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A B S T R A C T

In this contribution, we present a robust and efficient computational framework capable of
accurately capturing the dynamic motion and large deformation/deflection responses of highly-
flexible rods interacting with an incompressible viscous flow. Within the partitioned approach,
we adopt separate field solvers to compute the dynamics of the immersed structures and
the evolution of the flow field over time, considering finite Reynolds numbers. We employ
a geometrically exact, nonlinear Cosserat rod formulation in the context of the isogeometric
analysis (IGA) technique to model the elastic responses of each rod in three dimensions (3D).
The Navier–Stokes equations are resolved using a pressure projection method on a standard
staggered Cartesian grid. The direct-forcing immersed boundary method is utilized for coupling
the IGA-based structural solver with the finite-difference fluid solver. In order to fully exploit
the accuracy of the IGA technique for FSI simulations, the proposed framework introduces a new
procedure that decouples the resolution of the structural domain from the fluid grid. Uniformly
distributed Lagrangian markers with density relative to the Eulerian grid are generated to
communicate between Lagrangian and Eulerian grids consistently with IGA. We successfully
validate the proposed computational framework against two- and three-dimensional FSI bench-
marks involving flexible filaments undergoing large deflections/motions in an incompressible
flow. We show that six times coarser structural mesh than the flow Eulerian grid delivers
accurate results for classic benchmarks, leading to a major gain in computational efficiency. The
simultaneous spatial and temporal convergence studies demonstrate the consistent performance
of the proposed framework, showing that it conserves the order of the convergence, which is
the same as that of the fluid solver.

. Introduction

Interactions between slender flexible structures and a fluid flow can be found in many engineering and biological applications.
few examples are the paper-making process [1,2], a flag fluttering in the wind [3,4], flapping of insects wings and swimming

f aquatic animals/microorganisms [5–7]. However, it is quite challenging to capture the complex interactions between an array
f flexible structures and the surrounding fluid flow through numerical simulations. It requires a well-posed formulation for the
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motion and change in the geometry of the structures, especially when they undergo large deflections due to the forces exerted by
the surrounding fluid and the simultaneous modifications of the flow induced by the flexible structures over time. Over the last
few decades, various numerical methods have been introduced, providing effective means for understanding the underlying physics
in the interactions between elastic structures and incompressible flow. These methods mainly differ in the temporal and spatial
approaches used for the coupling of the fluid and structure domains, see [8–10].

For temporal coupling, either a monolithic or partitioned approach is utilized. In the monolithic approach, the discrete equations
or the fluid flow and the structure motion are treated by a single combined solver. On the other hand, the partitioned approach
mploys separate solvers for the fluid and structure domains, utilizing an appropriate scheme for their coupling. Since the partitioned
pproach provides the possibility of using the most-matured robust and efficient solvers for the fluid and structure, it has been
mployed in most FSI applications. In this, the discrete equations for fluid flow and structure motion are integrated in time
ither in a fully explicit or semi-explicit fashion. However, due to the time-staggering of both solvers, the coupling can become
umerically unstable when the structure-to-fluid density ratio is low, invoking the need for appropriate coupling procedures [11,12].
n alternative is to consider iterative strategies that solve the fluid and structure domains repeatedly at each time step until the
oupling condition satisfies a certain convergence criterion at the interface. Although such an iterative procedure ensures coupling
tability over time, it requires significant computational efforts, which may not be ideal for FSI problems involving many structures.
n the other hand, a monolithic approach inherently provides coupling stability in time as there is no time difference between the

luid flow and structure motion. However, it poses a numerical challenge that the single system of combined equations must be
ell-conditioned, which is not a trivial task from the monolithic formulation viewpoint [13,14].

In addition to the temporal coupling, the spatial coupling of the fluid and structure parts is a key component of every FSI
ormulation. In this direction, the arbitrary Lagrangian–Eulerian (ALE) method employing boundary-fitted grids is a common
echnique for representing a structure within the fluid domain, see [15–19]. Although with this approach, the coupling condition
an be directly satisfied at the common interface, it is not an optimal choice for the FSI cases involving a large number of structures
xhibiting finite deflections. This is because, in such cases, the generation and successive re-adjustment of the boundary-fitted
luid grid become cumbersome and computationally demanding. In addition, each re-meshing step requires mapping the flow field
olution from the previous grid to the new one, which may lead to the degradation of the numerical accuracy [20–22].

Due to these reasons, an alternative non-boundary-fitted approach, i.e. the immersed boundary method (IBM) [23], is becoming
n increasingly popular choice for FSI cases involving complex-shaped elastic structures with large motion/deformations. The IBM
as first introduced by Peskin [23] to study the blood flow around beating heart valves. Since then, numerous variants of immersed
oundary approaches have been proposed for different FSI applications, see e.g. [14,24–32]. In boundary methods, the governing
quations for fluid flow are solved on a Cartesian Eulerian (background) grid. The equations of motion for a structure are solved
n an independent Lagrangian grid. Since the grid of a moving structure almost never coincides with the background fluid grid, the
oupling condition at the common interface is enforced by means of a specialized treatment procedure; see [33] for a comprehensive
verview. Following the nomenclature of [33], the immersed boundary (IB) procedures are mainly classified into two groups:
ontinuous forcing and direct forcing. The continuous forcing approaches, which are derived from the classical approach proposed
y Peskin [23], have been widely used for different FSI applications involving slender structures [34–36]. An advantage of such an
pproach is that the coupling condition at the interface can be imposed in an exact manner by moving the Lagrangian points on the
tructure with the background fluid velocity. However, this approach presents some numerical drawbacks for structures with mass
nd in the employment of a forcing distribution that smears the fluid–structure interface, typically over several grid cells which are
n the vicinity of each Lagrangian point. On the other hand, the direct-forcing approach overcomes the drawback of the continuous
orcing IB by introducing a body-force term in the fluid flow equations computed from Newton’s law of motion, making this approach
ell-posed for handling structures with mass, and thus has been applied in different FSI applications [37–43]. Although it provides
ood results for fixed structures, it induces spurious oscillations of the hydrodynamic forces for the moving structures. Successful
irect-forcing IB approaches that use improved methods to attenuate the coupling stability stemming from the spurious oscillations
f hydrodynamic forces can be found in [44–48].

The aim of the present work is to develop an accurate, robust, and efficient numerical framework for FSI of rod-like flexible
tructures subjected to a viscous fluid flow. To achieve such a goal, the most-appropriate individual solution techniques for the
luid and structure domains and their coupling are combined together using a partitioned approach. To describe the dynamic
echanical behavior of flexible rods under different loading conditions, we adopt the most general formulation of Simo and
u-Quoc [49,50], i.e. geometrically exact Cosserat rod model. We utilize this model as (1) it provides a means to describe the

hree-dimensional (3D) physical behavior of a slender structure with a one-dimensional (1D) mathematical model without any loss
f physical correctness. This makes it a computationally attractive and efficient option, particularly for simulating a large number
f individual structures [49]. (2) it is mathematically capable of capturing large deflections/bending, rotations, twisting, shearing,
nd stretching of a rod subjected to a wide range of boundary conditions, cf [49,51–54].

For solving the equations of motion for the Cosserat rod, the isogeometric analysis (IGA) technique is adopted. We resort to IGA
s it provides distinct advantageous features such as higher accuracy, stability, and superior convergence properties per degree of
reedom (DOF), and direct import of complex-shaped geometries as compared to traditional finite element (FE) approaches [55,56].
pecifically, we start by recalling that the kinematic of slender structures such as cables or rods are mathematically represented
y high-order spatial partial differential equations. As a result, the weak form based on the standard Galerkin method of the
roblem involves the second-order spatial derivatives, requiring basis functions having at least 𝐶1-continuity globally. Due to

such requirement, the standard Lagrange polynomial-based FE approximation, which is globally 𝐶0-continuous cannot be applied
1

2

directly, therefore additional procedures are required to solve this problem. The adoption of the 𝐶 -continuous Hermite polynomial
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functions as a basis or the mixed formulation are among the usually preferred approaches. On the other hand, the NURBS-based
IGA technique is naturally suited for structural problems as it intrinsically provides higher-continuous NURBS functions as a basis
and thus inherently eliminates the requirement of the additional procedure needed in the context of FE. It has been analytically
and computationally shown that due to the tailorable inter-element continuity and non-negativeness of the basis functions, the IGA
approach is capable of delivering higher accuracy, numerical stability, and robustness per DOF as compared to the traditional FE
method in many solid mechanics applications including slender structures [57–59]. In addition, the unified design-to-analysis setting
of the IGA technique enables direct analysis on the complex shaped and/or large curvature/pre-twisted geometries as compared
to the traditional FE approach, involving an additional (computationally expensive) mesh generation procedure [56]. Besides the
above advantages, it is worth mentioning that the IGA technique has proven to be significantly beneficial in terms of accuracy,
robustness, and computational efficiency in handling contact between highly flexible geometries. This is because an IGA-based
smooth description of the contact surface yields a unique definition of the contact kinematic variables. With this, IGA intrinsically
eliminates the computational issues stemming from the standard 𝐶0-continuous FE-based discretization as compared to the standard
E method, which requires additional surface smoothing procedures. Further, since IGA facilitates the contact search in a patch-
ise fashion rather than the conventional element-wise manner, it substantially reduces the computational cost associated with

he contact search and the corresponding book-keeping task [60,61]. Overall, the geometrically exact rod model implemented in
he IGA setting makes the structural solver computationally most suitable for capturing elastic responses of the slender rods under
ifferent loading conditions as compared to traditional FE approaches [52,53,62].

For resolving the flow field, the standard second-order finite-difference (FD) method is adopted. We use an FD-based fluid
olver due to its algorithmic simplicity, computational efficiency, and applicability to various fluid flow problems at different
eynolds numbers. To couple the interactions between structure motion and underlying fluid flow, the direct-forcing IB method
f Uhlmann [44] is adopted as a first step towards designing a simple yet effective computation framework for FSI simulations.

Although the immersed boundary method provides results with reasonable accuracy, it requires an excessively fine structural
esh due to its prominent limitation that the nodal density of the immersed structure must be of the same order as the background

luid grid to avoid any flow leakage [44,63,64]. This not only negates the key advantage of the IGA technique that accurate results
an be obtained even with a coarse mesh but also considerably increases the computational cost of FSI simulations, especially
hen many structures are involved. Here, we thus propose a new procedure that overcomes the earlier-mentioned limitation of

he IB method in the context of isogeometric/finite-difference framework without any loss of stability and robustness of the FSI
imulations. For this, a large number of uniformly distributed additional Lagrangian markers meeting the relative nodal density
equirement of the IB method are generated over a user-defined coarse mesh via spline interpolations. We then interpolate velocity
o and spread forces from these Lagrangian markers instead of nodal points of the IGA discretized structure. This clearly enables us
o use a significantly coarser structural mesh irrespective of the background Eulerian grid resolution, which constitutes another key
ngredient of the presented framework.

In the same spirit, Griffith and Luo [64] have proposed an IB method that enables independent discretization of an FE-discretized
tructure and the background fluid grid. They used a dynamically adapted Gaussian quadrature rule to construct Lagrangian
nteraction points on the top of a FE constructed mesh. Since in IGA, the nodal points used to construct a given geometry are
sually unevenly distributed and have support in more than one element, an alternative method is needed. In this context, recently,
itti et al. [31] proposed an isogeometric/finite-difference IB method that decouples the relative nodal density of the shell structure
nd fluid domain. They performed an adaptive collocation of the Lagrangian markers over an IGA discretized shell with fixed
esolution at a given Eulerian grid. However, the method’s performance for different/coarsest nodal densities of the structure at a
ixed Eulerian grid has not been examined. A few efforts towards applying the geometrically exact model to the structural solver
f an FSI framework have also been carried out. In this context, Tschisgale and Fröhlich [65] firstly utilized the finite-difference

implementation of the Cosserat rod model in the IBM framework. They proposed a new semi-implicit coupling scheme based on
the continuous-forcing IB approach to describe the interactions of flexible structures with fluid. Suguru et al. [66] presented an FSI
scheme using the Cosserat rod model with lattice Boltzmann method as a structural solver. Hagmeyer et al. [67,68] proposed two
different mixed-dimensional approaches that couples the geometrically exact beam model with Navier–Stokes equations using the
GPTS-type and mortar-type coupling approaches within the context of FE method. However, to the best of our knowledge, an FSI
framework that couples IGA-based Cosserat rod formulation with the fluid flow equations resolved in the FD environment using an
IB procedure enabling independent mesh resolutions for the slender flexible structures and fluid domains has never been proposed.
In this work, we develop an isogeometric/finite-difference IB-based numerical framework that is capable of accurately capturing
the large deflections/motions of the flexible filaments induced by fluid forces and the evolution of the fluid field over time due to
its interaction with the filaments.

The validity of the numerical framework is tested against two numerical examples of increasing complexities: (i) the flapping of
a flexible filament in a uniform flow and (ii) the motion of an array of flexible filaments subjected to a pulsating flow in a three-
dimensional channel. The performance analysis is presented in terms of accuracy and computational cost for the above two numerical
examples. In addition to this, the consistent performance of the developed framework is provided through grid convergence studies.
In all cases, satisfactory results are obtained. The proposed approach permits using significantly coarse structural meshes than the
background fluid grid without losing numerical stability.

The remaining paper is structured as follows. In Section 2, we briefly describe the mathematical models for the fluid and structure
parts and the coupling conditions at the interface. Next, in Section 3, the numerical methods used for solving the governing equations
are detailed. We describe the proposed IB procedure in Section 3.3. After that, in sections 4 and 5, we show the validations of the
developed framework and demonstrate its performance and efficacy using various numerical examples. Finally, the summary is
3

provided in Section 6 with an indication of the future directions.
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2. Governing equations

2.1. Navier–Stokes equations for fluid motion

The dynamics of an unsteady incompressible viscous flow is governed by the three-dimensional (3D) Navier–Stokes and
ontinuity equations. In an inertial Cartesian frame of reference, their non-dimensional form reads

𝜕𝒖
𝜕𝑡

+ 𝛁 ⋅ (𝒖⊗ 𝒖) = −𝛁𝑝 + 1
𝑅𝑒

∇2𝒖 + 𝒇 , (1a)

𝛁 ⋅ 𝒖 = 0 , (1b)

where 𝒖 = (𝑢, 𝑣,𝑤)T represent the velocity field having components along the coordinate (𝑥, 𝑦, 𝑧) directions of the fluid-domain, 𝑝
s the pressure field, and 𝑡 is the time variable. For our problem, the external forcing term 𝒇 consists of two parts: an external
ass-specific volume force �̃� , such as pressure gradient driving the flow, and the coupling force �̄� that is used to satisfy the no-slip

boundary condition at the fluid–structure interface, described below in Section 3.3. The Reynolds number is given as 𝑅𝑒 = 𝜌𝑈𝐿∕𝜇,
where 𝜌 denotes the fluid mass density, 𝜇 is its dynamic viscosity, and 𝑈 and 𝐿 are the characteristic velocity and length scales.

2.2. Cosserat rod model for the slender flexible structures

The structure considered in the present work is a long slender elastic three-dimensional rod whose length is considerably larger
than its cross-section. We use a geometrically exact Cosserat rod model to describe the mechanical behavior of the slender rod.
It is an appropriate model to capture the motion and finite strains of a deformable rod having different constitutive properties
using one-dimensional continua without making any assumptions concerning the rotation [49,51,69]. Due to its computationally
efficient advantages in modeling three-dimensional deformable rods, the Cosserat rod model has been applied to a wide range of
applications, e.g. in the design and engineering of modeling cables, hair, fibers, and composites. Motivated by the above-mentioned
advantages, we use this model for simulating a number of flexible filaments interacting in a viscous fluid. In the following, we
outline the Cosserat rod model based on the works [49,51–53,69].

2.2.1. Configuration and parameterization
In the Cosserat rod model, a slender rod of length 𝐿 is represented by its centerline curve, i.e. the line of its mass centroids,

𝒓 ∶ [0, 𝐿] ∈ R3, and the orientation of its rigid cross-section, which is described in terms of the rotation matrix 𝑹 ∶ [0, 𝐿] ∈ 𝑆𝑂(3),
see Fig. 1 for an illustration. Here, 𝑹 is a 3D orthogonal rotation matrix belonging to the special orthogonal group 𝑆𝑂(3) in the
terminology of Lie algebra, see [70] for a detailed description of the rotation manifold 𝑆𝑂(3). At the time 𝑡, the line of the mass
entroid of the rod is parameterized by a curvilinear abscissa 𝑠 ∈ [0, 𝐿] such that 𝒓 = 𝒓(𝑠, 𝑡), and the cross-section’s orientation with
= 𝑹(𝑠, 𝑡). Among the popular choices: Euler angles, Rodrigues’ rotation, and axis-angle representation, we use the unit-length

uaternions, i.e. 𝑞 = [𝑞1, 𝑞2, 𝑞3, 𝑞4]T ∈ R4 and ‖𝑞‖ = 1, for parameterizing 𝑹. Quaternions avoid the gimbal lock effect and are
omputationally efficient [49,71]. The quaternion-parameterized rotation matrix reads as

𝑹(𝒒) =
⎡

⎢

⎢

⎣

𝑞21 + 𝑞22 − 𝑞23 − 𝑞24 2(𝑞2𝑞3 − 𝑞4𝑞1) 2(𝑞2𝑞4 + 𝑞3𝑞1)
2(𝑞2𝑞3 + 𝑞4𝑞1) 𝑞21 − 𝑞22 + 𝑞23 − 𝑞24 2(−𝑞2𝑞1 + 𝑞3𝑞4)
2(𝑞2𝑞4 − 𝑞3𝑞1) 2(𝑞2𝑞1 + 𝑞3𝑞4) 𝑞21 − 𝑞22 − 𝑞23 + 𝑞24

⎤

⎥

⎥

⎦

. (2)

ince the centerline of the rod is parameterized in terms of the curvilinear abscissa 𝑠, the quaternions and its corresponding rotation
atrix are represented in the same fashion, i.e. 𝑹 = 𝑹(𝒒(𝑠)).

.2.2. Strains and stresses
Based on the centerline curve 𝒓(𝑠) and the orientation of the cross-section 𝑹(𝑠) at 𝑠, the internal translatory strain in the rod is

easured by

�̄� = 𝑹T𝒓′ − 𝐞3 , (3)

here 𝒓′ = d𝒓
d𝑠 represents the gradient along the rod center and 𝐞3 denotes the Cartesian basis vector {1, 0, 0}T. For the initial or

undeformed configuration of the rod �̄� = 𝟎, thus 𝑹T𝒓′ = 𝐞3. Further, the components of �̄�, i.e. �̄�1 refers to axial strain, while �̄�2 and
̄3 indicate shear strains.

The internal rotational strain of the rod is measured by computing the relative orientation between adjacent cross-sections as in
the following [52,53]

[�̄�]× = 𝑹T𝑹′ , (4)

where 𝑹′ = d𝑹
d𝑠 , and [�̄�]× denotes skew-symmetric matrix of �̄� such that [�̄�]× ⋅ 𝒖 = �̄� × 𝒖 for a vector 𝒖 ∈ R3. The components of �̄�,

i.e. �̄�1 represents the torsional curvature, while �̄�2 and �̄�3 the bending curvatures. Further, if the initial configuration of the rod is
pre-stretched or curved, the effective translatory and rotational strains in the rod are
4

𝜺 = �̄� − 𝜺0 , 𝜿 = �̄� − 𝜿0 , (5)
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Fig. 1. Schematic of a Cosserat rod: It is represented by its centerline curve 𝒓(𝑠) and the orientation of the cross-section along the rod. The latter is described by
three-dimensional orthonormal direction vectors: 𝒅1(𝑠), 𝒅2(𝑠) and 𝒅3(𝑠), which combinedly results in a rotation matrix 𝑹(𝑠) = [𝒅2(𝑠),𝒅3(𝑠),𝒅1(𝑠)]. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where 𝜺0 and 𝜿0 denote the strains arising from the pre-stretching or curved configuration of the rod at 𝑡 = 0, and are determined
using Eqs. (3) and (4), respectively.

Based on the two nonlinear strain vectors defined in Eqs. (3) and (4), the translatory and rotational stresses are

�̂� = 𝐂𝜺, �̂� = 𝐃𝜿 (6)

for the linear elastic constitutive law. In the above equation, the intrinsic material matrices are defined as 𝐂 = diag[𝐸𝐴,𝐺𝐴𝑘𝑦, 𝐺𝐴𝑘𝑧]
and 𝐃 = diag[𝐺𝐽,𝐸𝐼𝑦𝑦, 𝐸𝐼𝑧𝑧], with Young’s modules 𝐸, shear modulus 𝐺, torsion correction factors 𝑘𝑦 and 𝑘𝑧, second moment of
areas 𝐼𝑦𝑦 and 𝐼𝑧𝑧, and 𝐽 = 𝐼𝑦𝑦 + 𝐼𝑧𝑧 along the 𝑦, 𝑧, and 𝑥-axis of the beam. It is noted that the stresses in Eq. (6) are expressed in
the local coordinate system of the rod. They can be easily rotated from the local to the global Euclidiean coordinate frame with

𝒏int = 𝑹�̂�, 𝒎int = 𝑹�̂� , (7)

where 𝒏int and 𝒎int are referred to as internal force and moment, respectively. With the expressions above, the rotation matrix
transforms internal forces and moments from their spatial to material configurations.

2.2.3. The equations of motion of the Cosserat rod
The strong form of the linear and angular momentum balance equations for the geometrically exact Cosserat rod can be written

in the material or initial form as [49,51]:

𝜌𝑠𝐴�̈�(𝑠, 𝑡) = 𝒏′int (𝑠, 𝑡) + 𝒏ext (𝑠, 𝑡) ,

𝜌𝑠𝑰�̇�(𝑠, 𝑡) + 𝝎(𝑠, 𝑡) × 𝜌𝑠𝑰𝝎(𝑠, 𝑡) = 𝒎′
int (𝑠, 𝑡) + 𝒓′(𝑠, 𝑡) × 𝒏int (𝑠, 𝑡) +𝒎ext (𝑠, 𝑡) .

(8)

In the above, the first equation corresponds to the temporal evolution of the centerline curve of the rod in terms of 𝒓(𝑠, 𝑡), while
the second equation describes the temporal evolution of the rotation of the cross-sections along the arc-length coordinate 𝑠. They
hold ∀𝑠 ∈ (0, 𝐿) and 𝑡 ∈ (0, 𝑇 ). The spatial and temporal derivatives of the various terms are defined as □̇ = d□∕d𝑡, □̈ = d2□∕d𝑡2,
and □′ = 𝜕□∕𝜕𝑠. In the above equations, 𝜌𝑠 denotes the mass density of the rod, 𝐴 is its cross-section area, 𝑰 is the moment of
area tensor, and 𝝎 is the angular velocity of 𝐴 in the global frame. Moreover, 𝒏ext and 𝒎ext are prescribed externally distributed
(line) forces and moments acting on the rod surface. Note that the externally prescribed force consists of two parts, (1) the force
due to gravity (𝜌𝑠 − 𝜌)𝐴𝐠 with gravitation acceleration 𝐠, and (2) the external fluid loads acting on the interface between the fluid
and structure, denoted as �̄�ext and �̄�ext . We describe such forces and their computations in Section 3.3 below.

2.3. Fluid–structure coupling conditions

The Navier–Stokes Eqs. (1) and the Cosserat rod Eqs. (8) form a system of differential equations, and the physical coupling
between the fluid phase and the immersed structure is realized by enforcing the no-slip and dynamic forcing conditions at the interface
𝛤 . The no-slip condition implies that the fluid moves with the same velocity as the surface of the structure. Mathematically, it is
expressed as

𝒖 = 𝒘(𝒙, 𝑡) for 𝒙 ∈ 𝛤 , (9)
5
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where 𝒘(𝒙, 𝑡) denotes the velocity of a point on the moving structure surface 𝛤 . For the Cosserat rod 𝒘 = �̇�, where �̇� = 𝒓 +𝑹 ⋅ 𝜻0.
With this, Eq. (9) can be rewritten in terms of its translatory and rotational contributions as

𝒖 = �̇� + 𝝎 × 𝜻 for 𝒙 ∈ 𝛤 . (10)

Here, 𝜻 = 𝒙− 𝒓 denotes the position of the rod surface point 𝒙 ∈ 𝛤 with respect to its centerline 𝒓 in the local coordinate frame. The
dynamic coupling condition enforces that the surface-specific forces exerted by the fluid and immersed structure are in equilibrium at
the interface 𝛤 . For this condition, the coupling forces are introduced in the momentum balance Eq. (1a) of the fluid and governing
Eq. (8) of the structure.

3. Discretizations of the fluid and solid equations

3.1. Spatial and temporal discretization of the fluid equations

We use a standard second-order finite-difference method for the spatial discretization of the Navier–Stokes Eqs. (1) on a fixed,
equidistant staggered Cartesian grid. In the staggered arrangement, the pressure and density are stored at the cell center, and the
velocity components are located at the cell faces. This avoids the checkerboard oscillation of the pressure field [72]. The flow Eqs. (1)
are coupled with a fractional step pressure projection method [73,74], and their time integration is accomplished by a fully explicit
three-step low-storage Runge–Kutta scheme (RK3) [75,76]. The advancement of the discretized flow equations for the 𝑟th = 1, 2, 3
RK3 sub-step reads

�̃� − 𝒖𝑟
𝛥𝑡

= 𝛼𝑟𝐀𝐃𝑟 + 𝛽𝑟𝐀𝐃𝑟−1 − 𝛾𝑟∇𝑝𝑟−1∕2 + �̃� , (11a)

�̄� = �̃� + 𝛥𝑡�̄� (11b)

∇2�̃� = 𝛁 ⋅ �̄�
𝛾𝑟𝛥𝑡

, (11c)

𝒖𝑟+1 = �̃� − 𝛾𝑟𝛥𝑡𝛁�̃� , (11d)

𝑝𝑟+1∕2 = 𝑝𝑟−1∕2 + �̃� . (11e)

n the above equations, the sub-step 𝑟 = 1 corresponds to time level 𝑡𝑛 and 𝑟 = 3 to 𝑡𝑛+1, �̃� is the predicted fluid velocity, and
𝐀𝐃 = −(𝒖 ⋅ ∇)𝒖 + 𝜈∇2𝒖. Further, �̃� is the mass-specific volume force, and �̃� is the pressure correction [73,77]. In Eq. (11b), the
fluid velocity �̃� is updated with the fluid–structure coupling force �̄� , arising from the immersed boundary treatment described
in Section 3.3. It makes the fluid motion constraint by the immersed boundary interface. The coefficients of the RK3 scheme for
the 𝑟th step are given by 𝛼𝑟 = [8∕1, 5∕12, 3∕4], 𝛽𝑟 = [0, −17∕60, −5∕12], and 𝛾𝑟 = 𝛼𝑟 + 𝛽𝑟 [76]. The pressure correction field �̃� is
computed by solving the second-order finite difference Poisson Eq. (11c), using a fast Fourier transform (FFT)-based solver [78]. It
is thereafter used to project the predicted velocity �̃� onto the divergence-free space to satisfy the incompressibility constraint (1b).
For the numerical stability of the Runge–Kutta scheme, the following criteria is used [76]:

𝛥𝑡 < min

(

1.65𝛥𝑘2
12𝜈

,

√

3𝛥𝑘
∑3

𝑖=1 |𝑢
𝑟
𝑖 |

)

(12)

where 𝛥𝑘 = min(𝛥𝑥, 𝛥𝑦, 𝛥𝑧) and 𝜈 = 𝜇∕𝜌 is the kinematic viscosity of the fluid. The computational domain considered in this work has
imensions, i.e. 𝛺 = [0, 𝐿𝑥]×[0, 𝐿𝑦]×[0, 𝐿𝑧], where 𝐿𝑥, 𝐿𝑦, and 𝐿𝑧 represent the length of the domain along the 𝑥, 𝑦, and 𝑧-direction.

Further, the simulations of the unsteady viscous incompressible flows are performed using open-source code FluTAS1, see Crialesi-
sposito et al. [79] for the implementation details. It employs a highly-scalable 2DECOMP&FTT library (Li and Lizat [80]), which
ses a message-passing interface for the parallelization of the computational domain.

.2. Discretization of governing equations of the rod using IGA

The isogeometric analysis (IGA) technique, introduced by Hughes et al. (2005) [55], uses computer-aided-design (CAD)
olynomial functions, e.g. B-splines, non-uniform rational B-splines (NURBS), etc., as a basis for the construction of a given geometry
nd for the approximation of the solution space. It has been shown that IGA offers efficient, accurate, and stable simulations for
ifferent classes of problems, especially those involving geometries with large curvature and undergoing finite deformations, as
ompared to the traditional 𝐶0−continuous Lagrange polynomial-based finite element (FE) approach. This is because the higher-
ontinuous polynomial functions lead to a significantly better approximation of the solution space at a fixed mesh than the traditional
E approach, see e.g. [55,56].

In the following, we first present a brief introduction to the NURBS functions, their usage in the constructing of a curve, and
ifferent refinement strategies that are used within the framework of IGA in 3.2.1. In Section 3.2.2, we present the NURBS-based
arameterization and interpolation of the centerline curve and cross-section orientation of the Cosserat rod. Finally, in Section 3.2.3,
e present the NURBS-based discretization of the equation of motion of the rod in the IGA setting based on [49,53].

1 https://github.com/Multiphysics-Flow-Solvers/FluTAS
6
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3.2.1. NURBS functions, curve, and refinement strategies
For a given vector 𝛯(𝜉) defined along the 𝜉 parametric direction, a 𝑝th order uni-variate, piecewise B-spline function is defined

with the following Cox de Boor recursive relation [81]

𝑁𝑖,0(𝜉) =
{

1, if 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1
0, otherwise, 𝑁𝑖,𝑝(𝜉) =

𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

𝑁𝑖,𝑝−1 +
𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1,𝑝−1 , (13)

here 𝛯 = {𝜉0, 𝜉1,… , 𝜉𝑛+𝑝, 𝜉𝑛+𝑝+1} contains (𝑛+𝑝+1) parametric coordinates 𝜉 ∈ R in an increasing order. One of the most beneficial
eatures of these functions is that a 𝑝th-order B-spline function offers 𝐶𝑝−1 continuous derivatives at any (non-repeated) parametric
oint. Moreover, they also show non-negativeness at a given point 𝜉, i.e. 𝑁𝑖,𝑝(𝜉) ≥ 0, ∀𝑠, and have partition of unity property,
.e. ∑𝑛

𝑖=1 𝑁𝑖,𝑝(𝜉) = 1.
Non-uniform rational B-splines (NURBS) are the rationale of the B-spline functions and use additional weight 𝑤𝑖, where

= 1,… , 𝑛. A 𝑝th-order NURBS function is defined as [81]:

𝑅𝑝
𝑖 (𝜉) =

𝑤𝑖 𝑁𝑖,𝑝(𝜉)
∑𝑛

𝑗=1 𝑁𝑗,𝑝(𝜉)𝑤𝑗
, (14)

Since NURBS are built using B-splines, they share the same properties, and for 𝑤𝑖 = 1, ∀𝑖 = 1,… , 𝑛, NURBS reduces to B-splines.
Thus, we will mainly use the term NURBS in the following. For a given set of control points 𝒙𝑖 = {𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑤𝑖}, where 𝑖 = 1,… , 𝑛, a
𝑡ℎ-order NURBS curve is constructed using the following linear combination

𝒄(𝜉) =
𝑛
∑

𝑖=1
𝑅𝑖,𝑝(𝜉)𝒙𝑖 . (15)

One of the key advantages of using NUBRS is that the constructed geometries can be refined in a straightforward manner while
eeping the original shape and parameterization of the geometry. For a given NURBS geometry, any additional number of elements
an be introduced using the knot insertion refinement strategy. In this, the insertion of an additional point 𝜉𝑗 between an existing
𝜉𝑖, 𝜉𝑖+1] element, splits it into two: [𝜉𝑖, 𝜉𝑗 ] and [𝜉𝑗 , 𝜉𝑖+1], and thus, creates a new element. Another option of refinement is the order
levation strategy. In this, as the name implies, the interpolation order of the NURBS functions can be raised from 𝑝 to 𝑝+1 or more,
hile each entry 𝜉𝑖 in the knot vector is repeated once or according to order elevation strategy to maintain the 𝐶𝑝−1 continuity
f the NURBS functions. The third option of refinement is referred to as the 𝑘-refinement. In this, the knot insertion strategy is
pplied subsequently to the order elevation. It is used to increase the continuity of the NURBS functions and mesh refinement
n a simultaneous manner. For further details on this topic, we refer to the monograph by Cottrell et al. [56] and Agrawal and
autam [82] for implementation details.

.2.2. Parameterization and interpolation of rod model
We use NURBS for the representation of the Cosserat rod. Each control point associated with the centerline curve contains the

osition vector 𝒙𝑖 ∈ R3 and the orientation of its cross-section in terms of unit length quaternions 𝒒𝑖 ∈ R4: {𝒙𝑖 , 𝒒𝑖}, as illustrated
n Fig. 2. For the given interpolation order 𝑝 and knot vector 𝛯 = {𝜉0,… , 𝜉𝑛+𝑝+1} defined along the parametric direction, the
URBS-based parameterization of the centerline curve and its derivative are given by

𝒓(𝑠) =
∑

𝑅𝑖,𝑝(𝑠)𝒙𝑖 , and

𝒓′(𝑠) = 𝑑𝒓(𝜉)
𝑑𝜉

𝑑𝜉
𝑑𝑠

=
∑

𝑅′
𝑖,𝑝(𝜉)𝒙𝑖 𝐽

−1
𝑠𝜉 ,

(16)

where 𝑑𝒓(𝜉)∕𝑑𝜉 is the derivative w.r.t to the parametric space 𝜉, and the Jacobian 𝐽𝑠𝜉 = d𝑠
d𝜉

enables the transformation from the
pline parametric space 𝜉 to the arc-length abscissa 𝑠. With the above expressions, the translational strain �̄� defined in Eq. (3) can
e straightforwardly computed. The interpolation of the cross-section’s rotation is done using the exponential map of the weighted
um of the rotation vectors represented in terms of quaternions using the following expression [53]:

𝒒(𝑠) = �̄� exp
(

pure
∑

𝑅𝑖,𝑝(𝑠) imag(log(�̄�∗(𝑠) 𝒒𝑖))
)

. (17)

ere, �̄�(𝑠) denotes an average of the rotation of the closest 𝑝 + 1 nodes at 𝑠 and �̄� ∗ is the quaternion conjugate of �̄�. Once 𝒒(𝑠) is
omputed, the rotation matrix 𝑹 can be evaluated as 𝑹(𝒒). Finally, the curvature strain 𝜿(𝑠) is computed with [53]

𝜿(𝑠) =
𝑝+1
∑

𝑖
𝐽−1
𝑠𝜉 𝑅′

𝑖,𝑝(𝑠) [imag(log(�̄�∗(𝑠) 𝒒𝑖))] . (18)

.2.3. Discretization of rod equations using IGA
The variational form of the dynamic equation of motion of the rod can be derived by multiplying any arbitrary admissible

ariation 𝛿𝜼 = (𝛿𝒓(𝑠), 𝛿𝜽(𝑠)) to the equations of the linear and angular momentum Eq. (8), and integrating the equation over the
ength of the rod. The final expression for the variational form can be expressed as the sum of the following two terms [49,51]:
7

𝐺 ∶= 𝐺dyn + 𝐺stat (19)
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Fig. 2. Spline-based discretization of a Cosserat rod. The control points’ position and rotational degree of freedom are represented by 𝒙𝑖 , 𝒒𝑖, with 𝑖 = 1,… , 4.
The spline interpolated position of a centerline point and the orientation of the cross-section are indicated by 𝒓,𝑹. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

given as

𝐺dyn = ∫

𝐿

0

[

𝜌𝑠𝐴�̈� ⋅ 𝛿𝒓(𝑠) + (𝜌𝑠𝑰 ⋅ �̇� + 𝝎 × 𝜌𝑠𝑰 ⋅ 𝝎) ⋅ 𝜽(𝑠)
]

𝑑𝑠 (20)

𝐺stat = ∫

𝐿

0

[

𝒏int
𝒎int

]

⋅
⎡

⎢

⎢

⎣

𝑰 𝑑
𝑑𝑠

[𝒓′]×

𝟎 𝑰 𝑑
𝑑𝑠

⎤

⎥

⎥

⎦

T

⋅
[

𝛿𝒓
𝛿𝜽

]

𝑑𝑠 − ∫

𝐿

0

[

𝒏ext
𝒎ext

]

⋅
[

𝛿𝒓
𝛿𝜽

]

𝑑𝑠 (21)

The NURBS-based discretization of the weak form (19) in the context of IGA can be obtained by substituting Eqs. (16) and (17)
into Eqs. (19). For the contribution of the residual force vector, i.e. the unbalance of internal and external forces, for an element
ranging from 𝑠 = 𝑠1 to 𝑠 = 𝑠2, we have the following expression [49,51,53]:

𝐺ℎ 𝑒
stat = ∫

𝑠2

𝑠1

[

𝐽−1
𝑠𝜉 𝑅′

𝑖,𝑝 𝑰 𝑅𝑖,𝑝 𝑹𝑖 [𝒓′]×
𝟎 𝐽−1

𝑠𝜉 𝑅′
𝑖,𝑝 𝑹𝑖

]T
[

𝒏int
𝒎int

]

𝑑𝑠 − ∫

𝑠2

𝑠1

[

𝑅𝑖,𝑝𝑰 𝟎
𝟎 𝑅𝑖,𝑝𝑰

] [

𝒏ext
𝒎ext

]

𝑑𝑠. (22)

Here, [𝒓′]× represent the skew-symmetric matrix, whose axial vector is 𝒓′, and 𝑰 = diag[1, 1, 1]. To compute the residual force vector
in Eq. (22), the typical Gauss-quadrature rule is used for the numerical integration of the elemental forces. However, we use the
classical selective reduced integration technique due to the shear-locking issue. It requires fewer quadrature points than the standard
rule. Using a more sophisticated and efficient quadrature scheme for computing the force vectors is beyond the scope of the present
work. We refer to the different works in Refs. [83–86] for such variationally consistent and efficient choices of the quadrature points
in the context of IGA. The quadrature based integration of the first part of Eq. (22), which is referred to as internal forces 𝒇 𝑒

int acting
on a NURBS element ‘𝑒’, is given as

𝒇 𝑒
int,𝑖 =

𝑛𝑞𝑝
∑

𝑞𝑝=1

[

𝑅′
𝑖,𝑝 𝑰 𝐽𝑠𝜉 𝑅𝑖,𝑝 𝑹𝑖 [𝒓′]×
𝟎 𝑅′

𝑖,𝑝 𝑹𝑖

]T

𝐽𝑞𝑝 𝑤𝑞𝑝 , (23)

where 𝒇 𝑒
int,𝑖 corresponds to the contribution of 𝑖th control point to the internal force vector. Further, 𝐽𝑞𝑝 denotes the determinant

of the Jacobian matrix enabling the mapping to integration space, and 𝑤𝑞𝑝 is the weight value associated with the ‘𝑞𝑝’ quadrature
point.

For computing the contribution of the elemental tangent stiffness matrix 𝒌𝒆, we have the following expression [53]:

𝒌𝑒 = −
𝜕𝒇 int
𝜕𝜼

(24)

To compute the elemental mass matrix, we use the consistent mass matrix approach, which reads as:

𝑴𝑒
𝑖𝑗 = ∫

𝑠2

𝑠1
𝑅𝑖,𝑝𝑅𝑗,𝑝𝑴𝑠 𝑑𝑠 , (25)

where 𝑴𝑠 is referred as the cross-section mass matrix at coordinate 𝑠, and is given as 𝑴𝑠 = diag[ 𝜌𝑠𝐴, 𝜌𝑠𝐴, 𝜌𝑠𝐴, 𝜌𝑠𝐽 , 𝜌𝑠𝐼𝑦𝑦, 𝜌𝑠𝐼𝑧𝑧 ]
in the centerline reference of the rod. Further, to integrate the dynamic equation of the rod’s centerline curve, we use the standard
Newmark time integration scheme because of its well-established stability characteristic. For the sake of compactness, we do not
show it here and refer to the works by Newmark (1959) [87], Simo and Vu-Quoc (1986) [50] and Tasora et al. (2020) [53] for
further details.
8
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3.3. Isogeometric/finite-difference IB approach

Immersed boundary method (IBM) serves as a framework enabling exchange between the fluid and solid solvers. In IBM,
he fluid phase is treated using the Eulerian description on a fixed, equidistant Cartesian grid, while the immersed structure is
escribed by a cluster of moving points from the Lagrangian viewpoint. It means that IBM does not require the fluid mesh to
e dynamically generated such that it conforms to the fluid–structure interface whenever it changes. Thus, it is a suitable choice
n terms of computational efficiency for simulating FSI problems, especially those involving highly flexible structures undergoing
arge deformations/displacements in unsteady flows. Otherwise, handling the computational cost and complexity of the conforming
rid generation is a demanding task, such as in boundary-conforming approaches. In addition to this, IBM allows using suitable
umerical techniques to efficiently solve the governing equations of fluid and structure parts independently without requiring any
ajor modifications in the overall system equations for solving complex FSI problems. For this, the no-slip/no-penetration boundary

ondition is satisfied with a satisfactory approximation by applying an additional forcing to the fluid present in the immediate
icinity of the surface of the immersed structure. In the last two decades, due to its simplicity and advantages, numerous efforts
ave been devoted to developing a variety of immersed boundary approaches. The main focus has been to broaden the application
f the IBM framework to complex FSI applications by utilizing sophisticated solid and/or fluid solvers. However, maintaining the
omputational efficiency and stability of IBM in such applications remains a challenging task.

In this work, we use the direct-forcing IB approach introduced by Uhlmann [44] to transfer the information between the
egular Cartesian grid and the Lagrangian points lying on the slender flexible structure. As noted earlier, we utilize the finite-
ifference method for the Eulerian variables and IGA for the discretization of the structure. It is known that the IGA technique is
apable of accurately capturing the deformation behavior of flexible structures, even at a coarse mesh. However, the long-standing
imitation of the IBM framework that the nodal density of the Lagrangian grid must be relatively fine compared to the background
ulerian grid for the satisfactory imposition of the boundary conditions at the interface negates the advantages of the IGA. This
s because unnecessary usage of an excessively dense structural mesh can significantly reduce the computational efficiency of the
SI simulations, particularly when many structures are involved. Thus, this work presents a novel IB treatment procedure that
nables the usage of a coarse structural mesh at a fixed background Eulerian grid in a finite-difference/isogeometric fluid–structure
ystem. The proposed approach dynamically generates additional Lagrangian marker points with a uniform distribution over a
iven structural mesh. We fulfill the relative nodal density requirement of the IBM framework by setting the spacing between the
agrangian markers comparable to the background Eulerian grid. With this, execution of all the IBM operations, i.e. interpolation
f the velocity and spreading of the forces, occurs only between the dynamically generated Lagrangian markers and the Eulerian
rid. Hence, the resolution of the structural mesh becomes independent of the background Eulerian grid.

The basic steps of the modified IB treatment procedure consisting of the dynamic generation of the Lagrangian marker point
ver an arbitrarily chosen structural mesh within the isogeometric/finite difference setting for each RK3 sub-step 𝑟 are summarized

in the following:
First, the smallest cell spacing of the Eulerian grid from the three different Cartesian directions, i.e. 𝛥ℎ is retrieved. Using 𝛥ℎ, a

Cartesian grid of the parametric coordinates 𝜉𝑙 is uniformly generated in the NURBS parametric space of the slender structure. Before
generating the parametric points over a given structural mesh, the spacing between them is scaled by a predefined value 𝛥𝜉𝑙∕𝛥ℎ
to circumvent the porous representation of the slender structure when it is subjected to large deformations in terms of body force
condition. This part of the first step is done only once at the beginning of the simulation, as the stencils related to the Eulerian grid
and NURBS parametric points remain the same over time. Thereafter, a uniform distribution of the Lagrangian markers is obtained
through the spline interpolations over the physical space of the slender structure with 𝜉𝑙. In this, the coordinate vector of each
Lagrangian marker 𝒙𝑟𝑙 at the current RK3 sub-step 𝑟 is computed via the spline interpolation of the control points at the previous
time level 𝒙𝑟−1𝑖 given by

𝒙𝑟𝑙 (𝜉𝑙) =
𝑝+1
∑

𝑖=1
𝑅𝑖,𝑝(𝜉𝑙)𝒙𝑟−1𝑖 , (26)

where 𝑅𝑖,𝑝 is the 𝑝-order spline function having local support in space [𝜉𝑖, 𝜉𝑖+𝑝+1]. A schematic illustration of the above-described
generation procedure of the Lagrangian markers is provided in Fig. 3. For the sake of clarity, the distribution of the Lagrangian
markers over the structural mesh of two NURBS elements constructed with the quadratic NURBS functions is depicted. In an
analogous fashion, the velocity of the slender structure, obtained via solving Eq. (19), is computed at these new marker points
through the splines interpolations:

𝒘𝑟
𝑙 (𝜉𝑙) =

𝑝+1
∑

𝑖=1
𝑅𝑖,𝑝(𝜉𝑙)𝒘𝑟−1

𝑖 . (27)

Here, 𝒘𝑟−1
𝑖 denotes the velocity of the 𝑖th control point of the structural mesh.

In the second IBM step, the predicted fluid velocity, which is obtained via solving Eq. (11a) is interpolated from the nearest
neighboring cells to a Lagrangian marker using

�̃�(𝒙𝑟𝑙 ) =
𝑛𝑥
∑

𝑖=1

𝑛𝑦
∑

𝑗=1

𝑛𝑘
∑

𝑘=1
�̃�(𝒙𝑟𝑖𝑗𝑘) 𝛿𝑑 (𝒙

𝑟
𝑖𝑗𝑘 − 𝒙𝑟𝑙 )𝛥𝑉 . (28)

where 𝛥𝑉 represents the volume of an Eulerian grid cell. Since we employ a uniform Eulerian grid in all three Cartesian directions,
𝛥𝑉 = 𝛥ℎ3 with 𝛥ℎ as the Eulerian cell spacing. In the present work, we use the regularized Dirac delta function 𝛿 of Roma
9
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Fig. 3. Schematic of the Lagrangian markers generated over an arbitrarily chosen structural mesh (with 𝑛el = 2) for a given Eulerian grid. The mesh is discretized
with 𝑝 = 2 order of NURBS elements, and its junction points are represented by ×. The associated control points and their polygon are shown using the filled
circles connected with a line. The spacing between the Lagrangian markers uniformly distributed over the structural mesh is comparable to the background
Eulerian grid. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

et al. (1999) [88] for the interpolation of the fluid velocity from the Eulerian grid to each Lagrangian marker due to its good
balance between the numerical efficiency and smoothness properties [31,89,90]. It has support over three Eulerian grid cells in
each coordinate direction, which ensures the smooth transfer of the information while maintaining the overall numerical efficiency.
It is given by the tensor product of one-dimensional functions defined in each direction as [88]

𝛿𝑑 (𝒙𝑖𝑗𝑘 − 𝒙𝑙) = 𝛿𝑑 (𝑥𝑖𝑗𝑘 − 𝑥𝑙)𝛿𝑑 (𝑦𝑖𝑗𝑘 − 𝑦𝑙)𝛿𝑑 (𝑧𝑖𝑗𝑘 − 𝑧𝑙) (29)

where 𝛿𝑑 (𝑥𝑖𝑗𝑘 − 𝑥𝑙) = 𝜙(𝑥𝑖𝑗𝑘 − 𝑥𝑙)∕ℎ2, and the function 𝜙 defined as

𝜙(𝑟) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
6

(

5 − 3|𝑟| −
√

−3(1 − |𝑟|)2 + 1
)

, 0.5 ≤ |𝑟| ≤ 1.5 ,

1
3

(

1 +
√

−3|𝑟|2 + 1
)

, |𝑟| < 0.5 ,

0, otherwise ,

(30)

with 𝑟 = (𝑥𝑟𝑖𝑗𝑘 − 𝑥𝑟−1𝑙 )∕𝛥ℎ. Fig. 4 illustrates the support domain in the velocity field of the Dirac delta function of Roma et al. [88]
at a Lagrangian marker in two dimensions.

In the third IB step, the coupling force located at each Lagrangian marker is then computed based on the difference between the
velocity of the slender structure and the fluid velocity given by Eq. (28) at the same marker point with

�̄� (𝒙𝑟𝑙 ) =
𝒘𝑙(𝒙𝑟𝑙 ) − �̃�(𝒙𝑟𝑙 )

𝛥𝑡
. (31)

In the fourth IB step, the coupling force computed at each Lagrangian marker is distributed to the Eulerian points 𝒙𝑖𝑗𝑘 of their
corresponding support domains with the following spreading back operation:

�̄� (𝒙𝑟𝑖𝑗𝑘) =
𝑛𝑙
∑

𝑙=1
�̄� (𝒙𝑟𝑙 ) 𝛿𝑑 (𝒙

𝑟
𝑖𝑗𝑘 − 𝒙𝑟𝑙 )𝛥𝑉𝑙 , (32)

where 𝑛𝑙 denotes the number of Lagrangian markers, and the volume associated with each marker is computed by the product of
the cross-section area of the rod 𝐴 and the Lagrangian marker spacing 𝛥𝜉𝑙 with 𝛥𝑉𝑙 = 𝐴𝛥𝜉𝑙. The coupling forces �̄� (𝒙𝑟𝑖𝑗𝑘) arising from
Eq. (32) are then included in Eq. (11b) to impose the no-slip condition at the fluid–structure interface. The next sub-steps are to
solve the remaining fluid Eqs. (11c)–(11e) to obtain the new velocity 𝒖𝑟 and pressure 𝑝𝑟+1∕2 fields.

In the final IB step, the distributed forces and moments at each Lagrangian marker are computed using the coupling force �̄�
obtained via Eq. (31) with:

�̄�ext (𝒙𝑟𝑙 ) = −𝜌 �̄� (𝒙𝑟𝑙 )𝛥𝑉𝑙 ,

�̄�ext (𝒙𝑟𝑙 ) = −𝜌 𝜻 × �̄� (𝒙𝑟𝑙 )𝛥𝑉𝑙 .
(33)

The IGA discretized Cosserat rod Eqs. (20)–(21) are then solved to obtain the new position 𝒙𝑟, rotation of cross-section 𝒒𝑟, translatory
velocity 𝒘𝑟, and angular velocity �̇�𝑟 for the immersed structure.
10
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Fig. 4. Schematic of the fluid flow support domain, highlighted in dark green, for a selected Lagrangian marker. The relation between the Lagrangian marker
𝒙𝑙 and Eulerian grid 𝒙𝑖𝑗𝑘 is realized by the regularized Dirac delta function of Roma et al. [88], described above. The staggering of the fluid velocity component
in 2D is shown for simplicity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The above-mentioned procedure is repeated for each Lagrangian marker at every RK3 sub-step 𝑟. The overall algorithm for solving
an FSI problem based on the above-described direct forcing IB procedure for a sub-step 𝑟 of a time-step 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] is summarized
below:

1. Initialize 𝜉𝑙 parametric coordinate of Lagrangian marker for a given Eulerian grid.
2. Compute predicted fluid velocity �̃� using Eq. (11a) without accounting for �̃� .
3. Compute coordinates of the Lagrangian markers 𝒙𝑙 over NURBS mesh via Eq. (26).
4. Interpolate velocity of the structure at each Lagrangian marker 𝒘𝑙 using Eq. (27).
5. Interpolate fluid velocity �̃� to each Lagrangian marker �̃�(𝒙𝑟𝑙 ) via Eq. (28).
6. Compute coupling force at each Lagrangian marker �̄� (𝒙𝑟𝑙 ) using Eq. (31).
7. Spread back �̄� (𝒙𝑟𝑙 ) over Eulerian support domain of each marker using Eq. (32).
8. Compute distributed force �̄�ext (𝒙𝑟𝑙 ) and moment �̄�ext (𝒙𝑟𝑙 ) for structure via Eq. (33).
9. Solve fluid flow Eqs. (11b)–(11e) updated with �̄� (𝒙𝑟𝑖𝑗𝑘) to compute 𝒖𝑟 and 𝑝𝑟+1∕2.

10. Solve IGA Cosserat rod Eqs. (20)–(21) to compute: 𝒙, 𝒒, 𝒘, �̇�, and return to step 2.

With the above-described procedure, the presented isogeometric/finite difference IB approach allows for generating an additional
Lagrangian grid together with the flexibility of controlling the marker spacing over a fixed structural mesh. This is a remarkable
feature for the FSI simulations involving flexible structures as with this: (1) the density of the structural mesh becomes fully
independent of the Eulerian grid density. Hence, a very coarse structural mesh, which is sufficient to capture the elastic responses of
the filament undergoing finite deformations, can be used for the solid solver as compared to the standard IB method, which otherwise
requires the nodal density of the structural mesh to be nearly the same as the Eulerian grid. (2) A suitable Lagrangian marker grid,
which is comparatively fine to the background Eulerian grid, can be easily generated at a coarse structural mesh without losing
the accuracy of the enforcement condition at the interface. In Section 5, we will demonstrate the performance of the proposed IB
approach. As compared to the standard IB method, it considerably reduces the computational efforts associated with the solid solver
of the finite-difference/isogeometric FSI framework without the loss of numerical stability and robustness.

In Section 5, we also show that increasing the relative Lagrangian marker spacing 𝛥𝜉𝑙∕𝛥ℎ beyond a specific value increases the
error on the no-slip/no-penetration condition at the interface. Thus, a result of lower accuracy is obtained. On the other hand, on
reducing 𝛥𝜉𝑙∕𝛥ℎ below a specific value does not improve the interface resolution, and thus, nearly identical results are obtained.

4. Solid solver validations

In this section, we present validations of our solid solver, i.e. IGA-based implementation of the geometrically exact isogeometric
Cosserat rod, for the static and dynamic cases involving large deformations of the flexible beam.
11
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Fig. 5. Bending of a straight cantilever subjected to the moment 𝑀 applied at its free end: Initial and deformed configuration of the centerline for different
load values. The beam is discretized using 10 quadratic order NURBS elements. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 6. Top: Comparison of the different configurations of a flexible rod swinging under gravity from time 0 to 1 with a time interval 0.1. Bottom: Comparison of
the vertical tip displacement of the rod with the results from the literature. The rod is discretized using 30 quartic order of NURBS elements. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.1. Bending of a straight cantilever

In the first numerical example, we test the validity of our solid solver with one of the most occurring benchmarks in literature,
which is used for nonlinear beam formulations. It involves the pure bending of an initially straight cantilever beam of length 𝐿 by a
concentrated moment 𝑀 at the tip of its free end. The setup of the problem is shown in Fig. 5. The analytical solution to this problem
is a circle with a radius 𝐸𝐼∕𝑚. The moment required to bend the beam in the shape of a perfect circle 𝑚 = 2𝜋𝐸𝐼∕𝐿 [49]. Here,
the beam is of unit length and discretized with ten second-order NURBS elements, denoted by N2. Due to the large deformations,
we carry out the nonlinear static analysis by gradually increasing the torque value in 20 steps. The deformed configurations of the
beam for different values of end moment values are shown in Fig. 5. It can be observed that the final configuration of the beam
obtained with our solid solver is in excellent agreement with the analytical solution.

4.2. Swinging of a flexible rod under gravity

As compared to the first numerical example, where we used a very stiff beam, here we consider a rod of high flexibility having
a circular-cross section with diameter 𝑑 = 0.01 m and length 𝐿 = 1.0 m. Initially, at time 𝑡 = 0.0 it is placed horizontally with its
left end pinned as shown in Fig. 6. The Young’s modulus, Poisson’s ratio, and material density are 𝐸 = 5 × 106 N/m2, 𝜈 = 0.5, and
𝜌𝑠 = 1100 kg∕m3. We discretize the rod with 30 quartic order NURBS elements, i.e. N4. The overall simulation swinging time is 1.0
s with a time-step size 𝛥𝑡 = 5 × 10−3 s. Fig. 6(a) shows the various configurations of the centerline of the rod from time 𝑡 = 0.0 to
𝑡 = 1.0 s with a time interval of 0.1 s.
12
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For comparison, we use the results from Enzo et al. [62]. As can be seen, the different configurations of the rod are in agreement
with those reported in [62]. Further, the comparison of the time history of the vertical displacement of the tip obtained from the
present work with that reported in the Refs. [71,91] is provided in Fig. 6(b). Again, the result obtained with our solid solver is in
excellent agreement with those in the literature.

5. FSI benchmarks and results

Since the fluid solver utilized in the present work has been extensively validated for different flows [78,79], we present the
validation and performance of our isogeometric/finite-difference framework using two different FSI benchmarks involving slender
flexible structures. We systematically vary the mesh resolution of the immersed structure at a fixed background Eulerian grid
to demonstrate the efficacy of our isogeometric/finite-difference FSI framework. In each case, the relative spacing between the
Lagrangian markers over a structural mesh and the Eulerian grid is kept comparable. The minimum relative grid spacing below
which the results can be considered independent is also identified.

5.1. Flapping of a flexible filament in a uniform flow

In this numerical example, we consider the flapping motion of a flexible filament in a uniform flow to demonstrate the capabilities
of the developed computational framework. This example was first studied by Zhang et al. [3] and has been extensively used to
study the performance of various FSI schemes in capturing the dynamics of a flexible structure in the fluid [35,48,92–94]. It serves
as a model to replicate the flag-flapping phenomenon in the wind, locomotion of swimmers and micro-organisms, and investigate
the filament motion in the soap film.

5.1.1. Description and validation
The problem setup, taken from Huang et al. [95], is shown in Fig. 7. A flexible filament of length 𝐿 = 1.0 is hinged at the origin

in the computational domain with dimensions [−2𝐿, 6𝐿] × [−4𝐿, 4𝐿] along the x- and 𝑦-directions. As shown in Fig. 7, the filament
is initially inclined at an angle 𝜃 = 0.1𝜋 w.r.t. the 𝑥-axis. The boundary conditions used for the fluid problem are: inlet and outlet
along the horizontal boundaries and free-shear walls along the vertical boundaries. The directions of the flow and the gravity force
are along the 𝑥-axis. Based on the incoming flow velocity 𝑈 , filament length 𝐿, and fluid kinematic viscosity 𝜈, the Reynolds number
at which the simulations are performed is 𝑅𝑒 = 200. The other parameters are: Froude number F = 𝑈∕

√

𝑔𝐿 = 1.414, and the solid to
fluid density ratio 𝜌𝑟 = 𝜌𝑠∕𝜌 = 150. Unlike in [95], where an inextensibility constraint is imposed on a fiber by solving an additional
equation, in the present work, we use a large value of the (non-dimensional) axial stiffness coefficient, i.e. 𝐾𝐴 = 𝐸𝑑∕(𝜌𝑈2𝐿) = 2500
as in [48], to approximately satisfy the inextensibility condition. The bending stiffness of the filaments is the same as in [95],
i.e. 𝐾𝐵 = 𝐸𝐼∕(𝜌𝑈2𝐿3) = 0.0015.

First, we validate the implementation of our FSI framework against the result presented in [95]. For this, we use the same
number of points for the Eulerian and Lagrangian grids as in [95]. Specifically, we use 528 × 528 number of elements along the
x- and 𝑦-directions, yielding a uniform Eulerian grid with spacing 𝛥ℎ = 0.0152. For the discretization of the filament, we employ
standard 𝑛el = 64 number of linear-order NURBS elements, denoted by N1. With this, the spacing of the Lagrangian points is nearly
equal to that of Eulerian grid points, i.e. 𝐺r = 𝛥𝑥𝑙∕𝛥ℎ ≈ 1.

Fig. 8 illustrates the time evolution of the transverse displacement of the trailing edge of the filament. It can be seen that the
result obtained with the standard N1 discretization of the filament with 𝐺r = 1 is in good agreement with the numerical result of

Fig. 7. Schematics of the computational domain and boundary conditions for FSI simulation of a flexible filament in uniform flow. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Comparison of the time evolution of the trailing edge transverse displacement of the filament in a uniform stream.

Fig. 9. Instantaneous vorticity contours of the flow around the centerline of the filament at time: (a) 𝑡 = 20, (b) 𝑡 = 20.85, and (c) 𝑡 = 21.7 s. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Huang et al. [95]. The filament undergoes seven transient oscillations before attaining the self-sustaining periodic flapping state.
The instantaneous stream-wise vorticity contours at three-time instants of a periodic flapping cycle, where the filament goes from
maximum positive to minimum negative vertical deflections, are provided in Fig. 9. Further, different filament configurations at
various time instants during the periodic flapping cycle are provided in Fig. 10, showing the symmetric behavior of the filament
deformation.

5.1.2. Performance analysis
Next, we demonstrate the performance of the developed framework constituting the isogeometric/finite-difference immersed

boundary coupling procedure, by systematically coarsening the mesh resolution of the NURBS discretized fiber at a fixed background
Eulerian grid. We assess the accuracy of the FSI results at the Lagrangian grid spacings: 𝐺r ≈ 2, 4, 6, 8 relative to the fixed 528 × 528
Eulerian grid. These spacings are corresponding to 𝑛el = 32, 16, 11, 8 number of N2 based structural elements. The mesh resolutions
for the fiber at a fixed background grid corresponding to different 𝐺 are illustrated in Fig. 11. In all cases, a uniform Lagrangian
14
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Fig. 10. Snapshots of the various configurations of the filament in uniform flow at several time instants during the periodic flapping.

Fig. 11. Illustration of the mesh resolution used for the centerline of the fiber at a (subset of) fixed background grid for different grid spacing ratio 𝐺r . (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

marker spacing close to 0.7 of the Eulerian grid spacing 𝛥ℎ is taken to avoid any flow leakage [31,64]. In order to reduce the
complexity of this study, we fix the interpolation order of the NURBS basis function to second-order, i.e. N2 in the following. Such
a NURBS based discretized ensures the necessary 𝐶1-continuity across the internal points of the filament. The other simulation
parameters are the same as described in the previous sub-section. Fig. 12 shows the results at different resolutions, where the result
with the standard 𝐺r = 1 description is used as reference. Two observations are made: (i) the proposed method provides consistent
results with different 𝐺r except 𝐺r = 8. (ii) 𝐺r = 6, which is the coarsest Lagrangian mesh, yields nearly the same accurate result at
the fixed Eulerian grid spacing as compared to the standard 𝐺r = 1 based description. Note that 𝐺r = 6 requires nearly 82% lower
number of DOFs as compared to standard 𝐺r = 1 based description and, thus, considerably reduces the overall simulation cost, see
Table 1. Although with 𝐺r = 8, the amplitude of the flapping motion of filament is similar to that of 𝐺r = 1, the phase of the result
shifts slightly. Such a non-physical shift is due to using a too-coarse resolution to capture the dynamics of the filament.

Since in the proposed isogeometric/immersed boundary coupling procedure, the spacing of the Lagrangian markers can be set
independently of the Lagrangian mesh of the filament, we investigate the impact of the marker spacing on the accuracy of the FSI
results at a fixed Lagrangian mesh. Fig. 13 shows the result with the coarsest Lagrangian mesh, i.e. 𝐺r = 6 at two different relative
spacings of the Lagrangian markers. Note that the Eulerian grid is fixed as above. It can be seen the usage of marker spacing
𝛥𝜉𝑙∕𝛥ℎ = 1.1 leads to a loss of accuracy as compared to 𝛥𝜉𝑙∕𝛥ℎ = 0.7. This is because the increase in the relative marker spacing
beyond a specific value reduces the accuracy of the no-slip/no-penetration condition at the interface and yields less accurate FSI
results, see also e.g. [31,90]. On the other hand, the further reduction of 𝛥𝜉𝑙∕𝛥ℎ beyond a specific value does not affect the interface
resolution at a fixed Lagrangian mesh and identical results are obtained (not shown here).

5.1.3. Convergence study
In this section, we further use the results from the flapping of a flexible filament in a uniform flow to demonstrate the convergence

behavior of the developed computational framework. To this end, we employ six uniform Eulerian grids: 156 × 156, 234 × 234,
352 × 352, 528 × 528, 792 × 792, and 1188 × 1188 with a constant refinement ratio of 1.5. The Lagrangian meshes having relative
grid spacings 𝐺r = 1, 2, 4, 6 w.r.t. to these six uniform Eulerian grids are utilized. For each 𝐺r , the ℎ-refinement on the uniform knot
vector is performed while keeping the refinement ratio fixed to 1.5. Table 1 provides the summary of the Eulerian, and Lagrangian
meshes at different 𝐺r along with the spacings of each grid/mesh. With the aim of analyzing the overall numerical accuracy in space
and time simultaneously, the time-step for each grid is taken such that the ratio between the Eulerian grid spacing and time-step
15
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Fig. 12. Time traces of trailing edge transverse locations of the filament in a uniform stream with different relative grid spacings 𝐺r at a fixed Eulerian grid.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Comparison of the time traces of the trailing edge transverse location of the filament in a uniform stream with different values of Lagrangian marker
spacings at a fixed Eulerian as well as Lagrangian mesh. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

size remains constant, i.e. 𝛥ℎ∕𝛥𝑡 = 8𝑈 . This means that the CFL (Courant–Friedlich–Lewy) number based on the inflow velocity is
the same for all grids. To assess the convergence behavior, two error measures are defined: 𝜖(𝐴) for the flapping amplitude and 𝜖(𝑇 )
for the oscillation period of the flapping state. Each error is evaluated using

𝜖(□) =
|□ −□ref

|

□ref
(34)

where □ref is the value of a selected variable at the finest 1188 × 1188 Eulerian grid used as a reference.
The convergence of 𝜖(𝐴) and 𝜖(𝑇 ) against grid refinement are reported in Fig. 14. From these, mainly two observations are

made: (i) With the proposed FSI procedure, a consistent second-order convergence rate on the finer grids is achieved. It is therefore
demonstrated that the proposed FSI procedure’s overall accuracy ensures the fundamental solvers’ accuracy order. (ii) For different
values of 𝐺 , nearly identical accuracy at a fixed mesh level is attained. This implies that the method enables the use of much
16
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Table 1
Summary of the computational setting for the Eulerian grid and Lagrangian meshes at different 𝐺r for the convergence study.
𝑚𝑖 Eulerian 𝐺r = 1 𝐺r = 2 𝐺r = 4 𝐺r = 6

Grid Δℎ 𝑛el Δ𝑥𝑙 𝑛el Δ𝑥𝑙 𝑛el Δ𝑥𝑙 𝑛el Δ𝑥𝑙
𝑚1 156 × 156 0.0513 19 0.0526 9 0.1111 4 0.2500 3 0.3333
𝑚2 234 × 234 0.0342 28 0.0357 14 0.0714 7 0.1429 5 0.2
𝑚3 352 × 352 0.0227 42 0.0238 21 0.0476 11 0.0909 7 0.1429
𝑚4 528 × 528 0.0152 64 0.0156 32 0.0312 16 0.0625 11 0.0909
𝑚5 792 × 792 0.0101 99 0.0101 48 0.0208 24 0.0417 17 0.0588
𝑚6 1188 × 1188 0.0067 148 0.0068 72 0.0139 36 0.0278 25 0.04

ig. 14. Relative error versus grid resolution in terms of: (a) amplitude and (b) period of the flapping cycle of the flexible filament in a uniform stream. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

oarser structural meshes for a given Eulerian grid compared to the standard approach without any noticeable loss of accuracy.
urthermore, the method verifies itself to be robust, yielding nearly identical error values with different 𝐺r . In addition, a closer
ook at the figure reveals some degree of phase shift in the convergence of 𝜖(𝐴) and 𝜖(𝑇 ) at the initial two mesh levels, particularly
oticeable when employing 𝐺r = 6. This shift is attributed to using an overly coarse mesh resolution, denoted as 𝑚1, for the fiber,
hich is unable to accurately capture the dynamics of the flapping filament, especially the oscillation period. This is similar to the
bservation made for the 𝐺r = 8 at mesh level 𝑚4 in Fig. 12. A further closer look at Fig. 14 reveals that as the mesh resolution of
he fiber is further increased, i.e. 𝑚2 to 𝑚6, the error in the phase of the convergence diminishes and finally disappears. Notably,
r = 6 yields an accuracy level nearly identical to the accuracy achieved with other 𝐺r based descriptions. For completeness, time
istories of the filament tip positions for 𝐺r = 6 are illustrated in Fig. 15 w.r.t. the reference solution.

.2. Flexible filaments in oscillatory flow

We use this example for the following two reasons. First, to test the validity of our FSI framework against the results from
xperiments and computations by Pinelli et al. [96]. Second, to demonstrate the capabilities of the proposed isogeometric/immersed
oundary approach to simulate a row of slender structures in a viscous flow in three dimensions. This example concerns 5 flexible
ilaments clamped vertically at the centerline of the bottom wall of a three-dimensional rectangular channel subjected to a pulsating
low.

.2.1. Description and validation
A schematics of the computational setup, taken from Pinelli et al. [96], is illustrated in Fig. 16. The computational domain has

imensions: 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 10𝐿 × 6𝐿 × 5𝐿 along the streamwise, wall-normal, and spanwise directions, and is discretized with
60 × 96 × 80 Eulerian grid points. The following boundary conditions are used: no-slip along the wall-normal 𝑦-direction and
eriodic along the x- and 𝑧-directions. In the experiment, the channel is filled with glycerin having kinematic viscosity 𝜈 = 1 cm2

−1 and subjected to an oscillating pressure gradient. Based on the maximum flow velocity in the channel, i.e. 𝑢 = 60 cm/s, the
17
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Fig. 15. Time traces of the trailing edge transverse location of the flexible filament in a uniform flow case at different Lagrangian and Eulerian grid resolutions.
The relative spacing between the Lagrangian mesh and the Eulerian grid is 𝐺r = 6. The black curve with the finest mesh 𝑚6 is a reference solution. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

bulk Reynolds number is: 𝑅𝑒 = 𝑢max𝐿∕𝜈 = 60. The length of each cylindrical filament is 𝐿 = 10 mm, and the diameter is 𝐷 = 1 mm.
The separation distance between the filaments is half the filament length. The pulsating frequency of the channel is set to 1 Hz,
which matches the natural frequency of the filaments (having Young modulus 𝐸 = 1.23 MPa). For the discretization of each filament,
16 number of linear order NURBS elements N1 are used as in [96]. With this, the Lagrangian to Eulerian grid spacing ratio is 𝐺r = 1.

Fig. 17 shows instantaneous snapshots of the vorticity in the oscillating channel flow. The quantitative comparisons are provided
in Fig. 18, showing the time traces of the tip displacement of the last filament. As seen, the frequency of the oscillations and amplitude
of the displacement obtained with the present work matches the experimental and numerical results of Pinelli et al. [96]. The small
difference in the amplitude between the present work and the numerical result of Pinelli et al. [96] could be due to using different
beam models for the filament. Pinelli et al. [96] used the Euler–Bernoulli beam model, while the Cosserat rod model is used in the
present work.

Fig. 16. Schematic illustration of the computational domain for FSI simulation of a row of filaments in oscillatory flow. The maximum deformed configuration
of the filaments (in blue) w.r.t. their initial configurations (in sky blue). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 17. 2D color contours of the instantaneous spanwise vorticity in the wall-normal plane where filaments are clamped. The positions of the flexible filaments
centerline are shown at the time of maximum positive (left) and negative deflections (right). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 18. Comparison of the time evolution of the streamwise tip displacement of the last filament in an oscillatory channel flow. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

5.2.2. Performance investigations
Fig. 20 shows the performance of the proposed finite-difference/isogeometric IB approach for different relative Lagrangian and

Eulerian grid spacings. The spacing of the Eulerian grid 0.0625 is kept fixed as described above, while each filament is discretized
with N2 based 𝑛el = 8, 4, 3, 2 elements, resulting in 𝐺r ≈ 2, 4, 6, 8. The mesh resolutions of the fiber at a fixed background grid obtained
with different 𝐺r are illustrated in Fig. 19. Further, for all cases, the ratio of the Lagrangian marker spacing to the Eulerian grid
spacing is kept close to 0.7 as in the first FSI example. From Fig. 20, two main observations are made: (i) The proposed IB approach
provides consistent results in terms of frequency of oscillation and displacement amplitude with different 𝐺r , except 𝐺r = 8. Thus,
demonstrating the versatility of the approach for more than one filament. (ii) 𝐺r = 6 is the coarsest Lagrangian mesh, providing
identical results as compared to the standard 𝐺r = 1 based description. It requires nearly 71% lower number of DOFs compared
to 𝐺r = 1 for each filament, thereby considerably reducing the computational efforts associated with FSI simulations. Furthermore,
taking a closer look at Fig. 20 reveals that the oscillation frequency obtained with 𝐺r = 8 is comparable to 𝐺r = 1. However, the
figure shows a small difference in the amplitude of the displacement oscillations.

5.3. Submerged vegetation in a turbulent channel flow

We consider the flow over submerged vegetation as the final example to demonstrate the capabilities of our computational
framework to simulate a large number of highly flexible filaments in a turbulent flow. Considering the great interest in understanding
19
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Fig. 19. 2D illustration of the mesh resolutions used for the centerline of the fiber at a (subset of) fixed background grid for different grid spacing ratio 𝐺r ..
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Time evolution of the streamwise tip displacements of the last filament with different relative grid spacing ratios 𝐺r at a fixed Eulerian grid. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 21. Schematics of the computational domain and boundary conditions for the submerged vegetation example. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

how fluid mechanics influence the behavior of the submerged vegetation patch and its impact on the ecology of lotic ecosystems,
considerable efforts have been dedicated to this problem, cf. Refs. [97,98] for experimental studies, [99,100] for the analytical
solutions, and Refs. [65,68,101–104] for numerical analysis of the submerged canopies.

The setup of the problem considered in the present study is depicted in Fig. 21. It involves a patch consisting of 80 × 40
slender flexible filaments submerged within a three-dimensions open channel flow. The computational domain is of size 𝑙 × ℎ×𝑤 =
(132, 66, 21) cm3 along the streamwise, spanwise, and wall-normal directions. The no-slip boundary condition is applied to the
bottom surface of the channel, while the free-slip boundary condition is taken at its top surface. Periodic boundary conditions are
used in the streamwise and spanwise directions. The flow is driven by enforcing a constant bulk velocity 𝑈 = 5 m∕s. Based on the
bulk velocity 𝑈 , channel height ℎ, and kinematic viscosity of the fluid, i.e. 𝜈 = 10−3 m2/s, the Reynolds number is 𝑅𝑒ℎ = 42, 000.
Further, the density ratio between the filament and fluid is taken as 10. In the setup, the filaments of length 𝐿 = 70 mm, radius
𝑟𝑠 = 1 mm, and Young’s modulus 𝐸 = 107 N/m2 are clamped at the bottom boundary of the channel with equal spacing of 1

625 cm
in both the streamwise and spanwise channel directions. In the immersed array, the first filament is set at a distance of 9

625 cm
and 7

625 cm from the left corner of the computational boundary in the 𝑥- and 𝑧-directions. Consequently, the last filament of the
array is at a distance from 17

625 cm and 6.5
625 cm in the same directions, as shown in Fig. 21. The computational domain is discretized

by 576 × 288 × 92 cells along the streamwise, spanwise, and wall-normal directions. This grid resolution corresponds to one of the
cases used for simulating flow through artificial canopy example in [65]. Each fiber is discretized with 30 linear-order N1 elements,
therefore 3200 fibers use 96,000 elements, as per the standard 𝐺r = 1 based description. In order to assess the computational
performance of the developed framework, we use the 𝐺r = 6 based description of the fibers, which requires 6 times lower number
of elements as compared to 𝐺r = 1.

Fig. 22 shows instantaneous flow and vegetation snapshots at an arbitrary time instance, 𝑡 = 32.5 s from the 𝐺r = 6 based
description. Fig. 22(a) shows that the flow slows down in the vicinity of the filament patch and that the collective interaction of
the flexible filaments leads to the formation of the typical monami-motion of the fluid, as also observed in [65,68,102,103]. The
bent configuration of the fibers, colored by their absolute deflection from the initial position and normalized with fiber length, are
illustrated in Figs. 22(b) at the same time instance. The corresponding top view of the wavelike configuration of the flexible filament
patch is shown in Fig. 22(c).

Given the challenges associated with experimentally capturing the evolution of 3D coherent fluctuation patterns within the fluid
field, numerical methods have become the preferred choice for studying the interaction of numerous highly flexible filaments with
a turbulent flow. It is important to note that, within the current simulation parameters, there are a few instances where two or a
few filaments come into contact with one other. However, the results presented here do not account for a contact model between
the filaments. In the current example, the deflection of the filaments is solely driven by the hydrodynamic forces arising from the
interactions with the surrounding fluid flow. We utilize the vegetation example since the computational cost associated with the
standard 𝐺r = 1 based structural solver becomes dominating to that of fluid solver, because of the presence of 3200 flexible filaments.
We note that a comprehensive and in-depth exploration of the collective dynamics of the submerged vegetation is outside the scope
of the present study and is earmarked for future research. In the following, we describe the advantages of our framework in terms
of computational efforts compared to the standard 𝐺r = 1 based counterpart. To obtain the results illustrated in this section, the
flow solver and interpolation/spreading of different quantities between the two solvers took nearly identical computational time for
both the standard 𝐺r = 1 and 𝐺r = 6 based descriptions.

On the other hand, the 𝐺r = 6 based structural solver takes approximately 10.4 times lower computational cost as compared
to 𝐺r = 1, thereby considerably enhancing the overall efficiency of the FSI simulations. A further investigation reveals that such
a reduction in the computational cost for the structural solver with 𝐺r = 6 stems from: (i) computations of elemental quantities
such as internal force vector, and (ii) solving equations of motion for each filament. The quantitative insights on the computational
21
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Fig. 22. Snapshots of the streamwise velocity contour and wavelike configurations of the filaments. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Table 2
Computational efforts associated with the structural solver and its different parts
with 𝐺r = 1 and 𝐺r = 6 based descriptions of the filaments. The structural solver
cost with 𝐺r = 1 is used as a reference.

𝐺r = 1 (in %) 𝐺r = 6 (in %)

Structural solver 100 9.64
Elemental quantities 50.16 8.07
System of equations 49.84 1.57

performance of the 𝐺r = 6 based structural solver relative to 𝐺r = 1 are provided in Table 2. It can be noticed that 𝐺r = 6 takes
early 1∕6 of the computational efforts to compute the elemental quantities. The major gain in efficiency stems from the solution
f the governing equations, as 6 times the smaller system of equations is solved in the case of 𝐺r = 6 for each filament.

. Summary

We present a robust and efficient computational framework for fluid–structure interactions of slender flexible filaments in
viscous incompressible fluid. With the objective of accurately computing the elastic responses of filaments exhibiting large

eflections/motions due to moderate fluid forces, we adopt the IGA-based implementation of the geometrically exact, nonlinear
osserat rod formulation. We use the partitioned approach to couple the IGA Cosserat rod-based structural solver with the finite-
ifference-based fluid solver. A simple yet effective direct-forcing immersed boundary method is employed to transfer the data
etween the fluid and structure domains. We present a new coupling procedure that overcomes the well-known limitation of the IB
ethod, viz., the local grid density of the structure must be relative to the Eulerian grid to avoid any leakage at the interface. This

llows using a much coarser mesh resolution for the immersed NURBS discretized structure than the background flow grid.
We first validate the IGA Cosserat rod-based structural solver using two benchmarks involving large deformations of the flexible

eam: bending a cantilever beam and swinging a flexible rod under gravity. We thereafter present the validation of our FSI
ramework by means of two test cases of increasing complexity: the flapping of a single flexible filament in a uniform flow and
n array of flexible filaments subjected to a pulsating flow in a three-dimensional channel. In both cases, the obtained results
re in excellent agreement with the numerical and experimental results available in the literature. To explore the IB procedure’s
erformance, the NURBS-discretized filaments’ nodal density is systematically varied at a fixed Eulerian grid in both FSI test cases.
e show that the proposed procedure allows using at least six times coarser structural meshes than the background fluid grid

o attain accurate results without losing numerical stability and robustness, thereby displaying a major gain in computational
fficiency. Numerical convergence studies are performed for the first FSI test case, which verifies the proposed framework’s consistent
erformance and second-order convergence rate in space–time. To illustrate the robustness and efficacy of the proposed framework
or an application-oriented FSI problem, a submerged vegetation example involving more than 3,000 highly flexible and slender
ilaments interacting with an incompressible, turbulent flow in a 3D channel is used. Our framework thus allows efficient simulation
f such a large-scale FSI problem. In summary, the present framework based on the isogeometric/finite-difference immersed
oundary method has proven to be accurate, robust, and efficient for the complex fluid–structure interaction between the flexible
ilaments and incompressible viscous flow. The ongoing research efforts focus on incorporating the normal and frictional contact
etween the rod structures and its application to fiber-suspended flows and the paper-making processes.
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