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Abstract: This work aims at enhancing the photo-thermal performance of a parabolic trough collector
(PTC) system by implementing multiple coatings arrayed along the receiver tube. For this purpose,
a lumped-parameter model was developed in the radial direction of the receiver tube to compute
absorber tube wall temperature and heat losses at various heat transfer fluid (HTF) temperatures. The
HTF is a mixture of molten salt (60%wt. NaNO3 + 40%wt. KNO3). The lamped-parameter model was
exploited by a 1D model developed in the axial direction to determine the HTF temperature profile
along the tube. The 1D model was employed to calculate photo-thermal efficiency at different HTF
temperatures considering six selective coating formulations. Consequently, the most photo-thermally
efficient configuration of the PTC system was determined, encompassing three HTF temperature
ranges characterized by three different selective coating formulations. These temperature ranges were
290–436 ◦C (low temperature), 436–517 ◦C (medium temperature) and 517–550 ◦C (high temperature).
The respective tube lengths were computed to be 792 m, 566 m and 293 m, considering the reference
operational conditions. The optimal configuration enhanced the overall photo-thermal efficiency by
0.5–1.9% compared to the single-coated configurations. Furthermore, receiver cost could be reduced
because of the employment of the more expensive coating only at the final segment.

Keywords: optimization; parabolic trough collector (PTC); photo-thermal efficiency; spectrally
selective coating; numerical modeling

1. Introduction

The utilization of renewable energy sources, especially solar energy, is a viable solution
to address major global issues in terms of increasing energy demand, the depletion of
fossil fuels, global warming and air pollution [1,2]. Among solar-based technologies, the
concentrated solar power (CSP) system has captured considerable attention over the last
few decades due to the possibility of storing thermal energy, making power production
dispatchable [3]. The parabolic trough collector (PTC) is the most commercially established
CSP technology [4], which can be used for power production [5,6], seawater desalination [7],
industrial heating [8] and residential heating/cooling [9].

PTC is a line-focusing system consisting of a receiver tube, parabolic mirrors and a
single-axis tracking system. The mirror concentrates the incident solar radiation on the
receiver tube, where the energy of the concentrated sunlight is transferred to a heat transfer
fluid (HTF). The receiver tube consists of an absorber tube, through which the HTF flows,
which is encapsulated in a glass envelope to minimize heat losses to the environment. A
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spectrally selective coating is typically applied to the outer surface of the absorber tube
to enhance the photo-thermal performance of the collector by increasing absorptance and
minimizing emissivity [10,11].

Photo-thermal efficiency is a measure of a collector’s effectiveness in converting sun-
light into useful thermal energy. Numerous studies have been conducted to optimize the
photo-thermal performance of PTCs through specific strategies implemented on selective
coatings. Olson et al. [12] represented optimal designs of a direct steam generation parabolic
trough system by investigating the spectral, environmental and material properties of se-
lective coatings. In this respect, several parameters including absorptance, emissivity,
transition length, transition wavelength, operating temperature and concentration factor
were investigated. The optimum transition wavelengths were found to be 1.4 µm and 3.4
µm for ideal and realistic non-ideal conditions, respectively. In the ENEA laboratories,
where different selective coatings have been developed in the last 15 years [13–16], spe-
cific optimization procedures have been developed to design effective cermet-based solar
coatings for PTCs operating at high temperatures. In this respect, six optimized selective
coatings were designed by employing a semi-empirical procedure and a layer-on-layer
ellipsometric characterization [13]. Improved performances were reported compared to
similar selective coatings, with a photo-thermal efficiency of 85% at 550 ◦C. Furthermore,
Yang et al. [17] carried out a spectral optimization of solar selective coatings for PTCs,
investigating the impact of absorber temperature and solar irradiation flux on the overall
efficiency and coating spectrum distribution. According to simulation results, the uni-
form distribution of temperature and solar irradiation flux must be considered in the
optimization procedure of selective coatings. Spectral absorptance analysis indicated a
nearly equal positive effect of coating absorptance on the receiver performance at different
temperatures, while emissivity analysis demonstrated a varied adverse impact with respect
to temperature. Therefore, it was concluded that spectral emissivity would be of great
importance to optimize selective coatings at high temperatures. However, all these works
enhanced the performance of the PTC system through the improvement of selective coating
specifications, which could lead to an increase in the receiver cost. In the present work, a
different strategy has been adopted for the performance enhancement of the PTC system,
which relies on the arrangement of multiple selective coatings along the receiver tube based
on their photo-thermal performance. Implementing this approach results in a reduction in
the receiver cost since the more expensive coating is employed only on a small portion of
the collector.

Nagaraj [18] experimentally studied the optical and thermal performance of a PTC
by using epoxy-based graphite coating. The performance of the proposed collector was
compared with two similar collectors, comprising uncoated and acrylic covered tubes. It
was concluded that employing epoxy-based graphite coating would effectively improve
the thermal performance of the system, indicating an average increase of 96% and 28%
in the HTF temperature at the outlet section. Moreover, Al-Rabeeah et al. [19] conducted
an experimental investigation on a PTC by using various absorber tube coatings. The
study employed two identical collectors to compare two different coatings, encompassing
matte coating and nanocoating. Experimental tests were performed for various mass
flow rates to evaluate the optical and thermal performance of the collectors. It was found
that nanocoating could be more effective in terms of thermal efficiency due to reduced
heat losses. In addition, integrating graphene nanoparticles and iron oxide with the
matte coating resulted in an increase in the absorptance. However, the enhancements
observed in these experiments were achieved by applying one single coating to the entire
collector line, while this paper suggests a configuration with multiple selective coatings.
Therefore, instead of improving coating specifications that might lead to an additional cost,
an optimized arrangement is considered that reduces the receiver cost.

Additionally, Yang et al. [20] proposed a novel PTC with two different selective
coatings, namely a double-selective-coated receiver, and compared it with two traditional
single-coated receivers. For this purpose, the double-selective-coated receiver was split into
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two regions designated for two selective coatings. Based on the optimized results of the
cut-off wavelength, it was concluded that the optimal optical properties of the two regions
would be different. Moreover, the double-selective-coated receiver could reduce heat
losses from the absorber tube to the environment and improve photo-thermal efficiency,
compared to the two traditional single-coated receivers. Then, Yang et al. [21] conducted a
spectral–spatial analysis of a PTC, employing a receiver tube with two selective coatings
distributed based on the circumferential solar flux distribution on the absorber tube. It was
reported that the proposed design could reduce heat losses and increase the photo-thermal
efficiency of the PTC system. However, in these studies, the two selective coatings in the
double-selective-coated receiver were distributed in the circumferential direction of the
tube, which means that the impact of the varied performance of the coatings with respect to
the HTF temperature is not considered. The present study introduces a different approach
in which the selective coatings are arrayed based on their photo-thermal performance at
various HTF temperature ranges along the axial direction. Such a strategy ensures the
optimization of the photo-thermal performance of the system for the whole collector line.

Zhao et al. [22] presented a strategy based on applying multiple selective coatings
in different sections of a PTC system. For this purpose, a conventional system with
single-selective coating was compared with two different configurations: an ideal system
consisting of multiple selective coatings with optimal cut-off wavelengths at different
temperatures, and a multi-section system comprising multiple practical selective coatings.
Based on the results, the ideal and the multi-section configurations demonstrated improved
thermal performance compared to the conventional system in terms of heat losses and ther-
mal efficiency. Singh et al. [23] introduced a performance enhancement strategy for a PTC
by employing a MXene-based coating. In this regard, two retrofitted coated absorber tubes
were compared with an absorber tube with a conventional selective coating. According
to the results, the proposed coating strategy could enhance the thermal efficiency of the
system, compared to the conventional selective coating. This could also lead to a decrease
in the collector size by using the retrofitted coated absorber tubes. In addition, Stanek
et al. [24] introduced an approach to reduce the investment cost of a PTC-based solar indus-
trial process heat system by employing a non-selective coating at the initial sections of the
collector line. Four case studies were considered in the analysis, with different temperature
ranges intended for various industrial applications. The results confirmed the potential of
using a non-selective coating at low and medium temperatures in industrial process heat
systems. However, the proposed strategy could not be implemented on high-temperature
systems due to high heat losses and the lack of optimization potential. Nevertheless, none
of these studies conducted an optimization on the basis of the photo-thermal efficiency.
Moreover, the optimized configuration of the receiver tube consisting of spatial positions
of selective coatings along the collector line was not provided.

The present paper introduces a specific optimization strategy for the photo-thermal
enhancement of PTC systems. In this respect, six different selective coatings are investigated
to determine an optimal collector configuration in which multiple selective coatings are
arranged along the collector line based on their photo-thermal performance at various
HTF temperature ranges. The paper is organized as follows: Section 2 describes the
materials and methods implemented in this work, representing the reference system, the
methodology adopted, a lumped-parameter model developed along the radial direction
and a 1D model developed along the axial direction of the receiver tube. The results of
the study are presented and discussed in Section 3, providing the validation and results of
the lumped-parameter model, as well as photo-thermal optimization of the PTC system.
Finally, the conclusions of the work are provided in Section 4.

2. Materials and Methods

In the present work, a reference PTC system with six different selective coatings
has been considered for the purpose of photo-thermal optimization. The methodology
implemented for this optimization includes two models: a lumped-parameter model
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developed in the radial direction of the receiver tube, and a 1D model developed along the
receiver axis.

2.1. Reference System

The reference PTC considered for photo-thermal optimization is shown in Figure 1.
As shown, the receiver tube is composed of a stainless-steel absorber tube, enclosed in a
borosilicate glass cover. The absorber tube has the function of absorbing incident solar
radiation and transferring it to the HTF, which is a mixture of molten salt (60%wt. NaNO3
+ 40%wt. KNO3) [25], with an operational temperature range of 290–550 ◦C. The gap
region between the glass cover and the absorber tube is an evacuated space with a very
low pressure (10−2 Pa), which ensures high thermal insulation within the receiver tube.
Figure 1 also outlines the geometrical specifications of the receiver tube.
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Figure 1. Cross-sectional view of the reference PTC.

To improve the photo-thermal performance of the receiver tube, a spectrally selective
coating is typically applied to the outer surface of the absorber tube. The selective coating
must be characterized by a low emissivity in the infrared range and a high absorptance in
the solar spectral range to attain the most enhanced photo-thermal performance. Figure 2
depicts a schematic of a multi-layer coating developed by ENEA for high-temperature CSP
applications [13,26]. As shown in Figure 2, a metallic layer is initially coated on the outer
surface of the tube, characterized by low emissivity and high reflectivity in the infrared
range. The second layer includes a cermet layer composed of ceramic and metallic materials
to ensure a high absorptance in the solar spectral range. The third layer is an anti-reflective
layer, applied to the external side of the tube.
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Figure 2. Schematic of a multi-layer coating for the absorber tube.

As mentioned in Section 1, the strategy adopted in this work for the photo-thermal
optimization of the PTC system is to implement multiple coatings along the collector line
based on their photo-thermal performance at various HTF temperature ranges. In this
regard, six selective coatings have been designed and fabricated with various ranges of
absorptance and emissivity. These coatings have an infrared reflector of silver, covered by
a graded multilayer cermet of tungsten nitride and aluminum nitride and, lastly, by an
antireflection filter of aluminum nitride and silica [13,27].

Photo-thermal parameters of absorptance αs(θ) and emissivity εth(θ, T) were calculated
in the wavelength ranges 0.25–2.5 µm and 0.25–16 µm by using the following formulas:

αS(θ) =

∫ 2.5
0.25 S(λ)[1 − R(λ, θ)]dλ∫ 2.5

0.25 S(λ)dλ
(1)

εth(θ, T) =

∫ 16
0.25 E(T, λ)[1 − R(λ, θ)]dλ∫ 2.5

0.25 E(T, λ)dλ
(2)

where θ is the incidence angle of radiation, αs(θ) is the absorptance, εth(θ, T) is the emis-
sivity at temperature T, S(λ) is the circumsolar solar spectrum ASTM G173-03, R(λ, θ) is
the hemispherical spectral reflectance and E(T, λ) is the spectrum of the black body at
temperature T.

Equations (1) and (2) show that the photo-thermal parameters can be calculated only
after measuring the hemispherical spectral reflectance R(λ,θ) of the different coatings. In
this case, the measurement of R(λ,θ) was carried out in the wavelength range 0.25–2.5 µm
by using a a PerkinElmer (U.S.A.) UV-VIS-NIR spectro-photometer mod. 1050+ equipped
with an integration sphere. Measurements were not conducted directly on the tube but
on flat samples and this allowed us to make very accurate evaluations of αs(θ). Tests
to determine the accuracy of the measurement showed a standard error deviation of
0.035%. NIR-IR hemispherical spectral reflectance was measured by aBRUKER (U.S.A.)
Fourier Transform spectro-photometer mod. INVENIO X equipped with a 7.5 cm diameter
integrating sphere in the wavelength range 1.5–16 µm. Again, the adoption of flat samples
allows very accurate spectral reflectance assessments in the 1.5–16 µm wavelength range.
Tests to determine the accuracy of the measurement showed a standard error deviation
of 0.14%.

After measuring the spectral reflectance in the different wavelength ranges, it was
possible to calculate both the absorptance in the wavelength range 0.25–2.5 µm and the
emissivity by connecting the spectral reflectance in the wavelength range 0.25–2.5 µm with
the spectral reflectance in the wavelength range 1.5–16 µm. The emissivity of each coating
was calculated at different operating temperatures; the values identified as a function of
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temperature were subjected to a polynomial fitting in order to identify the mathematical
correlation between the two parameters. This correlation is written as follows (T in [◦C]):

ε = Intercept + B1 ∗ T + B2 ∗ T2 + B3 ∗ T3 (3)

The emissivity values and the fitting curve of the emissivity as a function of the
operating temperature of coating #1 are reported in Figure 3, while the equation and the fit
parameters are reported in Table 1.
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Figure 3. Emissivity of coating #1 with respect to the surface temperature.

Table 1. Equation and fit parameters of the emissivity as a function of the surface temperature of
coating #1, referring to Equation (3).

Parameter Value

Intercept 0.02286 ± 0.00008
B1 1.90641 × 10−5 ± 1.12155 × 10−6

B2 9.95123 × 10−9 ± 4.50843 × 10−9

B3 1.52744 × 10−10 ± 5.15498 × 10−12

Residual sum of squares 2.49034 × 10−8

R-squared (COD) 0.99998

The same procedure was repeated for the remaining five coatings. Table 2 outlines
absorptance data and emissivity correlations for the six coatings considered, and Figure 4
illustrates the emissivity of the coatings with respect to temperature. As can be seen in
Table 2 and Figure 4, while coating #1 has the lowest absorptance among the six coatings,
it provides the lowest emissivity in the entire temperature range. Conversely, coating #6,
with the highest absorptance, has the highest emissivity in the whole temperature range
as well. However, differences in the emissivity values among various coatings are greater
at higher temperatures. As a result, it could be expected that a selective coating with
a desirable photo-thermal performance at lower temperatures is not the best option for
higher temperatures. For this reason, an optimal receiver configuration must be determined,
employing multiple coatings arrayed along the collector line based on their photo-thermal
performance at various temperature ranges.
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Table 2. Absorptance and emissivity data for the six selective coatings considered in this study.

Selective
Coating Absorptance Emissivity

Coating #1 0.9265 ε1 = 1.53 × 10−10 T3 + 9.95 × 10−9 T2 + 1.91 × 10−5 T + 0.023
Coating #2 0.9375 ε2 = 1.21 × 10−10 T3 + 5.56 × 10−8 T2 + 1.40 × 10−5 T + 0.025
Coating #3 0.9411 ε3 = 1.62 × 10−10 T3 + 3.21 × 10−8 T2 + 2.55 × 10−5 T + 0.021
Coating #4 0.9486 ε4 = 1.61 × 10−10 T3 + 6.95 × 10−8 T2 + 1.73 × 10−5 T + 0.023
Coating #5 0.9544 ε5 = 1.01 × 10−10 T3 + 1.49 × 10−7 T2 − 9.80 × 10−7 T + 0.030
Coating #6 0.9665 ε6 = 1.42 × 10−10 T3 + 1.70 × 10−7 T2 + 2.66 × 10−5 T + 0.030
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2.2. Methodology

The computational procedure adopted in this paper is outlined in Figure 5. As shown,
the final goal of this study is to achieve the most photo-thermally efficient PTC configuration.
To determine this configuration, a lumped-parameter model was initially developed along
the radial direction of the receiver tube. The boundary conditions applied to the lumped-
parameter model include incident solar heat flux, mass flow rate, HTF temperature, ambient
temperature and (transversal) wind speed [28]. This model calculates the absorber tube
wall temperature at various HTF temperatures as well as heat losses as a function of HTF
temperature. The latter is then exploited by the 1D model developed along the tube axis
to solve the energy balance [24]. Using this 1D model, the HTF temperature profile can
be obtained in the axial direction, which is then employed to determine the distribution
of the most efficient selective coatings along the collector line. These efficient coatings
are recognized through the calculation of the photo-thermal efficiency [13] by using the
absorber tube wall temperature already provided by the lumped-parameter model. Finally,
the most photo-thermally efficient PTC configuration is determined, indicating a specific
distribution of selective coatings along the collector line that ensures the highest possible
photo-thermal efficiency.
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2.3. Lumped-Parameter Model

In this study, a steady-state lumped-parameter model has been developed along the
radial direction of the receiver tube using the Modelica language. This model aims at
computing the absorber tube wall temperature and heat losses at various HTF temper-
atures. A cross-section of the receiver tube is considered in this model to compute heat
fluxes from the HTF to the external ambient environment for a given HTF temperature.
Figure 6 represents heat fluxes along the radial direction considered in the model. Relevant
correlations for the calculation of the heat fluxes shown in Figure 6 are presented in [29].
It should be noted that the cold sink temperature required for computing the radiative
heat loss from the glass outer surface to the ambient environment has been assumed to be
8 ◦C below the ambient temperature (sky temperature). Furthermore, the convective heat
transfer coefficient between the absorber tube and the glass cover has been approximated
to be 1.115 × 10−4 W/m2K to simulate vacuum conditions [29].
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The following assumptions have been made in the lumped-parameter model devel-
oped in this work:

• The azimuthal heat conductions within the glass and absorber tube walls have been
ignored, in accordance with [30].

• The conductive heat loss through the support structures has been neglected, in accor-
dance with [31].
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• Despite the assumption of complete opacity for the glass envelope in the infrared range
made in [29], a transmissivity of 0.11 has been implemented according to Kirchhoff′s
law, given an emissivity of 0.89 and a reflectivity of 0 [28].

Regarding the HTF mass flow rate, a reference value of 2.2 kg/s has been initially
considered for the plant, based on a reference pilot plant [32]. This value corresponds to a
reference day and time (March 21st at 12:00 GMT) with a DNI of 900 W/m2, an ambient
temperature of 30 ◦C and a wind speed of 3.7 m/s. These operational conditions have
been considered as the reference values for the present work. The linear solar collector
implemented in [32] had the same materials and geometric specifications as the PTC
considered in this study (see Figure 1). The only difference between the two collectors is
attributed to the secondary reflector, which is absent in the configuration considered in
the present work. Furthermore, to evaluate the impact of the HTF mass flow rate on the
final result of the photo-thermal optimization, a sensitivity analysis has been conducted
in this work. For this purpose, various mass flow rates of 1, 1.5, 3 and 4 kg/s have also
been investigated.

Furthermore, a Robin boundary condition has been applied to the inner surface of
the absorber tube wall. This requires imposing the HTF temperature and the convective
heat transfer coefficient. As already mentioned, the former is known as input data, while
the latter can be computed by means of the Gnielinski correlation for the given mass flow
rate [29].

In the lumped-parameter model, the walls of the glass envelope and the absorber
tube were discretized into 20 elements in the azimuthal direction to ensure a solution
independent of the discretization. The applied boundary conditions encompass mass flow
rate, HTF temperature, ambient temperature, (transversal) wind speed and the azimuthal
distribution of the solar flux incident on the glass envelope and on the absorber tube.
Figure 7 depicts the azimuthal distribution of the incident heat flux on the absorber tube
(in W/m2) and of the absorbed power density by the glass tube (in W/m3), computed by
means of a Monte Carlo-based ray-tracing code in Tonatiuh software (version 2.2.4) [33].
In this respect, multiple reflections, absorptions and scatterings occurring within the PTC
system were simulated. Tonatiuh deals with elastic collisions, which means that the energy
could be transferred to a specific surface only when a photon is absorbed. Consequently, the
heat flux on a given surface can be directly computed from the number of photons absorbed.
By implementing such an approach, heat flux distributions have been determined for the
glass and absorber tubes. This approach has been widely employed in the literature to
compute the heat flux distribution on solar collectors, providing reliable results [34]. The
data provided in Figure 7 correspond to a DNI of 900 W/m2, tracking and inclination errors
of 0◦ and an incidence angle of 0◦.
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The lumped-parameter model provides heat losses as a function of the HTF tempera-
ture for use by the 1D model (see Section 2.4) and the absorber tube wall temperature is
required to calculate the photo-thermal efficiency (see Section 3.3).

2.4. 1D Model

In order to determine the HTF temperature profile along the tube, a simple 1D model
has been developed along the collector axis. Once the temperature profile is obtained,
the tube length required to reach the desired HTF temperature at the outlet section of
the receiver tube (550 ◦C) can be determined as well. The 1D model exploits the results
of the lumped-parameter model in terms of heat losses correlations with respect to HTF
temperature. Figure 8 illustrates a schematic of the 1D model, incorporating the required
boundary conditions. This model solves the steady-state energy balance equation for the
molten salt along the receiver axis. As shown in Figure 8, the applied boundary conditions
include the HTF temperature at the inlet and outlet sections of the receiver tube, mass
flow rate and the solar flux transferred to the HTF. The latter corresponds to the difference
between the absorbed solar flux and heat losses to the environment. Regarding the spatial
discretization, the receiver axis was divided into n control volumes with equal lengths of
1 m to ensure the grid independence of the results. It should be noted that the actual number
n of control volumes would depend on the computed total length of the receiver tube.
Therefore, the final length of the tube would be an integer multiple of ∆x, representing an
acceptable approximation since ∆x is significantly lower than the total tube length (always
< 1%).
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The steady-state energy balance equation implemented in the 1D model can be written
as follows:

(Qabs − Qloss(T))∆x =
.

m
∫ To

Ti

cp(T)dT (4)

where ∆x is the length of the i-th control volume,
.

m represents mass flow rate, cp is
the specific heat provided as a function of HTF temperature, and Ti and To are HTF
temperatures entering and leaving the i-th control volume, respectively. Qabs and Qloss
represent the absorbed solar power and heat losses per unit length, respectively.

This simple model presents reliable results since it employs the results of a validated
(see Section 3.1) lumped-parameter model. In particular, the lumped-parameter model
provides Qloss in Equation (4) as a function of HTF temperature (see Section 3.2).

The 1D model is exploited to obtain the HTF temperature profile along the receiver
tube and, consequently, to determine the most photo-thermally efficient collector configu-
ration, as presented in Section 3.3.

3. Results and Discussion

To conduct a photo-thermal optimization analysis, the lumped-parameter model
has initially been validated against experimental data. Then, the results of the lumped-
parameter model have been obtained in terms of absorber tube temperature and heat losses
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to the environment. Finally, the results of the photo-thermal optimization of the PTC system
have been achieved, representing the most photo-thermally efficient configuration of the
receiver tube.

3.1. Validation

The lumped-parameter model has been validated against experimental data provided
by ENEA in terms of heat losses from the absorber tube for the ASE HCEMS-11 receiver
tube. The experimental test was conducted by Archimede Solar Energy (ASE). The materials
and geometrical specifications of the receiver tube employed in the experiment are the same
as in the configuration depicted in Figure 1. A selective coating was applied to the outer
wall of the absorber tube in the experiment with an absorptance of 0.9487. The emissivity
of the coating is depicted in Figure 9 as a function of temperature.
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A schematic of the experimental setup is outlined in Figure 10. As shown, the experi-
ment was performed by heating the absorber steel tube at low voltage through the joule
effect, keeping it at a fixed and constant temperature for a time period of 120 min with an
accuracy of ±1 ◦C (stationary state). Once a uniform tube temperature was reached, the
supplied electrical power to maintain the tube’s constant temperature can be considered
coincident with the average tube thermal losses in the external environment by radiation
and natural convection. The internal steel tube and external glass tube temperature was
measured, respectively, by nine thermocouples (type K) positioned in three sections along
the tube, with angular intervals of 120◦. The electrical power was supplied (1000 A and
40 Volts) to the tube through nickel-plated electrical terminals positioned at the two ends
of the steel tube tightened on the external diameter. The electrical terminals’ design was
optimized to guarantee an optimal electrical coupling with the external surface, therefore
minimizing the electrical resistance in the area of contact.

Since the above-mentioned test has been conducted at only three different tube wall
temperatures (300, 400 and 550 ◦C), the availability of validation data is limited to these
three temperature points for this receiver tube. In addition, a single experiment has been
performed for each temperature point.
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Figure 10. Experimental setup established to measure heat losses from the absorber tube to the
environment.

Several modifications were incorporated into the lumped-parameter model to repro-
duce the experimental conditions. In particular, the thermal driver of the solar heat flux
was replaced with a constant temperature imposed on the internal surface of the absorber
tube. Furthermore, absorptance and emissivity data of the selective coating utilized in the
experiment (Figure 9) were implemented in the model. Since the test was performed in a
closed environment, wind speed was set to zero (free convection), and the cold sink tem-
perature used to compute the radiative heat loss was assumed to be equal to the ambient
temperature (tube could not see the sky). Finally, ambient temperatures measured during
the experiment were applied to the model.

Figure 11 compares the results obtained in the present model with the experimental
data. This comparison is provided in terms of glass temperature and heat losses from the
absorber tube. As shown in Figure 11a, the model well reproduces glass temperatures
obtained by the experiment, indicating a maximum deviation of approximately 6.7%.
Furthermore, a comparison between heat losses computed by the lumped-parameter model
and those observed during the experiment reveals a compelling agreement, as depicted in
Figure 11b, indicating a maximum deviation of about 6.5%.
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3.2. Results of the Lumped-Parameter Model

Once the lumped-parameter model was validated, it was employed to obtain the
required data for the 1D model and for the calculation of the photo-thermal efficiency, as
discussed in Section 2.2.

Firstly, the lumped-parameter model must provide correlations of heat losses based
on the HTF temperature in order to be utilized by the 1D model. Figure 12 illustrates heat
losses with respect to the HTF temperature, employing the six selective coatings considered
in this study. Comparing various coatings reveals that coating #1 and coating #6 dissipate
the lowest and the highest amount of heat from the absorber tube towards the environment,
respectively, at the entire range of the HTF temperature. This result is in correspondence
with the emissivity data shown in Figure 4, where coating #1 and coating #6 indicate the
lowest and the highest emissivity at the entire range of the HTF temperature. The results
shown in Figure 12 correspond to the mass flow rate of 2.2 kg/s; however, the HTF mass
flow rate has a minor impact on heat losses. The differences in heat losses across various
flow rates are always below 7% at various HTF temperatures.
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Based on the plots shown in Figure 12, correlations of heat losses can be derived with
respect to the HTF temperature. These correlations can be written as follows (THTF in [◦C]):

Qloss(THTF) = aTHTF
2 + bTHTF + c (5)

The values of coefficients a, b and c along with their respective uncertainties are
provided in Table 3. These correlations were employed by the 1D model to compute the
HTF temperature profile along the receiver axis.

Table 3. Coefficients of the correlations of heat losses obtained by the least squares method with their
respective uncertainties.

Selective Coating a b c

Coating #1 0.00411 ± 0.00001 −2.299 ± 0.004 365.1 ± 1.7
Coating #2 0.00458 ± 0.00001 −2.547 ± 0.004 402.2 ± 1.8
Coating #3 0.00490 ± 0.00001 −2.770 ± 0.005 438.3 ± 2.0
Coating #4 0.00555 ± 0.00001 −3.150 ± 0.005 498.2 ± 2.2
Coating #5 0.00611 ± 0.00001 −3.425 ± 0.006 539.0 ± 2.3
Coating #6 0.00796 ± 0.00002 −4.462 ± 0.007 698.7 ± 3.0

In this study, the least squares (LS) method was employed for curve fitting. This ap-
proach could provide the best fit for the heat loss data with respect to the HTF temperature
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through minimizing the sum of the squares of residuals. The uncertainties provided in
Table 3 were computed with regard to the standard errors of the coefficients achieved by
the least squares fit. In addition, error propagations were calculated to assess the impact
of these uncertainties in the predictions of heat losses. It was found that the propagated
uncertainty in the heat losses always remains below 5.5% at various HTF temperatures for
different selective coatings. Furthermore, calculating the coefficient of determination (R2)
revealed the robustness of the curve-fitting approach, consistently remaining well above
0.99 for all cases.

In addition, the lumped-parameter model calculates the temperature of the external
surface of the absorber tube at different HTF temperatures, which is required for computing
the photo-thermal efficiency. Figure 13 shows the temperature of the absorber tube wall
surface with respect to the HTF temperature, ranging from 290 ◦C to 550 ◦C. The trend
depicted in Figure 13 remains consistent for all scenarios, applying any selective coatings
with various mass flow rates. The maximum difference across the cases consistently remains
less than 4 ◦C with respect to the wall temperature at various HTF temperatures. This is due
to the fact that the absorber tube temperature is mainly determined by the imposed HTF
temperature since the heat transfer coefficient between the HTF and the tube is substantially
greater than that between the tube and the gap region. This also results in relatively minor
differences between the absorber tube wall temperature and the HTF temperature across
the entire tube length, always remaining less than 7.3 ◦C.
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3.3. Photo-Thermal Optimization of the PTC System

The results obtained by the lumped-parameter and 1D models have been employed to
determine an optimal configuration of the PTC system from a photo-thermal viewpoint. In
this respect, the photo-thermal efficiency is defined as follows:

ηpt = α − ε

(
σT4

I

)
(6)

where α and ε represent the absorptance and emissivity of the selective coating applied to
the absorber tube; σ represents the Stefan–Boltzmann constant; T is the absorber tube wall
temperature, provided by the lumped-parameter model (Figure 13); and I represents the
solar irradiance, assumed to be equal to 900 W/m2 based on the reference ASTM G173-03
solar spectrum [35].
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As can be seen in Figure 4, a coating with the lowest absorptance indicates the lowest
emissivity. Conversely, a coating with the highest absorptance demonstrates the highest
emissivity as well. However, the emissivity of the coatings depends on temperature,
exhibiting substantial variations from the inlet section to the outlet section of the receiver
tube (corresponding to HTF temperatures from 290 ◦C to 550 ◦C). Consequently, to attain
the highest photo-thermal efficiency, an approach must be taken in which multiple selective
coatings are positioned along the receiver tube based on their photo-thermal performance
at different HTF temperature ranges.

In this regard, first, photo-thermal efficiencies were computed by using the lumped-
parameter model at different HTF temperatures, employing the six selective coatings
presented in Table 2 and Figure 4. Then, the selective coatings with the highest photo-
thermal efficiency at specific ranges of the HTF temperature were determined. Subsequently,
this result was integrated with the result of the 1D model provided in terms of the HTF
temperature profile along the collector line. This integration provided the most photo-
thermally efficient PTC configuration in line with the main goal of this study.

Figure 14 shows the photo-thermal efficiency with respect to the HTF temperature
for the six selective coatings investigated in this study. The results presented in Figure 14
remain consistent among various mass flow rates of 1, 1.5, 2.2, 3 and 4 kg/s. This is due
to the fact that, according to Equation (6), among the parameters that affect the photo-
thermal efficiency, the only one influenced by the mass flow rate is the absorber tube wall
temperature. However, this temperature is slightly affected by the mass flow rate as it
is strictly connected to the HTF temperature (see Figure 13). Consequently, variations
of the photo-thermal efficiency with respect to the HTF temperature would be equal for
different mass flow rates. As observed in Figure 14, to achieve the maximum photo-thermal
efficiency, two critical HTF temperatures of 436 ◦C and 517 ◦C can be identified. As a result,
three temperature ranges are created, characterized by three different selective coatings:

• 290–436 ◦C → Coating #6
• 436–517 ◦C → Coating #4
• 517–550 ◦C → Coating #3
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Figure 14. Photo-thermal efficiency computed for the six selective coatings, highlighting critical
temperatures for the purpose of photo-thermal optimization.

In the subsequent step, spatial positions of the three selective coatings mentioned
above must be determined along the receiver tube. For this purpose, the tube lengths
required for these three segments were computed by using the 1D model. Table 4 represents
respective tube lengths for the three segments, characterized by three selective coatings at
specific HTF temperature ranges, considering various mass flow rates. As expected, higher
mass flow rates lead to longer receiver tubes. However, the proportion of each segment
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to the total receiver length remains almost constant at various operational conditions.
This implies that the HTF temperature at any given point along the collector axis is a
function of its relative position, i.e., the proportional distance from the receiver inlet section.
In addition, Figure 15 displays a schematic of the most photo-thermally efficient PTC
configuration, outlining the distribution of the three selective coatings along the collector
line. This configuration remains consistent across different mass flow rates, as explained
above. The overall photo-thermal efficiency of the optimized receiver tube was found to be
91.6%, indicating an improvement ranging from 0.5% to 1.9% compared to the six single-
coated collectors. The optimized configuration could also provide economic benefits since a
selective coating that exhibits the best performance at high temperatures, which is typically
more expensive, is only implemented in the final segment of the collector. In addition, for
a given incident flux, mass flow rate and inlet/outlet temperature, the length of the solar
collector in a non-optimized configuration will be higher, implying additional costs.

Table 4. Results of photo-thermal optimization: temperature ranges characterized by corresponding
selective coatings and respective tube lengths for various mass flow rates.

∆THTF [◦C]
Selective
Coating

Tube Length [m]
.

m = 1 kg/s
.

m = 1.5 kg/s
.

m = 2.2 kg/s
.

m = 3 kg/s
.

m

290–436 #6 356 537 792 1070 1435
436–517 #4 257 383 566 765 1032
517–550 #3 133 198 293 391 527
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efficient configuration.

To investigate the wind effect on the solution, the numerical procedure described in
this section was repeated for wind speeds of 0 and 15 m/s to include the most extensive
range of wind speed, conducting a comparative photo-thermal performance assessment
between free convection and forced convection with intense wind conditions. The difference
between the two scenarios was found to be less than 1% in terms of the receiver tube total
length. This is due to the thermal insulation caused by the vacuum in the gap region of the
receiver tube. In addition, investigating ambient temperatures of 10 and 40 ◦C revealed that
the impact of the ambient temperature on the receiver thermal performance is negligible.
Consequently, the distribution of selective coatings along the receiver tube depicted in
Figure 15 is applicable to a range of wind speeds from 0 to 15 m/s and a range of ambient
temperatures from 10 to 40 ◦C.

The photo-thermal optimization strategy proposed in this work could provide valuable
insights into the commercial development of more efficient, economically feasible PTC
receiver tubes. The configuration shown in Figure 15 might be deployed in future large-
scale CSP applications as a photo-thermally enhanced design of the PTC system. According
to the relatively wide range of environmental and operational conditions investigated in this
study, the proposed configuration could be applicable to various scenarios. Furthermore,
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by employing the results provided in this study for different mass flow rates, the collector
length can be determined based on the expected flow rate within the plant.

4. Conclusions

The present paper aims at optimizing a PTC system from a photo-thermal viewpoint.
For this purpose, a specific strategy was adopted, according to which multiple spectrally
selective coatings are arrayed along the receiver tube based on their photo-thermal perfor-
mance at various HTF temperatures (ranging from 290 ◦C to 550 ◦C). Six different selective
coatings were considered in the optimization study, investigating various ranges of mass
flow rate, wind speed and ambient temperature.

A lumped-parameter model was developed in the radial direction of the receiver tube
using the Modelica language to obtain the absorber tube wall temperature and heat losses
with respect to the HTF temperature. This model was validated against experimental data.
The results from the lumped-parameter model allowed for the development of heat loss
correlations as a function of the HTF temperature. These correlations were implemented in a
steady-state 1D model along the axial direction to obtain the HTF temperature profile along
the receiver axis. Furthermore, the absorber tube temperature computed by the lumped-
parameter model was employed to calculate photo-thermal efficiencies at various HTF
temperatures, considering different selective coatings. According to the results regarding
photo-thermal efficiencies, the most effective coatings with respect to the HTF temperature
were introduced. The latter finding was then integrated with the results of the 1D model in
terms of the HTF temperature profile along the receiver axis. This integration provided the
spatial distribution of the chosen selective coatings along the receiver, introducing the most
photo-thermally efficient configuration of the PTC system.

According to the computed results, the most efficient configuration consists of three
different selective coatings, corresponding to three HTF temperature ranges. The total
length of the receiver tube was computed to be 1651 m for the reference operational
conditions. A parametric study revealed that the optimized configuration can be applicable
to a range of mass flow rates from 1 to 4 kg/s, a range of wind speeds from 0 to 15 m/s
and a range of ambient temperatures from 10 to 40 ◦C. The optimized configuration could
provide two main advantages: an increase in the overall photo-thermal efficiency ranging
from 0.5% to 1.9% compared to the six single-coated collectors, and economic benefits
due to the employment of more expensive coating only at the final receiver segment.
Consequently, considering any given solar flux, mass flow rate and HTF temperature
range, a shorter PTC receiver tube would be required for an optimized configuration,
incurring lower costs. However, this approach may encounter specific challenges and
limitations in practical applications. In particular, attaining the most optimized photo-
thermal performance requires continuous monitoring of the plant during the operation
to ensure that all designated collector segments operate within the expected temperature
ranges. Furthermore, various selective coatings implemented along the collector line may
need different maintenance strategies.

In perspective, the performance enhancement approach proposed in this work could
be further explored by a techno-economic analysis of the PTC system aimed at investigating
the economic benefits of the photo-thermal optimization.
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