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ZOR: Zero Overhead Reliability Strategies for AI 
Accelerators 

Abstract— This research investigates the crucial integration 
of Neural Network (NN) models with the architecture of the 
hardware (HW) accelerator. Unlike existing approaches 
overlooking this interaction, we emphasize understanding the 
accelerator Datapath for reliability-focused algorithmic 
solutions. Focusing on Systolic Arrays Datapath, we 
theoretically evaluate the fault propagation from the HW layer 
to the NN. This analysis identifies variations in fault effects 
linked to various data mapping strategies. Considering the fault 
propagation model, we propose a novel reliability-oriented 
mapping strategy to mitigate fault effects based on resource 
rotation. Validation through HW fault injection demonstrates 
that an architecture-aware NN implementation reduces the 
impact of faults by up to 40%. Moreover, experimental results 
indicate that our proposed solution enhances the NN resilience, 
resulting in up to a 30% reduction in the error rate. Most 
importantly, these enhancements are attained without 
introducing performance or hardware overhead. 

Keywords—CNN, Algorithm, Systolic Array, Reliability, FPGA 

I. INTRODUCTION  

Progress in Deep Learning[1] methods is focused on 
elevating the efficacy of neural networks (NN), addressing 
key performance metrics such as inference accuracy, latency, 
computational load, and energy consumption. This pursuit 
involves refining sophisticated models and innovating 
accelerator architectures dedicated to supporting the 
computational demands and enhancing the parameters 
mentioned. Nevertheless, the widespread integration of NN 
models in safety-critical domains such as autonomous driving, 
medicine, and avionics underscores the equal importance of 
reliability alongside performance due to the severe 
implications in human life. 

Despite the numerous reliability analyses conducted 
separately on NN models and hardware (HW) accelerators in 
the existing literature [2], there is often a lack of 
comprehensive assessments considering both aspects due to 
the wide gap between the physical hardware characteristics 
and the model behavior. Reliability evaluations of NN models 
often overlook the underlying HW layer, focusing on 
methodologies such as NN’s weight data corruption [3] to 
assess the model's inherent robustness. Likewise, when 
assessing reliability in the accelerators, attention is typically 
directed toward the high-level consequences of faults in the 
Datapath [4], neglecting a comprehensive understanding of 
why a specific fault resulted in a particular behavior in the NN. 
This consideration gains particular significance when 
exploring the execution of NN on diverse HW architectures, 
as the circuit topology significantly shapes the NN's response 
to HW faults.  Furthermore, within an accelerator Datapath, it 
is crucial to acknowledge that translating the NN model into 
machine instructions and the execution flow may not be 
univocal. While the ultimate execution result remains 
consistent, the translations can exhibit variations in both 
performance and reliability. Hence, it is essential to consider 
a hardware-oriented formulation of algorithmic 
implementations to avoid adopting suboptimal, this imperfect, 
solutions. Indeed, typical approaches to enhance system 
reliability rely on adopting redundancy. This involves 
allocating multiple computation nodes that perform the same 

calculations in parallel, whether aligned in time or not, and 
combining the results through majority voting. In the realm of 
NN, the concept of redundancy extends to neurons. Given that 
NNs consist of thousands of neurons, replicating the 
computations of each neuron is impractical. Hence, some 
authors proposed applying redundancy techniques, such as 
triple modular redundancy, only to neurons identified as 
critical [5][6]. However, it is worth noting that introducing 
redundancy, whether in terms of resources or computation, 
incurs a non-negligible cost.  

This work highlights that a thorough understanding of the 
Datapath alone can drive algorithmic decisions, enhancing 
reliability without introducing additional costs, whether in 
hardware resources or performance.  

We used an open-source Tensor Processing Unit (TPU) as 
a Systolic Array (SA) accelerator. Initially, we analyzed the 
circuit topology to evaluate how Convolutional Neural 
Networks (CNNs) are mapped to the core. Next, leveraging 
the binding between HW resources and higher-level 
computations, we evaluated how the errors induced by faults 
in the Datapath propagate and their further consequences.  In 
particular, we conducted analytical comparisons to evaluate 
the impact of faults under different data mapping policies 
applied to CNN. From the theoretical analysis, we concluded 
that employing the Input Stationary (IS) strategy in the SA 
Datapath enhances overall robustness. Then, drawing on the 
fault propagation model, we proposed a novel resource-
rotation mapping strategy to improve the fault tolerance of the 
CNN when adopting the Weight Stationary (WS) policy. To 
validate our conclusions, we performed experiments, 
introducing hardware faults. We implemented the accelerator 
on an SRAM-based FPGA and adopted the emulation-based 
hardware fault injection. This involved inserting bit-flips 
within the device Configuration RAM (CRAM), allowing to 
emulate structural faults in the SA Datapath.  All the tested 
algorithmic implementations were executed under the same 
fault conditions to draw a meaningful comparison and ensure 
a fair evaluation. We selected two CNN architectures 
implementing MNIST-digit and CIFAR10 classifications. 
Experimental results show that by carefully selecting the data 
mapping strategy, it is possible to achieve a 30% and 18% 
reduction in the fault-induced effects for the MNIST and 
CIRFAR10, respectively, without any modifications in the 
HW architecture. Furthermore, by adopting our resource 
rotation strategy, even the most sensitive mapping policy, the 
WS, can be enhanced, obtaining comparable results as for the 
IS case. 

The paper is organized as follows. Section II presents an 
overview of previous works, while Section III introduces the 
functionalities of the SA accelerator. Section IV details the 
Software-to-Hardware Mapping Strategies, and Section V 
describes the proposed reliability assessment. Section VI 
concludes. 

II. RELATED WORKS 

As CNNs are increasingly used in safety-critical 
applications, assessing their reliability has gained significant 
attention. Numerous studies have been conducted to explore 
the effects of failures on NNs. Several fault-injection-based 
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approaches are available in the literature. Software-based fault 
injections such as TensorFI [7]  and PyTorchFI [8] simulate 
errors within the NN  by introducing faults as bit-flips in the 
weights and biases of the model. These approaches are 
hardware-independent, therefore they are referred to as an 
abstracted model without any realistic correlation with the 
physical hardware. In contrast, adopting hardware-level fault 
injection allows correlating DNN errors with the accelerators 
[9][10]. Indeed, as the circuit topology and technology vary, 
the fault-induced error in the NN inference process changes.   

Although SAs are far from a new architectural proposal, 
dating back to the 80s [11], in the past decade, they have 
proven to be among the most efficient accelerators in terms of 
TBops/W [12]. Literature has revisited the topic, focusing on 
computational efficiency, developing new SA accelerators 
suited for state-of-the-art AI models [13][14], and reliability 
aspects [15]. The latter includes exposure to accelerated 
radiation tests to induce Single Event Effects [16][17] and 
Datapath fault simulation through netlist corruption in HDL 
simulation environments [18]-[20]. SRAM-based FPGAs are 
also utilized to evaluate the reliability of AI models through 
hardware fault emulation [21]-[24]. SAs featuring multiple 
processing elements (PEs) challenge conventional hardware 
redundancy-based hardening methods. Time redundancy, 
although an option, may introduce inference execution delays 
[25], potentially compromising the ability to meet real-time 
response constraints. Once the fault location is identified 
[28][29], approaches such as NN model compression and 
weight pruning are employed [26][27]. However, no solution 
is currently available for improving the reliability without 
necessitating interventions in both the HW and the NN model. 
In our proposed approach, exploiting knowledge of circuit 
topology, data movement, and NN structure, we implement 
algorithmic strategies to enhance reliability. The effectiveness 
of the proposed methods is validated through hardware-fault 
injection experiments, illustrating that mitigating fault effects 
is achievable through architecture-aware formulation of 
algorithms without imposing performance penalties or 
resource overhead. 

III. BACKGROUND ON SA 

SAs-based accelerators are gaining popularity thanks to 
their ability to provide performance and energy efficiency 
[12]. The computational core is organized as a 2D array of 
processing elements (PEs), interconnected through fixed data 
paths designed to facilitate efficient data and computation 
flow. Specifically, connections between PEs in the same 
column transmit intermediate computation results, while 
connections between PEs in the same row transfer inputs (or 
weights). Each PE computes a multiplication between an input 
value (xi,j) and a corresponding weight (wi,j) and accumulates 
the result in a single clock cycle. The SA Datapath may be 
equipped with external accumulators to accommodate 
operation tiling when the size of the data matrices does not fit 
in the available resources. To execute a complete NN inferen- 

Fig. 1 Systolic array Datapath equipped with external Accumulators 
for operation tiling. 

-ce on SA, each layer has to be converted into a General 
Matrix Multiplication (GEMM) operation [32]. The 
conversion is straightforward in the case of a fully connected 
layer, while it requires some data processing when dealing 
with the convolutional layer. However, once translated, there 
are several ways to map the operation in the hardware resource 
of the Datapath,  each providing different performance and 
reliability, as we will demonstrate in the following.  

IV. SOFTWARE-TO-HARDWARE MAPPING STRATEGIES IN SA 

The data mapping policies for SAs dictate the strategies 
employed in allocating and distributing computations within 
this parallel computing architecture. Three primary mapping 
policies exist: Weight Stationary (WS), Input Stationary (IS), 
and Output Stationary (OS). In WS, the weight matrix is 
loaded in the PEs grid before computation starts with a 1:1 
correspondence between the data matrix and the SAs, while 
the activations flow from the left to the right of the array. 
Similarly, the activation matrix is loaded first in the IS case, 
and the weights data spans all the columns. Finally, in the OS 
policy, the activation data moves to the right PE, and the 
weight data moves to the lower PE. While WS and OS policies 
have been investigated[30], previous works have not 
addressed IS mapping. Moreover, the authors' evaluations 
were performed in a time-consuming simulation environment, 
limiting the benchmark to a small NN layer.  In contrast, we 
compare WS and IS starting from a theoretical approach, 
moving to hardware execution of entire NN models. 

A.  CNN Mapping Strategies 

CNNs are characterized by multiple convolutional layers, 
each comprising diverse filters designed for feature 
extraction. Each filter consists of small weight matrices, the 
kernels, whose number depends on the number of channels in 
the input image. For example, consider an RGB image with 
dimensions (N, M, 3) and a convolutional layer featuring 128 
filters. Since the input matrix has three channels, each fi  filter 
comprises three kernels with dimensions (n, m). Each channel 
kernel will convolve with the related channel input matrix. 
Then, the three channel-wise convolutions result is 
accumulated, producing a single output feature map for fi. 
Assuming a stride of s, the overall result of the convolutional 
layer will have dimension ( (N-n)/s,  (M-m)/s, 128). Hence, 
the produced output, input for the next layer, consists of 128 
channels. Consequently, as we delve into the hidden layers of 
the CNN, the layer weight matrix’s complexity depends on 
the number of layer filters Fi and the Fi-1, defining the number 
of kernels per filter. Meanwhile, the input size decreases due 
to the stride. This implies that WS and IS policy will likely 
show distinct performance characteristics, as one might 
anticipate. However, beyond performance considerations, 
these two mapping policies also carry implications for 
reliability. To identify which strategy is more reliable, it is 
essential to explore how the operations described earlier are 
mapped within the SA. Consider the illustrated RGB case per 
simplicity, with F filters in the convolutional layer. Each filter 
fi is defined by (ki

R , ki
G , ki

B ). As each filter has to convolve 
with the R, G, and B input matrices, if the process is mapped 
with no optimization to the SA, this would imply reading the 
same input matrices F times. Moreover, due to the SA 
interconnection path characterized by propagating the data 
from left to right of the array, shared among PE columns, if 
WS policy is adopted, then to preserve the mathematical 
consistency for each fi filter, each ki convolution should be 
executed separately from that of the other channels. This 
results in only n*m PEs processing the data. Adopting the IS  



 
Fig. 2 Convolutional layer (a) high-level model of  (b) GEMM-

based in [31], (c) our proposed implementation. 

policy increases the number of resources involved in 
computation. Still, the required input matrix read operations 
are suboptimal since the same input data needs to be loaded 
in the SA  F times.  To reduce this reading overhead, the 
computation should be organized as GEMM. Drawing on 
what was proposed in [31], we implemented custom solutions 
tailored for SA equipped with external accumulators.  

1) Channel-wise GEMM Implementation 
Kernels related to the same channel but belonging to 

different filters have to be multiplied for the same input 
matrix. Considering the RGB case, three matrices, one per 
channel, are realized: WR, WG, and WB. Each matrix has size 
(n*m, F) and is constructed such that each column, indexed 
by i, corresponds to the vectorized channel kernel of  fi , as 
shown in Fig. 2c. In contrast, in [31], one filter matrix  Fm of 
size (F, C*(n*m)) is realized, with C number of channels. 
In our proposed solution, each channel input matrix IC ( R, G, 
and B in the example) goes through the Img2row 
transformation, which consists of constructing a bigger 
matrix, where row content is the flattened 2D convolution 
window. Consequently, the number of rows, X,  reflects the 
number of windows necessary to convolve the entire matrix 
with a given stride. Similarly, in [31], the Dm matrix is 
constructed by applying the same window unfolding 
operation to create columns and stacking the channel 
matrices, as in Fig 2b. Following [31] implementation, to 
accommodate the operation on the SA, Dm and Fm are 
partitioned as follows: 
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Then each partition is again divided into square submatrices 
to exactly match the SA size, resulting in  
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where P = C*(n*m)/SAsize. To perform convolution, each 
submatrices set �� is processed as follows: 
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The multiply and accumulate process in (4)  has to be 

repeated for all the ��  considering the same ��  and then 
again for all the weight partitions ��. This results in the same 

weight matrices �(
�
 being loaded X/SAsize, and the same #�

(  

F/ SAsize times. Our proposed solution aims to reduce the 
number of weights loading. In our solution, the channel 
matrix IC is multiplied by its  Wc, and the channels’ outputs 
are merged using the external Accumulators while the SA is 
processing next-channel computation. In this scenario, each 
Wc is partitioned in F/ SAsize square matrices of SAsize. Then, 
each square submatrix is loaded just once, while IC is 
processed with no partitioning, i.e., spanning all rows from 0 

to X. With this approach, we reduce the loading operations of 
each weight submatrix from X/SAsize times to 1. In the 
following, we will compare the reliability of this proposed 
GEMM implementation when adopted with WS and IS.  

V. RELIABILITY EVALUATION OF MAPPING STRATEGIES 

To assess the reliability implications of WS and IS 
mapping strategies, it is crucial to correlate the computations 
performed by the SA with their meaning in the CNN 
architecture. In contrast to previous studies that evaluated the 
reliability starting from fault injection campaigns [30] we 
first propose an analytical approach to model the fault-
induced error propagation from the PEs grid to the NN model.  
Analyzing the propagation model, we will identify and 
propose reliable algorithmic solutions. Then, we will exploit 
the hardware fault injection to validate our findings. 

A. Fault-induced Error Propagation 

Previously, we explained how the convolutional layer is 
mapped on the SA. Considering the scenario in Fig. 3, where 
a fault is located in a PE. Due to per-column accumulation, 
the faulty partial product will flow along the column and 
accumulate with those produced by the other PEs, producing, 
in the end, a faulty output. This behavior is independent of 
the mapping policy since it relates to circuit topology and 
hence holds both for the [31] implementation and for our 
channel-wise GEMM. On the other hand, the consequences 
of the faulty output differ between WS and IS policies.  

The WS policy is characterized by the 1:1 correspondence 
between the PEs grid and the weight matrix. Hence, the 
computations of filter fi (for each of its channels) are always 
mapped to column i. Each row vector in the input matrix is 
the image window to be convolved with. Given that, the 
multiplication of rowj by fi  produces one pixel pj

i of the i-th 
output feature map.  

Fig. 3. CNN fault propagation with (a) WS and  (b) IS mapping. 

A fault affecting the fi computation impacts all pixels of its 
output, as shown in Fig. 3a, while the other filters' 
computations are preserved. This behavior is the same as for 
[31] convolution implementation, as found in the experiment 
conducted by[30]. In the IS policy, the behavior is inverted 
with the image rows mapped statically, one in each column 
of the SA, while filters’ weights flow among the PEs. Hence, 
considering the same fault scenario, the faulty column is 
responsible for computing the output pixels for all the filters, 
resulting in faulty pixels affecting all the output features map, 
located in the same position, as shown in Fig. 3b. The number 
of faulty pixels strictly depends on the SA size. Due to 
operation tiling, the computation is organized in blocks of 
SAsize rows loaded in the PEs grid. Therefore, one faulty PE 
will produce one corrupted pixel every SAsize, for all the 
output feature maps. Going deeper into the CNN hidden 
layers, the feature maps are reduced in size, decreasing the 
reuse of faulty resources per layer. In the WS case, since the 
operation tiling occurs on the weight matrix, a faulty column 
will result in  faulty output feature maps (i.e, not just few 
pixels) every SAsize output maps. The severity of the error, 



both in the IS case and WS depends on fault location, as faults 
in LSBs are typically less critical, and other mechanisms, like 
rounding during accumulation or data values, may mask the 
fault effects. However, completely failing in extracting 
features, as for the WS, has a higher impact on CNN 
accuracy, as opposed to having a few faulty pixels in every 
feature map that may be interpreted as noise. 

To mitigate this effect, we propose a mapping strategy 
that forces resource rotation through data. Reminding that in 
WS, each kernel :�

; related to a filter fi  is always mapped in 
the same column i of resources, we arranged the weights 
matrices such that for each consecutive weight loading in the 
SA, the data columns are shifted and rotated. In detail, 
considering our channel-wise GEMM convolution with C 
channels. At each iteration c, with c ∈ C, the weights of :�

; 

are mapped to the SA column ((i+c) mod SAsize). Therefore, 
we force the execution of filter fi channels computation over 
different resources. As a result, just one channel output is 
faulty every SAsize channel processed, instead of all as for 
canonical WS.  The channel outputs are then accumulated, 
with the external accumulators, to produce a single output 
future map for the filter fi, as required by the convolution 
algorithm. The impact on the final output feature map 
depends on (i) the number of channels, with higher the 
number lower the impact during the accumulation (i.e., in 
RGB case, one faulty channel output is likely sufficient to 
impact the result concerning one faulty channel over 64) (ii) 
SA size, which determines how many times the same column 
is used to process several channels for the same fi. However, 
by forcing rotation, also the other filters’ computations will 
be affected by the same faulty behavior, while in canonical 
WS their computation is preserved. Still,  spreading a few 
corrupted channel computations over all the filters, whose 
impact is smoothed by the accumulation process, is more 
likely to introduce noise in the NN rather than errors.  

B. Validation through Fault Injection 

To validate the theoretical approach characterizing the 
reliability of the SA accelerator related to the different 
algorithmic solutions, an open-source TPU [33] accelerator 
has been implemented on a Xilinx Zynq 7020 SoC equipped 
with SRAM-based FPGA, where the accelerator was 
mapped. Following state-of-the-art implementation, the SA’s 
PEs are mapped on the on-chip DSP available in the 
programmable logic[34]. The SA size is 14 x 14 PEs, 
exploiting all the available resources, and runs at 177MHz. 
The open-source accelerator comes with a framework 
capable of translating only fully connected NN into the core’s 
Instruction Set Architecture. Consequently, we implemented 
a framework that, starting from a high-level CNN, translates 
the NN into a sequence of elementary assembly instructions,  
according to the mapping strategy adopted. Since on HW 
execution, in contrast with[30] that limited their evaluation to 
single layers, we evaluated two complete CNN models 
targeting MNIST-digit and CIFAR10 datasets. Details about 
the CNNs, implemented with QKeras [35] are in Table 1. 

Table 1. CNN models characteristics. 
 Number of 

Conv Layer 
Number of 
FC Layer 

Tot. 
Parameters 

Inference time [ms] 

[31]    C-wise 
MNIST 3 1 40,874 0.134 0.129      

CIFAR10 6 1 91,648 1.8 1.2 

To evaluate the reliability, we utilized the HW fault 
emulation. FPGA designs are implemented through 
bitstream, whose content configures the device resources 
(logic, interconnection, and memory) to implement the target 
circuit.  Hence, by manipulating the bitstream, it is possible 
to model structural faults[36][37] in the Datapath.  

 
Fig. 4. Experimental results over 5,000 faults injected. 

The injection campaign comprised 5,000 fault injections. 
Each injected fault affected only one PE at a time. For each 
evaluated fault, both MNIST-digit and CIFAR10 
classifications were executed. Therefore, the two CNNs were 
evaluated under the same fault conditions, first with WS 
policy and then with IS. Please consider that the bitstream 
upload requires a few seconds, while for each evaluated fault, 
the NN weights need to be sent to the core. These operations 
are time-consuming. Since our goal is to evaluate fault effects 
under different algorithms, we focused on performing more 
fault injections rather than classification per CNN, limiting to 
10 images per fault per CNN (accuracy degradation is deeply 
investigated in previous works). The results, in Fig. 4, are 
prosed as the percentage of injected faults that induced 
misclassifications, and as the percentage of fault inducing 
Silent Data Corruption (SDC). As SDC, we considered 
variation in the top-1 class score, which did not result in the 
wrong classification. The results demonstrate the findings of 
our theoretical approach, highlighting that the same CNN 
architecture shows greater resilience when mapped in IS 
policy, showing a reduction in faults causing 
misclassification of 30% for MNIST and 18% for CIFAR10. 
Indeed, IS is characterized by a higher percentage of SDC, 
implying that the fault has induced effects in the computation, 
which deviates from the golden reference but ensures correct 
classification. On the other hand, the higher the complexity 
of the CNN architecture, the higher the sensitivity to the same 
faults. Indeed, results show that a fault whose effect is 
masked in the lighter CNN (MNIST) is provoking a pattern 
of misclassification in the deeper CNN (CIFAR10). 
Additionally, as CIFAR10 is based on RGB images, each 
layer's complexity is higher than that of MNIST, which 
translates into the fact that the faulty unit is used multiple 
times to extract multiple features, wrongly. On the same 
faulty bitstreams, we evaluated our proposed resource 
rotation algorithm. Results show a reduction in the impact of 
faults of 30.57% in the MNIST and 16.01% in CIFAR10 
considering the canonical WS approach, demonstrating that 
resource rotation could be an effective, low-cost solution to 
improve the reliability of the SA accelerator further. These 
prominent results encourage us to keep investigating this 
aspect in the future.  

VI. CONCLUSIONS 

 In this paper, we studied SA Datapath and CNN mapping 
strategies to identify the high-level fault effects. Our analysis 
targeted two canonical mapping strategies and favored the IS 
strategy over WS for reliability. We also proposed a mapping 
strategy based on data-driven resource rotation. All the 
theoretical analyses have been evaluated on HW by 
implementing SA on SRAM-based FPGA. To validate our 
findings, we performed  HW fault injection, which not only 
confirmed our approach but also suggested that zero overhead 
reliability strategies are practical solutions. Future work will 
explore automating the resource rotation mechanism within 
the SA architecture.  
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