stress has been estimated both
in terms of space average and locally over the entire channel wall. Turbulent flows contain
chaotic high-frequency information that cannot be predicted by the model proposed, since
it uses DMD modes that represent the low-frequency flow motions, i.e. the quasi-coherent
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flow structures. Nevertheless, the algorithm proposed considers the interaction of the
DMD modes, which reproduce the regeneration of new flow structures. In other words,
our surrogate model has similar mean, standard deviation and similar frequency spectrum
to that of the measured wall-shear stress. In addition, the spectrum contains additional
frequencies, induced by the nonlinear interaction of the selected modes, which well match
those existing in the flow.

The capability of the methodology used to perform the modal decomposition was
already shown in more fundamental turbulent flows by the present authors in Le Clainche
et al. (2020). In this article, we identified the main spatio-temporal structures in a
turbulent channel flow and compared these with the case of elastoviscoplastic fluids.
The results presented showed the main flow structures in the three cases identified as
spatio-temporal DMD modes. Moreover, these results revealed the role of the near-wall
streaks and their breakdown. In this new study, we try to approximate the statistics of the
wall-shear stress based on the DMD modes in three cases where turbulence is significantly
modified. To keep the paper focused on the new methodology introduced we do not
consider classic turbulence on solid walls, see, however, Le Clainche et al. (2020) for
the analysis of this case. So far, applications of machine learning strategies to turbulent
flows have been limited to two-dimensional homogeneous turbulent flow reconstructions
(Fukami, Fukagata & Taira 2020), reducing data dimensions (Omata & Shirayama
2019), super-resolution analyses (Fukami, Fukagata & Taira 2019), predictions of
small-scale ocean turbulence (Salehipour & Peltier 2019) or data assimilation (nudging) in
three-dimensional homogeneous and isotropic turbulence (Di Leoni, Mazzino & Biferale
2020). The present article presents a novel algorithm based on modal decompositions
and NNs that is able to reconstruct the temporal variations of the wall-shear stress in a
complex turbulent flow based on the nonlinear interaction of DMD modes at a reduced
computational cost. Namely, once the model is implemented, the computational time to
reproduce the statistics of the wall-shear stress for very large periods of time (i.e. 1500
time units) varies from 4 to 20 minutes for the local wall-shear stress all and less than a
minute (in some models less than 2 seconds) for the spatially averaged approximations.
The simplicity of the model proposed opens the possibility of its extension to any type of
flow. The physics encoded in the DMD modes, used as a basis for the reduced model,
is explained in detail while comparing the dynamics over an anisotropic porous wall
with that over its isotropic counterpart. To accurately approximate the flow evolution, the
modal decomposition is connected to a network community, which quantifies the nonlinear
interaction of modes in the flow.

The article is organized as follows. Section 2 briefly introduces the numerical
simulations of the turbulent channel flow, describing the geometry, the wall porosity and
the flow conditions of the data analysed. Section 3 explains the methodology used for
the modal decomposition and for identifying the dominant temporal and spatio-temporal
DMD modes. The deep-learning model based on modal decomposition is detailed in § 4
and the network community is presented in § 5. Section 6 briefly describes the flow physics
related to the DMD modes identified. The performance of the model is introduced in § 7
and the connection of the mode-to-mode interaction with the modularity of the community
is presented in § 8. Finally, the main conclusions are presented in § 9.

2. Numerical simulations in a channel with isotropic and anisotropic porous walls

The turbulence modulation over a porous wall has been investigated in the past both
numerically and experimentally. Breugem, Boersma & Uittenbogaard (2006) studied the
effect of a packed bed of particles on turbulent channel flows and found an increase
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of turbulent drag associated with a strong reduction of the intensity of the low- and
high-speed streaks and of the quasi-streamwise vortices characteristics of wall-bounded
flows. These results were later extended by Rosti, Cortelezzi & Quadrio (2015) to
porous materials with relatively small permeability, and also verified experimentally
by Suga et al. (2010) and Suga, Nakagawa & Kaneda (2017). Recently, anisotropic
porous walls have received increasing attention, since they may provide an effective
means to manipulate turbulence. Gómez-de-Segura, Sharma & García-Mayoral (2017),
Kuwata & Suga (2017), Rosti, Brandt & Pinelli (2018a) and Kuwata & Suga (2019)
assessed the potential of these surfaces; recently, Abderrahaman-Elena & García-Mayoral
(2017) performed an analysis based on the effect of small-scale surface manipulations
on near-wall turbulence, predicting a monotonic decrease in skin friction as the
streamwise permeability increases. Gómez-de-Segura & García-Mayoral (2019) verified
the predictions of Abderrahaman-Elena & García-Mayoral (2017). Following in the same
line, Rosti et al. (2018b) identified changes in the skin friction when varying the streamwise
and spanwise permeabilities.

The database generated and presented in Rosti et al. (2018b) has been analysed in this
article. In this previous work, numerical simulations were carried out to model the main
patterns of turbulent channel flows over a porous wall at three different permeability
conditions: (i) isotropic wall, (ii) anisotropic wall with higher permeability along the
wall-normal direction than along the streamwise and spanwise directions (σy = 4 and
σxz = 0.25 with σ being the square root of the permeability divided by the channel
half-height i.e. σ = √

K/h), producing a drag increasing (DI) mechanism and (iii)
anisotropic wall with lower permeability along the wall-normal direction than along
the streamwise and spanwise directions (σy = 0.0625 and σxz = 16), producing a drag
reduction (DR) mechanism. The main set-up of the simulations are presented in Rosti
et al. (2018b), and briefly repeated here for the sake of clarity.

The computational domain consists of a rectangular box with streamwise and spanwise
dimensions Lx ∈ [0, 4π] and Lz ∈ [0, 2π], respectively, and wall-normal dimension Ly ∈
[−0.2, 2.2], where the thickness of the porous wall is 0.2, at the top and bottom
channel walls, as presented in figure 1, where the coordinate system adopted is also
presented and the channel lengths are normalized with h (half the channel height).
Periodic boundary conditions are imposed in the streamwise and spanwise directions. The
porosity is maintained constant as ε = 0.6. The bulk Reynolds number is 2800, defined
as Re = Uh/ν, with U, h and ν, the bulk streamwise velocity, half the channel height
and the kinematic fluid viscosity, respectively, which correspond to a frictional Reynolds,
Reτ = 180 in the case of rigid walls. Considering the turbulent flow at a constant flow rate,
the friction Reynolds number varies depending on the type of porous walls, modifying the
length scale of turbulent vortices and complexity of the flow dynamics. The choice was
originally made in Rosti et al. (2015, 2018a) to ease the comparison of the results of cases
with varying permeability with those from an impermeable channel flow case. Here, we
use the same dataset and follow the same normalization, the interested reader is referred
to these references for more details. The flow within the porous layers is modelled using
the volume averaged Navier–Stokes equations (Whitaker 1969) and the numerical solution
based on Fourier discretization in the wall-parallel directions and high-order compact finite
differences in the wall-normal one. More details about the numerical code can be found in
Rosti et al. (2015). Table 1 summarizes the different cases studied and list the parameters
that are physically relevant, see e.g. Rosti et al. (2015).

To provide a first picture of the flows under investigation, we display in figure 2 the
streamwise velocity in a wall-parallel plane XZ near the porous interface for the three

939 A5-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

15
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.159


S. Le Clainche, M.E. Rosti and L. Brandt

Lz

Lx

Ly

U

y

z

x

(2 + 0.2)h

–0.2h

2h

0

Figure 1. Computational domain in the channel flow with a porous wall.

Case Reτ Reσxz Reσy DR

Isotropic 182 0.182 0.182 −6
Anisotropic: DR 164 2.624 0.01025 18
Anisotropic: DI 198 0.0495 0.792 −21

Table 1. Parameters used in the numerical simulations. Value of the resulting friction Reynolds number Reτ =
uτ h/ν and the two porous Reynolds numbers Reσxz = √

KxzU/ν and Reσy = √
KyU/ν of the isotropic and

anisotropic cases studied for a fixed bulk Reynolds number Re = 2800, with the corresponding DR.

z

x

2ππ

4ππ0

(a) (b) (c)

x

2ππ

4ππ0 x

2ππ

4ππ0

Figure 2. Streamwise velocity in an XZ plane extracted at the porous interface from the simulations with the
isotropic porous wall (a), DR (b) and DI (c) cases. The blue and red colours are used to indicate velocity
fluctuations equal to ±0.4ū( y = 0). The flow goes from (a) to (c).

different cases. Starting from the isotropic case as reference, one can recognise the
near-wall streamwise-correlated structures (streaks). These become more regular and of
larger size in the DR case, a feature of many drag-reducing flows where the thickness
of the buffer layer increases (Ceccio 2010) and the flow complexity decreases; in the DI
case, conversely, the streaks are characterized by a smaller size and are less organized,
indicating an increase of the flow complexity. More specifically, in figure 2(c) (DI) it
is difficult to identify the characteristic streamwise-correlated streaks, rather the flow is
composed of small-size spatial structures, where it is possible to guess some spanwise
correlations (more details will be presented below).

3. Methodology to identify the main flow patterns

This article presents a deep-learning model based on a modal expansion, constructed using
a group of DMD modes leading the dynamics at large scale. The physics of turbulence
production is captured by means of spatio-temporal DMD modes, periodic along the
spanwise direction. This section introduces the techniques to extract and identify DMD
and spatio-temporal DMD modes and includes a novel application of these methods for

939 A5-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

15
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.159


A novel deep-learning method based on modal decomposition

the analysis of turbulent flows. It is important to remark that, as discussed in Chen, Tu
& Rowley (2012), the DMD modes correspond to Fourier modes for very large datasets.
However, the benefit of using the DMD algorithm presented below (higher-order DMD)
compared with the spectral analysis lies in the capabilities of this method to provide
highly accurate results using a much smaller number of snapshots (see more details in
Le Clainche & Vega 2017a, figure 10).

3.1. Higher-order DMD
Higher-order dynamic mode decomposition (HODMD) (Le Clainche & Vega 2017a) is a
data-driven method that decomposes a set of data, vk(x, y, z, t) (snapshot), as an expansion
of DMD modes um(x, y, z) (of unit norm) in the following way:

v(x, y, z, tk) �
M∑

m=1

amum(x, y, z) e(δm+iωm)tk , k = 1, . . . , K, (3.1)

where ωm, δm and am are the mode frequencies, growth rates and amplitudes, respectively.
HODMD is an extension of DMD (Schmid 2010), introduced for the analysis of highly
noisy configurations (Le Clainche et al. 2017) and complex or turbulent flows (Le Clainche
et al. 2020).

Organizing the data evolving in time into a matrix of dimension J × K, conformed by
K snapshots, as

VK
1 = [v1, v2, . . . , vk, . . . , vK], (3.2)

where vk is the velocity vector collected at time instant tk, of dimension J × 1 (J = Nx ×
Ny × Nz, with Nx, Ny and Nz the number of grid points along the streamwise, wall-normal
and spanwise spatial components), the algorithm can be summarized in two main steps:

• Step 1: Dimension reduction. Singular value decomposition (SVD) is applied to the
snapshot matrix (3.2) as,

VK
1 � UΣT� = UV̂K

1 , (3.3)

where U�U = T�T is equal to the K′ × K′ identity matrix, Σ a diagonal matrix
whose elements are the retained singular values σi and V̂K

1 = ΣT� the so-called
reduced snapshot matrix; its columns are conformed by the reduced snapshots,
defined as v̂k. The K′ singular values are selected according to a tuneable tolerance
ε1 as

σK′+1/σ1 ≤ ε1. (3.4)

In other words, the singular values retained satisfy the following equation: σi/σ1 >

ε1, for i = 1, . . . , K′. For complex dynamics (i.e. turbulent flows), the data of the
snapshot matrix (3.2) are organized in tensor form as V(xi, yl, zr, tk) = Vilrk; for
i = 1, I; l = 1, L; r = 1, R; k = 1, K with I, L and R being the number of grid points
in the spatial directions, x, y, z with K the snapshot number. Instead of a standard
SVD, high-order SVD (Tucker 1966) is applied to this tensor, which is similar to
applying SVD to the four matrices whose columns are formed by the tensor fibres
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(representing each one of the 4 data variables), as

Vilrk �
P1∑

p1=1

P2∑
p2=1

P3∑
p3=1

P4∑
p4=1

Sp1p2p3p4W(x)
ip1

W( y)
lp2

W(z)
rp3

Tkp4, (3.5)

where Sp1p2p3p4 is the core tensor (a fourth-order tensor) and the columns of the
matrices W(x), W( y), W(z) and T are the modes of the decomposition (three spatial
and one temporal mode, respectively). The dimension reduction, as presented in
(3.4), is applied to each one of these modes: this enables us to better remove
spurious artefacts such as noise, or small-size flow scales of the turbulent flows
(treated hence as noise).

• Step 2: DMD-d algorithm. This algorithm linearly relates snapshots at a given time
with the sequential d time-lagged snapshots at earlier times, using the generalized
Koopman assumption,

v̂k+d � R1v̂k + R2v̂k+1 + . . . + Rdv̂k+d−1, k = 1, 2, . . . , K − d. (3.6)

After some calculations (see details in Le Clainche et al. 2017), the DMD expansion
(3.1) for the reduced snapshots can be written as

v̂k �
M∑

m=1

âmûm e(δm+iωm)tk , (3.7)

where ûm are the reduced modes (normalized) and âm the reduced amplitudes,
calculated by least squares fitting of the two sides of (3.7). The M DMD modes
in (3.1) are selected by imposing

|âm|
max{|âm|} > ε2, (3.8)

with ε2 a tuneable threshold. Premultiplying both sides of (3.7) by the matrix U

am = |âm|‖Uûm‖2√
J

, um = âmUûm

am
, (3.9a,b)

where ‖ · ‖2 is the Euclidean norm, and recalling (3.3), leads to the expansion (3.1).

The high complexity of the data analysed (turbulent flows) encourages the need
for combining the HODMD algorithm with other strategies to identify correctly the
quasi-coherent flow structures. The iterative HODMD algorithm is therefore applied. This
consists of applying HODMD iteratively over the data reconstructed using the DMD
expansion (3.1) to progressively remove spurious or smaller-scale modes. In other words,
in a first stage, HODMD is applied to the snapshot matrix (3.2) obtaining the DMD
expansion (3.1), which is assumed as the new snapshot matrix. HODMD is again applied
over this new matrix until the number of retained SVD modes, P1, P2, P3 and P4 in (3.5),
do not change between two consecutive iterations.

3.2. Spatio-temporal Koopman decomposition
Spatio-temporal Koopman decomposition (STKD) (Le Clainche & Vega 2018b) is an
extension of HODMD that provides general spatio-temporal DMD expansions, namely
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assuming periodicity in the spanwise direction

v(x, y, zr, tk) �
M∑

m=1

N∑
n=1

amnumn(x, y)

× e(δm+iωm)tk+(νmn+iβmn)zr , k = 1, . . . , K, r = 1, . . . , R, (3.10)

where amn and umn(x, y) are the spatio-temporal amplitudes and DMD modes, νmn is the
spatial growth rate and βmn is the wavenumber in the direction z (the wavelength is defined
as Lz = 2π/β = Lz/β, with Lz the channel dimension along the spanwise component).

The previous expansion is obtained using either the parallel or sequential version of the
STKD algorithm. The parallel version, the algorithm used in this article, starts from the
DMD expansion (3.1), applying HODMD along the spanwise direction to the DMD modes
as

um(x, y, zr) �
N∑

n=1

âmnumn(x, y) e(νmn+iβmn)zr , r = 1, . . . , R. (3.11)

Introducing (3.11) into (3.1) and considering amn = amâmn, leads to the spatio-temporal
expansion (3.10). Alternatively, the sequential STKD algorithm applies HODMD to the
high-order SVD modes (3.5) achieving the same spatio-temporal expansion (3.10) (not
detailed here for the sake of brevity). Both algorithms provide the same solution, moreover,
they can be used to obtain high-order spatio-temporal expansions, related to more than one
spatial direction, see more details in Le Clainche & Vega (2018a). Note, finally, that the
data analysed in this article are periodic in space, hence it is not necessary to apply the
iterative algorithm to identify the wavenumbers of the spatial modes.

3.3. Application to turbulent flows and calibration
The application of HODMD and STKD to identify flow patterns in turbulent flows depends
on the calibration. The setting parameters, the tolerances ε1, ε2 and indices d (dt and dx for
the temporal and spatial analyses, respectively) control the amount of information to filter
out, differentiating the large relevant flow scales from the remaining small flow scales. In
previous work (Le Clainche et al. 2020), we have learned that the high-amplitude modes
correspond to streaks and near-wall vortices driving the large-scale flow motions, and that
these are the smallest relevant structures one needs to keep to correctly reproduce the
flow dynamics. These modes are robust, meaning that these are identified with different
calibration parameters. In other words, plotting the frequencies and amplitudes of the
DMD modes obtained by applying HODMD with different calibrations, it is possible to
distinguish these high-amplitude modes from the spurious ones: the leading modes present
similar frequencies, although their amplitudes may vary slightly with the calibration,
while the frequency/amplitude of the spurious modes is always different with different
calibrations. In contrast to laminar flows, where the dynamics is often simpler (periodic
or quasi-periodic with a small number of dominant frequencies), the frequencies and the
amplitudes identified using different calibrations are not exactly the same in turbulent
flows (although the shape of the DMD modes is similar), hence it is necessary to assume
a small relative error in the mode calculations.

The methodology described above has been applied successfully in turbulent flows (see
Le Clainche et al. 2020). However, when the flow complexity increases, identifying the
physical modes representing the most-energetic flow motions becomes a difficult task.

939 A5-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

15
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.159


S. Le Clainche, M.E. Rosti and L. Brandt

To overcome this, we propose to apply the iterative HODMD method a second time
and with different calibration to a new snapshot matrix composed of the reconstruction
of the original data (3.1), where the number of noisy and spurious artefacts have been
reduced or even eliminated. The method can therefore be summarized by the following
steps:

• Step 1: HODMD. HODMD is applied P times, each one using different values of
d, tolerances ε1 and ε2 and different normalization of the DMD modes, L2 and L∞
(Euclidean and infinity) norms.

• Step 2: test selection. Among the P test carried out in Step 1, Ps cases, with Ps < P,
are selected to proceed to the following step. Note that it is also possible to use
the information from all the P tests; however, a larger number implies a large
dimension of the new snapshot matrix used in the next step, which increases the
computational requirements (RAM memory and CPU time). Thus, selecting a group
of Ps representative test cases facilitates the numerical treatment. This selection
of cases is robust and can be performed in a standard way. For instance, if we
perform HODMD using four different values of d, namely, d1, d2, d3 and d4, and
two different tolerances ε1 = ε2 = tol1 and tol2, with tol2 < tol1, we propose two
different options to reduce P: (i) using the intermediate values of d, d2 and d3, for
the two tolerances and (ii) using the four values of d and the most accurate tolerance,
tol2. In the results presented below we use the method (ii), but similar results are
obtained using method (i), not shown for the sake of conciseness.

• Step 3: big snapshot matrix. The original snapshot matrix is reconstructed for each
test using the DMD expansion (3.1). A new big snapshot matrix with dimension
J · Ps × K, is constructed with the Ps group of snapshots placed in columns as

V̂K
1 =

⎡
⎢⎢⎢⎢⎣

v1
1 v1

2 · · · v1
K−1 v1

K

v2
1 v2

2 · · · v2
K−1 v2

K
· · · · · · · · · · · · · · ·
v

Ps
1 v

Ps
2 · · · v

Ps
K−1 v

Ps
K

⎤
⎥⎥⎥⎥⎦ . (3.12)

• Step 4: HODMD and mode selection. HODMD is again applied over the matrix
(3.12) Pt times using different parameters (values of d, tolerances and mode
normalization). Among all the solutions obtained, the physical modes representing
the large flow scales in the sense of streaks and near-wall vortices (the smallest
relevant structures that we keep in the model), are identified as a function of
the frequency, as in Le Clainche et al. (2020). If the variation in frequency for
all tests performed is smaller than a tolerance, the mode is selected to represent
the large-scale flow structures. In other words, if |ωim − ωjm| < ε, for all Pt tests
performed, where ωim and ωjm are the DMD frequencies ωm calculated in test i
and j and ε is the tolerance, the mode is retained. For the results presented in
this article, the modes selected are present in all the analyses performed (using
different values of d and tolerances), and the threshold is fixed as ε ≤ a (a = 0.03
for the high-frequency modes and a = 0.003 for the modes with frequency ω

smaller than 0.3). In this way we ensure that the relative error comparing two
different frequencies is always smaller than 10 %. Note that this methodology is
automatic, but the thresholds set to select the modes (here and in the complete
methodology presented before) are tuneable parameters that influence the accuracy
in the solution. The quality of this mode selection is proved by plotting and
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comparing the contours of the DMD modes, checking that the shape is the same
for all the modes selected, with only negligible differences in the location of the
contour levels, according to the small differences between the mode amplitudes and
frequencies. Note also that the matrix containing the DMD modes is used to identify
the spatio-temporal DMD modes using the parallel STKD method introduced in
the previous section, although the DMD modes selected in this step are related
to a single calibration parameter (the dimension of each DMD mode vector is J).
Moreover, the reconstruction of matrix (3.12), obtained applying HODMD, is used
to create the data-driven model. In this case, however, all the calibrations can be
used simultaneously to reinforce the information provided to the model (the matrix
dimension is J · Ps × K).

The performance of this algorithm is now illustrated in detail with the analysis of a
channel with an isotropic porous wall. Here, HODMD is applied to a set of 50 snapshots
for the DR and DI cases and 60 for the isotropic case (considered as reference), all
equidistant in time with �t = 5 (the time units are normalized with h/U). The number of
snapshots is larger in the isotropic case to ensure that the low-frequency modes are properly
captured by the method in the three cases. More specifically, as will be presented below,
using 50 snapshots it is possible to retain modes in the anisotropic cases with even lower
frequency than in the isotropic case. Additionally, applying the method in the isotropic
case using 50 snapshots, the results obtained are similar. However, using a smaller number
of snapshots could reduce the accuracy in the calculations of the low-frequency modes.
More specifically, an additional test has been carried out using 40 snapshots obtaining
the same results in all the cases, and using 30 snapshots, where the two lower-frequency
modes are not captured by the method. It is worth mentioning that, by decreasing the time
interval between snapshots it would be possible to identify modes with higher frequency,
which are generally related to smaller flow scales; however, we consider the DMD modes
retained as proper to describe the flow structures connected to the streaks and near-wall
vortices (as explained in § 6). The method is applied using the tolerances ε1 = ε2 = 10−4

and 10−5, normalizing the modes with both the L2 and L∞ norms, and d = 12, 15, 18
and 20 for the DI and isotropic cases and d = 10, 12, 15 and 18 in the DR case. In
the latter the flow complexity is lower, hence smaller values of d provide similar results
as in the two former cases, although using d = 20 in the DR case also provides good
results.

Panel (a) of figure 3 displays the amplitudes of the DMD modes as a function of the
frequency in the case of an isotropic porous wall, selected here as the representative case.
From a total of 16 test performed, the modes from 8 cases have been selected to construct
the snapshot matrix (3.12). These are the cases with tolerances 10−5 (the more accurate test
provides more accurate results). HODMD is then applied again using various calibration
parameters, with the results presented in panel (b) of figure 3. Comparing the two results,
we see that identifying the highest-amplitude robust modes is easier in the second case,
while in the first case some of the modes form clusters, with small variations among
their frequency and amplitudes. Moreover, the accuracy in the calculated frequencies and
amplitudes (and consequently in the DMD mode shapes and values) is higher in the second
case. The number of identified modes (robust ≡ obtained with different calibrations) is 12
in this case, as indicated by the arrows in the bottom part of the figure. The same calibration
process has been carried out to identify the dominant DMD modes in the channel flow
over the anisotropic porous walls, with DI and DR, however, not shown for the sake of
conciseness.
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am

am

0 0.1
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100

0.2 0.3 0.4 0.5 0.6

ωmω

0 0.1 0.2 0.3 0.4 0.5 0.6

(a)

(b)

Figure 3. Frequencies and amplitudes of the DMD modes obtained in the case of the isotropic porous wall.
(a) HODMD from the original data (as defined in (3.2)). (b) HODMD obtained from the snapshot matrix (3.12).
In (a) and (b), the arrows mark the selected physical modes; triangles and squares denote modes normalised
with the L∞ norm; the symbols + and × denote modes normalized with the L2 norm; the different colours
correspond to several values of d, ranked as d = 12, 15, 18 and 20 and the two groups of tolerances used,
ε1 = ε2 = 10−4 and ε1 = ε2 = 10−5.

4. A deep-learning DMD-based model to predict the wall-shear stress in turbulent
flows

The DMD modes provide information on the physics of the problem studied, by identifying
the quasi-coherent low-frequency structures and their spatial and time dependencies.
Using these modes and taking into account their dominant interactions, we wish to create
a surrogate model with similar mean, standard deviation and frequency spectrum as the
original wall-shear-stress signal. More specifically, we will apply the model to produce
a statistically similar time history of the wall-shear stress of the turbulent flow over the
anisotropic porous wall, considering the three different configurations introduced above.
The model intends to approximate the mean, standard deviation and frequency spectrum
(also considering the nonlinear interaction of modes) of the wall-shear stress both averaged
in space and over the entire channel wall.

4.1. Predictive model for the averaged wall-shear stress
Considering the streamwise and wall-normal velocities, vx = vx(x, y, z, tk) and vy =
vy(x, y, z, tk), and the bulk Reynolds number, Re, as previously defined in § 2, the
wall-shear stress spatially averaged is defined as

τ(tk) = τk = 1
8π2

∫ 2π

0

∫ 4π

0
Υ (x, y0, z, tk) dx dz, (4.1)

where y0 denotes the interface between the porous layer and the fluid layer (at the bottom
wall) and

Υ (x, y, z, tk) = 1
Re

dvx

dy
− vxvy. (4.2)
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Applying the DMD expansion (3.1) to the velocity vectors vx and vy, repeated here for the
sake of clarity, we obtain

vx
k(x, y, z, tk) �

M∑
m=1

amux
m(x, y, z) e(δm+iωm)tk , (4.3)

and

v
y
k(x, y, z, tk) �

M∑
m=1

amuy
m(x, y, z) e(δm+iωm)tk , (4.4)

with k = 1, . . . , K. Introducing (4.3)–(4.4) into (4.1) leads to the following definition of
the wall-shear stress at y = y0 in terms of the DMD modes:

τk � τ
approx
k

= 1
8π2

∫ 2π

0

∫ 4π

0

(
1

Re
dvx

k
dy

− vx
kv

y
k

)
dx dz

= 1
8π2

∫ 2π

0

∫ 4π

0

( M∑
m=1

(
am e(δm+iωm)tk 1

Re
dux

m

dy

)

−
M∑

m=1

(amux
m e(δm+iωm)tk)

M∑
j=1

(aju
y
j e(δj+iωj)tk)

⎞
⎠ dx dz

= 1
8π2

∫ 2π

0

∫ 4π

0

M∑
m=1

am e(δm+iωm)tk

⎛
⎝ 1

Re
dux

m

dy
−

M∑
j=1

(aj e(δj+iωj)tk ux
muy

j )

⎞
⎠ dx dz.

(4.5)

Equation (4.5) gives the value of the wall-shear stress at any time instant tk. For values
of k ∈ [1, K], where K is the number of snapshots used to identify the DMD modes (see
§ 3.1), the wall-shear stress is an interpolation of the initial data. Setting the value of the
growth rate related to each DMD mode to 0 (note that DMD modes should be neutral
for K → ∞ in laminar flows and we assume the same here for the turbulent flows under
investigation) and tz � tK , it is possible to extrapolate the solution in time. (see more
details regarding DMD for data forecasting in Le Clainche & Vega 2017b; Le Clainche
2019.)

It is important to mention that, in wall turbulence, two vortices that are representative
of the same statistically steady state are generally identified as small-size structures
growing and disappearing (see the flow complexity in the streamwise velocity time instant
presented in figure 2), hence the growth rate related to such vortices changes from one time
instant to another. HODMD identifies such small vortices as the flow structures formed by
combining the modes retained by the method and their nonlinear interaction, with some
stochastic motions that cannot be identified by the method (see more details in § 7.1).
The present methodology is based on physical data, but it does not exactly reproduce the
physics of the flow (in the sense of solutions of the Navier–Stokes equations). Here, we use
mathematical tools to develop a surrogate model that has similar mean, standard deviation
and frequency spectrum as the measured wall-shear stress. Considering the mentioned
assumption and objective, the modes represent neutrally stable coherent structures, whose
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growth rate in a statistically steady flow should be zero. The error introduced by neglecting
these stochastic motions appears in the growth rate of the DMD modes, which is not
exactly zero. Note that, in experimental measurements, the growth rate of the DMD modes
is similar to the level of noise (Duke, Soria & Honnery 2012). Since HODMD understands
the high-frequency flow structures as noise, the growth rate of the DMD modes will never
be zero, and it is necessary to set it to zero to properly predict the temporal evolution of
the flow.

However, because of the high complexity of these turbulent flows, the prediction of τ

based on the mentioned approach is not accurate, and a different approach is necessary to
accurately estimate the low-order statistics of the wall-shear stress. To this end, we propose
here an extended linear regression model, inspired by the model introduced in Meena
et al. (2018). We will show that this model approximates the mean, standard deviation
and frequency spectrum of the wall-shear stress reasonably well over long time intervals,
requiring only solution of a linear system of equations Y = AX , where Y is a vector
containing the temporal evolution of the wall-shear stress, X are the input data, defined
for the specific type of model as explained below, and A are the coefficients that best
approximate Y . To create this model, we will use the dominant DMD modes driving the
flow. For simplicity, the DMD modes will in the following be denoted as

f k
m = am e(δm+iωm)tk ux

m,

gk
m = am e(δm+iωm)tk uy

m.

}
(4.6)

Introducing (4.6) into (4.5), the wall-shear stress is, more compactly, re-written as

τ
approx
k = 1

8π2

∫ 2π

0

∫ 4π

0

M∑
m=1

⎛
⎝ 1

Re
df k

m

dy
−

M∑
j=1

f k
mgk

j

⎞
⎠ dx dz. (4.7)

The methodology to create a DMD-based model is summarized in the following steps:

• Step 1: wall-shear-stress calculations. The wall-shear stress is calculated using (4.1)
during the time interval [t1, tK]. In what follows, this time interval will be denoted
as the training period.

• Step 2: model settings. Different input datasets are built at this stage. To deal
with the high complexity of a turbulent flow, six different possible model
settings have been created and combined to generate the datasets, considering the
variables composing the wall-shear stress (4.5), the interaction of the DMD modes
(considering the nonlinear nature of the governing Navier–Stokes equations) and
their possible influence in the evolution of the flow dynamics. The different models
are summarized in table 2. The dimension of each sub-model X k

i (for i = 1, . . . , 6)
is M × 1. Note that the index ()k represent the time instant tk. The model MS1
represents the wall-shear stress, as defined in (4.7). The remaining models separate
the two terms of the wall-shear stress (the derivative and the nonlinear term) in
various ways so to study the influence of each one of these terms. The modes are
weighted to create a robust and stable model in time. In particular, MS2 and MS3
separate the two terms of MS1, MS4 only considers the nonlinear term of MS1
but defined only using the DMD modes with similar frequencies, MS5 is similar
to MS1 but the nonlinear term is modelled as in MS4 and finally MS6 considers
the nonlinear term without the modes from MS4, in other words, MS6 contains the
nonlinear terms that are missing in MS5.
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Name Definition Initial input dataset

MS1 T k
m = 1

8π2

∫ 2π

0

∫ 4π

0 ( 1
Re

d f k
m

dy −∑M
j=1 f k

mgk
j ) dx dz X k

1 = [T k
1 T k

2 · · · T k
M]

MS2 Sk
m = 1

8π2

∫ 2π

0

∫ 4π

0 (
∑M

j=1 f k
mgk

j )dx dz X k
2 = [Sk

1 Sk
2 · · · Sk

M]

MS3 Dk
m = 1

8π2

∫ 2π

0

∫ 4π

0 ( 1
Re

d f k
m

dy )dx dz X k
3 = [Dk

1 Dk
2 · · · Dk

M]

MS4 Lk
m = 1

8π2

∫ 2π

0

∫ 4π

0 ( f k
mgk

m)dx dz X k
4 = [Lk

1Lk
2 · · · Lk

M]

MS5 Pk
m = 1

8π2

∫ 2π

0

∫ 4π

0 ( 1
Re

d f k
m

dy − f k
mgk

m)dx dz X k
5 = [Pk

1 Pk
2 · · · Pk

M]

MS6 Bk
m = 1

8π2

∫ 2π

0

∫ 4π

0 (
∑M

j=1 f k
mgk

j )dx dz for j /= m X k
6 = [Bk

1 Bk
2 · · · Bk

M]

Table 2. Different model settings for Step 2 in the construction of a DMD-based model. The indices m and j
indicate different DMD modes (from 1 to M), whereas the index k represents the time instant tk.

Model Setting combination Input dataset Dimension of X k

M1 MS1, MS2, MS3, MS4 X k = [X k
1 X k

2X k
3 X k

4]T 4M × 1
M2 MS1 X k = [X k

1] M × 1
M3 MS1, MS2 X k = [X k

1 X k
2]T 2M × 1

M4 MS1, MS3 X k = [X k
1 X k

3]T 2M × 1
M5 MS1, MS4 X k = [X k

1 X k
4]T 2M × 1

M6 MS1, MS2, MS3 X k = [X k
1 X k

2 X k
3]T 3M × 1

M7 MS1, MS3, MS4 X k = [X k
1 X k

3 X k
4]T 3M × 1

M8 MS2, MS3 X k = [X k
2 X k

3]T 2M × 1
M9 MS2, MS4 X k = [X k

2 X k
4]T 2M × 1

M10 MS2, MS3, MS4 X k = [X k
2 X k

3 X k
4]T 3M × 1

M11 MS3, MS4 X k = [X k
3 X k

4]T 2M × 1
M12 MS5, MS6 X k = [X k

5 X k
6]T 2M × 1

Table 3. Model definition to generate the input dataset for Step 3 in the construction of a DMD-based model,
using the model settings X k

i (for i = 1, . . . , 6) introduced in table 2. Here, M is the number of DMD modes
retained in the expansion and ()T is the matrix transpose.

• Step 3: building the model. The dataset X is created by combining the various
settings presented in the previous step. A total of 12 different models have been
constructed, as summarized in table 3.

• Step 4: solving for the model coefficients. The following system of equations:

Y = AX (4.8)

is solved for the different models proposed in Step 3, giving the values of the
unknown coefficients A, defined in vector form. The variable Y , with dimension
1 × K, is the vector containing the wall-shear stress calculated in Step 1 (defined
in the training interval t ∈ [t1, tK]). The matrix representing the input data X is
represented by one of the models from Step 3, hence for a specific time tk and
model i, X k

i = X k. This model is adjusted to the same time interval as Y , thus the
matrix X is built as

X =
⎡
⎣ | | |

X 1 X 2 · · · X K

| | |

⎤
⎦ . (4.9)
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The dimension of X is then lM × K, with l dependent on the combination of
different settings of the specific model. Hence, the dimension of the vector A is
1 × lM, i.e. A = [α1 α2 · · · αlM]. This system of equations is solved using the
pseudoinverse of matrix X , which represents a minimization of the least-squares
error in the approximation, solving in this way an optimization problem. The system
of equations is written as

[τ1 · · · τK] = [α1 α2 · · · αlM]

⎡
⎣ | | |

X 1 X 2 · · · X K

| | |

⎤
⎦ , (4.10)

where the vector Y = [τ1 · · · τK], of dimension 1 × K, represents the wall-shear
stress in the time interval [t1, tK].

• Step 5: wall-shear-stress calculations. Once the coefficients A have been calculated
from the solution of the linear system Y = AX , it is possible to predict (predict
in the sense of trying to approximate the low-order statistics of a turbulent chaotic
signal) the evolution of the wall-shear stress, indicated by Y , by simply changing
the time interval in the construction of the matrix X . In other words, the models
represented in Step 3 will be evaluated over the time interval [t1, tr], with tr � tK ,
generating a new input dataset, now containing new information. The dimensions
of X will be lM × R, with R � K. The vector Y , with dimension 1 × R, contains
the temporal evolution of the wall-shear stress in the time interval [t1, tr].

• Step 6: error quantification. The error made in the approximation of the statistics of
the wall-shear stress is calculated as the relative root-mean-square error (RRMSE),
defined as

RRMSE =
√√√√∑K

k=1 ‖τ approx
k − τk‖2

2∑K
k=1 ‖τk‖2

2

. (4.11)

4.2. Two-dimensional predictive model for the wall-shear stress
This section extends the algorithm introduced in the previous section to the
two-dimensional approximation of the statistics of the wall-shear stress at the channel
wall. Starting from (4.2), for simplicity repeated here as

Υ (x, y, z, tk) = 1
Re

dvx

dy
− vxvy, (4.12)

it is possible to obtain the streamwise and spanwise discrete version of Υ ,

Υ (xr1, y, zr1, tk) = 1
Re

dvx

dy
− vxvy, (4.13)

with xr1 = 1, . . . , Nx and zr1 = 1, . . . , Nz, with Nx and Nz the number of grid points along
the streamwise and spanwise directions. The wall-shear stress is calculated using (4.13) at
the interface between the porous layer and the fluid layer y0 and at the grid point (xr1, zr1),

τ 2D
xzk = Υ (xr1, y0, zr2, tk). (4.14)

The quantity τ 2D
xzk is a scalar such as the spatially averaged wall-shear stress introduced in

(4.1); to calculate the local wall-shear stress over the entire wall, defined as τ 2D
k , τ 2D

xzk
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should be computed for each grid points defining the two-dimensional computational
domain, in total Nx × Nz times. Hence, to calculate the approximation of the statistics of
the wall-shear stress at the grid point (xr1, zr1) using the DMD-based model, it is necessary
to apply the following modified version of (4.7):

τ
2D,approx
xzk =

M∑
m=1

⎛
⎝ 1

Re
df xyk

m

dy
−

M∑
j=1

f xyk
m gxyk

j

⎞
⎠ , (4.15)

to each one of the grid points at y = y0, following the same methodology introduced in
§ 4.1, where

f xyk
m = am e(δm+iωm)tk ux

m(xr1, y, zr1, tk),

gxyk
m = am e(δm+iωm)tk uy

m(xr1, y, zr1, tk),

}
(4.16)

with ux
m(xr1, y, zr1, tk) and uy

m(xr1, y, zr1, tk) the streamwise and normal components of
the DMD modes at the grid point (xr1, y0, zr1). Considering that the computational time
to calculate the one-dimensional shear stress is less than a minute (in some models not
more than 2 seconds), the computational time to calculate the one-dimensional shear-stress
function for 1500 time units over the entire wall is still affordable: here, on a single
processor and for 576 points, it varies between 4 to 20 minutes, depending on the model
selected.

4.3. NN and its connection with the DMD-based model
This section briefly introduces some basic concepts of deep-learning models. More details
can be found in the book by Brunton & Kutz (2019). Essentially, machine learning tools
are based on the solution of an optimization problem. In particular, NNs optimize a
compositional function defined as

argmin
Aj

( fP(AP, . . . , f2(A2, f1(A1, X )) · · · ) + λg(Aj)), (4.17)

using stochastic gradient descent and back propagation algorithms. The previous system
represents a NN formed by P layers, where each matrix Ak denotes the weights connecting
the layer k to the layer k + 1. The system is massively undetermined, and the function
g(Aj) regularizes it. The main objective is to provide accurate representations of the
data; to this end, both the composition of the function and preventing overfitting using
regularization strategies play fundamental roles. Overfitting generally occurs when the
system is trained with too much information, and it is not able to generalize the solution
outside the sequences of the training data.

Figure 4(a) shows the generic architecture of a multi-layer NN, where the input data
X = [x1 x2 x3] are mapped to a classification Y = [y1 y2]. The dimension of the input
data can be different to the output layer dimension: in the figure, the dimension of the data
is xj ∈ R

3 and the classification space defines the dimension of the output layer, yj ∈ R
2.

The number and dimension of the layers, the type of connection between the layers and
the kind of mapping (linear or nonlinear) are some of the parameters that should be tuned
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X Y
X YX (1)

A1 A2 A3 A

X (2)

(a) (b)

Figure 4. Sketch representing a NN architecture with (a) three layers and (b) one layer. The input data X are
mapped to the output layer Y through the matrices Aj; X (j) represents the layer j.

in a NN. Assuming a linear mapping, the model presented in the figure can be defined as

X (1) = A1X ,

X (2) = A2X (1),

Y = A3X (2).

⎫⎪⎬
⎪⎭ (4.18)

These expressions follow a composite structure that is defined by a linear transformation
(linear mapping) that can also be expressed, generalizing to a system defined by P layers
as

Y = AP · · · A3A2A1X . (4.19)

This is a highly under-determined system of equations for the matrices Ai, which is solved
by imposing additional constrains, the most obvious being that the P matrices generate the
best possible mapping.

The linearity limits the functional response of the previous model, hence the results
obtained do not always provide the best representation of the data. To overcome such a
problem, it is possible to use nonlinear mappings to construct the NN. Hence, the relations
in (4.18) can be re-written as

X (1) = f1(A1, X ),

X (2) = f2(A2, X (1)),

Y = f3(A3, X (2))

⎫⎪⎬
⎪⎭ , (4.20)

and the composite function for P layers would then become

Y = fP(AP, . . . , f2(A2, f1(A1, X )) · · · ), (4.21)

which defines the general optimization problem presented in (4.17).
The DMD-based deep-learning algorithm introduced in § 4.1 represents a NN

architecture with a single layer and a linear mapping, Y = AX , as presented in figure 4(b).
The output layer Y corresponds to the wall-shear stress, while the matrix X , defined by
the several models presented in table 3, corresponds to the input layer. The limitations
of the linear mapping are attenuated by generating more complex datasets, which
consider different nonlinear interaction of the DMD modes (see table 3). Regarding the
two-dimensional model proposed to predict the statistics of the wall-shear stress at the
channel wall, this can be defined using the same NN for each point of the domain. Similar
ideas of dividing the computational domain into small subsets to study wall turbulence
using NNs can be found in Jiménez (2018) and Guastoni et al. (2020).
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5. Modularity and mode-to-mode interaction

The DMD expansion (3.1) considers few selected high-amplitude modes that best
represent the quasi-coherent flow scales of a turbulent flow. In other words, the flow
field is reconstructed using a linear combination of DMD modes. However, the nonlinear
interaction of such modes can also reveal interesting features of the flow dynamics, thus
improving our understanding of the drag increasing and decreasing mechanisms for the
flows over the anisotropic porous wall and the performance of the models proposed
to predict relevant observables. Creating communities or clusters of modes measuring
the influence of the mode-to-mode interaction can therefore complement the general
description of the flow physics, reducing the complexity of the flow model.

Let us introduce the definition of a dynamical system of a network graph

dχm

dt
= h(χm) +

M∑
p=1

Cmpψ(χm,χp), m = 1, . . . , M, (5.1)

where χ is a state variable, h and ψ are nonlinear functions and Cmp is the adjacency
matrix (with dimension [m × m]), showing the interaction within the edge between the
nodes m and p. To detect a community, it is possible to use the modularity maximization
algorithm (Newman 2004; Meena et al. 2018). The modularity Q measures the difference
between the edge interactions in a community and the same interaction in a network
generated randomly, with similar distribution degree and size. Modularity is defined as

Q = 1
2ne

∑
mp

[
Cmp − sin

msout
p

2ne

]
δ(wm, wp), (5.2)

where ne is the number of edges in the network, sin
m = ∑M

p=1 Cmp is the in-degree,
sout

p = ∑M
m=1 Cmp is the out-degree and δ(cm, cp) is the Kronecker delta, wm ∈ Wl is the

label of the community Wl for the i-element, with l = 1, . . . , Nc, and Nc the number of
communities. Larger positive values of Q indicate more edges in each community (see
Leicht & Newman 2008).

Considering a network conformed by M communities of DMD modes um, with
frequency ωm and amplitude am, modelling the quasi-coherent structures of a complex
turbulent flow (hence δm = 0, as defined in the previous section), we wish to approximate
the nonlinear equation (5.1), for simplicity written in discrete form, as

φk+1
m = h(φk

m) +
M∑

p=1

Cmpψ(φk
m,φk

p), m = 1, . . . , M, (5.3)

where φk
m = amum eiωmtk and Cmp = amap. The functions h and ψ represent the DMD

expansion in (3.1) and the mode-to-mode interaction

h(φk
m) = iωmφ

k
m, (5.4)

and

ψ(φk
m,φk

p) = i(ωm + ωp)

amap
φk

mφ
k
p. (5.5)

Equation (5.3) shows that each community is formed by a single DMD mode, but the
mode-to-mode interaction (constructing the edges of the NN, ψ(φk

m,φk
p)) contributes to
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the general dynamics of the flow, approximated as an expansion of DMD modes. Hence,
the expansion in (3.1) can be re-written taking into account the mode-to-mode interaction
as

vk =
M∑

m=1

φk
m =

M∑
m=1

⎛
⎝h(φk−1

m ) +
M∑

p=1

Cmpψ(φk−1
m ,φk−1

p )

⎞
⎠ . (5.6)

Since the real dynamics is nonlinear, taking into account the nonlinear interaction of
the DMD modes will provide additional information on the effective evolution of the
system and on the significance of the interaction of a pair of modes in the complete
system. The modularity Q quantifies the contribution of the mode-to-mode interaction
to the total network. It compares the magnitude of the interaction of two modes (m and p)
with the magnitude of the interaction of such modes within the total network (the flow).
The number of edges in the network is defined as ne = M ∗ (M − 1)/2, where M is the
number of vertices in the graph (number of DMD modes) and M − 1 is the degree of
interaction, hence each mode is allowed to interact with the remaining modes from the
community. To properly calculate the total influence of the modes in the community, the
mode amplitude used to construct Q should be normalized with the maximum amplitude
of the community. Higher positive values of Q reflect a smaller contribution of the mode
interaction to the general dynamics, suggesting that these flow structures behave more
as independent systems. Smaller values of Q are expected in complex flows, since the
mode-to-mode interaction plays a major role in the general description of these nonlinear
dynamical systems. On the contrary, in simpler flows, the nonlinear interaction is limited
to a smaller number of significant modes, those related to the quasi-coherent flow scales.

6. Flow structures of turbulence over anisotropic porous walls

This section compares the main flow structures identified as DMD modes in the channel
flow with isotropic and anisotropic (DR and DI) walls. The DMD mode amplitudes
and frequencies calculated in the three cases under investigation are shown in figure 5.
The method identifies 12, 15 and 20 DMD modes for the isotropic, DR and DI cases,
respectively. First, we note that the frequency of 10 out of 12 modes from the isotropic case
are similar to those of the DR and DI cases, with larger differences in the amplitude. These
modes will be denoted as the isotropic modes. The maximum relative difference between
pairs of frequencies is ∼7 % for each group of modes identified in the figure. To identify
similar modes, it is possible to use other criteria, for instance, comparing the shape of the
modes. However, since the three cases analysed present different flow features, this second
criterion is less accurate. It is remarkable that in the DR case it is possible to identify two
different DMD modes with frequency ω � 0.08 (note that non-dimensional frequency is
defined by the half-channel height, h, and the bulk velocity, U), instead of a single mode
in the DI and isotropic cases. Secondly, the DR and DI cases display 4 additional modes
with similar frequency (and amplitude), which we will refer to as the anisotropic modes
(since they are not found in the isotropic case).

The frequency range of the DMD modes lies in the interval ∼ [0.015, 0.6]. The
frequency of all the anisotropic modes is smaller than 0.3, whereas the frequency of the
isotropic modes is larger than 0.3 in 7 out of 10 cases. Thus, the anisotropic modes are low-
and intermediate-frequency modes. Finally, it is possible to identify 6 and 2 additional
modes in the DI and isotropic cases, with separate frequency (hence only found in these 2
flows). These will be denoted as the specific modes. The fact that the DR modes are also
identified in the two flows with higher drag suggests that these are high-amplitude modes,
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a m
 / a

1

10–2

ωmω

0 0.1 0.2 0.3 0.4 0.5 0.6

DI DR Isotropic

Figure 5. Frequencies and amplitudes of the temporal HODMD in a turbulent channel flow with isotropic and
anisotropic porous walls, for the DR and DI cases. Big circles indicate modes with similar frequencies for the
three cases, isotropic modes, while squares mark the modes with similar frequencies only in the DR and DI
cases, anisotropic modes. The remaining modes are specific to each case. The modes within the circles are
selected ensuring that the maximum relative difference between pairs of frequencies is ∼7 % (tuneable). The
frequency ω is made non-dimensional with the half-channel height h and the bulk velocity U.

related to the large size flow scales, whose influence remains even when increasing the
flow complexity in the isotropic and DI cases.

Finally, the influence of the modes selected on the total flow is measured by computing
the ratio of kinetic energy of the DMD modes selected (which represent the flow
fluctuations) compared with the total kinetic energy of the flow. This ratio is 21.72 %
for the 20 modes selected in the DI case, 20.12 % for the 15 modes selected in the DR
case and 24.84 % for the 12 modes selected in the isotropic case. Although the flow
complexity is higher in the isotropic case than in the DR case, the energy level is larger in
the former case, even retaining a smaller number of DMD modes. Once the main temporal
DMD modes have been identified, we proceed with the spatio-temporal analysis, as this
helps to study in detail the main flow structures. Indeed, the shape of the temporal DMD
modes, not shown here, is similar in all the cases: streamwise-elongated streaks appear
as the main features near the channel wall, which does not provide any specific physical
insight to distinguish clearly between the 3 cases. Applying STKD to identify spanwise
periodic structures, it is possible to reveal the presence of spanwise rollers, introduced as
rolling motions, arising from a mixing-layer instability (Kelvin–Helmholtz instability, see
details in Gómez-de-Segura & García-Mayoral 2019) just over a surface with spanwise
wavenumber β = 0.

As explained when introducing the sequential STKD algorithm (see § 3.2), spatial
HODMD is applied along the spanwise direction to the modes identified by the temporal
HODMD analysis, see figure 5. Since the flow is forced to be periodic along this direction,
the minimum non-zero wavenumber is βmin = 2π/Lz = 1 (wavelength Lz = 2π = Lz),
also called the fundamental wavenumber; the importance of the high-order harmonics
of the fundamental wavenumber, which are present due to the nonlinearity of the flow
analysed, is revealed by the STKD analysis. The parameters used for this analysis are
d = 1, ε1 = 10−4, ε2 = 10−2. The first tolerance is the same as the one for the temporal
analysis, ensuring that the error made in the STKD calculations is of the same order of
magnitude as in the temporal analysis. Note that the index d = 1 is sufficient to properly
identify the spatial modes, since the flow is periodic.

Figure 6 displays the evolution of the amplitude as function of the wavelength for 6
representative modes, i.e. 3 high-amplitude and 3 low-amplitude modes, in the isotropic,
DR and DI cases. In the three cases, the highest-amplitude mode has wavelength Lz =
0. The amplitude of the remaining modes decreases when increasing the wavelength,
although the amplitude of the modes with Lz = Lz/3 and Lz = Lz/6 presents a slightly
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Lz
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Lz / 5 Lz / 10 Lz / 15 Lz / 20 Lz / 250

Lz / 5 Lz / 10 Lz / 15 Lz / 20 Lz / 250

ω = 0.019ω ω = 0.036ω ω = 0.11ω ω = 0.23ω ω = 0.36ω ω = 0.59ω

ω = 0.017ω ω = 0.036ω ω = 0.11ω ω = 0.25ω ω = 0.34ω ω = 0.47ω

ω = 0.033ω ω = 0.084ω ω = 0.23ω ω = 0.33ω ω = 0.49ω ω = 0.56ω
(a)

(b)

(c)

Figure 6. Amplitude of the spatial HODMD vs the spanwise wavelength obtained using STKD along the
spanwise direction for the turbulent channel flow; (a–c) isotropic wall, DR and DI case.

higher amplitude than the remaining modes. The mode with Lz = Lz/3 is therefore
selected as representative of the main flow structures. The trend followed by the remaining
modes is similar, and hence these are not shown here.

The streamwise velocity contours of the isotropic (see figure 5) spatio-temporal
DMD modes with Lz = Lz/3 at the wall surface (y+ = 0) are displayed in figure 7.
These four modes have been selected as representative because the remaining modes
present a similar behaviour. In the DI case, it is possible to identify spanwise-correlated
structures, confirming the presence of rollers in the drag increasing flow. More specifically,
Abderrahaman-Elena & García-Mayoral (2017) showed that the mechanism triggering
the presence of these spanwise-correlated structures is a Kelvin–Helmholtz instability,
found when the drag increases in the turbulent channel flow. In the DR case, conversely,
the structures are streamwise correlated, although it is also possible to identify some
weak spanwise correlation, gaining intensity at higher frequencies. The low-frequency
streamwise correlated structures are related to the streaks, generally identified near the wall
in turbulent flows, and connected with the self-sustained mechanism of wall turbulence
(Waleffe 1997; Jiménez & Pinelli 1999; Brandt 2014). The high-frequency modes, instead,
are associated with the streak breakdown and their spanwise meandering as presented
by Le Clainche et al. (2020), who performed a similar modal decomposition analysis
revealing the role of the near-wall streaks and the influence of spanwise perturbations on
their breakdown. Finally, in the isotropic case it is also possible to identify the streaks (low
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Figure 7. Module of the DMD isotropic modes presented in figures 5 and 6 for Lz = Lz/3. Streamwise
velocity component at the wall surface. The flow goes from left to right.

and high frequency), and also a stronger spanwise correlation of the flow. The increase of
the flow complexity in the isotropic case compared with the DR, and the presence of
both streamwise and spanwise-correlated structures near the wall suggests the connection
between the streaks breaks down and the presence of spanwise perturbations, as presented
in Andersson et al. (2001) and in Le Clainche et al. (2020), where these structures are
identified by means of HODMD. When the spanwise correlation becomes even stronger,
the rise in flow complexity produces a drag increase, this fact may be connected to the
presence of the rollers in the flow, as discussed in Jiménez et al. (2001).

Figure 8 shows the three-dimensional iso-surfaces of the streamwise velocity component
of the spatio-temporal DMD modes presented in figure 7. The figure shows the modes
with Lz = 0 and Lz = Lz/3. In the flow over an isotropic porous wall, the structures with
Lz = Lz/3 are streamwise correlated, aligned with the streamwise direction, whereas these
structures are streamwise modulated and display a sinusoidal shape in the two remaining
cases. As regards the mode with Lz = 0, the magnitude and extent of these structures
increase with the frequency in the DI case, signalling the presence of the rollers, which
are defined as high-frequency spanwise-correlated structures. A similar spatial structure
is identified in the high-frequency modes in DR (ω � 0.30 and ω � 0.43) as well as in
the isotropic case for ω � 0.43, although the importance of the Lz = 0-modes is less
in these cases than in DI. Concluding, the data confirm the presence of rollers in the
drag increasing flow, connected with a Kelvin–Helmholtz-like instability (see details in
Abderrahaman-Elena & García-Mayoral 2017), apparent in the high-frequency modes with
Lz = 0.

The real and imaginary components of these modes are presented in figure 9. The two
components are different in all cases, indicating the travelling character of these flow
structures, behaving as waves moving along the streamwise direction. Finally, we compare
in figure 10 the three-dimensional iso-surfaces of the four anisotropic spatio-temporal
modes (see figure 5). These modes follow the same trend as the isotropic modes. In
other words, modes with Lz = Lz/3 are streamwise aligned, whereas modes with Lz = 0
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ω � 0.037ω ω � 0.23ω ω � 0.30ω ω � 0.43ω

2ππ

z

y

x
4ππ

2
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Isotropic wall

Drag reducing

Drag increasing

Figure 8. Three-dimensional representation of the spatio-temporal DMD modes presented in figure 7 by
iso-surfaces of the module of the streamwise velocity. Spatio-temporal modes with Lz = 0 in grey and
Lz = Lz/3, coloured by the wall-normal velocity (red and blue correspond to 1 and 0, respectively). The flow
goes from left to right. The bottom left figure shows the reference axis label.

have an increasing magnitude for increasing frequency in the DI case, except for the
low-frequency mode with ω � 0.17, for which the Lz = 0-mode is evident. In the DR case,
spanwise-invariant modes become relevant only in the high frequency mode, ω � 0.26.

From the results presented in this section, it is interesting to mention that DMD generally
succeeds in the analysis of turbulent flows that are characterized by dominant large-scale
motions (see Schmid 2010, 2011). However, in wall turbulence, small-scale high-frequency
structures also play a fundamental role. Nonetheless, we observe HODMD can capture the
essence of the near-wall dynamics surprisingly well by filtering the randomly appearing
small-size flow structures, as if they were noise, maintaining the large and most energetic
flow structures (quasi-coherent structures).

Finally, it is worth comparing the present results with the analysis presented in Le
Clainche et al. (2020). In that earlier work, HODMD was used to identify the flow patterns
in the case of classic turbulence over solid walls. The same method adopted here identified
six different high-amplitude DMD modes from a set of data non-equidistant in time.
The spatio-temporal analyses identified low- and high-frequency modes characterized
by streamwise-correlated structures (in contrast to the present results, where we also
identify spanwise-correlated structures), which represent short near-wall streaks following
a chaotic dynamics. The shape of the DMD modes suggested that one of the mechanisms
triggering the streak breakdown is the interaction between high- and low-speed streamwise
velocity structures.
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Figure 9. Real (a,c,d) and imaginary (b,d,e) parts of two DMD isotropic modes presented in figure 8. The
iso-surfaces display the streamwise velocity of the spatio-temporal modes with Lz = 0 in grey and Lz = Lz/3
coloured by the wall-normal velocity (red and blue correspond to 1 and 0, respectively). The flow goes from
left to right. Panel (e) shows the reference axis label.
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Figure 10. Module of the DMD anisotropic modes presented in figure 5. Iso-surfaces of the streamwise
velocity of the spatio-temporal modes with Lz = 0 in grey and Lz = Lz/3 coloured by the wall-normal velocity
(red and blue correspond to 1 and 0, respectively). The flow goes from left to right. The bottom left figure
shows the reference axis label.
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Figure 11. Same as figure 5 but with red and green arrows to indicate the modes selected to approximate the
statistics of the wall-shear stress for the DI and DR cases, respectively.

7. Performance of the DMD-based model for DI and DR porous walls

This section reports on the application of the DMD-based ROM described in § 4.1 to model
the spatially averaged wall-shear stress. The different models have been tested in the DR
and DI cases previously introduced. Two different types of models have been considered,
varying the number M of temporal DMD modes composing the models presented in
table 3. The first model, uses all the modes selected by the different algorithms and
presented in figure 5, i.e. M = 15 and M = 20 for the DR and DI cases, respectively. The
second ROM selects the modes having a higher influence on the dynamics at the channel
wall. To identify these wall modes, temporal HODMD has been applied in the plane at the
interface between the porous layer and the fluid, using several calibration parameters (value
of d and tolerances) to validate the solution. In this HODMD application, the snapshot
matrix (3.2) is formed by the velocities on the plane at the interface between the porous
layer and the fluid using the DMD expansion (3.1) and the DMD modes presented in
figure 5. This second approach identifies 6 DMD modes for the DI and DR cases. The
frequency and amplitude of these modes are displayed in figure 11, where we compare the
mode selection with the total number of modes previously identified by the HODMD over
the entire domain for the drag reduced and increased flows. Most of the modes (4 out of
6) selected in the flow of reduced drag are low frequency, motivated by the low dynamics
dominated by the presence of the streaks, low-frequency streamwise-correlated structures,
as explained in § 6. The modes selected in the flow with increased drag present a wider
range of frequencies, suggesting the higher flow complexity in the plane at the interface
between the porous layer and the fluid, where the method is applied.

To derive the model coefficients, three different time intervals for the training have been
used, these are: (i) [1, 250] (corresponding to 50 snapshots), (ii) [1, 350] (70 snapshots)
and (iii) [1, 450] (90 snapshots). The smaller training interval corresponds to the interval
for which the HODMD analysis presented in § 6 is carried out (we use 50 snapshots to
identify the dominant flow structures driving the flow dynamics). The two remaining
training intervals are longer to observe the influence of a larger quantity of data on the
model performance. This is quantified by comparing with the direct numerical simulation
(DNS) data, see (4.1) with integration over the time interval [1, 560].

First, we consider the global performance of the different ROMs and thus examine the
RRMSE made in the approximation of the wall-shear stress in figures 12 and 13. The
RRMSE is 100 % in the cases with M = 6 and training interval [1, 250] for the models M1,
M3, M6, M8, M10 in the DI case and M1, M3, M6, M8–M12 in the DR case, in addition
to the model M11 with M = 20 and training [1, 450]. The remaining models display an
error smaller than 10 % and 14 % in the DR and DI cases, respectively. In particular, for
all the models, the RRMSE in models M2, M4, M5 and M7 is smaller than 5 % (in some
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Figure 12. RRMSE of the DMD-based ROMs defined in table 3 for the DR flow. Triangles and crosses
represent M = 6 and M = 15, respectively. Black, red and blue colors display results from the model with
training interval [1, 250] (50 snapshots), [1, 350] (70 snapshots) and [1, 450] (90 snapshots), respectively.
(a) Overall view, (b) zoom over the models with best performance, lower error.
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Figure 13. Same as figure 12 for the DI flow. Triangles and crosses indicate the prediction of the ROM with
M = 6 and M = 20, respectively. (a) Overall view, (b) zoom over the models with best performance, lower
error.

cases ∼1 %) in the DR case; in the DI case, the error is smaller than 6 % (in some cases
∼1 %) for models M2, M5 and M12.

Based on these results, one can conclude that the most robust models, able to better
approximate the wall-shear-stress dynamics over short time periods, are models M2 and
M5, which present the smallest error in both the DR and DI cases, independently of the
training interval and the number of modes M. These models describe the wall-shear stress
as a linear combination of its own function defined by a DMD modal decomposition (see
model MS1 in table 2). Moreover, in model M5, this linear combination is reinforced with
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Figure 14. Reconstruction of the wall-shear stress during the training interval t ∈ [1, 450] using model M12
with M = 15 and 20 for the DR (a) and DI (b) flows. Blue thin line with symbols and green thick solid line
indicate the DNS data and the modelled wall-shear-stress evolution.

a linear combination of the nonlinear term of the wall-shear-stress function, defined by
the interaction of the streamwise and wall-normal velocity fields, both also described as
DMD modal decompositions (see model MS4 in table 2). The simplicity of these two
models suggests the good selection of the DMD modes to describe the flow dynamics
near the wall. It is also remarkable that models using M = 15/20 (depending on the flow
case), present errors smaller than 0.1 % in the reconstruction of the wall stress during the
training period, as shown in figure 14 for the case of longest training and model M12 as
representative example. However, the main goal of the DMD-based ROM is not only to
calculate the wall-shear-stress evolution to approximate the mean, standard deviation and
frequency spectrum for short time intervals, but also to present a model that is stable over
long time intervals. As will be shown below, minimizing the reconstruction error does not
necessarily imply that the model will be optimal for the prediction over long times, well
beyond the training period.

As a second test, to further assess the robustness and the performance of the models,
the different ROMs have been used over the time interval [1, 1500]. Note that some of
the models have been observed to diverge when integrated over long times, in particular
models M1 and M3 (among others) reach extremely high values at time ∼550, and
continue to increase. The convergence of the model is therefore measured by comparing
the maximum and minimum values of the wall-shear stress approximated function,
denoted as Xp

max and Xp
min, with the maximum and minimum values of the wall-shear stress

during the training, denoted as Xmax and Xmin. When the calculated maximum/minimum
values exceed in at least two points 5 % of the maximum/minimum values of the training
(namely Xp

max > 0.05Xmax or Xp
min < 0.05Xmin), the model is assumed to diverge (the
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M Training Model in DR Model in DI

6 [1, 250] — M2, M5, M7, M11
[1, 350] M2, M4, M5, M7, M12 M2, M5, M11
[1, 450] M2, M5 M2, M4, M5, M7, M11

15/20 [1, 250] — M8, M9, M10, M12
[1, 350] M1, M2, M3, M5, M6, M8, M9, M10, M12 M1, M3, M6, M8, M9, M10, M12
[1, 450] M2, M5 M8, M9, M10, M11, M12

Table 4. List of stable models (see definition of each model in table 3), i.e. not diverging ROM during 1500
time units. The models stable both for low and high M are marked in bold.

absolute value of the wall-shear-stress model tends to infinity). A list of convergent DR
and DI models is presented in table 4.

Interestingly, despite that fact that the flow complexity is larger in the DI than in the DR
flow, a larger number of models converge in DI than in DR cases. For the models built with
the DR flow data, none of the models converge when using the training interval [1, 250],
whereas only 4 models converge in the DI flow. As reported in the table, there is a wide
variety of models converging as function of the setting selected for the training and the
number of modes selected M. In DR, models M2 and M5 converge in all cases except in
the test with training interval [1, 250], while in the DI the models converging are M2, M5
and M11 for M = 6 and M8, M9, M10 and M12 for M = 20.

As regards models M2 and M5 (converging for DR and for DI with M = 6 and with
best performance over the shorter time intervals), we recall that these contain the model
setting MS1 (see table 2), which defines the wall-shear stress using each DMD mode and
its interaction separately. Moreover, the model M5 also contains the nonlinear term of
the wall-shear stress, which considers the interaction of the streamwise and wall-normal
velocity fields (described also as a DMD modal decomposition). Therefore, both models
M2 and M5 describe the wall-shear stress as a linear combination of its own function
described as a DMD modal expansion, emphasizing the nonlinear term interaction in M5.
Furthermore, in the DI case for M = 6 model M11 also converges, and for M = 20 the
convergent models are M8, M9, M10 and M12. These models are formed by the two
components of the wall-shear stress, defined in different ways (see table 3) using DMD
modal expansions, namely the derivative of streamwise velocity (linear term) and the
product of streamwise and wall-normal velocities (nonlinear term). In contrast to the DR,
it is remarkable that none of these models contain the setting MS1 (see table 2), which
uses the definition of the wall-shear stress set as a DMD modal decomposition.

These results show that (i) when the flow complexity is large and (ii) the number of
modes composing the model is high, it is not possible to reproduce the statistics of the
wall-shear stress as a linear combination of the defining function estimated using the single
DMD modes, but it is necessary to adjust the influence of each one of the components.
This suggests that the nonlinear interaction of the DMD modes plays a major role in
the definition of the wall-shear stress when the flow is more complex, as also indicated
by the larger number of modes required. Hence, it is necessary to weight each one of
the components based on the level of nonlinear interaction and its contribution to the
general dynamics to properly represent the evolution of the wall-shear stress. Details of
the types of nonlinear interactions between modes are presented in the next section, using
the modularity of the DMD modes, Q.
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Figure 15. From (a,c) to (b,d) relative error for the mean μ and standard deviation σ of the wall-shear stress
as obtained from different ROMs (see definition in table 3) for the DR flow. The reference values are μ = 10−2

and σ = 1.8 × 10−4. Black and blue symbols represent the models with M = 6 and M = 15 DMD modes,
respectively. Circles, crosses and asterisks represent the training intervals [1, 250], [1, 350] and [1, 450]. The
horizontal lines show as reference error values Eμ = 0.001 and Eσ = 0.05.

Finally, the accuracy of the models proposed is quantified by means of the relative
error in the calculations of the mean, μ, and the standard deviation, σ , of the wall-shear
stress, the latter measuring the fluctuation level of this variable. The error is calculated
as Eμ = |μ − μapprox|/μ and Eσ = |σ − σ approx|/σ for the mean and standard deviation,
respectively, with μapprox and σ approx the ROM approximations. The reference values are
μ = 10−2 and σ = 1.8 × 10−4 for the DR case and μ = 1.17 × 10−2 and σ = 2.69 ×
10−4 for the DI case. The relative errors calculated over intervals of 550 and 1500 time
units are reported in figures 15 and 16, where we compare the model predictions over short
and long times. The figures focus on models with relative error smaller than 60 % for the
standard deviation and 2 % for the mean shear stress, and neglect the remaining models.

Starting with the models for the DR flow, see figure 15, we note that the performance
of most of the models is quite good in terms of average values for the long and short
time predictions. The error is smaller than 1 % in the cases with longer training intervals,
[1, 350] and [1, 450], for all the cases. For the model trained with data over the interval
[1, 250], the relative error is ∼1 %–2 % in most of the models with M = 15, whereas the
error is larger than 2 % for the models with M = 6. This suggests that the performance
of the ROM with M = 15 is better for the DR case. The error in the standard deviation
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Figure 16. Same as figure 15 for the DI case. Black and blue symbols represent the models with M = 6 and
M = 20 DMD modes, respectively. The reference values are μ = 1.17 × 10−2 and σ = 2.69 × 10−4.

is smaller than 5 % for the short time predictions and some specific models, i.e. M1, M3,
M5, M6, M10, M11 and M12; however, for long time predictions, only model M2 with
M = 15 and training interval [1, 350] maintains an error below than 5 %. This is consistent
with the convergence criterion introduced above for convergent models over long time
periods. As previously mentioned, only models M2 and M5 converge for the two larger
training intervals, nevertheless, the error pertaining the shear-stress standard deviation is
larger than 15 % over long periods in most of the cases, suggesting that these models
might anyway diverge for times larger than 1500. The divergence may be related with
extremely large fluctuations. Similarly, the model prediction may be driven by extremely
small fluctuations, vanishing in time, leading to a constant wall-shear stress after an initial
transient, which would give large errors for the standard deviation. Both cases, the model
tending to infinity or to constant values, are equally incorrect.

As shown in figure 16, the ROM performance is slightly better in the DI than for the DR
case in terms of the mean value of the wall-shear stress. The relative error is smaller
than 1 %, including the results from models with the shortest training. This suggests
that the DMD modes better approximate the averaged general dynamics in the DI than
in the DR case, and consequently the model can use less information for the training.
The models that present an error smaller than 5 % for the stress standard deviation are
M2, M4, M7, M8, M11 and M12 for the short time predictions and for some specific
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conditions, and when M = 6, only models M7 (with shortest training) and M11 (shortest
and intermediate training interval). This result is again consistent with the convergence
criterion introduced before, although, as in the DR case, the error in the standard deviation
on most of the convergent models is larger than 15 %, suggesting that these might diverge
(or the fluctuations vanish) over time periods longer than 1500. On the contrary, the models
presenting an error smaller than 5 % will be stable in time (some test performed, not shown
for the sake of brevity, prove that these models do not diverge for longer times).

As shown above, the model presenting the best performance in the DR case is based
on M = 15 DMD modes, while in the DI case the best ROM among those used here
only uses M = 6 modes. As discussed in § 6, the 6 modes that have been selected to best
reproduce the dynamics at the wall are low-frequency structures for the DR flow, mainly
related to the presence of streamwise streaks. On the contrary, in the DI case, the 6 modes
upon which the ROM are built are characterized by a wider range of frequencies. This fact
suggests that using DMD modes with a wider spectrum of frequencies provides a better
approximation of the fluctuating quantities defining the wall-shear stress. As concerns the
type of models needed for a more accurate long time prediction, model M2, optimal for the
DR flow, is a direct function of the wall-shear stress and is defined as a linear combination
of DMD modes; model M11, optimal for the DI flow, considers separately the two terms
defining the wall-shear stress and adjusts the influence of each DMD mode, reflecting the
largest complexity of the DI flow. In particular, in model M11 the nonlinear term of the
wall-shear-stress function only considers the interaction of the DMD mode M with itself
(see table 3), neglecting the remaining mode-to-mode interaction. Finally, the training
interval [1, 350] appears to provide the best approximation in both flows. Some relevant
information might be lost using shorter intervals, whereas training over longer intervals
may add redundancies that may lead to divergence or cancellation effects. This type of
problem is also found when using machine learning tools and is known as overfitting:
when the training interval is too large, the model is adapted to perfectly reproduce the
training data, but not very accurate in representing new data, which are seen as unexpected
new events. This explains why the models previously shown in figure 14, presented a good
performance reproducing the training, but they diverge for longer time intervals.

The predictions of the two best models, at least among those proposed here, i.e. M2 and
M11 for the DR and DI flow, respectively, are presented in figure 17. Figure 18 shows
the relative error calculated at each time instant comparing the real solution with the
corresponding model, |(τ approx

k − τk)/τk|. This error is always smaller than 3.5 % and
4.5 % for the DR and DI cases during the training (time 0–350), and smaller than 6 %
and 8 % in the predictions (time interval 350–560). The RRMSE is 1.64 % for the DR and
2.47 % for the DI case. Moreover, the trend in the figure suggests that these can be used to
approximate the statistics of the wall-shear stress over longer time intervals. As mentioned
before, these models have also been used to predict longer time intervals (∼10 000 time
units) showing stable results with errors in the standard deviation smaller than 5 %.

Finally, the frequency spectrum obtained from each one of these models is presented
in figure 19, and compared with the frequencies calculated using the original signal
and presented in figure 5. The spectrum has been calculated using HODMD, since this
provides more accurate results than classical techniques, such as fast Fourier transform,
when using a smaller quantity of data (see details and examples in Le Clainche & Vega
2017a). The tolerances and other calibration parameters are set as in the three-dimensional
HODMD analysis presented in § 6. In the DR case, the wall-shear-stress model is based
on the superposition/interaction of modes of 15 different frequencies, hence the calculated
spectrum identifies these dominant frequencies with a relative error smaller than 5 %.
As expected, the spectrum also presents some additional frequencies, coming from the
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Figure 17. Time history of the wall-shear stress from the two best models (Eσ ≤ 0.05), obtained using the
training interval [1, 350]. (a) Model M2 with M = 15 in the DR case. (b) Model M11 with M = 6 in the DI
case. The blue thin line with symbols and green thick solid line indicate the DNS data and the ROM prediction
of the wall-shear stress.

0
10–4

200

(b)(a)

400 600

Time

R
el

at
iv

e 
er

ro
r

0 200 400 600

Time

10–3

10–2

10–1

10–4

10–3

10–2

10–1

Figure 18. Time history of the relative error comparing the shear-stress data with the predictions of the same
models as in figure 17 using the training interval [1, 350]. (a) DR flow and model M2 using M = 15 DMD
modes. (b) DI flow and model M11 using M = 6 DMD modes.

nonlinear interaction of the DMD modes, see the definition of the model M2 presented in
table 3. Also, the differences found in the amplitudes of the modes are expected and due
to the definition of the model. In the DI case, the data in the figure pertain the model M11,
based on 6 DMD modes. The spectrum reproduces these 6 frequencies with a relative error
smaller than 5 %. Some of the additional frequencies coming from the interaction of the
DMD modes coincide with some of the 20 frequencies selected in the three-dimensional
analysis presented in the previous section. This explains why the model using only 6
frequencies provides better results than the model using 20 frequencies, which can produce
overfitting and destabilization of the model prediction in time.

To test the robustness of these two models, we also apply them to estimate the flow
over the top channel wall. To this aim, (4.1) and (4.5) are re-calculated for y = y0 + 2h
for the model (M2 with M = 15 for DR and model M11 with M = 6 for DI with training
interval [1, 350]. As for the bottom surface, the results are stable in time for both the DR
and DI cases. The relative error made to approximate the mean is smaller than 1 % in
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Figure 19. Frequency spectrum of the models presented in figure 17 (blue square) and compared with the
frequency spectrum calculated in the original signal presented in figure 5. The black crosses indicate the
complete frequency spectrum (M = 15/20 for DR/DI) whereas the red circles the M = 6 modes selected
because of their major impact on the flow dynamics. (a) DR flow. (b) DI case.
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Figure 20. Same as figure 18 for the top channel wall (y = y0 + 2h).

both cases and the relative error calculated at each time instant is smaller than 3 % and
4 % for the DR and DI cases in the training interval and smaller than 10 % and 7 % for
the temporal predictions, as shown in figure 20. The RRMSE is 2.79 % for the DR and
1.85 % for the DI case. In contrast to the results presented for the bottom wall, the DI case
is slightly better approximated than the DR case. Nevertheless, the order of magnitude
of the relative error is similar, suggesting that the ROM proposed is valid to approximate
the spatially averaged wall-shear stress. An additional test has been carried out using the
models trained on one of the channel walls to approximate the evolution of the statistics
of the wall-shear stress at the other wall in the temporal interval [0, 560]. As presented
in figure 21 the order of magnitude or the relative error obtained in the DR flow using
model M2 with M = 15 DMD modes and in the DI flow and model M11 using M = 6
DMD modes is maintained similar as in the previous cases that consider the training of
the model at the same wall where it is applied. The RRMSE is ∼2.94 % and ∼2.68 % for
the DR and DI cases, respectively.
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Figure 21. Same as figure 18 for the top channel wall (y = y0 + 2h) using the model trained at the opposite
channel wall. .

7.1. Two-dimensional predictions
The ROM introduced in § 4.1 is used here as presented in § 4.2 to predict the statistics of
the wall-shear stress over the whole fluid–porous interface. The present DMD-based model
only identifies the evolution of the wall-shear stress based on the nonlinear interaction
of the DMD modes, which describe the quasi-coherent structures. When calculating
the statistics of the time and spatially averaged wall-shear stress, the importance of
the stochastic small-scale motions is attenuated by averaging; however, this stochastic
component plays an important role on the local values. Hence, we can only expect the
present model to capture the regeneration of new flow structures, which are the result of the
nonlinear interaction of modes, as presented in figures 22 and 23. These figures compare
the wall-shear stress in the channel wall with the results obtained using the model M2 with
M = 15/20 (for DR/DI cases) DMD modes and training interval [1, 350]. As expected, the
wall-shear stress displays streamwise-correlated structures, which are more distinct and
larger in the DR case, both in the DNS and in the model.

The model choice is based on the results in the previous section, where the models
presenting the best performance for long time calculations of the spatially averaged
wall-shear stress were the model M2 using M = 15 modes for DR and the model M11
using M = 6 modes for DI (see figure 17). These two models, M2 and M11, have been
tested here using both M = 6 and 15/20 DMD modes. In contrast to the results of the
spatially averaged wall-shear stress, the model M = 11 diverges in time, and the model
presenting the best performance is model M2 using M = 15/20 (DR/DI) DMD modes.
Tests using the three different training intervals (250, 350 and 450) have also been carried
out, with the two longest training cases (350 and 450 time units) the ones presenting
the best results, although it is also possible to obtain stable solutions for long times
using the shortest training. Nevertheless, the high complexity of the spatial and temporal
evolution of the wall-shear stress, where the stochastic flow motions play a fundamental
role, requires as much information as possible (large number of DMD modes and training
interval). In model M2, the nonlinear interaction of the DMD modes aims to represent the
wall-shear stress behaviour, instead of including additional information on the nonlinear
modal interaction as in model M11. This suggests that model M11 diverges in time because
the approximation used here, based on a linear mapping (see (4.8)), is not sufficiently
complex to properly re-organize the nonlinear interaction of modes. The results obtained
using the two largest training intervals (350 and 450) with M2 and M = 15/20 (DR/DI)
are quite similar, so, as in the spatially averaged wall-shear stress, the training interval
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Figure 22. Wall-shear stress in the channel wall in the DR case. (a,c,e,g) DNS data, (b,d, f,h) approximation
using model M2 with M = 15 and training interval [1, 350]. From top to bottom solution calculated at time
instants: 165, 325, 515 and 535. The blue and red colours are used to indicate fluctuations equal to ±0.3 the
mean value of the wall-shear stress in the plane.

[1, 350] is set as the best performing (it uses less information to obtain similar results).
Hence, the configuration using model M2 with M = 15/20 (DR/DI) and training interval
[1, 350] is deemed as the best choice to construct this model. It is remarkable that in the
DI case, model M2 with M = 20 was not stable for long time predictions of the spatially
averaged wall-shear stress, see table 4, which is not the case for the local wall-shear-stress
calculations. In the latter case, overfitting was responsible for the model destabilization
(perfect matches in the training interval); the high complexity of the present case avoids
overfitting, confirming the influence of the non-modelled stochastic small-scale motions
in determining the exact locations of the hot spots of large stress.

Finally, it is interesting to compare the evolution in time of the wall-shear stress at
some representative points on the interface, presented in figures 24 and 25 for the DR and
DI cases. The differences between the model and the real solution are evident, although
the relative instantaneous error, calculated as in figures 15 and 16, ranges from 10 % to
35 % in the DR and 10 % to 30 % in the DI flow for the standard deviation and from
1 % to 11 % in the DR and 6 % to 15 % in the DI flow for the mean value. These results
suggest that the flow motion, calculated by this DMD-based model, also plays an important
role in wall-bounded turbulence, although it is not possible to perfectly predict the local
wall-shear stress without considering the stochastic small-scale part of the flow.
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Figure 23. Same as figure 22 for the DI case. From (a) to (h): solution calculated at time instants 190, 270,
455 and 495.
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Figure 24. Time history of the local wall-shear stress calculated at different points (x, z) at the channel wall
using the model M2 with training interval [1, 350] and M = 15 for the DR flow. Blue thin line with symbols
and green thick solid line indicate the DNS data and the ROM prediction. From (a) to (d), the (x, z) coordinates
are: (0.38Lx, 0.41Lz), (0.41Lx, 0.46Lz), (0.71Lx, 0.54Lz), (0.89Lx, 0.2Lz).
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Figure 25. Time history of the local wall-shear stress calculated at different points (x, z) at the channel
wall using the model M2 with training interval [1, 350] and 20 modes for the DI flow. Blue thin line with
symbols and green thick solid line indicate the DNS data and the ROM prediction. The 4 points are located at:
(0.125Lx, 0.09Lz), (0.375Lx, 0.12Lz), (0.875Lx, 0.09Lz), (0.95Lx, 0.58Lz).

8. Modularity and mode-to-mode interaction in a community of DMD modes

This section discusses the influence of the mode-to-mode interaction in a NN formed by
M communities, each one consisting of a single DMD mode. The modularity Q for the
DR and DI flows is displayed in figure 26 using the total number of modes retained by
the DMD (M = 15 for DR and M = 20 for DI). The modes are organized in ascending
order according to their amplitudes (modes 1 to M from smaller to larger amplitude).
As expected, the value of Q is smaller in the DI than in the DR case, indicating the
higher complexity in the former case. In other words, the contribution of each pair of
modes in the DI case is closer to their individual contribution to the general dynamics,
suggesting that the mode-to-mode interaction plays a major role in the description of this
specific nonlinear dynamical system. On the contrary, in the DR case, the contribution
of each couple of modes to the general description is less relevant; in other words,
each pair of modes contributes as independent factors, whose combination leads to the
general flow description. This explains the good performance of M2 with M = 15 in the
DR case documented in the previous section for the spatially averaged wall-shear-stress
approximation. In a simpler dynamics such as DR wall-bounded turbulence, it is possible
to approximate the flow observables as a linear combination of DMD modes. This is not
possible for more complex systems, and indeed we have demonstrated above that using
a linear combination of M = 20 DMD modes in the DI case is not enough to predict
the wall-shear stress for long time intervals. The higher complexity of this flow provides
DMD modes containing more information than in the DR case, hence using the linear
combination of DMD modes leads to overfitting, limiting the long time predictions. In
this case, the influence of each mode on the general dynamics is stronger, and hence
the modes need to be weighted to accurately model the system behaviour. Paradoxically,
however, only 6 modes may result enough for an accurate prediction, when their dynamics
is properly re-scaled. This suggests that the higher complexity of the DI flow is reflected
in the 6 modes selected, presenting a wide frequency range that properly reproduce
the spatially averaged wall-shear-stress fluctuations. It is also remarkable that, in this
model, the nonlinear term only considers the interaction of the DMD mode M with itself,
neglecting the remaining mode-to-mode interactions. Only keeping 6 DMD modes and
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Figure 26. Contours of the modularity Q, showing the influence of the mode-to-mode interaction in the
general dynamics (a,c) and the frequency of the DMD mode M (b,d). The figures report the interactions among
all the DMD modes in figure 11 for the DR and DI flows.

attenuating the nonlinear mode interaction adjusts the complexity of the model proposed
to the DI flow. Modelling more complex flows probably would require considering all the
nonlinear mode interactions, using a larger number of DMD modes or even using nonlinear
mapping functions, as suggested by the results presented in § 7.1, which, however, remains
a topic of future research. As first observation, the calculations of the wall-shear stress in
the wall-parallel planes, a more complex task, show that the importance of the stochastic
component prevents overfitting and a linear combination of a large quantity of DMD
modes provides a good model performance.

Finally, we display in figure 27 the contribution to the entire community (formed by
M = 15 and 20 modes in the DR and DI cases) of the 6 DMD modes selected for the
small dimension model (see figure 11), where these modes were chosen by looking at their
role in the near-wall dynamics, see § 6. As shown in the figure, the modularity of these
6 modes is similar to that of the general case: the behaviour and contribution of these 6
modes to the nonlinear mode interaction are similar to the general description presented by
all the modes, with the same differences discussed above between the two types of models
best representing the shear stress for the DR and DI cases. These observations confirm that
the 6 DMD modes selected for the small dimension model are sufficient to describe the
general flow dynamics.
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Figure 27. Same as figure 26 for the contribution of the 6 modes selected in figure 11 in the entire community.

9. Conclusions

This article introduces a new strategy to create a ROM based on modal decomposition
using deep-learning strategies. The method is applied to the turbulent flow over an
isotropic porous wall, in particular to approximate the main low-order statistics of
wall-shear stress at the interface between the porous layer and the fluid region. The
model decomposes the turbulent flow into an expansion of DMD modes. These modes
are organized in various ways, creating different functions defining a surrogate model
that has the same mean, standard deviation and similar frequency spectrum (containing
additional frequencies triggered by the nonlinear interaction of modes) of the wall-shear
stress extracted from the simulations. The coefficient of the expansion are obtained by
minimizing the error of this observable during a training interval.

To build the model, the following linear transformation Y = AX is built, where Y is
the time evolution of the wall-shear stress during the training interval, which is obtained
from DNS, the vector A contains the model coefficients, unknown, and the matrix X
contains the proposed models, in which the DMD modes are organized in several ways:
one of the models defines the wall-shear stress as a simple superposition of DMD modes
whereas the remaining models separate the two terms of the wall-shear-stress equation
(the linear wall-normal derivative and the nonlinear terms from the Reynolds stress at
the porous interface) as different combination of the selected DMD modes. In the former
case, it is possible to study the contribution of each one of these terms in the model and
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weight them accordingly to create a robust and stable model in time. The coefficients
lumped in the vector A are easily calculated via the pseudoinverse of X and then used
in the DMD modal expansion to extrapolate the signal in time by simply adjusting the
temporal terms associated with each DMD mode. In this way, a new matrix X of larger
dimension is created (as it contains the extrapolation of the flow field to later times); by
applying the same linear transformation, we hence obtain a new vector Y , which contains
a prediction of the temporal evolution of the wall-shear-stress function defined over longer
time intervals. As it is not possible to predict a function that contains a chaotic component,
as generally the case in turbulent flows, prediction here and in machine learning refers to
the generation of new data with similar statistics as those of an initial data set. This model
follows the same architecture of a single layer NN, where the input data X are mapped to
a classification Y using a linear activation function (linear mapping). Hence, the present
article combines ideas of data dimensionality reduction based on physical principles with
some basic concepts of deep learning.

As mentioned above, the model is applied to reproduce the statistics of the wall-shear
stress, both spatially averaged and the local two-dimensional function, in a turbulent
channel flow over an anisotropic porous wall. Two different wall permeability are
considered, with increasing and decreasing drag and denoted as DI and DR flows.
To study the flow physics encoded in these modes, HODMD is also applied to
snapshots of the turbulent channel flow over an isotropic porous wall for comparison.
The HODMD is applied in a new way to identify the DMD modes representing
the large-scale motions of the turbulent flow, which are 15 and 20 in the DR and
DI flow. Spatio-temporal DMD modes have also been calculated in the three cases
using the sequential STKD algorithm. The three-dimensional reconstruction of these
spatio-temporal modes, periodic along the spanwise direction, reveals the presence of both
spanwise and streamwise-correlated structures near the porous interface. As expected from
previous studies, the spanwise-correlated structures, referred to as rollers (rolling motions
arising from a mixing-layer instability), are more evident in the DI case, especially in the
high-frequency modes. On the contrary, in the DR case, streamwise-correlated structures
are dominant: these are associated with low-frequency DMD modes and connected
with the streamwise streaks generally found in wall-bounded turbulence. The isotropic
case, in which the drag is larger than that of the flow over a rigid wall, displays an
intermediate state between the DR and DI cases, with the presence of both streamwise-
and spanwise-correlated structures as identified by the DMD modes.

In the paper, we compare various models to follow the temporal evolution of the spatially
averaged wall-shear stress, created with different combinations of the DMD modes, and
using three different training intervals, of 250, 350 and 450 time units. The results show
that some models are able to reconstruct the wall-shear stress within the training interval
with relative errors smaller than 0.01 %. The performance of the model proposed is tested
approximating the statistics of the wall-shear stress for 1500 time units. These models
have been proven to remain stable in time. The relative error made by these predictions is
smaller than 5 % and 0.1 % for the standard deviation and the mean value in the DR flow,
and smaller than 5 % in the DI flow for both observables, and the RRMSE comparing
the real solution and the model is 1.64 % for the DR and 2.47 % for the DI case. The
performance of the same models has also been tested over the top channel wall, obtaining
relative errors smaller than 1 % for the mean value in both the DR and DI cases, and
relative mean square error of 2.79 % for the DR and 1.85 % for the DI case. The simplicity
of the model proposed makes it a suitable tool that can be applied for predictions of
statistics in turbulent flows, considering that it is not possible to predict chaos.
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Following the same idea, the model has been used to approximate the statistics of
the local wall-shear stress at the two-dimensional fluid–porous interface. The present
model only considers the large-scale (in the sense of streaks and near-wall vortices)
low-frequency component of the turbulent flow (DMD modes), so instead of providing
locally the accurate evolution of the wall-shear stress, it reproduces the regeneration of
the large-scale flow structures, which are obtained as nonlinear interaction of modes.
The results suggest that the flow motion calculated by this DMD-based model plays
an important role in modelling wall-bounded turbulence, although knowledge of the
small-scale chaotic motions is necessary to predict the local wall-shear stress.

Finally, a network is formed using communities consisting of each DMD mode. The
modularity of the community is related with the relevance of the nonlinear mode-to-mode
interaction in the flow description. As expected, nonlinear interactions are more important
in the DI flow than in the DR flow, reflecting the higher complexity of the former flow. The
modularity is shown to affect the sort of DMD-based deep-learning model that presents
a better performance in each case. Specifically, the wall-shear-stress statistics can be
approximated more simply defining the wall-shear stress as a linear combination of the
DMD modes estimated at different time steps in the DR flow. On the contrary, to obtain
better approximations of the wall-shear-stress statistics in the DI flow, it is necessary to
weight the DMD modes defining the two components of the wall-shear-stress function:
the linear part defined by the derivative of the streamwise velocity and the nonlinear
part defined by the product of the streamwise and wall-normal velocity components. In
particular, the nonlinear contribution only considers the interaction of the DMD mode M
with itself, neglecting the remaining mode-to-mode interactions. The higher complexity
of the DI flow provides DMD modes containing more information than in the DR case,
hence the linear combination of DMD modes leads to overfitting, limiting the long time
predictions. Increasing the flow complexity even more, or aiming to predict other flow
quantities, the simpler mode-to-mode interaction would possibly gain importance, which
deserves future research. On the other hand, to approximate the statistics in the local
wall-shear stress, when the stochastic flow motions play a more important role, it is
necessary to use as much information as possible (large number of DMD modes and
training interval). For these complex approximations, especially over longer time intervals,
weighting the DMD modes defining the two components of the wall-shear-stress function
with a linear mapping is not sufficient to properly re-organize the nonlinear interactions;
using nonlinear mappings is therefore worth future investigations.

As a final conclusion, we believe that to extend the present methodology to the analysis
of other flows it is necessary (i) to evaluate the flow complexity (laminar, turbulence,
deterministic, stochastic) and (ii) to prevent overfitting (related to the information
contained in the DMD modes and the modularity of the model). In highly complex flows,
when the training interval cannot be perfectly reproduced and overfitting would be warded
off, the best choice is using a linear combination of the DMD modes estimated at different
time steps. Using a nonlinear mapping is again a viable alternative, deserving future
research.
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