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We investigate the asymptotic behavior of nonlinear Schrö-
dinger ground states on d-dimensional periodic metric grids 
in the limit for the length of the edges going to zero. We prove 
that suitable piecewise–affine extensions of such states con-
verge strongly in H1(Rd) to the corresponding ground states 
on Rd. As an application of such convergence results, quali-
tative properties of ground states and multiplicity results for 
fixed mass critical points of the energy on grids are derived. 
Moreover, we compare optimal constants in d-dimensional 
Gagliardo–Nirenberg inequalities on Rd and on grids. For L2-
critical and supercritical powers, we show that the value of 
such constants on grids is strictly related to that on Rd but, 
contrary to Rd, constants on grids are not attained. The proofs 
of these results combine purely variational arguments with 
new Gagliardo–Nirenberg inequalities on grids.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

A d-dimensional periodic metric grid is a noncompact metric graph obtained by gluing 
together in a Zd-periodic pattern infinitely many copies of a given compact graph (see 
e.g. Fig. 1). The peculiarity of such structures is the combination of a one-dimensional 
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microscale, common to every metric graph, with a higher dimensional macroscale. Heuris-
tically, this suggests that, in the limit for the length of the edges going to zero, periodic 
grids may give a locally-one dimensional approximation of Rd, and one may imagine to 
exploit this fact to design one-dimensional models capable to mimic the dynamics of 
systems in higher dimension. Suppose we are interested in a model defined on Rd and 
we are able to construct another model on grids whose behavior, when the edges of the 
graph are sufficiently small, is close to that of the original one. The graph approximation 
can then provide a low dimensional tool for the analysis of a d-dimensional phenomenon. 
This can be seen as an analogue of the classical approximation with point grids, with 
the possible advantage of a microscale finer than the distance between the vertices of the 
lattice. Though currently out of reach, in this sense one may even envisage tackling open 
problems in higher dimensions relying on the potential gain of a locally one-dimensional 
framework. Conversely, assume we are interested in a model on grids for which we can 
identify a counterpart in Rd somehow close to the original model when the edgelength of 
the grid is small enough. One can then interpret the d-dimensional model as an effective 
description of that on grids. When the behavior in Rd is well-understood, this may be 
helpful to derive qualitative information on the dynamics on the network, whose direct 
investigation is often hindered by the complexity of the structure.

Such a prospect raises the following question: given a model in Rd and a corresponding 
one on metric grids with vanishing edgelength, is it possible to prove that solutions of 
the latter converge in some sense to those of the former?

Of course, whether this can be done turns out to depend on the specific problem under 
exam. The present paper aims at initiating the investigations in this direction. Here we 
focus on a class of nonlinear PDEs that, also due to their prominent role in a variety of 
applications, have been widely studied by now both on metric graphs and on domains 
of Rd: nonlinear Schrödinger equations.

In Rd, it is well-known (see e.g. [18]) that, for every p ∈ (2, 2∗), where 2∗ = ∞ if d = 2
and 2∗ = 2d

d−2 if d ≥ 3, the stationary NonLinear Schrödinger (NLS) equation

Δu + |u|p−2u = ωu (1)

admits, for every ω > 0, a unique (up to translation) positive solution u decaying at 
infinity. From a variational point of view, this solution can be characterized in at least 
two ways. For every p ∈ (2, 2∗), u is an action ground state at frequency ω, i.e. a global 
minimizer of the action

Jω,Rd(u) := 1
2‖∇u‖2

L2(Rd) + ω

2 ‖u‖
2
L2(Rd) −

1
p
‖u‖p

Lp(Rd)

restricted to the associated Nehari manifold

Nω,Rd : =
{
u ∈ H1(Rd) : J ′

ω,Rd(u)u = 0
}

=
{
u ∈ H1(Rd) : ‖∇u‖2

2 d + ω‖u‖2
2 d = ‖u‖p p d

}
.
L (R ) L (R ) L (R )
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(a) (b)

Fig. 1. The two-dimensional metric square grid (a) and the three-dimensional metric cubic grid (b).

Moreover, for every p ∈
(
2, 2 + 4

d

)
, u is also an energy ground state with mass μ, i.e. a 

global minimizer of the energy

ERd(u) := 1
2‖∇u‖2

L2(Rd) −
1
p
‖u‖p

Lp(Rd)

in the mass constrained space

H1
μ(Rd) :=

{
u ∈ H1(Rd) : ‖u‖2

L2(Rd) = μ
}

.

In this case ω plays the role of a Lagrange multiplier and is in one-to-one correspondence 
with the mass μ.

Recently, nonlinear Schrödinger equations have been considered extensively also on 
metric graphs. The literature on the subject is constantly growing, so that here we limit 
to redirect e.g. to [1,7–15,19,21,24,25,28–33] and references therein for some of the most 
recent developments, and to [2,6,29] for more comprehensive discussions. In particular, 
the existence of action and energy NLS ground states has been addressed on periodic 
grids in [3,5,20]. When G is a d-dimensional periodic grid, it has been shown that the 
action

Jλ,G(u) := 1
2‖u

′‖2
L2(G) + λ

2 ‖u‖
2
L2(G) −

1
p
‖u‖pLp(G)

restricted to the Nehari manifold

Nλ,G : =
{
u ∈ H1(G) : J ′

λ,G(u)u = 0
}

=
{
u ∈ H1(G) : ‖u′‖2

L2(G) + λ‖u‖2
L2(G) = ‖u‖p p

}

L (G)
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admits a ground state for every λ > 0 if p > 2, whereas the energy

EG(u) := 1
2‖u

′‖2
L2(G) −

1
p
‖u‖pLp(G)

constrained to the space of functions with fixed mass

H1
μ(G) :=

{
u ∈ H1(G) : ‖u‖2

L2(G) = μ
}

admits a ground state for every μ > 0 if p ∈
(
2, 2 + 4

d

)
(see [20] for action ground states, 

[3,5] for energy ground states with d = 2 and d = 3 respectively). Both ground states 
are (up to a change of sign) positive solutions of the NLS equation with homogeneous 
Kirchhoff conditions at the vertices{

u′′ + |u|p−2u = λu on every edge of G∑
e�v

du
dxe

(v) = 0 for every vertex v of G.

Here, e � v means that the edge e is incident at the vertex v, whereas du
dxe

(v) denotes 
the outward derivative of u at v along e.

Comparing the above results for ground states on Rd and on grids unravels a strong 
analogy and triggers the question: do NLS ground states on grids somehow approximate 
those in Rd when the length of the edges is sufficiently small?

Another element of the similarity between grids and higher dimensional spaces, 
strictly related to the energy ground state problem described above, is the validity on 
d-dimensional grids of the Sobolev inequality

‖u‖
L

d
d−1 (G)

≤ SG‖u′‖L1(G) ∀u ∈ W 1,1(G) , (2)

which is the analogue of the well-known inequality in Rd

‖u‖
L

d
d−1 (Rd)

≤ SRd‖∇u‖L1(Rd) ∀u ∈ W 1,1(Rd) (3)

(see [3,5] for a proof in the cases d = 2, 3). Inequalities (2)–(3) yield the following d-
dimensional Gagliardo–Nirenberg inequalities

‖u‖qLq(G) ≤ Kq,G‖u‖
d+(2−d) q

2
L2(G) ‖u′‖

(
q
2−1

)
d

L2(G) ∀u ∈ H1(G)

‖u‖q
Lq(Rd) ≤ Kq,Rd‖u‖d+(2−d) q

2
L2(Rd) ‖∇u‖

(
q
2−1

)
d

L2(Rd) ∀u ∈ H1(Rd)
(4)

for every q > 2 if d = 2 and every q ∈ (2, 2∗) if d ≥ 3, that play a crucial role in giving 
lower boundedness of the energy functional in the mass constrained space and determin-
ing the threshold 2 + 4

d on the nonlinearity power (for a wider discussion see e.g. [23]). 
Analogous questions as for NLS ground states can then be raised for these functional 
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inequalities on grids and Rd: is there any relation between their optimal constants? As 
the length of the edges goes to zero, do optimizers of these inequalities on grids, if they 
exist, converge to those in Rd?

2. Setting and main results

To present our main results, we develop our discussion on d-dimensional cubic grids. 
For every d ≥ 2 and ε > 0, let Gd

ε ⊂ Rd be the d-dimensional cubic grid with edgelength 
ε in Rd (see Fig. 1 for d = 2, 3), i.e. the metric graph Gd

ε =
(
VGd

ε
,EGd

ε

)
given by

VGd
ε

= εZd, EGd
ε

=
{
(v1,v2) ∈ VGd

ε
× VGd

ε
: |v1 − v2| = ε

}
.

To compare functions defined on Gd
ε with those defined on the whole Rd, we consider the 

following piecewise–affine extension procedure. For every k = (k1, . . . , kd) ∈ Zd, let

Ck := [εk1, ε(k1 + 1)] × · · · × [εkd, ε(kd + 1)]

be the d-dimensional cube of edgelength ε with edges on Gd
ε and εk as vertex with 

smallest coordinates, and write Ck as

Ck =
⋃

σ∈Sd

Sk,σ ,

where the union runs over all the permutations σ in the symmetric group Sd of the set 
{1, . . . , d} and Sk,σ is the d-simplex given by

Sk,σ =
{
(x1, . . . , xd) ∈ Ck : xσ(1) − εkσ(1) ≤ xσ(2) − εkσ(2) ≤ · · · ≤ xσ(d) − εkσ(d)

}
.

(5)
By construction, each Sk,σ is the convex envelope of d + 1 vertices of Ck (see Fig. 2 for 
d = 2, 3). Given u : Gd

ε → R, we then define its piecewise–affine extension Au : Rd → R
as

Au(x) := Ak,σu(x) if x ∈ Sk,σ, for some k ∈ Zd and σ ∈ Sd , (6)

where Ak,σu : Sk,σ → R is the affine interpolation of the values of u at the vertices of 
Sk,σ. Note that Au is well-defined on the whole Rd, because any non-empty intersection 
of two simplexes Sk,σ, Sk′,σ′ is itself a simplex (of dimension smaller than d) contained 
in the boundary of Sk,σ and Sk′,σ′ , so that Ak,σu ≡ Ak′,σ′u on Sk,σ ∩ Sk′,σ′ .

We can now state our main results, starting with the NLS ground state problems. Let 
us begin with action ground states. For every p ∈ (2, 2∗) and every λ > 0, we introduce 
the action functional J̃λ,Gd

ε
: H1(Gd

ε ) → R

J̃λ,Gd
ε
(u) := 1‖u′‖2

L2(Gd
ε ) + λ ‖u‖2

L2(Gd
ε ) −

1 ‖u‖p
Lp(Gd) (7)
2 2d dp ε
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Fig. 2. The simplexes defined in (5) for a two-dimensional square (A) and a three-dimensional cube (B). The 
edges of the boundary of the simplexes that do not coincide with edges of the square or the cube are denoted 
by bold dotted lines. The boundary of one of the simplexes is highlighted in green. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

and the associated Nehari manifold

Ñλ,Gd
ε

: =
{
u ∈ H1(Gd

ε ) : J̃ ′
λ,Gd

ε
(u)u = 0

}
=
{
u ∈ H1(Gd

ε ) : d‖u′‖2
L2(Gd

ε ) + λ‖u‖2
L2(Gd

ε ) = ‖u‖p
Lp(Gd

ε )

}
.

Letting

J̃Gd
ε
(λ) := inf

v∈Ñ
λ,Gd

ε

J̃λ,Gd
ε
(v)

be the corresponding minimum problem, u ∈ Ñλ,Gd
ε

is called a ground state of J̃λ,Gd
ε

if 
J̃λ,Gd

ε
(u) = J̃Gd

ε
(λ). Since the existence results of [20] do not depend on the coefficients in 

the functional (provided the Lp term is negative and the other ones positive), it follows 
that there always exist ground states of J̃λ,Gd

ε
in Ñλ,Gd

ε
for every λ > 0, ε > 0 and 

p ∈ (2, 2∗). Ground states are constant sign solutions of the NLS equation

{
u′′ + 1

d |u|p−2u = λ
du on every edge of Gd

ε∑
e�v

du
dxe

(v) = 0 for every vertex v of Gd
ε .

The next theorem answers in the affirmative to the question whether action ground states 
on d-dimensional cubic grids with vanishing edgelength approximate ground states in the 
whole Rd. In what follows, for every ω > 0 we make use of the shorthand notation

JRd(ω) := inf
v∈N

ω,Rd

Jω,Rd(v) .

Theorem 2.1. Let d ≥ 2, p ∈ (2, 2∗) and ω > 0 be fixed.
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(i) If d = 2 and p > 2, or d ≥ 3 and p ∈
(
2, 2∗

2 + 1
]
, then there exists Cd,p > 0 such 

that ∣∣∣εd−1J̃Gd
ε
(ω) − JRd(ω)

∣∣∣ ≤ Cd,pε as ε → 0 ,

whereas if d ≥ 3 and p ∈
(

2∗

2 + 1, 2∗
)
, then for every γ > 0 there exists Cd,p,γ > 0

such that ∣∣∣εd−1J̃Gd
ε
(ω) − JRd(ω)

∣∣∣ ≤ Cd,p,γε
d−2
2 (2∗−p)−γ as ε → 0 ;

(ii) for every positive ground state uε of J̃ω,Gd
ε

in Ñω,Gd
ε

there exists xε ∈ Rd such that

Auε(· − xε)
ε→0−−−→ ϕω in H1(Rd) ,

where ϕω ∈ Nω,Rd is the unique positive ground state of Jω,Rd attaining its L∞ norm 
at the origin.

An analogous result holds true for fixed mass ground states of the energy. For every 
p ∈

(
2, 2 + 4

d

)
, we introduce the energy functional ẼGd

ε
: H1(Gd

ε ) → R

ẼGd
ε
(u) := 1

2‖u
′‖2

L2(Gd
ε ) −

1
dp

‖u‖p
Lp(Gd

ε ) (8)

and denote by

ẼGd
ε
(μ) := inf

v∈H1
μ(Gd

ε )
ẼGd

ε
(v)

the corresponding ground state problem at mass μ > 0. As usual, u ∈ H1
μ(Gd

ε ) is called 

a ground state of ẼGd
ε

at mass μ if ẼGd
ε
(u) = ẼGd

ε
(μ). If u is a ground state of ẼGd

ε
, then{

u′′ + 1
d |u|p−2u = LGd

ε
(u)u on every edge of Gd

ε∑
e�v

du
dxe

(v) = 0 for every vertex v of Gd
ε ,

where

LGd
ε
(u) :=

1
d‖u‖

p
Lp(Gd

ε ) − ‖u′‖2
L2(Gd

ε )

‖u‖2
L2(Gd

ε )
. (9)

Adapting the analysis of [5] ensures that there always exist ground states of ẼGd
ε

at mass 
μ for every ε > 0, μ > 0 and p ∈

(
2, 2 + 4

d

)
. For such ground states we have the following 

convergence result, where we also use the notation

ERd(μ) := inf
u∈H1(Rd)

ERd(v) .

μ
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Theorem 2.2. Let p ∈
(
2, 2 + 4

d

)
and μ > 0 be fixed.

(i) If d ∈ {2, 3, 4} and p ∈
(
2, 2 + 4

d

)
, or d ≥ 5 and p ∈

(
2, 2∗

2 + 1
)
, then there exists 

Cd,p > 0 such that∣∣∣∣εd−1ẼGd
ε

(
d

εd−1μ

)
− ERd(μ)

∣∣∣∣ ≤ Cd,pε as ε → 0,

whereas if d ≥ 5 and p ∈
(

2∗

2 + 1, 2 + 4
d

)
, then for every γ > 0 there exists Cd,p,γ > 0

such that ∣∣∣∣εd−1ẼGd
ε

(
d

εd−1μ

)
− ERd(μ)

∣∣∣∣ ≤ Cd,p,γε
d−2
2 (2∗−p)−γ as ε → 0 ;

(ii) for every positive ground state uε of ẼGd
ε

in H1
d

εd−1 μ
(Gd

ε ) there exists xε ∈ Rd such 

that

Auε(· − xε)
ε→0−−−→ φμ in H1(Rd) ,

where φμ ∈ H1
μ(Rd) is the unique positive ground state of ERd at mass μ attaining 

its L∞ norm at the origin. Furthermore,

lim
ε→0

LGd
ε
(uε) = ωμ

d
, (10)

where ωμ is the value of the parameter ω for which φμ solves (1).

Theorems 2.1–2.2 show that one has to consider slightly modified action and energy 
functionals on grids to recover ground states in Rd solving (1). This is no surprise. The 
scale factor εd−1 multiplying the ground state levels on grids is due to the different local 
dimensions of grids and Rd, as one can see e.g. by comparing, for small ε, the volume 
of a ball of radius ε in Rd (which is proportional to εd) with that of its restriction to 
Gd
ε (which goes like ε). Conversely, the coefficients 1/d and d appearing in front of the 

norms in both problems are determined by the specific shape of the periodicity cell of 
Gd
ε (see also Section 8 below). Note that Theorems 2.1(ii)–2.2(ii) do not require to pass 

to subsequences of ground states as ε → 0 by the uniqueness, up to symmetries, of the 
limit solution.

The proof of Theorems 2.1–2.2 combines purely variational arguments, based only on 
the minimality of ground states, with a deep analysis of the interaction between scales 
of different dimensions in the grid. This latter element is crucial to pass to the limit on 
the nonlinear term in the whole range (2, 2∗) for the nonlinearity power. Roughly, when 
p ≤ 2∗

2 +1, to prove the above convergence results it is enough to rely on the d-dimensional 
Gagliardo–Nirenberg inequalities (4) on Gd

ε . On the contrary, for larger values of p we 
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need to derive new Gagliardo–Nirenberg estimates on Gd
ε (see Proposition 3.2 below) 

interpolating between purely d-dimensional inequalities and purely two-dimensional ones. 
Such inequalities, that may perhaps be of some independent interest, suggest that Gd

ε

shares a rich structure with features peculiar of any dimension between 1 and d. As so, 
these estimates have no analogue in Rd.

The use of different estimates to deal with the cases p ∈
(
2, 2∗

2 + 1
]

and p ∈(
2∗

2 + 1, 2∗
)

is also the reason for the rates of convergence on the ground state lev-
els reported in Theorems 2.1(i)–2.2(i). In the case of the energy, this difference becomes 
relevant only in dimension greater than or equal to 5, since 2 + 4

d ≤ 2∗

2 + 1 whenever 
d = 2, 3, 4. We do not know whether the rates we obtain here are sharp. In particular, 
our method does not even allow us to understand whether the rate o 

(
ε

d−2
2 (2∗−p)−γ

)
, for 

every γ > 0, can be improved at least to O
(
ε

d−2
2 (2∗−p)

)
.

Remark 2.3. Since Theorems 2.1–2.2 prove convergence of minimizers, one may wonder 
whether it is possible to recover the same result in the framework of Γ-convergence, 
a rather natural question also in view of the large literature available on discrete-to-
continuum problems (see e.g. [16, Chapter 11] and references therein for a comprehensive 
overview on the subject). For instance, in the case of fixed mass ground states of the 
energy (the discussion in the action setting is analogous), given μ > 0, we could consider 
the functionals Fε : H1(Gd

ε ) → R

Fε(u) :=

⎧⎨⎩εd−1ẼGd
ε
(u) if u ∈ H1

d

εd−1 μ
(Gd

ε )

+∞ otherwise

and try to understand whether Γ − limε→0 Fε = F , with F : H1(Rd) → R given by

F (u) :=
{
ERd(u) if u ∈ H1

μ(Rd)
+∞ otherwise

and the convergence of functions on Gd
ε to those on Rd as in Theorem 2.2, i.e. strong 

convergence in H1(Rd) of piecewise–affine extensions as in (6). Recall that, to obtain 
convergence of minimizers of Fε to those of F , such a Γ-convergence result would not be 
enough and should be coupled with the equicoercivity of the sublevel sets of Fε (see e.g. 
[16, Theorem 2.9]). However, it is easy to see that in our setting here such equicoercivity 
does not hold (see Remark 6.2 below).

As already pointed out, one can look at Theorems 2.1–2.2 in two ways: using ground 
states on grids as one-dimensional approximations of those on Rd, or using the model in 
Rd to effectively describe that on grids.

From the point of view of NLS equations in Rd, the above theorems rigorously justify 
the approximation of d-dimensional ground states with their analogue on grids and open 
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the way to numerical implementations in this spirit (see [9,10] for recent results on 
numerical schemes for ground states on graphs). Note that, since what we did here 
works for the action when p ∈ (2, 2∗) and for the energy when p ∈

(
2, 2 + 4

d

)
, up to 

now we can only handle regimes of nonlinearities where the ground state problems on 
Rd are well-known. It would be interesting to investigate whether one can perform an 
analogous limit procedure in cases where the limit problem is not well-seated. Just to 
give an example, one can think for instance at equation (1) with Sobolev critical power 
p = 2∗ on bounded domains of Rd, where even existence of positive solutions is often an 
open question (whereas [20] showed that action ground states always exist on grids for 
every p > 2). Let us stress, however, that at the time being it is not clear to us whether 
our method can be extended to deal with p = 2∗. We plan to further investigate this 
point in future works.

Theorems 2.1–2.2 also say that ground states in Rd provide an effective description of 
suitable ground states on grids with small edgelength. Since, by simple scaling arguments 
(see Remark 5.3 below), such ground states on Gd

ε are in one-to-one correspondence with 
action ground states at small ω and energy ground states at small masses on the grid Gd

1
with edges of length 1, this allows one to exploit ground states on Rd to derive qualitative 
properties of ground states on Gd

1 . We briefly discuss here two explicit instances of this 
approach.

First, observe that action and energy ground states are positive solutions of the NLS 
equation that, in general, can be different from each other (for recent discussions on 
this point in full generality see e.g. [22,27]). However, since (1) in Rd admits a unique 
positive solution decaying at infinity, these two notions on ground states do coincide in 
Rd, in the sense that there is a one-to-one correspondence between ω > 0 and μ > 0 such 
that the action ground state ϕω and the energy ground state φμ are actually the same 
function. Furthermore, such solutions are always radially symmetric and decreasing in 
Rd. On the contrary, on the grid nothing is known neither about the relation between 
action and energy ground states nor about their symmetry. With respect to this, even 
though we are still not able to tackle these problems at any fixed ω and μ, when p ∈(
2, 2 + 4

d

)
Theorems 2.1–2.2 provide a first indication that these properties are recovered 

asymptotically in the limits for ω → 0 and μ → 0 (as both ground states, suitably scaled 
and extended to Rd through A, converge to the same symmetric function).

Second, as a by-product of the argument developed to prove Theorem 2.1, we obtain 
the following multiplicity result for mass constrained critical points of the energy at large 
masses on Gd

1 .

Proposition 2.4. Let d ∈ {2, 3} and p ∈
(
2 + 4

d , 6
)

or d ≥ 4 and p ∈
(
2 + 4

d , 2
∗) be fixed. 

Then there exists (μn)n ⊂ R, with μn → +∞ as n → +∞, such that ẼGd
1

has at least 
two different critical points in H1

μn
(Gd

1 ) for every n.

The two critical points in Proposition 2.4 are an energy and an action ground state. 
Note that existence of large mass energy ground states on Gd

1 can be proved for every p ∈
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[
2 + 4

d , 6
)

arguing as in [5]. That the two solutions are actually different is a consequence 
of the fact that, when the mass is large enough, energy ground states share a large 
Lagrange multiplier, whereas Theorem 2.1 guarantees that large mass action ground 
states correspond to ω close to 0. Observe that, since Theorem 2.1 applies only when 
p ∈ (2, 2∗), when d ≥ 4 the above multiplicity result does not cover the whole range 
p ∈

(
2 + 4

d , 6
)

where energy ground states at large masses do exist.
We now turn our attention to the comparison for Sobolev (2)–(3) and Gagliardo–

Nirenberg (4) inequalities. In Rd, the sharp constant in Sobolev inequality (3) is well-
known (see [34])

SRd := sup
u∈W 1,1(Rd)

‖u‖
L

d
d−1 (Rd)

‖∇u‖L1(Rd)
=
(
Γ
(
1 + d

2
)) 1

d

d
√
π

,

where Γ is the gamma function, and it is not attained. On the d-dimensional grid of 
edgelength 1, by [26] it follows that

SGd
1

:= sup
u∈W 1,1(Gd

1 )

‖u‖
L

d
d−1 (Gd

1 )

‖u′‖L1(Gd
1 )

= 1
(2d) 1

d

and it is easily seen that it is not attained too. Since elementary computations show that

1
(2d) 1

d

>

(
Γ
(
1 + d

2
)) 1

d

d
√
π

∀d ≥ 2,

this essentially exhausts the discussion on Sobolev inequalities.
The situation seems to be more involved for Gagliardo–Nirenberg inequalities. Letting

Qq,Gd
1
(u) :=

‖u‖q
Lq(Gd

1 )

‖u‖d+(2−d) q
2

L2(Gd
1 ) ‖u′‖

(
q
2−1

)
d

L2(Gd
1 )

, u ∈ H1(Gd
1 ) ,

Qq,Rd(v) :=
‖v‖q

Lq(Rd)

‖v‖d+(2−d) q
2

L2(Rd) ‖∇v‖
(
q
2−1

)
d

L2(Rd)

, v ∈ H1(Rd) ,

(11)

and denoting by

Kq,Gd
1

:= sup
u∈H1(Gd

1 )
Qq,Gd

1
(u), Kq,Rd := sup

v∈H1(Rd)
Qq,Rd(v) (12)

the best constants in (4), we have the next partial result.

Theorem 2.5. For every d ≥ 2 and q ∈ (2, 2∗), there holds

Kq,Gd ≥ d
(d−2)(q−2)

4 Kq,Rd . (13)

1
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Furthermore, if q ∈
[
2 + 4

d , 2
∗) then

Kq,Gd
1

= d
(d−2)(q−2)

4 Kq,Rd (14)

and Kq,Gd
1

is not attained for every q > 2 + 4
d .

When q ∈
[
2 + 4

d , 2
∗), on one side Theorem 2.5 establishes a strong analogy between 

cubic grids and Rd, with optimal constants being the same up to a factor depending only 
on the dimension. Interestingly, when d = 2, the two constants are exactly the same. On 
the other side, it marks a difference, since such a constant is not attained by any function 
in H1(Gd

1 ) for q ∈
(
2 + 4

d , 2
∗), whereas existence of optimizers is well-known in Rd for 

every q ∈ (2, 2∗). As the proof of Theorem 2.5 reveals, non-existence of optimizers on Gd
1

is a consequence of the validity, for every q > 2, of the Gagliardo–Nirenberg inequality 
(see e.g. [5, Theorem 2.1] in the two-dimensional setting)

‖u‖q
Lq(Gd

1 ) ≤ Cq‖u‖
q
2+1
L2(Gd

1 )‖u
′‖

q
2−1
L2(Gd

1 ) ∀u ∈ H1(Gd
1 ) , (15)

where Cq > 0 depends only on q. Since (15) is based in the one-dimensional microscale 
of the graph, this is a peculiar feature of metric grids, that has no counterpart both in 
Rd and in the discrete setting Zd, where the one-dimensional local structure is absent 
[35].

Conversely, for q ∈
(
2, 2 + 4

d

)
we are not able at the moment to improve the upper 

bound (13). It remains an open problem to understand whether in this regime it is 
possible that Kq,Gd

1
be attained and, this being the case, whether one can recover a 

convergence result for optimizers of (4) similar to those in Theorems 2.1–2.2. Our best 
result in this direction at present is the following existence criterion.

Proposition 2.6. Let q ∈
(
2, 2 + 4

d

]
. If there exists u ∈ H1(Gd

1 ) such that Qq,Gd
1
(u) ≥

d
(d−2)(q−2)

4 Kq,Rd , then Kq,Gd
1

is attained.

To conclude this section, let us stress that the method developed here is by no means 
limited to the specific case of cubic grids. It is in fact fairly easy to generalize our approach 
to grids with periodicity cell of different shape. For the sake of completeness, the final 
section of the paper briefly overviews how this can be done on two specific examples of 
non-square grids in the plane: the regular triangular grid (Fig. 3(A)) and the regular 
hexagonal one (Fig. 3(B)).

The remainder of the paper is organized as follows. Section 3 establishes some results 
on Gagliardo–Nirenberg inequalities on grids. Section 4 provides general estimates in-
volving restrictions of functions from Rd to grids and extensions of functions from grids 
to Rd that will be widely used throughout the discussion. Section 5 is devoted to an a 
priori analysis of the ground state problems on grids with edges of fixed length, whereas 
the proof of Theorems 2.1–2.2 and of Proposition 2.4 is given in Section 6. Section 7
reports the proof of Theorem 2.5 and Proposition 2.6.
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Fig. 3. Two-dimensional regular triangular (A) and hexagonal (B) grids.
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Notation: In what follows, we will often use the symbols �a,b,c , �a,b,c to indicate that 
the corresponding estimates hold up to a multiplicative constant depending only on the 
parameters a, b, c.

3. Gagliardo–Nirenberg inequalities on Gd
ε

Given their importance throughout all the paper, we start with some results about 
Gagliardo–Nirenberg inequalities on d-dimensional cubic grids that will be used in the 
following.

As anticipated in the Introduction, the analysis developed in dimensions two and 
three in [3,5] can be easily adapted to show that, for every d ≥ 2, q ∈ (2, 2∗] and 
ε > 0, there exists Kq,Gd

ε
> 0, depending only on d and q, such that the d-dimensional 

Gagliardo–Nirenberg inequality

‖u‖q
Lq(Gd

ε ) ≤ Kq,Gd
ε
‖u‖d+(2−d) q

2
L2(Gd

ε ) ‖u′‖
(
q
2−1

)
d

L2(Gd
ε ) (16)

holds true for every u ∈ H1(Gd
ε ). The first result of this section is a simple remark that 

relates the sharp constant in this inequality with the edgelength of the grid.
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Lemma 3.1. Let Kq,Gd
ε

be the sharp constant in (16). Then Kq,Gd
ε

= ε
(
q
2−1

)
(d−1)Kq,Gd

1
.

Proof. Given u ∈ H1(Gd
ε ), let v : Gd

1 → R be such that u(x) = v(x/ε) for every x ∈ Gd
ε . 

Then v ∈ H1(Gd
1 ) and

‖u‖rLr(Gd
ε ) = ε‖v‖rLr(Gd

1 ), ∀r ≥ 1, ‖u′‖2
L2(Gd

ε ) = 1
ε
‖v′‖2

L2(Gd
1 ) ,

so that, by (16) on Gd
1 ,

‖u‖q
Lq(Gd

ε ) = ε‖v‖q
Lq(Gd

1 ) ≤εKq,Gd
1
‖v‖d+(2−d) q

2
L2(Gd

1 ) ‖v′‖
(
q
2−1

)
d

L2(Gd
1 )

≤ε1− d
2−(2−d) q

4+
(
q
4− 1

2
)
dKq,Gd

1
‖u‖d+(2−d) q

2
L2(Gd

ε ) ‖u′‖
(
q
2−1

)
d

L2(Gd
ε )

=ε
(
q
2−1

)
(d−1)Kq,Gd

1
‖u‖d+(2−d) q

2
L2(Gd

ε ) ‖u′‖
(
q
2−1

)
d

L2(Gd
ε ) .

This shows that Kq,Gd
ε
≤ ε

(
q
2−1

)
(d−1)Kq,Gd

1
, and arguing analogously inverting the role 

of u and v proves the reverse inequality. �
Being peculiar of dimension d, (16) is not available when q > 2∗. However, on grids 

it is possible to exploit the coexistence of scales of different dimensions to obtain new 
families of Gagliardo–Nirenberg inequalities for powers larger than the d-dimensional 
Sobolev critical exponent. In particular, the next proposition, which to the best of our 
knowledge is new and can be of some independent interest, provides a result in this spirit 
interpolating between purely two-dimensional and d-dimensional inequalities.

Proposition 3.2. Let d ≥ 3. For every ε > 0, q > 2∗ and α ∈ (0, 2], there exists C > 0, 
depending only on d, q and α, such that

‖u‖q
Lq(Gd

ε ) ≤ Cε
q
2+1−α‖u‖αL2(Gd

ε )‖u′‖q−α
L2(Gd

ε ) ∀u ∈ H1(Gd
ε ) . (17)

Proof. Observe first that it is enough to prove (17) when ε = 1. Indeed, for every ε �= 1
and u ∈ H1(Gd

ε ), letting v ∈ H1(Gd
1 ) satisfy u(x) = v(x/ε) for every x ∈ Gd

ε , it follows

‖u‖q
Lq(Gd

ε ) = ε‖v‖q
Lq(Gd

1 ) �d,q,α ε‖v‖αL2(Gd
1 )‖v

′‖q−α

L2(Gd
1 ) = ε

q
2+1−α‖u‖αL2(Gd

ε )‖u′‖q−α
L2(Gd

ε ) .

The proof of (17) on Gd
1 is divided in two cases.

Case 1: α = 2. Note that, when α = 2, (17) is the standard two-dimensional 
Gagliardo–Nirenberg inequality

‖u‖q
Lq(Gd

1 ) �d,q ‖u‖2
L2(Gd

1 )‖u
′‖q−2

L2(Gd
1 ) ∀u ∈ H1(Gd

1 ) . (18)

As is well-known (see e.g. [5, Theorem 2.3]), (18) can be easily deduced by the two-
dimensional Sobolev inequality
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‖u‖L2(Gd
1 ) �d ‖u′‖L1(Gd

1 ) ∀u ∈ W 1,1(Gd
1 ) . (19)

To prove (19), it is enough to think of Gd
1 as

Gd
1 =

⋃
i,j∈{1,...,d}

i<j

⋃
k∈Zd−2

(
Gd

1 ∩ P k
ij

)

where, for every i, j = 1, . . . , d and k ∈ Zd−2,

P k
ij =

{
(x1, . . . , xd) ∈ Rd : (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xd) = k

}
.

Clearly, P k
ij is a plane parallel to the coordinate planes of Rd, Gd

1∩P k
ij is a two-dimensional 

grid contained in P k
ij and each edge of Gd

1 belongs to d −1 of such two-dimensional grids.
If u ∈ W 1,1(Gd

1 ), its restriction u|Gd
1∩Pk

ij
to Gd

1 ∩ P k
ij is in W 1,1(Gd

1 ∩ P k
ij), so that by 

[5, Theorem 2.2] it follows

‖u‖2
L2
(
Gd

1∩Pk
ij

) ≤ 1
4‖u

′‖2
L1
(
Gd

1∩Pk
ij

)

and, summing over i, j ∈ {1, . . . , d} , i < j and k ∈ Zd−2,

‖u‖2
L2(Gd

1 ) = 1
d− 1

∑
i,j∈{1,...,d}

i<j

∑
k∈Zd−2

‖u‖2
L2
(
Gd

1∩Pk
ij

)

≤ 1
4(d− 1)

∑
i,j∈{1,...,d}

i<j

∑
k∈Zd−2

‖u′‖2
L1
(
Gd

1∩Pk
ij

)

≤ 1
4(d− 1)

⎛⎜⎜⎝ ∑
i,j∈{1,...,d}

i<j

∑
k∈Zd−2

‖u′‖
L1
(
Gd

1∩Pk
ij

)
⎞⎟⎟⎠

2

= d− 1
4 ‖u′‖2

L1(Gd
1 ) ,

that is (19).
Case 2: α ∈ (0, 2). Given q > 2∗, we prove (17) with ε = 1 by interpolation between 

(18) and the d-dimensional Gagliardo–Nirenberg inequality (16) at power 2∗

‖u‖2∗

L2∗ (Gd
1 ) ≤ K2∗,Gd

1
‖u′‖2∗

L2(Gd
1 ) ∀u ∈ H1(Gd

1 ) . (20)

Set r := 2
αq + 2∗

(
1 − 2

α

)
, so that, since α ∈ (0, 2), we have 2∗ < q < r and

‖u‖q
Lq(Gd

1 ) ≤ ‖u‖2∗(1−α
2
)

L2∗ (Gd
1 ) ‖u‖

r α
2

Lr(Gd
1 ) ,

which coupled with (20) and (18) for the Lr norm entails
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‖u‖q
Lq(Gd

1 ) �d,q,α ‖u′‖2∗(1−α
2
)

L2(Gd
1 ) ‖u‖αL2(Gd

1 )‖u
′‖

α
2 (r−2)
L2(Gd

1 ) = ‖u‖αL2(Gd
1 )‖u

′‖q−α

L2(Gd
1 )

and completes the proof. �
4. General restriction and extension estimates

This section collects results frequently used in the following to compare norms of 
functions on Rd with those on grids. We start by recalling a straightforward relation 
between the norms of a given function in Rd and the ones of its restriction to grids with 
vanishing edgelength.

Lemma 4.1. Let u ∈ C1(Rd) ∩H2(Rd) ∩L∞(Rd). For every ε > 0, let uε : Gd
ε → R be the 

restriction of u to Gd
ε . Then there exists C > 0, depending on u but not on ε, such that, 

as ε → 0, it holds

∣∣∣∣εd−1

d
‖uε‖qLq(Gd

ε ) − ‖u‖q
Lq(Rd)

∣∣∣∣ ≤ Cε , ∀q ≥ 2 , (21)∣∣∣εd−1‖u′
ε‖2

L2(Gd
ε ) − ‖∇u‖2

L2(Rd)

∣∣∣ ≤ Cε . (22)

Proof. Here it is convenient to think of Gd
ε as

Gd
ε =

⋃
i∈Zd−1

d⋃
j=1

Xj
ε,i

where, for every i ∈ Zd−1 and j = 1, . . . , d,

Xj
ε,i = {(εi1, . . . , εij−1, s, εij , . . . , εid−1) : s ∈ R} .

Let us split the proof in two parts.

Part 1: proof of (21). For every fixed j ∈ {1, . . . , d}, consider the partition of Rd given 
by the sets, for every i ∈ Zd−1,

Aj
ε,i := [εi1, ε(i1+1))×· · ·×[εij−1, ε(ij−1+1))×R×[εij , ε(ij+1))×· · ·×[εid−1, ε(id−1+1))

and define wε,j : Rd → R as

wε,j(x1, . . . , xd) := u(εi1, εij−1, xj , εij , . . . , εid−1) ∀(x1, . . . , xd) ∈ Aj
ε,i, for some i ∈ Z .

By definition, for every q ≥ 2,
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‖wε,j‖qLq(Rd) = εd−1
∑

i∈Zd−1

∫
R

|u(εi1, εij−1, xj , εij , . . . , εid−1)|q dxj

= εd−1‖uε‖q
Lq
(⋃

i∈Zd−1 Xj
ε,i

) . (23)

Moreover, since u ∈ H1(Rd), if ε is small enough we have

‖u− wε,j‖2
L2(Rd) ≤

∑
i∈Zd−1

ε(i1+1)∫
εi1

· · ·
ε(id−1+1)∫
εid−1

∫
R

|u(x1, . . . , xd)

−u(εi1, εij−1, xj , εij , . . . , εid−1)|2 dxjdxd . . . dxj+1dxj−1 . . . dx1

≤ ε2
∑

i∈Zd−1

∫
Aj

ε,i

|∇u|2(x1, . . . , xd) dx1 . . . dxd = ε2‖∇u‖2
L2(Rd) ,

which coupled with (23) yields∣∣∣∣‖u‖2
L2(Rd) − εd−1‖uε‖2

L2
(⋃

i∈Zd−1 Xj
ε,i

)∣∣∣∣ ≤ 2ε‖u‖L2(Rd)‖∇u‖L2(Rd) + ε2‖∇u‖2
L2(Rd) .

Summing over j = 1, . . . , d proves (21) with q = 2.
If q > 2, arguing similarly we obtain for every j∣∣∣‖u‖qLq(Rd) − ‖wε,j‖qLq(Rd)

∣∣∣ ≤ε

∫
Rd

|∇(|u|q)|(x1, . . . , xd)dx1 . . . dxd

�q ε

∫
Rd

|u|q−1|∇u|(x1, . . . , xd)dx1 . . . dxd

�qε‖u‖q−1
L2(q−1)(Rd)‖∇u‖L2(Rd) ,

(24)

so that, summing over j and recalling (23),∣∣∣∣‖u‖qLq(Rd) −
εd−1

d
‖uε‖qLq(Gd

ε )

∣∣∣∣ �q ε‖u‖q−1
L2(q−1)(Rd)‖∇u‖L2(Rd) ,

which implies (21) since u ∈ H1(Rd) ∩ L∞(Rd) by assumption.
Part 2: proof of (22). For every j = 1, . . . , d, let vε,j : Rd → R be

vε,j(x1, . . . , xd) := ∂xj
u(εi1, εij−1, xj , εij , . . . , εid−1)

∀(x1, . . . , xd) ∈ Aj
ε,i, for some i ∈ Z ,

where Aj
ε,i are as in Part 1 above. Then
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‖vε,j‖2
L2(Rd) = εd−1

∑
i∈Zd

∫
R

|∂xj
u(εi1, εij−1, xj , εij , . . . , εid−1)|2 dxj

= εd−1‖u′
ε‖2

L2
(⋃

i∈Zd−1 Xj
ε,i

)

and, since u ∈ C1(Rd) ∩H2(Rd), arguing as before∣∣∣‖∂xj
u‖2

L2(Rd) − ‖vε,j‖2
L2(Rd)

∣∣∣ ≤ ε
∑

i∈Zd−1

∫
Aj

ε,i

|∇((∂xj
u)2)|(x1, . . . , xd) dx1 . . . dxd

� ε‖∇u‖L2(Rd)‖D2u‖L2(Rd) ,

so that summing over j gives (22). �
We then turn our attention to the relation between a given function u ∈ H1(Gd

ε ), 
its piecewise–affine extension Au as defined in (6) and the restriction of Au to Gd

ε , that 
from now on will be denoted by ũ. By definition, on each edge of Gd

ε ũ is the linear 
interpolation of the values of u at the corresponding vertices. Hence, identifying any 
edge e ∈ EGd

ε
, e = (v1, v2), with [0, ε], and denoting by ũe the restriction of ũ to e, we 

have

ũe(x) = u(v2) − u(v1)
ε

x + u(v1), ∀x ∈ [0, ε] . (25)

It is readily seen that, if u ∈ H1(Gd
ε ), then ũ ∈ H1(Gd

ε ) too and, by Jensen inequality,

‖ũ′‖L2(Gd
ε ) ≤ ‖u′‖L2(Gd

ε ) . (26)

We now want to estimate the distance between the Lq norms of u and ũ. The next lemma 
does the job in the case q = 2.

Lemma 4.2. For every u ∈ H1(Gd
ε ) it holds, as ε → 0,∣∣∣‖u‖2

L2(Gd
ε ) − ‖ũ‖2

L2(Gd
ε )

∣∣∣ ≤ 3ε‖u‖2
H1(Gd

ε ) . (27)

Proof. Throughout the proof, we use the following convention: for every edge e ∈ EGd
ε

identified by an interval of length ε in the j-th coordinate direction of Rd, we let v1 be 
its vertex with smallest j-th coordinate and v2 be the one with largest j-th coordinate.

Note first that, for every edge e of Gd
ε , we have both

‖u‖2
L2(e) − ε|u(v1)|2 =

∫
e

(u2(x)− u2(v1)) dx =
∫
e

x∫
0

(u2)′(y) dydx ≤ 2ε‖u‖L2(e)‖u′‖L2(e)

and
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‖ũ‖2
L2(e) − ε|u(v1)|2 =

∫
e

(ũ2(x) − ũ2(v1)) dx ≤ 2ε‖ũ‖L2(e)‖ũ′‖L2(e) ,

since by definition u(v1) = ũ(v1) for every v1 ∈ VGd
ε
. Summing over e ∈ EGd

ε
and making 

use of Cauchy–Schwarz inequality and (26) then gives

∣∣∣‖u‖2
L2(Gd

ε ) − ‖ũ‖2
L2(Gd

ε )

∣∣∣ ≤
∣∣∣∣∣∣‖u‖2

L2(Gd
ε ) − ε

∑
e∈EGd

ε

|u(v1)|2
∣∣∣∣∣∣+
∣∣∣∣∣∣‖ũ‖2

L2(Gd
ε ) − ε

∑
e∈EGd

ε

|u(v1)|2
∣∣∣∣∣∣

≤ε
∑

e∈EGd
ε

‖u‖2
L2(e) + ‖u′‖2

L2(e) + ‖ũ‖2
L2(e) + ‖ũ′‖2

L2(e)

≤ε
(
‖u‖2

L2(Gd
ε ) + ‖ũ‖2

L2(Gd
ε ) + 2‖u′‖2

L2(Gd
ε )

)
. (28)

Furthermore, recalling (25), for every e ∈ EGd
ε

we obtain

‖ũ‖2
L2(e) =

ε∫
0

∣∣∣∣u(v2) − u(v1)
ε

x + u(v1)
∣∣∣∣2 dx

=
(
u(v2) − u(v1)

ε

)2
ε3

3 + |u(v1)|2ε + u(v1)
u(v2) − u(v1)

ε
ε2 ,

so that summing over all edges of Gd
ε yields∣∣∣∣∣∣‖ũ‖2

L2(Gd
ε ) − ε

∑
e∈EGd

ε

|u(v1)|2
∣∣∣∣∣∣

≤ ε2
∑

e∈EGd
ε

|u(v1)|
∣∣∣∣u(v2) − u(v1)

ε

∣∣∣∣+ ε3

3
∑

e∈EGd
ε

(
u(v2) − u(v1)

ε

)2

. (29)

By Cauchy–Schwarz inequality, for any fixed δ ∈ (0, 1/2)

|u(v1)|
∣∣∣∣u(v2) − u(v1)

ε

∣∣∣∣ ≤ 1
2

(
|u(v1)|2
ε1−2δ + |u(v2) − u(v1)|2

ε1+2δ

)
,

whereas by Jensen inequality

(
u(v2) − u(v1)

ε

)2

=

⎛⎝1
ε

∫
e

u′ dx

⎞⎠2

≤ 1
ε
‖u′‖2

L2(e) .

Plugging into (29) and making use of Jensen inequality again leads to
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∣∣∣∣∣∣‖ũ‖2
L2(Gε) − ε

∑
e∈EGd

ε

|u(v1)|2
∣∣∣∣∣∣

≤ ε1+2δ

2
∑

e∈EGd
ε

|u(v1)|2 + ε1−2δ

2
∑

e∈EGd
ε

|u(v2) − u(v1)|2 + ε2

3
∑

e∈EGd
ε

‖u′‖2
L2(e)

≤ ε1+2δ

2
∑

e∈EGd
ε

|u(v1)|2 + ε2−2δ

2
∑

e∈EGd
ε

‖u′‖2
L2(e) + ε2

3
∑

e∈EGd
ε

‖u′‖2
L2(e)

= ε1+2δ

2
∑

e∈EGd
ε

|u(v1)|2 + ε‖u′‖2
L2(Gd

ε )

(
ε1−2δ

2 + ε

3

)
. (30)

Since, arguing as in (28), one has

ε
∑

e∈EGd
ε

|u(v1)|2 ≤ (1 + ε)‖u‖2
L2(Gd

ε ) + ε‖u′‖2
L2(Gd

ε ) , (31)

combining with (30) yields, for sufficiently small ε,

‖ũ‖2
L2(Gd

ε ) ≤ε
∑

e∈EGd
ε

|u(v1)|2
(

1 + ε2δ

2

)
+ ε‖u′‖2

L2(Gd
ε )

(
ε1−2δ

2 + ε

3

)

≤2
(
‖u‖2

L2(Gd
ε ) + ε‖u′‖2

L2(Gd
ε )

)
and plugging into (28) gives (27). �

When d ≥ 3 and 2 < q < 2∗, an estimate analogous to that of the previous lemma 
is harder to obtain and exploits the interpolating Gagliardo–Nirenberg inequalities of 
Proposition 3.2.

Lemma 4.3. For every u ∈ H1(Gd
ε ) we have that, as ε → 0,

(i) if d = 2 and q > 2, or d ≥ 3 and q ≤ 2∗

2 + 1, then∣∣∣‖u‖qLq(Gd
ε ) − ‖ũ‖q

Lq(Gd
ε )

∣∣∣
≤ C

(
ε

q−2
2 (d−1)+1‖u‖

d
2 + 2−d

2 (q−1)
L2(Gd

ε ) ‖u′‖
q−2
2 d+1

L2(Gd
ε ) + ε

1
2

(
q−2
2 d+3

)
‖u′‖q

L2(Gd
ε )

)
(32)

for a constant C > 0 depending on q and d only;
(ii) if d ≥ 3 and q > 2∗

2 + 1, then for every γ ∈ (0, 1]∣∣∣‖u‖qLq(Gd
ε ) − ‖ũ‖q

Lq(Gd
ε )

∣∣∣ ≤ C
(
ε

q
2+1−γ‖u‖γ

L2(Gd
ε )‖u

′‖q−γ
L2(Gd

ε ) + ε
q
2+1− γ

2 ‖u′‖q
L2(Gd

ε )

)
(33)
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for a constant C > 0 depending on q, d and γ only.

Proof. We adopt the same convention of the previous proof for the vertices v1, v2 of 
each edge e ∈ EGd

ε
. By Hölder inequality, we have

∣∣∣∣∣∣‖u‖qLq(Gd
ε ) − ε

∑
e∈EGd

ε

|u(v1)|q
∣∣∣∣∣∣

≤
∑

e∈EGd
ε

∫
e

||u|q(x) − |u|q(v1)| dx ≤
∑

e∈EGd
ε

∫
e

∣∣∣∣∣∣
∫
e

(|u|q)′(y) dy

∣∣∣∣∣∣ dx
= qε

∑
e∈EGd

ε

∫
e

|u(y)|q−1|u′(y)| dy ≤ qε‖u‖q−1
L2(q−1)(Gd

ε )‖u
′‖L2(Gd

ε ) .

(34)

Now, if d = 2 and q > 2 or d ≥ 3 and q ≤ 2∗

2 + 1, that is 2(q − 1) ≤ 2∗, by (16) and 
Lemma 3.1 it follows

‖u‖q−1
L2(q−1)(Gd

ε ) �d,q ε
(q−2)

2 (d−1)‖u‖
d+(2−d)(q−1)

2
L2(Gd

ε ) ‖u′‖
(q−2)

2 d

L2(Gd
ε )

that coupled with (34) gives

∣∣∣∣∣∣‖u‖qLq(Gd
ε ) − ε

∑
e∈EGd

ε

|u(v1)|q
∣∣∣∣∣∣ �d,q ε1+ (q−2)

2 (d−1)‖u‖
d+(2−d)(q−1)

2
L2(Gd

ε ) ‖u′‖
(q−2)

2 d+1
L2(Gd

ε ) . (35)

Analogously, since by construction u(v) = ũ(v) for every v ∈ VGd
ε
, arguing as above and 

combining with Jensen inequality, Lemma 4.2 we obtain, provided ε is small enough,

∣∣∣∣∣∣‖ũ‖qLq(Gd
ε ) − ε

∑
e∈EGd

ε

|u(v1)|q
∣∣∣∣∣∣

=

∣∣∣∣∣∣‖ũ‖qLq(Gd
ε ) − ε

∑
e∈EGd

ε

|ũ(v1)|q
∣∣∣∣∣∣

�d,q ε1+ (q−2)
2 (d−1)‖ũ‖

d+(2−d)(q−1)
2

L2(Gd
ε ) ‖ũ′‖

(q−2)
2 d+1

L2(Gd
ε )

�d,q ε1+ (q−2)
2 (d−1)

(
‖u‖2

L2(Gd
ε ) + ε‖u′‖2

L2(Gd
ε )

) d+(2−d)(q−1)
4 ‖u′‖

(q−2)
2 d+1

L2(Gd
ε )

�d,q

(
ε1+ (q−2)

2 (d−1)‖u‖
d+(2−d)(q−1)

2
L2(Gd

ε ) ‖u′‖
(q−2)

2 d+1
L2(Gd

ε ) + ε
1
2

(
3+ q−2

2 d
)
‖u′‖q

L2(Gd
ε )

)
,

(36)
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where the last inequality makes use of the subadditivity on R+ of the map s �→
s

d+(2−d)(q−1)
4 , which is guaranteed for every q > 2 when d = 2 and every q ∈

(
2, 2∗

2 + 1
]

when d ≥ 3. Coupling (35) and (36) gives (32).
If d ≥ 3 and q > 2∗

2 + 1, i.e. 2(q − 1) > 2∗, we combine (34) with Proposition 3.2 to 
get, for every α ∈ (0, 2],∣∣∣∣∣∣‖u‖qLq(Gd

ε ) − ε
∑

e∈EGd
ε

|u(v1)|q
∣∣∣∣∣∣ �d,q,α ε

q−α
2 +1‖u‖

α
2
L2(Gd

ε )‖u
′‖q−

α
2

L2(Gd
ε ) . (37)

Arguing as above on ũ we have also∣∣∣∣∣∣‖ũ‖qLq(Gd
ε ) − ε

∑
e∈EGd

ε

|u(v1)|q
∣∣∣∣∣∣ �d,q,α ε

q−α
2 +1‖ũ‖

α
2
L2(Gd

ε )‖ũ
′‖q−

α
2

L2(Gd
ε )

�d,q,α

(
ε

q−α
2 +1‖u‖

α
2
L2(Gd

ε )‖u
′‖q−

α
2

L2(Gd
ε ) + ε

q
2+1−α

4 ‖u′‖q
L2(Gd

ε )

)
,

which together with (37) yields (33) with γ = α/2. �
We conclude this section with some elementary estimates involving the extension 

operator A.

Lemma 4.4. For every u ∈ H1(Gd
ε ) it holds, as ε → 0,

‖Au‖2
L2(Rd) ≤ 2d(d + 1)εd−1

(
‖u‖2

L2(Gd
ε ) + ε‖u′‖2

L2(Gd
ε )

)
(38)

‖∇Au‖2
L2(Rd) ≤ εd−1‖u′‖2

L2(Gd
ε ) . (39)

Furthermore, if d ≥ 3 and q > 2∗, then for every γ ∈ (0, 1]

‖Au‖q
Lq(Rd) ≤ Cεd−1

(
‖u‖q

Lq(Gd
ε ) + ε

q
2+1−γ‖u‖γ

L2(Gd
ε )‖u

′‖q−γ
L2(Gd

ε )

)
(40)

for a constant C > 0 depending only on d, p and γ.

Proof. For every k ∈ Zd, recall that we denote by Ck the d-dimensional cube of edge-
length ε with edges on Gd

ε and vertex with smallest coordinates at εk. For every σ ∈ Sd, 
on the simplex Sk,σ given in (5) by definition Au is a convex combination of the values 
of u at the d + 1 vertices of Ck contained in Sk,σ. Hence, by Jensen inequality, for every 
q ≥ 2

‖Au‖qLq(Sk,σ) ≤
(d + 1)q−1

d! εd
∑

v∈V d∩Sk,σ

u(v)q ,

Gε
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so that summing over σ ∈ Sd

‖Au‖qLq(Ck) ≤
∑
σ∈Sd

(d + 1)q−1

d! εd
∑

v∈VGd
ε
∩Sk,σ

u(v)q

≤
∑

v∈VGd
ε
∩Ck

u(v)q
∑
σ∈Sd

(d + 1)q−1

d! εd = (d + 1)q−1εd
∑

v∈VGd
ε
∩Ck

u(v)q .

Since each vertex of Gd
ε belongs to 2d such cubes, this entails

‖Au‖q
Lq(Rd) =

∑
k∈Zd

‖Au‖qLq(Ck) ≤ (d + 1)q−1εd
∑
k∈Zd

∑
v∈VGd

ε
∩Ck

u(v)q

= 2d(d + 1)q−1
∑

v∈VGd
ε

|u(v)|q .

When q = 2, coupling with (31) gives (38), whereas for q > 2∗ combining with (37)
yields (40).

To prove (39), observe first that, for every k ∈ Zd, there is a one-to-one correspondence 
between the simplexes Sk,σ as in (5) contained in Ck and the shortest paths in Gd

ε

going from the vertex with smallest coordinates of Ck to that with largest coordinates, 
since both sets are in one-to-one correspondence with the symmetric group Sd. This 
immediately tells that each simplex contains exactly d + 1 edges of Gd

ε . Moreover, given 
any edge e ∈ EGd

ε
, to find the total number N(e) of simplexes Sk,σ that contain e it is 

enough to count the number of times e belongs to a shortest path connecting the vertices 
of Ck with smallest and largest coordinates, for some k ∈ Zd. With no loss of generality, 
let e = (v1, v2), where v1, v2 ∈ VGd

ε
are such that the j-th coordinate of v1 is smaller 

than that of v2, while all the other coordinates are the same. Then e belongs to Ck if 
and only if the j-th coordinate of v1 − εk is equal to 0 and, among the remaining d − 1
coordinates, i of them are equal to ε and the other d − i − 1 are equal to 0, for some 
i = 0, . . . , d − 1. For fixed i, the number of such k ∈ Zd is 

(
d−1
i

)
. Moreover, since εk is 

the vertex with smallest coordinates in Ck and it has i coordinates smaller than those 
of v1, there are i!(d − 1 − i)! shortest paths in Ck starting at εk, passing through e and 
ending at the vertex with largest coordinates of Ck. Therefore, the total number of such 
paths e belongs to is

N(e) =
d−1∑
i=0

(
d− 1
i

)
i!(d− 1 − i)! = d! .

Since a direct computation shows that, if e1
k,σ, . . . , e

d+1
k,σ are the d + 1 edges of Gd

ε that 
belong to Sk,σ,
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‖∇Au‖2
L2(Sk,σ) = εd−1

d!

d+1∑
i=1

‖ũ′‖2
L2(eik,σ) ,

we obtain

‖∇Au‖2
L2(Rd) = εd−1

d!
∑
k∈Zd

∑
σ∈Sd

d+1∑
i=1

‖ũ′‖2
L2(eik,σ) = εd−1

d!
∑

e∈EGd
ε

N(e)‖ũ′‖2
L2(e)

= εd−1‖ũ′‖2
L2(Gd

ε ) .

Combining with (26), we conclude. �
5. A priori estimates on ground states of J̃ω,Gd

ε
and ẼGd

ε

Throughout this section we establish a priori estimates for ground states of J̃ω,Gd
ε

and 

ẼGd
ε

as in (7)–(8). The argument being analogous, we develop the discussion of both 
problems in parallel.

Since will be needed in the following, let us recall here some well-known facts about 
the action and energy ground state problems. As for the action, it is readily seen that, 
if u ∈ Ñω,Gd

ε
, then

J̃ω,Gd
ε
(u) = κ

d
‖u‖p

Lp(Gd
ε ) , κ = 1

2 − 1
p
, (41)

so that

J̃Gd
ε
(ω) = κ

d
inf

v∈Ñ
ω,Gd

ε

‖v‖p
Lp(Gd

ε ) .

Moreover, there is a natural projection of H1(Gd
ε ) on Ñω,Gd

ε
, since, setting

π̃ω(u) :=
(
d‖u′‖2

L2(Gd
ε ) + ω‖u‖2

L2(Gd
ε )

‖u‖p
Lp(Gd

ε )

) 1
p−2

,

it holds π̃ω(u)u ∈ Ñω,Gd
ε

for every u ∈ H1(Gd
ε ).

Analogous properties hold true for the action problem on Rd, as for every u ∈ Nω,Rd

it holds

Jω,Rd(u) = κ‖u‖p
Lp(Rd)

and setting, for every u ∈ H1(Rd),
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πω(u) =
(
‖∇u‖2

L2(Rd) + ω‖u‖2
L2(Rd)

‖u‖p
Lp(Rd)

) 1
p−2

,

then πω(u)u ∈ Nω,Rd .
Recall also that, by standard scaling arguments, for every p ∈ (2, 2∗) and ω > 0,

JRd(ω) = JRd(1)ω
2p−d(p−2)

2(p−2) , JRd(1) > 0 , (42)

whereas for every p ∈
(
2, 2 + 4

d

)
and μ > 0

ERd(μ) = ERd(1)μ
2p−d(p−2)
4−d(p−2) , ERd(1) < 0 . (43)

We now state the main results of this section in the following two theorems.

Theorem 5.1. For every p ∈ (2, 2∗) and ω > 0, there exists ε > 0 and C > 0, depending 
only on p, ω and d, such that, for every ε ∈ (0, ε), if u ∈ Ñω,Gd

ε
is a ground state of 

J̃ω,Gd
ε
, then

1
C

≤ εd−1‖u′‖2
L2(Gd

ε ) ≤ C

1
C

≤ εd−1‖u‖2
L2(Gd

ε ) ≤ C

1
C

≤ εd−1‖u‖p
Lp(Gd

ε ) ≤ C .

Theorem 5.2. For every p ∈
(
2, 2 + 4

d

)
and μ > 0, there exists ε > 0 and C > 0, 

depending only on p, μ and d, such that, for every ε ∈ (0, ε), if u ∈ H1
d

εd−1 μ
(Gd

ε ) is a 

ground state of ẼGd
ε

at mass d
εd−1μ, then

1
C

≤ εd−1‖u′‖2
L2(Gd

ε ) ≤ C

1
C

≤ εd−1‖u‖p
Lp(Gd

ε ) ≤ C .

Remark 5.3. To prove Theorems 5.1–5.2 we exploit the relation between the action and 
energy ground state problems on grids with different edgelength. Recall that, given a 
metric graph G and a function u ∈ H1(G), setting for every t > 0

û(x) := tαu(tβx), α = 2
6 − p

, β = p− 2
6 − p

, (44)

we have û ∈ H1(t−βG),
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∫
t−βG

|û′|2 dx = t2β+1
∫
G

|u′|2 dx,
∫

t−βG

|û|p dx = t2β+1
∫
G

|u|p dx,

∫
t−βG

|û|2 dx = t

∫
G

|u|2 dx .

Hence, taking ε > 0, G = Gd
ε and t = ε

1
β , it follows that u ∈ H1(Gd

ε ) if and only if 
û ∈ H1(Gd

1 ) and

‖û‖2
L2(Gd

1 ) = ε
1
β ‖u‖2

L2(Gd
ε )

‖û′‖2
L2(Gd

1 ) = ε2+ 1
β ‖u′‖2

L2(Gd
ε )

‖û‖p
Lp(Gd

1 ) = ε2+ 1
β ‖u‖p

Lp(Gd
ε ) .

As for the action problem, this shows that u ∈ Ñω,Gd
ε

if and only if û ∈ Ñε2ω,Gd
1
, and

J̃ε2ω,Gd
1
(û) = ε2+ 1

β J̃ω,Gd
ε
(u) . (45)

As for the energy problem, we obtain that u ∈ H1
d

εd−1 μ
(Gd

ε ) if and only if û ∈
H1

dε
1
β

+1−d
μ
(Gd

1 ), and

ẼGd
1
(û) = ε2+ 1

β ẼGd
ε

(u) . (46)

Note that

p ∈
(

2, 2 + 4
d

)
=⇒ 1

β
+ 1 − d = 4

p− 2 − d > 0 ,

so that ε
1
β +1−d → 0 as ε → 0 for every 2 < p < 2 + 4

d .

In view of Remark 5.3, Theorems 5.1–5.2 are a direct consequence of the next two 
propositions.

Proposition 5.4. For every p ∈ (2, 2∗), there exists ω > 0 and C > 0, depending only on 
p and d, such that, for every ω ∈ (0, ω), if u ∈ Ñω,Gd

1
is a ground state of J̃ω,Gd

1
, then

1
C
ω

2p−d(p−2)
2(p−2) ≤ ‖u′‖2

L2(Gd
1 ) ≤ Cω

2p−d(p−2)
2(p−2) (47)

1
C
ω

4−d(p−2)
2(p−2) ≤ ‖u‖2

L2(Gd
1 ) ≤ Cω

4−d(p−2)
2(p−2) (48)

1
ω

2p−d(p−2)
2(p−2) ≤ ‖u‖p p d ≤ Cω

2p−d(p−2)
2(p−2) . (49)
C L (G1 )
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Proposition 5.5. For every p ∈
(
2, 2 + 4

d

)
, there exists m > 0 and C > 0, depending only 

on p and d, such that, for every m ∈ (0, m), if u ∈ H1
m(Gd

1 ) is a ground state of ẼGd
1

at 
mass m, then

1
C
m

2p−d(p−2)
4−d(p−2) ≤‖u′‖2

L2(Gd
1 ) ≤ Cm

2p−d(p−2)
4−d(p−2) (50)

1
C
m

2p−d(p−2)
4−d(p−2) ≤‖u‖p

Lp(Gd
1 ) ≤ Cm

2p−d(p−2)
4−d(p−2) . (51)

The proof of Propositions 5.4–5.5 makes use of the following preliminary estimates.

Lemma 5.6. For every p ∈ (2, 2∗) and ω > 0, there exists C > 0, depending only on p, ω
and d, such that

εd−1J̃Gd
ε
(ω) ≤ JRd(ω) + Cε as ε → 0 .

Furthermore, for every p ∈
(
2, 2 + 4

d

)
and μ > 0, there exists C ′ > 0, depending only on 

p, μ and d, such that

εd−1ẼGd
ε

(
d

εd−1μ

)
≤ ERd(μ) + C ′ε as ε → 0 .

Proof. It is a direct consequence of Lemma 4.1 applied to the ground states of Jω,Rd and 
ERd

.
If u ∈ Nω,Rd is a ground state of Jω,Rd , which is well-known to be in C1(Rd) ∩

H2(Rd) ∩ L∞(Rd), letting uε ∈ H1(Gd
ε ) be its restriction to Gd

ε and vε := π̃ω(uε)uε, we 
have vε ∈ Ñω,Gd

ε
and, by Lemma 4.1,

εd−1J̃Gd
ε
(ω) ≤εd−1J̃ω,Gε

(vε) = κ
εd−1

d
‖vε‖pLp(Gd

ε ) = κ
εd−1

d
π̃p
ω(uε)‖uε‖pLp(Gd

ε )

≤κ

(
‖∇u‖2

L2(R2) + ω‖u‖2
L2(Rd) + Cε

‖u‖p
Lp(Rd) − Cε

) p
p−2 (

‖u‖p
Lp(Rd) + Cε

)
≤κ(1 + Cε)‖u‖p

Lp(Rd) + Cε = JRd(ω) + Cε

for suitable C > 0 (not relabeled) and every ε small enough.
Analogously, if u ∈ H1

μ(Rd) is a ground state of ERd at mass μ, letting uε ∈ H1(Gd
ε )

be its restriction to Gd
ε and vε :=

√
d

εd−1‖uε‖2
L2(Gd

ε )
μuε, we obtain vε ∈ H1

d

εd−1 μ
(Gd

ε ) and

εd−1ẼGd
ε

(
d

εd−1μ

)
≤ εd−1ẼGd

ε
(vε) ≤ ERd(u) + Cε = ERd(μ) + Cε

for sufficiently small ε. �
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Proof of Proposition 5.4. Note first that, by (45) and Lemma 5.6, for every ω > 0 small 
enough

ω
1
2

(
d−3− 1

β

)
J̃Gd

1
(ω) = ω

d−1
2 J̃Gd√

ω
(1) ≤ JRd(1) + o(1) ,

so that

J̃Gd
1
(ω) �d,p ω

− 1
2

(
d−3− 1

β

)
= ω

2p−d(p−2)
2(p−2) .

If u ∈ Ñω,Gd
1

is a ground state of J̃ω,Gd
1
, this immediately proves the upper bound in (49)

by (41), and by definition of Ñω,Gd
1

‖u′‖2
L2(Gd

1 ) <
d‖u′‖2

L2(Gd
1 ) + ω‖u‖2

L2(Gd
1 )

d
=

‖u‖p
Lp(Gd

1 )

d
�d,p ω

2p−d(p−2)
2(p−2)

‖u‖2
L2(Gd

1 ) ≤ ‖u‖2
L2(Gd

1 ) +
d‖u′‖2

L2(Gd
1 )

ω
=

‖u‖p
Lp(Gd

1 )

ω
�d,p ω

4−d(p−2)
2(p−2) ,

i.e. the upper bounds in (47) and (48).
To prove the lower bounds, let us distinguish the cases p ∈

(
2, 2 + 4

d

)
and p ∈[

2 + 4
d , 2

∗). If p ∈
(
2, 2 + 4

d

)
, by u ∈ Ñω,Gd

1
and the d-dimensional Gagliardo–Nirenberg 

inequality (16)

‖u′‖2
L2(Gd

1 ) ≤
‖u‖p

Lp(Gd
1 )

d
�d,p ‖u‖d+(2−d) p

2
L2(Gd

1 ) ‖u′‖
(
p
2−1

)
d

L2(Gd
1 ) , (52)

that is

‖u′‖
(
p
2−1

)
d

L2(Gd
1 ) �d,p ‖u‖

(p−2)d
4−d(p−2)

2p−d(p−2)
2

L2(Gd
1 ) . (53)

Coupling (53) again with the definition of Nehari manifold and (16) then yields

ω‖u‖2
L2(Gd

1 ) ≤ ‖u‖p
L1(Gd

1 ) �d,p ‖u‖d+(2−d) p
2

L2(Gd
1 ) ‖u′‖

(
p
2−1

)
d

L2(Gd
1 ) �d,p ‖u‖d+(2−d) p

2 + (p−2)d
4−d(p−2)

2p−d(p−2)
2

L2(Gd
1 ) ,

that is the lower bound in (48). As a consequence,

‖u‖p
Lp(Gd

1 ) ≥ ω‖u‖2
L2(Gd

1 ) ≥ ω
2p−d(p−2)

2(p−2)

and thus, together with (16) and the upper bound in (48),

ω
2p−d(p−2)

2(p−2) �d,p ‖u‖d+(2−d) p
2

L2(Gd
1 ) ‖u′‖

(
p
2−1

)
d

L2(Gd
1 ) �d,p ω

d+(2−d) p
2

2
4−d(p−2)
2(p−2) ‖u′‖

(
p
2−1

)
d

L2(Gd
1 ) ,

completing the proof of the lower bounds in (49) and (47) respectively.
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If p ∈
[
2 + 4

d , 2
∗), then 

(
p
2 − 1

)
d ≥ 2, so that (52) and the upper bound in (47) imply

‖u‖d+(2−d) p
2

L2(Gd
1 ) �d,p ‖u′‖2−

(
p
2−1

)
d

L2(Gd
1 ) �d,p ω

(
2−
(
p
2−1

)
d
) 2p−d(p−2)

2(p−2) ,

which is once again the lower bound in (48). Arguing as above provides the lower bounds 
in (47) and (49) and concludes the proof. �
Proof of Proposition 5.5. By (46) and Lemma 5.6,

m
β(d−3)−1
1+β(1−d) ẼGd

1
(m) = m(d−1) β

1+β(1−d) ẼGd

mβ/(1+β(1−d))

(
1

m(d−1) β
1+β(1−d)

)
≤ ERd

(
1
d

)
+ o(1)

for sufficiently small m > 0, so that (recall β is as in (44))

ẼGd
1
(m) �d,p −m

2p−d(p−2)
4−d(p−2) .

If u ∈ H1
m(Gd

1 ) is a ground state of ẼGd
1

at mass m, this means

‖u‖p
Lp(Gd

1 ) = dp

2 ‖u′‖2
L2(Gd

1 ) − dpẼGd
1
(m) �d,p m

2p−d(p−2)
4−d(p−2) ,

i.e. the lower bound in (51), and coupling with the d-dimensional Gagliardo–Nirenberg 
inequality (16) leads to

m
2p−d(p−2)
4−d(p−2) �d,p m

d
2 +(2−d) p

4 ‖u′‖
(
p
2−1

)
d

L2(Gd
1 ) ,

that is the lower bound in (50). Moreover, the negativity of ẼGd
1
(u) and (16) imply

‖u′‖2
L2(Gd

1 ) ≤
2
dp

‖u‖p
Lp(Gd

1 ) �d,p m
d
2 +(2−d) p

4 ‖u′‖
(
p
2−1

)
d

L2(Gd
1 )

and rearranging terms yields the upper bound in (50), that combined with (16) again 
gives also the upper bound in (51). �
Proof of Theorems 5.1–5.2. The desired estimates follow immediately by the combi-
nation of those in Propositions 5.4–5.5 and the scaling argument described in Re-
mark 5.3. �
6. Convergence of ground states: proof of Theorems 2.1–2.2 and Proposition 2.4

Prior to prove our convergence results for ground states, we need the following lemma.
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Lemma 6.1. Let d ≥ 2 and p ∈ (2, 2∗) be fixed and, for every ε > 0, let uε ∈ H1(Gd
ε ) be 

such that

1
C

≤ εd−1‖uε‖2
L2(Gd

ε ), ε
d−1‖u′

ε‖2
L2(Gd

ε ), ε
d−1‖uε‖pLp(Gd

ε ) ≤ C (54)

for a suitable C > 0 independent of ε. Then as ε → 0

(i) there exists C ′ > 0, independent of ε, such that∣∣∣∣εd−1

d
‖uε‖2

L2(Gd
ε ) − ‖Auε‖2

L2(Rd)

∣∣∣∣ ≤ C ′ε ; (55)

(ii) if d = 2 and p > 2, or d ≥ 3 and p ∈
(
2, 2∗

2 + 1
]
, there exists C ′′ > 0, depending 

only on d and p, such that∣∣∣∣εd−1

d
‖uε‖pLp(Gd

ε ) − ‖Auε‖pLp(Rd)

∣∣∣∣ ≤ C ′′ε ; (56)

(iii) if d ≥ 3 and p ∈
(

2∗

2 + 1, 2∗
)
, then for every γ > 0 there exists C ′′′ > 0, depending 

only on d, p and γ, such that∣∣∣∣εd−1

d
‖uε‖pLp(Gd

ε ) − ‖Auε‖pLp(Rd)

∣∣∣∣ ≤ C ′′′ε
d−2
2 (2∗−p)−γ . (57)

Proof. Recall that, as in Section 4, we always denote by ũε the restriction of Auε to Gd
ε . 

By (54) and Lemma 4.2 we obtain immediately∣∣∣∣εd−1

d
‖uε‖2

L2(Gd
ε ) −

εd−1

d
‖ũε‖2

L2(Gd
ε )

∣∣∣∣ � ε (58)

for sufficiently small ε. Moreover, by (54) and Lemma 4.4 it follows that (Auε)ε is 
uniformly bounded in H1(Rd), so that arguing as in Part 1 of the proof of Lemma 4.1
yields ∣∣∣∣εd−1

d
‖ũε‖2

L2(Gd
ε ) − ‖Auε‖2

L2(Rd)

∣∣∣∣ � ε

as ε → 0. Coupling with (58) proves (55).
Observe that, applying to Auε the argument in Part 1 of the proof of Lemma 4.1 up 

to (24), we have∣∣∣∣εd−1
‖ũε‖pLp(Gd

ε ) − ‖Auε‖pLp(Rd)

∣∣∣∣ �p ε‖Auε‖p−1
L2(p−1)(Rd)‖∇Auε‖L2(Rd) . (59)
d
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If d = 2 and p > 2, or d ≥ 3 and p ∈
(
2, 2∗

2 + 1
]
, the boundedness in H1(Rd) of (Auε)ε

ensures also the boundedness in L2(p−1)(Rd), so that the previous estimate becomes∣∣∣∣εd−1

d
‖ũε‖pLp(Gd

ε ) − ‖Auε‖pLp(Rd)

∣∣∣∣ �p ε as ε → 0 .

Moreover, Lemma 4.3(i) and (54) imply∣∣∣∣εd−1

d
‖uε‖pLp(Gd

ε ) −
εd−1

d
‖ũε‖pLp(Gd

ε )

∣∣∣∣ �d,p ε

provided ε is small enough, which together with the previous estimates gives (56).
If d ≥ 3 and p ∈

(
2∗

2 + 1, 2∗
)
, combining (54) with Lemma 4.3(ii) entails

∣∣∣∣εd−1

d
‖uε‖pLp(Gd

ε ) −
εd−1

d
‖ũε‖pLp(Gd

ε )

∣∣∣∣ �d,p,γ ε
d−2
2 (2∗−p)−γ (60)

for every γ ∈ (0, 1] and ε sufficiently small. Furthermore, by Lemma 4.4, Proposition 3.2
(with q = 2(p − 1) and α = γ) and (54), we get

‖Auε‖2(p−1)
L2(p−1)(Rd) �d,p,γ εd−1

(
‖uε‖2(p−1)

L2(p−1)(Gd
ε ) + εp−γ‖uε‖γL2(Gd

ε )‖u
′
ε‖

2(p−1)−γ

L2(Gd
ε )

)
�d,p,γ εd−1εp−γ‖uε‖γL2(Gd

ε )‖u
′
ε‖

2(p−1)−γ

L2(Gd
ε ) �d,p,γ εp−(d−1)(p−2)−γ ,

and, plugging into (59),∣∣∣∣εd−1

d
‖ũε‖pLp(Gd

ε ) − ‖Auε‖pLp(Rd)

∣∣∣∣ �d,p,γ ε1+ p−(d−1)(p−2)−γ
2 = ε

d−2
2 (2∗−p)− γ

2 .

Coupling with (60) implies (57) and completes the proof of the lemma. �
We are now in position to prove Theorems 2.1–2.2.

Proof of Theorem 2.1. Fix p ∈ (2, 2∗) and ω > 0. For every ε > 0, let uε ∈ Ñω,Gd
ε

be a 

positive ground state of J̃ω,Gd
ε

satisfying

sup
j∈N

‖uε‖L2(Qj) = ‖uε‖L2(Q0) , (61)

where (Qj)j∈N ⊂ Rd is an ε-independent, countable family of open, unitary d-dimensional 
cubes in Rd such that Qi ∩ Qj = ∅ for every i �= j, 

⋃
j∈N Qj = Rd and Q0 is centered 

at the origin. It is clear that (61) does not imply any loss of generality, since for every 
uε there always exists xε ∈ Rd for which uε(· − xε) satisfies (61). Note also that, by 
Theorem 5.1, Lemma 6.1 applies to uε as ε → 0.
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Set vε := πω(Auε)Auε. It then follows that vε ∈ Nω,Rd and, by Lemmas 4.4–6.1, if 
d = 2 and p > 2 or d ≥ 3 and p ∈

(
2, 2∗

2 + 1
]

it holds

Jω,Rd(vε) = κπω(Auε)p‖Auε‖pLp(Rd) ≤
κ

d
εd−1‖uε‖pLp(Gd

ε ) + Cε

= εd−1J̃Gd
ε
(ω) + Cε as ε → 0, (62)

for a suitable constant C > 0 depending only on d, p and ω, whereas if d ≥ 3 and 
p ∈

(
2∗

2 + 1, 2∗
)

we get for every γ > 0

Jω,Rd(vε) ≤ εd−1J̃Gd
ε
(ω) + C ′ε

d−2
2 (2∗−p)−γ as ε → 0, (63)

for C ′ > 0 depending only on d, p, γ and ω. Since JRd(ω) ≤ Jω,Rd(vε) by definition, 
coupling (62)–(63) with Lemma 5.6 proves Theorem 2.1(i) (noting also that d−2

2 (2∗−p) <
1 for every p > 2∗

2 +1). Furthermore, (vε)ε ⊂ Nω,Rd is a minimizing sequence for JRd(ω)
and, since arguing as in the proof of Lemma 6.1 it is readily seen that

lim
ε→0

∣∣∣∣‖vε‖2
L2(Ω) −

εd−1

d
‖uε‖2

L2(Ω)

∣∣∣∣ = 0

for every given measurable Ω ⊂ Rd, by (61) it satisfies

lim
ε→0

∣∣∣∣‖vε‖2
L2(Q0) − sup

j∈N
‖vε‖2

L2(Qj)

∣∣∣∣ = 0 . (64)

Since ‖vε −Auε‖H1(Rd) = o(1) as ε → 0, we are left to show that vε converges strongly 
in H1(Rd) to the ground state ϕω of Jω,Rd in Nω,Rd attaining its L∞ norm at the origin. 
That such a convergence holds is a classic result, but for the sake of completeness we 
report here the details of the proof.

As (vε)ε is bounded in H1(Rd), there exists v ∈ H1(Rd) such that, up to subsequences, 
vε ⇀ v in H1(Rd) for ε → 0. Let m := ‖v‖2

L2(Rd), so that by semicontinuity m ≤
lim infε→0 ‖vε‖2

L2(Rd). Observe that, if m = limε→0 ‖vε‖2
L2(Rd), then the convergence of 

vε to v is strong in L2(Rd) and thus, by Gagliardo–Nirenberg inequalities (4), strong in 
Lp(Rd). In particular, by semicontinuity again and vε ∈ Nω,Rd ,

πω(v) =
‖∇v‖2

L2(Rd) + ω‖v‖2
L2(Rd)

‖v‖p
Lp(Rd)

≤ lim inf
ε→0

‖∇vε‖2
L2(Rd) + ω‖vε‖2

L2(Rd)

‖vε‖pLp(Rd)
= 1 ,

so that

JRd(ω) ≤ Jω,Rd(πω(v)v) ≤ κπω(v)p‖v‖p
Lp(Rd) ≤ κ lim

ε→0
‖vε‖pLp(Rd) = lim

ε→0
Jω,Rd(vε)

= JRd(ω),
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that is πω(v) = 1, i.e. v ∈ Nω,Rd and it is a ground state of Jω,Rd . By (64) and the fact 
that Q0 is centered at the origin, v is thus the unique ground state ϕω attaining its L∞

norm at the origin, the convergence of vε is not up to subsequences (by uniqueness of 
the limit) and it is strong in H1(Rd).

To complete the proof it is then enough to rule out the possibility that m <
lim infε→0 ‖vε‖2

L2(Rd). To this end, let us distinguish the cases m > 0 and m = 0.
If 0 < m < lim infε→0 ‖vε‖2

L2(Rd), then lim infε→0 ‖vε − v‖2
L2(Rd) > 0. Let θ, θε ∈ R be 

such that v ∈ Nθ,Rd , vε − v ∈ Nθε,Rd for every ε. By the weak convergence of vε to v in 
H1(Rd), Brezis–Lieb Lemma [17] and vε ∈ Nω,Rd , it follows

θε =
‖vε − v‖p

Lp(Rd) − ‖∇vε −∇v‖2
L2(Rd)

‖vε − v‖2
L2(Rd)

=
‖vε‖pLp(Rd) − ‖v‖p

Lp(Rd) − ‖∇vε‖2
L2(Rd) + ‖∇v‖2

L2(Rd) + o(1)
‖vε − v‖2

L2(Rd)

=
ω‖vε‖2

L2(Rd) − θ‖v‖2
L2(Rd) + o(1)

‖vε − v‖2
L2(Rd)

= ω +
‖v‖2

L2(Rd)

‖vε − v‖2
L2(Rd)

(ω − θ) + o(1) as ε → 0 ,

which implies that either θ > ω or lim infε→0 θε > ω or θ = limε→0 θε = ω. However, 
since by Brezis–Lieb Lemma [17] we also have

JRd(ω) = κ lim
ε→0

‖vε‖pLp(Rd) = κ lim
ε→0

‖vε − v‖p
Lp(Rd) + κ‖v‖p

Lp(Rd) ≥ lim
ε→0

JRd(θε) + JRd(θ) ,

this provides a contradiction, as JRd is nonnegative on R and strictly increasing on R+

by (42).
Assume then by contradiction that m = 0, i.e. v ≡ 0 on Rd. Since the convergence of 

vε to v is locally strong in L2, this implies that ‖vε‖L2(Q0) → 0 as ε → 0, so that by (64)

lim
ε→0

sup
j∈N

‖vε‖L2(Qj) = 0. (65)

Recall now that, by standard Gagliardo–Nirenberg inequalities on bounded subsets of 
Rd, we have for every j ∈ N

‖vε‖
2+ 4

d

L2+ 4
d (Qj)

≤ C‖vε‖
4
d

L2(Qj)‖∇vε‖2
L2(Qj)

for a suitable C > 0 independent of j and ε. Summing over j we obtain

‖vε‖
2+ 4

d

L2+ 4
d (Rd)

=
∑
j∈N

‖vε‖
2+ 4

d

L2+ 4
d (Qj)

≤ C
∑
j∈N

‖vε‖
4
d

L2(Qj)‖∇vε‖2
L2(Qj)

≤ C sup
j∈N

‖vε‖
4
d

L2+ 4
d (Qj)

‖∇vε‖2
L2(Rd)
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and, combining with (65),

lim
ε→0

‖vε‖
L2+ 4

d (Rd)
= 0 . (66)

Since (vε)ε is uniformly bounded both in L2(Rd) and in L2∗(Rd), it then follows that 
vε → 0 strongly in Lp(Rd) when ε → 0. As this provides again a contradiction, given 
that vε ∈ Nω,Rd and thus ‖vε‖pLp(Rd) �p JRd(ω) > 0 for every ε, we conclude. �
Proof of Theorem 2.2. Let p ∈

(
2, 2 + 4

d

)
and μ > 0 be fixed. For every ε > 0, let 

uε ∈ H1
d

εd−1 μ
(Gd

ε ) be a ground state of ẼGd
ε

with mass d
εd−1μ satisfying (61). Set then 

vε :=
√

μ
‖Auε‖2

L2(Rd)
Auε, so that by definition vε ∈ H1

μ(Rd) for every ε. Since Lemma 6.1
applies to uε by Theorem 5.2, arguing as in the proof of Theorem 2.1 it is readily seen 
that, if d ∈ {2, 3, 4}, or if d ≥ 5 and p ∈

(
2, 2∗

2 + 1
]

(which is strictly contained in (
2, 2 + 4

d

)
), then

ERd(μ) ≤ ERd
(vε) ≤ εd−1ẼGd

ε
(uε) + Cε = εd−1Ẽ

(
d

εd−1μ

)
+ Cε as ε → 0

for a suitable C > 0 depending only on d, p and μ, whereas if d ≥ 5 and p ∈
(

2∗

2 + 1, 2∗
)
, 

then for every γ > 0 there exists C > 0, depending only on d, p, γ and μ, such that

ERd(μ) ≤ ERd
(vε) ≤ εd−1Ẽ

(
d

εd−1μ

)
+ Cε

d−2
2 (2∗−p)−γ as ε → 0 .

Since d−2
2 (2∗ − p) < 1 for every p ∈

(
2∗

2 + 1, 2∗
)
, combining with Lemma 5.6 proves 

Theorem 2.2(i). Moreover, (vε)ε ⊂ H1
μ(Rd) is a minimizing sequence for ERd which is 

bounded in H1(Rd) and satisfies (64). Hence, up to subsequences vε ⇀ v in H1(Rd), for 
some v ∈ H1(Rd). To conclude the proof of Theorem 2.2, it is enough to prove that v is 
the unique ground state φμ of ERd at mass μ attaining its L∞ norm at the origin. To 
this end, it is sufficient to prove that ‖v‖2

L2(Rd) = μ, because this implies that vε tends to 

v strongly in Lq(Rd) for every q ∈
[
2, 2 + 4

d

]
, so that v ∈ H1

μ(Rd) and by semicontinuity

ERd(μ) ≤ ERd(v) ≤ lim
ε→0

ERd(vε) = ERd(μ) ,

i.e. v is a ground state of ERd at mass μ. That it attains its L∞ norm at the origin is 
then a consequence of (64). Moreover, the convergence of vε is strong in H1(Rd) and 
does not depend on the subsequence (by uniqueness of the limit) and, since

LGd
ε
(uε) =

(
1 − 2

p

) ‖uε‖pLp(Gd
ε )

d‖uε‖2
2 d

− 2
ẼGd

ε

(
d

εd−1μ
)

‖uε‖2
2 d

, (67)

L (Gε ) L (Gε )
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(10) follows by Theorem 2.2(i), the strong convergence of vε to φμ in Lp(Rd), the fact 
that ‖vε −Auε‖H1(Rd) = o(1) as ε → 0 and Lemma 6.1.

The argument showing that m := ‖v‖2
L2(Rd) = μ is again classic. Assume first by 

contradiction that m ∈ (0, μ), so that lim infε→0 ‖vε − v‖2
L2(Rd) > 0. Then, by vε ⇀ v in 

H1(Rd), it follows

‖vε − v‖2
L2(Rd) = ‖vε‖2

L2(Rd) − ‖v‖2
L2(Rd) + o(1) = μ−m + o(1)

‖∇vε −∇v‖2
L2(Rd) = ‖∇vε‖2

L2(Rd) − ‖∇v‖2
L2(Rd) + o(1)

and, by Brezis–Lieb Lemma [17],

‖vε − v‖p
Lp(Rd) = ‖vε‖pLp(Rd) − ‖v‖p

Lp(Rd) + o(1)

for every ε small enough, so that

ERd(vε) = ERd(vε − v) + ERd(v) + o(1) as ε → 0 . (68)

Since p > 2 and m < μ,

ERd(μ) ≤ ERd

(√
μ

m
v

)
= μ

m
‖∇v‖2

L2(Rd) −
( μ

m

) p
2 ‖v‖p

Lp(Rd) <
μ

m
ERd(v) ,

in turn yielding

ERd(v) > m

μ
ERd(μ) . (69)

Moreover, since m > 0

ERd(μ) ≤ ERd

⎛⎝√ μ

‖vε − v‖2
L2(Rd)

(vε − v)

⎞⎠ <
μ

‖vε − v‖2
L2(Rd)

ERd(vε − v)

so that

lim inf
ε→0

ERd(vε − v) ≥ μ−m

μ
ERd(μ) . (70)

Combining (68), (69), (70) gives

ERd(μ) = lim
ε→0

ERd(vε) ≥ lim inf
ε→0

ERd(vε−v)+ERd(v) > μ−m

μ
ERd(μ)+m

μ
ERd(μ) = ERd(μ) ,

i.e. a contradiction. Hence, either m = 0 or m = μ.
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Suppose then that m = 0, i.e. v ≡ 0 on Rd. Arguing as in the proof of Theorem 2.1, 
it then follows that (vε)ε satisfies (66), which together with the boundedness in L2(Rd)
implies that vε → 0 strongly in Lp(Rd) as ε → 0. By semicontinuity, this leads to

ERd(μ) = lim
ε→0

ERd(vε) ≥ lim inf
ε→0

1
2‖∇vε‖2

L2(Rd) ≥ 0 ,

which is again a contradiction in view of (43). Therefore, m = μ and we conclude. �
Remark 6.2. Theorem 2.2 can be used, inter alia, to show that the sublevel sets of the 
functionals Fε defined in Remark 2.3 are not equicoercive with respect to the strong 
convergence in H1(Rd) of piecewise–affine extensions through the operator A. To this 
end, consider for instance the following construction. Fix μ, μ1, μ2 > 0 so that μ =
μ1 + μ2 and, for every ε > 0, let uε,1 ∈ H1

d

εd−1 μ1
(Gd

ε ), uε,2 ∈ H1
d

εd−1 μ2
(Gd

ε ) be compactly 

supported functions on Gd
ε satisfying ẼGd

ε
(uε,1) ≤ ẼGd

ε

(
d

εd−1μ1
)

+ ε and ẼGd
ε
(uε,2) ≤

ẼGε

(
d

εd−1μ2
)

+ ε respectively. Exploiting the periodicity of Gd
ε , we can then define the 

function vε ∈ H1
d

εd−1 μ
(Gd

ε ) as the disjoint union of (translated copies of) uε,1 and uε,2, 
in such a way that the L∞ norm of uε,1 is always attained inside the neighborhood
of radius ε of the origin. Roughly, as ε → 0, vε splits into a copy of uε,1 centered 
at the origin and a copy of uε,2 running away at infinity on Gd

ε . Clearly, ẼGd
ε
(vε) =

ẼGd
ε
(uε,1) +ẼGd

ε
(uε,2) = ẼGd

ε

(
d

εd−1μ1
)
+ẼGd

ε

(
d

εd−1μ2
)
+2ε, so that by Theorem 2.2 one has 

Fε(vε) ≤ ERd(μ1) + ERd(μ2) + o(1) as ε is small enough. Nevertheless, since Theorem 2.2
implies that Auε,i → φμi

in H1(Rd) for i = 1, 2, it is not possible to extract from vε any 
subsequence whose corresponding extension Avε converges strongly in H1(Rd).

Ending this section, we give the proof of Proposition 2.4.

Proof of Proposition 2.4. For every d ≥ 2, p ∈
[
2 + 4

d , 2
∗) and μ sufficiently large (de-

pending on d and p), existence of ground states of ẼGd
1

in H1
μ(Gd

1 ) can be proved adapting 
the argument developed when d = 2 in the proof of [5, Theorem 1.2]. Moreover, when 
μ is large enough, there exists w ∈ H1

μ(R), compactly supported in [0, 1] and such that 
ẼR(w) ≤ −Cp

2 μ2β+1 (it is enough to consider compactly supported approximations of 
the ground state of ẼR at mass μ). Since we can think of w as a function in H1

μ(Gd
1 )

supported on a single edge, this implies

ẼGd
1
(μ) ≤ ẼGd

1
(w) ≤ −Cp

2 μ2β+1

for every μ large enough. Recalling (67), it follows that, if u ∈ H1
μ(Gd

1 ) is a ground state 

of ẼGd
1
, then

lim LGd
1
(u) ≥ lim −

2ẼGd
1
(μ)

= +∞ . (71)

n→+∞ μ→+∞ μ



S. Dovetta / Advances in Mathematics 444 (2024) 109633 37
Conversely, if p ∈
(
2 + 4

d , 2
∗) and v ∈ Ñω,Gd

1
is a ground state of J̃ω,Gd

1
, Proposition 5.4

shows that ‖v‖2
L2(Gd

1 ) �d,p ω
4−d(p−2)
2(p−2) → +∞ as ω → 0+. Therefore, there exist sequences 

(μn)n, (ωn)n ⊂ R+ and (vn)n ⊂ H1(Gd
1 ) such that μn → +∞ and ωn → 0+ as n → +∞

and, for every n, vn ∈ Ñωn,Gd
1

is a ground state of J̃ωn,Gd
1
. Since vn is thus a critical point 

of ẼGd
1

in H1
μn

(Gd
1 ) with

LGd
1
(vn) = ωn

d
→ 0 as n → +∞ ,

comparing with (71) shows that vn is not the energy ground state of ẼGd
1

at mass μn, thus 
showing the existence of two distinct critical points of the energy in H1

μn
(Gd

1 ), provided 
n is large enough. �
7. Sharp constants in Gagliardo–Nirenberg inequalities: proof of Theorem 2.5 and 
Proposition 2.6

Let us focus here on the relation between d-dimensional Gagliardo–Nirenberg inequal-
ities on Rd and on the grid Gd

1 with edgelength 1.

Remark 7.1. Exploiting the homogeneities of Qq,Rd , it is readily seen that Kq,Rd is at-
tained for every q ∈ (2, 2∗), and standard regularity arguments show that optimizers are 
in C1(Rd) ∩H2(Rd) ∩ L∞(Rd).

As a preliminary step towards Theorem 2.5, we have the following lemma.

Lemma 7.2. For every q ∈
(
2 + 4

d , 2
∗), Kq,Gd

1
is not attained.

Proof. We argue by contradiction. Let q ∈
(
2 + 4

d , 2
∗) be fixed and assume that there 

exists u ∈ H1(Gd
1 ) such that Qq,Gd

1
(u) = Kq,Gd

1
. By homogeneity, this yields Qq,Gd

1
(cu) =

Kq,Gd
1

for every c ∈ R. Let then v := cu and note that, by definition,

‖v′‖2
L2(Gd

1 ) ≥ ‖v‖q
Lq(Gd

1 )

provided c > 0 is sufficiently small. Coupling with Qq,Gd
1
(v) = Kq,Gd

1
entails

‖v′‖2
L2(Gd

1 ) ≥ Kq,Gd
1
‖v‖d+(2−d) q

2
L2(Gd

1 ) ‖v′‖
(
q
2−1

)
d

L2(Gd
1 ) ,

that is

‖v′‖L2(Gd
1 ) �d,q ‖v‖

2d+(2−d)q
4−(q−2)d

L2(Gd
1 ) . (72)

Viceversa, by the one-dimensional Gagliardo–Nirenberg inequality (15) and Qq,Gd
1
(v) =

Kq,Gd we obtain

1
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Kq,Gd
1
‖v‖d+(2−d) q

2
L2(Gd

1 ) ‖v′‖
(
q
2−1

)
d

L2(Gd
1 ) ≤ Cq‖v‖

q
2+1
L2(Gd

1 )‖v
′‖

q
2−1
L2(Gd

1 ) ,

so that

‖v′‖L2(Gd
1 ) �d,q ‖v‖L2(Gd

1 ) .

Combining with (72) thus yields

‖v‖
2(2−q)

4−(q−2)d

L2(Gd
1 ) �d,q 1 ,

providing the contradiction we seek as soon as c → 0+, since q > 2 + 4
d and, by construc-

tion, ‖v‖L2(Gd
1 ) = c‖u‖L2(Gd

1 ). �
Proof of Theorem 2.5. That Kq,Gd

1
is not attained whenever q ∈

(
2 + 4

d , 2
∗) is the con-

tent of Lemma 7.2. We are thus left to show (13) and (14). We split the proof in two 
parts.
Part 1: proof of (13). Fix q ∈ (2, 2∗) and, according to Remark 7.1, let u ∈ C1(Rd) ∩
H2(Rd) ∩L∞(Rd) be such that Qq,Rd(u) = Kq,Rd . Denoting by uε the restriction of u to 
Gd
ε for every ε > 0, Lemmas 3.1–4.1 entail

Kq,Gd
1

= ε−
(
q
2−1

)
(d−1) sup

v∈H1(Gd
ε )

‖v‖q
Lq(Gd

ε )

‖v‖d+(2−d) q
2

L2(Gd
ε ) ‖v′‖

(
q
2−1

)
d

L2(Gd
ε )

≥ ε−
(
q
2−1

)
(d−1)

‖uε‖qLq(Gd
ε )

‖uε‖
d+(2−d) q

2
L2(Gd

ε ) ‖u′
ε‖
(
q
2−1

)
d

L2(Gd
ε )

= ε−
(
q
2−1

)
(d−1)

dε1−d‖u‖q
Lq(Rd) + o(1)(

dε1−d‖u‖2
L2(Rd) + o(1)

) d
2 +(2−d) q

4
(
ε1−d‖∇u‖2

L2(Rd) + o(1)
)( q

2−1
)
d
2

= d
(d−2)(q−2)

4 Qq,Rd(u) + o(1) = d
(d−2)(q−2)

4 KRd,q + o(1) ,

provided ε is small enough, and passing to the limit for ε → 0 gives (13).
Part 2: proof of (14). Note first that it is enough to prove (14) for every q ∈

(
2 + 4

d , 2
∗), 

as the case q = 2 + 4
d will then follow by continuity of the map q �→ Qq,Gd

1
(u), for every 

given u ∈ H1(Gd
1 ).

Let now q ∈
(
2 + 4

d , 2
∗) be fixed and (un)n ⊂ H1

1 (Gd
1 ) be such that Qq,Gd

1
(un) =

Kq,Gd
1
− 1

n for every n. Moreover, without loss of generality let un attain its L∞ norm 
on the neighborhood of radius 1 of the origin in Gd

1 , for every n. We first show that

‖u′
n‖L2(Gd

1 ) → 0 as n → +∞ . (73)

Indeed, Qq,Gd
1
(un) = Kq,Gd

1
− 1

n and the one-dimensional Gagliardo–Nirenberg inequality 
(15) give, as in the proof of Lemma 7.2,
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‖u′
n‖L2(Gd

1 ) �d,q ‖un‖L2(Gd
1 ) = 1 ∀n ,

so that (un)n is bounded in H1(Gd
1 ) and therefore, up to subsequences, un ⇀ u in 

H1(Gd
1 ) as n → +∞, for some u ∈ H1(Gd

1 ). Assume then by contradiction that 
lim infn→+∞ ‖u′

n‖L2(Gd
1 ) > 0. This implies that u �≡ 0 on H1(Gd

1 ). Indeed, if it were 
u ≡ 0 on Gd

1 , then since un always attains its L∞ on the same compact subset of Gd
1 by 

assumption and un → u in L∞
loc(Gd

1 ), the boundedness in L2(Gd
1 ) would yield

‖un‖qLq(Gd
1 ) ≤ ‖un‖q−2

L∞(Gd
1 )‖un‖2

L2(Gd
1 ) → 0 as n → +∞ ,

so that

Qq,Gd
1
(un) =

‖un‖qLq(Gd
1 )

‖u′
n‖
(
q
2−1

)
d

L2(Gd
1 )

→ 0 as n → +∞ ,

which is impossible since Qq,Gd
1
(un) = Kq,Gd

1
− 1

n .
Let then m := ‖u‖2

L2(Gd
1 ), so that m ∈ (0, 1]. Note that, if m = 1, then the convergence 

of un to u is strong in L2(Gd
1 ) and, by Gagliardo–Nirenberg inequalities (4), strong in 

Lq(Gd
1 ), so that the lower semicontinuity yields

Kq,Gd
1

= lim
n→+∞

Qq,Gd
1
(un) ≤ Qq,Gd

1
(u) ≤ Kq,Gd

1
.

Since this is impossible by Lemma 7.2, it must be m ∈ (0, 1). Possibly passing to a 

further subsequence (not relabeled), set now λ := limn→+∞
‖u′‖2

L2(Gd
1 )

‖u′
n‖2

L2(Gd
1 )

. Then, by weak 

convergence of un to u,

lim
n→+∞

‖un − u‖2
L2(Gd

1 ) = lim
n→+∞

‖un‖2
L2(Gd

1 ) − ‖u‖2
L2(Gd

1 ) = 1 −m

lim
n→+∞

‖u′
n − u‖2

L2(Gd
1 )

‖u′
n‖2

L2(Gd
1 )

= lim
n→+∞

‖u′
n‖2

L2(Gd
1 ) − ‖u‖2

L2(Gd
1 )

‖u′
n‖2

L2(Gd
1 )

= 1 − λ ,

so that, by Brezis–Lieb Lemma [17] and un − u, u ∈ H1(Gd
1 ),

Kq,Gd
1

= lim
n→+∞

Qq,Gd
1
(un) = lim

n→+∞

⎛⎝‖un − u‖q
Lq(Gd

1 )

‖u′
n‖
(
q
2−1

)
d

L2(Gd
1 )

+
‖u‖q

Lq(Gd
1 )

‖u′
n‖
(
q
2−1

)
d

L2(Gd
1 )

⎞⎠
= lim

n→+∞
‖un − u‖d+

2−d
2 q

L2(Gd
1 )

(
‖u′

n − u′‖L2(Gd
1 )

‖u′
n‖L2(Gd

1 )

)( q
2−1

)
d

Qq,Gd
1
(un − u)

+ ‖u‖d+
2−d
2 q

L2(Gd
1 ) Qq,Gd

1
(u) lim

n→+∞

(
‖u′‖L2(Gd

1 )

‖u′ ‖ 2 d

)( q
2−1

)
d

n L (G1 )
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≤Kq,Gd
1

(
(1 −m) d

2 + 2−d
4 q(1 − λ)

(
q
2−1

)
d
2 + m

d
2 + 2−d

4 qλ
(
q
2−1

)
d
2

)
< Kq,Gd

1
,

since (m, λ) ∈ (0, 1)2 and the function f(x, y) := x
d
2 + 2−d

4 qy
(
q
2−1

)
d
2 + (1 − x) d

2 + 2−d
4 q(1 −

y)
(
q
2−1

)
d
2 is strictly smaller than 1 on (0, 1)2 for every q > 2. This gives again a contra-

diction and proves (73).
Now, for every n, set εn := ‖u′

n‖L2(Gd
1 ) and wn(x) := un(x/εn) for every x ∈ Gd

εn . 
Hence, wn ∈ H1(Gd

εn) and

‖w′
n‖2

L2(Gd
εn

) =
‖u′

n‖2
L2(Gd

1 )

εn
, ‖wn‖rLr(Gd

εn
) = εn‖un‖rLr(Gd

1 ) ∀r ≥ 1 , (74)

so that

‖wn‖qLq(Gd
εn

)

‖wn‖
d+(2−d) q

2
L2(Gd

εn
) ‖w′

n‖
(
q
2−1

)
d

L2(Gd
εn

)

= ε
(
q
2−1

)
(d−1)

n Qq,Gd
1
(un) = ε

(
q
2−1

)
(d−1)

n

(
Kq,Gd

1
− 1

n

)
. (75)

Let Awn be the piecewise–affine extension of wn to Rd as in (6) and w̃n be the restriction 
of Awn to Gd

εn as in Section 4. By Lemma 4.2, (74), the definition of εn and (73), we 
have

‖w̃n‖2
L2(Gd

εn
) ≤‖wn‖2

L2(Gd
εn

) + 3εn‖wn‖2
H1(Gd

εn
)

=
(

1 + 3εn + 3εn
‖w′

n‖2
L2(Gd

εn
)

‖wn‖2
L2(Gd

εn
)

)
‖wn‖2

L2(Gd
εn

)

=
(

1 + 3εn + 3
εn

‖u′
n‖2

L2(Gd
1 )

‖un‖2
L2(Gd

1 )

)
‖wn‖2

L2(Gd
εn

) = (1 + 6εn)‖wn‖2
L2(Gd

εn
)

as n → +∞ .

(76)

Furthermore, since w̃n is the restriction of Awn to Gd
εn , arguing as in the proof of 

Lemma 4.1 and recalling that, by construction, ‖∇Awn‖2
L2(Rd) = εd−1

n ‖w̃′
n‖2

L2(Gd
εn

) gives

‖Awn‖2
L2(Rd) ≤

εd−1
n

d
‖w̃n‖2

L2(Gd
εn

) + εn‖Awn‖2
L2(Rd) + (εn + ε2

n)‖∇Awn‖2
L2(Rd)

≤εd−1
n

d
‖w̃n‖2

L2(Gd
εn

) + εn‖Awn‖2
L2(Rd) + (εn + ε2

n)εd−1
n ‖w̃′

n‖2
L2(Gd

εn
) ,

that is

(1 − εn)‖Awn‖2
L2(Rd) ≤

εd−1
n

d
‖w̃n‖2

L2(Gd
εn

) + (εn + ε2
n)εd−1

n ‖w̃′
n‖2

L2(Gd
εn

) .

Coupling with (76) and using Jensen inequality, (74) and (73), as n → +∞ we obtain
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‖Awn‖2
L2(Rd) ≤

εd−1
n

d
(1 + o(1))‖wn‖2

L2(Gd
εn

) + εdn(1 + o(1))‖w′
n‖2

L2(Gd
εn

)

= εd−1
n

d
‖wn‖2

L2(Gd
εn

)

(
1 +

d‖u′
n‖2

L2(Gd
1 )

εn‖un‖2
L2(Gd

1 )
+ o(1)

)

=εd−1
n

d
(1 + o(1))‖wn‖2

L2(Gd
εn

) .

(77)

Let now d = 2 and q > 2 or d ≥ 3 and q ∈
(
2, 2∗

2 + 1
]
. By Lemma 4.3 and Qq,Gd

1
(un) =

Kq,Gd
1
− 1

n we have

‖w̃n‖qLq(Gd
εn

) ≥‖wn‖qLq(Gd
εn

)

⎛⎜⎝1 − Cε
q−2
2 (d−1)+1

n

‖wn‖
d+(2−d)(q−1)

2
L2(Gd

εn
) ‖w′

n‖
q−2
2 d+1

L2(Gd
εn

)

‖wn‖qLq(Gd
εn

)

−Cε
1
2

(
q−2
2 d+3

)
n

‖w′
n‖qL2(Gd

εn
)

‖wn‖qLq(Gd
εn

)

)

= ‖wn‖qLq(Gd
εn

)

⎛⎜⎝1 − C
‖un‖

d+(2−d)(q−1)
2

L2(Gd
1 ) ‖u′

n‖
q−2
2 d+1

L2(Gd
1 )

‖un‖qLq(Gd
1 )

−Cε
q(d−2)

4 − d−1
2

n

‖u′
n‖qL2(Gd

1 )

‖un‖qLq(Gd
1 )

)

= ‖wn‖qLq(Gd
εn

)

(
1 − C

(
Kq,G1 −

1
n

) ‖u′
n‖L2(Gd

1 )

‖un‖L2(Gd
1 )

−C

(
Kq,G1 −

1
n

)
ε

q(d−2)
4 − d−1

2
n

‖u′
n‖

d− d−2
2 q

L2(Gd
1 )

‖un‖
d− d−2

2 q

L2(Gd
1 )

⎞⎠
=(1 − o(1))‖wn‖qLq(Gd

εn
) as n → +∞ ,

(78)

since q(d−2)
4 − d−1

2 +d − d−2
2 q > 0. Moreover, applying (24) to Awn and w̃n, making use of 

the d-dimensional Gagliardo–Nirenberg inequality (4) in L2(q−1)(Rd) (which is possible 

because 2(q− 1) ≤ 2∗ whenever d = 2 or d ≥ 3 and q ∈
(
2, 2∗

2 + 1
]
) and exploiting (77), 

(78) and (39),

‖Awn‖qLq(Rd) ≥
εd−1
n

d
‖w̃n‖qLq(Gd

εn
)

(
1 − ε2−d

n

d‖Awn‖q−1
L2(q−1)(Rd)‖∇Awn‖L2(Rd)

‖w̃n‖qLq(Gd
εn

)

)

≥ εd−1
n

d
‖w̃n‖qLq(Gd

εn
)

⎛⎝1 − Cε2−d
n

‖Awn‖
d+(2−d)(q−1)

2
L2(Rd) ‖∇Awn‖

q−2
2 d+1

L2(Rd)

‖w̃n‖qLq(Gd )

⎞⎠

εn
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≥ εd−1
n

d
‖wn‖qLq(Gd

εn
)

⎛⎜⎝1 − Cε
q−2
2 (d−1)+1

n

‖wn‖
d+(2−d)(q−1)

2
L2(Gd

εn
) ‖w′

n‖
q−2
2 d+1

L2(Gd
εn

)

‖wn‖qLq(Gd
εn

)

⎞⎟⎠
= εd−1

n

d
‖wn‖qLq(Gd

εn
)(1 − o(1)) as n → +∞ , (79)

where the constant C > 0 is not relabeled line by line and it already takes into account 
the inessential o(1).

Let then d ≥ 3 and q ∈
(

2∗

2 + 1, 2∗
)

and take γ ∈ (0, 1) such that d + 2−d
2 q − γ

2 > 0. 
Then, again by Lemma 4.3 and Qq,Gd

1
(un) = Kq,Gd

1
− 1

n ,

‖w̃n‖qLq(Gd
εn

) ≥‖wn‖qLq(Gd
εn

)

⎛⎝1 − Cε
q
2+1−γ
n

‖wn‖γL2(Gd
εn

)‖w′
n‖q−γ

L2(Gd
εn

)

‖wn‖qLq(Gd
εn

)

−Cε
q
2+1− γ

2
n

‖w′
n‖qL2(Gd

εn
)

‖wn‖qLq(Gd
εn

)

)

= ‖wn‖qLq(Gd
εn

)

(
1 − C

‖un‖γL2(Gd
1 )‖u

′
n‖q−γ

L2(Gd
1 )

‖un‖qLq(Gd
1 )

+ ε
− γ

2
n

‖u′
n‖qL2(Gd

1 )

‖un‖qLq(Gd
1 )

)

= ‖wn‖qLq(Gd
εn

)

⎛⎝1 − C
‖u′

n‖
d+ 2−d

2 q−γ

L2(Gd
1 )

‖un‖
d+ 2−d

2 q−γ

L2(Gd
1 )

− Cε
− γ

2
n

‖u′
n‖

d+ 2−d
2 q

L2(Gd
1 )

‖un‖
d+ 2−d

2 q

L2(Gd
1 )

⎞⎠
= ‖wn‖qLq(Gd

εn
)

(
1 − 2Cε

d− d−2
2 q− γ

2
n

)
= (1 − o(1))‖wn‖qLq(Gd

εn
) as n → +∞ .

Combining with (24) on Awn, 2(q−1) > 2∗, Lemma 4.4, Proposition 3.2 and (77) yields

‖Awn‖qLq(Rd) ≥
εd−1
n

d
‖w̃n‖qLq(Gd

εn
)

(
1 − ε2−d

n

d‖Awn‖q−1
L2(q−1)(Rd)‖∇Awn‖L2(Rd)

‖w̃n‖qLq(Gd
εn

)

)

≥ εd−1
n

d
‖wn‖qLq(Gd

εn
)

⎛⎝1 − Cε
q
2+1− γ

2
n

‖wn‖
γ
2
L2(Gd

εn
)‖w′

n‖
q− γ

2
L2(Gd

εn
)

‖wn‖qLq(Gd
εn

)

⎞⎠
= εd−1

n

d
‖wn‖qLq(Gd

εn
)(1 − o(1)) as n → +∞ .

(80)

Since (Awn)n ⊂ H1(Rd), by (77), (79), (80), Lemma 4.4, and recalling (12) and (75), it 
follows then
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Kq,Rd ≥ lim sup
n→+∞

Qq,Rd(Awn)

≥ lim sup
n→+∞

εd−1
n

d ‖wn‖qLq(Gd
εn

)(
εd−1
n

d ‖wn‖2
L2(Gd

εn
)

) d
2 + 2−d

4 q (
εd−1
n ‖w′

n‖2
L2(Gd

εn
)

)( q
2−1

)
d
2

= d−
(d−2)(q−2)

4 lim sup
n→+∞

ε
−
(
q
2−1

)
(d−1)

n

‖wn‖qLq(Gd
εn

)

‖wn‖
d+ 2−d

2 q

L2(Gd
εn

)‖w′
n‖
(
q
2−1

)
d

L2(Gd
εn

)

= d−
(d−2)(q−2)

4 Kq,Gd
1
,

which coupled with (13) concludes the proof of (14). �
Proof of Proposition 2.6. If Kq,Gd

1
= Kq,Rd , the result is trivially true. Assume then q ∈(

2, 2 + 4
d

)
, Kq,Gd

1
> Kq,Rd and let (un)n ⊂ H1

1 (Gd
1 ) be such that Qq,Gd

1
(un) = Kq,Gd

1
− 1

n

for every n. Moreover, with no loss of generality we can take un to attain its L∞ norm 
inside the neighborhood of radius 1 of the origin, for every n. Arguing as in the proofs of 
Lemma 7.2 and Theorem 2.5, the one-dimensional Gagliardo–Nirenberg inequality (15)
ensures that (un)n is bounded in H1(Gd

1 ). Hence, up to subsequences, un ⇀ u in H1(Gd
1 )

as n → +∞, for some u ∈ H1(Gd
1 ) that, by semicontinuity, satisfies m := ‖u‖2

L2(Gd
1 ) ∈

[0, 1]. On the one hand, if we assume m ∈ (0, 1), setting (possibly passing to a further 

subsequence) λ := limn→+∞
‖u′‖2

L2(Gd
1 )

‖u′
n‖2

L2(Gd
1 )

and arguing as in the proof of Theorem 2.5 leads 

to a contradiction. On the other hand, if m = 0, then up to subsequences un ⇀ 0
in H1(Gd

1 ) and un → 0 in L∞
loc(Gd

1 ) as n → +∞. Since, by assumption, un attains its 
L∞ norm inside a fixed compact subset of Gd

1 for every n, this entails that un → 0 in 
L∞(Gd

1 ), which itself implies un → 0 in Lq(Gd
1 ), as ‖un‖L2(Gd

1 ) = 1 for every n. Recalling 
that Qq,Gd

1
(un) = Kq,Gd

1
− 1

n > 0, this gives

‖u′
n‖L2(Gd

1 ) → 0 as n → +∞ .

Hence, setting εn := ‖u′
n‖L2(Gd

1 ), wn(x) := un(x/εn) for every x ∈ Gd
εn , and arguing 

exactly as in the last part of the proof of Theorem 2.5, we obtain

Kq,Rd ≥ lim sup
n→+∞

‖Awn‖qLq(Rd)

‖Awn‖
d+ 2−d

2 q

L2(Rd) ‖∇Awn‖
(
q
2−1

)
d

L2(Rd)

≥ d−
(d−2)(q−2)

4 lim
n→+∞

Qq,Gd
1
(un)

= d−
(d−2)(q−2)

4 Kq,Gd
1
,

which is again a contradiction. Therefore, it must be m = 1, in turn implying that the 
convergence of un to u is strong in L2(Gd

1 ) and, by (15) again, strong in Lq(Gd
1 ). By lower 

semicontinuity, this is enough to see that Qq,Gd(u) = Kq,G−1d , concluding the proof. �

1
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8. Generalizations

This section discusses the generalization of the method developed so far to non-cubic 
periodic grids. In general, to recover the results of Theorems 2.1–2.2–2.5 and Proposi-
tion 2.6, it is enough to modify the definition (6) of the extension operator A according 
to the periodicity cell of the grid under exam. As a matter of fact, this will not change the 
scale factor εd−1 in front of the functionals, but will affect the ε-independent coefficients 
in front of the various terms. Hence, once a suitable definition of A is given, we just 
need to compute these new coefficients and then repeat the arguments of the previous 
sections with no significant modifications.

Of course, the identification of the extension operator has to be performed case by case. 
Giving up on any vain ambition to treat every grid in one shot, here we limit to consider 
two explicit examples of non-square two-dimensional grids: the regular triangular grid 
and the regular hexagonal one. For the sake of brevity, when speaking of ground states, 
in what follows we describe explicitly only the extension to these grids of our results on 
energy ground states, that for those of the action being identical.

8.1. The regular triangular grid

If Gε is the two-dimensional regular triangular grid in R2 with edgelength ε as in 
Fig. 3(A), with one vertex at the origin, we can write

Gε =
⋃

i,j∈Z

∂Tε,ij ,

where the couples of indices (i, j) ∈ Z2 are in one-to-one correspondence with the trian-
gles Tε,ij with edges of length ε in which Gε divides the plane, and ∂Tε,ij denotes their 
boundary in R2. Given u : Gε → R, we define Au : R2 → R as

Au(x, y) := Aε,iju(x, y) if (x, y) ∈ Tε,ij , for some i, j ∈ Z , (81)

with Aε,iju : Tε,ij → R being the affine interpolation on Tε,ij of the values of u at the 
vertices of Tε,ij . Moreover, we define ẼGε

: H1(Gε) → R as

ẼGε
(u) := 1

2
√

3
‖u′‖2

L2(Gε) −
1

2
√

3p
‖u‖pLp(Gε) (82)

and

LGε
(u) :=

1
2‖u‖

p
Lp(Gε) − ‖u′‖2

L2(Gε)

‖u‖2
L2(Gε)

. (83)

Since the analysis of [5] generalizes to two-dimensional regular triangular grids, existence 
of ground states of ẼGε

is guaranteed for every p ∈ (2, 4) and μ > 0, and they are one-
signed solutions of
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{
u′′ + 1

2 |u|p−2u = LGε
(u)u on every edge of Gε∑

e�v

du
dxe

(v) = 0 for every vertex v of Gε .
(84)

We then have the next theorem, that is the analogue of Theorem 2.2 for regular two-
dimensional triangular grids.

Theorem 8.1. Let p ∈ (2, 4) and μ > 0 be fixed. For every ε > 0, let Gε be the two-
dimensional regular triangular grid with edgelength ε and ẼGε

be as in (82). Then

(i) there exists Cp > 0, depending only on p, such that

∣∣∣∣εẼGε

(
2
√

3μ
ε

)
− ER2(μ)

∣∣∣∣ ≤ Cpε as ε → 0 ;

(ii) for every positive ground state uε of ẼGε
in H1

2
√

3μ
ε

(Gε) there exists xε ∈ R2 such 

that

Auε(· − xε)
ε→0−−−→ φμ in H1(R2) ,

where the extension operator A is as in (81) and φμ is the unique positive ground 
state of ER2 at mass μ attaining its L∞ norm at the origin. Furthermore,

lim
ε→0

LGε
(uε) = ωμ

2
√

3
,

where LGε
(uε) is defined as in (83) and ωμ is the value of ω for which φμ solves (1).

As for sharp constants in two-dimensional Gagliardo–Nirenberg inequalities, we have 
the following.

Theorem 8.2. Let G1 be the two-dimensional regular triangular grid with edgelength 1. For 
every q > 2, let Kq,G1 be the sharp constant in the two-dimensional Gagliardo–Nirenberg 
inequality (4) on G1. Then

Kq,G1 ≥ 3
2−q
4 Kq,R2 ∀q > 2 .

If q ≥ 4, then

Kq,G1 = 3
2−q
4 Kq,R2

and Kq,G1 is not attained for every q > 4. Furthemore, if q ∈ (2, 4) and there exists 
u ∈ H1(G1) such that Qq,G1(u) ≥ 3 2−q

4 Kq,R2 (where Qq,G1 is defined as in (11)), then 
Kq,G1 is attained.
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As anticipated, the unique difference between Theorems 2.2–2.5, Proposition 2.6 and 
Theorems 8.1–8.2 is in the numerology. The above results follow repeating the same 
argument as for the square grid, coupled whenever needed with the next two lemmas.

Lemma 8.3. Let u ∈ C1(R2) ∩H2(R2). For every ε > 0, let uε : Gε → R be the restric-
tion of u to the regular triangular grid Gε with edgelength ε. Then there exists C > 0, 
depending on u but not on ε, such that, as ε → 0, it holds∣∣∣∣ ε

2
√

3
‖uε‖qLq(Gε) − ‖u‖qLq(R2)

∣∣∣∣ ≤ Cε , ∀q ≥ 2, (85)∣∣∣∣ ε√
3
‖u′

ε‖2
L2(Gε) − ‖∇u‖2

L2(R2)

∣∣∣∣ ≤ Cε . (86)

Proof. The argument being analogous to that in Lemma 4.1, we just sketch the proof 
of (85) with q = 2 and of (86). In the following, we will always denote by C a suitable 
positive constant possibly depending only on p and u, without renaming it even when 
varying line by line.

Here it is convenient to think of Gε as

Gε =
⋃
i∈Z

(Hε,i ∪ Lε,i ∪Rε,i) ,

where

Hε,i :=
⋃
j∈Z

[εj, ε(j + 1)] ×
{√

3
2 εi

}
Lε,i :=

{
(x,

√
3(x− εi)) : x ∈ R

}
Rε,i :=

{
(x,−

√
3(x− εi)) : x ∈ R

}
.

To prove (85) with q = 2, consider first the function wε : R2 → R given by

wε(x, y) := u

(
x,

√
3

2 εi

)
∀(x, y) ∈ R ×

[√
3

2 εi,

√
3

2 ε(i + 1)
)
, for some i ∈ Z .

Arguing as in Part 1 of the proof of Lemma 4.1, it follows that 
∣∣∣‖wε‖2

L2(R2) − ‖u‖2
L2(R2)

∣∣∣ ≤
Cε, and a direct computation shows that ‖wε‖2

L2(R2) =
√

3
2 ε‖uε‖2

L2(
⋃

i∈Z Hε,i), so that

∣∣∣∣√3
2 ε‖uε‖2

L2(
⋃

i∈Z Hε,i) − ‖u‖2
L2(R2)

∣∣∣∣ ≤ Cε . (87)

Define then vε : R2 → R as
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vε(x, y) := uε(x,
√

3(x− εi)) ∀(x, y) ∈ Aε,i, for some i ∈ Z ,

where Aε,i :=
{
(x, y) ∈ R2 :

√
3(x− εi) ≤ y <

√
3(x− ε(i + 1))

}
. Again, |‖vε‖2

L2(R2) −
‖u‖2

L2(R2)| ≤ Cε. Furthermore,

‖vε‖2
L2(R2) =

∑
i∈Z

∫
R

√
3(x−ε(i+1))∫
√

3(x−εi)

|uε(x,
√

3(x− εi))|2 dydx

=
√

3ε
∑
i∈Z

∑
j∈Z

ε
2 (j+1)∫
ε
2 j

|uε(x,
√

3(x− εi))|2dx =
√

3
2 ε

∑
i∈Z

‖uε‖2
L2(Lε,i) ,

so that ∣∣∣∣√3
2 ε‖uε‖2

L2(
⋃

i∈Z Lε,i) − ‖u‖2
L2(R2)

∣∣∣∣ ≤ Cε . (88)

Since an analogous computation yields∣∣∣∣√3
2 ε‖uε‖2

L2(
⋃

i∈Z Rε,i) − ‖u‖2
L2(R2)

∣∣∣∣ ≤ Cε ,

summing with (87) and (88) gives (85) with q = 2.
Let us now focus on (86). Arguing as in Part 2 of the proof of Lemma 4.1, we imme-

diately obtain that ∣∣∣∣√3
2 ε‖u′

ε‖2
L2(

⋃
i∈Z Hε,i) − ‖∂xu‖2

L2(R2)

∣∣∣∣ ≤ Cε . (89)

Let gε : R2 → R be the function

gε(x, y) := ∇u(x,
√

3(x− εi)) · (1,
√

3) ∀(x, y) ∈ Aε,i, for some i ∈ Z ,

where Aε,i is as above. Then 
∣∣∣‖gε‖2

L2(R2) − ‖∂xu +
√

3∂yu‖2
L2(R2)

∣∣∣ ≤ Cε and

‖gε‖2
L2(R2) =

∑
i∈Z

∫
R

√
3(x−ε(i+1))∫
√

3(x−εi)

|∇u(x,
√

3(x− εi)) · (1,
√

3)|2 dydx

=4
√

3ε
∑
i∈Z

∑
j∈Z

ε
2 (j+1)∫
ε
2 j

∣∣∣∣∇u(x,
√

3(x− εi)) ·
(

1
2 ,

√
3

2

)∣∣∣∣2 dx

=2
√

3ε
∑

‖u′
ε‖2

L2(Lε,i) ,

i∈Z
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so that ∣∣∣2√3ε‖u′
ε‖2

L2(
⋃

i∈Z Lε,i) − ‖∂xu +
√

3∂yu‖2
L2(R2)

∣∣∣ ≤ Cε . (90)

Similarly, ∣∣∣2√3ε‖u′
ε‖2

L2(
⋃

i∈Z Rε,i) − ‖∂xu−
√

3∂yu‖2
L2(R2)

∣∣∣ ≤ Cε ,

which summing with (90) gives∣∣∣√3ε‖u′
ε‖2

L2(
⋃

i∈Z(Lε,i∪Rε,i)) − ‖∂xu‖2
L2(R2) − 3‖∂yu‖2

L2(R2)

∣∣∣ ≤ Cε .

Coupling with (89) leads to (86). �
Lemma 8.4. Let Gε be the regular triangular grid with edgelength ε. For every u ∈ H1(Gε), 
it holds

‖∇Au‖2
L2(R2) = ε√

3
‖ũ′‖2

L2(Gε) ,

where Au is as in (81) and ũ denotes the restriction of Au to Gε.

Proof. It is a straightforward consequence of the fact that, by definition of Au and ũ,

‖∇Au‖2
L2(Tε,ij) = ε

2
√

3
‖ũ′‖2

L2(∂Tε,ij) , ∀(i, j) ∈ Z2 ,

and that each edge of Gε belongs to the boundary of two of the triangles Tε,ij . �
8.2. The regular hexagonal grid

If Gε is the two-dimensional regular hexagonal grid with edgelength ε as in Fig. 3(B), 
with one vertex at the origin, we can write

Gε :=
⋃

i,j∈Z

∂Hε,ij ,

where the couples of indices (i, j) ∈ Z2 are in one-to-one correspondence with the 
hexagons Hε,ij with edges of length ε in which Gε divides the plane, and ∂Hε,ij denotes 
their boundary in R2. For each i, j, we then consider Hε,ij = T 1

ε,ij ∪ T 2
ε,ij ∪ T 3

ε,ij ∪ T 4
ε,ij , 

where T 1
ε,ij is the triangle given by the three leftmost vertices of Hε,ij , T 2

ε,ij is the triangle 
given by the bottom–left vertex and the two top vertices of Hε,ij, T 3

ε,ij is the triangle 
given by the two bottom vertices and the top–right vertex of Hε,ij and T 4

ε,ij is the tri-
angle given by the three rightmost vertices of Hε,ij (Fig. 4). Given u : Gε → R, we then 
define Au : R2 → R as
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Fig. 4. The splitting of an hexagonal cell in the definition of the extension operator (91) on two-dimensional 
regular hexagonal grid.

Au(x, y) := Ak
ε,iju if (x, y) ∈ T k

ε,ij , for some i, j ∈ Z, k ∈ {1, 2, 3, 4} , (91)

with Ak
ε,iju : T k

ε,ij → R being the affine interpolation of the values of u at the vertices of 
T k
ε,ij . Moreover, we define ẼGε

: H1(Gε) → R as

ẼGε
(u) :=

√
3

2 ‖u′‖2
L2(Gε) −

√
3

2p ‖u‖pLp(Gε) (92)

and LGε
(u) as in (83). Existence of energy ground states for every p ∈ (2, 4) and μ > 0

on hexagonal grids can be found in [4] and computing the associated Euler–Lagrange 
equations show that they are constant sign solutions to (84) on Gε.

Theorem 8.5. Let p ∈ (2, 4) and μ > 0 be fixed. For every ε > 0, let Gε be the two-
dimensional regular hexagonal grid with edgelength ε and ẼGε

be as in (92). Then

(i) there exists Cp > 0, depending only on p, such that

∣∣∣∣εẼGε

(
2μ√
3ε

)
− ER2(μ)

∣∣∣∣ ≤ Cpε as ε → 0 ;

(ii) for every positive ground state uε of ẼGε
in H1

2μ√
3ε

(Gε) there exists xε ∈ R2 such that

Auε(· − xε)
ε→0−−−→ φμ in H1(R2) ,

where the extension operator A is as in (91) and φμ is the unique positive ground 
state of ER2 at mass μ attaining its L∞ norm at the origin. Furthemore,

lim
ε→0

LGε
(uε) =

√
3ωμ

2 as ε → 0 ,

where LGε
(uε) is defined as in (83) and ωμ is the value of ω for which φμ solves (1).
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Theorem 8.6. Let G1 be the two-dimensional regular hexagonal grid with edgelength 1. For 
every q > 2, let Kq,G1 be the sharp constant in the two-dimensional Gagliardo–Nirenberg 
inequality (4) on G1. Then

Kq,G1 ≥ 3
q−2
4 Kq,R2 ∀q > 2 .

If q ≥ 4, then

Kq,G1 = 3
q−2
4 Kq,R2

and Kq,G1 is not attained for every q > 4. Furthemore, if q ∈ (2, 4) and there exists 
u ∈ H1(G1) such that Qq,G1(u) ≥ 3 q−2

4 Kq,R2 (where Qq,G1 is defined as in (11)), then 
Kq,G1 is attained.

As in the previous case, the proof of these results combines the discussion performed 
for square grids with the next two lemmas.

Lemma 8.7. Let u ∈ C1(R2) ∩H2(R2). For every ε > 0, let uε : Gε → R be the restric-
tion of u to the regular hexagonal grid Gε with edgelength ε. Then there exists C > 0, 
depending on u but not on ε, such that, as ε → 0, it holds∣∣∣∣√3

2 ε‖uε‖qLq(Gε) − ‖u‖qLq(R2)

∣∣∣∣ ≤ Cε , ∀q ≥ 2,∣∣∣√3ε‖u′
ε‖2

L2(Gε) − ‖∇u‖2
L2(R2)

∣∣∣ ≤ Cε .

Proof. It is evident from the fact that the regular hexagonal grid is the subset of the 
regular triangular one given by the removal of one edge over three on each Hε,i, Lε,i and 
Rε,i, for every i ∈ Z. �
Lemma 8.8. Let Gε be the regular hexagonal grid with edgelength ε. For every u ∈ H1(Gε), 
it holds

‖∇Au‖2
L2(R2) =

√
3ε‖ũ′‖2

L2(Gε) ,

where Au is as in (91) and ũ denotes the restriction of Au to Gε.

Proof. It is again a direct consequence of the definition of Au and the fact that each 
edge of Gε belongs to exactly two of the hexagons in which the grid divides the plane. �
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