
20 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

DETECTive: Machine Learning-driven Automatic Test Pattern Prediction for Faults in Digital Circuits / Petrolo, Vincenzo;
Medya, Sourav; Graziano, Mariagrazia; Pal, Debjit. - ELETTRONICO. - (2024), pp. 32-37. (Intervento presentato al
convegno Proceedings of the Great Lakes Symposium on VLSI 2024 tenutosi a Clearwater (USA) nel June 12-14, 2024)
[10.1145/3649476.3658696].

Original

DETECTive: Machine Learning-driven Automatic Test Pattern Prediction for Faults in Digital Circuits

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3649476.3658696

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2990442 since: 2024-09-04T16:20:56Z

ACM

DETECTive: Machine Learning-driven Automatic Test

Pattern Prediction for Faults in Digital Circuits

Vincenzo Petrolo
University of Illinois Chicago, USA

Politecnico di Torino, IT
vpetro4@uic.edu

Sourav Medya
University of Illinois Chicago, USA

medya@uic.edu

Mariagrazia Graziano
Politecnico di Torino, IT

mariagrazia.graziano@polito.it

Debjit Pal
University of Illinois Chicago, USA

dpal2@uic.edu

Abstract

Due to the continuous technology scaling and the ever-increasing complexity and size of the hard-
ware designs, manufacturing defects have become a key obstacle in meeting end-user demand. De-
spite decades of research, traditional test-generation techniques often struggle to scale to massive
and complex designs. Such scalability issues stem from the numerous backtracking the traditional
test generation techniques perform before converging to a test pattern. In this work, we present
DETECTive that leverages deep learning on graphs to learn fault characteristics and predict test
pattern(s) to expose faults without requiring backtracking. DETECTive is trained on small circuits,
and its learned knowledge is transferable to predict test patterns for circuits that contain up to 29×
more gates than the training circuits. Since DETECTive avoids backtracking completely, it can
predict test patterns up to 15× faster than academic tools and up to 2× faster than commercial
tools. DETECTive achieves up to 100% pattern accuracy on synthetic designs and up to 95% test
pattern accuracy on realistic designs. To our knowledge, DETECTive is the first to leverage deep
learning to predict test patterns for digital hardware designs that can complement the traditional
test generation techniques for faster design closure.

1 Introduction

The progressive technology miniaturization and the ever-increasing complexity of modern designs
contribute to post-manufacturing defects. The widely used stuck-at fault model [9] represents inter-
connections fixed at specific logic values, potentially causing significant errors, especially in arith-
metic circuits. To detect circuit faults, effective test patterns are required. These patterns must
activate faulty behavior(s) in faulty circuits compared to defect-free ones and propagate this behav-
ior to the circuit’s output. However, there are 2n possible test patterns in circuits with n inputs
making exhaustive enumeration computationally inefficient.

To accelerate test pattern generation, D-Alg [16], PODEM [11], and FAN [10] assign Boolean
values to inputs using heuristics. However, reconvergent fanout often triggers conflicts, causing the

algorithm to backtrack and revisit prior input assignments. The cumulative backtrack count can
surpass hundreds of thousands for large circuits with hard-to-detect faults, impacting test pattern
generation time. Consequently, it is crucial to develop scalable and computationally
efficient techniques for test generation.

The success of Deep Learning (DL) in diverse scientific domains have led to investigations into its
potential application in Automatic Test Pattern Generation (ATPG). Early attempts, such as in [7]
for combinational circuits and later in [5] for sequential circuits, employed neural networks to model
faulty gate-level netlists. However, these approaches face scalability issues for larger circuits. More
recent techniques [17, 18] utilize Artificial Neural Networks (ANNs) to learn heuristics that guide
the PODEM algorithm and reduce the frequency of backtracking. Nonetheless, these techniques
still grapple with scalability challenges due to its coupling with the PODEM algorithm. Recently,
Graph Neural Networks (GNNs) [13] have shown significant success in different tasks across various
domains [6]. Due to the graph’s natural alignment with circuit representations [8], GNNs have
produced state-of-the-art results in multiple circuit-related design automation problems [20, 14]. In
this work, we develop a scalable and computationally efficient DL model, DETECTive, using GNNs
to predict test patterns for large digital circuits. DETECTive is designed to learn the activation and
propagation of a stuck-at fault even if the circuit contains reconvergent fanout. It uses the learned
knowledge to predict Boolean values for the circuit’s inputs. The adoption of a predictive model for
test pattern generation has two significant advantages – i) it eliminates the need for backtracking in
the process and ii) it enhances runtime efficiency during test pattern prediction.

We summarize our main contributions as follows – (i) To our knowledge, we are the first to
introduce the concept of Automatic Test Pattern Prediction (ATPP). We have also developed
DETECTive, a fully DL-based proof-of-concept model to predict test patterns; (ii) We have de-
veloped a systematic technique to encode and learn fault type and its relation to fault’s activation
and propagation paths. To that extent, we identify design features that are highly relevant to test
pattern prediction and applicable across hardware designs; (iii) We establish with empirical evidence
that DETECTive’s learned knowledge of test pattern prediction is transferable and can be applied
to realistic designs that are 29× bigger than training designs. DETECTive can predict test patterns
with up to 95% accuracy and runs 15× faster than academic tools and 2× faster than state-of-the-art
commercial ATPG tools.

2 Preliminaries

Automatic Test Pattern Generation (ATPG). Errors may be induced in a chip during man-
ufacturing for various reasons, including imperfection at the nanoscale fabrication. Among many
such models that capture various errors, we consider those captured using stuck-at-fault models. A
stuck-at-fault is an error where a wire between a pair of logic gates is always stuck at a specific logic
value, either 0 or 1. ATPG finds one or more test patterns, i.e., assigns Boolean values to inputs
that detect as many faults as possible on a chip. A test pattern needs to activate a fault followed
by propagating the fault’s effect to one or more visible outputs. For an n input design, the possible
number of patterns are 2n, making it infeasible to perform an exhaustive search. Researchers have
proposed multiple ATPG algorithms and heuristics such as D-Alg [16], PODEM [11], and FAN [10]
to accelerate the test pattern generation. Even after decades of research, finding a test pattern with
high-fault coverage for industrial-scale designs is extremely difficult.

Despite incorporating heuristics to enhance its efficiency, ATPG encounters challenges when it
produces an incorrect test pattern. In such instances, ATPG resorts to time-consuming backtracking,
which involves undoing specific Boolean assignments and replacing them with new ones. This issue
becomes particularly problematic when dealing with industrial-scale circuits, as the large search
space can cause the backtracking process to become the limiting factor in the overall performance
of the algorithm. This work aims to avoid backtracking during test pattern generation using DL
techniques.

Graph Neural Networks. Graph neural networks (GNNs) use deep learning architectures, incor-
porate both graph topology and node attribute information to solve many tasks in various applica-

2

Input
Predictor

Path
Encoding &
Aggregation

Verilog
to Graph

Fault
Injection

Graph
Faulted
Graph

Activation & Propagation
 Paths

Graph
Representation

Learning

DETECTive ATPG Learning
Paths of
learned
 nodes

Cone
Embedding

Figure 1: DETECTive workflow.

PI
Stuck-at
Fault

...

...

(a)

PI
Stuck-at

Fault

...

... Cone Embedding

(b)

Figure 2: (a): The Primary Input (PI) activates the stuck-at fault through the green path and
propagates it through the blue path. (b): The Cone embedding contains both the paths.

tion domains [20, 14]. Intuitively, GNNs map similar nodes nearby in a low-dimensional embedding
space. GNNs operate by message passing between neighboring nodes and update the representation
of a node by aggregating information from its neighbors. There exists various GNN models [13, 19]
with two broad categories – transductive and inductive. While transductive models require the entire
graph structure for training to produce node embedding vectors, inductive models can be applied to
unseen graphs without retraining. In this work, we use an inductive GNN to predict test patterns.

Long-Short Term Memory. The Long-Short Term Memory (LSTM) model [12] is widely used
in the context of Natural Language Processing to encode variable-length sentences. A LSTM is an
improved version of a Recurrent Neural Network (RNN) designed to address the vanishing gradi-
ent problem in traditional RNNs. LSTMs are well-suited at capturing long-range dependencies in
sequential data for task like time series forecasting. They use memory cells to store and retrieve
information over extended time periods, facilitating the learning of complex sequential patterns. In
our setting, each path is a variable-length gate sequence, and therefore we use LSTM for the Path
Encoding.

3 ATPP as a Learning Problem

We propose to automatically predict test pattern(s) for a gate-level combinational circuit assuming
the stuck-at-faultmodel. Formally, we define Automatic Test Pattern Prediction (ATPP) asGiven a
gate-level netlist C with I inputs, O outputs, and a single stuck-at fault f , DETECTive
predicts test pattern(s) that can both excite and propagate f to at least one of the
outputs of C.

Workflow and insights: Figure 1 shows the workflow of DETECTive that has three different
modules. Given a gate-level netlist, we construct a directed graph where each node of the graph
represents a gate or a primary input (PI), and each directed edge represents an interconnect between
a pair of gates or a gate and PIs. Then, we inject a stuck-at fault on a randomly selected wire. We
annotate the appropriate graph edge with the fault and call that graph a faulty graph. The Graph
Representation Learning module learns new representations (features) for each node in the faulty
graph. As DETECTive predicts a Boolean value for each PI individually, it becomes crucial for the
model to capture the impact of each PI on the fault detection. To this end, we extract the activation
and propagation paths (c.f., Figure 2a) using the depth-first search (DFS) algorithm on the learned
graph representations. We also provide an embedding (or representation) of the Cone of Influence
(COI) shown in Figure 2b to the Input Predictor. The representation of COI is obtained via the
Path Encoding and Aggregation module by using the representations of the important paths. This
process re-iterates for all the primary inputs until the entire test pattern is built.

3

Graph Neural Network

A

B

C

D

A

B

C

D
1-hop

neighborhood

2-hops
neighborhood

(a)

B

C

D

(b)

LSTM
PI

0/1MLP

Activator
Fault Type

PI

Activation
Path

Propagation
Path

LSTM 0/1MLP

Propagator

(c)

LSTM
PI

0/1MLP

Activator
Fault Type

PI

Activation
Path

Propagation
Path

LSTM 0/1MLP

Propagator

(d)

Figure 3: (a): The final output from the GNN with one GAT [19] layer followed by GCN [13] layers
is the learned representations from the initial graph structure and the node features.(b): A path of
learned nodes carries information regarding the neighboring topology as well. (c): Activator module
architecture. (d): Propagator module architecture.

4 Proposed Methodology: DETECTive

4.1 Overview of DETECTive architecture

Our goal is to learn how to automatically predict test patterns for a gate-level design. DETECTive
consists of three modules – 1) Graph Representation Learning, 2) Path Encoding and Aggregation,
and 3) Input Predictor. The primary objective of DETECTive is to process the input netlist and
learn important features that involve domain-specific insights such as encoding of the activation and
propagation paths. Figure 1 shows our proposed ATPP framework DETECTive.

4.2 Graph Representation Learning

In this module, we aim to learn features automatically to solve the ATPP problem. For a circuit
containing a stuck-at fault, we focus on two critical aspects for our DL model – a) the circuit topol-
ogy,and b) the fault activation and propagation paths that each PI leverages for fault identification.

Circuit as a graph. We model circuits as graphs where each gate is considered as a node, and the
corresponding interconnections are the directed edges [8]. Further, each node (gate) has a feature
vector that comprises three key components: i) the gate type, ii) a categorical variable indicating
if the gate output is faulty, and iii) fan-out, i.e., the number of connections to other gates at the
output. This graph-based modeling helps us to obtain expressive representation of the circuit netlist
by leveraging the power of the recent DL methods on graph data.

Learning circuit representation using GNNs. DETECTive uses a Graph Neural Network
(GNN)-based architecture to create powerful and expressive representations using the circuit topol-
ogy and initial node features. The goals of the GNN are to automatically learn a new set of feature
vectors tailored to the ATPP problem, and to incorporate the neighboring circuit topology for each
node in the feature vector (c.f., Figure 3a). To achieve the above-mentioned goal, we design a
GNN-based architecture composed of a Graph Attention Network (GAT) [19] layer followed by
Graph Convolutional Network (GCN) [13] layers with following objectives. The GAT layer com-
putes a new representation for each node by aggregating the information from the embeddings of its
neighbors with different attention weights as follows:

x′
i = αi,iΘxi +

∑
j∈N (i) αi,jΘxj

where α is the learnable attention weight, Θ is a set of learnable parameters, x are the feature
vectors, and N (i) is the 1-hop neighborhood of the ith node. Due to the attention mechanism,
the representation of individual nodes focus on important neighbors (e.g., the faulty ones in our
case). After incorporating the importance of neighbors, we focus on the circuit topology in the
representation learning process. To accomplish this, we take the enhanced representations obtained
from the prior step and further feed them through multiple GCN layers. The objective here is to
aggregate both the features from the neighborhood and the circuit topology to achieve an informative
representation of each nodes:

x′
i = Θ⊤ ∑

j∈N (i)∪{i}
ej,i√
d̂j d̂i

xj

where Θ is a set of learnable parameters, ej,i is the weight associated to the edge i → j and d̂i (as

well as d̂j) is the sum of all the weights of the edges. Thus, the new feature vector at node i is

4

computed as the sum of normalized neighboring feature vectors times a set of learnable parameters.
The GNN layers allow to capture the complex feature relationship and the information over longer
paths.

4.3 Path encoding and aggregation

As ATPG algorithms [16, 11, 10] heavily depend on activation and propagation paths to justify
Boolean value assignments to PIs, we consider these paths as essential features for our model. How-
ever, the path lengths are variable. Therefore, one cannot use a multi-layer perceptron (MLP) for
final prediction of Boolean values to each primary input. Thus, we first need a fixed size repre-
sentation for all paths. We encode a path as a sequence of different number of nodes into a fixed
size n-dimensional embedding in an Euclidean space. The LSTM [12] is highly effective to make
predictions for sequential input data. Hence, we leverage LSTM to generate path embeddings.
LSTMs possess three key attributes: i) the capacity to retain information from previous inputs,
ii) the capability to process sequences of varying lengths, and iii) the ability to produce a unified
encoding (or representation) for the entire input sequence. Therefore, given a path of length n, we
formulate the path sequence as follows: P = [p0,p1, ...pn−1]; where each pi is the embedding of
each learned node of the GNN module (c.f., Figure 3b). For each pi, the LSTM computes a hidden
state (i.e., memory) hi which is used for computing the next hidden state hi+1 of the element next
in the sequence with hi+1 = f(pi,hi), where f is the learnable function by LSTM. Subsequently, f
computes the final state encoding hn−1 as a representation of the entire path P.

Activator and Propagator. The activation and propagation of a fault are critical in detecting
the fault (c.f., Section 2). Consequently, in DETECTive, we have designed dedicated DL components
aimed at learning these two tasks with two separate modules each utilizing a different LSTM. These
modules are referred to as the Activator and the Propagator shown in Figure 3c and 3d, respectively.

The Activator aims to predict a Boolean value for a PI such that the fault is activated. It takes
an activation path and the fault type, and performs a binary classification task as follows:

yact = Softmax(MLP(LSTM(P)||ϕ))
where the LSTM computes an encoding for the given activation path P. This is further concatenated
with the fault-type ϕ to generate a final vector which is fed through a MLP to predict the Boolean
value assignment to the PI. The Softmax is a non-linear function that transforms the MLP output
in a probability yact of either being 0 or 1. The Propagator module is similar to the Activator. The
module only takes the propagation path as input as the fault type is irrelevant for propagation. We
train DETECTive end-to-end with the Cross-Entropy loss function. Consequently, the two MLPs
learn their respective tasks and generate the representation of the paths.

4.4 Input Predictor

In our model, we construct the final Input Predictor module to predict a Boolean value for a PI. To
achieve this, we aggregate all the information regarding the activation and propagation paths from
the previous modules. We refer to this as the cone embedding (C) and compute it as follows:

C = (∥p−1
i=0 (xact

i ∥ (yacti)) ∥ (∥p−1
i=0 (xprop

i ∥ ypropi))

where ∥ is the concatenation operator, xact
i is the encoding of the ith activation path and yacti is

the Activator’s prediction to be assigned to the PI. Note that, if there are less than p activation
paths, the ith vectors are replaced with zeros (for experiments, we have chosen p = 10). The cone
embedding C contains all the path encodings as well as the respective predictions made from the
Activator and Propagator. Subsequently, the cone embedding is fed into a deep neural network (i.e.,
an MLP) which assigns a Boolean value to a PI using a Sigmoid function, y = Sigmoid(MLP(C)),
where the Sigmoid adapts the output of the MLP in a range between 0 and 1.

5

0010

Predicted Test Pattern

XX00

Ground Truth

Accuracy = 0.75
Figure 4: An example of our accuracy metric.

4.5 Our learning task

Predicting a test pattern is an iterative procedure where DETECTive independently assigns a
Boolean value to each PI of the circuit under analysis. Ideally, we want the predicted pattern
to be as close as possible to the ground truth. Therefore, we formulate the learning task as a min-
imization problem where we minimize the Binary Cross Entropy loss function which quantifies the
difference between the predicted pattern and the ground truth. The loss function is:

L =
∑N−1

i=0 BCE(Ti, fθ(G,ϕ,Ai, Pi))

where fθ is our model DETECTive, G is the graph for the circuit under analysis, ϕ represents the
fault type, Ai is a set of activation paths, and Pi is a set of propagation paths. DETECTive predicts
the value to be assigned to the ith input and computes the loss L using the corresponding bit in the
ground truth test pattern Ti. Since the task requires a binary prediction (i.e., an input could be
either 0 or 1), we use the BCE loss function. Our end goal is to minimize the loss L by optimizing
the model parameters θ.

5 Experimental Setup

Dataset generation: To train DETECTive we need substantial amount of data involving fault
location, fault activation, and fault propagation paths. To this end, we develop a parameterized Ran-
dom Circuit Graph Generator (RCGG) that accepts number of inputs, number of outputs, maximum
fan-in and fan-out, maximum path depth, and types of gates as input and outputs a combinational
circuit as a directed graph object and a Verilog netlist. Next, we synthesize the generated netlist
using Yosys [4] and use ABC [1] for the technology mapping. Without loss of generality, we restrict
ABC to use only NOT and 2-input NAND gates during technology mapping. Our dataset contains
2,000 combinational circuits where each circuit has four inputs, one output, and a depth between 4
and 30. We replicate each circuit multiple times and randomly inject exactly one fault at different
location. This produces training circuits with diverse activation and propagation paths.

Ground truth extraction: In ML parlance, ground truth is used to quantify the quality of
the trained model and the predicted output. In the context of ATPP, the task of ground truth
extraction is harder as there may exist multiple test patterns (ground truths) that can activate and
propagate the same fault. To avoid model bias, we extract all the test patterns for a given fault
using ATALANTA [2].

Training parameters: We train DETECTive on the 80% of the dataset and validate on the
remaining 20% dataset. We use 1000 epochs and a learning rate of 0.001, and select the model
parameters with the highest validation accuracy. Each module (e.g., GNN, LSTM, MLP) has the
hidden dimension of 32.

Evaluation platform: We train DETECTive on NVIDIA Tesla P100 GPUs and Intel Xeon E5-
2650 @2.20 GHz.

Evaluation metrics: We train DETECTive to generate a single test pattern that exposes the
designated stuck-at fault, prioritizing it rather than aiming for broader fault coverage. Considering
the possibility of having multiple test patterns for a single stuck-at fault, we compute our model’s
accuracy by selecting the test pattern that exhibits the closest similarity to the predicted test
pattern. The accuracy metric is determined through a bit-wise comparison of the two test patterns.
In Figure 4, all bits in predicted test pattern (on left) except the third bit from right matches with
ground truth (on right). Hence, the prediction accuracy is 3/4 = 0.75.

6

4 8 16 32 64
Depth

64

32

16

8

4

In
pu

t
Si

ze

 1.00 1.00 0.98 0.88 0.79

 0.99 0.99 0.97 0.87 0.73

 0.98 0.97 0.92 0.81 0.75

 0.97 0.95 0.89 0.82 0.76

 0.92 0.91 0.85 0.84 0.79

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

(a)

1 2 3 4 5 6 7 8 9 10
Propagation Paths

10
9
8
7
6
5
4
3
2
1

#
 A

ct
iv

at
io

n
Pa

th
s

0.73 0.50 1.00 0.75 0.92 0.86 1.00 0.67 0.82 0.77

0.89 0.80 1.00 1.00 0.73 0.92 0.80 0.82 0.50 0.71

0.90 0.61 0.83 1.00 0.77 0.86 0.59 0.65 0.62 0.68

0.67 1.00 0.75 0.72 0.71 0.89 0.69 0.89 0.88 0.77

0.75 0.85 0.83 0.83 0.67 0.62 0.84 0.67 0.90 0.76

1.00 0.90 0.88 0.73 0.85 0.81 0.83 0.88 0.81 0.75

0.92 0.91 0.85 0.70 0.70 0.81 0.81 0.75 0.81 0.73

0.91 0.73 0.81 0.77 0.93 0.79 0.75 0.82 0.75 0.77

0.95 0.90 0.91 0.92 0.91 0.89 0.83 0.85 0.90 0.83

0.88 1.00 0.88 0.47 0.86 0.77 0.67 0.65 0.80 0.69
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Bi
t

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

(b)

Figure 5: (a) Test accuracy on faulty circuits with different dimensions. (b) Bit-level prediction
accuracy with increasing reconvergency for activation and propagation tasks.

0 10 20 30 40 50
Fault Level

0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82

Te
st

 A
cc

ur
ac

y

(a)

4 8 16 32 64
Input Size

5
10
15
20
25
30

Ru
nt

im
e

(m
s)

DETECTive
ATALANTA
TMAX

(b)

4 8 16 32 64
Depth

5
10
15
20
25

Ru
nt

im
e

(m
s)

DETECTive
ATALANTA
TMAX

(c)

Figure 6: (a) Test accuracy for deeper faults. Runtime comparison between DETECTive, ATA-
LANTA, and Synopsys TMAX with (b) increasing inputs and (c) increasing depth.

6 Experimental Results

6.1 Accuracy with varying circuit parameters

In this experiment, we investigate effect of the number of inputs and circuit depth on DETECTive’s
test pattern prediction accuracy. We use circuit datasets with number of inputs and depth varying
as 2N with N = 2, 3, . . . , 6 and inject a stuck-at-fault randomly per circuit. Figure 5a shows
average prediction accuracy per dataset. We observe that as the number of inputs increases (Y-
axis), DETECTive’s test pattern prediction accuracy progressively increases. DETECTive achieves
pattern accuracy of up to 100% (on average greater than 90%) on all datasets. This is due to the
fact that a significant fraction of the test patterns assign don’t care values (i.e., x) to most of the
inputs and only sets either 0 or 1 to only a few inputs for fault detection, thus simplifying the
prediction process. On the other hand, as circuit depth increases (X-axis), DETECTive’s accuracy
progressively decreases. This is due to the LSTM in the Activator and Propagator modules which
lose precision in the path embedding task after a specific path length. Such loss in precision in path
embedding makes the pattern prediction task harder for the input predictor module, which heavily

7

c1
7

w
en

c

m
ip

sc
u

c4
32

us
bf

_c
rc

16

rc
a1

6

ba
r1

6
c8

80

c1
90

8

de
co

de
r

c4
99

c2
67

0

c3
54

0

i2
c_

ct
rl

c7
55

2
0

500

1000

1500

2000

G
a
te

 C
o
u

n
ts

NAND Gates

NOT Gates

(a)

c1
7
wb_

en
c

mips
cu

c4
32

us
bf

_cr
c1

6
rca

16
ba

r1
6

c8
80

c1
90

8

de
co

de
r
c4

99
c2

67
0

c3
54

0

i2c
_ct

rl

c7
55

2

Design Names

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 A
cc

ur
ac

y

(b)

Figure 7: (a) Number of gates for each Verilog design used for testing. (b) Test accuracy for realistic
Verilog benchmarks.

relies on those embedding to make the final prediction. We also observe a similar loss in accuracy as
we scale circuit by increasing the input size and the circuit depth. This experiment shows that
DETECTive is a promising approach to predict test patterns for circuits.

6.2 Accuracy in presence of reconvergent fanout

In this experiment, we investigate DETECTive’s prediction accuracy in the presence of multiple
activation and propagation paths. Such paths constitute a reconvergent fanout, often leading to
conflicting input assignments resulting in backtracking. We generate a dataset containing 10,000
circuits of fixed depth and fixed input size. We consider up to 10 activation paths and 10 propaga-
tion paths when measuring the accuracy of the test patterns predicted by DETECTive. Since our
prediction is at bit-level, instead of considering word-level accuracy, we consider bit-level accuracy of
test patterns. Figure 5b shows test pattern accuracy as a function of number of activation and prop-
agation paths. We observe that with a progressive increase in the number of activation paths and
propagation paths, the test pattern prediction accuracy progressively decreases from 88% to 68%.
With more paths, the task of Boolean value assignment to inputs becomes increasingly difficult for
the input predictor. This experiment shows that DETECTive is capable of predicting
highly accurate test patterns in the presence of reconvergent fanout.

6.3 Accuracy with varying fault location

In this experiment, we investigate how the fault location affects DETECTive’s test pattern prediction
accuracy. To this end, we generate circuit datasets containing circuits of an input size of four and
a depth of 64 and inject faults at levels between 1 and 50. The results in Figure 6a shows that the
test pattern accuracy progressively decreases as the fault location gets closer to the output. This is
because a deeper fault location requires a longer activation path which increases the difficulty of the
path embedding task. This experiment shows that DETECTive is reasonably effective in
predicting test patterns for both shallow and deep faults.

6.4 Test pattern prediction runtime comparison

In this experiment, we compare the inference runtime of DETECTive with ATALANTA [2] and
Synopsys TMAX [3]. It’s worth noting that tools like ATALANTA and TMAX typically do not
encounter runtime challenges with circuits of this scale. Nevertheless, the comparison provides
valuable insights into the relative efficiency of DETECTive’s DL model in this context, offering a
perspective on potential runtime improvements compared to traditional tools. First, we compare

8

4 8 16 32 64
Depth

64

32

16

8

4

In
pu

t
Si

ze

1.00
(+ 0.00)

1.00
(+ 0.00)

0.98
(+ 0.00)

0.90
(+ 0.02)

0.81
(+ 0.03)

0.99
(+ 0.00)

0.99
(+ 0.00)

0.98
(+ 0.00)

0.89
(+ 0.02)

0.77
(+ 0.04)

0.98
(+ 0.00)

0.97
(+ 0.01)

0.94
(+ 0.02)

0.85
(+ 0.04)

0.80
(+ 0.05)

0.98
(+ 0.00)

0.96
(+ 0.01)

0.91
(+ 0.02)

0.87
(+ 0.05)

0.82
(+ 0.06)

0.93
(+ 0.01)

0.93
(+ 0.02)

0.89
(+ 0.04)

0.89
(+ 0.05)

0.86
(+ 0.07)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

(a)

4 8 16 32 64
Depth

64

32

16

8

4

In
pu

t
Si

ze

0.57
(+ 0.00)

0.36
(+ 0.03)

0.13
(+ 0.06)

0.01
(+ 0.01)

0.00
(+ 0.00)

0.60
(+ 0.00)

0.34
(+ 0.07)

0.18
(+ 0.07)

0.05
(+ 0.03)

0.00
(+ 0.00)

0.58
(+ 0.00)

0.25
(+ 0.05)

0.10
(+ 0.05)

0.04
(+ 0.02)

0.01
(+ 0.00)

0.51
(+ 0.00)

0.26
(+ 0.04)

0.19
(+ 0.09)

0.09
(+ 0.05)

0.04
(+ 0.01)

0.57
(+ 0.04)

0.53
(+ 0.12)

0.35
(+ 0.10)

0.26
(+ 0.08)

0.22
(+ 0.06)

0.1

0.2

0.3

0.4

0.5

Co
ve

ra
ge

(b)

Figure 8: (a): Ensemble model improvement compared to Figure 5a. (b): Average test patterns
coverage of ensemble model.

runtime for a fixed-depth circuit with increasing number of inputs. We fix the circuit depth at 4
and show runtime comparison in Figure 6b. Since DETECTive iteratively predicts test patterns, we
observe a progressive increase in DETECTive’s runtime starting at 2.6 ms for a 4-bit test pattern
to 3.2 ms for a 64-bit test pattern. When compared with ATALANTA and TMAX, we achieve a
runtime improvement of up to 15× and 2×, respectively.

In the second experiment, we compare runtime for fixed-size input circuit with increasing depth.
We fix the input size to 4. Figure 6c shows the runtime comparison for fixed-size input circuit. We
observe that DETECTive is 10× faster than ATALANTA and comparable to TMAX. The runtime
increase with progressive depth increase is due to the longer time taken by LSTM to compute em-
bedding of longer paths. Moreover, note that ATALANTA and TMAX are compiled tools whereas
DETECTive is implemented in Python and thus incurs overhead introduced by the Python in-
terpreter. This experiment shows that DETECTive is computationally efficient when
predicting test patterns and often faster or comparable to the state-of-the-art ATPG
tools.

6.5 Knowledge transferability to real designs

In this experiment, we evaluate DETECTive’s effectiveness on realistic designs in terms of pattern
prediction accuracy. Figure 7a shows gate counts of our realistic designs. Figure 7b shows prediction
accuracy of DETECTive for the realistic designs. We observe a slight decrease in the accuracy as
the circuit size progressively increases. It is worth noting that in spite being trained on synthetic
designs, DETECTive predicts test patterns with high accuracy for realistic designs that contain up
to 29× more gates than synthetic designs. This experiment shows that DETECTive learns to
predict test patterns and its learned knowledge is transferable, making it a promising
approach for real-world adoption.

6.6 Accuracy and coverage via ensemble models

For a stuck-at fault, traditional ATPG might find multiple test patterns to detect it. However,
DETECTive can predict only one test pattern at once. Since we predict as compared to generation
of traditional ATPG, there exists a chance that the test pattern may be unable to detect a fault.
Correspondingly, we create an ensemble E of DETECTive models trained with different seeds and
ground truth test patterns to increases the chances of detecting a fault. We evaluate E on the
same test dataset of Section 6.1 in terms of test pattern accuracy and coverage. In Figure 8a we
observe improved test pattern accuracy for almost all circuit sizes. This is due to the presence
of multiple DETECTive instances in E which together predict more accurate set of test patterns.
When compared to Figure 5a, the average test pattern accuracy improves by up to 7%. Next, we
evaluate if E produces any additional test patterns compared to the single-instance DETECTive
of Section 6.1. We measure the coverage increase as the number of newly predicted test patterns by
E expressed as a fraction of ground truth test patterns. Figure 8b shows the results. The ensemble
E improves the test pattern coverage by up to 12%. This experiment shows that ensembled
DETECTive model can substantially increase the likelihood of predicting a correct test
pattern.

9

7 Limitations

Further exploration of enhanced path encoding techniques is required to broaden DETECTive’s
applicability. Despite achieving high accuracy in test pattern prediction for many circuit config-
urations, DETECTive exhibits certain limitations when dealing with deeper fault locations and
reconvergent fanout scenarios, which are well-known challenges for traditional ATPG tools. This
behavior is related to the creation of path embeddings through LSTM networks. While ensem-
ble models can improve accuracy, they are unable to address this underlying issue. Despite these
limitations, DETECTive is promising for rapid prediction of test patterns.

8 Related work

Recently, DL has been applied to various challenging design automation problem including ATPG.
Chakradhar et al. pose ATPG as an energy minimization problem and employ ANN for test pattern
generation [7].Later, they extended it to sequential circuits [5]. Roy et al. [17, 18] propose a neural
network-enhanced PODEM algorithm which improves decision-making and avoids global energy
minima computation. Pan et al. [15] use Reinforcement Learning to generate test vectors for
delay-based Trojan detection. In contrast, DETECTive is a standalone framework that uniquely
combines graph learning and LSTM-based sequence learning to predict test patterns. It’s important
to highlight that we intentionally refrain from comparing DETECTive to above-mentioned works as
they are tailored for test pattern generation whereas DETECTive focuses on a predictive modeling
a distinction crucial for a fair evaluation.

9 Conclusion

We present DETECTive, a fast, scalable, and accurate DL model to predict test patterns. These
patterns can be used to detect faults and as seed patterns to traditional ATPG tools.

References
[1] Accessed: September 4, 2024. ABC. https://people.eecs.berkeley.edu/~alanmi/abc/.

[2] Accessed: September 4, 2024. Atalanta. https://github.com/hsluoyz/Atalanta.

[3] Accessed: September 4, 2024. Synopsys TestMAX ATPG. https://www.synopsys.com/implementation-and-signoff/
test-automation/testmax-atpg.html.

[4] Accessed: September 4, 2024. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/.

[5] J. Bannino, J.-F. Santucci, and D. Floutier. 1996. Hybrid neural model for automatic test pattern generation. Int’l
Conf. on Electronics, Circuits, and Systems (ICECS) 1 (1996), 259–262 vol.1.

[6] H. Cai, V. W. Zheng, and K. Chang. 2018. A Comprehensive Survey of Graph Embedding: Problems, Techniques, and
Applications. IEEE Trans. on Knowledge and Data Engineering (TKDE) 30, 09 (2018), 1616–1637.

[7] S.T. Chakradhar, M.L. Bushnell, and V.D. Agrawal. 1988. Automatic test generation using neural networks. Int’l Conf.
on Computer-Aided Design (ICCAD) (1988), 416–419.

[8] Pal D., Ma S., and Vasudevan S. 2020. Emphasizing Functional Relevance Over State Restoration in Post-Silicon Signal
Tracing. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 39, 2 (2020), 533–546.

[9] Richard D. Eldred. 1959. Test Routines Based on Symbolic Logical Statements. J. of ACM (JACM) 6, 1 (1959), 33–37.

[10] Hideo Fujiwara and Takeshi Shimono. 1983. On the Acceleration of Test Generation Algorithms. IEEE Trans. on
Computers (TC) C-32, 12 (1983), 1137–1144.

[11] Prabhakar Goel. 1981. An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic Circuits. IEEE
Trans. on Computers (TC) C-30 (1981), 215–222.

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation (NC) 9, 8 (1997),
1735–1780.

[13] Thomas N Kipf and Max Welling. 2016. Semi-supervised Classification with Graph Convolutional Networks. arXiv
preprint arXiv:1609.02907 (2016).

10

[14] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu. 2019. High Performance Graph Convolutional
Networks with Applications in Testability Analysis. Design Automation Conf. (DAC) (2019), 1–6.

[15] Z. Pan, J. Sheldon, and P. Mishra. 2020. Test Generation using Reinforcement Learning for Delay-based Side-Channel
Analysis. Int’l Conf. on Computer-Aided Design (ICCAD) (2020), 1–7.

[16] T. Paul Roth, Willard G. Bouricius, and Peter R. Schneider. 1967. Programmed Algorithms to Compute Tests to Detect
and Distinguish Between Failures in Logic Circuits. IEEE Trans. on Computers (TC) EC-16, 5 (1967), 567–580.

[17] Soham Roy, Spencer K. Millican, and Vishwani D. Agrawal. 2021. Training Neural Network for Machine Intelligence in
Automatic Test Pattern Generator. Int’l Conf. on VLSI Design (ICVD) (2021), 316–321.

[18] Soham Roy, Spencer K. Millican, and Vishwani D. Agrawal. 2022. Multi-Heuristic Machine Intelligence Guidance in
Automatic Test Pattern Generation. Microelectronics Design and Test Symp. (MDTS) (2022), 1–6.

[19] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2018. Graph
Attention Networks. Int’l Conf. on Learning Representations (ICLR) (2018).

[20] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H. S. Lee, and S. Han. 2020. GCN-RL Circuit Designer: Transferable
Transistor Sizing with Graph Neural Networks and Reinforcement Learning. arXiv preprint arXiv:2005.00406 (2020),
1–6.

11

