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Enhancing precision in coastal dunes vegetation mapping: 
ultra-high resolution hierarchical classification at the 
individual plant level
E. Belcore a, M. Latella b, M. Piras a and C. Camporeale a

aDepartment of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Torino, 
Italy; bCMCC Foundation – Euro-Mediterranean Center on Climate Change, Viterbo, Italy

ABSTRACT
The classification of ultra-high-resolution (UHR) imagery, characterized 
by spatial resolutions exceeding 10 cm, presents opportunities and 
challenges distinct from lower-resolution counterparts. Particularly, 
challenges are pronounced in some scenarios, such as mapping plant 
species in coastal environments, where similar vegetation responses 
and small plant sizes pose additional difficulties. The present work 
addressed such issues by developing a UHR vegetation cover classifica
tion model at the single plant level using data from uncrewed aerial 
systems (UASs) equipped with a multispectral optical sensor. The 
model was tested across the San Rossore Regional Park (Italy), where 
three pilot areas were defined as training-test-validation sites. The 
proposed solution consists of a hierarchical two-level-of-detail machine 
learning model based on object-based image analysis (OBIA) and 
random forest. This model considers spectral features and indices, 
elevation, and texture and can classify twelve plant species and two 
service classes (debris and sand) within the study areas. Train and test 
were carried out utilizing UAS flight data collected during two specific 
phenological periods and precise field data derived from in-situ vege
tation surveys, which provided 937 herbaceous and shrub samples. The 
model performance was evaluated based on the error matrix and 50- 
fold stratified cross-validation method, obtaining an overall accuracy 
(OA) of 0.76 and a standard deviation of 0.08. Such assessment under
scored the crucial role of texture information, in addition to radiometric 
and elevation. Finally, the model was tested against an unseen dataset, 
proving its transferability (OA equal to 0.62). Although the discussion 
highlights some aspects to be further improved and claims for future 
research, the first version of this hierarchical classification model 
demonstrated its potential for mapping and monitoring coastal sand 
dune ecosystems, providing data for understanding and, eventually, 
modeling ecological and biogeomorphological dynamics.
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1. Introduction

Earth’s surface is commonly described through land cover (LC), which provides informa
tion about biotic and abiotic assemblages in a specific area (Townshend 1992; Wulder 
et al. 2018). The knowledge of its change in time is pivotal for environmental sciences, 
land and urban planning, and natural resource management from local up to national and 
regional scales (Turner, Eric, and Reenberg 2007; Verburg et al. 2019).

Remote sensing (RS) supports mapping and monitoring LC in a relatively simple and 
fast way compared to traditional field surveys (Herold et al. 2006; Wulder et al. 2018). The 
first RS-based LC classifications used to rely on visual interpretation of orthomosaics of 
three spectral bands only (R, G, B). However, nowadays, multispectral and hyperspectral 
imagery allows for performing high-accuracy classifications in several contexts, especially 
when leveraging specific combinations of spectral bands to compute radiometric indices, 
like the widely-used Normalized Difference Vegetation Index (NDVI), that support detect
ing land cover changes (Campos-Taberner et al. 2023; Gromny et al. 2022) and determin
ing soil and vegetation status (Babaeian et al. 2021; Horning et al. 2020).

Multispectral sensors can be mounted across different vectors (tripods, drones, aircraft, 
or satellites), each providing information with diverse time and spatial resolution. Among 
these, drones, also referred to as Uncrewed Aerial Systems (UAS) and Uncrewed Aerial 
Vehicles (UAV), have gained approval for research in recent years, allowing to perform 
meaningful analysis in a wide range of scientific fields, ranging from disaster monitoring 
(Calantropio et al. 2018), forestry (Fawcett, Bennie, and Anderson 2021; N. Zhang et al.  
2023), freshwater sciences (Piégay et al. 2020; Wawrzyniak et al. 2013; Woodget et al.  
2017), ecology (Belloni et al. 2023; Cortesi et al. 2022; Ioli et al. 2020; Lou et al. 2023) and 
civil engineering (Patrucco et al. 2022; Zollini et al. 2020), among others. Moreover, the 
spread of drones has paved the way for new horizons of LC classification and, as (Horning  
2020) points out, the interest in LC classification from high-resolution optical data 
acquired by aerial drone systems has markedly increased in the last few years. The cost- 
effectiveness and low time consumption of UAS, especially if compared to traditional 
mapping methods like field surveys and aerial photos from aircraft, facilitate multi- 
temporal studies and monitoring activities (Belcore et al. 2022; Schiefer et al. 2020). In 
addition, sensors mounted on UAS often enable ultra-high-resolution (UHR) LC classifica
tion, which means spatial resolutions finer than 0.1 m, in contrast with the very-high- 
resolution (VHR) offered by the sensors more frequently mounted on other vectors (i.e. 
spatial resolutions lower than 1.0 m).

Although employing UAS systems for UHR LC classifications is widespread, most of the 
works concerning natural environments rely on classifying plant species instead of LC 
(Agrillo et al. 2022; Ahmed et al. 2017; Bhatt and Maclean 2023; Cruz et al. 2023; Horning 
et al. 2020; Kattenborn et al. 2020; Michez et al. 2016; Schiefer et al. 2020). In this sense, 
coastal dunes are a notable example of a dual necessity of both LC and plant-feature 
mapping.

The coastal dune ecotone hosts transitional habitats between aquatic and terrestrial 
ecosystems, therefore playing a fundamental role in the functional biotic and abiotic 
connectivity (Acosta, Blasi, and Stanisci 2009; Carboni, Laura Carranza, and Acosta 2009). 
This transition generates gradients of environmental disturbances (e.g. wind, waves, salt 
spray, sand movement, groundwater depth) and physical parameters (e.g. soil moisture 

4528 E. BELCORE ET AL.



and salinity), inducing an ecological succession of plant species called psammosere 
(Ritchie 1972) and representing an ecological corridor for fauna (Kutiel 2001). Because 
of the high biodiversity of coastal dunes, high-resolution vegetation mapping and species 
recognition are necessary to analyze biological dynamics and plant patterns. On the other 
hand, LC classification supports investigating the interaction between vegetation and the 
surrounding environment (Suo, McGovern, and Gilmer 2019), providing useful informa
tion for coastal management, conservation, and restoration.

Despite its usefulness, UHR LC classification of coastal dune ecosystems is intricate, 
primarily due to: i) the extreme similarity of vegetation spectral responses to multispectral 
sensors (Horning et al. 2020); ii) the size and features of vegetation, which is predomi
nantly herbaceous or constituted by small plants (approximately 0.05 m2 cover) with low 
density and alternating with other elements of varying spectral response (sand, rocks, 
woody debris, spastic debris, algal and shell deposits, water); and iii) the influence of 
climate on vegetation, causing dune plants to appear dry or leafless for much of the 
summer period in the Mediterranean region or inducing their shrinking during the 
dormant winter season in cold regions, Maun (2020).

The literature suggests several techniques to classify land cover from UHR data 
accurately, and these can also be translated and applied in natural environments such 
as dune ecosystems. Among these, we underscore four of the most promising solutions, 
to the best of our knowledge, in the following.

The first one is the classification at hierarchical levels of detail, which we will henceforth 
refer to as Level of Detail (LoD). LoD methodologies are rapidly catching on (Ahmed et al.  
2017; Laporte-Fauret et al. 2020). They generally perform an initial classification with low 
thematic detail (first hierarchy level) and subsequently focus on high thematic resolution 
classifications of one (or more) 1-level classes. Such an approach has already been 
consolidated in satellite LC classifications. For instance, the Food and Agriculture 
Organization (FAO) adopts a hierarchical and multi-level approach in its Land Cover 
Classification System (LCCS) (Di Gregorio and Food and Agriculture Organization of the 
United Nations 2005).

A second strategy to address UHR LC classification of coastal dunes is adopting a multi- 
temporal approach. Similar to the case of LoD, this kind of solution is consolidated for 
satellites but rarely applied to drone datasets, likely because of the more significant 
resources required to perform two or more UAS acquisitions (Michez et al. 2016; Shi 
et al. 2020). However, some authors have started exploring the UHR multitemporal 
approach by including plant phenology in the classification as an intrinsic variable 
(Belcore et al. 2021; Michez et al. 2016; Shi et al. 2020; Takahashi Miyoshi et al. 2020), 
achieving promising results.

The third solution is the use of textural information in the classification. It must be noted 
that this approach is generally well-established for UHR-UAS data but not in coastal envir
onments (Agrillo et al. 2022; Bhatt and Maclean 2023; Horning et al. 2020; Lou et al. 2023).

Finally, to address intra-class variability and low spectral separability, the literature 
suggests using the object-based image analysis (OBIA) method (Lou et al. 2023; Melville, 
Fisher, and Lucieer 2019; X. Zhang et al. 2017). Indeed, OBIA improves class separability by 
considering additional features such as spatial, texture, and contextual information (Kalantar 
et al. 2017). A well-known application is represented by OBIA-LC classifications of urban or 
generally artificial areas (Belcore, Piras, and Pezzoli 2022; Park et al. 2022; Trevisiol et al. 2022; 
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Wyard et al. 2022), where concrete roofs and parking lots have a very similar spectral 
signature but different texture and shape (Kuras et al. 2021). It is worth noting that another 
option can be using deep learning, whose applications for mapping and performing remote 
sensing tasks are spreading, proving accuracy and preciseness. However, when moving to 
complex environments, such as natural forests, instance segmentation (separating different 
trees or plants and classifying them) is still difficult. Deep learning algorithms are able to 
perform on many classes if properly trained on large datasets, yet this kind of datasets is 
difficult to construct. Some studies address this challenge by facing instance segmentation 
in two steps, namely (i) using the traditional OBIA approach to segment vegetation and (ii) 
deep learning for species classification (Diez et al. 2021).

We remark that when a UHR OBIA LC classification is applied to vegetated areas, the 
objects, or segments, of the classification are represented by plants grouped into commu
nities or plant functional types (PFTs) (Agrillo et al. 2022; Räsänen et al. 2019; Sankey et al.  
2021). PFTs have significance at an ecological and botanical level but little in terms of spectral 
response. Indeed, even if PFTs hold great importance in (coastal) ecology studies, they can be 
misleading when applied at the OBIA land cover level, where areas with dissimilar spectral 
characteristics are segmented. Due to the averaging of spectral and textural responses of 
pixels within a specific cover class, the PFTs approach applied to UHR data can result in an 
approximation that jeopardizes the transferability of classification models to different areas. 
These aspects are difficult to assess because model transferability remains one of the least 
tested features in most classification works.

In agreement with previous works (Natesan, Armenakis, and Vepakomma 2020; Prošek 
and Šímová 2019; Schiefer et al. 2020; Shi et al. 2020; Sothe et al. 2019; Suo, McGovern, 
and Gilmer 2019), we argue that in natural ecosystems, especially where vegetation is not 
dense, a multi-level classification based on OBIA is needed. In this sense, a first level 
should comprise a high-resolution LC map, while further levels can provide plant-specific 
information necessary to address ecological dynamics.

Given the ecological significance of coastal dune ecosystems, along with the challenges 
encountered in their vegetation mapping and the proposed solutions, this study seeks to 
construct a two-level object-based image analysis (OBIA) classification model. The first level 
involves semantic segmentation of vegetation cover, providing a single-plant detection, 
while the second level details the classification of plant species (Figure 1). This model also 
includes texture and multitemporal information to increase the robustness of classification. 
In the following, we describe the study site, comprising three pilot areas in the Migliarino- 
San Rossore-Massaciuccoli Regional Park (Italy), data collection and processing, and the 
setup of the classification algorithm. Subsequently, we report the results deriving from the 
model’s application and the validation of the methodology. Finally, we comment on the 
most important results, opening up for discussion about further improvement of the 
presented approach and its potential application in the environmental sciences.

2. Material and methods

2.1. Study site

This work focuses on three pilot sites along the Tyrrhenian coastline in central Italy. These 
sites are part of the 23,000-ha protected areas of the Migliarino-San Rossore-Massaciuccoli 
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Regional Park (Figure 2), established in 1979. This area was designated a Biosphere 
Reserve by UNESCO in 2004. Due to its ecological value and high biodiversity, this park 
has been the object of several studies (Barducci et al. 2007, 2009; Bertacchi 2017; Bertoni 
et al. 2014; Ciccarelli 2014; Ciccarelli, Garbari, and Bedini 2009; Cipriani et al. 2010; Fanini 
et al. 2007; Gellini et al. 1983; Mo et al. 2021; Scopetani et al. 2021).

We defined the three pilots as rectangular areas stretching approximately 500 m along 
the coastlines and 400 m transversally (area 1: 430 × 430 m; area 2: 500 × 370 m; area 3: 
670 × 420 m). Altogether, the study sites cover 1.6 km of coastlines, representing 5.3% of 
the coastal sector of the park (Bertacchi 2017). The pilots extend across different vegeta
tion patterns from the shoreline up to coastal dunes, retro-dunal areas, and xerophyte 
forests, embracing plant species from all the stages of the psammosere. The beach and 
dunes consist of calcareous sand and herbaceous vegetation comprising pioneers 
(Achillea maritima L., Dittrichia viscosa L., Echinophora spinosa L., Eryngium maritimum L., 
Euphorbia paralias L., Helichrysum stoechas L., Pancratium maritimum L.), dune-building 
grasses (Ammophila arenaria L.,) and evergreen shrubs (Daphne Gnidium L., Juniperus 
oxycedrus macrocarpa L., Pinus Pinaster Ait., Pistacia lentiscus L., Yucca gloriosa L.).

Area 1 is located at the Lecciona beach (43°49’51‘N, 10°15’11’E), where no foredunes 
are present but a wide area of small shadow dunes covered by herbaceous plants and 
regularly distributed clusters of evergreen shrubs. The vegetation does not seem to suffer 
from human presence, which is intense throughout the year for beach tourism and sea 
sports. In contrast, we observed well-developed foredunes in Areas 2 and 3. Area 2 is 
located southward of the mouth of the Serchio River (43°46’05‘N, 10°16’23’E), while Area 3 

Figure 1. Simplified scheme of the adopted LC LoD classification. Level of detail 1 (LoD 1) consists of 
a single plant definition, while LoD2 assigns a class (i.e. species) to the identified segments.
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is southward of the mouth of the artificial channel called Fiume Morto Nuovo (43°43’48‘N, 
10°16’41’E). Direct human disturbance is low in these areas, yet the pervasive presence of 
marine litter blended with large woody debris threatens the ecosystems. Woody and litter 
debris are transported by relatively short-range longshore currents flowing from rivers’ 
mouths (Mo et al. 2021) and long-range marine currents moving debris from Ligurian 
coasts.

2.2. Data collection and photogrammetric processing

We carried out a standard drone survey using multi-rotor uncrewed aerial systems (UASs) 
equipped with a multispectral optical sensor. We conducted two campaigns, choosing 
their timing according to phenological phases. The first data collection campaign, here
after labeled Autumn, took place in September 2021, and the second, Spring, took place in 
May 2022 during the vegetation’s maximum lush phase. We used a commercial multi- 
rotor UAS solution, DJI Phantom 4 (P4) multispectral. This UAS was embedded with five 
multispectral optics (Red, Green, Blue, Red edge, and NIR), a regular RGB sensor (Table 1), 
and a GNSS dual-frequency receiver.

Figure 2. Localization of the Migliarino-San Rossore-Massaciuccoli Regional Park and the three pilot 
areas.
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We conducted the flights with nadiral camera orientation with an overlap of 80%. The 
Autumn flight resulted in 1,279 frames, while the Spring flights produced 1,439 frames (Table 2).

We processed the collected data using the Agisoft Metashape Software (Agisoft 
Metashape 2021), following a standard structure from motion (SfM) approach capable 
of handling multiband information. Subsequently, RGB and multispectral datasets under
went separate analyses through a conventional SfM workflow (Figure 3).

We calibrated the multispectral datasets using the embedded irradiance sensor in the 
DJI Phantom. The ground points in the RGB point cloud were automatically classified 
utilizing an algorithm integrated into the processing software, and a digital terrain model 
(DTM) was generated through interpolation.

We georeferenced the 3D models directly in the WGS84-UTM 32 coordinate system via 
direct photogrammetry (Chiabrando, Lingua, and Piras 2013), thanks to the drone’s built- 
in dual-frequency GNSS receiver. We validated the UAS GNSS accuracy by means of 
reference points measured through GNSS in the network real-time kinematic (NRTK) 
technique, achieving accuracies of 3 cm for the Up component and 1.5 cm for the East 
and North components, with fixed-phase ambiguity at all points.

Furthermore, we geolocated 973 tree and shrub species (Table 3) in the field by 
referencing their centers. This database was fundamental in training and validating the 
canopy classification, as elucidated in the subsequent section.

2.3. Species classification

We initiated object-based image analysis (OBIA), which consists of a semantic segmenta
tion process where each object corresponds to an individual plant. Subsequently, we 
applied a machine-learning algorithm to identify and classify the plant species (Figure 3). 
The primary steps in this methodology included: i) image segmentation; ii) extraction of 
features and preparation of data; iii) creation of training and testing datasets; iv) classifica
tion of the datasets; v) selection of features; and vi) validation and evaluation of the 
model’s reproducibility.

Table 1. Characteristics of DJI phantom 4 multispectral embedded sensors; n.a. means not available.

Commercial name Sensor

Focal 
length 
(mm)

Image 
size

Megapixel 
(MP)

Central band and 
bandwidth (nm)

Radiometric 
resolution (BIT)

DJI Phantom 4 
multispectral

Multispectral 5.74 1,600 ×  
1,300

2.08 Red: 650 ± 16 
Green: 560 ± 16 
Blue: 450 ± 16 
RedEdge: 730 ± 16 
NIR: 840 ± 26

16

RGB 5.74 1,600 ×  
1,300

20 n.a. 8

Table 2. Characteristics of the performed flights. GSD means Ground Sample Distance.
Autumn Spring

A1 A2 A3 A1 A2 A3

Average height (m) 77 76 89 64 62 87
Average GSD multispectral (cm) 3.95 3.91 4.55 3.15 3.01 4.52
Area (km2) 0.114 0.098 0.122 0.176 0.088 0.044
Number of images 460 573 246 674 494 271
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2.4. Individual plant detection

In the existing literature, numerous algorithms designed for the segmentation of individual 
tree crowns, commonly known as individual tree detection (ITD) algorithms, have been 
extensively employed in forestry (Dalponte et al. 2018; Latella, Sola, and Camporeale 2021). 

Figure 3. Workflow of the two-level-of-detail OBIA UHR classification model.
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While these solutions are typically tailored for 2.5D LiDAR-sourced datasets and high- 
resolution optical data, some examples of single-individual segmentation for shrub species 
also exist. However, these segmentation algorithms often rely on identifying treetops, 
proving to be less effective for canopies with a globular shape, such as broadleaf trees 
and shrubs. In light of these considerations, we opted for a texture-based system, as 
previously implemented in (Belcore et al. 2020). Specifically, we computed texture measures 
based on the Haralick co-occurrence grey level matrix (CGLM), with mean and variance 
values calculated over a 5 × 5-pixel neighborhood on the green band (Haralick, 
Shanmugam, and Dinstein 1973).

Table 3. Classes of the classification and number of the mapped samples.

Species ID

Number 
of 

samples Species ID

Number 
of 

samples

Debris (service 
class)

Det 101 Daphne Gnidium L. Dg 101

Sand (service 
class)

Sab 91 Pancratium 
maritimum L.

Pm 72

Ammophila 
arenaria L.

Aa 174 Eryngium maritimum 
L.

Em 49

Juniperus 
oxycedrus 
macrocarpa L.

Jo 145 Pinus Pinaster Ait. Pp 49

Helichrysum 
stoechas L.

Hes 122 Yucca gloriosa L. Yg 43

Euphorbia 
paralias L.

Ep 114 Achillea maritima (L.) 
Ehrend. & Y. P. Guo

Am 25

Dittrichia viscosa 
(L.) Greuter

Dv 18 Echinophora spinosa 
L.

Es 25

Mapped samples in area 1: 260; area 2: 338; area 3: 339; service classes not included.
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We conducted the segmentation process through eCognition Developer (Trimble), 
a commercial development platform for segmentation and object-oriented classification. 
We identified vegetated areas with NDVI from the Spring set to 0.12 and Haralick Mean 
lower than 2.8 m to generate a vegetation mask. Also, we established a textural threshold 
through a manual iterative process to balance the exclusion of too little grass and data noise 
without disregarding the low photosynthetic part of the plants (Figure 1) and photosyn
thetic algae on large woody debris near the seashore. Using the multiresolution algorithm, 
we merged adjacent pixels into objects, with scaling, shape, and compactness parameters 
set to 39, 0.7, and 0.5, respectively. Finally, we excluded segments from the vegetation class 
if they had an average value of Haralick textural variance greater than 1.7 or an average DN 
value of Haralick textural mean less than 1.0. The minimum mapping unit is 10 cm2.

2.5. Feature extraction

We generated new classification variables by combining and applying statistical measures 
to the input data. This process, referred to as feature extraction, enhances the model with 
more meaningful information than the original variables alone, especially in complex 
classification models (Horning et al. 2020). We produced a total of 47 features, including 
seven spectral indices per epoch, eight texture measures based on the co-occurrence grey 
level matrix (Haralick) per epoch, one elevation-based feature, and sixteen radiometric 
bands (Table 4).

2.6. Data preparation and classification algorithm

We implemented the classification algorithm in Python, utilizing the Pandas, NumPy, and 
Sklearn libraries. After exporting segments from eCognition as shapefiles, each containing 
the average digital number (DN) of associated features for the segmented objects, we 
assigned species information based on GNSS locations gathered from the field. Preparing 
the data for analysis involved removing null values and invalid geometries, with feature 
scaling based on minimum and maximum values.

To give meaning to all the segments of LoD1, we introduced two service classes: debris 
and sand. The final classification dataset comprised 1,045 samples. We applied over
sampling to address the dataset’s imbalance since the largest classes had around 100 
samples and the smallest only 18. Specifically, we employed the borderline synthetic 
minority oversampling technique for classification (SMOTE) (Chawla et al. 2002), inter
polating and reducing the nearest neighbors of the smallest class. We considered four 
neighboring samples for each class and only two for the smaller class, applying the 
borderline SMOTE algorithm solely to the training dataset, resulting in a final dataset of 
2,436 samples.

We adopted a random forest classifier (Breiman 2001) with 2,000 trees, using the 
Gini criterion for node splitting since the literature confirmed random forest 
methods to be reliable in UHR classification (Bhatt and Maclean 2023; N. Zhang 
et al. 2023). We cross-validated the decision tree model on areas 1 and 2 using 
k-fold validation (k = 50), computing average overall accuracy, the standard devia
tion for each fold, and the F1 score for each class. We applied a threshold of 0.75 
times the average impurity to exclude features with higher uncertainty or impurity 
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from the model (importance analysis). Subsequently, we assessed the model’s 
generalization capability by applying it to study area 3. Additionally, we trained, 
ran, and evaluated the model while excluding textural information from the 
Haralick co-occurrence grey level matrix to determine its impact on classification 
performance.

3. Results

3.1. Photogrammetric processing

The photogrammetric process yielded two orthomosaics (RGB and multispectral), a digital 
surface model (DSM), and a digital terrain model (DTM) for each epoch. The multispectral 
orthomosaics consistently exhibit a slightly lower spatial resolution than the RGB ones, 
owing to the varying sensor resolutions (Table 1). Specifically, the spectral resolution of 
the multispectral orthomosaic in the Autumn epoch is 4 cm, while in the Spring epoch, it 
is 3 cm. The RGB orthomosaics have a ground sample distance (GSD) of 3 cm for Autumn 
and 2 cm for Spring. The digital elevation models were uniformly generated at a 4 cm 
resolution. All products were georeferenced in the cartographic reference system EPSG 
32,632. Figure 4 provides an example of the resulting orthomosaics, showcasing small- 
scale dune vegetation in the initial coastal strip, succeeded by larger junipers and pines, 
leading to a shift in tree species, primarily maritime pines, in areas characterized by water 
stagnation.

Figure 4. False-colour (NGR) visualization of area 1 orthomosaic, Spring data acquisition. Basemap 
from Google satellite.
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3.2. Individual plant detection and classification

The segmentation process generated 7,092 individual segments, each representing 
a single plant (see Figure 5 for an example). The output of the first level of detail (LoD1) 
ultra high-resolution (UHR) model included the individual plant segmentations exported 
as a shapefile in EPSG:32632.

The average overall accuracy, computed as the arithmetic mean over 50 folds, is 0.76, 
with a standard deviation of 0.09 (Table 5). After removing the least important features, 
the same metric calculated on the folds yields an identical overall accuracy, with 
a standard deviation of 0.08 (Table 6). F1 values for each class were computed for each 
fold, both with and without feature selection. The accuracy analysis was also conducted 
on the dataset without textural information (Table 7).

The model trained in areas 1 and 2 was tested in area 3 to evaluate its generalization 
capacity, attaining an overall accuracy of 0.62 and satisfactory F1 scores for each class 
(Table 8). A visual representation of the results is provided in Figure 6.

4. Discussion

Numerous investigations underscored the significance of monitoring and mapping 
coastal ecosystems by applying high-resolution data (Agrillo et al. 2022; Cruz et al.  
2023; Fabbri et al. 2021; Suo, McGovern, and Gilmer 2019; Yousefi Lalimi et al. 2017). 

Figure 5. (a) Example of overall segmentation at the first level of detail (LoD1) and detail of 
segmentation in areas covered by (b) Ammophila arenaria only and (c) Ammophila arenaria with 
plastic debris.
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Notably, most of these studies employed spatial resolutions in the order of centimeters. 
Yet, although this resolution would allow operating at the individual plant level, these 
works generally focused on collective or group-level analyses. However, it is worth noting 
that in-depth monitoring can facilitate biogeomorphological studies (i.e. research on 
mutual land-vegetation co-adjustments) and land management since plants have 
a pivotal role in dune formation and consolidation. Thus, this work aimed to provide 
a methodology to gain precise information about the location and attributes of individual 
species and plants to support the investigation of the coastal dune ecosystem and its 
spatial and temporal evolution.

We started by observing that each segmented pixel group represents an individual 
plant in an environment characterized by low plant density. Consequently, we decided to 
adopt an object-based image analysis (OBIA) classification approach, which indeed 
resulted in being robust (Figure 5(a)). Only slight inaccuracies were found in this classifi
cation, mainly related to the false detection of individuals within the larger plants 
(Junipers) and caused by low NDVI values (dry branches) cut out by the first level of 
detail (LoD1) NDVI threshold. Among the analyzed species, the segmentation of 
Ammophila arenaria presented remarkable complexity since it engenders the formation 
of continuous land cover (Ammophila arenaria prairies). Nonetheless, we leveraged some 
physical characteristics of these plants to enhance segmentation (Figure 5(b)), like their 
dry center with high DN values (high reflectance) and the low DN response of their leaves, 
which are often shaded. Indeed, despite not being verifiable, we assumed that the dry 
centrer of the plant and the texture oriented in a single direction might positively impact 
the segmentation. Overall, the classification exhibits favorable outcomes, demonstrating 
the efficacy of the model, but also the challenge of addressing areas featuring plastic 
debris or sparse vegetation where segmentation accuracy diminishes (Figure 5(c)).

Table 6. Importance values of the input features. Only the features marked with (*) were included in 
the final model.

Epoch Feature Importance Epoch Feature Importance

I NDWI* 0.044 I GLCM_Entr* 0.023
II NDSM* 0.043 II GLCM_Contr* 0.022
I EVI* 0.042 I blue_multisp* 0.021
I NDVI* 0.039 I red_multisp* 0.019
I SAVI* 0.038 I green_multisp* 0.019
I RI* 0.037 I GLCM_Asm* 0.019
I Red_RGB* 0.036 II NDWI* 0.016
II blue_multisp* 0.036 II EVI 0.014
II Red_RGB* 0.033 I NIR 0.014
II RI* 0.032 II GLCM_Homog 0.014
I MCARI* 0.030 I RedEdge 0.012
II red_multisp* 0.030 II GLCM_StdDev 0.011
II NIR* 0.030 II MRENDVI 0.009
II Blue_RGB* 0.028 I MRENDVI 0.009
II Green_RGB* 0.028 I GLCM_Mean 0.005
II MCARI* 0.027 II GLCM_Entr 0.004
I GLCM_Diss* 0.027 II GLCM_Asm 0.003
II green_multisp* 0.026 I GLCM_Homog 0.003
II SAVI* 0.026 II GLCM_Diss 0.003
II NDVI* 0.025 I GLCM_StdDev 0.003
I Blue_RGB* 0.024 II GLCM_Mean 0.002
I GLCM_Corr* 0.024 I GLCM_Contr 0.002
I Green_RGB* 0.023 II GLCM_Corr 0.002
II RedEdge* 0.023
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Looking at the classes individually (Table 5), the lowest F1 scores are found for Yucca 
gloriosa (0.42), Achillea maritima (0.37), Echinophora spinosa (0.39) and Dittrichia viscosa 
(0.17). The poor performance of these species can be attributed to both the model and 
the limited number of samples available (only 25), except for Yucca gloriosa. Also, the 
morphological characteristics and behavior of these species might have contributed to 
low accuracy. Indeed, Achillea maritima and Echinophora spinosa are generally small-sized, 
with very thin stems and leaves that are difficult to identify, even in UHR images. 
Furthermore, Dittrichia viscosa and Yucca gloriosa grow in the shade of other species 
like Pinus pinaster and Juniperus oxycedrus macrocarpa that might hide them during the 
segmentation.

Counterintuitively, the sand class shows a low F1 score, although this class was 
expected to be easily identified given the abundance of sand samples and the 
presence of sand in homonymous segments. Sand and debris were defined as 
service classes because small segments with high NDVI values were present in 
the segmentation, not being masked in LoD1. These small high-NDVI segments 
represent those small-sized herbaceous patches alternating with sandy areas. The 
attempts to eliminate these segments using elevation data (i.e. a normalized digital 
surface model, NDSM) information resulted in the loss of the lower parts of many 
species, thus making this way unpracticable. Similarly, debris areas are character
ized by alternating vegetation, sometimes algae and woody debris, which are 
impossible to separate even with texture measurements. The resulting low perfor
mance of the sand class is likely due to the variability of the selected samples. 
Since service classes significantly lowered the overall model performance during 

Figure 6. Example of the classification results from area 1.
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our tests, we recommend not using them, and our future works will address the 
issue of improving the LoD1 while avoiding service classes.

Since we initially hypothesized that textural information could improve classifica
tion, we assessed the same model without it. As a result, we found a decrease in 
classification performance, underscoring the relevance of texture in UHR vegetation 
classification, as suggested by (Kupidura 2019; Shen and Sarris 2008). The texture- 
based segmentation was able to distinguish samples belonging to different species 
but with similar spectral responses (Table 6). Indeed, we remark that there is pro
nounced heterogeneity in the pixel response for the same object in the coastal dune 
environment but little spectral variability among different classes (i.e. species). For 
example, Euphorbia paralias and Daphne Gnidium classes are characterized by a similar 
spectral response and internal variability. Consequently, it would have been challen
ging to separate these two species using only reflectance and radiometric indices if 
two specimens were found close. Therefore, the texture-based segmentation proved 
helpful in their discretization by considering the alternation and spatial distribution of 
pixels within the samples.

An examination of feature importance highlighted that, despite the improvement 
related to the inclusion of texture in segmentation, radiometric and height information 
holds greater significance in classification. The NDSM, commonly employed in 2.5D 
segmentations, exhibits less influence on herbaceous and shrubby vegetation due to 
challenges in identifying treetops as abrupt changes in Digital Number (DN) spatial 
distribution. Segmentation posed increased difficulty for grasses, primarily Ammophila 
arenaria, forming continuous and dense patches, making on-site differentiation 
challenging.

While there are fewer instances of single-individual segmentation for shrub species for 
direct comparison, existing studies typically focus on vegetation distribution based on 
area coverage rather than individual plant counts. In our study, the relatively low vegeta
tion density in dune environments enabled semantic segmentation based on texture 
data. However, smaller species were inevitably not accurately segmented and often 
overlooked, exemplified by Medicago littoralis, which was excluded from classification 
due to its excessively small size and challenging identification.

A comprehensive evaluation of the model’s replicability (Table 8), revealed satisfactory 
generalization, evidenced by an overall accuracy of 0.62. In Area 3, misclassifications were 
observed for Achillea maritima and Echinophora spinosa, which resulted in a reduced F1 
score for Eryngium maritimum. This discrepancy is attributed to the lower orthomosaic 
resolution in Area 3 (4.5 cm), which is a consequence of a higher flight altitude. Contrary 
to expectations, Dittrichia viscosa and sand were better identified, but both Dittrichia 
viscosa and Helichrysum stoechas exhibited low recall compared to precision, indicating 
the presence of false negatives.

This work presented a straightforward application of the proposed model and under
scored the feasibility of ultra-high-resolution (UHR) vegetation classification, particularly 
when associating radiometric and texture information with precise field surveys. 
Nevertheless, it highlighted persistent challenges, such as determining the appropriate 
ground sample distance (GSD) for identifying habitat-characterizing species. Notably, our 
classification did not encompass all species but focused on larger and more prevalent 
ones, contributing to the resulting classification error.
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Given the widespread availability of deep learning models, it could have been possible 
to apply a deep learning model for the case study in this work. However, we chose a more 
traditional random forest approach because it requires a smaller training dataset. 
A simplified and generalized rule states that a deep learning model needs a large training 
dataset and no feature extraction, while classical machine learning models can exist with 
small training datasets but many features. Indeed, a significant limitation in natural 
environments is obtaining extensive labeled datasets. Considering the vastness of the 
areas and the challenges in data collection, the field-measured labels are not sufficient to 
construct a robust model. Additionally, due to the similarity among species, distinguish
ing between different species in the orthomosaics proved to be challenging, even for the 
human eye. Overall, considering the low accuracy of sand and debris, we recommend 
further work to address sand, debris, and vegetation detection at LoD1. In this work, we 
demonstrate that UHR is invaluable when complementing field measurements in coastal 
dune environments. Indeed, field measurements in sandy and coastal areas often encoun
ter challenges such as limited accessibility, long distances, and the need for repeated, 
time-consuming efforts to gather representative datasets. Additionally, interpolating 
punctual field data to cover larger scales may compromise representativeness in hetero
geneous coastal environments. UAS UHR surveys, coupled with the proposed classifica
tion method, address these challenges by providing detailed, multi-temporal information 
over a continuous spatial domain, minimizing in-field work.

To conclude, this approach generates substantial data for supporting diverse scientific 
research endeavors, ranging from characterizing vegetation patterns (Sperandii et al.  
2019) to exploring the interplay between sand transport and plant dynamics (Latella 
et al. 2021; Yousefi Lalimi et al. 2017) and monitoring coastal restoration (Fabbri et al.  
2021). Furthermore, the data generated supports biogeomorphological modeling by 
offering initial vegetation and topographical scenarios or serving as validation data. 
When finely tuned, these models offer unparalleled opportunities for comprehensive 
analyses of coastal areas, particularly in facilitating the upscaling of UAS data to high- 
resolution (0.5 m) optical satellite data for broader applications.

5. Conclusions

This work explored the potential of using ultra-high-resolution multispectral data for 
mapping vegetation of coastal dune ecosystems. For this purpose, we classified several 
plant species in three study areas in the San Rossore Regional Park (Italy). We worked on 
orthomosaics with a ground sample distance (GSD) of approximately 3–5 cm and set up 
a classification model with two hierarchical levels of detail (LoD) based on random forest 
classification and object-based image analysis (OBIA). With our application, we demon
strated the reliability of our model and paved the way for future research on model 
generalization and downsampling, which could be achieved by applying the presented 
model to similar datasets and including very high-resolution satellite imagery. Also, 
feature engineering could improve our model by investigating other texture measures, 
such as fractals. To sum up, the present work set a first step to leverage LoD-OBIA 
approaches to support coastal dune monitoring and other studies, from analyzing vege
tation patterns to phytosociology and biogeomorphological modeling at a fine scale.
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