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ABSTRACT Large-scale self-supervised pretraining of deep learning models is known to be critical in
several fields, such as language processing, where its has led to significant breakthroughs. Indeed, it is often
more impactful than architectural designs. However, the use of self-supervised pretraining lags behind in
several domains, such as hyperspectral images, due to data scarcity. This paper addresses the challenge of
data scarcity in the development of methods for spatial super-resolution of hyperspectral images (HSI-SR).
We show that state-of-the-art HSI-SRmethods are severely bottlenecked by the small paired datasets that are
publicly available, also leading to unreliable assessment of the architectural merits of themodels.We propose
to capitalize on the abundance of high resolution (HR) RGB images to develop a self-supervised pretraining
approach that significantly improves the quality of HSI-SR models. In particular, we leverage advances in
spectral reconstructionmethods to create a vast dataset with high spatial resolution and plausible spectra from
RGB images, to be used for pretraining HSI-SR methods. Experimental results, conducted across multiple
datasets, report large gains for state-of-the-art HSI-SR methods when pretrained according to the proposed
procedure, and also highlight the unreliability of ranking methods when training on small datasets.

INDEX TERMS Hyperspectral images, super resolution, synthetic data, self-supervised pretraining, spectral
reconstruction.

I. INTRODUCTION16

Hyperspectral imaging is a powerful technology that captures17

images across a wide range of the electromagnetic spectrum,18

revealing insights unattainable in the visible. This advanced19

imaging technique has diverse applications, ranging from20

medical diagnostics [1] and agricultural monitoring to21

ensure food quality, to remote sensing for environmental22

analysis [2], [3], as well as military applications. The23

rich spectral information contained in hyperspectral images24

(HSIs) enables precise material identification and analysis,25

making it an invaluable tool in these fields.26

The associate editor coordinating the review of this manuscript and

approving it for publication was Bing Li .

However, the design of hyperspectral imagers faces 27

significant trade-offs. To achieve a fine spectral resolution 28

and capture a broad range of wavelengths, compromises in 29

the optical and sensor designs must be made that sacrifice 30

spatial resolution in favor of spectral resolution. Moreover, 31

the sheer amount of data produced for a hyperspectral 32

cube can pose challenges in handling, particularly when a 33

rapid frame rate is desired or in certain applications, such 34

as satellite imaging, where computational and transmission 35

resources are limited. 36

This limitation in spatial resolution has thus raised 37

interest in hyperspectral image super-resolution (HSI-SR). 38

Super-resolution techniques are well-established in the RGB 39

imaging domain [4], [5], but their adaptation to the HSI 40

domain is not straightforward. Indeed, one would like to 41
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extend techniques developed for RGB images to more42

carefully account for spatio-spectral correlation and the43

characteristics of infrared bands. However, the primary44

obstacle is the scarcity of high-resolution hyperspectral45

datasets, largely due to the prohibitive costs and logistical46

challenges in collecting such data. Even worse, different47

instruments may capture different subsets of wavelengths,48

rendering the creation of larger datasets as collections from49

multiple cameras problematic. This lack of extensive, high-50

quality HSI data has slowed down the development and51

refinement of HSI-SR methods. Most of the current work52

focuses on the design of novel neural network architectures,53

potentially exploiting clever priors or layer structures in their54

operations. On the other hand, it is well known [6], [7] that55

training on more data is often more impactful than revising56

architectural design. Moreover, using small datasets, such as57

the ones in the current literature, poses the risk of producing58

unreliable scientific results when assessing the merits of a59

design over another.60

In the case of hyperspectral images, collecting large61

labeled datasets (such as paired HR-LR HS images) for62

supervised training can be prohibitive or entirely impos-63

sible, due to the lack of higher resolution cameras at the64

desired wavelengths. This calls for the development of65

self-supervised pretraining techniques that can leverage a66

wealth of unlabeled data so that the small amount of labeled67

data can be used much more effectively. While techniques68

following this idea [8], [9] have led to robust and transferable69

models in natural language processing as well as other fields,70

a further complication arises with hyperspectral images,71

i.e., the overall relative scarcity of publicly available HSI72

products, even without demanding additional pairing with73

higher resolution data.74

In response to this challenge, this paper introduces an inno-75

vative approach that pivots on the creation of a large-scale76

synthetic hyperspectral dataset. Abundant high-resolution77

RGB data can be found on the Internet and large datasets [10],78

[11] have already been developed for applications like RGB79

image generation, restoration, detection, etc. At the same80

time, spectral reconstruction techniques [12], [13], [14]81

have recently enjoyed great success in estimating plausible82

material spectra that extend to the infrared from visible RGB83

images only. We thus first propose to use spectral recon-84

struction techniques to transform a large-scale RGB dataset85

into an HSI dataset with, obviously not perfect, but plausible86

spectral content and high spatial resolution. Then, a spatial87

super-resolution pretext task requiring to invert an arbitrary88

degradation model is set up as a pretraining step. Critically,89

this does not require further data or annotations, as the LR90

images are spatially degraded from the available ones by91

simulating the degradation process. Finally, finetuning with92

paired real HSI data can be performed.93

Experimental results are conducted on multiple datasets94

andwith three state-of-the-art methods for HSI-SR.We report95

large gains (up to 2dB in MPSNR) in the quality of96

the super-resolved images when the proposed pretraining97

approach is followed. Moreover we conduct an ablation 98

experiment (Sec. IV-C) that proves that pretraining with our 99

synthetic dataset leads to better performance than using RGB 100

images as an auxiliary task [7]. We also would like to remark 101

that our results raise questions about the significance of 102

results assessing merits of neural network design obtained 103

on small datasets. In fact, we see that pretraining on the 104

large dataset affects the relative ranking of the state-of-the-art 105

methods. Moreover, we argue that the large-scale pretraining 106

technique we propose could pave the way for development of 107

bigger and more powerful neural network models. 108

II. BACKGROUND AND RELATED WORK 109

A. HYPERSPECTRAL IMAGE SUPER RESOLUTION 110

Hyperspectral Image Super resolution seeks to increase 111

the spatial resolution of hyperspectral images starting from 112

low-resolution observations. Several methods have been 113

developed to solve this task under various settings. This 114

work is focused on the single hyperspectral image super- 115

resolution (SHSR) setting where the LR HS image is the only 116

information available to reconstruct the HR image. This is 117

contrast with other settings in which a co-registered auxiliary 118

image with one or few bands at higher resolution is available 119

as a guide [3], [15], [16]. The SHSR task is generally more 120

interesting due to the wider applicability as it does not require 121

an auxiliary input, as well as more challenging due to its 122

highly ill-posed nature. Several approaches for SHSR have 123

been proposed over the years [7], [17], [18], [19], [20], 124

[21], starting from a pioneering work leveraging a Bayesian 125

prior [17] and, more recently, deep learning methods focused 126

on applying deep neural networks to learn a direct mapping 127

between LR inputs and HR ground truth images. Among 128

them, [22] makes use of 3D convolutions to explore both 129

spatial and spectral correlation. MCNet [23] adopts a mixed 130

convolutional module, that contains a combination of 2D and 131

3D convolutions to mine spatial features of the hyperspectral 132

image and spectral information in contrast to a more 133

computationally expensive fully 3D-convolutional model. 134

SSPSR [24] introduces a spatial-spectral prior network to 135

fully exploit the spatial information and the correlation 136

between spectra. Moreover, given that hyperspectral data 137

are very scarce and have high dimensionality the authors 138

propose to use grouped convolution to increase the training 139

stability. More recently, HSISR [7] proposes the use of RGB 140

super resolution as an auxiliary task in a multi-task training 141

framework, showing how this can be beneficial to the HSI SR 142

task. 143

B. HYPERSPECTRAL DATA SCARCITY 144

The single image super-resolution task is an ill-posed inverse 145

problem that necessitates a strong prior to be effectively 146

regularized. Traditional handcrafted priors like Bayesian 147

approaches [25] and sparse coding [26] are increasingly being 148

replaced by learning-based approaches and neural networks 149

which require large amounts of data for training. This is one 150
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of the main challenges in the hyperspectral domain due to the151

inherent difficulties and cost of data acquisitions. Commonly152

used datasets [21], [27], [28] usually have only a small153

number of images, e.g. CAVE [27] contains 20 images for154

training while NTIRE2020 [21] has 480 images. This limits155

the applicability and performance of most SHSR methods156

in real world cases, where better generalization abilities157

could be achieved if more data were available. Recent158

work [29] develops a novel data augmentation procedure159

to enlarge the number of data during the training phase of160

hyperspectral super resolution methods. On the other hand,161

some approaches have attempted to exploit the abundance162

of RGB images, although in a way that is different from163

the technique proposed in this paper. Yuan et al. [30] train164

a single-band SR network on natural images and apply it to165

HSIs in a band wise manner to exploit the spatial correlations166

learned on RGB data. This is clearly suboptimal as it does167

not exploit spectral correlation, and might also be challenged168

in learning features that are specific to each wavelength.169

Li et al. [31] develop an RGB-induced feature modulation170

network that exploits features learned from RGB datasets171

transferring them to the SHSR task. Subsequently, Li et al. [7]172

proposed a multi-task approach where RGB super-resolution173

is treated as an auxiliary task to boost the performance of the174

SHSR task. Their method exploits the correlation between175

RGB and HS image features for the super-resolution task.176

Our method is orthogonal and possibily complementary to177

all the previously proposed methods and models in the SHSR178

landscape.179

C. SPECTRAL RECONSTRUCTION FROM RGB180

Spectral reconstruction is the task of estimating the181

intensity of light at wavelengths beyond those captured,182

typically extrapolating information in infrared bands from183

an RGB input. This task requires to model or learn184

physically-plausible spectral signatures and to use the limited185

information in the visible, as well as spatial clues, to guess the186

spectrum of each pixel at the unseen wavelengths. Traditional187

methods for this task rely on handcrafted hyperspectral188

priors [32], [33]. More recently learning based approaches189

([12], [13], [14] have been used to learn a direct mapping190

between RGB images and HS images. Among them, one of191

the most recent and efficient methods is MST++ [14], that192

exploits a Transformer-based architecture to process inputs193

in a multi-scale, spectral-wise manner. The method is based194

on a spectral-wise multi-head self attention as a basic unit,195

building on the intuition that HSIs are spatially sparse but196

spectrally self-similar. The model is built with a U-shaped197

structure to exploit learned features at different granularities.198

III. METHOD199

In this section, we propose a method to enhance the200

performance of any state-of-the-art neural network for spatial201

super-resolution of hyperspectral images. The core idea is202

to pretrain the neural network with a self-supervised super-203

resolution task on a very large dataset of synthetically204

generated high-resolution hyperspectral images. Since very 205

large datasets of hyperspectral images with consistent band 206

characteristics and high spatial resolutions do not exist, 207

we employ spectral reconstruction techniques to convert an 208

RGB dataset into an HSI one. Finally, finetuning with the few 209

real HSI pairs available yields the best model. 210

A. SYNTHETIC DATA GENERATION 211

In this phase, we generate synthetic HSI data starting from 212

an RGB dataset by employing a spectral reconstruction 213

technique. Suppose a spectral reconstruction technique is 214

available as a function φ : RH×W×3
→ RH×W×B, where 215

B is the desired number of bands at the target wavelengths. 216

Then, we use the spectral reconstructor φ on all the images 217

of a large-scale RGB dataset DRGB to create a synthetic HSI 218

dataset DHS-synth: 219

DHS-synth = φ(DRGB) (1) 220

The quality of the generated synthetic dataset depends on 221

the ability of the spectral reconstruction method to generate 222

physically-plausible as well as spatially-consistent spectra, 223

where each of the generated bands presents features similar 224

to those of real HSI data at the corresponding wavelength, 225

and is positively correlated with the performance of our 226

pretraining procedure. As a note, most spectral reconstruction 227

methods prioritize distortion over perception in the well- 228

known tradeoff [34], leading to spectra that are on average 229

more accurate but do not lie in the distribution of real 230

spectral. It would be interesting to understand if generating 231

data prioritizing being on the real spectral distribution 232

(perception) leads to further improvements in the pretraining 233

framework of this paper, but this is currently outside the scope 234

of this paper and left as future work. 235

In the experiments presented in this paper we employ 236

the state-of-the-art MST++ [14] neural network as spectral 237

reconstructor φ. 238

B. PRETRAINING PROCEDURE 239

The procedure explained in the previous section allowed 240

the creation of a large-scale dataset of hyperspectral images 241

DHS-synth. However,DHS-synth is just a collection of unlabeled 242

images, so its use for pretraining purposes requires a 243

definition of a suitable self-supervised pretext task from 244

which features can be learned which are useful for the 245

downstream problem our neural network model seeks to 246

solve. Since this paper addresses the downstream problem of 247

HSI-SR, we propose to use a self-supervised formulation of 248

super-resolution as a pretext task for the pretraining phase. 249

In this task, we degrade the HR synthetic HSIs with an 250

arbitrary degradation model that is similar to the degradation 251

model that generates real LR hyperspectral images from the 252

HR originals. A better match between the degradation model 253

used in the pretraining task and the degradation model of real 254

images would result in a more effective pretraining. However, 255

in general, one resorts to supervised training with paired real 256

LR-HR images because the degradation model is unknown 257
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and possibly complex, so it might be difficult to approximate258

it for the pretraining phase. In this work, we use a simple, but259

widely used model, consisting of spatial convolution with a260

lowpass kernel, and decimation by a factor s. In formulas:261

ILRλ =

(
Kλ ∗ IHRλ

)
↓s

(2)262

where IHRλ represents a band at wavelength λ of a263

high-resolution image in the datasetDHS-synth, Kλ is the filter264

kernel, and ILR is the low-resolution image. For simplicity,265

one can use the bicubic interpolation kernel for Kλ, for all266

bands. However, if the point spread function of the real267

optical system is known at each wavelength, then using it268

for Kλ in this pretext task would provide a better pretext task269

and, possibly, better downstream performance. The pretext270

task trains the neural network model with a conventional271

regression loss, such as L1 or Charbonnier [35], between the272

super-resolved image obtained from ILR and IHR.273

We remark that using a large-scale RGB dataset with high274

resolution images to obtain DHS-synth is desirable because275

it allows the model to learn how to restore high-frequency276

patterns during the pretraining phase.277

C. FINETUNING PROCEDURE278

Subsequent to the pretraining phase, we proceed to the279

finetuning stage, which follows exactly the same procedure280

that supervised training would. In this stage, the network,281

initialized with the pretrained parameters is further trained282

on real hyperspectral data. In general, a domain gap will exist283

between the synthetic data and the real data in terms of image284

features. The finetuning process adapts the network to the285

characteristics of the real-world data. However, this operation286

is significantly more data-efficient, as the network already287

knows how to extract low-level features that are relevant to the288

super-resolution task. The finetuning stage will also correct289

discrepancies in the degradation model between the pretext290

task and the real world.291

IV. EXPERIMENTS292

A. SETTING293

a: MODELS AND SAMPLING294

We evaluate the proposed pretraining solution on three295

state-of-the-art methods for hyperspectral super-resolution,296

MCNet [23], SSPSR [24] and HSISR [7]. Our study investi-297

gates super-resolution factors of×4 and×8. For×4, we train298

on non-overlapping 64 × 64 pixel patches cropped from the299

original images, while for ×8 we use larger 128 × 128 pixel300

patches. Both sets of patches are degraded via bicubic301

interpolation to create their corresponding low-resolution302

HSI counterparts.303

b: DATASETS304

We evaluate the state-of-the-art algorithms on three main305

datasets commonly used for benchmarking hyperspectral306

super-resolution, namely, the CAVE dataset [27], the Harvard307

dataset [28], and the NTIRE 2020 dataset [21] The images308

TABLE 1. Quantitative results (×4 super-resolution).

in the CAVE and NTIRE 2020 datasets consist of 31 bands 309

spanning from 400 nm to 700 nm, with intervals of 10 nm. 310

The images in the Harvard dataset consist of 31 bands but 311

range from 420 nm to 720 nm. The CAVE dataset comprises 312

32 images, each with dimensions of 512 × 512 pixels. For 313

the evaluation, we allocate 20 images for training and 10 for 314

testing. Regarding the Harvard dataset, it comprises a total of 315

50 images, with 40 allocated for training and 10 for testing. 316

The NTIRE 2020 dataset consists of 480 images, we assign 317

400 for training and 80 for testing. 318

For the super-resolution pretraining task, we employ a 319

subset of the Large Scale Dataset for Image Restoration 320

(LSDIR) [6]. The dataset is composed of 87,141 RGB 321

images, where we randomly select 20,000 and 5,000 images 322

for the train and test set, respectively. The images are resized 323

to match the resolution of 512 × 512 pixels. The synthetic 324

HSI dataset DHS-synth is obtained following the procedure 325

presented in III-A. 326

c: EVALUATION METRICS 327

To assess the performance of all methods, we employ three 328

commonly used metrics: Root Mean Squared Error (RMSE), 329

which measures the average squared difference between 330
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FIGURE 1. Mean Absolute Error visualization for different methods with and without the proposed pretraining strategy on an NTIRE2020 test
image (RGB bands shown on the left). The first row shows baseline methods (left-to-right MPSNR: 40.06 dB, 39.71 dB, 40.12 dB), while the second
row shows synthetic pretraining followed by finetuning (left-to-right MPSNR: 40.66 dB, 40.76 dB, 40.64 dB).

FIGURE 2. Visualization of spectra of three pixels from a super-resolved image from the NTIRE2020 test set. Ground truth: continuous line,
Baseline: dashed line, Pretraining+Baseline (ours): dotted line. Best viewed zoomed.

predicted and actual values:331

RMSE =

√√√√ 1
NB

N∑
i=1

B∑
λ=1

(I truei,λ − Ipredi,λ )2; (3)332

N is the total number of pixels in each of the B bands, I truei,λ333

and Ipredi,λ are the values of the i-th pixel in the λ-th band for334

the ground truth and predicted images, respectively;335

Erreur Relative Globale Adimensionnelle de Synthese336

(ERGAS), a dimensionless indicator of overall reconstruction337

error frequently used in HSI fusion:338

ERGAS = 100s

√√√√ 1
B

B∑
λ=1

(
RMSEλ

µλ

)2

; (4)339

RMSEλ is the RMSE for each band, s represents the340

upsampling factor (e.g., 4 for ×4 upsampling) and µλ is the341

mean value for the spectral band.342

Multi-scale Peak Signal-to-Noise Ratio (MPSNR) pro-343

vides a composite measure of the reconstruction fidelity.344

PSNRλ = 10 log10

[
MAXλ

MSEλ

]
; (5)345

where MAXλ is the maximum possible value in band λ (e.g., 346

255 for 8-bit images). The MPSNR is the average of the 347

PSNRλ over all bands. 348

d: IMPLEMENTATION DETAILS 349

In the pretraining stage, we follow the author’s implemen- 350

tation of each method using our synthetically generated 351

LSDIR dataset. We train each model for 4 epochs and 352

select the model with the lowest RMSE on the validation 353

set. Then, the pretrained model is used as the starting 354

configuration for the next training phase that involves the 355

three selected datasets. For this phase, we still use the authors’ 356

implementations for all the methods. 357

The original version of the HSISR method exploits auxil- 358

iary RGB images and semi-supervised learning, as described 359

by the authors [7]. For our experiments in Sec. IV-B, we keep 360

the procedure for the baseline HSISR assessment, while we 361

remove it when we use the proposed pretraining. 362

B. EXPERIMENTAL RESULTS 363

We evaluate state-of-the-art methods in the×4 and×8 super- 364

resolution setups, presenting the results of each model 365
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TABLE 2. Quantitative results (×8 super-resolution).

both with and without pretraining using our synthetic data,366

followed by finetuning on the target dataset. Table 1 and367

Table 2 present the results for the ×4 and ×8 scenarios,368

respectively. For each model and dataset, three experiments369

are reported: i) ‘‘finetune only’’ is the baseline, i.e., the370

model as published in the literature; ii) ‘‘pretext only’’ is371

when only the pretraining phase on the synthetic dataset372

is performed without finetuning on the target dataset; iii)373

‘‘pretext+finetuning’’ is the full method with pretraining on374

synthetic data and finetuning on the target dataset.375

We can first notice that the domain gap between the376

synthetic and real datasets can, in general, limit the per-377

formance of using only the pretraining approach without378

finetuning, albeit some cases (e.g., MCNet on NTIRE2020)379

already report an improvement over the baseline. In general,380

pretraining on the synthetically generated data followed by381

finetuning provides the best results, sometimes with large382

margins, only occasionally not reporting an improvement383

over all the three metrics.384

We can also notice that, while HSISR [7] is generally385

considered the state-of-the-art approach, providing the best386

results in the baseline setting, this is no longer true after387

large-scale pretraining. Indeed, MCNet after pretraining and388

TABLE 3. Impact of the number of pretraining data, on HSISR finetuned
with NTIRE2020 dataset (×4 Super-Resolution).

TABLE 4. Effectiveness of auxiliary training tasks (HSISR, ×

4 super-resolution).

finetuning seem to display the best overall performance. This 389

points out a limitation of the current literature in assessing the 390

merits of model design on small datasets, which may lead to 391

unreliable results, as we demostrate. 392

Fig. 1 reports a visual comparison for one non-cherrypicked 393

image from the NTIRE2020 test set. We visualize the mean 394

absolute error for the different methods with and without the 395

proposed pretraining strategy. Moreover, in Figure 2 we plot 396

the spectra of randomly selected pixels in the super-resolved 397

image for each method. The proposed pretraining approach 398

yields models that are able to more faithfully reproduce the 399

original spectrum. 400

C. ABLATION STUDIES 401

In this section, we first study the impact of the amount of 402

synthetic data used during the proposed pretraining stage. 403

For this experiment we pretrain the same model (HSISR [7]) 404

with a variable number of synthetic data and we finetune 405

each pretrained model on NTIRE2020 dataset, results are 406

reported in Table 3. Our experiments show that increasing the 407

number of data improves the performance with a diminished 408

return over 10K synthetic images. We hypothesize that this 409

may be due to the limited representational capacity of current 410

architectures, being designed to work with a smaller amount 411

of data. 412

Then, we evaluate the effectiveness of the proposed 413

pretraining strategy vis-à-vis an alternative approach using 414

RGB images as an auxiliary task, i.e., the procedure used 415

in [7]. Table 4 shows the performance of the HSISR 416

architecture under three different conditions. First, training 417

without any auxiliary task reports the worst performance 418

across all metrics. The semi-supervised procedure with 419

auxiliary RGB images of [7] improves performance (about 420

+0.6 dB in MPSNR), but it can be noticed that the proposed 421

pretraining strategy is the most effective (about +1.5 dB 422

improvement in MPSNR). 423
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V. CONCLUSION AND DISCUSSION424

In this study, we have demonstrated the significant impact425

of large-scale synthetic data pretraining in the realm of426

hyperspectral image super-resolution. Our approach, lever-427

ages models for spectral reconstruction to create a large HSI428

dataset from RGB images. When employed for a pretraining429

phase with a suitable pretext task, large improvements in430

the quality of super-resolved images have been observed431

on a number of datasets and state-of-the-art models. This432

work not only presents a viable solution to the data433

limitation in HSI SR but also sets a precedent for future434

research in synthetic hyperspectral data. We hope that our435

methodology will inspire further exploration and innovative436

applications in the field of hyperspectral imaging, extending437

beyond super-resolution tasks to a broader spectrum of438

problems.439
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