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ON VARIETIES WITH ULRICH TWISTED CONORMAL BUNDLES

VINCENZO ANTONELLI, GIANFRANCO CASNATI, ANGELO FELICE LOPEZ AND DEBADITYA
RAYCHAUDHURY

Abstract. We study varieties X ⇢ Pr such that N⇤
X(k) is an Ulrich vector bundle for some integer k.

We first prove that such an X must be a curve. Then we give several examples of curves with N⇤
X(k)

an Ulrich vector bundle.

1. Introduction

Let X ⇢ Pr be a smooth variety of dimension n � 1 over an algebraically closed field F . Recall that
a vector bundle E on X is called Ulrich if H i(E(�p)) = 0 for all i � 0 and 1  p  n. The importance
of Ulrich vector bundles is well-known (see for example [ES, B, CMRPL] and references therein). While
the main general problem about Ulrich vector bundles is their conjectural existence, another line of
research around them is what are the consequences on the geometry of X in the presence of an Ulrich
vector bundle. In this vein, we continue our study of which natural bundles, associated to X and to its
embedding in Pr, can be Ulrich up to some twist.

In previous papers, the third and fourth authors analyzed normal and tangent bundles, see [L, LR]
(see also [BMPT]). In the present paper we study the following question: for which integers k one has
that the twisted conormal bundle N

⇤
X(k) is Ulrich?

A first simple consequence can be drawn: if X is degenerate, that is contained in a hyperplane, then
(X,OX(1), k) = (Pn

,OPn(1), 1), see Lemma 5.2.
On the other hand, suppose that X is nondegenerate. While in previous cases [L], [LR], examples

of surfaces and threefolds appeared, we find a very di↵erent result for the conormal bundle. In fact we
show that the answer to the above question is negative in dimension at least two.

Theorem 1. (char(F)=0)

Let X ⇢ Pr be a smooth nondegenerate variety such that N⇤
X(k) is Ulrich. Then X is a curve.

Now, for curves the situation is wide. First of all, there are many examples, at least in P3, stemming
from some classical works [EL, ElHi, BE] (see Examples 8.1 and 8.2).

We first prove that there is a bound, sharp in codimension 2, for the degree of a curve having Ulrich
twisted conormal bundle.

Theorem 2.
Let C ⇢ Pc+1 be a smooth nondegenerate curve of degree d and codimension c � 1 such that N⇤

C(k)
is Ulrich. Then c � 2 and

(1.1) d �
c+ 2

2k + c

✓
k + c

c+ 1

◆
.

Moreover this bound is sharp for c = 2 and k ⌘ 1, 3 (mod 6).

On the other hand, the examples mentioned above, Examples 8.1 and 8.2, are all subcanonical curves
in P3. We show that neither the fact of being subcanonical, nor of lying in P3, is a necessary condition,
by producing examples, for unbounded genus, of non-subcanonical curves in P3 and in P4.

Theorem 3.
(i) Let X ⇢ P3 be a general nonspecial curve of genus g and degree d = 2g � 2. Then N

⇤
X(4) is Ulrich

and X is not subcanonical.

The first three authors are members of the GNSAGA group of INdAM. The third author was partially supported by
PRIN “Advances in Moduli Theory and Birational Classification”.
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(ii) Let X ⇢ P4 be a general curve of genus g � 3 and degree d = 5g� 5. Then N
⇤
X(3) is Ulrich and X

is not subcanonical.

Note that the nonspecial curve of genus 5 and degree 8 in (i) of the above theorem, is a non-
subcanonical curve realizing equality in Theorem 2.

Here is a brief overview of the strategy of proofs of the theorems.
Assume that N

⇤
X(k) is Ulrich. The first ingredient (Lemma 5.3 (iv)) is that X is contained in a

hypersurface of degree k. Next, some vanishings hold for the cohomology of twists of OX (Lemma
5.3 (i)). In the case of curves, using Riemann-Roch this gives the bound in Theorem 2. In the case
of higher dimensional varieties, since the property of N⇤

X(k) being Ulrich is preserved by hyperplane
sections, one reduces to the surface section S. Also, S is projectively normal (Lemma 5.3 (ii)) and
combining again the vanishings, Riemann-Roch and the Bogomolov inequality (because Ulrich bundles
are semistable), one contradicts Theorem 2. As for Theorem 3, we use degenerations of nonspecial
curves and the techniques of interpolation as in [ALY, LV].

We would like to thank the generous referee for the big contribution given to improve the hypotheses
and shorten the proof of Theorem 3.

2. Notation

Throughout the paper we work over an algebraically closed field F . In some cases, when needed,
we will specify that char(F ) = 0. A variety is by definition an integral separated scheme of finite type
over F . A curve (respectively a surface) is a variety of dimension 1 (resp. 2). Moreover, we henceforth
establish the following:

Notation 2.1.

• X ⇢ Pr is a smooth closed variety of dimension n � 1 and codimension c = r � n � 1.
• H is a hyperplane divisor.
• NX := NX/Pr is the normal bundle.
• For any sheaf G on X we set G(l) = G(lH).
• d = H

n is the degree of X.
• C is a general curve section of X under H.
• S is a general surface section of X under H, when n � 2.
• g = g(C) = 1

2 [KXH
n�1 + (n� 1)d] + 1 is the sectional genus of X.

• For 1  i  n� 1, let Hi 2 |H| be general divisors and set Xn := X and Xi = H1 \ · · · \Hn�i.
In particular X1 = C,X2 = S.

• s(X) = min{s � 1 : H0(JX/Pr(s)) 6= 0}.

We will also let V = H
0(OPr(1)) and consider the exact sequences

(2.1) 0 ! ⌦1
Pr |X ! V ⌦OX(�1) ! OX ! 0

and

(2.2) 0 ! N
⇤
X ! ⌦1

Pr |X ! ⌦1
X ! 0.

3. A general fact about projective varieties

We record here a simple but useful fact.

Lemma 3.1. Let X ⇢ Pr be a smooth variety of dimension n � 1. If H0(N⇤
X(l)) = 0 and ⇡ : X !

X ⇢ Pm is an isomorphic projection, then l  min{s(X)� 1, s(X)� 1}.

Proof. Set s = s(X) and suppose that l � s, so that H0(N⇤
X(s)) = 0. Now the exact sequence

0 ! J
2
X/Pr(s) ! JX/Pr(s) ! N

⇤
X(s) ! 0

implies that h
0(J 2

X/Pr(s)) = h
0(JX/Pr(s)) > 0, hence there is a hypersurface G of degree s such that

X ✓ Sing(G). Hence there is a non-zero partial derivative of the equation of G, giving a hypersurface
of degree s� 1 containing X, a contradiction. Therefore

(3.1) l  s(X)� 1.
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Now let ⇡ : X ! X ⇢ Pm be an isomorphic projection, so that we have an exact sequence

(3.2) 0 ! ⇡
⇤
N

⇤
X/Pm ! N

⇤
X ! OX(�1)�(r�m)

! 0.

Since H
0(N⇤

X(l)) = 0 we get that H
0(X,N

⇤
X/Pm(l)) = H

0(X,⇡
⇤
N

⇤
X/Pm(l)) = 0. Hence applying (3.1)

to X ⇢ Pm we get that l  s(X)� 1 and the lemma is proved. ⇤

4. Generalities on Ulrich bundles

We collect here some well-known facts about Ulrich bundles, to be used sometimes later.

Definition 4.1. Let E be a vector bundle on X. We say that E is Ulrich for (X,H) if H i(E(�p)) = 0
for all i � 0 and 1  p  n.

We have

Lemma 4.2. Let E be a rank t Ulrich vector bundle for (X,H). Then

(i) c1(E)Hn�1 = t
2 [KX + (n+ 1)H]Hn�1.

(ii) E
⇤(KX + (n+ 1)H) is also Ulrich for (X,H).

(iii) E is globally generated.
(iv) E is arithmetically Cohen-Macaulay (aCM), that is H

i(E(j)) = 0 for 0 < i < n and all j 2 Z.
(v) E|Y is Ulrich on a smooth hyperplane section Y of X.
(vi) OX(l) is Ulrich if and only if (X,H, l) = (Pn

,OPn(1), 0).

Proof. Well-known. For (i)-(v) see for example [LR, Lemma 3.2]. As for (vi), it is obvious that OPn is
Ulrich for (Pn

,OPn(1)). Vice versa, if OX(l) is Ulrich, then it is globally generated by (iii), so that l � 0.
But also H

0(OX(l � 1)) = 0, hence l = 0. It follows by [LR, Lemma 3.2(vii)] that d = h
0(OX) = 1, so

that (X,H) = (Pn
,OPn(1)). ⇤

Lemma 4.3. Let X ⇢ Pr be a smooth variety of dimension n � 3. Let E be a vector bundle on X and
let Y be a smooth hyperplane section of X. If E|Y is Ulrich, then E is Ulrich.

Proof. For j 2 Z consider the exact sequence

(4.1) 0 ! E(j � 1) ! E(j) ! E|Y (j) ! 0.

If 2  i  n� 2 we have that H i�1(E|Y (j)) = H
i(E|Y (j)) = 0 for any j 2 Z by Lemma 4.2(iv). Hence

(4.1) gives that hi(E(j � 1)) = h
i(E(j)) for any j 2 Z. On the other hand h

i(E(j)) = 0 for j � 0 and
it follows that hi(E(j)) = 0 for any j 2 Z and 2  i  n� 2.

Suppose now that i 2 {0, 1} and j  �1. We have that H
0(E|Y (j)) = 0 and, since n � 1 � 2, also

that H1(E|Y (j)) = 0 by Lemma 4.2(iv). Hence (4.1) gives that hi(E(j � 1)) = h
i(E(j)). On the other

hand, by Serre duality, hi(E(j)) = h
n�i(E⇤(KX � jH)) = 0 for j ⌧ 0 and therefore

(4.2) h
i(E(j)) = 0 for i 2 {0, 1} and j  �1.

Now let E
0 = E

⇤(KX + (n + 1)H). Then E
0
|Y = E

⇤
|Y (KY + nH|Y ) is also Ulrich by Lemma 4.2(ii).

Therefore (4.2) implies that h
i(E 0(j)) = 0 for i 2 {0, 1} and j  �1. By Serre duality we get that

h
n�i(E(�n� 1� j)) = h

i(E⇤(KX + (n+ 1 + j)H)) = h
i(E 0(j)) = 0 for i 2 {0, 1} and j  �1. But this

is the same as hs(E(l)) = 0 for s 2 {n� 1, n} and l � �n.
Thus we have proved that H i(E(�p)) = 0 for i � 0 and 1  p  n, that is E is Ulrich. ⇤

5. Ulrich conormal bundles

In this section we will draw some very useful consequences and facts for varieties X ⇢ Pr such that
N

⇤
X(k) is Ulrich.
The first one is a reduction via hyperplane sections (for the Xi’s see Notation 2.1).

Lemma 5.1. Let X ⇢ Pc+n be a smooth variety of dimension n and codimension c � 1. If n � 2
and N

⇤
X(k) is Ulrich, then N

⇤
Xi/Pc+i(k) is Ulrich for all i 2 {1, . . . , n � 1}. Vice versa, if n � 3 and

N
⇤
Xi/Pc+i(k) is Ulrich for some i 2 {2, . . . , n � 1}, then N

⇤
Xj/Pc+j (k) is Ulrich for all j 2 {2, . . . , n}

(hence in particular so is N
⇤
X(k)).
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Proof. Recall that if Y ⇢ Pm is smooth and Z is a smooth hyperplane section, then

(NY/Pm)|Z ⇠= NZ/Pm�1 .

Now if N⇤
X(k) is Ulrich, then so are all N⇤

Xi/Pc+i(k) by Lemma 4.2(v).

Vice versa, if N⇤
Xi/Pc+i(k) is Ulrich for some i 2 {2, . . . , n � 1}, then N

⇤
Xi+1/Pc+i+1(k) is Ulrich by

Lemma 4.3. Repeating the argument we get that N⇤
Xj/Pc+j (k) is Ulrich for all j 2 {2, . . . , n}. ⇤

We now deal with X degenerate in Pr.

Lemma 5.2. Let X ⇢ Pr be a smooth degenerate variety of dimension n � 1. Then N
⇤
X(k) is Ulrich

if and only if (X,H, k) = (Pn
,OPn(1), 1).

Proof. If (X,H) = (Pn
,OPn(1)) then N

⇤
X(1) = O

�c
Pn is Ulrich.

Vice versa assume that N
⇤
X(k) is Ulrich. Since X is degenerate, N⇤

X(k) has OX(k � 1) as a direct
summand. Therefore also OX(k�1) is Ulrich and Lemma 4.2(vi) gives that (X,H, k) = (Pn

,OPn(1), 1).
⇤

In the sequel we will then consider only nondegenerate varieties.
We start by collecting some cohomological and numerical conditions.

Lemma 5.3. (cohomological conditions)
Let X ⇢ Pc+n be a smooth nondegenerate variety of dimension n � 1 and codimension c � 1. If

N
⇤
X(k) is Ulrich, we have:

(i) H
n(OX(l)) = 0 for every l � k � n� 1.

(ii) If n � 2, then X ⇢ Pc+n is projectively normal.
(iii) If n � 2 then q(X) = 0.
(iv) k  min{s(X), s(X)}, where X ⇢ Pr is any isomorphic projection of X.

Proof. By hypothesis N⇤
X(k) is Ulrich, hence it is aCM by Lemma 4.2(iv).

To see (i) we just need to prove that Hn(OX(k� n� 1)) = 0. Assume that Hn(OX(k� n� 1)) 6= 0,
that is, by Serre duality, H0(KX + (n+ 1� k)H) 6= 0. Then we have an inclusion

NX(�1) ,! NX(KX + (n� k)H)

and, since NX(�1) is globally generated, we get that h
0(NX(KX + (n � k)H)) 6= 0. On the other

hand, NX(KX + (n+ 1� k)H) is Ulrich by Lemma 4.2(ii), hence h
0(NX(KX + (n� k)H)) = 0. This

contradiction proves (i). To see (ii), let V = H
0(OPc+n(1)) and let P 1(OX(1)) be the sheaf of principal

parts and consider, as in [E, Proof of Thm. 2.4], the following commutative diagram

0

✏✏

0

✏✏
N

⇤
X(1)

⇠= //

✏✏

N
⇤
X(1)

✏✏
0 // ⌦1

Pc+n(1)|X //

✏✏

V ⌦OX
//

✏✏

OX(1) //

⇠=
✏✏

0

0 // ⌦1
X(1) //

✏✏

P
1(OX(1)) //

✏✏

OX(1) // 0

0 0

.

Pick an integer l � 0. Tensoring the above diagram by OX(l) and observing that

P
1(OX(1))⌦OX(l) ⇠= P

1(OX(l + 1))
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by [E, (2.2)], we get the commutative diagram

(5.1) V ⌦H
0(OX(l))

fl
✏✏

hl

))

H
0(P 1(OX(l + 1)))

gl //

✏✏

H
0(OX(l + 1))

H
1(N⇤

X(l + 1)).

Now we have that H
1(N⇤

X(l + 1)) = 0 since N
⇤
X is aCM and n � 2. Hence fl is surjective for every

l � 0 and so is gl by [E, Prop. 2.3]. It follows by (5.1) that hl is surjective for every l � 0. Moreover
the commutative diagram

(5.2) V ⌦H
0(OPc+n(l)) //

IdV ⌦rl
✏✏

H
0(OPc+n(l + 1))

rl+1

✏✏

V ⌦H
0(OX(l))

hl // // H0(OX(l + 1))

shows by induction that rl : H0(OPc+n(l)) ! H
0(OX(l)) is surjective for every l � 0, so that X ⇢ Pr

is projectively normal, that is (ii).
To see (iii) observe that, (2.1) gives an exact sequence

(5.3) 0 // H0(⌦1
Pc+n(1)|X) // V

f // H0(OX(1))

and f is injective since X is nondegenerate, hence H
0(⌦1

Pc+n(1)|X) = 0. Now N
⇤
X(k) is aCM and

therefore H
1(N⇤

X(1)) = 0. Then the exact sequence

(5.4) 0 ! N
⇤
X(1) ! ⌦1

Pc+n(1)|X ! ⌦1
X(1) ! 0

shows that H
0(⌦1

X(1)) = 0, hence, in particular q(X) = h
0(⌦1

X) = 0. This proves (iii). Finally (iv)
follows by Lemma 3.1 since, N⇤

X(k) being Ulrich, we have that H0(N⇤
X(k � 1)) = 0. ⇤

Lemma 5.4. (numerical conditions)
Let X ⇢ Pc+n be a smooth nondegenerate variety of dimension n � 1 and codimension c � 1 and

degree d. If N⇤
X(k) is Ulrich, we have:

(i) [(k � 2)c� 2]d = (c+ 2)(g � 1).
(ii) c � 2.
(iii) k � 3.

Proof. By hypothesis N
⇤
X(k) is Ulrich. By (2.1) and (2.2) we see that c1(N⇤

X(k)) = �KX � (c + n +
1� kc)H. Hence Lemma 4.2(i) implies

�(KX + (c+ n+ 1� kc)H)Hn�1 =
c

2

�
KXH

n�1 + (n+ 1)d
�

and this gives KXH
n�1 = (2k � n � 3 �

4(k�1)
c+2 )d. But also KXH

n�1 = 2(g � 1) � (n � 1)d and we
get (i). As for (ii), if c = 1 then N

⇤
X(k) = OX(k � d) and Lemma 4.2(vi) gives that X ⇢ Pr is a linear

space, a contradiction. This proves (ii). To see (iii), since X is nondegenerate, we get from (2.1) that
H

0(⌦1
Pc+n |X(1)) = 0. Now (2.2) gives that h0(⌦1

Pc+n |X(k)) � h
0(N⇤

X(k)) > 0 by Lemma 4.2(iii). Hence

k � 2. But if k = 2 then (i) gives that g = 0 and d = c+2
2 . As it is well known, d � c + 1, giving a

contradiction. Thus (iii) holds. ⇤

6. Properties of the surface section

We deduce here some very useful properties of the surface section of some X ⇢ Pr such that N⇤
X(k)

is Ulrich. We assume that char(F ) = 0.
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Lemma 6.1. Let X ⇢ Pc+n be a smooth nondegenerate variety of dimension n � 2 and codimension
c � 1. If N⇤

X(k) is Ulrich, the following inequality holds for the surface section S:

�(OS) �
d

2(c+2)(c+3)(3c+4)(c+12) [(3c
4 + 43c3 + 86c2 + 24c)k2 � (15c4 + 229c3 + 624c2 + 432c)k+

+18c4 + 296c3 + 1070c2 + 1368c+ 576].

Proof. Note that N⇤
S/Pc+2(k) is Ulrich by Lemma 5.1. Therefore, Lemma 5.3(iii) implies that

(6.1) q(S) = 0.

Next, computing the Chern classes of N⇤
S/Pc+2(k) and applying [C, (2.2)], we get

(6.2) cK
2
S + (c+ 12)c2(S) =

6d

c+ 2
[c(c+ 2)k2 � c(5c+ 12)k + 6c2 + 20c+ 12].

Now note thatN⇤
S/Pc+2(k) is semistable by [CH, Thm. 2.9], hence so isN⇤

S/Pc+2 and since rk(N⇤
S/Pc+2) = c,

the Bogomolov inequality is

(6.3) d(c+ 3)(4k � 7�
8(k � 1)

c+ 2
) + (c+ 1)K2

S � (2c)c2(S).

Then (6.2) and (6.3) give

(6.4) K
2
S �

d

(c+ 2)(c+ 3)(3c+ 4)
[(12c3+24c2)k2�(64c3+204c2+144c)k+79c3+351c2+486c+216].

Finally the inequality on �(OS) in the statement follows by (6.2), (6.4) and Noether’s formula. ⇤

7. Proofs of main theorems

We start by proving Theorem 2.

Proof of Theorem 2. Since N
⇤
C(k) is Ulrich, it follows that c � 2 by Lemma 5.4(ii) and k  s(C) by

Lemma 5.3(iv). Also Lemma 5.3(i) gives H1(OC(k � 2)) = 0. Therefore we have that H0(JC/Pc+1(k �

1)) = H
1(OC(k � 1)) = 0 and the exact sequence

0 ! JC/Pc+1(k � 1) ! OPc+1(k � 1) ! OC(k � 1) ! 0

together with Riemann-Roch, shows that

(7.1)

✓
k + c

c+ 1

◆
= h

0(OPc+1(k � 1))  h
0(OC(k � 1)) = d(k � 1)� g + 1.

Also, g � 1 = (k�2)c�2
c+2 d by Lemma 5.4(i) and replacing in (7.1) we get (1.1).

Finally, sharpness for c = 2 and k ⌘ 1, 3 (mod 6) follows by [BE, Examples, p. 88], see Example
8.2. ⇤

Next, we prove Theorem 1.

Proof of Theorem 1. Suppose that n � 2. In order to simplify the calculations we set

A = (3c4+43c3+86c2+24c)k2� (15c4+229c3+624c2+432c)k+18c4+296c3+1070c2+1368c+576

so that it follows by Lemma 6.1 that

(7.2) �(OS) �
dA

2(c+ 2)(c+ 3)(3c+ 4)(c+ 12)
.

Now Lemma 5.1 implies thatN⇤
S/Pc+2(k) is Ulrich. Hence k  s(S) by Lemma 5.3(iv), H2(OS(k�2)) = 0

by Lemma 5.3(i) and S ⇢ Pc+2 is projectively normal by Lemma 5.3(ii). Therefore, we have that

H
0(JS/Pc+2(k � 2)) = H

1(JS/Pc+2(k � 2)) = H
2(OS(k � 2)) = 0

and the exact sequence

0 ! JS/Pc+2(k � 2) ! OPc+2(k � 2) ! OS(k � 2) ! 0
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together with Riemann-Roch and Lemma 5.4(i), shows that

(7.3)

✓
k + c

c+ 2

◆
= h

0(OPc+2(k � 2)) = h
0(OS(k � 2)) = �(OS(k � 2)) + h

1(OS(k � 2)) �

� �(OS) +
d(k � 2)

2

�
3� k +

4(k � 1)

c+ 2

�
.

Setting

B = A+ (k� 2)(c+3)(3c+4)(c+12)[(3� k)(c+2)+ 4k� 4] = 2(c+12)(k� 1)(8ck+12k+5c2 +7c)

we see, using (7.2), that (7.3) implies

(7.4)

✓
k + c

c+ 2

◆
�

dB

2(c+ 2)(c+ 3)(3c+ 4)(c+ 12)
=

d(k � 1)(8ck + 12k + 5c2 + 7c)

(c+ 2)(c+ 3)(3c+ 4)
.

Since k � 3 by Lemma 5.4(iii), we see that (7.4) gives

d 
(c+ 2)(c+ 3)(3c+ 4)

(k � 1)(8ck + 12k + 5c2 + 7c)

✓
k + c

c+ 2

◆
.

Since N
⇤
X(k) is Ulrich, it follows by Lemma 5.1 that N⇤

C/Pc+1(k) is Ulrich, hence, using Theorem 2, we
find that

c+ 2

2k + c

✓
k + c

c+ 1

◆
 d 

(c+ 2)(c+ 3)(3c+ 4)

(k � 1)(8ck + 12k + 5c2 + 7c)

✓
k + c

c+ 2

◆

that is equivalent to 2c(c+ 1)(c+ k + 1)  0, a contradiction. ⇤

8. Curves

In this section we construct some examples of curves C ⇢ Pc+1 such that N⇤
C(k) is Ulrich.

First, we give a reinterpretation of two known cases.

Example 8.1. For every integer d � 5 there exists a smooth elliptic curve C ⇢ P3 such that N
⇤
C(3) is

Ulrich.
In fact, it follows by [EL, Prop. §8, page 278] and [ElHi, Thm. 2(b)] that for every integer d � 5

there exists a smooth elliptic curve C ⇢ P3 such that H0(NC(�2)) = 0. Since �(NC(�2)) = 0 we get
that NC(�2) is Ulrich and then also N

⇤
C(3) is Ulrich by Lemma 4.2(ii).

Example 8.2. There are many subcanonical curves X ⇢ P3 with H
0(NX(�2)) = 0 (see for example

[BE, Examples, p. 88]), hence with NX(�1) Ulrich. Therefore, since KX = eH for some e 2 Z, we also
have by Lemma 4.2(ii), that N⇤

X(e+ 3) is Ulrich.
We now describe the curves in [BE, Examples, p. 88]. Let h 2 Z such that h � 1, let c2 = h(3h+ 2)

and let t = 3h + 1 (resp. h � 0, c2 = 3h2 + 4h + 1 and t = 3h + 2). Then in loc. cit, there are
examples of smooth curves X ⇢ P3 with N

⇤
X(e + 3) Ulrich, d = t

2 + c2 and g = (t � 2)d + 1. We
have e = 2g�2

d = 2t � 4, hence N
⇤
X(k) is Ulrich with k = e + 3 = 2t � 1. In the first case, t = 3h + 1,

we have h = k�1
6 , k ⌘ 1(mod 6) and d = 1

3(k
2 + 2k). In the second case, t = 3h + 2, we have

h = k�3
6 , k ⌘ 3(mod 6) and again d = 1

3(k
2 + 2k). In particular they have unbounded k.

The examples above are all subcanonical curves. In order to construct non-subcanonical ones, we
will proceed below by degeneration applying the techniques of interpolation as in [ALY, LV]. For the
reader’s convenience, we recall some definitions and notation about elementary modifications of vector
bundles (see [ALY, LV]).

Definition 8.3. Let Z be a scheme, let E be a vector bundle on Z, let D be an e↵ective Cartier divisor
on Z and let F be a subbundle of E|D. Then

E [D
� // F ] = Ker{E ! E|D/F}, E [D // F ]= E [D

� // F ] , E [D
+ // F ]= E [D

� // F ](D).

Definition 8.4. Let X be a smooth curve, let f : X ! Pr be an unramified morphism and let
Nf = Ker{f⇤⌦Pr ! ⌦X}

_ be the normal bundle of the map f . Given a subspace ⇤ ⇢ Pr of dimension
�, consider the projection ⇡⇤ : Pr 99K Pr���1. Let U be the open subset of X \ X \ ⇤ where ⇡⇤ � f
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is unramified. Then Nf!⇤ is be the unique subbundle of Nf whose restriction to U is Ker{(Nf )|U !

(N⇡⇤�f )|U}. Moreover,

Nf [D
+ // ⇤] := Nf [D

+ // Nf!⇤] and Nf [D // ⇤] := Nf [D
� // Nf!⇤] .

When f is an embedding, we set NX [D // ⇤] = Nf [D // ⇤] .

Next, we prove Theorem 3.

Proof of Theorem 3(i). From d = 2g � 2 we deduce that g � 2, hence, since X is nonspecial, g � 1 =
h
0(OC(1)) � 3. Thus g � 4 and if equality holds, then C is a plane curve of degree 6, a contradiction.

Therefore g � 5.
Let E ⇢ P3 be a general elliptic curve of degree g � 1 and let Li be general chords of E with

Li \ E = {pi, qi}, 1  i  g � 1. Let Y = L1 [ . . . Lg�1 and let

X
0 = E [ Y ⇢ P3

.

Claim 8.5. With the above notation, we have

NX0 |Y ⌦ !X0(�3) ⇠=

g�1M

i=1

OLi(�1)�2
.

Proof. For each i 2 {1, . . . , g � 1} set Zi = E [ L1 [ . . . Li�1 [ Li+1 [ . . . [ Lg�1. By [LV, Prop. 3.5], if
we choose points ri 2 TpiZi \ {pi}, r

0
i 2 TqiZi \ {qi}, we have

(8.1) NX0 |Li

⇠= NLi [pi
+ // ri][qi

+ // r0i] = NLi [pi
� // ri][qi

� // r0i] (pi + qi).

On the other hand, let f : Li ! P3 be the embedding. Since ri 62 Li, we have that f � ⇡ri : Li ! P2 is
an embedding, and therefore Nf!{ri} = OLi(1) and NLi/Nf!{ri} is a line bundle on Li. Therefore

(NLi)|{pi}/(Nf!{ri})|{pi}
⇠= O{pi}

and, similarly,
(NLi)|{qi}/(Nf!{r0i})|{qi}

⇠= O{qi}.

Hence

NLi [pi
� // ri][qi

� // r0i] = Ker{NLi ! O{pi} �O{qi}} = Ker{OP1(1)�2
! O{pi} �O{qi}}

⇠= O
�2
P1 .

It follows by (8.1) that
NX0 |Li

⇠= OP1(pi + qi)
�2 = OP1(2)�2

and therefore

NX0 |Y ⌦ !X0(�3) ⇠=

g�1M

i=1

OLi(�1)�2
.

⇤
Claim 8.6. With the above notation, we have that H0(NX0 |E (�3)) = 0.

Proof. By [LV, Prop. 3.5], since qi 2 Li \ {pi}, pi 2 Li \ {qi}, we have

NX0 |E
⇠= NE [p1

+ // q1] · · · [pg�1
+ // qg�1] [q1

+ // p1] · · · [qg�1
+ // pg�1] .

Next, specialize cyclically q1 ! p2, q2 ! p3, . . . , qg�1 ! p1. Then, we get a flat family of vector bundles
with central fiber

NE [p1
+ // p2] · · · [pg�1

+ // p1] [p2
+ // p1] · · · [p1

+ //pg�1] .

We now claim that

(8.2) NE [p1
+ // p2] · · · [pg�1

+ // p1] [p2
+ // p1] · · · [p1

+ //pg�1] ⇠= NE(p1 + . . .+ pg�1).
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To see (8.2), let f : E ! P3 be the embedding. For every point q 2 E, any modification of type p

pointing towards the linear space {q}, is obtained by taking a quotient (NE)|{p}/(Nf!{q})|{p}. Since
NE/Nf!{q} is a line bundle on E, we have that

(NE)|{p}/(Nf!{q})|{p} ⇠= O{p}.

Therefore,

NE [p1
� // p2] · · · [pg�1

� // p1] [p2
� // p1] · · · [p1

� //pg�1] =

= Ker{NE ! O{p1} � . . .O{pg�1} �O{p2} . . .O{pg�1} �O{p1}} =

= Ker{NE ! O
�2
{p1} � . . .O

�2
{pg�1}} = NE(�p1 � . . . pg�1).

We deduce that

NE [p1
+ // p2] · · · [pg�1

+ // p1] [p2
+ // p1] · · · [p1

+ //pg�1] =

= NE [p1
� // p2] · · · [pg�1

� // p1] [p2
� // p1] · · · [p1

� //pg�1] (2p1 + . . . 2pg�1) ⇠= NE(p1 + . . .+ pg�1)

and this proves (8.2).
Thus we have proved that NX0 |E (�3) specializes to NE(p1 + . . .+ pg�1)(�3) and to prove the claim

it su�ces to show that H0(NE(p1 + . . . + pg�1)(�3)) = 0. Now, �(NE(p1 + . . . + pg�1)(�3)) = 0 and
OE(p1+. . .+pg�1)(�3) is a general line bundle of degree �2(g�1), henceH0(NE(p1+. . .+pg�1)(�3)) =
0 by interpolation [ALY, Thm. 1.2], [LV, Thm. 1.4]. ⇤

We now conclude the proof of Theorem 3(i). We have that X 0 = E [ Y is a nodal nonspecial curve
with degX 0 = 2g � 2 and pa(X 0) = g. In particular X

0 is smoothable in P3. Moreover, the exact
sequence

0 ! NX0 |E (�3) ! NX0 ⌦ !X0(�3) ! NX0 |Y ⌦ !X0(�3) ! 0

and Claims 8.5 and 8.6 show that H0(NX0 ⌦!X0(�3)) = 0. Then a general smoothing X ⇢ P3 of X 0 is
such that degX = 2g � 2, g(X) = g and N

⇤
X(4) is Ulrich. Finally X is not subcanonical, for otherwise

we would have that KC = H, contradicting the fact that X is nonspecial. ⇤

Finally, we prove Theorem 3(ii).

Proof of Theorem 3(ii). Let C ⇢ P3 be a general nonspecial curve of degree 3g � 3 and genus g � 3.
Since C is nonspecial, we can embed it as a nonspecial curve C ⇢ P4 of degree 3g � 2 and genus g, so
that C is just the projection from a general point q 2 C

1. Let pi, 1  i  2g � 3 be general points on
C and let Li be general 1-secant lines, each meeting C at pi. Let Y = L1 [ . . . L2g�3, let qi 2 Li \ {pi}

and let

X
0 = C [ Y ⇢ P4

.

Note that X 0 is nonspecial, hence we can choose a flat family X ! �, with smooth total space, having
as a general fiber X, a general curve in P4 of genus g and degree 5g � 5 and special fiber X 0. Since C

is a Cartier divisor on X we have that !X/�(�2)(C) is a line bundle on X . Note that, since C + Y is
a fiber, we have that C|C = �Y|C . Setting

L = !X/�(�2)(C)|X0

we have that

L|C = !C(Y \ C)(�2)(�Y|C) = !C(�2)

and, for each i,

L|Li
= !Li(Li \ C)(�2)(Li \ C) = OLi(�2).

Now we have

Claim 8.7. Let E = NC(p1 + . . . + p2g�3)[2p1 // q1] · · · [2p2g�3
// q2g�3] ⌦ !C(�2). If H0(E) = 0,

then H
0(NX0 ⌦ L) = 0.

1For the construction of the curves C and C we could also have appealed to [EiHa, Thm. 1], [CPJLLV].
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Proof. Note that �(E) = 0. In fact, we have that

�(NC(p1 + . . .+ p2g�3)) = 20g � 18

so that, using [ALY, Prop. 3.3(a)], we get

�(NC(p1+ . . .+p2g�3)[2p1 // q1] · · · [2p2g�3
// q2g�3] ) = �(NC(p1+ . . .+p2g�3))�4(2g�3) = 12g�6

and therefore

�(E) = 12g � 6 + 3deg(!C(�2)) = 0.

Since H
0(E) = �(E) = 0, we have that H

1(E) = 0 and for every divisor D > 0 on C we get that
H

0(E(�D)) ✓ H
0(E) = 0, hence E satisfies interpolation. As in [ALY, Lemma 8.5] (see also [LV,

Lemma 5.2]), we get that NX0 ⌦ L satisfies interpolation, so in particular H
1(NX0 ⌦ L) = 0. On the

other hand, �(NX0 ⌦ L) = �(NX0) + 3 degL = 0, and therefore H
0(NX0 ⌦ L) = 0. ⇤

In order to show that H0(E) = 0, we specialize each qi to q, so that E specializes to

NC(p1 + . . .+ p2g�3)[2p1 // q] · · · [2p2g�3
// q] ⌦ !C(�2) ⇠=

⇠= NC(p1 + . . .+ p2g�3)[2p1 + . . .+ 2p2g�3
// q] ⌦ !C(�2).

We have

Claim 8.8. Set E1 = NC(p1+ . . .+ p2g�3) [2p1 + . . .+ 2p2g�3
// q] ⌦!C(�2). Then there is an exact

sequence

(8.3) 0 ! !C(�1)(2q + p1 + . . .+ p2g�3) ! E1 ! NC/P3(q � p1 � . . .� p2g�3)⌦ !C(�2) ! 0.

Proof. Set D = p1+ . . .+ p2g�3. By [LV, page 10], the pointing (towards q) bundle exact sequence [LV,
(3.4)], becomes

0 ! OC(1)(2q) ! NC ! NC/P3(q) ! 0

hence, tensoring by OC(D), we find an exact sequence

(8.4) 0 ! OC(1)(2q +D) ! NC(D) ! NC/P3(q +D) ! 0.

Applying the elementary modification [2D // q] we get the exact sequence

0 ! OC(1)(2q +D) ! NC(D) [2D // q] ! NC/P3(q +D)(�2D) ! 0

and tensoring by !C(�2) we get (8.3). ⇤

Since !C(�1)(2q + p1 + . . .+ p2g�3) is a general line bundle of degree g � 1 on C, we have that

H
0(!C(�1)(2q + p1 + . . .+ p2g�3)) = 0.

Also, !C(�2)(q � p1 � . . .� p2g�3) a general line bundle of degree �6(g � 1) on C and

�(NC/P3(q � p1 � . . .� p2g�3)⌦ !C(�2)) = 0

hence

H
0(NC/P3(q � p1 � . . .� p2g�3)⌦ !C(�2)) = 0

by interpolation [ALY, Thm. 1.2], [LV, Thm. 1.4]. Then (8.3) implies that H0(E1) = 0 and therefore,
since E specializes to E1, also that H0(E) = 0. It follows by Claim 8.7 that H0(NX0 ⌦ L) = 0 and then
H

0(NX⌦!X(�2)) = 0 by semicontinuity. HenceN⇤
X(3) is Ulrich and, clearly, X is not subcanonical. ⇤
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