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A B S T R A C T

In this work, we propose the application of the eXtended Finite Element Method (XFEM) in
the context of the coupling between three-dimensional and one-dimensional elliptic problems.
In particular, we consider the case in which the 3D–1D coupled problem arises from the
geometrical model reduction of a fully three-dimensional problem, characterized by thin tubular
inclusions embedded in a much wider domain. In the 3D–1D coupling framework, the use of
non conforming meshes is widely adopted. However, since the inclusions typically behave as
singular sinks or sources for the 3D problem, mesh adaptation near the embedded 1D domains
may be necessary to enhance solution accuracy and recover optimal convergence rates. An
alternative to mesh adaptation is represented by the XFEM, which we here propose to enhance
the approximation capabilities of an optimization-based 3D–1D coupling approach. An effective
quadrature strategy is devised to integrate the enrichment functions and numerical tests on
single and multiple segments are proposed to demonstrate the effectiveness of the approach.

. Introduction

The present work deals with coupled partial differential equation problems on 3D and 1D domains arising from the application
f dimensional reduction models to equi-dimensional problems where cylindrical or nearly-cylindrical inclusions are embedded in
larger 3D domain, [1–3]. Other examples of coupled problems with non-zero dimensional gap, not considered in this work, are

onfigurations where the lower dimensional domain is not embedded but is an extension of the higher dimensional one, as, e.g., in
he coupling between bulk structures and fins or plates in elastodynamics [4], in 2D–1D hydrodynamics models [5], in heterogeneous
od models [6] or in cardiovascular simulations as the ones reviewed in [7].

The treatment of the smaller features of the domain as lower dimensional manifolds can reduce the overhead of simulations,
nd the cost related to the generation of a computational mesh. Here, narrow and elongated embedded inclusions are considered,
imensionally reduced to one-dimensional manifolds in the bulk three dimensional domain. Suitable matching conditions need
o be added at the interfaces to close the problem, depending on the nature of the described physical phenomenon: in some
ases the solution is expected to be continuous at the interface, as in the description of damaged vessels in tumour induced
ngiogenesis [8], of thin membranes [9], or in the modeling of fiber reinforced materials [10]; in other cases, filtration like
onditions, yielding a discontinuity at the 3D–1D interfaces are preferred, as for plant-roots nutrient uptake from the subsoil [11,12],
n geological applications [13], or again in angiogenesis [14,15]. However, the mathematical formulation of these 3D–1D coupled
roblems requires non-standard approaches, and specialized numerical schemes are needed to correctly account for the presence
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Fig. 1. Domain with single inclusion and description of notation. The size of the inclusion is exaggerated for description purposes.

of singularities. A possibility lies in the use of regularizing functions to approximate the singular terms [16,17], or of lifting
techniques [1]. In [18] the solution is split in a regular part, approximated by standard methods, and an irregular part, for which
an analytical solution is given. Domain decomposition approaches are finally proposed in [19] based on Lagrange multipliers, and
in [3,20] where a PDE-constrained optimization method is presented.

The use of a 3D mesh non conforming to the 1D domains is quite standard. However, in some cases, sub-optimal convergence
rates are observed unless adaptive refinement close to the singularity is used, see e.g. [15,16]. In this work we adopt the eXtended
Finite Element Method (XFEM) [21] as an alternative to mesh refinement. The application of XFEM to 3D problems with singular
sources has been proposed in [22], in particular for quasi 3D problems describing the effect of well leakage in aquifers. In [23] the
methodology was extended to fully 3D–1D coupled problems in mixed formulation. The function space for the velocity variable is
enriched, and non intersecting segments entirely crossing the computational domain are considered in the numerical examples.

Here, we focus on the application of the XFEM to enhance the approximation capabilities of the optimization-based 3D–1D
coupling strategy proposed in [3,20]. Such method is based on a three-field domain decomposition strategy, in which additional
interface variables are introduced to de-couple the problem on the inclusions from the problem in the bulk domain. A cost functional
is introduced to measure the error in satisfying the desired matching condition at the interfaces, and minimized to recover a global
solution. Different interface conditions are considered in [3] and in [20], resulting in two different formulations of the method. In
the present work we consider flux conservation and pressure continuity at the interface as in [3]. However, the proposed approach
can be easily extended to other interface conditions, such as the ones considered in [20], or even to different formulations of the
problem. We enrich the function space of the 3D pressure variable with a globally continuous function, having a log-like behavior
outside the inclusion and being constant inside it. The choice of the enrichment function is based on the results provided in [18],
adapted to the present case. We suggest an ad-hoc quadrature scheme for the numerical integration of the resulting irregular basis
functions. We consider intersecting/branching inclusions, possibly ending inside the domain.

The manuscript is organized as follows: the model problem is presented in Section 2, and an overview on the PDE-constrained
optimization approach is provided in Section 3; Section 4 is devoted to the general discretization of the optimization problem,
while the details on the application of the XFEM are provided in Section 5. In Section 6 we propose a quadrature strategy, suitably
designed to integrate the enriched basis functions and finally, in Section 7, some numerical experiments are presented, in order to
validate the proposed approach.

2. Notation and model problem

We consider a convex domain 𝛺 ⊂ R3, characterized by the presence of a thin cylindrical inclusion 𝛴 ⊂ 𝛺 of radius 𝑅, see Fig. 1.
We assume 𝑅 to be smaller than both the diameter of the domain and the length of the cylinder. The centerline of 𝛴 is denoted by
𝛬 = {𝝀(𝑠), 𝑠 ∈ (0, 𝑆)}, and 𝝉𝜦 is the unit tangent vector to 𝛬. We further call 𝓁 the line passing through the centerline of 𝛴 and 
the lateral surface of an infinite cylinder with centerline 𝓁 and radius 𝑅. The boundary of 𝛺 is denoted by 𝜕𝛺 and is split into two
subsets: the Dirichlet boundary 𝜕𝛺d and the Neumann boundary 𝜕𝛺n, such that 𝜕𝛺 = 𝜕𝛺d ∪ 𝜕𝛺n, with 𝜕𝛺d ∩ 𝜕𝛺n = ∅ and |𝜕𝛺d| > 0.
The boundary of 𝛴 is split into the lateral surface 𝛤 and the two end sections 𝛴0 and 𝛴𝑆 , i.e. 𝜕𝛴 = 𝛤 ∪𝛴0 ∪𝛴𝑆 . The symbol 𝛴(𝑠),
𝑠 ∈ (0, 𝑆), is used to denote a generic cross-section of 𝛴. Finally, we define 𝐷 ∶= 𝛺 ⧵ 𝛴, the domain without the inclusion, having
boundary 𝜕𝐷 = 𝜕𝛺 ∪ 𝜕𝛴.

Let us now consider a diffusion problem in 𝐷 and 𝛴 with unknown pressures 𝑢 ∈ 𝐷 and �̃� ∈ 𝛴:

−∇ ⋅ (𝐾∇𝑢) = 𝑓 in 𝐷 (1)
2
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𝑢
|𝛤

= 𝜓 on 𝛤 (2)

𝐾∇𝑢 ⋅ 𝒏 = 𝜙 on 𝛤 (3)

𝑢 = 0 on 𝜕𝛺d (4)

∇𝑢 ⋅ 𝒏 = 0 on 𝜕𝛺n (5)

∇𝑢 ⋅ 𝒏 = 0 on 𝛴0 ∪ 𝛴𝑆 (6)

−∇ ⋅ (�̃�∇�̃�) = 𝑔 in 𝛴 (7)

�̃�
|𝛤

= 𝜓 on 𝛤 (8)

�̃�∇�̃� ⋅ �̃� = −𝜙 on 𝛤 (9)

∇�̃� ⋅ �̃� = 0 on 𝛴0 ∪ 𝛴𝑆 (10)

The symbol 𝜓 denotes the unknown unique value of the pressure on the interface 𝛤 , whereas 𝜙 is the unknown flux through 𝛤 ,
entering in 𝐷. For the sake of simplicity, we assume that all boundary conditions, except the interface conditions prescribed on 𝛤 ,
are homogeneous. The vector 𝒏 denotes the outward-pointing unit normal to 𝜕𝐷, while �̃� = −𝒏 is the outward pointing unit normal
to 𝜕𝛴.

3. Optimization formulation for the 3D-1D reduced problem

Following [3], to which we refer for details, the above 3D–3D coupled problem is reformulated as a 3D–1D coupled problem
through a suitable choice of function spaces for the solution. Given the small radius of the inclusion, the solution is assumed to be
constant on its cross sections and their boundaries. Let us hence define two extension operators:


𝛴
∶ 𝐻1(𝛬) → 𝐻1(𝛴) and 

𝛤
∶ 𝐻1(𝛬) → 𝐻

1
2 (𝛤 ),

which, given a function �̂� ∈ 𝐻1(𝛬), uniformly extend the value �̂�(𝑠), 𝑠 ∈ [0, 𝑆] to the cross section 𝛴(𝑠) of the cylinder, i.e. 
𝛴
�̂�(𝒙) =

̂(𝑠) ∀𝒙 ∈ 𝛴(𝑠), and to the boundary 𝛤 (𝑠) of 𝛴(𝑠), i.e. 
𝛤
�̂�(𝒙) = �̂�(𝑠) ∀𝒙 ∈ 𝛤 (𝑠). Given the trace operator 𝛾

𝛤
∶ 𝐻1(𝐷)∪𝐻1(𝛴) → 𝐻

1
2 (𝛤 ),

efined as 𝛾
𝛤
𝑣 = 𝑣

|𝛤
∀𝑣 ∈ 𝐻1(𝐷) ∪𝐻1(𝛴), and setting 𝑉 = 𝐻1(𝛬), the following spaces are introduced:

𝑉 = {𝑣 ∈ 𝐻1
0 (𝛴) ∶ 𝑣 = 

𝛴
�̂�, �̂� ∈ 𝑉 }, 𝛤 = {𝑣 ∈ 𝐻

1
2 (𝛤 ) ∶ 𝑣 = 

𝛤
�̂�, �̂� ∈ 𝑉 }

𝑉𝐷 =
{

𝑣 ∈ 𝐻1(𝐷) ∶ 𝑣
|𝜕𝛺d

= 0 and 𝛾
𝛤
𝑣 ∈ 𝛤

}

,

hose functions satisfy the hypothesis on the regularity of the solution. Denoting by (⋅, ⋅)⋆ the 𝐿2-scalar product on a generic domain
, by 𝑋′ the dual of a space 𝑋, and by ⟨⋅, ⋅⟩𝑋′ ,𝑋 the duality pairing between the two spaces, the weak formulation of (1)–(10) reads:
ind (𝑢, �̃�) ∈ 𝑉𝐷 × 𝑉 , 𝜓 ∈ 𝛤 , 𝜙 ∈ 𝛤 ′ such that

(𝐾∇𝑢,∇𝑣)𝐷 −
⟨

𝜙, 𝛾
𝛤
𝑣
⟩

𝛤 ′ ,𝛤
= (𝑓, 𝑣)𝐷 ∀𝑣 ∈ 𝑉𝐷, (11)

(�̃�∇�̃�,∇�̃�)𝛴 +
⟨

𝜙, 𝛾
𝛤
�̃�
⟩

𝛤 ′ ,𝛤
= (𝑔, �̃�)𝛴 ∀�̃� ∈ 𝑉 , (12)

⟨

𝛾
𝛤
𝑢 − 𝜓, 𝜂

⟩

𝛤 ,𝛤 ′ = 0 ∀𝜂 ∈ 𝛤 ′, (13)
⟨

𝛾
𝛤
�̃� − 𝜓, 𝜂

⟩

𝛤 ,𝛤 ′ = 0 ∀𝜂 ∈ 𝛤 ′. (14)

A well posed 3D–1D formulation follows by operating a geometrical reduction of the operators:
⟨

𝜙, 𝛾
𝛤
𝑣
⟩

𝛤 ′ ,𝛤
= ∫𝛤

𝜙 𝛾
𝛤
𝑣 𝑑𝛤 = ∫

𝑆

0

(

∫𝛤 (𝑠)
𝜙 𝛾

𝛤
𝑣 𝑑𝑙

)

𝑑𝑠 =

= ∫

𝑆

0
|𝛤 (𝑠)|𝜙(𝑠)�̌�(𝑠) 𝑑𝑠 =

⟨

|𝛤 |𝜙, �̌�
⟩

𝑉 ′ ,𝑉
∀𝑣 ∈ 𝑉𝐷,

(�̃�∇�̃�,∇�̃�)𝛴 = ∫𝛴
�̃�∇�̃�∇�̃� 𝑑𝜎 = ∫

𝑆

0
�̃�|𝛴(𝑠)|

𝑑�̂�
𝑑𝑠

𝑑�̂�
𝑑𝑠

𝑑𝑠,

where �̌� ∈ 𝑉 is such that 𝛾
𝛤
𝑣 = 

𝛤
�̌�, and �̂�, �̂� ∈ 𝑉 such that �̃� = 

𝛴
�̂�, �̃� = 

𝛴
�̂�. The quantities |𝛤 (𝑠)| and |𝛴(𝑠)| are the measure of

(𝑠) and 𝛴(𝑠), respectively.
Instead of solving the coupled system of Eqs. (11)–(14), we re-write it as a PDE-constrained optimization problem. This is done

y introducing a cost functional to measure the error in fulfilling the coupling conditions (13)–(14), and looking at the solution as
he minimum of this functional, constrained by the constitutive equations on the 3D and 1D domains:

min 𝐽 =
1(

‖𝛾
𝛤
𝑢(𝜙, �̂�) − 

𝛤
�̂�‖2𝛤 + ‖𝛾

𝛤

𝛴
�̂�(𝜙, �̂�) − 

𝛤
�̂�‖2𝛤

)

, (15)
3

𝜙,�̂� 2
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such that, for �̌�, �̂� ∈ 𝑉 ∶ 𝛾
𝛤𝑖
𝑣 = 

𝛤
�̌� and 𝜓 = 

𝛤
�̂� ∶

(𝐾∇𝑢,∇𝑣)𝐷 + 𝛼(|𝛤 |�̌�, �̌�)𝛬 −
⟨

|𝛤 |𝜙, �̌�
⟩

𝑉 ′ ,𝑉
= (𝑓, 𝑣)𝐷 + 𝛼(|𝛤 |�̂� , �̌�)𝛬 ∀𝑣 ∈ 𝑉𝐷, (16)

(

�̃�|𝛴|

𝑑�̂�
𝑑𝑠
,
𝑑�̂�
𝑑𝑠

)

𝛬
+ �̂�(|𝛤 |�̂�, �̂�)𝛬 +

⟨

|𝛤 |𝜙, �̂�
⟩

𝑉 ′ ,𝑉
= (|𝛴|𝑔, �̂�)𝛬 + �̂�(|𝛤 |�̂� , �̂�)𝛬 ∀�̂� ∈ 𝑉 , (17)

eing 𝑔(𝑠) = 1
|𝛴(𝑠)| ∫𝛴(𝑠) 𝑔 𝑑𝜎. The terms multiplied by coefficients 𝛼 and �̂� in the constraint equations. (16)–(17) represent a consistent

orrection, as at the minimum �̌� = �̂� = �̂� . However this correction allows to have well posed problems on each sub-domain
ndependently from the prescribed boundary conditions, provided that 𝛼, �̂� > 0. This is particularly relevant, as one of the key
dvantages of the proposed approach is to provide a methodology ready for domain decomposition on non conforming meshes.
n addition, the discrete problem deriving from the optimization formulation is well posed without requiring the introduction of
omplex stabilization terms. The above formulation can be extended to accommodate multiple intersecting segments and different
ouplings between the 3D and 1D domain. The interested reader is referred to the previous works on the subject for further
etails [3,20,24].

. Discrete problem

Let us briefly recall here the discrete formulation of problem (15)–(17), in the simplified case of a single inclusion. It is to
emark that this is formally identical to the one already described in [3], also for the general case of multiple intersecting 1D
omains. Indeed, the focus of the present work is on the application of the XFEM, which does not affect the structure of the discrete
ystem. The choice of the enrichment function and of the quadrature formulas, which are the main novelty content of this work,
re thoroughly discussed in the next sections.

As the inclusion is reduced to the centerline 𝛬, we extend the domain 𝐷 to cover to the whole 𝛺. Then we build a mesh  on
made of 𝑁𝜏 tetrahedral elements 𝜏𝑗 , i.e.  =

⋃𝑁𝜏
𝑗=1 𝜏𝑗 , whose position in space is independent from the position of the 1D domain

. On this mesh we choose a set of finite element basis functions
{

𝜑𝑖
}

𝑖=1,…,𝑁 , such that the discrete counterpart of unknown 𝑢 is
=
∑𝑁
𝑖=1 𝑈𝑖𝜑𝑖. We proceed similarly for variables �̂�, �̄� and �̂� , by first defining on 𝛬 three independent meshes and basis functions

ets: mesh ̂ and functions {�̂�𝑖}𝑖=1,…,�̂� for �̂�, mesh 𝜏𝜙 and functions {𝜃𝑖}𝑖=1,…,𝑁𝜙 for �̄�, and mesh 𝜏𝜓 and functions {𝜂𝑖}𝑖=1,…,𝑁𝜓 for
�̂� , ending up with the following discrete counterparts for the three variables, defined respectively as:

�̂� =
�̂�
∑

𝑖=1
�̂�𝑖�̂�𝑖, 𝛷 =

𝑁𝜙
∑

𝑖=1
𝛷𝑖𝜃𝑖, 𝛹 =

𝑁𝜓
∑

𝑖=1
𝛹𝑖𝜂𝑖.

he discrete problem is obtained by replacing the above definitions in Eqs. (16)–(17). The discrete functional is then defined as
ollows:

𝐽𝛿 =
1
2

(

‖𝑈
|𝛬

− 𝛹‖2
𝐿2(𝛬)

+ ‖�̂� − 𝛹‖2
𝐿2(𝛬)

)

,

.e. exploiting the regularity of the discrete variables to directly compute the restriction on 𝛬 of 𝑈 and using the 𝐿2-norm to compute
he coupling mismatch. Then we collect the integrals of the basis functions into the matrices:

𝑨 ∈ R𝑁×𝑁 s.t. (𝐴)𝑘𝑙 = ∫𝛺
𝑲∇𝜑𝑘∇𝜑𝑙 𝑑𝜔 + 𝛼 ∫𝛬

|𝛤 (𝑠)|𝜑𝑘|𝛬𝜑𝑙 |𝛬𝑑𝑠,

�̂� ∈ R�̂�×�̂� s.t. (�̂�)𝑘𝑙 = ∫𝛬
�̃�|𝛴(𝑠)|

𝑑�̂�𝑘
𝑑𝑠

𝑑�̂�𝑙
𝑑𝑠

𝑑𝑠 + �̂� ∫𝛬
|𝛤 (𝑠)|�̂�𝑘�̂�𝑙 𝑑𝑠,

𝑩 ∈ R𝑁×𝑁𝜙 s.t. (𝐵)𝑘𝑙 = ∫𝛬
|𝛤 (𝑠)|𝜑𝑘|𝛬𝜃𝑙 𝑑𝑠,

�̂� ∈ R�̂�×𝑁𝜙 s.t. (�̂�)𝑘𝑙 = ∫𝛬
|𝛤 (𝑠)|�̂�𝑘 𝜃𝑙 𝑑𝑠,

𝑪𝛼 ∈ R𝑁×𝑁𝜓 s.t. (𝐶𝛼)𝑘𝑙 = 𝛼 ∫𝛬
|𝛤 (𝑠)|𝜑𝑘|𝛬𝜂𝑙 𝑑𝑠,

�̂�𝛼 ∈ R�̂�×𝑁𝜓 s.t. (�̂�𝛼)𝑘𝑙 = �̂� ∫𝛬
|𝛤 (𝑠)|�̂�𝑘 𝜂𝑖,𝑙 𝑑𝑠,

nd vectors

𝑓 ∈ R𝑁 s.t. 𝑓𝑘 = ∫𝛺
𝑓𝜑𝑘 𝑑𝜔,

𝑔 ∈ R�̂� s.t. (𝑔)𝑘 = ∫𝛬
|𝛴(𝑠)|𝑔 �̂�𝑘 𝑑𝑠.

We end up in the following form of the constraints:

𝑨𝑈 − 𝑩𝛷 − 𝑪𝛼𝛹 = 𝑓, (18)

�̂��̂� + �̂�𝛷 − �̂�𝛼𝛹 = 𝑔, (19)
4
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where, with a notation overload, we denoted the array of degrees of freedom with the same symbol of the corresponding discrete
function. We proceed similarly for the functional, which, after defining:

𝑮 ∈ R𝑁×𝑁 s.t. (𝐺)𝑘𝑙 = ∫𝛬
𝜑𝑘|𝛬𝜑𝑙 |𝛬𝑑𝑠,

�̂� ∈ R�̂�×�̂� s.t. (�̂�)𝑘𝑙 = ∫𝛬
�̂�𝑘 �̂�𝑙 𝑑𝑠,

𝑮𝝍 ∈ R𝑁𝜓×𝑁𝜓 s.t. (𝐺𝜓 )𝑘𝑙 = ∫𝛬
𝜂𝑘 𝜂𝑙 𝑑𝑠,

𝑪 ∈ R𝑁×𝑁𝜓 s.t. (𝐶)𝑘𝑙 = ∫𝛬
𝜑𝑘|𝛬𝜂𝑙 𝑑𝑠,

�̂� ∈ R�̂�𝑖×𝑁𝜓 s.t. (�̂�)𝑘𝑙 = ∫𝛬
�̂�𝑘 𝜂𝑙 𝑑𝑠,

reads:

𝐽𝛿 =
1
2

(

𝑈𝑇𝑮𝑈 − 𝑈𝑇𝑪𝛹 − 𝛹𝑇𝑪𝑇𝑈 + �̂�𝑇 �̂��̂� − �̂�𝑇 �̂�𝛹 − 𝛹𝑇 �̂�𝑇 �̂� + 2𝛹𝑇𝑮𝝍𝛹
)

. (20)

The discrete problem can be written as:

min
(𝛷,𝛹 )

𝐽𝛿(𝛷,𝛹 ),

subject to (18)–(19).
(21)

If we introduce the following matrices:

 =
[

𝑮 0
0 �̂�

]

,  =
[

𝑨 0
0 �̂�

]

,  =
[

𝑩
−�̂�

]

,  =
[

𝑪
�̂�

]

, 𝛼 =
[

𝑪𝛼

�̂�𝛼
]

,  =
[

𝑓
𝑔

]

,

first order optimality conditions for Problem (21) can be written as:

⎡

⎢

⎢

⎢

⎢

⎣

 𝟎 − 𝑇

𝟎 𝟎 𝟎 𝑇

−𝑇 𝟎 2𝑮𝝍 (−𝛼)𝑇
  −𝛼 𝟎

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑊
𝛷
𝛹
−𝑃

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝟎
𝟎
𝟎


⎤

⎥

⎥

⎥

⎥

⎦

, (22)

where 𝑃 is the vector of Lagrange multipliers and 𝑊 =
[

𝑈𝑇 , �̂�𝑇 ]𝑇 . For small-size problems, the numerical solution of the
optimization problem (21) can be obtained by solving system (22) with a direct solver, as done in [3]. For larger problems the
approach proposed in [20,24] is recommended, which fully exploits the domain-decomposition methodology introduced by the
optimization approach. We remark that both the mentioned resolution strategies can be used in conjunction with the XFEM based
version of the method here proposed without any additional complexity.

5. Application of the XFEM

In the definition of the discrete function 𝑈 we have denoted by {𝜑𝑘}𝑘=1,…,𝑁 a generic set of basis functions. We can now better
efine such basis functions, splitting them into two sets: the set of standard linear Lagrangian basis functions, denoted by {𝜑𝑠𝑘}𝑘∈ ,
ith  the set of their DOF indexes, and the set of the enrichment basis functions {𝜑𝑒𝑘}𝑘∈⋆ , with ⋆ the corresponding set of DOF

ndexes. The enrichment basis functions are built starting from a global enrichment function and then applying the partition of unity
ethod.

The global enrichment function needs to account for the irregular behavior that is expected for the discrete solution. Our choice
f enrichment function follows from the results in [18]. We will denote by 𝜁 (𝒙) the global enrichment function, which is defined
n a different way if the inclusion entirely crosses the domain of interest, or if it is embedded in the domain. In this latter case,
ndeed, the enrichment function also needs to control the shape of the solution around the endpoints of the inclusion. Let us start
y considering a single inclusion and let us denote by 𝑑𝓁(𝒙) the distance of a generic point 𝒙 from the line 𝓁 passing through 𝛬 (see
gain Fig. 1). In case 𝛬 crosses the domain from side to side, we define 𝜁 as:

𝜁 (𝒙) = 𝜁 ♮(𝒙) ∶=

{

− log(𝑑𝓁(𝒙)) if 𝑑𝓁(𝒙) > 𝑅
− log(𝑅) if 𝑑𝓁(𝒙) ≤ 𝑅,

(23)

being 𝑅, as before, the radius of the original 3D inclusion 𝛴.
If the endpoints 𝒙0 and 𝒙𝑆 of 𝛬 lie inside 𝛺, we define

𝜁 (𝒙) = 𝜁 ♭(𝒙) =

⎧

⎪

⎪

⎨

⎪

⎪

log

(

‖𝒙 − 𝒙𝑆‖ + 𝐿 + 𝝉𝜦 ⋅ (𝒙0 − 𝒙)
‖𝒙 − 𝒙0‖ + 𝝉𝜦 ⋅ (𝒙0 − 𝒙)

)

if 𝑑𝓁(𝒙) > 𝑅,

log

(

‖𝒙𝑅 − 𝒙𝑆‖ + 𝐿 + 𝝉𝜦 ⋅ (𝒙0 − 𝒙𝑅)
)

if 𝑑𝓁(𝒙) ≤ 𝑅

(24)
5

⎩

‖𝒙𝑅 − 𝒙0‖ + 𝝉𝜦 ⋅ (𝒙0 − 𝒙𝑅)
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Fig. 2. Enrichment function 𝜁 on a plane containing inclusion centerline. 𝛺 = [0, 1]3, 𝛬 aligned with the 𝑧-axis, 𝑅 = 10−2. For 𝜁 = 𝜁 ♭, 𝛬 extending from 𝑧 = 0.2
to 𝑧 = 0.8.

where 𝝉𝜦 is the unit tangent vector to 𝛬, 𝒙𝑅 is the projection of 𝒙 on the infinite cylindrical surface  containing 𝛤 , 𝒙0, 𝒙𝑆 are the
endpoints of 𝛬 and 𝐿 = ‖𝒙𝑆 − 𝒙0‖. Let us observe that

lim
𝐿→∞

1
4𝜋
𝜁 ♭(𝒙) ≈ − 1

2𝜋
𝜁 ♮(𝒙) (25)

is a relation usually used in electromagnetism to approximate the potential of an infinite length line charge. Functions 𝜁 ♮(𝒙) and
𝜁 ♭(𝒙) are shown in Fig. 2 on a plane containing 𝛬.

Let us now consider a cylinder 𝛥 in 𝛺 with centerline coinciding with 𝛬 and having constant cross-section radius 𝜌 ≥ 𝑅 and
let us further denote by 𝛥 the subset of mesh elements in  having an intersection with the cylinder 𝛥 of non null measure,
i.e. 𝛥 ∶= {𝜏 ∈  ∶ |𝜏 ∩ 𝛥| > 0}. We denote by  ⊂  the degree of freedom indexes 𝑘 ∈  such that the support of the standard basis
function 𝜑𝑠𝑘 has a non empty overlap with an element in 𝛥, i.e.  ∶=

{

𝑘 ∈  ∶ ∃𝜏𝑗 ∈ 𝛥, supp(𝜑𝑠𝑘) ∩ 𝜏𝑗 ≠ ∅
}

. We also introduce a
continuous ramp function 𝑟 (𝒙), equal to one inside 𝛥 and linearly vanishing to zero outside 𝛥, obtained as 𝑟 (𝒙) ∶=

∑

𝑘∈ 𝜑
𝑠
𝑘(𝒙).

For 𝑘 ∈  we then define �̄�𝑒𝑘(𝒙) = 𝜑𝑠𝑘(𝒙)𝜁 (𝒙)𝑟 (𝒙) and finally 𝜑𝑒𝑘(𝒙) = �̄�𝑒𝑘(𝒙) − �̄�
𝑒
𝑘(𝒙𝑘), such that the enrichment basis functions are

zero-valued in the mesh vertexes 𝒙𝑘. Following the XFEM paradigm [21], the effect of the enrichment is local, in a neighborhood
of the 1D domain 𝛬, depending on the chosen value of 𝜌.

The extension to the case of multiple inclusions is quite straightforward, by simply using the superposition effect. Let us consider
 inclusions 𝛬𝑖, and, for each inclusion, let us define a cylinder 𝛥𝑖 with a centerline coinciding with 𝛬𝑖 and radius 𝜌𝑖 > 𝑅𝑖, being
𝑅𝑖 the radius of the 3D inclusion 𝛴𝑖. We then define

 𝑖
𝛥 ∶=

{

𝜏 ∈  ∶ |𝜏 ∩ 𝛥𝑖| > 0
}

and

𝑖 ∶=
{

𝑘 ∈  ∶ ∃𝜏𝑗 ∈  𝑖
𝛥 , supp(𝜑𝑠𝑘) ∩ 𝜏𝑗 ≠ ∅

}

.

A different enrichment function is defined for each inclusion, namely

𝜑𝑒,𝑖𝑘 (𝒙) = 𝜑𝑠𝑘(𝒙)𝜁𝑖(𝒙)𝑟
𝑖
 (𝒙),

with 𝑟𝑖 (𝒙) ∶=
∑

𝑘∈𝑖 𝜑
𝑠
𝑘(𝒙) and 𝜁𝑖(𝒙) defined as in (23) or (24) depending on 𝛬𝑖. The discrete approximation of the unknown 𝑢 is

then defined as:

𝑈 =
∑

𝑘∈
𝑈 𝑠
𝑘𝜑

𝑠
𝑘(𝒙) +


∑

𝑖=1

∑

𝑘∈𝑖

𝑈 𝑒,𝑖
𝑘

(

𝜑𝑒,𝑖𝑘 (𝒙)
)

.

In practice, the unknowns and the corresponding basis functions are numbered consecutively, giving 𝑁 total unknowns.
Please note that the case of intersecting inclusions is contained in the above presentation, as we can simply split the intersecting

centerlines into sub-segments meeting in one of their endpoints.
In complex configurations, with several inclusions, strategies might be required to avoid the presence of nearly linearly dependent

enrichment basis functions or the presence of small intersections between a mesh element and the enrichment region. Details can
be found in [21] and references therein. Alternatives are proposed in [25–29].
6
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Fig. 3. Description of numerical integration strategy.

Table 1
Numerical quadrature errors for different numbers of integration points.
𝑛𝛬 𝑛r 𝑛𝜃 𝑁pt error - 𝑅 = 0.1 error - 𝑅 = 0.3

1 3 5 33 6.94e−05 4.28e−06
1 4 7 59 9.85e−08 2.97e−09
1 6 9 111 6.45e−12 1.75e−12
1 8 12 195 4.57e−16 1.67e−16

6. Numerical integration

A key aspect for the successful application of the XFEM lies in the numerical quadrature of the enrichment basis functions.
Given the irregular behavior of such functions, customized strategies need to be adapted, often relying on a sub-division of the
three-dimensional domain conforming to the interfaces. Here, the devised approach exploits the known behavior of function 𝜁 (𝒙)
and is capable of correctly capturing the curvilinear boundary of the interface. Let us start with the case of an isolated inclusion.
With reference Fig. 3, let us consider a tetrahedron 𝜏 ∈  , intersected by one inclusion 𝛬 with radius 𝑅. Let us denote by
𝑠𝑣0 ≥ 𝑠𝑣1 ≥ 𝑠𝑣2 ≥ 𝑠𝑣3 the curvilinear abscissas of the projections on 𝛬 of the four vertexes of 𝜏. We remark that it is possible
that some of these projection points coincide, when 𝛬 is orthogonal to one of the faces of the element, as it is the case of Fig. 3.
Then, considering a generic enrichment 𝜑𝑒 we have:

∫𝜏
𝜑𝑒(𝒙)d𝒙 =

2
∑

𝑡=0
∫

𝑠𝑣𝑡+1

𝑠𝑣𝑡

(

∫𝑝(𝑠)
𝜑𝑒(𝒙)d𝜎

)

∶=
2
∑

𝑡=0
∫

𝑠𝑣𝑡+1

𝑠𝑣𝑡

𝑓𝜁 (𝑠)d𝑠,

in which 𝑝(𝑠) is the polygonal region given by the intersection of 𝜏 with a plane orthogonal to 𝛬 at 𝑠 ∈ [𝑠𝑣0 , 𝑠𝑣3 ]. In each interval
𝛬𝑡 ∶= [𝑠𝑣𝑡 , 𝑠𝑣𝑡+1 ], 𝑡 = 0,… , 2, the function representing the surface area of 𝑝(𝑠) is smooth, and consequently 𝑓𝜁 (𝑠) is smooth. A
Gaussian 1D quadrature rule with 𝑛𝛬 nodes can be efficiently adopted to integrate 𝑓𝜁 (𝑠) in each 𝛬𝑡, requiring the computation
of values 𝑓𝜁 (𝑠𝑗 ) at integration nodes 𝑠𝑗 ∈ (𝑠𝑣𝑡 , 𝑠𝑣𝑡+1 ), 𝑗 = 1,… , 𝑛𝛬. The strategy to compute integrals 𝑓𝜁 (𝑠𝑗 ) = ∫𝑝(𝑠𝑗 ) 𝜁 (𝒙) on the
regions 𝑝(𝑠𝑗 ), depends instead on the position of 𝑝(𝑠𝑗 ). Indeed, if 𝑝(𝑠𝑗 ) does not contain the irregularity interface of function 𝜁 , we
adopt standard quadrature. This is the case, for example, of the two top triangular regions in Fig. 3. Whereas, when 𝑝(𝑠𝑗 ) contains
the interface, as in the two bottom triangular regions in Fig. 3, the integration is performed combining the approaches proposed
in [30,31], adapted to the present case, and described in the following. Let us denote by 𝒙𝑗𝛬 the point at the intersection between 𝛬
and the plane containing 𝑝(𝑠𝑗 ), and let us denote by 𝛤 (𝑠𝑗 ) the irregularity interface of 𝜁 at 𝑠𝑗 . We remark that this actually coincides
with the intersection of 𝑝(𝑠𝑗 ) with the lateral surface of the original 3D inclusion, see Fig. 3, right. Furthermore, let us call 𝑝in(𝑠𝑗 )
the portion of 𝑝(𝑠𝑗 ) inside 𝛤 (𝑠𝑗 ), and 𝑝ext(𝑠𝑗 ) the portion outside 𝛤 (𝑠𝑗 ). The regions 𝑝in(𝑠𝑗 ) and 𝑝ext(𝑠𝑗 ) are each covered by triangular
regions with one vertex in 𝒙𝑗𝛬, as illustrated in Fig. 3, right. In this case we have that 𝛤 (𝑠𝑗 ) is entirely contained in 𝑝(𝑠𝑗 ), but such
covering can also be determined when it is only partially contained. More details are available in [30]. Now we apply a first mapping
𝑡 ∶ [𝑥, 𝑦] ↦ [𝑥⋆, 𝑦⋆] from each triangular region to the reference triangle, with 𝒙𝑗𝛬 being mapped to the origin of the reference frame
(𝑥⋆, 𝑦⋆). We remark that, in such reference frame, the portion of 𝛤 (𝑠𝑗 ) contained in the triangular region is mapped to an ellipse,
centered in the origin. Then we apply a rotation 𝜚 ∶ [𝑥⋆, 𝑦⋆] ↦ [�̃�, �̃�] to align the axis 𝑥⋆𝑦⋆ with the principal axis of this ellipse,
whose equation is �̃�2

𝜆21
+ �̃�2

𝜆22
= 𝑅2 in the new frame. Finally we introduce a polar transformation 𝛶 ∶ [r, 𝜃] ↦ [�̃�, �̃�], depending on a

parameter 𝑞 and defined as:
{

�̃� = 𝜆1𝑅r𝑞 cos 𝜃
𝑞

7

�̃� = 𝜆2𝑅r sin 𝜃.
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Fig. 4. Description of the split strategy.

Now we choose 𝑛r Gaussian quadrature nodes along r and 𝑛𝜃 nodes along 𝜃 which are then mapped back to the physical reference
frame (𝑥, 𝑦). The three changes of variables allow to correctly integrate the enrichment function close to the curvilinear interface
𝛤 , since the value of 𝑞 can be chosen to obtain a clustering of the nodes towards the border of the ellipse, where the function has
a steep gradient. Higher values of 𝑞 correspond to a higher clustering. A value 𝑞 = 1 is used for the regions inside 𝛤 , where 𝜁 is
constant, whereas a value 𝑞 = 3 is employed for the regions outside 𝛴. We remark that the above quadrature strategy also applies
to general polyhedrons.

As an example, we integrate the function 𝜁 ♮(𝑑𝛬(𝒙)) defined in (23) over a unit edge cubic domain [0, 1]3, where 𝛬 coincides with
the vertical edge of the cube passing through the origin. We chose this simple geometry to allow for the computation of the exact
integral. Two values of 𝑅 are proposed: 𝑅 = 0.1 and 𝑅 = 0.3. The obtained results are reported Table 1, showing that with the
proposed strategy, it is possible to compute the integral from single precision up to machine precision. In the table, 𝑁pt represents
the total number of quadrature points. The values in columns 𝑛r and 𝑛𝜃 refer to the number of quadrature nodes selected in the
external regions 𝑝ext(⋅). Constant values of 𝑛r = 1 and 𝑛𝜃 = 1 are used for the internal regions 𝑝in(⋅). Moreover, in this particular
case, a single node along 𝛬 is sufficient, considering the simple geometry of the domain and the regularity of the integrated function
𝑓𝜁♮ (𝑠).

The above procedure is generalized to the case of multiple inclusions as follows. If multiple non intersecting inclusions pass
through a single tetrahedron 𝜏 ∈  , or if a single segment ends within a tetrahedron, it is sufficient to split the element into sub-
cells such that each sub-cell only contains up to one inclusion, entirely crossing it. Then, we use the quadrature strategy proposed
above in cells containing an inclusion, or a classic one, if the considered sub-cell contains no segments.

The case of multiple segments intersecting in point 𝑃 in a tetrahedral cell 𝜏 ∈  also requires a splitting into sub-cells containing
up to a single inclusion (or a portion of a single inclusion). We remark that, in this case, the enrichment function 𝜁 = 𝜁 ♭𝑖 needs to
be used, as segment endpoints (at least those matching with 𝑃 ) are inside 𝛺.

We choose to split elements with the following strategy. Let us consider  ≥ 2 intersecting segments in 𝜏 ∈  , locally numbered
as 𝛬𝑖, 𝑖 = 1,… ,. We select directions 𝝂1 and 𝝂2 as the sum and the external product of the unit tangent vectors of the first two
centerlines, respectively, i.e. 𝝂1 = 𝝉𝜦1

+ 𝝉𝜦2
, and 𝝂2 = 𝝉𝜦1

∧ 𝝉𝜦2
. Then we cut cell 𝜏 along the plane containing 𝝂1 and 𝝂2 and

passing through 𝑃 . This generates two sub-cells, and the procedure is replicated on each sub-cell. If the sub-cell contains more than
two inclusions it is split again along a cutting direction, chosen as above and depending on the local (arbitrary) renumbering of
the inclusions in the sub-cell itself. If, on the contrary, a sub-cell contains one or no inclusions, it is left unchanged. The process
is recursively applied to each newly generated sub-cell until all sub-cells contain less than 2 inclusions. An example is shown in
Fig. 4, for a cell containing three inclusion. The first cut is performed along the plane containing 𝝂1 and 𝝂2 in Fig. 4(a) and passing
through 𝑃 , thus generating two sub-cells 1 and 2. Cell 1 contains a single inclusion, and requires no further splitting. Cell 2, on
the contrary, still contains 2 inclusions, locally renumbered as 𝛬1 and 𝛬2, see Fig. 4(b), and thus it is further split along the plane
containing 𝝂1 and 𝝂2 passing through 𝑃 , giving cells 2 and 3, see Fig. 4(c). Finally, on each sub-cell we apply the quadrature
strategy outlined in Section 6. Fig. 4(d) shows quadrature nodes for the proposed example.

7. Numerical results

The following section is devoted to the presentation of five numerical tests in order to validate and show the effectiveness of the
proposed approach. In the following we will denote by 𝑁 the number of degrees of freedom for variable 𝑈 , which, for a fixed mesh,
can vary according to the radius 𝜌 of the enrichment cylinder 𝛥. Let us remark that the case 𝜌 > 0 corresponds to the optimization
based domain decomposition method with the use of the extended finite elements for the 3D variable, while for 𝜌 = 0 we end up in
the same optimization based approach but with standard finite elements for the 3D variable. For what concerns the 1D variables,
piecewise linear continuous basis functions are used for �̂� on an equally spaced mesh ̂ and for 𝛹 on an equally spaced mesh  𝜓 ,
whereas piecewise constant basis functions are used for 𝛷 on an equally spaced mesh  𝜙. The refinement level of the 1D meshes
8
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Fig. 5. Test 7.1, trend of the relative errors under mesh refinement. Dashed lines: relative 𝐻1-norm of the error; full lines: relative 𝐿2-norm of the error.

̂ ,  𝜓 and  𝜙 is related to the refinement level of the 3D mesh  and not to the number of degrees of freedom 𝑁 . More in details,
denoted by 𝑁𝐼 the number of intersection points between an inclusion 𝛬 and the boundary of the elements in  , mesh ̂ will have
2𝑁𝐼 nodes whereas meshes  𝜓 and  𝜙 will count 𝑁𝐼∕2 nodes. The same is used for each segment in the case of multiple inclusions.
The analysis on the behavior of the method with respect to different refinement levels of the various meshes is available in the
references, see [3,20]. The solution of the problems in the numerical experiments is obtained by solving system (22) with a direct
method.

7.1. 3D problem with singular source term

The first numerical example concerns a 3D problem with a singular source term, and is used to validate the proposed XFEM
setting through the comparison with a known analytical solution. Here, we will not solve a coupled 3D–1D problem, but a 3D
problem with a known source term on a line. Consequently there is no need of using the optimization based coupling strategy. This
example is therefore useful to investigate the effectiveness of the enrichment function shown in Section 5 in describing the expected
behavior of the solution on coarse meshes and of the quadrature strategy described in Section 6.

The test considers a cubic domain 𝛺 = (−1, 1)3 with a cylindrical inclusion 𝛴 = {(𝑥, 𝑦, 𝑧) ∶
√

𝑥2 + 𝑦2 < 𝑅, 𝑧 ∈ (−1, 1)}, of radius
= 10−3. The inclusion is dimensionally reduced to a line and we numerically solve problem (16) with 𝛼 = 0, 𝑓 = 0, 𝐾 = 1 and

𝜙 = − 1
10𝜋𝑅 . The obtained solution is compared to the analytical solution of the original equi-dimensional problem, chosen as:

𝑢ex =

{

1
10𝜋 log(𝑟) for 𝑟 > 𝑅
1

10𝜋 log(𝑅) for 𝑟 ≤ 𝑅

with 𝑟 =
√

𝑥2 + 𝑦2. We can observe that such analytical solution actually matches with the enrichment function 𝜁 = 𝜁 ♮, but in the
dimensionally reduced problem the flux 𝜙 is placed at inclusion centerline and not at the inclusion boundary, thus introducing a

odeling error.
The problem is solved on five meshes with maximum element diameter ranging between 0.215 and 0.034. Homogeneous

eumann boundary conditions are prescribed on 𝜕𝛺n = {(𝑥, 𝑦, 𝑧) ∶ 𝑧 = −1 ∨ 𝑧 = 1}, whereas Dirichlet boundary conditions, in
accordance with the chosen exact solution, are set on 𝜕𝛺d = 𝜕𝛺 ⧵ 𝜕𝛺n. Convergence trends of the error between the computed and
he analytical solution against the total number of degrees of freedom 𝑁 are reported in Fig. 5 for the 𝐿2 and 𝐻1 relative norms. Four
alues of the enrichment area are considered, depending on the radius 𝜌 of cylinder 𝛥 (see Section 5): namely 𝜌 ∈ {0, 0.1, 0.3, 0.5}.

Let us recall that the case 𝜌 = 0 corresponds to the application of standard finite elements on a uniformly refined mesh. In this case
no convergence in the 𝐻1 norm and a sub-optimal 𝐿2 convergence trend is expected, see [32]. For 𝜌 > 0, the convergence trends
n Fig. 5 are close to the optimal ones for linear Lagrangian finite elements with regular data, and slightly improve as 𝜌 increases.

Table 2 reports the quadrature parameters employed for the 𝜌 > 0 cases: 𝑛𝛬, 𝑛r and 𝑛𝜃 refer to the number of nodes along 𝛬, r
nd 𝜃 respectively, as described in Section 6. For 𝑛r and 𝑛𝜃 we distinguish between the number of quadrature nodes used within the
nclusion radius (in), where the enrichment is constant, or outside (out). Let us recall that the quadrature rule described in Section 6
s used only for elements which are intersected by 𝛴. The symbol 𝑛𝛥, finally, denotes the number of nodes of a standard 3D Gaussian
uadrature rule adopted on the tetrahedrons intersecting region 𝛥 but not 𝛴: in these elements, indeed, we still need to integrate the
nrichment functions, but, here, such functions have a continuous gradient. We also remark that the number of quadrature nodes
sed in a tetrahedron intersected by 𝛴 is typically larger than 𝑛𝛬 × 𝑛r × 𝑛𝜃 , as it depends on the number of sub intervals 𝛬𝑡 (see

Section 6) used and the number of sub-cells originated by the splitting. Further comments on this aspect are provided in the next
examples, in which the same quadrature parameters reported in Table 2 will be considered. The parameters reported in Table 2 are
the proposed optimal choice: less nodes yield a decay in convergence trends and an upward shift of the error curves; more nodes
9
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Table 2
Number of quadrature nodes.
𝑛r 𝑛𝜃 𝑛𝛬 𝑛𝛥
in: 1 in: 1 2 14out : 2 out : 2

Fig. 6. Test 7.2: Geometry configuration and detail of the mesh used for the reference solution.

7.2. 3D-1D coupled problem with crossing inclusion

The second numerical example takes into account a 3D–1D coupled problem, and proposes a validation of the XFEM strategy
via a comparison with a solution obtained solving with standard FEM the original equi-dimensional problem.

Let us consider a cubic domain 𝛺 = (−1, 1)3 with a cylindrical inclusion

𝛴 = {(𝑥, 𝑦, 𝑧) ∶
√

𝑥2 + 𝑦2 < 𝑅, 𝑧 ∈ (−1, 1)},

of radius 𝑅 = 10−2 (see Fig. 6(a)). We set 𝜕𝛺d = {(𝑥, 𝑦, 𝑧) ∶ 𝑧 = −1 ∨ 𝑧 = 1} and 𝜕𝛺n = 𝜕𝛺 ⧵ 𝜕𝛺d, i.e., the Dirichlet boundary consists
of the top and bottom faces of the cube, and the Neumann boundary consists of the lateral faces. Problem data are 𝑓 = 1, 𝑔 = 𝑔 = 0,
𝐾 = 1 and �̃� = 105, whereas homogeneous Dirichlet boundary conditions are prescribed on 𝜕𝛺d and at the endpoints of 𝛬, while
homogeneous Neumann boundary conditions are set on 𝜕𝛺n.

To build a reference solution, we solve the original 3D–3D equi dimensional problem with a standard FEM method, on a mesh
conforming to the actual interface 𝛤 , which is discretized as the lateral surface of a prism with a 24-edge polygonal base. By standard
FEM we actually mean that no domain decomposition is performed, and that a global pressure field 𝑈 is computed without resorting
to an optimization based approach. As shown in Fig. 6(b), the mesh for the reference solution is refined in a region at a distance 𝑅
from 𝛬, with elements of maximum diameter of 0.002, while it is coarser outside, where the element maximum diameter is 0.027,
resulting in about 3.1 × 105 DOFs.

The corresponding 3D–1D dimensionally reduced problem is solved on a uniformly refined mesh with element maximum
diameter of 0.136. We consider the cases 𝜌 = 0 and 𝜌 = 0.01, corresponding respectively to 𝑁 ∼ 1.3 × 103 and 𝑁 ∼ 1.5 × 103.
Let us recall that the 3D–1D problem is always solved resorting to the optimization based domain decomposition method described
in Section 3 and that, for 𝜌 > 0, we use the quadrature strategy described in Section 6 with the parameters reported in Table 2.

The solutions obtained on 𝛬 are reported in Fig. 7, along with the trace on 𝛬 of the reference 3D–3D solution. In [3], where the
problem was solved only for 𝜌 = 0, it was observed that, when �̃� ≫ 𝐾, mesh adaptation is needed close to the inclusion to improve
accuracy, since a big jump in the diffusion coefficients produces a 3D solution with a very strong gradient close to the inclusion
itself. Here we can see that, a choice of 𝜌 > 0 allows to obtain accurate solutions on uniform coarse meshes. Indeed, despite using
nearly the same number of DOFs of 𝜌 = 0 case, the solution with the XFEM is much closer to the 3D–3D reference solution, with a
4% relative 𝐿2 error on 𝛬, compared to a 78% error of the 𝜌 = 0 case.

7.3. 3D-1D coupled problem with inclusion inside the domain

In this example, we consider the case of an inclusion that is completely embedded into a domain 𝛺. In particular we choose
𝛺 = (−1, 1)3 and the original 3D inclusion is

𝛴 = {(𝑥, 𝑦, 𝑧) ∶
√

𝑥2 + 𝑦2 < 𝑅, 𝑧 ∈ (−0.8, 0.5)},

i.e., the endpoints of 𝛬 lie inside 𝛺, as reported in Fig. 8(a). Problem data are 𝑅 = 10−2, 𝑓 = 1, 𝐾 = 1, 𝑔 = 𝑔 = 0, �̃� = 105

and we impose homogeneous Dirichlet boundary conditions on 𝜕𝛺d = {(𝑥, 𝑦, 𝑧) ∶ 𝑧 = −1 ∨ 𝑧 = 1} and homogeneous Neumann on
𝜕𝛺n = 𝜕𝛺 ⧵ 𝜕𝛺d and at the end sections of the inclusion.

As in the previous case, we build a reference solution by solving an equi-dimensional 3D–3D problem with standard finite
elements on a mesh conforming to the interface 𝛤 and refined towards the inclusion As reported in Fig. 8(b), this mesh presents
10
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Fig. 7. Test 7.2: solutions on 𝛬 obtained for 𝜌 = 0 and 𝜌 = 0.1 compared to the trace on 𝛬 of the 3D–3D reference solution.

Fig. 8. Test 7.3: geometry configuration and mesh used to compute the reference solution.

three different degrees of refinement. In particular the element maximum diameter is 0.0045 in a region of radius R around 𝛬, 0.01
outside this region but within a prismatic box (−0.3, 0.3)2 × (−0.9, 0.6), and 0.0215 outside the box, resulting in about 4 × 105 DOFs.
The 3D–1D reduced problem in instead solved on a uniform mesh, with mesh parameter 0.086, and for 𝜌 ∈ {0, 0.1, 0.3, 0.5,

√

2},
corresponding to a value of 𝑁 ranging between 4.6 × 103 and 1 × 104.

Fig. 9(a) shows the solutions obtained on 𝛬. We can observe that for 𝜌 > 0, the solutions are much closer to the trace of the
reference 3D–3D solution, already for 𝜌 = 0.1. Clearly, as 𝜌 increases, the gap with the reference decreases, at the expenses of
a larger number of unknowns. Relative errors between the obtained 1D solutions and the trace of the reference solution range
between a value of 8 × 10−3, for 𝜌 = 0.1, and 2 × 10−4 for 𝜌 =

√

2, in 𝐿2 norm. The case 𝜌 = 0 fails, instead, in providing an equally
good representation of the solution, with a 7 × 10−2 relative error on 𝛬 with respect to the reference solution. Indeed, as in the
previous test, the large jump in the coefficients between the 3D domain and the 1D inclusion gives a solution with a steep gradient
that cannot be correctly reproduced by FEM basis functions on elements with a diameter larger than the radius of the inclusion.
We remark that it is not possible to significantly reduce the number of DOFs of the 3D–3D reference solution without affecting its
quality. We can then note that choosing 𝜌 =

√

2, i.e. enriching all the basis functions, still gives a number of unknowns about 40
times smaller than the ones required for the equi-dimensional problem.

Fig. 9(b) reports the distribution of the total number of quadrature nodes used in the elements intersected by the inclusion when
𝜌 > 0. The maximum number of quadrature nodes in a non-split cell can be easily computed as 3×4×𝑛𝛬×𝑛r×𝑛𝜃 = 100, since 3 is the
maximum number of intervals 𝛬𝑡 in a tetrahedron, 4 is the maximum number of triangular regions on each slice of Fig. 3 and 𝑛𝛬,
𝑛r, and 𝑛𝜃 are the values taken from Table 2, summing the nodes inside and outside 𝛤 . This is confirmed by the values in Fig. 9(b),
with the only exception of the two elements containing inclusion endpoints, that are split into sub-cells. Clearly the high number of
quadrature nodes represents an additional computational cost. However, in general, this cost is largely offset by the possibility of
using less degrees of freedom with respect to approaches that require mesh adaptation. Moreover, the quadrature rule described in
Section 6 is only used in elements intersected by 𝛴, and thus the values of Fig. 9(b) are independent of the chosen value of 𝜌 > 0.
When the mesh-size is reduced, the number of such elements grows linearly as ℎ−1.

7.4. 3D-1D coupled problem with bifurcated inclusion

Let us now consider the case of a bifurcated inclusion 𝛴, which can also be seen as the case of multiple inclusions 𝛴𝑖 whose
centerlines 𝛬𝑖 intersect at one point. In particular, we consider 3 inclusions of radius 𝑅 = 10−2 with centerlines

𝛬 = {(0, 0, 𝑧) ∶ 𝑧 ∈ (−1.0,−0.1)}
11
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Fig. 9. Test 7.3: solutions on 𝛬 and distribution of the number of quadrature nodes among elements intersected by the bulk inclusion 𝛴 when 𝜌 > 0.

Fig. 10. Test 7.4: geometry configuration and mesh used to compute the reference solution.

𝛬2 = {(𝑥, 0, 𝑧) ∶ 𝑥 ∈ (0, 0.6), 𝑧 ∈ (−0.1, 0.4)}

𝛬3 = {(𝑥, 0, 𝑧) ∶ 𝑥 ∈ (0,−0.6), 𝑧 ∈ (−0.1, 0.4)},

as shown in Fig. 10(a). Let 𝛺 = (−1, 1)3 and let us enforce homogeneous Dirichlet boundary conditions on the top and bottom faces
of the cube. We also impose a homogeneous Dirichlet boundary condition on the section of the inclusion lying on the bottom face
of 𝛺, and homogeneous Neumann boundary conditions on the sections lying inside 𝛺. We finally set 𝑓 = 1, 𝐾 = 1, 𝑔 = 𝑔 = 0 and
�̃� = 105.

To obtain a reference solution, in this case, we solve the 3D–1D reduced problem with 𝜌 = 0, but on a mesh refined within a
prism containing the whole inclusion (see Fig. 10(b)). In particular, the prism has a 7-edge polygonal base which can be inscribed in
a circle of radius 0.7. Inside the prism the mesh parameter is 0.027, while it is 0.215 outside, resulting in about 4.6×104 DOFs. This
choice of reference solution is not as reliable as the one of the previous examples, and is motivated by the complexity of generating
a mesh conforming to the 3D inclusion for complex geometries, as the ones proposed here and in example 7.5.

The reduced 3D–1D problem is then solved on a uniform mesh with mesh parameter 0.086 and for 𝜌 ∈ {0, 0.1, 0.3, 0.5,
√

2},
corresponding to 𝑁 ∈ [4.6 × 103, 2.2 × 104]. Let us remark that we are choosing a unique value of 𝜌 for all the inclusions. In the
following, when specifying the value of 𝜌, we will always refer to a solution computed on the uniform mesh.

Fig. 11 shows the solutions for the different values of 𝜌 on the three centerlines 𝛬1, 𝛬2, 𝛬3, along with the corresponding trace
of the reference solution. Also in this case we can notice that 𝜌 > 0 provides good approximations of the reference solution, whereas
the case 𝜌 = 0 is less accurate on the uniform mesh.

The distribution of the total number of quadrature nodes used in the elements intersected by 𝛴 when 𝜌 > 0 is reported in
Fig. 12(a). In this case only four elements exceed 100 quadrature nodes: the two containing the endpoints of the inclusion, the one
containing the intersection point and one of its neighbors, which are the elements which actually require splitting. Fig. 12(b) shows
a slice of the solution obtained for 𝜌 = 0.1 on the 𝑦𝑧 plane.

Finally, Figs. 13–14 show the solution for 𝜌 = 0.1 on planes orthogonal to the 𝑧-axis. In the right panels, the reference solution
is reported in transparency, to highlight the good matching of the two.
12
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Fig. 11. Test 7.4: solutions on 𝛬 for different values of 𝜌 compared to reference solution.

Fig. 12. Test 7.4: distribution of the number of quadrature nodes among elements intersected by the bulk inclusion 𝛴 when 𝜌 > 0 and solution on the 𝑦𝑧-plane
obtained for 𝜌 = 0.1.

Fig. 13. Test 7.4: solution on planes orthogonal to the 𝑧-axis and located at 𝑧 = −0.5 and 𝑧 = 0.1.

7.5. 3D-1D coupled problems: inclusion with several branches

As a last numerical example, we propose a case with a more realistic inclusion characterized by several branches, as reported
in Fig. 15(a) . We assume that the inclusion 𝛴, which has a constant radius 𝑅 = 10−2, is embedded in a cubic domain 𝛺 = (−1, 1)3.
We chose 𝑓 = 0, 𝐾 = 1, 𝑔 = 𝑔 = 0, �̃� = 105 and we impose homogeneous Neumann boundary conditions on 𝜕𝛺n = {(𝑥, 𝑦, 𝑧) ∶ 𝑧 =
−1 ∨ 𝑧 = 1} and homogeneous Dirichlet on 𝜕𝛺d = 𝜕𝛺 ⧵ 𝜕𝛺n. For whats concerns the inclusion end sections, we prescribe a Dirichlet
boundary condition equal to one at the section lying on the bottom face of the cube, while homogeneous Neumann conditions are
prescribed at the dead ends.

As for the previous test case, we build a reference solution by solving the 3D–1D reduced problem with 𝜌 = 0 on a mesh refined
in a prism containing the inclusion. In this case we consider a prism with a 7-edge polygonal base which can be inscribed in a
circle of radius 0.6. Inside the prism we consider a mesh parameter of 0.027, while outside of 0.215, resulting in 𝑁 ∼ 4.3× 104 (see
Fig. 15(b)).
13
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Fig. 14. Test 7.4: solution on planes orthogonal to the 𝑧-axis and passing through the bifurcation point and close to the two tips.

Fig. 15. Test 7.5: geometry configuration and mesh used to compute the reference solution.

The 3D–1D reduced problem is solved on a uniform mesh of parameter 0.086 with 𝜌 = 0 and 𝜌 = 0.1, resulting in 𝑁 ∼ 3.3 × 103

and 𝑁 ∼ 4.6 × 103 respectively. Also in this case, if the value of 𝜌 is specified, we will always refer to a solution computed on the
uniform mesh.

The distribution of the number of quadrature nodes among the elements cut by 𝛴 when 𝜌 > 0 is reported in Fig. 16, using again
the quadrature parameters reported in Table 2. Given the higher number of branches with respect to the previous test cases, the
elements needing a high order quadrature formula are slightly more. However, let us remark that only the 0.1% of the total number
of elements in the mesh presents more than 100 quadrature nodes. These are the tetrahedrons containing the points in which the
network changes direction, the bifurcation points or the dead-ends. Further, only the 0.5% of the total number of elements is cut
by at least one tubular inclusion, so that the number of elements in which the quadrature strategy of Section 6 is applied is very
small compared to the total number of elements. This overhead is largely offset by the fact that the application of the XFEM avoids
the cost of building meshes conforming to the inclusions, or refined near the inclusions.

Fig. 17(a) shows the solutions obtained for 𝜌 = 0 and 𝜌 = 0.1 on a plane orthogonal to the 𝑧-axis and located at 𝑧 = 0. As
expected, due to the non conformity of the chosen coarse mesh, standard finite element basis functions (𝜌 = 0) are not able to
capture the steep gradient close to the inclusion. Only by refining the mesh it is possible to reproduce the solution obtained for
𝜌 = 0.1. This is shown in Fig. 17(b), where a good agreement between the solution obtained with 𝜌 = 0.1 and the reference solution
can be observed. We recall that the reference solution for this case is a solution computed with 𝜌 = 0 on a strongly refined mesh.

Finally, Fig. 18 reports the solution obtained for 𝜌 = 0.1 on three different sections of 𝛺 orthogonal to the 𝑧-axis (Fig. 18(a)) and
on a cylindrical surface parallel to the 𝑧-axis itself (Fig. 18(b)).

8. Conclusions

The present work presented an XFEM based implementation of a PDE-constrained optimization method for 3D–1D coupled
problems. Suitable enrichment functions have been proposed to tackle problems with thin inclusions in very general cases: inclusions
can have arbitrary orientations, form intersections or end inside the domain. A suitable quadrature rule has been introduced to
numerically integrate the irregular enrichment functions on general polyhedral cells. The quadrature strategy uses the property
of the enrichment functions of being regular in a direction tangential to inclusion centerline, and irregular, with a discontinuous
gradient, on planes orthogonal to the centerline. Several numerical tests are proposed to show the effectiveness of the method in
capturing the expected behavior of the solution also on meshes characterized by a maximum element diameter much larger than
14
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Fig. 16. Test 7.5: distribution of the number of quadrature nodes among the elements intersected by the bulk inclusion 𝛴 when 𝜌 > 0.

Fig. 17. Test 7.5: Solutions on a plane orthogonal to the 𝑧-axis and located at 𝑧 = 0.

Fig. 18. Test 7.5: Solution obtained for 𝜌 = 0.1 on three different sections orthogonal to the 𝑧-axis and on a cylindrical surface parallel to the 𝑧-axis.

the radius of the inclusion. A validation of the methodology is also performed through the comparison with an available analytical
solution, or with solutions obtained on adapted meshes. In realistic applications, especially when continuity is imposed at the
interface, domain decomposition strategies may become mandatory, also allowing the use of non conforming meshes. The proposed
approach enables to take full advantage of such mesh non conformity, avoiding mesh refinement in the vicinity of the inclusions.
Moreover, it can be readily used in conjunction with the matrix-free iterative solver discussed in [24] and with different interface
conditions, such as filtration-like conditions, thus allowing to simulate a large variety of problems in complex domains.

CRediT authorship contribution statement

Denise Grappein: Writing – review & editing, Writing – original draft, Software, Methodology, Formal analysis, Conceptual-
ization. Stefano Scialò: Writing – review & editing, Writing – original draft, Software, Methodology, Funding acquisition, Formal
analysis, Conceptualization. Fabio Vicini: Writing – review & editing, Writing – original draft, Software, Methodology, Formal
analysis, Conceptualization.
15



Finite Elements in Analysis & Design 239 (2024) 104203D. Grappein et al.

t

D

A

n

R

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This publication is part of the project NODES which has received funding from the MUR-M4C2 1.5 of PNRR with grant agreement
o. ECS00000036. Authors also acknowledge financial support from INdAM-GNCS.

eferences

[1] T. Köppl, E. Vidotto, B. Wohlmuth, P. Zunino, Mathematical modeling, analysis and numerical approximation of second-order elliptic problems with
inclusions, Math. Models Methods Appl. Sci. 28 (05) (2018) 953–978, http://dx.doi.org/10.1142/S0218202518500252.

[2] F. Laurino, P. Zunino, Derivation and analysis of coupled PDEs on manifolds with high dimensionality gap arising from topological model reduction,
ESAIM: M2AN 53 (6) (2019) 2047–2080.

[3] S. Berrone, D. Grappein, S. Scialò, 3D-1D coupling on non conforming meshes via a three–field optimization based domain decomposition, J. Comput.
Phys. 448 (2022) 110738, http://dx.doi.org/10.1016/j.jcp.2021.110738.

[4] R. Efrati, D. Givoli, Hybrid 3D-plane finite element modeling for elastodynamics, Finite Elem. Anal. Des. 210 (2022) 103812, http://dx.doi.org/10.1016/
j.finel.2022.103812.

[5] N. Mangukiya, S. Yadav, Integrating 1D and 2D hydrodynamic models for semi-arid river basin flood simulation, Int. J. Hydro. Sci. and Tech. (2022)
206–228.

[6] G. Panasenko, Multi-scale Modelling for Structures and Composites, Springer, 2005.
[7] A. Quarteroni, A. Veneziani, C. Vergara, Geometric multiscale modeling of the cardiovascular system, between theory and practice, Comput. Methods Appl.

Mech. Engrg. 302 (2016) 193–252, http://dx.doi.org/10.1016/j.cma.2016.01.007.
[8] C. Giverso, P. Ciarletta, Tumour angiogenesis as a chemo-mechanical surface instability, Sci. Rep. 6 (2016) 22610, http://dx.doi.org/10.1038/srep22610.
[9] M.A.J. Chaplain, C. Giverso, T. Lorenzi, L. Preziosi, Derivation and application of effective interface conditions for continuum mechanical models of cell

invasion through thin membranes, SIAM J. Appl. Math. 79 (5) (2019) 2011–2031, http://dx.doi.org/10.1137/19M124263X.
[10] I. Steinbrecher, M. Mayr, M. Grill, J. Kremheller, C. Meier, A. Popp, A mortar-type finite element approach for embedding 1D beams into 3D solid volumes,

Comput. Mech. 66 (2020) 1377–1398, http://dx.doi.org/10.1007/s00466-020-01907-0.
[11] N. Schröder, M. Javaux, J. Vanderborght, B. Steffen, H. Vereecken, Effect of root water and solute uptake on apparent soil dispersivity: A simulation

study, Vadose Zone J. 11 (3) (2012) http://dx.doi.org/10.2136/vzj2012.0009, vzj2012.0009.
[12] T. Koch, K. Heck, N. Schröder, H. Class, R. Helmig, A new simulation framework for soil–root interaction, evaporation, root growth, and solute transport,

Vadose Zone J. 17 (1) (2018) 170210, http://dx.doi.org/10.2136/vzj2017.12.0210.
[13] I.G. Gjerde, K. Kumar, J.M. Nordbotten, Well modelling by means of coupled 1D-3D flow models, in: ECMOR XVI - 16th European Conference on the

Mathematics of Oil Recovery, 2018.
[14] D. Notaro, L. Cattaneo, L. Formaggia, A. Scotti, P. Zunino, A mixed finite element method for modeling the fluid exchange between microcirculation and

tissue interstitium, in: Advances in Discretization Methods: Discontinuities, Virtual Elements, Fictitious Domain Methods, Springer International Publishing,
2016, pp. 3–25, http://dx.doi.org/10.1007/978-3-319-41246-7_1.

[15] T. Köppl, E. Vidotto, B. Wohlmuth, A 3D-1D coupled blood flow and oxygen transport model to generate microvascular networks, Int. J. Numer. Methods
Biomed. Eng. 36 (10) (2020) e3386, http://dx.doi.org/10.1002/cnm.3386.

[16] L. Heltai, A. Caiazzo, Multiscale modeling of vascularized tissues via nonmatching immersed methods, Int. J. Numer. Methods Biomed. Eng. 35 (12) (2019)
e3264, http://dx.doi.org/10.1002/cnm.3264.

[17] T. Koch, M. Schneider, R. Helmig, P. Jenny, Modeling tissue perfusion in terms of 1D-3D embedded mixed-dimension coupled problems with distributed
sources, J. Comput. Phys. 410 (2020) 109370, http://dx.doi.org/10.1016/j.jcp.2020.109370.

[18] I.G. Gjerde, K. Kumar, J.M. Nordbotten, B. Wohlmuth, Splitting method for elliptic equations with line sources, ESAIM: M2AN 53 (5) (2019) 1715–1739,
http://dx.doi.org/10.1051/m2an/2019027.

[19] M. Kuchta, F. Laurino, K.-A. Mardal, P. Zunino, Analysis and approximation of mixed-dimensional PDEs on 3D-1D domains coupled with Lagrange
multipliers, SIAM J. Numer. Anal. 59 (1) (2021) 558–582, http://dx.doi.org/10.1137/20M1329664.

[20] S. Berrone, D. Grappein, S. Scialò, A PDE-constrained optimization method for 3D-1D coupled problems with discontinuous solutions, Numer. Algorithms
(2023) http://dx.doi.org/10.1007/s11075-023-01579-w.

[21] T.-P. Fries, T. Belytschko, The extended/generalized finite element method: An overview of the method and its applications, Internat. J. Numer. Methods
Engrg. 84 (3) (2010) 253–304, http://dx.doi.org/10.1002/nme.2914.

[22] R. Gracie, J.R. Craig, Modelling well leakage in multilayer aquifer systems using the extended finite element method, Finite Elem. Anal. Des. 46 (6) (2010)
504–513, http://dx.doi.org/10.1016/j.finel.2010.01.006.

[23] J. Březina, P. Exner, Extended finite element method in mixed-hybrid model of singular groundwater flow, Math. Comput. Simulation 189 (2021) 207–236,
http://dx.doi.org/10.1016/j.matcom.2020.12.018.

[24] S. Berrone, D. Grappein, S. Scialò, F. Vicini, A gradient based resolution strategy for a PDE-constrained optimization approach for 3D-1D coupled problems,
Int. J. Geomath. 13 (1) (2022) http://dx.doi.org/10.1007/s13137-021-00192-0.

[25] S. Soghrati, A.M. Aragón, C. Armando Duarte, P.H. Geubelle, An interface-enriched generalized FEM for problems with discontinuous gradient fields,
Internat. J. Numer. Methods Engrg. 89 (8) (2012) 991–1008, http://dx.doi.org/10.1002/nme.3273.

[26] A.M. Aragón, A. Simone, The discontinuity-enriched finite element method, Internat. J. Numer. Methods Engrg. 112 (11) (2017) 1589–1613, http:
//dx.doi.org/10.1002/nme.5570.

[27] I. Asareh, T.-Y. Kim, J.-H. Song, A linear complete extended finite element method for dynamic fracture simulation with non-nodal enrichments, Finite
Elem. Anal. Des. 152 (2018) 27–45, http://dx.doi.org/10.1016/j.finel.2018.09.002.

[28] I. Asareh, Y.-C. Yoon, J.-H. Song, A numerical method for dynamic fracture using the extended finite element method with non-nodal enrichment parameters,
Int. J. Impact Eng. 121 (2018) 63–76, http://dx.doi.org/10.1016/j.ijimpeng.2018.06.012.
16

http://dx.doi.org/10.1142/S0218202518500252
http://refhub.elsevier.com/S0168-874X(24)00097-0/sb2
http://refhub.elsevier.com/S0168-874X(24)00097-0/sb2
http://refhub.elsevier.com/S0168-874X(24)00097-0/sb2
http://dx.doi.org/10.1016/j.jcp.2021.110738
http://dx.doi.org/10.1016/j.finel.2022.103812
http://dx.doi.org/10.1016/j.finel.2022.103812
http://dx.doi.org/10.1016/j.finel.2022.103812
http://refhub.elsevier.com/S0168-874X(24)00097-0/sb5
http://refhub.elsevier.com/S0168-874X(24)00097-0/sb5
http://refhub.elsevier.com/S0168-874X(24)00097-0/sb5
http://refhub.elsevier.com/S0168-874X(24)00097-0/sb6
http://dx.doi.org/10.1016/j.cma.2016.01.007
http://dx.doi.org/10.1038/srep22610
http://dx.doi.org/10.1137/19M124263X
http://dx.doi.org/10.1007/s00466-020-01907-0
http://dx.doi.org/10.2136/vzj2012.0009
http://dx.doi.org/10.2136/vzj2017.12.0210
http://refhub.elsevier.com/S0168-874X(24)00097-0/sb13
http://refhub.elsevier.com/S0168-874X(24)00097-0/sb13
http://refhub.elsevier.com/S0168-874X(24)00097-0/sb13
http://dx.doi.org/10.1007/978-3-319-41246-7_1
http://dx.doi.org/10.1002/cnm.3386
http://dx.doi.org/10.1002/cnm.3264
http://dx.doi.org/10.1016/j.jcp.2020.109370
http://dx.doi.org/10.1051/m2an/2019027
http://dx.doi.org/10.1137/20M1329664
http://dx.doi.org/10.1007/s11075-023-01579-w
http://dx.doi.org/10.1002/nme.2914
http://dx.doi.org/10.1016/j.finel.2010.01.006
http://dx.doi.org/10.1016/j.matcom.2020.12.018
http://dx.doi.org/10.1007/s13137-021-00192-0
http://dx.doi.org/10.1002/nme.3273
http://dx.doi.org/10.1002/nme.5570
http://dx.doi.org/10.1002/nme.5570
http://dx.doi.org/10.1002/nme.5570
http://dx.doi.org/10.1016/j.finel.2018.09.002
http://dx.doi.org/10.1016/j.ijimpeng.2018.06.012


Finite Elements in Analysis & Design 239 (2024) 104203D. Grappein et al.
[29] I. Asareh, J.-H. Song, Nonnodal extended finite-element method for crack modeling with four-node quadrilateral elements, J. Eng. Mech. 145 (2019)
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001662.

[30] S. Falletta, L. Scuderi, A new boundary element integration strategy for retarded potential boundary integral equations, Appl. Numer. Math. 94 (2015)
106–126, http://dx.doi.org/10.1016/j.apnum.2015.03.009.

[31] G. Monegato, L. Scuderi, Numerical integration of functions with boundary singularities, J. Comput. Appl. Math. 112 (1) (1999) 201–214, http:
//dx.doi.org/10.1016/S0377-0427(99)00230-7.

[32] R. Scott, Finite element convergence for singular data, Numer. Math. 21 (1973) 317–327, http://dx.doi.org/10.1007/BF01436386.
17

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001662
http://dx.doi.org/10.1016/j.apnum.2015.03.009
http://dx.doi.org/10.1016/S0377-0427(99)00230-7
http://dx.doi.org/10.1016/S0377-0427(99)00230-7
http://dx.doi.org/10.1016/S0377-0427(99)00230-7
http://dx.doi.org/10.1007/BF01436386

	Extended finite elements for 3D–1D coupled problems via a PDE-constrained optimization approach
	Introduction
	Notation and model problem
	Optimization formulation for the 3D-1D reduced problem
	Discrete problem
	Application of the XFEM
	Numerical integration
	Numerical results
	3D problem with singular source term
	3D-1D coupled problem with crossing inclusion
	3D-1D coupled problem with inclusion inside the domain
	3D-1D coupled problem with bifurcated inclusion
	3D-1D coupled problems: inclusion with several branches

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


