
11 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

ZOR: Zero Overhead Reliability Strategies for AI Accelerators / Vacca, Eleonora; Azimi, Sarah; Sterpone, Luca. -
ELETTRONICO. - (In corso di stampa). (Intervento presentato al convegno 22nd IEEE International NEWCAS
Conference 2024 tenutosi a Sherbrooke (CAN) nel 16-19 June 2024).

Original

ZOR: Zero Overhead Reliability Strategies for AI Accelerators

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©9999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2990347 since: 2024-07-04T08:03:23Z

IEEE

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

ZOR: Zero Overhead Reliability Strategies for AI
Accelerators

Abstract— This research investigates the crucial integration
of Neural Network (NN) models with the architecture of the
hardware (HW) accelerator. Unlike existing approaches
overlooking this interaction, we emphasize understanding the
accelerator Datapath for reliability-focused algorithmic
solutions. Focusing on Systolic Arrays Datapath, we
theoretically evaluate the fault propagation from the HW layer
to the NN. This analysis identifies variations in fault effects
linked to various data mapping strategies. Considering the fault
propagation model, we propose a novel reliability-oriented
mapping strategy to mitigate fault effects based on resource
rotation. Validation through HW fault injection demonstrates
that an architecture-aware NN implementation reduces the
impact of faults by up to 40%. Moreover, experimental results
indicate that our proposed solution enhances the NN resilience,
resulting in up to a 30% reduction in the error rate. Most
importantly, these enhancements are attained without
introducing performance or hardware overhead.

Keywords—CNN, Algorithm, Systolic Array, Reliability, FPGA

I. INTRODUCTION

Progress in Deep Learning[1] methods is focused on
elevating the efficacy of neural networks (NN), addressing
key performance metrics such as inference accuracy, latency,
computational load, and energy consumption. This pursuit
involves refining sophisticated models and innovating
accelerator architectures dedicated to supporting the
computational demands and enhancing the parameters
mentioned. Nevertheless, the widespread integration of NN
models in safety-critical domains such as autonomous driving,
medicine, and avionics underscores the equal importance of
reliability alongside performance due to the severe
implications in human life.

Despite the numerous reliability analyses conducted
separately on NN models and hardware (HW) accelerators in
the existing literature [2], there is often a lack of
comprehensive assessments considering both aspects due to
the wide gap between the physical hardware characteristics
and the model behavior. Reliability evaluations of NN models
often overlook the underlying HW layer, focusing on
methodologies such as NN’s weight data corruption [3] to
assess the model's inherent robustness. Likewise, when
assessing reliability in the accelerators, attention is typically
directed toward the high-level consequences of faults in the
Datapath [4], neglecting a comprehensive understanding of
why a specific fault resulted in a particular behavior in the NN.
This consideration gains particular significance when
exploring the execution of NN on diverse HW architectures,
as the circuit topology significantly shapes the NN's response
to HW faults. Furthermore, within an accelerator Datapath, it
is crucial to acknowledge that translating the NN model into
machine instructions and the execution flow may not be
univocal. While the ultimate execution result remains
consistent, the translations can exhibit variations in both
performance and reliability. Hence, it is essential to consider
a hardware-oriented formulation of algorithmic
implementations to avoid adopting suboptimal, this imperfect,
solutions. Indeed, typical approaches to enhance system
reliability rely on adopting redundancy. This involves
allocating multiple computation nodes that perform the same

calculations in parallel, whether aligned in time or not, and
combining the results through majority voting. In the realm of
NN, the concept of redundancy extends to neurons. Given that
NNs consist of thousands of neurons, replicating the
computations of each neuron is impractical. Hence, some
authors proposed applying redundancy techniques, such as
triple modular redundancy, only to neurons identified as
critical [5][6]. However, it is worth noting that introducing
redundancy, whether in terms of resources or computation,
incurs a non-negligible cost.

This work highlights that a thorough understanding of the
Datapath alone can drive algorithmic decisions, enhancing
reliability without introducing additional costs, whether in
hardware resources or performance.

We used an open-source Tensor Processing Unit (TPU) as
a Systolic Array (SA) accelerator. Initially, we analyzed the
circuit topology to evaluate how Convolutional Neural
Networks (CNNs) are mapped to the core. Next, leveraging
the binding between HW resources and higher-level
computations, we evaluated how the errors induced by faults
in the Datapath propagate and their further consequences. In
particular, we conducted analytical comparisons to evaluate
the impact of faults under different data mapping policies
applied to CNN. From the theoretical analysis, we concluded
that employing the Input Stationary (IS) strategy in the SA
Datapath enhances overall robustness. Then, drawing on the
fault propagation model, we proposed a novel resource-
rotation mapping strategy to improve the fault tolerance of the
CNN when adopting the Weight Stationary (WS) policy. To
validate our conclusions, we performed experiments,
introducing hardware faults. We implemented the accelerator
on an SRAM-based FPGA and adopted the emulation-based
hardware fault injection. This involved inserting bit-flips
within the device Configuration RAM (CRAM), allowing to
emulate structural faults in the SA Datapath. All the tested
algorithmic implementations were executed under the same
fault conditions to draw a meaningful comparison and ensure
a fair evaluation. We selected two CNN architectures
implementing MNIST-digit and CIFAR10 classifications.
Experimental results show that by carefully selecting the data
mapping strategy, it is possible to achieve a 30% and 18%
reduction in the fault-induced effects for the MNIST and
CIRFAR10, respectively, without any modifications in the
HW architecture. Furthermore, by adopting our resource
rotation strategy, even the most sensitive mapping policy, the
WS, can be enhanced, obtaining comparable results as for the
IS case.

The paper is organized as follows. Section II presents an
overview of previous works, while Section III introduces the
functionalities of the SA accelerator. Section IV details the
Software-to-Hardware Mapping Strategies, and Section V
describes the proposed reliability assessment. Section VI
concludes.

II. RELATED WORKS

As CNNs are increasingly used in safety-critical
applications, assessing their reliability has gained significant
attention. Numerous studies have been conducted to explore
the effects of failures on NNs. Several fault-injection-based

Eleonora Vacca, Sarah Azimi, Luca Sterpone
Politecnico di Torino, Turin, Italy

{eleonora.vacca, sarah.azimi, luca.sterpone}@polito.it

approaches are available in the literature. Software-based fault
injections such as TensorFI [7] and PyTorchFI [8] simulate
errors within the NN by introducing faults as bit-flips in the
weights and biases of the model. These approaches are
hardware-independent, therefore they are referred to as an
abstracted model without any realistic correlation with the
physical hardware. In contrast, adopting hardware-level fault
injection allows correlating DNN errors with the accelerators
[9][10]. Indeed, as the circuit topology and technology vary,
the fault-induced error in the NN inference process changes.

Although SAs are far from a new architectural proposal,
dating back to the 80s [11], in the past decade, they have
proven to be among the most efficient accelerators in terms of
TBops/W [12]. Literature has revisited the topic, focusing on
computational efficiency, developing new SA accelerators
suited for state-of-the-art AI models [13][14], and reliability
aspects [15]. The latter includes exposure to accelerated
radiation tests to induce Single Event Effects [16][17] and
Datapath fault simulation through netlist corruption in HDL
simulation environments [18]-[20]. SRAM-based FPGAs are
also utilized to evaluate the reliability of AI models through
hardware fault emulation [21]-[24]. SAs featuring multiple
processing elements (PEs) challenge conventional hardware
redundancy-based hardening methods. Time redundancy,
although an option, may introduce inference execution delays
[25], potentially compromising the ability to meet real-time
response constraints. Once the fault location is identified
[28][29], approaches such as NN model compression and
weight pruning are employed [26][27]. However, no solution
is currently available for improving the reliability without
necessitating interventions in both the HW and the NN model.
In our proposed approach, exploiting knowledge of circuit
topology, data movement, and NN structure, we implement
algorithmic strategies to enhance reliability. The effectiveness
of the proposed methods is validated through hardware-fault
injection experiments, illustrating that mitigating fault effects
is achievable through architecture-aware formulation of
algorithms without imposing performance penalties or
resource overhead.

III. BACKGROUND ON SA

SAs-based accelerators are gaining popularity thanks to
their ability to provide performance and energy efficiency
[12]. The computational core is organized as a 2D array of
processing elements (PEs), interconnected through fixed data
paths designed to facilitate efficient data and computation
flow. Specifically, connections between PEs in the same
column transmit intermediate computation results, while
connections between PEs in the same row transfer inputs (or
weights). Each PE computes a multiplication between an input
value (xi,j) and a corresponding weight (wi,j) and accumulates
the result in a single clock cycle. The SA Datapath may be
equipped with external accumulators to accommodate
operation tiling when the size of the data matrices does not fit
in the available resources. To execute a complete NN inferen-

Fig. 1 Systolic array Datapath equipped with external Accumulators
for operation tiling.

-ce on SA, each layer has to be converted into a General
Matrix Multiplication (GEMM) operation [32]. The
conversion is straightforward in the case of a fully connected
layer, while it requires some data processing when dealing
with the convolutional layer. However, once translated, there
are several ways to map the operation in the hardware resource
of the Datapath, each providing different performance and
reliability, as we will demonstrate in the following.

IV. SOFTWARE-TO-HARDWARE MAPPING STRATEGIES IN SA

The data mapping policies for SAs dictate the strategies
employed in allocating and distributing computations within
this parallel computing architecture. Three primary mapping
policies exist: Weight Stationary (WS), Input Stationary (IS),
and Output Stationary (OS). In WS, the weight matrix is
loaded in the PEs grid before computation starts with a 1:1
correspondence between the data matrix and the SAs, while
the activations flow from the left to the right of the array.
Similarly, the activation matrix is loaded first in the IS case,
and the weights data spans all the columns. Finally, in the OS
policy, the activation data moves to the right PE, and the
weight data moves to the lower PE. While WS and OS policies
have been investigated[30], previous works have not
addressed IS mapping. Moreover, the authors' evaluations
were performed in a time-consuming simulation environment,
limiting the benchmark to a small NN layer. In contrast, we
compare WS and IS starting from a theoretical approach,
moving to hardware execution of entire NN models.

A. CNN Mapping Strategies

CNNs are characterized by multiple convolutional layers,
each comprising diverse filters designed for feature
extraction. Each filter consists of small weight matrices, the
kernels, whose number depends on the number of channels in
the input image. For example, consider an RGB image with
dimensions (N, M, 3) and a convolutional layer featuring 128
filters. Since the input matrix has three channels, each fi filter
comprises three kernels with dimensions (n, m). Each channel
kernel will convolve with the related channel input matrix.
Then, the three channel-wise convolutions result is
accumulated, producing a single output feature map for fi.
Assuming a stride of s, the overall result of the convolutional
layer will have dimension ((N-n)/s, (M-m)/s, 128). Hence,
the produced output, input for the next layer, consists of 128
channels. Consequently, as we delve into the hidden layers of
the CNN, the layer weight matrix’s complexity depends on
the number of layer filters Fi and the Fi-1, defining the number
of kernels per filter. Meanwhile, the input size decreases due
to the stride. This implies that WS and IS policy will likely
show distinct performance characteristics, as one might
anticipate. However, beyond performance considerations,
these two mapping policies also carry implications for
reliability. To identify which strategy is more reliable, it is
essential to explore how the operations described earlier are
mapped within the SA. Consider the illustrated RGB case per
simplicity, with F filters in the convolutional layer. Each filter
fi is defined by (ki

R , ki
G , ki

B). As each filter has to convolve
with the R, G, and B input matrices, if the process is mapped
with no optimization to the SA, this would imply reading the
same input matrices F times. Moreover, due to the SA
interconnection path characterized by propagating the data
from left to right of the array, shared among PE columns, if
WS policy is adopted, then to preserve the mathematical
consistency for each fi filter, each ki convolution should be
executed separately from that of the other channels. This
results in only n*m PEs processing the data. Adopting the IS

Fig. 2 Convolutional layer (a) high-level model of (b) GEMM-

based in [31], (c) our proposed implementation.

policy increases the number of resources involved in
computation. Still, the required input matrix read operations
are suboptimal since the same input data needs to be loaded
in the SA F times. To reduce this reading overhead, the
computation should be organized as GEMM. Drawing on
what was proposed in [31], we implemented custom solutions
tailored for SA equipped with external accumulators.

1) Channel-wise GEMM Implementation
Kernels related to the same channel but belonging to

different filters have to be multiplied for the same input
matrix. Considering the RGB case, three matrices, one per
channel, are realized: WR, WG, and WB. Each matrix has size
(n*m, F) and is constructed such that each column, indexed
by i, corresponds to the vectorized channel kernel of fi , as
shown in Fig. 2c. In contrast, in [31], one filter matrix Fm of
size (F, C*(n*m)) is realized, with C number of channels.
In our proposed solution, each channel input matrix IC (R, G,
and B in the example) goes through the Img2row
transformation, which consists of constructing a bigger
matrix, where row content is the flattened 2D convolution
window. Consequently, the number of rows, X, reflects the
number of windows necessary to convolve the entire matrix
with a given stride. Similarly, in [31], the Dm matrix is
constructed by applying the same window unfolding
operation to create columns and stacking the channel
matrices, as in Fig 2b. Following [31] implementation, to
accommodate the operation on the SA, Dm and Fm are
partitioned as follows:

 �� � ��� � ∗ 	
 ∗ ��, � ∶ � � ������ , � ���ℎ � ∈ �0,
�

������

� 	1�

 �� � �� ! ∶ ! � ������ , � ∗ 	
 ∗ ��� ���ℎ ! ∈ �0,

������

� 	2�

Then each partition is again divided into square submatrices
to exactly match the SA size, resulting in

 �� � �#$, #% … #'] �� � ��$, �% … �(� ���ℎ) ∈ �0, *� 	3�

where P = C*(n*m)/SAsize. To perform convolution, each
submatrices set �� is processed as follows:

 ∑ �(
�

∗ #(

�
'
(-$ ���ℎ #�

(∈ �� , �(
�

∈ �� 	4�

The multiply and accumulate process in (4) has to be

repeated for all the �� considering the same �� and then
again for all the weight partitions ��. This results in the same

weight matrices �(
�
 being loaded X/SAsize, and the same #�

(

F/ SAsize times. Our proposed solution aims to reduce the
number of weights loading. In our solution, the channel
matrix IC is multiplied by its Wc, and the channels’ outputs
are merged using the external Accumulators while the SA is
processing next-channel computation. In this scenario, each
Wc is partitioned in F/ SAsize square matrices of SAsize. Then,
each square submatrix is loaded just once, while IC is
processed with no partitioning, i.e., spanning all rows from 0

to X. With this approach, we reduce the loading operations of
each weight submatrix from X/SAsize times to 1. In the
following, we will compare the reliability of this proposed
GEMM implementation when adopted with WS and IS.

V. RELIABILITY EVALUATION OF MAPPING STRATEGIES

To assess the reliability implications of WS and IS
mapping strategies, it is crucial to correlate the computations
performed by the SA with their meaning in the CNN
architecture. In contrast to previous studies that evaluated the
reliability starting from fault injection campaigns [30] we
first propose an analytical approach to model the fault-
induced error propagation from the PEs grid to the NN model.
Analyzing the propagation model, we will identify and
propose reliable algorithmic solutions. Then, we will exploit
the hardware fault injection to validate our findings.

A. Fault-induced Error Propagation

Previously, we explained how the convolutional layer is
mapped on the SA. Considering the scenario in Fig. 3, where
a fault is located in a PE. Due to per-column accumulation,
the faulty partial product will flow along the column and
accumulate with those produced by the other PEs, producing,
in the end, a faulty output. This behavior is independent of
the mapping policy since it relates to circuit topology and
hence holds both for the [31] implementation and for our
channel-wise GEMM. On the other hand, the consequences
of the faulty output differ between WS and IS policies.

The WS policy is characterized by the 1:1 correspondence
between the PEs grid and the weight matrix. Hence, the
computations of filter fi (for each of its channels) are always
mapped to column i. Each row vector in the input matrix is
the image window to be convolved with. Given that, the
multiplication of rowj by fi produces one pixel pj

i of the i-th
output feature map.

Fig. 3. CNN fault propagation with (a) WS and (b) IS mapping.

A fault affecting the fi computation impacts all pixels of its
output, as shown in Fig. 3a, while the other filters'
computations are preserved. This behavior is the same as for
[31] convolution implementation, as found in the experiment
conducted by[30]. In the IS policy, the behavior is inverted
with the image rows mapped statically, one in each column
of the SA, while filters’ weights flow among the PEs. Hence,
considering the same fault scenario, the faulty column is
responsible for computing the output pixels for all the filters,
resulting in faulty pixels affecting all the output features map,
located in the same position, as shown in Fig. 3b. The number
of faulty pixels strictly depends on the SA size. Due to
operation tiling, the computation is organized in blocks of
SAsize rows loaded in the PEs grid. Therefore, one faulty PE
will produce one corrupted pixel every SAsize, for all the
output feature maps. Going deeper into the CNN hidden
layers, the feature maps are reduced in size, decreasing the
reuse of faulty resources per layer. In the WS case, since the
operation tiling occurs on the weight matrix, a faulty column
will result in faulty output feature maps (i.e, not just few
pixels) every SAsize output maps. The severity of the error,

both in the IS case and WS depends on fault location, as faults
in LSBs are typically less critical, and other mechanisms, like
rounding during accumulation or data values, may mask the
fault effects. However, completely failing in extracting
features, as for the WS, has a higher impact on CNN
accuracy, as opposed to having a few faulty pixels in every
feature map that may be interpreted as noise.

To mitigate this effect, we propose a mapping strategy
that forces resource rotation through data. Reminding that in
WS, each kernel :�

; related to a filter fi is always mapped in
the same column i of resources, we arranged the weights
matrices such that for each consecutive weight loading in the
SA, the data columns are shifted and rotated. In detail,
considering our channel-wise GEMM convolution with C
channels. At each iteration c, with c ∈ C, the weights of :�

;

are mapped to the SA column ((i+c) mod SAsize). Therefore,
we force the execution of filter fi channels computation over
different resources. As a result, just one channel output is
faulty every SAsize channel processed, instead of all as for
canonical WS. The channel outputs are then accumulated,
with the external accumulators, to produce a single output
future map for the filter fi, as required by the convolution
algorithm. The impact on the final output feature map
depends on (i) the number of channels, with higher the
number lower the impact during the accumulation (i.e., in
RGB case, one faulty channel output is likely sufficient to
impact the result concerning one faulty channel over 64) (ii)
SA size, which determines how many times the same column
is used to process several channels for the same fi. However,
by forcing rotation, also the other filters’ computations will
be affected by the same faulty behavior, while in canonical
WS their computation is preserved. Still, spreading a few
corrupted channel computations over all the filters, whose
impact is smoothed by the accumulation process, is more
likely to introduce noise in the NN rather than errors.

B. Validation through Fault Injection

To validate the theoretical approach characterizing the
reliability of the SA accelerator related to the different
algorithmic solutions, an open-source TPU [33] accelerator
has been implemented on a Xilinx Zynq 7020 SoC equipped
with SRAM-based FPGA, where the accelerator was
mapped. Following state-of-the-art implementation, the SA’s
PEs are mapped on the on-chip DSP available in the
programmable logic[34]. The SA size is 14 x 14 PEs,
exploiting all the available resources, and runs at 177MHz.
The open-source accelerator comes with a framework
capable of translating only fully connected NN into the core’s
Instruction Set Architecture. Consequently, we implemented
a framework that, starting from a high-level CNN, translates
the NN into a sequence of elementary assembly instructions,
according to the mapping strategy adopted. Since on HW
execution, in contrast with[30] that limited their evaluation to
single layers, we evaluated two complete CNN models
targeting MNIST-digit and CIFAR10 datasets. Details about
the CNNs, implemented with QKeras [35] are in Table 1.

Table 1. CNN models characteristics.
 Number of

Conv Layer
Number of
FC Layer

Tot.
Parameters

Inference time [ms]

[31] C-wise
MNIST 3 1 40,874 0.134 0.129

CIFAR10 6 1 91,648 1.8 1.2

To evaluate the reliability, we utilized the HW fault
emulation. FPGA designs are implemented through
bitstream, whose content configures the device resources
(logic, interconnection, and memory) to implement the target
circuit. Hence, by manipulating the bitstream, it is possible
to model structural faults[36][37] in the Datapath.

Fig. 4. Experimental results over 5,000 faults injected.

The injection campaign comprised 5,000 fault injections.
Each injected fault affected only one PE at a time. For each
evaluated fault, both MNIST-digit and CIFAR10
classifications were executed. Therefore, the two CNNs were
evaluated under the same fault conditions, first with WS
policy and then with IS. Please consider that the bitstream
upload requires a few seconds, while for each evaluated fault,
the NN weights need to be sent to the core. These operations
are time-consuming. Since our goal is to evaluate fault effects
under different algorithms, we focused on performing more
fault injections rather than classification per CNN, limiting to
10 images per fault per CNN (accuracy degradation is deeply
investigated in previous works). The results, in Fig. 4, are
prosed as the percentage of injected faults that induced
misclassifications, and as the percentage of fault inducing
Silent Data Corruption (SDC). As SDC, we considered
variation in the top-1 class score, which did not result in the
wrong classification. The results demonstrate the findings of
our theoretical approach, highlighting that the same CNN
architecture shows greater resilience when mapped in IS
policy, showing a reduction in faults causing
misclassification of 30% for MNIST and 18% for CIFAR10.
Indeed, IS is characterized by a higher percentage of SDC,
implying that the fault has induced effects in the computation,
which deviates from the golden reference but ensures correct
classification. On the other hand, the higher the complexity
of the CNN architecture, the higher the sensitivity to the same
faults. Indeed, results show that a fault whose effect is
masked in the lighter CNN (MNIST) is provoking a pattern
of misclassification in the deeper CNN (CIFAR10).
Additionally, as CIFAR10 is based on RGB images, each
layer's complexity is higher than that of MNIST, which
translates into the fact that the faulty unit is used multiple
times to extract multiple features, wrongly. On the same
faulty bitstreams, we evaluated our proposed resource
rotation algorithm. Results show a reduction in the impact of
faults of 30.57% in the MNIST and 16.01% in CIFAR10
considering the canonical WS approach, demonstrating that
resource rotation could be an effective, low-cost solution to
improve the reliability of the SA accelerator further. These
prominent results encourage us to keep investigating this
aspect in the future.

VI. CONCLUSIONS

 In this paper, we studied SA Datapath and CNN mapping
strategies to identify the high-level fault effects. Our analysis
targeted two canonical mapping strategies and favored the IS
strategy over WS for reliability. We also proposed a mapping
strategy based on data-driven resource rotation. All the
theoretical analyses have been evaluated on HW by
implementing SA on SRAM-based FPGA. To validate our
findings, we performed HW fault injection, which not only
confirmed our approach but also suggested that zero overhead
reliability strategies are practical solutions. Future work will
explore automating the resource rotation mechanism within
the SA architecture.

0

5

10

15

20

25

30

35

40

MNIST-WS MNIST-rotWS MNIST-IS CIFAR-WS CIFAR-rotWS CIFAR-IS

P
er

ce
n

ta
g

e
o
f

fa
u

lt
s

[%
]

Different CNN Algorithms

Faults Inducing Misclassification Faults Inducing SDC

REFERENCES

[1] Y. LeCun et al., “Deep learning,” Nature, vol. 521, May 2015, Art. no.
436, doi: 10.1038/nature14539.

[2] A. Bosio et al., "A Reliability Analysis of a Deep Neural Network,"
2019 IEEE Latin American Test Symposium (LATS), Santiago, Chile,
2019, pp. 1-6, doi: 10.1109/LATW.2019.8704548

[3] G. Gavarini et al., "SCI-FI: a Smart, aCcurate and unIntrusive Fault-
Injector for Deep Neural Networks," 2023 IEEE European Test
Symposium (ETS), Venezia, Italy, 2023, pp. 1-6, doi:
10.1109/ETS56758.2023.1017395

[4] Y. Ibrahim et al., "Soft errors in dnn accelerators: A comprehensive
review", Microelectronics Reliability, vol. 115, pp. 113969, 2020.

[5] T. G. Bertoa et al., "Fault-Tolerant Neural Network Accelerators With
Selective TMR," in IEEE Design & Test, vol. 40, no. 2, pp. 67-74, April
2023, doi: 10.1109/MDAT.2022.3174181.

[6] A. Ruospo et. al, "Selective Hardening of Critical Neurons in Deep
Neural Networks," 2022 25th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), Prague,
Czech Republic, 2022, pp. 136-141, doi:
10.1109/DDECS54261.2022.9770168.

[7] Z. Chen et al.,"TensorFI: A flexible fault injection framework for
TensorFlow applications", 2020 IEEE 31st International Symposium
on Software Reliability Engineering (ISSRE), pp. 426-435, 2020,
October.

[8] A. Mahmoud et al., "PyTorchFI: A Runtime Perturbation Tool for
DNNs," 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), Valencia,
Spain, 2020, pp. 25-31, doi: 10.1109/DSN-W50199.2020.00014.

[9] F. F. d. Santos et al., "Analyzing and Increasing the Reliability of
Convolutional Neural Networks on GPUs," in IEEE Transactions on
Reliability, vol. 68, no. 2, pp. 663-677, June 2019, doi:
10.1109/TR.2018.2878387.

[10] M. Taheri et al., "DeepAxe: A Framework for Exploration of
Approximation and Reliability Trade-offs in DNN Accelerators," 2023
24th International Symposium on Quality Electronic Design (ISQED),
San Francisco, CA, USA, 2023, pp. 1-8, doi:
10.1109/ISQED57927.2023.1012935

[11] D. I. Moldovan, "On the design of algorithms for VLSI systolic arrays,"
in Proceedings of the IEEE, vol. 71, no. 1, pp. 113-120, Jan. 1983, doi:
10.1109/PROC.1983.12532.

[12] B.Peccerillo et al."A survey on hardware accelerators: Taxonomy,
trends, challenges, and perspectives", Journal of Systems Architecture,
Volume129,2022,102561,doi: 10.1016/j.sysarc.2022.102561.

[13] N. P. Jouppi et al., "In-datacenter performance analysis of a tensor
processing unit," 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), 2017, pp. 1-12 , doi:
10.1145/3079856.3080246.

[14] H. -Y. Wang et al.,, "Row-wise Accelerator for Vision Transformer,"
2022 IEEE 4th International Conference on Artificial Intelligence
Circuits and Systems (AICAS), Incheon, Korea, Republic of, 2022, pp.
399-402, doi: 10.1109/AICAS54282.2022.9869928.

[15] E. Vacca et al., "A Comprehensive Analysis of Transient Errors on
Systolic Arrays," 2023 26th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), Tallinn,
Estonia, 2023, pp. 175-180, doi:
10.1109/DDECS57882.2023.10139763.

[16] R. L. R. Junior and P. Rech, "Reliability of Google’s Tensor Processing
Units for Convolutional Neural Networks," 2022 52nd Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks - Supplemental Volume (DSN-S), Baltimore, MD, USA,
2022, pp. 25-27, doi: 10.1109/DSN-S54099.2022.00018.

[17] D. P. Ramaswami et al "Single Event Upset Characterization of the
Intel Movidius Myriad X VPU and Google Edge TPU Accelerators
Using Proton Irradiation," 2022 IEEE Radiation Effects Data
Workshop (REDW) (in conjunction with 2022 NSREC), Provo, UT,
USA, 2022, pp. 1-3, doi: 10.1109/REDW56037.2022.9921608.

[18] Kundu et al., "Toward Functional Safety of Systolic Array-Based Deep
Learning Hardware Accelerators," in IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 29, no. 3, pp. 485-498, March
2021, doi: 10.1109/TVLSI.2020.3048829.

[19] J. J. Zhang et al., "Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator," 2018 IEEE
36th VLSI Test Symposium (VTS), San Francisco, CA, USA, 2018,
pp. 1-6, doi: 10.1109/VTS.2018.8368656.

[20] A. Siddique et al., "Exposing Reliability Degradation and Mitigation in
Approximate DNNs Under Permanent Faults," in IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, doi:
10.1109/TVLSI.2023.3238907.

[21] De Sio et al., "FireNN: Neural Networks Reliability Evaluation on
Hybrid Platforms," in IEEE Transactions on Emerging Topics in
Computing, vol. 10, no. 2, pp. 549-563, 1 April-June 2022, doi:
10.1109/TETC.2022.3152668.

[22] B. Du et al., "On the Reliability of Convolutional Neural Network
Implementation on SRAM-based FPGA," IEEE International
Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2019, pp. 1-6.

[23] E. Vacca et al., “Analyzing the SEU-induced Error Propagation in
Systolic Array on SRAM-based FPGA”, IEEE Radiation and its
Effects on Components and Systems (RADECS), 2023.

[24] X. Dawen et al., "Reliability Evaluation and Analysis of FPGA-Based
Large Scale Integration (VLSI) Systems, vol. 29, no. 3, pp. 472-484,
March 2021, doi: 10.1109/TVLSI.2020.3046075.

[25] A. Antola et al., "Policies for fault-tolerance through mixed space- and
time-redundancy in semi-systolic FFT arrays," doi:
10.1109/ARRAYS.1988.18093.

[26] K. T. Chitty-Venkata et al., "Model Compression on Faulty Array-
based Neural Network Accelerator," 2020 IEEE 25th Pacific Rim
International Symposium on Dependable Computing (PRDC), Perth,
WA, Australia, 2020, pp. 90-99, doi:
10.1109/PRDC50213.2020.00020.

[27] J. J. Zhang et al.,"Fault-Tolerant Systolic Array Based Accelerators for
Deep Neural Network Execution," in IEEE Design & Test, vol. 36, no.
5, pp. 44-53, Oct. 2019, doi: 10.1109/MDAT.2019.2915656.

[28] E. Vacca et al., "RunSAFER: A Novel Runtime Fault Detection
Approach for Systolic Array Accelerators," 2023 IEEE 41st
International Conference on Computer Design (ICCD), Washington,
DC, USA, 2023, pp. 596-604, doi: 10.1109/ICCD58817.2023.00095.

[29] H. Lee et al.,"STRAIT: Self-Test and Self-Recovery for AI
Accelerator," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, doi: 10.1109/TCAD.2023.3236875.

[30] U. K. Agarwal et. al, "Towards Reliability Assessment of Systolic
Arrays against Stuck-at Faults," 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, doi:
10.1109/DSN-S58398.2023.00063.

[31] Sharan Chetlur et al., "cudnn: Efficient primitives for deep learning",
arXiv preprint arXiv:1410.0759, 2014.

[32] A. Anderson et al., "High-Performance Low-Memory Lowering:
GEMM-based Algorithms for DNN Convolution," 2020 IEEE 32nd
International Symposium on Computer Architecture and High-
Performance Computing (SBAC-PAD), Porto, Portugal, 2020, pp. 99-
106, doi: 10.1109/SBAC-PAD49847.2020.00024.

[33] Jonas Fuhrmann, “ Implementierung einer Tensor Processing Unit mit
dem Fokus auf Embedded Systems und das Internet of Things”, 2018,
http://hdl.handle.net/20.500.12738/8527

[34] Xilinx. (2017) Deep Learning with INT8 Optimization on Xilinx
Devices. [Online]

[35] Claudionor N. Coelho Jr et al., "Automatic heterogeneous quantization
of deep neural networks for low-latency inference on the edge for
particle detectors", Nature Machine Intelligence (2021).

[36] E. Sanchez et al."Effective emulation of permanent faults in ASICs
through dynamically reconfigurable FPGAs," 24th International
Conference on Field Programmable Logic and Applications (FPL),
2014, pp. 1-6.

[37] L. Bozzoli, et al., "PyXEL: An Integrated Environment for the Analysis
of Fault Effects in SRAM-Based FPGA Routing," International
Symposium on Rapid System Prototyping (RSP), pp. 70-75, 2018,
Turin, Italy, 2018, pp. 70-75, doi: 10.1109/RSP.2018.8632.

