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A B S T R A C T

The present work deals with the numerical resolution of coupled 3D–2D problems arising
from the simulation of fluid flow in fractured porous media modeled via the Discrete Fracture
and Matrix (DFM) model. According to the DFM model, fractures are represented as planar
interfaces immersed in a 3D porous matrix and can behave as preferential flow paths, in the
case of conductive fractures, or can actually be a barrier for the flow, when, instead, the
permeability in the normal-to-fracture direction is small compared to the permeability of the
matrix. Consequently, the pressure solution in a DFM can be discontinuous across a barrier, as
a result of the geometrical dimensional reduction operated on the fracture.

The present work is aimed at developing a numerical scheme suitable for the simulation of
the flow in a DFM with fractures and barriers, using a mesh for the 3D matrix non conforming to
the fractures and that is ready for domain decomposition. This is achieved starting from a PDE-
constrained optimization method, currently available in literature only for conductive fractures
in a DFM. First, a novel formulation of the optimization problem is defined to account for
non permeable fractures. These are described by a filtration-like coupling at the interface with
the surrounding porous matrix. Also the extended finite element method with discontinuous
enrichment functions is used to reproduce the pressure solution in the matrix around a barrier.

The method is presented here in its simplest form, for clarity of exposition, i.e. considering
the case of a single fracture in a 3D domain, also providing a proof of the well posedness of
the resulting discrete problem. Four validation examples are proposed to show the viability and
the effectiveness of the method.

. Introduction

Flows in porous media are almost ubiquitous in the description of natural phenomena, appearing, for example both in geological
nd biological contexts. This makes efficient and reliable simulations of great relevance for a large variety of applications. Fractures
n a porous media can have a significant impact on simulation results, such that, often, their presence needs to be taken into account
o correctly capture flow properties. In this perspective, Discrete Fracture and Matrix (DFM) models [1,2] can be used, in which
ractures in a porous media are explicitly modeled. Alternatives are represented by homogenization techniques [3], dual-porosity
odels [4], and embedded discrete fracture matrix models [5–9]. To reduce the computational cost of DFM simulations, fractures

re dimensionally reduced to 2D planar interfaces embedded in a 3D porous matrix, and averaged constitutive equations for the
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flow are derived for the fractures. Additional equations are introduced at the fracture-matrix interface to close the problem [2].
Depending on the hydraulic characteristics of the fractures and of the surrounding medium, different situations can be encountered.
Indeed, fractures with a permeability higher than that of the surrounding porous medium act as preferential paths for the flow,
whereas, fractures with low permeability might represent barriers. The pressure solution in the matrix domain is expected to be
continuous across permeable fractures, with discontinuous fluxes as a consequence of flux leakage in the fracture plane. Around a
low permeable barrier, instead, the pressure might be discontinuous, due to the presence of the interface that behaves as a physical
barrier in this case.

One of the major sources of complexity in DFM simulation is related to the generation of a mesh conforming to the fractures, since,
n practical applications, a large number of fractures might be present, forming an intricate network of intersections [10,7,11,12].
n the other hand domain size calls for the use of domain decomposition strategies to tackle computational issues [13–16].

A large variety of numerical schemes is available in the literature for problems in porous media with fractures. As the matrix
olution can be discontinuous across fractures, the choice of a mesh conforming to such interfaces is still attractive, resulting in more
onventional discretization schemes. Recent approaches in this direction are proposed in [17], where a Discontinuous Galerkin (DG)
iscretization is used, or in [18] where Mimetic Finite Differences (MFD) are chosen instead. In some approaches, a partial non-
onformity (see [15] for this kind of nomenclature) is allowed between the mesh of the porous medium and that of the fractures, in
he sense that even if fractures cannot cross the elements of the 3D mesh, the 2D mesh elements on each fracture can be arbitrarily
laced with respect to the faces of the 3D mesh elements on the same plane. An example is in [19], where a Hybrid High Order
cheme is proposed on this kind of mesh. Polygonal/polyhedral meshes have also been suggested as a possibility to easily generate
onforming or partially conforming meshes of complex domains, as for example in [20], where MFD are used; in [11] in conjunction
ith a DG scheme; or in [21–24] where the Virtual Element Method (VEM) is adopted. Other choices are also based on Finite Volume

chemes, such as the two or multi-point flux approximation as in [25,26] and gradient schemes, as in [27]. As an alternative, we
ind methods allowing fully non conforming meshes for the 3D matrix and the lower dimensional fractures, requiring, however,
d-hoc discretization strategies. In [28] Lagrange multipliers are used to couple the matrix-fracture problems on arbitrary meshes,
ut the approach is limited to conductive fractures, with a solution in the porous matrix that is continuous across fractures. The
xtended Finite Element Method (XFEM) can be used to reproduce irregular solution on non-conforming meshes [29,30], and its
se can be found, e.g., in [13,31,14,32–34] in the context of porous media flows.

Here an approach for 3D–2D coupled problems with discontinuous solutions on non conforming meshes is proposed. The method
s an extension of the approach in [16], where DFM problems on non conforming meshes are solved via an optimization-based
omain decomposition approach. The method in [16] however, only considers continuous 3D solutions across the fractures, whereas
ere we allow for possibly discontinuous solutions. This is achieved by means of a novel five-field scheme for domain decomposition
ombined with the use of the XFEM. According to this approach, three interface unknowns are added to the unknown pressure in
he matrix and in the fractures, thus giving five independent fields. The interface variables allow to decouple the 3D problem
rom the 2D problem on each fracture. The global solution is then seen as the minimum of a cost functional, expressing the error
n the matching at the interfaces. The method is presented here in the simplest case of a domain with a single fracture, to better
ighlight the novelties of the present approach and keeping the notation as compact as possible. The extension to the case of multiple
ntersecting fractures, resulting in the mixed dimensional problem described in [35,36] however, can be obtained by simply applying
he ideas here proposed to the coupling on the lower dimensional domains. The purpose of the present work is to show the viability
f the method and its well posedness.

The manuscript is organized as follows: the problem considered in the present work is described in Section 2, and its formulation
s a five-field optimization based optimization problem is reported in Section 3. Section 4 describes the discrete formulation of the
roposed method, with a proof of its well posedness provided in Section 5.

. Problem description

Let us consider a 3D domain , representing a block of porous material crossed by a planar interface 𝐹 , representing, instead a
dimensionally reduced fracture in a DFM model. Let us further denote by ̊ the domain  without the fracture, i.e. ̊ ∶= ⧵𝐹 . The
oundary of , 𝜕, is split in a Dirichlet part 𝛤𝐷 and a Neumann part, 𝛤𝑁 , such that 𝛤𝐷 ∪ 𝛤𝑁 = 𝜕, |𝛤𝐷 ∩ 𝛤𝑁 | = 0 and |𝛤𝐷| > 0,
hereas the boundary of 𝐹 , 𝜕𝐹 , is subdivided in a Dirichlet part 𝛾𝐷 and a Neumann part 𝛾𝑁 = 𝜕𝐹 ⧵ 𝛾𝐷. The boundary of ̊, denoted
y 𝜕̊, is instead split into three parts, 𝜕̊ ∶= 𝛤 ◦

𝐷 ∪ 𝛤 ◦
𝑁 ∪ 𝜔, defined such that 𝛤 ◦

𝐷 = 𝜕̊ ∩ 𝛤𝐷, 𝛤 ◦
𝑁 = 𝜕̊ ∩ 𝛤𝑁 and 𝜔 = 𝜕̊ ∩ 𝐹 , this

last part being the portion of the boundary of ̊ that coincides with the fracture 𝐹 . Denoting by 𝒏 the unit normal to the fracture
, with fixed chosen orientation, we will further distinguish the two ‘‘sides’’ of 𝜔 as 𝜔+ and 𝜔−, with 𝜔+ being the portion of 𝜕̊
ith outward pointing unit normal equal to 𝒏. The nomenclature is exemplified in Fig. 1, where the three overlapping boundaries,
, 𝜔+ and 𝜔− are shown separated for explanation purposes.

The trace on a manifold 𝛤 of a sufficiently regular function 𝑣 is, in general, denoted as tr𝛤 (𝑣). For brevity, however, the trace
f a function 𝑣 on 𝜔± is denoted as 𝑣±, for any sufficiently regular function 𝑣 defined on ̊.

Following the approach in [2], the problem in primal formulation for the pressure distribution in  can be written as:

−∇ ⋅
(

𝐾∇𝐻) = 𝑔 in ̊ (1)

−∇𝐹 ⋅
(

𝐾𝐹∇𝐹𝐻𝐹 ) = −𝑄+ −𝑄− in 𝐹 (2)

𝑄± = −𝜂(𝐻 −𝐻𝐹 ) on 𝜔± (3)
2

±
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Fig. 1. Simple DFM example with nomenclature.

𝐻 = 0 on 𝛤 ◦
𝐷 (4)

𝐾∇𝐻 ⋅ 𝒏𝛤𝑁 = 0 on 𝛤 ◦
𝑁 (5)

𝐻𝐹 = 0 on 𝛾𝐷 (6)
𝐾𝐹∇𝐹𝐻𝐹 ⋅ 𝒏𝛾𝑁 = 0 on 𝛾𝑁 , (7)

being 𝐻 and 𝐻𝐹 the pressure distribution in ̊ and in 𝐹 , respectively. In the above equations 𝑔 is a source term defined in ̊, 𝐾

and 𝐾𝐹 are strictly positive definite tensors denoting, respectively, the (effective) hydraulic conductivity of the porous matrix and
of the fracture on its tangential plane. The quantity 𝜂 is, instead, the effective hydraulic conductivity of the fracture in the direction
normal to the fracture plane. The operator ∇ is the three-dimensional gradient in ̊ whereas ∇𝐹 is the two-dimensional gradient
on the plane containing the fracture. Homogeneous Dirichlet and Neumann boundary conditions are used for simplicity, being 𝒏𝛤𝑁
the outward unit normal vector to 𝛤𝑁 and 𝒏𝛾𝑁 the outward unit normal vector to 𝛾𝑁 on the plane of fracture 𝐹 . Function 𝐻 is
allowed to have two different traces on 𝜔± and the source term in Eq. (2) is related to the jump of the solution between the matrix
and the fracture at the interface, as expressed by Eq. (3).

Let us introduce the function space H1
0(̊) =

{

𝑣 ∈ H1(̊) ∶ tr𝛤 ◦
𝐷
(𝑣) = 0

}

, the space  ∶= H
1
2 (𝜔), and the space V =

{

𝑣 ∈ H1(𝐹 ), tr𝛾𝐷 (𝑣) = 0
}

, as well as bilinear forms 𝑎 ∶ H1
0(̊) × H1

0(̊) ↦ R, 𝑏 ∶  ×  ↦ R and 𝑎𝐹 ∶ V × V ↦ R, defined
respectively as:

𝑎 (𝑣,𝑤) = ∫̊
𝐾∇𝑣∇𝑤 d̊, 𝑏(𝑣,𝑤) = ∫𝜔

𝜂𝑣𝑤 d𝜔,

𝑎𝐹 (𝑣,𝑤) = ∫𝐹
𝐾𝐹∇𝐹 𝑣∇𝐹𝑤 d𝐹 .

With the above definitions, the weak formulation of problem (1)–(7) reads: find 𝐻 ∈ H1
0(̊), 𝐻𝐹 ∈ V, such that:

𝑎
(

𝐻, 𝑣
)

+ 𝑏
(

𝐻
+ , 𝑣+

)

+ 𝑏
(

𝐻
− , 𝑣−

)

=

(𝑔, 𝑣)̊ + 𝑏
(

𝐻𝐹 , 𝑣+
)

+ 𝑏
(

𝐻𝐹 , 𝑣−
)

, ∀𝑣 ∈ H1
0(̊), (8)

𝑎𝐹
(

𝐻𝐹 , 𝑤
)

+ 2𝑏
(

𝐻𝐹 , 𝑤
)

= 𝑏
(

𝐻
+ , 𝑤

)

+𝑏
(

𝐻
− , 𝑤

)

, ∀𝑤 ∈ V, (9)

being (𝑣,𝑤)𝑑 the scalar product in L2(𝑑).

3. Optimization based domain decomposition

The previous coupled system of equations can be de-coupled through the introduction of three additional interface variables,
resulting in five independent unknowns for the problem. Eqs. (8)–(9) are first re-written in terms of the new unknowns in a classical
weak formulation, and subsequently as a PDE constrained optimization problem, which consists in the main novelty content of the
present work.

Let us then introduce functions 𝛹+, 𝛹− ∈  representing the trace of 𝐻 on 𝜔+ and 𝜔−, respectively, and function 𝛹𝐹 ∈ V
representing 𝐻𝐹 . It is then possible to write problem (8)–(9) as: find 𝐻 ∈ H1

0(̊), 𝐻𝐹 ∈ V, 𝛹+, 𝛹− ∈  and 𝛹𝐹 ∈ V such that, for
all 𝑣 ∈ H1

0(̊), and for all 𝑤 ∈ V:

𝑎
(

𝐻, 𝑣
)

+ 𝑏
(

𝐻
+ , 𝑣+

)

+ 𝑏
(

𝐻
− , 𝑣−

)

= (𝑔, 𝑣)̊ + 𝑏
(

𝛹𝐹 , 𝑣+
)

+ 𝑏
(

𝛹𝐹 , 𝑣−
)

(10)

𝑎𝐹
(

𝐻𝐹 , 𝑤
)

+ 2𝑏
(

𝐻𝐹 , 𝑤
)

= 𝑏
(

𝛹+, 𝑤
)

+𝑏𝑖 (𝛹−, 𝑤), (11)

with the following interface conditions:
⟨

𝛹+ −𝐻
+ , 𝜇

⟩

,′ = 0, ∀𝜇 ∈ ′, (12)
⟨ −  ⟩ ′
3

𝛹 −𝐻− , 𝜇𝑖 ,′ = 0, ∀𝜇 ∈  , (13)
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⟨

𝛹𝐹 −𝐻𝐹 , 𝜅
⟩

V,V′ = 0, ∀𝜅 ∈ V′, (14)

where ′ and V′ denote the dual spaces of  and V, respectively. It can be easily seen that problem (10)–(14) is equivalent to
(8)–(9), as conditions (12)–(14) imply the (weak) equivalence of the newly introduced interface variables 𝛹± and 𝛹𝐹 with 𝐻

±
and 𝐻𝐹 , respectively. The advantage of the previous formulation consists in the possibility of fully de-coupling the problem on the
fracture from the problem in the bulk domain. This is particularly advantageous in presence of a large number of fractures. In order
to take full advantage of such decoupling, a PDE-constrained domain decomposition approach is proposed for the problem, in view
of its numerical resolution. A cost functional is introduced to measure the error in the fulfillment of Eqs. (12)–(14), and the global
solution of the problem is now obtained as the minimum of the functional constrained by the constitutive Eqs. (10)–(11). The cost
functional 𝐽 (𝐻,𝐻𝐹 , 𝛹+, 𝛹−, 𝛹𝐹 ), is defined as:

𝐽 ∶= ‖𝛹+ −𝐻
+ ‖

2
 + ‖𝛹− −𝐻

− ‖

2
 + ‖𝛹𝐹 −𝐻𝐹

‖

2
V. (15)

The solution to problem (10)–(14) is then obtained as the minimum of functional 𝐽 constrained by the PDE equations on the 3D
domain and on the fracture:

min 𝐽 (𝐻,𝐻𝐹 , 𝛹+, 𝛹−, 𝛹𝐹 ) constrained by (10)–(11) (16)

4. Discrete problem

The optimization based domain decomposition formulation allows for a great flexibility in terms of meshing and discretization
choices for the involved variables. In order to derive the discrete counterpart of problem (16), domain ̊ is replaced by the whole
. Lower-case letters are used for the variables of the discrete problems, which are ℎ, ℎ𝐹 , 𝜓± and 𝜓𝐹 . A mesh, irrespective of the
presence of the fracture, is built in  for ℎ and, independently on 𝐹 for ℎ𝐹 . Further, independent meshes are introduced on 𝜔 for
the three interface variables 𝜓± and 𝜓𝐹 . The discontinuous behavior of the solution ℎ across the interface 𝜔 on the non-conforming
mesh is described using the eXtended Finite Element Method (XFEM), as discussed later in additional details.

Let us denote by  
𝛿

the tetrahedral mesh on , by  𝐹
𝛿𝐹

the triangular mesh on 𝐹 , and by  𝜔±
𝛿±𝜔

and by  𝜔𝐹

𝛿𝐹𝜔
the polygonal meshes

on the interface for 𝜓± and 𝜓𝐹 , respectively. Quantities 𝛿, 𝛿𝐹 , 𝛿±𝜔 and 𝛿𝐹𝜔 denote the mesh parameters of the corresponding meshes
and indicate the maximum size of the elements in the mesh, i.e. cell volume for 3D elements and cell area for 2D elements. The
discrete variables are defined as:

ℎ =

∑

𝑘=1
ℎ𝑘 𝜙𝑘(𝐱), ℎ𝐹 =

𝐹
∑

𝑘=1
ℎ𝐹𝑘 𝜑𝑘(𝐱𝐹 ), 𝜓⋆ =

⋆
∑

𝑘=1
𝜓⋆𝑘 𝜗

⋆(𝐱𝐹 ),

with ⋆ = {+,−, 𝐹 }, and 𝐱𝐹 is a local coordinate system on 𝜔. The discrete functional is denoted by 𝐽𝛿 and is obtained replacing the
discrete variables in (15) and evaluating the norms of such finite dimensional quantities in 𝐿2(𝜔), i.e.:

𝐽𝛿 = ‖𝜓+ − ℎ+‖
2
L2(𝜔)

+ ‖𝜓− − ℎ−‖
2
L2(𝜔)

+ ‖𝜓𝐹 − ℎ𝐹 ‖2
L2(𝜔)

. (17)

If we set ℎ𝑇 =
[

(ℎ)𝑇 , (ℎ𝐹 )𝑇
]𝑇 and 𝜓𝑇 =

[

(𝜓+)𝑇 , (𝜓−)𝑇 , (𝜓𝐹 )𝑇
]𝑇 , functional 𝐽𝛿 can be expressed in matrix form as:

𝐽𝛿 =
[

ℎ𝑇 𝜓𝑇
]

𝐆
[

ℎ
𝜓

]

, 𝐆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐆 𝟎 𝐄+ 𝐄− 𝟎
𝟎 𝐆𝐹 𝟎 𝟎 𝐄𝐹

(𝐄+)𝑇 𝟎 𝐆𝜓+ 𝟎 𝟎
(𝐄−)𝑇 𝟎 𝟎 𝐆𝜓− 𝟎

𝟎 (𝐄𝐹 )𝑇 𝟎 𝟎 𝐆𝜓𝐹

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

Matrices 𝐆 ∈ R×𝐷 and 𝐆𝐹 ∈ R𝐹 ×𝐹 , 𝐆𝜓⋆ ∈ R⋆×⋆ , ⋆ = {+,−, 𝐹 } in 𝐽𝛿 are:

(𝐆)𝑘,𝓁 = ∫𝜔
𝜙𝑘|𝜔+𝜙𝓁|𝜔+d𝜔 + ∫𝜔

𝜙𝑘|𝜔−𝜙𝓁|𝜔−d𝜔; (𝐆𝐹 )𝑘,𝓁 = ∫𝐹
𝜑𝑘𝜑𝓁d𝐹 ;

(𝐆𝜓⋆ )𝑘,𝓁 = ∫𝜔
𝜗⋆𝑘 𝜗

⋆
𝓁 d𝜔;

whereas matrices 𝐄± ∈ R×± and 𝐄𝐹 ∈ R𝐹 ×𝐹 are set as

(𝐄±)𝑘,𝓁 = −∫𝜔
𝜂𝜙𝑘|𝜔±𝜗

±
𝓁d𝜔; (𝐄𝐹 )𝑘,𝓁 = −∫𝜔

𝜂𝜑𝑘𝜗
𝐹
𝓁 d𝜔.

The matrix form of the discrete constraint equations can be obtained after defining 𝐀 ∈ R𝐷×𝐷 as:

(𝐀)𝑘𝓁 = ∫
𝐾∇𝜙𝑘∇𝜙𝓁 + ∫𝜔

𝜂𝜙𝑘|𝜔+𝜙𝓁|𝜔+d𝜔 + ∫𝜔
𝜂𝜙𝑘|𝜔−𝜙𝓁|𝜔−d𝜔,

matrix 𝐀𝐹 ∈ R𝐹 ×𝐹 as:

(𝐀𝐹 )𝑘𝓁 = 𝐾𝐹∇𝐹𝜑𝑘∇𝐹𝜑𝓁d𝐹 + 2 𝜂𝜑𝑘𝜑𝓁d𝐹 ,
4

∫𝐹 ∫𝐹
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and matrices 𝐁⋆ ∈ R𝐹 ×⋆ , ⋆ = +,− and 𝐁𝐹 ∈ R×𝐹 , respectively, as:

(𝐁⋆)𝑘𝓁 = ∫𝜔
𝜂𝜑𝑘𝜗

⋆
𝓁 d𝜔, (𝐁𝐹 )𝑘𝓁 = ∫𝜔

𝜂𝜙𝑘|𝜔+𝜗
𝐹
𝓁 d𝜔 + ∫𝜔

𝜂𝜙𝑘|𝜔−𝜗
𝐹
𝓁 d𝜔.

The discrete form of problem (16) reads:

min 𝐽𝛿 =
[

ℎ𝑇 𝜓𝑇
]

𝐆
[

ℎ
𝜓

]

such that

𝐀ℎ = 𝐠 + 𝐁𝐹𝜓𝐹 (19)
𝐀𝐹ℎ𝐹 = 𝐁+𝜓+ + 𝐁−𝜓− (20)

where 𝐠 is the array resulting from the source term.
The above optimization problem (19)–(20) can be rewritten as an unconstrained optimization problem, by formally replacing

the constraints in the functional. Setting:

𝐀 =
[

𝐀 𝟎
𝟎 𝐀𝐹

]

, 𝐁 =
[

𝟎 𝟎 𝐁𝐹
𝐁+ 𝐁− 𝟎

]

, 𝐆ℎ =
[

𝐆 𝟎
𝟎 𝐆𝐹

]

,

𝐆𝜓 =
⎡

⎢

⎢

⎣

𝐆𝜓+ 𝟎 𝟎
𝟎 𝐆𝜓− 𝟎
𝟎 𝟎 𝐆𝜓𝐹

⎤

⎥

⎥

⎦

, 𝐄 =
[

𝐄+ 𝐄− 𝟎
𝟎 𝟎 𝐄𝐹

]

, 𝐛 =
[

𝟎
𝐠

]

,

we have:

𝐆 =
[

𝐆ℎ 𝐄
𝐄𝑇 𝐆𝜓

]

,

such that the expression of 𝐽𝛿 becomes

𝐽𝛿 = ℎ𝑇𝐆ℎℎ + ℎ𝑇𝐄𝜓 + 𝜓𝑇𝐄𝑇 ℎ + 𝜓𝑇𝐆𝜓𝜓.

By formally replacing ℎ = 𝐀−1 (𝐁𝜓 + 𝐛) in the previous expression we get:

𝐽𝛿 = 𝜓𝑇
(

𝐁𝑇𝐀−𝑇𝐆ℎ𝐀−1𝐁 + 𝐄𝑇𝐀−1𝐁 + 𝐁𝑇𝐀−𝑇𝐄 +𝐆𝜓)𝜓 + 2𝜓𝑇
(

𝐁𝑇 + 𝐀−𝑇𝐆ℎ𝐀−1 + 𝐄𝑇𝐀−1)𝐛 + 𝐛𝑇𝐀−𝑇𝐆𝜒𝐀−1𝐛,

such that, setting

 ∶= 𝐁𝑇𝐀−𝑇𝐆ℎ𝐀−1𝐁 + 𝐄𝑇𝐀−1𝐁 + 𝐁𝑇𝐀−𝑇𝐄 +𝐆𝜓 (21)

and

𝒃 ∶=
(

𝐁𝑇 + 𝐀−𝑇𝐆ℎ𝐀−1 + 𝐄𝑇𝐀−1)𝐛 (22)

the unconstrained minimization problem reads:

min
𝜓
𝜓𝑇𝜓 + 2𝜓𝑇 𝒃,

with the stationary point 𝜓̄ satisfying

𝜓̄ + 𝒃 = 0. (23)

The gradient of 𝐽𝛿 with respect to 𝜓 at 𝜓̄ actually does not require the computation of matrix  and of 𝒃, as it can be obtained
as follows:

∇𝜓𝐽𝛿 = 𝐁𝑇 𝜆̄ + 𝐄𝑇 ℎ̄ +𝐆𝜓 𝜓̄ , ℎ̄ = 𝐀−1 (𝐁𝜓̄ + 𝐛) , 𝜆̄ = 𝐀−𝑇 (

𝐆𝜒 ℎ̄ + 𝐄𝜓̄
)

. (24)

This allows to solve the optimization problem via the conjugate gradient scheme, starting from an initial guess on the unknown
𝜓 . Thanks to the block-diagonal structure of matrix 𝐀, the gradient ∇𝜓𝐽𝛿 at each iteration can be computed efficiently as above,
decoupling the 3D problem from the 2D problem, and in a matrix-free approach.

5. Well posedness of the discrete problem

Well posedness of the discrete problem derives from the non-singularity of the system of optimality conditions of the constrained
minimization problem (19)–(20).

Let us set  =  +  𝐹 ,  = + + − + 𝐹 and  tot =  + . Further, let us denote by 𝜒 ∈ R tot the array of the
unknowns, i.e. 𝜒𝑇 =

[

ℎ𝑇 𝜓𝑇
]𝑇 , by 𝜆 ∈ R the array of Lagrange multipliers. We further set 𝐂 ∈ R× tot and 𝐛 ∈ R as:

𝐂 =
[

𝐀 𝟎 𝟎 𝟎 −𝐁𝐹
𝐹 + −

]

, 𝐛 =
[

𝟎
]

. (25)
5

𝟎 𝐀 −𝐁 −𝐁 𝟎 𝐠
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Then the system of optimality conditions for (19)–(20) can be written as:
[

𝐆 𝐂𝑇
𝐂 𝟎

] [

𝜒
𝜆

]

=
[

𝟎
𝐛

]

. (26)

Non singularity of the above system follows from Lemma 1 below, using well known results of quadratic programming (see Theorem
16.2 in [37]).

Lemma 1. Let matrix 𝐂 ∈ R× tot be as in (25), and matrix 𝐆 ∈  tot× tot be as in (18), then 𝐂 is full row rank and ker (𝐆)∩ker (𝐂) = 𝟎.

roof. Non singularity of matrices 𝐀 and 𝐀𝐹 derives from standard arguments, and thus it can be immediately shown that 𝐂 in
26) is full row rank. Let us now take an element 𝜒0 ∈ ker (𝐆). Then, by definition of 𝐽𝛿 we have that

0 = 𝜒𝑇0 𝐆𝜒0 =
[

ℎ𝑇0 𝜓𝑇0
]

𝐆
[

ℎ0
𝜓0

]

= ‖𝜓+
0 − tr𝜔+ (ℎ0 )‖

2
L2(𝜔)

+ ‖𝜓−
0 − tr𝜔− (ℎ0 )‖

2
L2(𝜔)

+ ‖𝜓𝐹0 − ℎ𝐹0 ‖
2
L2(𝜔)

,

nd thus 𝜓+
0 = tr𝜔+ (ℎ0 ), 𝜓

−
0 = tr𝜔− (ℎ0 ) and 𝜓𝐹0 = ℎ𝐹0 . Each element of ker (𝐂) satisfies the constraint equations with 𝐠 = 0. Using

ow 𝜒0 in the constraints gives for any 𝑣 ∈ H1
0(̊), and for all 𝑤 ∈ 𝑉 :

∫̊
𝐾∇ℎ0 ∇𝑣 d̊ + ∫𝜔

𝜂tr𝜔+ (ℎ0 )𝑣+ d𝜔 + ∫𝜔
𝜂tr𝜔− (ℎ0 )𝑣− d𝜔 = ∫𝜔

𝜂𝜓𝐹0 𝑣+ d𝜔 + ∫𝜔
𝜂𝜓𝐹0 𝑣− d𝜔,

∫𝐹
𝐾𝐹∇𝐹ℎ𝐹0 ∇𝐹𝑤 d𝐹 + 2∫𝐹

𝜂ℎ𝐹0 𝑤 d𝐹 = ∫𝐹
𝜂
(

𝜓+
0 𝑤 + 𝜓−

0 𝑤
)

d𝐹 .

f we now take, in particular 𝑣 = ℎ0 and 𝑤 = ℎ𝐹0 , the above equations become:

∫̊
𝐾∇ℎ0 ∇ℎ


0 d̊ + ∫𝜔

𝜂
(

𝜓+
0 − 𝜓𝐹0

)

𝜓+
0 d𝜔 + ∫𝜔

𝜂
(

𝜓−
0 − 𝜓𝐹0

)

𝜓−
0 d𝜔 = 0

∫𝐹
𝐾𝐹∇𝐹ℎ𝐹0 ∇𝐹ℎ

𝐹
0 d𝐹 + ∫𝐹

𝜂
((

𝜓𝐹0 − 𝜓+
0
)

+
(

𝜓𝐹0 − 𝜓−
0
))

𝜓𝐹0 d𝐹 = 0,

nd, by summing we get, (𝐹 ≡ 𝜔):

∫̊
𝐾∇ℎ0 ∇ℎ


0 d̊ + ∫𝐹

𝐾𝐹∇𝐹ℎ𝐹0 ∇𝐹ℎ
𝐹
0 d𝐹 + ∫𝜔

𝜂
(

𝜓+
0 − 𝜓𝐹0

) (

𝜓+
0 − 𝜓𝐹0

)

d𝜔 + ∫𝜔
𝜂
(

𝜓−
0 − 𝜓𝐹0

) (

𝜓−
0 − 𝜓𝐹0

)

d𝜔 = 0

nd thus, for 𝜂 > 0, 𝜓+
0 = 𝜓𝐹0 = 𝜓−

0 and consequently ℎ0 = 0 and ℎ𝐹0 = 0. □

Positive definiteness of matrix  in Eq. (21) follows immediately from the well posedness of the discrete problem, thus motivating
he use of a gradient scheme for the resolution.

. Discretization choices

The discretization of ℎ is obtained by using linear Lagrangian finite elements on 3D tetrahedral meshes with additional basis
unctions used to describe the discontinuous solution across the interface, following the XFEM paradigm.

The construction of the enrichment basis functions starts from the selection of a global function with the desired irregular
ehavior. If a fracture entirely crosses the domain, then the Heaviside function (𝐱) can be used as a global enrichment, defined
s: (𝐱) = sign

(

𝒏 ⋅
(

𝐱 − 𝐱0
))

. Here 𝒏 is the unit normal to the fracture, and 𝐱0 is a fixed point on 𝐹 . If, instead, a fracture terminates
nside the domain, then the solution ℎ is expected to be discontinuous across the fracture plane, but continuous around the fracture
tself, and thus we need to choose a global enrichment with this kind of behavior, i.e. discontinuous across the fracture but continuous
lsewhere. This can be obtained as follows. Let us consider here, for simplicity, a polygonal fracture 𝐹 with 𝑛◦𝑒 edges lying in the
nterior of the domain , consecutively numbered. Let then 𝜀𝑖(𝐱𝐹 ) be the equation of the line containing the 𝑖th edge in the fracture-
ocal reference system, for 𝑖 = 1,… , 𝑛◦𝑒 . We also denote by 𝐹 the affine mapping from the reference system in  to the fracture
eference system, i.e. 𝐱𝐹 = 𝐹 (𝐱). Then we can define function (𝐱) as:

(𝐱) =
{

𝜎
∏𝑛◦𝑒

𝑖=1 𝜀
𝜍
𝑖 (𝐹 (𝐱)) if 𝐹 (𝐱) ∈ 𝐹

0 otherwise,

here 𝜎 is a scaling parameter, chosen such that (𝐱) is equal to one in fracture barycenter. The exponent 𝜍 can be chosen to control
he shape of the enrichment function. In the proposed numerical example a value of 𝜍 = 1

2 is used. We remark that (𝐱) is a bubble
unction on 𝐹 whenever all fracture edges are inside the domain, or the unit constant function when the fracture entirely crosses
he domain, instead. We then choose function (𝐱)(𝐱) as global enrichment, observing that it is discontinuous across the fracture,
ut continuous (equal to zero) elsewhere in . This approach is similar to the one proposed in [30], adapted to the present case.

Once global enrichment functions are selected, the Partition of Unity Method [38] is used to build the additional basis functions
uitable for FEM discretization. Then, the effect of the enrichment basis functions can be localized in a neighborhood of the interface.
o this end, let us denote by   the subset of the elements in   that are entirely cut by the fracture, and by   the set of mesh
6

 𝛿 



Finite Elements in Analysis & Design 238 (2024) 104204S. Scialò
Fig. 2. Selection of elements to be enriched for an example embedded fracture: elements in  
 in red on the left and elements in  

 in blue on the right.

elements intersect by the edges of 𝐹 lying in the interior of , see Fig. 2. Assuming, for simplicity of exposition, that the numbering
of mesh vertexes is equal to that of the degrees of freedom (DOF), we can denote by  the set of all vertex indexes, and by  the
set of vertex indexes of elements in  

 , and by  the set of vertex indexes of elements in  
 . In particular, the enrichment (𝐱)

is used in mesh elements in  
𝛿

, whereas the enrichment (𝐱)(𝐱) is used in mesh elements in  
 , such that the discrete function

ℎ can be written as:

ℎ =
∑

𝑘∈
ℎ𝑠,𝑘 𝜙𝑠𝑘(𝐱) +

∑

𝑘∈

ℎ ,𝜙𝑠𝑘(𝐱)((𝐱)(𝐱) −(𝐱𝑘)(𝐱𝑘)) +
∑

𝑘∈⧵

ℎ,𝜙𝑠𝑘(𝐱)((𝐱) −(𝐱𝑘)). (27)

In the above equation 𝜙𝑠𝑘 is the 𝑘th linear Lagrangian basis function of standard finite elements, and 𝐱𝑘 are the coordinates of vertex
𝑘, with 𝜙𝓁(𝐱𝑘) = 𝛿𝓁,𝑘. The enrichment functions are shifted in order to be zero-valued in the nodes of the mesh. The interested
reader is referred to the XFEM specific literature for further details.

Standard linear Lagrangian finite element basis on the 2D triangular mesh  𝐹
𝛿𝐹

are used for the description of ℎ𝐹 . For simplicity,
we choose, here, the same mesh for the fracture unknown and for the interface unknowns, i.e.  𝜔+

𝛿+ =  𝜔−
𝛿− =  𝜔𝐹

𝛿𝐹
=  𝐹

𝛿𝐹
, but we use

piece-wise constant basis functions on such triangular mesh for 𝜓⋆, ⋆ = {+,−, 𝐹 }.

7. Numerical results

The present section is devoted to the presentation of the viability of the approach and its validation. The first two tests consider
problems for which an analytic solution is known, and we measure the error between such solution and the solution obtained with
the proposed approach. The last two examples, instead, give a qualitative comparison of the method with other reference solutions
available in the literature.

The solution of all the proposed examples is obtained using the conjugate gradient method for problem (23) in a matrix free
way, i.e. without assembling matrix . For the computation of the descent direction, the linear systems in Eq. (24) are solved using
a direct solver.

7.1. Test 0

The first numerical experiment, named test0, takes into account a problem with a solution that belongs to the discrete enriched
FEM function space, as described in Section 6. The domain  is a cube with edge-length equal to 2 and barycenter in the origin of
a reference system 𝑥𝑦𝑧, see Fig. 3, left. A fracture 𝐹 entirely crosses the domain, passing through the origin and having unit normal
vector coinciding with the 𝑧-axis. Dirichlet boundary conditions equal to −2 are prescribed at the bottom face of the cube, i.e. on the
face lying on the plane orthogonal to the 𝑧-axis and passing through point 𝑃0 = [−1,−1,−1], and on its edges and vertexes. Dirichlet
boundary conditions equal to 2 are instead fixed on the top face, passing through point 𝑃1 = [1, 1, 1] and on its edges and vertexes.
Homogeneous Neumann boundary conditions are prescribed, instead, on the remaining part of the boundary of . Homogeneous
Neumann boundary conditions are also applied on the whole boundary of 𝐹 , and 𝐾 = 𝐾𝐹 = 𝜂 = 1, 𝐠 = 0. The method is capable
of obtaining the analytic solution

ℎ =

{

𝑧 + 1 𝑧 > 0
𝑧 − 1 𝑧 < 0,

ℎ𝐹 = 0,

up to machine precision independently of the mesh-size. An example solution is reported in Fig. 3, on the whole 3D domain (left)
and on a plane orthogonal to the fracture (right). The 3D plot on the left represents the solution on sub-polyhedrons not crossing the
interface, obtained cutting the original tetrahedral mesh along the fracture plane and evaluating the solution in the newly generated
points (two different values on each side of the interface). All 3D plots in the remaining of the manuscript are obtained with the
above procedure. The 2D plot on the right, instead, is obtained evaluating the discrete solution ℎ(𝐱) on a 100 × 100 Cartesian
grid on the plane orthogonal to 𝐹 . We will denote such plots as slice plots in what follows. This kind of plots allows us to explicitly
show the behavior of the solution, by reproducing the discrete function also inside mesh elements. It can be seen that, thanks to
7

the presence of the enrichment basis function, the discrete solution is discontinuous across 𝐹 , as expected.
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Fig. 3. test0: solution on the 3D domain (left) and slice plot of the solution on a plane orthogonal to 𝐹 (right).

Table 1
test1: Number of DOFs for ℎ () number of DOFs for ℎ𝐹

( 𝐹 ) and number of iteration of the CG algorithm (𝑛it) to reach
a relative residual of 10−7, for different values of mesh parameter
𝛿.
𝛿   𝐹 𝑛𝑖𝑡
2.0 × 10−2 211 56 13
2.5 × 10−3 1273 191 14
3.1 × 10−4 8836 722 13
3.9 × 10−5 64754 2787 12

Table 2
test1: Condition number of matrix  in (21) for different values of the 3D and
2D mesh parameters. The missing value could not be computed for memory
limitations on a 32 Gb RAM computer.

𝛿𝐹 = (𝛿)
2
3 𝛿𝐹 = 1

10
(𝛿)

2
3 𝛿𝐹 = 10(𝛿)

2
3

𝛿 = 2.0 × 10−2 83 83 54
𝛿 = 2.5 × 10−3 85 81 78
𝛿 = 3.1 × 10−4 82 – 79

7.2. Test 1

The second numerical test, labeled test1, has the same domain geometry of test0. Boundary conditions and the forcing term 𝐠
are chosen in such a way that the analytical solution is:

ℎ =

{

e−𝑧 + 𝑥2 + 𝑦2 − 2 𝑧 > 0
−e𝑧 + 𝑥2 + 𝑦2 + 3

2 𝑧 +
1
2 𝑧 < 0,

ℎ𝐹 = 𝑥2 + 𝑦2;

for 𝐾 = 𝜂 = 1 and 𝐾𝐹 = 3∕8. In particular we prescribe Dirichlet boundary conditions on the top and bottom faces, edges and
vertexes of the domain, according to the chosen solution, and Neumann boundary conditions equal to 2 on the remaining part of
the boundary of  and on the whole 𝜕𝐹 . The numerical solution is computed on four meshes, with mesh parameter 𝛿 ranging from
2×10−2 to about 4×10−5 and 𝛿𝐹 =

(

𝛿
)
2
3 . Table 1 reports the number of degrees of freedom for ℎ in column  and the DOFs for

ℎ𝐹 in column  𝐹 for the four chosen values of 𝛿. The last column, 𝑛it, shows the number of iterations of the conjugate gradient
(CG) algorithm described at the end of Section 4 required to reach a relative residual of 10−7 for the various meshes: slightly more
than 10 iterations are sufficient in all cases.

The solution obtained on the mesh with 𝛿 = 2.5 × 10−3 is displayed in Fig. 4, left, on the whole domain, whereas its slice plot
on a plane orthogonal to the fracture can be found in Fig. 4, right. Fig. 5 displays convergence curves in the 𝐿2 and 𝐻1 norm of
the error between the analytical and the numerical solution of the 3D problem. It can be noticed that the optimal trends for the
chosen approximation space are obtained, thanks to the presence of the discontinuous basis functions, despite the non-conformity
of the mesh.

Table 2 shows the condition number of matrix  in (21) for different values of 𝛿 and 𝛿𝐹 . Even if matrix  is never computed
to obtain the solution of any of the proposed examples, it is explicitly computed only to measure its conditioning. It can be seen
that  has a low condition number, which appears to be almost independent from the mesh-size and also from the relative size of
the meshes for the 3D and 2D variables.

7.3. Test 2

The third numerical test, labeled test2, is inspired by the second test case in Section 6.2 of [2]. In the reference, a 2D problem
is proposed, and here we consider a similar problem in three dimensions, obtained by uniformly extending in the third dimension
8
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Fig. 4. test1: solution on the 3D domain (left) and slice plot of the solution on a plane orthogonal to 𝐹 (right).

Fig. 5. test1: Error convergence curves against mesh refinement.

Fig. 6. test2: solution on the 3D domain.

the data available in [2]. The domain  is a cuboid with barycenter in [0.5, 1, 0.5] and one vertex placed in the origin of a reference
system 𝑥𝑦𝑧, see Fig. 6. Edges parallel to the 𝑦-axis have length 2, whereas all other edges have length 1. Fracture 𝐹 lies on the 𝑥𝑧
plane, passing through the barycenter, and entirely crossing the domain. A homogeneous Dirichlet boundary condition is set on
cube face, edges and vertices lying on the plane orthogonal to the 𝑦-axis and passing through the origin, and a unitary Dirichlet
boundary condition is instead set on face, edges and vertices lying on the plane orthogonal to the 𝑦-axis and passing through point
[1, 2, 1]. Null Neumann boundary conditions are fixed on the remaining of 𝜕 and also on the whole boundary of 𝐹 . In this example
𝐾 = 1, whereas, being 𝑑 = 10−2 the thickness of the original equi-dimensional fracture, it is:

𝐾𝐹 (𝐱𝐹 ) =
{

𝑑 𝑥𝐹 < 0.25 or 𝑥𝐹 > 0.75
−3

(28)
9
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Table 3
test2: Condition number of matrix  in (21) for different values of the 3D and 2D mesh
parameters. 𝛿 = 0.0005 in all cases.

𝛿𝐹 = 5 × 10−3 𝛿𝐹 = 5 × 10−4 𝛿𝐹 = 5 × 10−2

𝐾𝐹 as in (28), 𝜂 as in (29) 105 6 × 105 2 × 104

𝐾𝐹 = 𝑑, 𝜂 = 1∕𝑑 5 × 105 5 × 105 3 × 105

𝐾𝐹 = 2 × 10−3𝑑, 𝜂 = 2 × 10−3∕𝑑 28 24 12

and

𝜂(𝐱𝐹 ) =
{

1∕𝑑 𝑥𝐹 < 0.25 or 𝑥𝐹 > 0.75
2 × 10−3∕𝑑 otherwise

(29)

with 𝐱𝐹 = (𝑥𝐹 , 𝑦𝐹 ) a local reference system on 𝐹 . As a consequence, fracture 𝐹 acts both as a permeable fracture where 𝐾𝐹 ∕𝑑 = 𝐾

and 𝜂𝑑 = 𝐾, and as a barrier where, instead, 𝐾𝐹 ∕𝑑 and 𝜂𝑑 are much smaller than 𝐾. A 3D mesh with 𝛿 = 5 × 10−4, counting
about 2.5 × 103 degrees of freedom is considered, whereas the 2D meshes (the same for ℎ𝐹 and all the interface variables) have
𝐹 = 5 × 10−3 and count 181 DOFs for ℎ𝐹 and 328 DOFs for 𝜓⋆, ⋆ = +,−, 𝐹 . 115 CG iterations are required to reach a solution with
relative residual lower than 10−7. The obtained solution is reported in Fig. 6 in 3D.

Let us denote by 𝐹⟂ the rectangle given by the intersection of the plane 𝑧 = 0.5 with the domain  (𝐹⟂ is thus orthogonal to 𝐹 ).
ig. 7 shows, on the left, a slice plot of the solution on 𝐹⟂. A 2D reference solution is also computed on 𝐹⟂ for this problem. The
eference solution is obtained using standard finite elements and explicitly representing the thickness of the fracture on 𝐹⟂. The
riangular mesh for the reference solution is conforming to the fracture, is refined near the fracture, and inside fracture aperture
as a maximum element diameter equal to 𝑑∕10, as shown in Fig. 8. The reference mesh counts about 1.1× 104 degrees of freedom,
nd the solution obtained on such mesh is shown in Fig. 7, right. A good agreement can be observed between the reference and the
olution obtained with the proposed method. In Fig. 9 a further qualitative comparison of the two solutions is proposed, through
he overlapped plots of the solutions on five lines on 𝐹⟂, placed at values of 𝑥 = {0.1, 0.3, 0.5, 0.7, 0.9}. A very good agreement is
bserved also in this case. Finally, Fig. 10 proposes a comparison between the solution ℎ− and the corresponding interface variable
−. The matching between these two variables is given by the minimization of the functional, and we can notice a good agreement.

Table 3 shows the condition number of matrix  in (21) for different refinement levels of the 2D mesh and for different choices
f the data 𝐾𝐹 and 𝜂. The first line of the table corresponds to the choice in Eqs. (28)–(29), resulting in an interface that is partly
ermeable and partly non-permeable, as shown above. The second line, instead, refers to a choice of the parameters giving a fully
ermeable interface, whereas the third line to a set of parameters giving a fully non-permeable interface. It can be noticed that the
ondition number of matrix  is marginally affected by the relative size of the mesh for the 3D and 2D variables, as already observed
n the previous example. On the contrary it appears more affected by the nature of the interface. Indeed, the set of parameters
ielding a non-permeable interface gives a problem with a very low condition number, whereas, the fully permeable interface case
esults in a worse conditioning. The higher conditioning motivates the higher number of CG iterations required to solve test2 problem
ompared to test1.

.4. Test 3

The last numerical test, labeled test3, considers a fracture ending inside the domain. The setting is inspired by one of the examples
n Section 5.2 of [39], re-written as a 3D problem, as before. The domain is a unit edge cube with a vertex in the origin of a reference
ystem 𝑥𝑦𝑧, Fig. 11. Fracture 𝐹 lies on the plane 𝑥 = 0.5 and extends from 0 ≤ 𝑦 ≤ 0.5, 0 ≤ 𝑧 ≤ 0.5. Homogeneous Dirichlet boundary
onditions are prescribed on cube face, edges and vertices lying on the plane 𝑥 = 0 and a unit value Dirichlet condition is set on the
ace, edge and vertices lying on plane 𝑥 = 1. Neumann boundary conditions equal to zero are prescribed on the rest of 𝜕 and on
he whole 𝜕𝐹 . Parameters are 𝐾 = 1, 𝐾𝐹 = 10−7𝑑, and 𝜂 = 10−7∕𝑑, being 𝑑 = 10−2 the thickness of the original equi-dimensional
racture. The solution is obtained on a 3D mesh counting about 4.9×103 degrees of freedom for ℎ whereas 428 degrees of freedom
re used for ℎ𝐹 and 783 for 𝜓⋆, ⋆ = +,−, 𝐹 . For this problem 12 iterations of the CG solver are required to reach a relative residual
f 10−7. The condition number of matrix  in (21) is of the order of 10 for this problem. The solution is reported in Fig. 11 in
D, whereas Fig. 12, left, shows a slice plot on the plane 𝑧 = 0.5. A reference solution is computed also for this problem solving
2D equi-dimensional problem on the plane 𝑧 = 0.5, in which the width of the fracture is explicitly represented. The mesh for

he reference solution is refined inside fracture width, where maximum element diameter is 10−3, and is coarser outside, with a
aximum diameter of 3 × 10−2, resulting in about 5 × 103 unknowns. The reference solution is shown in Fig. 12, right, and we can

ee that it is in good agreement with the solution obtained with the proposed method. This is also highlighted by the line plots
f Fig. 13, where the two solutions are displayed, overlapped, on six segments placed on the plane 𝑧 = 0.5 for different values of
= {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. In particular, the computed solution is discontinuous across the fracture, whereas is continuous around
, thanks to the chosen enrichment function. Finally, Fig. 14 reports the slice plots of the 3D solution ℎ on 𝜔± compared to the

orresponding control variables 𝜓±, showing again the expected matching.
10
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Fig. 7. test2: Slice plot of the solution with the proposed approach (left) and reference solution (right).

Fig. 8. test2: Mesh for the reference solution with a zoom within fracture width.

Fig. 9. test2: Comparison of the reference solution and proposed solution on five segments on the 𝑥𝑦 plane at 𝑧 = 0.5 for 𝑥 = {0.1, 0.3, 0.5, 0.7, 0.9}.

8. Conclusions

A method for simulating fractures and barriers in porous media with the DFM model is presented. The method is based on an
optimization based domain decomposition strategy, already proposed in previous works, and here modified to account for non
permeable fractures and discontinuous solutions in the 3D domain. Key aspects of the method are the use of 3D meshes non
conforming to the interfaces and the introduction of a five-field domain decomposition method to decoupled the bulk 3D problem
from the problem on the fracture. The eXtended Finite Element Method (XFEM) is adopted to correctly reproduce the discontinuities
deriving from filtration-like coupling conditions at the interface between the porous matrix and the fracture. The algebraic system
deriving from the discretization of the problem with the proposed method is well posed, independently of the choice of the discrete
spaces for the involved variables. This is an important aspect in view of its application to complex geometrical configurations. Four
proof-of-concept numerical examples are provided, some of them inspired by reference solutions available in literature and adapted
to the present case. The obtained results show the viability of the proposed method and its accuracy with respect to reference
solutions obtained with conventional approaches on fine meshes capable of reproducing fracture thickness. The discrete problem is
11
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Fig. 10. test2: Slice plot of the solution on the plane 𝜔− compared to function 𝜓−.

Fig. 11. test3: solution on the 3D domain.

Fig. 12. test3: Slice plot of the solution with the proposed approach (left) and reference solution (right).

solved via a matrix free conjugate gradient method. The system to be solved is characterized by a condition number that appears
mildly affected by the refinement level of the mesh and also by the relative refinement level of the mesh for the 3D and 2D variables,
for the reported examples. Condition numbers lower that 102 are obtained in all the cases, independently from the mesh-size, for
problems with non-permeable fractures. Despite being designed to deal with discontinuous solutions, the proposed approach is also
12
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Fig. 13. test3: Comparison of the reference solution and proposed solution on six segments on the 𝑥𝑦 plane at 𝑧 = 0.5 for 𝑦 = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Fig. 14. test3: Slice plot of the solution on the plane 𝜔± compared to function 𝜓±.

capable of handling the case of permeable and partially permeable interfaces. Higher condition numbers are, however, observed in
this case, but still limited to the order of 105, and independent from the mesh-size in all the considered cases.

The proposed methodology can thus be exploited for dealing with more complex DFM configurations, with multiple and
intersecting interfaces. For example, interface variables can be introduced at fracture intersections to decouple the problem on each
fracture from that on the other fractures. Additional terms should be added to the functional expressing the matching conditions
at fracture intersections, similarly to what proposed in this work. The XFEM can be used to describe the possibly discontinuous
solutions on the fractures across the intersections with other non permeable fractures.

Within the optimization formulation, different interface conditions can be used for different kind of interfaces. Indeed, in presence
of multiple interfaces, the objective functional is given by the sum of interface-local quantities, and different coupling conditions can
be enforced for different kind of interfaces. In particular different approaches, optimized for permeable or non permeable interfaces
can be combined, thus also limiting the overhead related to the use of the XFEM which require additional unknowns and ad-hoc
quadrature rules. A parallel implementation of the preconditioned CG solver should be envisaged for large-size problems, exploiting
the domain decomposition formulation of the method.
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