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We propose an analytical model to estimate the interface temperature ΘΓ and the
Nusselt number Nu for an evaporating two-layer Rayleigh–Bénard configuration in
statistically stationary conditions. The model is based on three assumptions: (i) the
Oberbeck–Boussinesq approximation can be applied to the liquid phase, while the
gas thermophysical properties are generic functions of thermodynamic pressure, local
temperature and vapour composition, (ii) the Grossmann–Lohse theory for thermal
convection can be applied to the liquid and gas layers separately and (iii) the vapour
content in the gas can be taken as the mean value at the gas–liquid interface. We validate
this setting using direct numerical simulations in a parameter space composed of the
Rayleigh number (106 ≤ Ra ≤ 108) and the temperature differential (0.05 ≤ ε ≤ 0.20),
which modulates the variation of state variables in the gas layer. To better disentangle the
variable property effects on ΘΓ and Nu, simulations are performed in two conditions. First,
we consider the case of uniform gas properties except for the gas density and gas–liquid
diffusion coefficient. Second, we include the variation of specific heat capacity, dynamic
viscosity and thermal conductivity using realistic equations of state. Irrespective of the
employed setting, the proposed model agrees very well with the numerical simulations
over the entire range of Ra–ε investigated.
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1. Introduction

Evaporation on a horizontal gas–liquid interface plays a pivotal role in different contexts,
from geophysical processes such as moisture convection and vapour distribution within
the atmosphere (Colman & Soden 2021), to industrial applications such as the cooling
of fuel rods in the spent-fuel pools of nuclear reactors (Hay & Papalexandris 2020). The
presence of vapour in the gas changes the local thermophysical properties, in particular,
the density and heat capacity (Colman & Soden 2021), and thus modifies the global heat
transfer in the system, quantified by the Nusselt number, Nu (Schumacher & Pauluis 2010).
The mean vapour content in the gas phase depends on its value at the interface, which in
turn is a function of the partial pressure and the interface temperature in an exponential
fashion (e.g. Clausius–Clapeyron law, Span–Wagner relation). Thus, small changes in the
interface temperature significantly impact the amount of vapour in the gas and the total
heat transfer. A conceptually simple set-up to study these flows in a precise and controlled
manner is the multiphase Rayleigh–Bénard (RB) configuration: two infinitely extended
fluid layers confined by two horizontal walls at a fixed temperature, heated from below
and cooled from above. Inspired from the classical single-phase counterpart used to model
turbulent convection (Ahlers, Grossmann & Lohse 2009; Chillà & Schumacher 2012), this
configuration has been the object of numerical (Nataf, Moreno & Cardin 1988; Prakash &
Koster 1994) and experimental (Xie & Xia 2013; Zhang, Chong & Xia 2019) studies. In
particular, the multiphase RB set-up has been recently adopted to study: (i) the interface
breakup in the presence of buoyancy (Liu et al. 2021a), (ii) the heat transfer enhancement
due to the manipulation of the wall wettability (Liu et al. 2022a) and (iii) the modulation
of heat transfer and interface temperature induced by the variation of the liquid layer height
and thermal conductivity of the two phases (Liu et al. 2022b). All these numerical studies
did not consider phase change and assumed constant thermophysical properties within the
Oberbeck–Boussinesq (OB) approximation, with the exception of Biferale et al. (2012) for
boiling flows and of Favier, Purseed & Duchemin (2019) for ice melting.

Here, we include evaporation at the two-phase interface and relax the assumption of
constant and uniform thermophysical properties in the gas phase while keeping those
of the liquid uniform and constant. In particular, we extend the theory for the interface
temperature proposed in Liu et al. (2022b) to account for (i) phase change at the
interface and (ii) non-OB (NOB) effects in the gas phase induced by variations of the
thermodynamic pressure, temperature and composition. We propose analytical scaling
laws for predicting the interface temperature and the heat transfer modulation with respect
to a RB system without evaporation. The resulting expressions are compared against
high-fidelity direct numerical simulations (DNS), which are performed using a weakly
compressible multiphase formulation with phase change, covering a substantial region of
the Ra–ε parameter space.

This paper is organized as follows. In § 2, we introduce the main assumptions and
derive analytical expressions for the interface temperature and heat transfer modulation
in the evaporating RB system. In § 3, we describe the mathematical and numerical model
employed to validate the analytical scaling laws. In § 4, we present the validation of the
theory and an assessment of the assumptions behind the model. The main findings and
conclusions are summarized in § 5.

2. Interface temperature and global heat transfer modulation

We consider a cavity partially filled with an evaporating single-component liquid and an
initially dry gas, as shown in figure 1. The domain is laterally unbounded and confined
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Evaporating Rayleigh–Bénard convection

by two horizontal walls separated by a distance l̂z (·̂ indicates a dimensional quantity).
Constant temperatures T̂b = (1 + ε)T̂r and T̂t = (1 − ε)T̂r are imposed on the top heated
and bottom cooled walls, where ε = (T̂b − T̂t)/(2T̂r) = Δ̂T/(2T̂r) is the dimensionless
temperature differential and T̂r = (T̂t + T̂b)/2 is the mean temperature, taken, hereinafter,
as reference value. Under these conditions, the system eventually reaches a statistically
stationary condition, with the vapour saturating the gas layer, leading to a dynamic
balance between evaporation and condensation at the interface Γ . The presence of vapour
dramatically changes the statistically stationary state: it modifies the gas thermophysical
properties and hence the heat transfer inside the cavity, while reducing the height of the
liquid layer. Here, we characterize these variations as a function of the amount of vapour
inside the cavity. For this purpose, we write an expression for the mean interfacial vapour
mass concentration Ȳv

l,Γ (deduced from Raoult’s law) and the Span–Wagner model for the
interfacial vapour pressure ps,Γ :

Ȳv
l,Γ = λMps,Γ

λMps,Γ + ( pth − ps,Γ )
,

ps,Γ = Π−1
P exp[(B1ηsw + B2η

1.5
sw + B3η

2.5
sw + B4η

5
sw)(1 − ηsw)−1].

⎫⎬⎭ (2.1)

In (2.1), λM = M̂l/M̂g,r is the molar mass ratio between liquid and inert gas and ΠP =
p̂th,r/p̂cr with p̂th,r the reference thermodynamic pressure and p̂cr the critical pressure.
The quantity ηsw = 1 − T̂Γ /T̂cr is the Span–Wagner parameter and the coefficients Bi=1,4
depend on the substance under consideration. By introducing the dimensionless interface
temperature ΘΓ = (T̂Γ − T̂r)/Δ̂T , ηsw becomes

ηsw = 1 − T̂Γ

T̂cr
= 1 − ΠT(1 + 2εΘΓ ), (2.2)

where ΠT = T̂r/T̂cr. Equations (2.1) and (2.2) show that fixing the type of substance, Ȳv
l,Γ

is determined by five quantities: (i) the ratio between the mean temperature and the critical
temperature, ΠT , (ii) the ratio between the reference thermodynamic pressure and the
critical pressure, ΠP, (iii) the temperature differential ε, (iv) the interface temperature ΘΓ

and (v) the thermodynamic pressure pth. The first three quantities depend on the ambient
conditions (typically given or measured) and the type of substance, whereas ΘΓ and pth
depend on the flow in the two phases and are determined below.

Our derivation relies on three central assumptions: (i) the OB approximation can
be applied to the liquid phase, while the gas thermophysical properties are a generic
function of thermodynamic pressure, local temperature and vapour composition, (ii) the
Grossmann–Lohse (GL) theory for thermal convection can be applied to the liquid and
gas layers separately and (iii) the vapour content in the gas can be taken as the mean value
at the gas–liquid interface. The validity of these assumptions is assessed and discussed in
§ 4.

2.1. Interface temperature
The first step is to account for the variation of the liquid height induced by phase change
and for the NOB effects (relevant for ε ≥ 0.05; see Chillà & Schumacher 2012; Wan
et al. 2020) due to variations of the local temperature, thermodynamic pressure and
composition. Note that based on the first assumption of our derivation, NOB effects
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Figure 1. Multiphase RB convection for Ra = 108 and ε = 0.20 (taken from the numerical simulations).
Snapshots of the temperature distribution Θ (a) at the start of evaporation (t = 0) and (b) after a statistically
stationary state is achieved (t > 300). Snapshots of the vapour mass fraction, Yv

l , distribution in the gas region
at (c) t ≈ 60, (d) t ≈ 122 and (e) steady state, t > 300 (t is scaled with the free-fall time t̂ff = l̂z//(2ε|ĝ|l̂z)0.5).

manifest only in the gas phase, whereas the liquid phase is described under the OB
approximation. For simplicity of notation, a generic quantity ξ̂g is expressed as

ξ̂g = ξ̂g,r

(
1 + Δξ̂g

ξ̂g,r

)
= ξ̂g,rfg,ξ , (2.3)

where Δξ̂g = ξ̂g − ξ̂g,r and fg,ξ is the mean normalized variation of ξ̂g with respect to the
same quantity evaluated at reference condition, ξ̂g,r. Both ξ̂g,r and fg,ξ refer to the layer
pertaining to the gas phase. Following the approach proposed by Liu et al. (2022b) and
using (2.3), we define a Rayleigh number in each phase:

Ral = β̂l(T̂b − T̂Γ )|ĝ|ĥ3
l ρ̂

2
l ĉpl

μ̂lk̂l
= α3

0(1/2 − ΘΓ )Ra
λ2

ρλcpλβ

λμλk
f 3
l,h,

Rag = β̂g(T̂Γ − T̂t)|ĝ|ĥ3
gρ̂

2
g ĉpg

μ̂gk̂g
= (1 − α0)

3(1/2 + ΘΓ )Ra
f 3
g,hf 2

g,ρ fg,cp

fg,μfg,k
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.4)

where ĥi is the height of each layer, β̂i is the thermal expansion coefficient, ρ̂i, μ̂i, k̂i and
ĉp,i are the fluid density, dynamic viscosity, conductivity and specific heat capacity and λξ
is the associated property ratio scaled with respect to the reference gas property evaluated
at T̂r, p̂th,r and in a dry condition, i.e. Yv

l = 0. Further, |ĝ| is the gravitational acceleration,
α0 is the initial liquid volume fraction and Ra = β̂gΔ̂T|ĝ|l̂3z ρ̂2

g,rĉpg,r/(μ̂g,rk̂g,r) is a
‘fictitious’ Rayleigh number based on the reference gas thermophysical properties, the
height of the cavity and the temperature difference between top and bottom walls. Given
the NOB effects in the gas, we define β̂g = 1/T̂c,g. In contrast, β̂l is taken as constant and
independent of ε in the liquid, where we impose the OB approximation. Temperature T̂c,g
is the central temperature in the gas region and its estimation is given later in this section.
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Evaporating Rayleigh–Bénard convection

Next, we define two separate Nusselt numbers, Nul and Nug:

Nul = Q̂Γ,lĥl

k̂l(T̂b − T̂Γ )
= Q̂Γ,lα0 l̂zfl,h

k̂l(1/2 − ΘΓ )Δ̂T
,

Nug = Q̂Γ,gĥg

k̂g(T̂Γ − T̂t)
= Q̂Γ,g(1 − α0)l̂zfg,h

k̂g,rfg,k(1/2 + ΘΓ )Δ̂T
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.5)

where Q̂Γ,l and Q̂Γ,g are the heat fluxes on the liquid and gas side of the interface. In the
absence of phase change and when evaporation and condensation events are statistically
balanced, these two quantities are on average equal. Employing the GL theory, the Nusselt
number in both layers is then related to the corresponding Rayleigh number. Note that the
complete GL theory is a system of equations that provides the value of the Nusselt Nu
and the Reynolds Re numbers for given Rayleigh Ra and Prandtl Pr numbers. The implicit
nature of this system prevents obtaining an explicit expression for ΘΓ and, therefore, the
following simplified scaling laws are here considered (Weiss et al. 2018):

Nul = AlRaγl
l Prml

l , Nug = AgRa
γg
g Pr

mg
g . (2.6a,b)

In this work, we consider A = Al = Ag, γ = γl = γg and m = ml = mg. As remarked in
Weiss et al. (2018), employing the simplified GL theory in (2.6a,b) is valid as long as Ral,
Rag and Prl, Prg are sufficiently similar to fall inside the same scaling regime (Grossmann
& Lohse 2000, 2001) so that the same γ and m can be used for both layers. Taking the
ratio Nul/Nug yields

Nul

Nug
=
(

Ral

Rag

)γ ( Prl

Prg

)m

. (2.7)

As suggested in Weiss et al. (2018), if Pr > 0.5 the GL theory suggests a scaling exponent
m very close to zero and the Prandtl dependence in (2.7) can be omitted. To obtain an
explicit relation for ΘΓ , we compute the ratio Ral/Rag from (2.4):

Ral

Rag
= α3

0
(1 − α0)3

f 3
l,h

f 3
g,h

(1/2 − ΘΓ )

(1/2 + ΘΓ )

Fλ
f 2
g,ρFg

λβ

λk
fg,k, (2.8)

where Fλ = λ2
ρλcp/λμ and Fg = fg,cp/fg,μ. Likewise, we express Nul/Nug using (2.5) as

Nul

Nug
= α0

(1 − α0)

fl,h
fg,h

1
λk

(1/2 + ΘΓ )

(1/2 − ΘΓ )
fg,k. (2.9)

Note that to derive (2.9), the heat fluxes on the liquid and gas side are taken equal Q̂Γ,l =
Q̂Γ,g. Once more, this is a valid assumption when evaporation and condensation balance at
the interface and the gas layer is at saturation. By employing the scaling relations (2.6a,b)
and (2.8) and (2.9), we get

α0

(1 − α0)

fl,h
fg,h

1
λk

fg,k
(1/2 + ΘΓ )

(1/2 − ΘΓ )
=
[

α3
0

(1 − α0)3

f 3
l,h

f 3
g,h

(1/2 − ΘΓ )

(1/2 + ΘΓ )

Fλ
f 2
g,ρFg

λβ

λk
fg,k

]γ

,

(2.10)
which, after some manipulation, reads

1
Θ∗

Γ

= 1 +
(

α0

1 − α0

fl,h
fg,h

)(1−3γ )/(1+γ )
(

f 2
g,ρFg

Fλλβ

)γ /(1+γ ) (
fg,k

λk

)(1−γ )/(1+γ )

. (2.11)
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Note that in the derivation of (2.11), we have performed a change of variable, Θ∗
Γ = ΘΓ +

1/2. Equation (2.11) can be then rearranged in terms of Θ∗
Γ and, finally, of ΘΓ :

ΘΓ = −1
2

+
⎛⎝1 +

(
α0

1 − α0

fl,h
fg,h

)(1−3γ )/(1+γ )
(

f 2
g,ρFg

Fλλβ

)γ /(1+γ ) (
fg,k

λk

)(1−γ )/(1+γ )
⎞⎠−1

,

(2.12)
where λβ is defined as λβ = β̂l/β̂g with β̂g = 1/T̂c,g. Accordingly, λβ can be finally
expressed as

λβ = β̂lT̂c,g = β̂lΔ̂T

(
T̂c,g − T̂r

Δ̂T
+ T̂r

Δ̂T

)
= β̂lT̂r(1 + 2εΘc). (2.13)

In (2.12), fg,k and Fg are functions of temperature and composition. The dependence on
the thermodynamic pressure is typically important for the density, i.e. fg,ρ , while it can
be omitted for the specific heat capacity, viscosity and thermal conductivity. Therefore, to
evaluate fg,k and Fg in (2.12), we need to specify a reference temperature and reference
vapour concentration. This aspect has already been discussed in Weiss et al. (2018), where
the authors derive an expression for the central temperature for the gas region T̂c,g and
show that it represents the temperature at which the thermophysical properties should be
evaluated for a RB cell under strong NOB effects. Note that the derivation is based on the
same assumptions that lead to (2.6a,b) and (2.7) and, therefore, no additional hypotheses
are introduced here. By incorporating this approach in our model, T̂c,g reads as

T̂c,g = k̂3/4
+,gη̂

1/4
+,gT̂Γ + k̂3/4

−,gη̂
1/4
−,gT̂t

k̂3/4
+,gη̂

1/4
+,g + k̂3/4

−,gη̂
1/4
−,g

. (2.14)

Note that when the gas thermophysical properties are uniform, T̂c,g reduces to (T̂Γ + T̂t)/2
and, therefore, (2.14) can be interpreted as a more general choice of the central temperature
than the arithmetic mean. By introducing Θc,g = (T̂c,g − T̂r)/Δ̂T , (2.14) can be written in
dimensionless form as

Θc,g =
ΘΓ − 1

2

(
k̂3−,gη̂−,g

k3+,gη̂+,g

)1/4

1 +
(

k̂3−,gη̂−,g

k̂3+,gη̂+,g

)1/4 . (2.15)

Note that in (2.14) and (2.15), the group η̂±,g corresponds to (β̂ρ̂2/k̂μ̂)±,g. The properties
k̂+,g, η̂+,g and k̂−,g, η̂−,g are evaluated at the crossover points, which are located at the
transition points between the boundary layer and the bulk region of the cell. Following
once more the procedure in Weiss et al. (2018), the crossover temperature T̂±,g at which
these properties should be evaluated is determined as a linear combination between T̂Γ

and T̂t. In particular, for the gas region we have

T̂+,g = δT̂Γ + (1 − δ)T̂c,g, T̂−,g = δT̂t + (1 − δ)T̂c,g. (2.16a,b)

The last parameter to be specified is δ, which depends exponentially on the aspect ratio
A, i.e. δ = δ0 + (1 − δ0) exp (−BA). By experimental fitting, Weiss et al. (2018) suggest
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employing δ0 = 0.235 and B = 1.14, which provide an accurate estimation of Θc,i for a
wide range of Ra and A.

For the terms fg,ρ , fl,h and fg,h, more analysis is needed. Since evaporation changes the
mass of the gas and its local density, and it decreases the volume of the liquid, we introduce
the mass ratio Gg = Ĝg/Ĝg,r and the volume ratio Vg = V̂g/V̂g,r. These ratios are defined
as the values of the quantities in the evaporating regime divided by the corresponding
values for the flow without evaporation. Indicating with Ĝl,r the initial liquid mass, V̂l,r

the initial liquid volume and Ĝe
l the mass of the evaporated liquid, we get

Ĝg

Ĝg,r
= Ĝg,r + Ĝl,r − Ĝl

Ĝg,r
= 1 + Ĝe

l

Ĝg,r
= 1 + 1

Ĝg,r

∫
V̂g

ρ̂gYv
l d̂Vg,

V̂g

V̂g,r
= V̂g,r + V̂l,r − V̂l

V̂g,r
= 1 + V̂e

l

V̂g,r
= 1 + 1

λρĜg,r

∫
V̂g

ρ̂gYv
l d̂Vg,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.17)

where V̂e
l is the volume of the incompressible liquid that turns into vapour. Note that

Ĝe
l , given by the integrals in (2.17), requires knowledge of the vapour distribution.

Approximating Yv
l with Ȳv

l,Γ (second assumption of our derivation) allows us to estimate
the mass of the evaporated liquid as Ĝe

l ≈ Ȳv
l,Γ Ĝg. Accordingly, Gg = 1/(1 − Ȳv

l,Γ ) and
Vg = 1 + Ȳv

l,Γ /(λρ(1 − Ȳv
l,Γ )), which provide the following estimation of fg,ρ :

fg,ρ = Gg

Vg
= λρ

Ȳv
l,Γ + (1 − Ȳv

l,Γ )λρ
. (2.18)

Since fi,h ≈ Ĝi/(ρ̂iV̂i,r), the relations (2.17) allow also the estimation of fl,h and fg,h.
To proceed, it is worth noticing that Ȳv

l,Γ = g1(ΠT , ΠP, ε, ΘΓ , pth) from (2.1) and
ΘΓ = g2(ΠT , ΠP, ε, pth) as in (4.2) and, therefore, a relation for the thermodynamic
pressure (supposed uniform; see Chillà & Schumacher 2012) is required. To derive it,
we integrate over the gas region the equation of state for the local gas density, i.e.
pthMm/(1 + 2εΘg), and express the result in terms of pth:

pth = Gg

(∫
Vg

MmΘ i
gdVg

)−1

≈ fg,ρ

M̄m
Θ i

c, (2.19)

where Θ i
g = (1 + 2εΘg)

−1 and M̄m = λM/(Ȳv
l,Γ + (1 − Ȳv

l,Γ )λM) is the mean molar mass
of the mixture computed using the harmonic average between M̂l and M̂g,r (Scapin et al.
2022). Note that in (2.19), we employ the second hypothesis and we approximate the
volume integral of Θ i

g as VgΘ̄
i
g using Θ̄ i

g = Θ i
c from (2.15).

The model to estimate ΘΓ is based on (2.12), (2.15), (2.18) and (2.19), coupled
with appropriate equations of state for specific heat capacity, thermal conductivity and
viscosity, as detailed in Appendix B. The system is not linear; however, a simple iterative
procedure can be used to obtain ΘΓ , Ȳv

l and pth together with Θc,g. We remark here that
the proposed model for ΘΓ is more general than that presented in Liu et al. (2022b) in
three aspects: (i) we account for phase change, (ii) we account for NOB effects in the
gas phase and (iii) we include the density, viscosity, specific heat capacity and thermal
expansion ratios in (2.12). It is worth mentioning that in the absence of evaporation, with
uniform bulk properties (i.e. Fg = fg,ξ = 1) and for λρ = λμ = λcp = λβ = 1, the general
expression for ΘΓ in (2.12) reduces to the estimate by Liu et al. (2022b).
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2.2. Nusselt number
With the estimated interface temperature ΘΓ , we can derive a scaling law for the
ratio between the global Nusselt number with and without evaporation, i.e. Nue =
Q̂e

t l̂z/(k̂g,rΔ̂T) and Nu = Q̂tl̂z/(k̂g,rΔ̂T), where Q̂e
t and Q̂t are the global heat fluxes with

and without evaporation measured at the top boundary. Taking the ratio between the two,
we immediately see that Nue/Nu = Q̂e

t /Q̂t. To compute Q̂e
t /Q̂t, we first define the Nusselt

number on the gas side of the interface, with and without evaporation:

Nue
g = Q̂e

Γ ĥe
g

k̂e
g(Θ

e
Γ + 1/2)Δ̂T

, Nug = Q̂Γ ĥg

k̂g(ΘΓ + 1/2)Δ̂T
, (2.20a,b)

where Q̂e
Γ and Q̂Γ are the heat fluxes exchanged at the interface. Taking the ratio of

the two Nusselt numbers in (2.20a,b) and applying again the GL theory (i.e. Nue
g/Nug =

(Rae
g/Rag)

γ ) yields

Q̂e
Γ

Q̂Γ

= (Θe
Γ + 1/2)

(ΘΓ + 1/2)

(Rae
g

Rag

)γ f e
g,k

fg,k

1
f e
g,h

. (2.21)

Note that the variations of the thermophysical properties induced by evaporation are
denoted with a superscript ‘e’. We then use (2.4) to compute the ratio

Rae
g

Rag
= (1 + 2εΘe

c )

(1 + 2εΘc)

(Θe
Γ + 1/2)

(ΘΓ + 1/2)
f 3,e
g,h f 2,e

g,ρ

f e
g,cp

f e
g,μf e

g,k

fg,μfg,k

fg,cp
. (2.22)

Since the global heat flux is equal to the heat flux at the interface, i.e. Q̂e
Γ = Q̂e

t and
Q̂Γ = Q̂t, we can finally combine equations (2.21) and (2.22) into

Nue

Nu
=
(

1 + 2εΘc

1 + 2εΘe
c

)γ (Θe
Γ + 1/2

ΘΓ + 1/2

)1+γ f 2γ,e
g,ρ

f 1−3γ,e
g,h

f γ,e
g,cp

f γ
g,cp

f γ
g,μ

f e,γ
g,μ

f 1−γ,e
g,k

f 1−γ

g,k

. (2.23)

Solving iteratively the system composed of (2.12) and (2.19), together with the relations
(2.18) and (2.1), provides the values of ΘΓ and pth. Once these are known, we can directly
estimate the global heat transfer modulation with (2.23). This expression predicts Nu for an
evaporating system with respect to the configuration without phase change, described by
the GL theory. Inspection of (2.23) allows us to draw some initial conclusions concerning
the role of phase change in the RB system. First, the change in liquid height influences the
heat transfer modulation only weakly, since its exponent is 1 − 3γ ≈ 0. Second, higher gas
density decreases the interface temperature, as suggested by (4.2). Nevertheless, despite
that in (2.23) the exponent of ΘΓ is larger than the exponent of fg,ρ , this last term is
expected to be dominant given its stronger dependence on ε, as is clearly shown in the
next section. Last, a non-negligible effect is present due to the variation of cp, μ and k
whose contribution to the heat transfer modulation scales with γ and 1 − γ .

3. Numerical methodology

3.1. Governing equations
The validation of the model previously described is performed with the in-house code for
phase-changing flows extensively described in Scapin, Costa & Brandt (2020) and Scapin
et al. (2022) and, therefore, we briefly mention here only the main features. First, to
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distinguish between the phases, an indicator function H is introduced, defined equal to
1 in the liquid phase and 0 in the gas phase. Function H is governed by the following
transport equation:

∂H
∂t

+ uΓ · ∇H = 0, (3.1)

where uΓ is the interface velocity computed as the sum of an extended liquid velocity,
ue

l , and a term due to phase change, ṁΓ /ρlnΓ , with ṁΓ the mass flux and nΓ the
unit normal vector at the interface. Note that ue

l is computed as described in Scapin
et al. (2020). Next, the numerical code solves the governing equations assuming that the
liquid phase has constant properties and can be treated within the OB approximation,
while the gas phase manifests compressible effects that can be described within the
low-Mach-number formulation. Accordingly, the dimensionless conservation equations
for momentum, vaporized species Yv

l , temperature Θ and mass flux ṁΓ across the
interface read (Scapin et al. 2022)

ρ
Du
Dt

= −∇p +
√

Pr
Ra

∇ · τ + f σ

We
+
[
λρ(1 − Πβ2εΘ)H + pthMm

(1 + 2εΘ)
(1 − H)

]
ez

2ε
,

(3.2)

ρg
DYv

l
Dt

= ∇ · (ρgDlg∇Yv
l )√

RaSc
, (3.3)

ρcp
DΘ

Dt
= ∇ · (k∇Θ)√

RaPr
+ ΠR

dpth

dt
(1 − H) − (ṁΓ δΓ )

2εSte
, (3.4)

ṁΓ = 1√
RaSc

ρg,Γ Dlg,Γ

1 − Yv
l,Γ

∇Γ Yv
l · nΓ . (3.5)

In (3.2), u is the velocity, p is the hydrodynamic pressure, τ is the viscous stress tensor for
compressible Newtonian flows and f σ = κΓ δΓ nΓ with κΓ the interfacial curvature, δΓ a
regularized Dirac-delta function (Scardovelli & Zaleski 1999) and nΓ the normal vector.
The unit vector ez points in the gravity direction, i.e. ez = (0, 0, −1).

The generic thermophysical property ξ (density ρ, dynamic viscosity μ, thermal
conductivity k or specific heat capacity cp) is computed with an arithmetic average, i.e.
ξ = 1 + (λξ − 1)H, where λξ = ξl/ξg,r with ξg,r evaluated at reference condition (i.e. T̂r,
p̂th,r and Yv

l = 0). Since ξl is kept constant and uniform, no further modelling is needed,
while the generic gas property ξg is computed with the appropriate equation of state. For
example, the gas density is computed with the ideal gas law, ρg = pthMm/(1 + 2εΘ), and
the vapour diffusion coefficient with the Wilke–Lee correlation (Reid, Prausnitz & Poling
1987), Dlg = (1 + 2εΘ)3/2/pth (Wan et al. 2020). The remaining gas thermophysical
properties are computed as detailed in Appendix B. Note that in the OB limit, (i.e.
ε → 0, pth = 1 and Mm = 1), the gravity term active in the gas region reduces to 1 − 2εΘ

with β̂g = 1/T̂r and hence matches that employed in previous works (Liu et al. 2021b,a,
2022a,b).

Equations (3.2)–(3.5) are written in dimensionless form by introducing the free-fall
velocity scale ûr = (2ε|ĝ|l̂z)1/2 and the free-fall time scale t̂r = l̂z/ûr. Accordingly,
we define the Weber number We = ρ̂g,r2ε|ĝ|l̂2z /σ̂ with σ̂ the surface tension,
Πβ = β̂lT̂r; Sc = μ̂g,r/(ρ̂g,rD̂lg,r) and Pr = μ̂g,rĉpg,r/k̂g,r are the Schmidt and the
Prandtl numbers. Based on the chosen reference quantities, the Rayleigh number
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Ra = 2ε|ĝ|l̂3z ρ̂2
g,rĉpg,r/(μ̂g,rk̂g,r) corresponds to the fictitious one defined in (2.4). Note

that the temperature equation (3.4) requires the definition of the Stefan number Ste =
ĉpg,rT̂r/Δ̂hlv , where Δ̂hlv is the latent heat, and of the dimensionless group ΠR =
R̂u/(ĉpg,rM̂g,r), where M̂g,r is the molar mass of the gas phase and R̂u the universal gas
constant. In (3.5), the vapour mass fraction at the interface Yv

l,Γ is computed using (2.1).
These are Raoult’s law (Reid et al. 1987) and the Span–Wagner equation of state for the
vapour pressure p̂s,Γ at the gas–liquid interface. The employed coefficients are those for
pentane and taken equal to Bi=1,4 = [−7.327140, +1.823650, −2.272744, −2.711929].
Note that we prefer to employ the slightly more elaborated Span–Wagner model
over ‘simpler’ equations for the partial pressure, e.g. the Clausius–Clapeyron law or
Antoine’s law (Reid et al. 1987). The motivation behind our choice is twofold. First, the
Span–Wagner equation is based on critical quantities, T̂cr and p̂cr, which are intrinsic
properties of the substance and thus independent of the local ambient conditions (e.g.
p̂th,r). Next, the Span–Wagner model provides accurate and reliable results for most of the
substances over a wide range of temperature and thermodynamic pressure, well below the
critical point as well as near it.

To form a closed set of equations, one needs a relation for the velocity divergence and
for the thermodynamic pressure:

∇ · u = fΓ +
[

pthfY + fΘ
pth

−
(

1 − ΠR

cpMm

)
1

pth

dpth

dt

]
(1 − H), (3.6)

1
pth

dpth

dt

∫
Vg

(
1 − ΠR

cpMm

)
dVg =

∫
V

[
fΓ + fΘ + pthfY

pth
(1 − H)

]
dV. (3.7)

The local divergence constraint, (3.6), is derived by applying the divergence operator to
the one-fluid velocity defined as u = Hul + (1 − H)ug and by applying the continuity
equation of both phases. Equation (3.7) is derived by integrating equation (3.6) over
the total domain V , sum of the liquid and gas domains, and by imposing the volume
conservation over V , i.e.

∫
V ∇ · u dV = 0. In (3.6) and (3.7) the functions fΓ , fY and fΘ

represent the different contributions to the total velocity divergence from the phase change
(fΓ ) and the change of the gas density due to composition (fY ) and temperature (fΘ ) (see
again Scapin et al. (2022) for details):

fΓ = ṁΓ

(
1

ρg,Γ

− 1
λρ

)
δΓ , (3.8a)

fY = 1√
RaSc

Mm

ρg

(
1
λM

− 1
)

∇ · (ρgDlg∇Yv
l ), (3.8b)

fΘ = ΠR

cpMm

1√
RaPr

∇ · (k∇Θ). (3.8c)

We remark that a weakly compressible formulation is still required to model an evaporating
RB cell for ε → 0. Indeed, the term fΓ is not negligible in the case of evaporation and
contributes to expansion and contraction at the two-phase interface.

The governing equations (3.2)–(3.5) are solved on a uniform Cartesian grid with a
standard marker and cell method (Harlow & Welch 1965). The interface dynamics is
captured with an algebraic volume-of-fluid method, VoF-MTHINC (Ii et al. 2012; Rosti,
De Vita & Brandt 2019), which ensures excellent conservation properties of the liquid
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volume both with and without phase change, provided (3.6) is correctly imposed on u.
Thus, a pressure correction method is employed, and the associated Poisson equation is
first factorized into a constant-coefficient one (Dodd & Ferrante 2014) and then solved
with the eigenexpansion technique (Schumann & Sweet 1988), as implemented in the
open-source code CaNS (Costa 2018). Further details and validations are provided for
phase-change problems with constant and variable properties in Scapin et al. (2020),
Dalla Barba et al. (2021) and Scapin et al. (2022). Appendix A reports an additional
validation against the multiphase RB convection case in Liu et al. (2021a). Note that the
baseline two-phase code, including the VoF-MTHINC and heat transfer effects, FluTAS,
is described in Crialesi-Esposito et al. (2023) and is released as open-source software.

3.2. Computational set-up
For the validation of the model, we consider three values of the Rayleigh number, 106,
107 and 108, and four values for the temperature differential ε = 0.05, 0.10, 0.15 and
0.20. At fixed dimensionless mean temperature ΠT and pressure ΠP, the temperature
differential is the only parameter affecting ΘΓ , Yv

l and pth. The remaining dimensionless
parameters are not varied; we choose the Prandtl, Schmidt and Stefan numbers equal
to unity, i.e. Pr = Sc = 1 and Ste = 1, and the property ratios as λρ = λμ = λk = 20,
λcp = 1 and λM = 2.58. Moreover, we set ΠT = 0.8, ΠP = 1.65, Πβ = 0.6 and ΠR =
0.18. This choice corresponds to a light hydrocarbon (e.g. pentane) at high temperature
(below the critical value) and high pressure, which can be used as a coolant in industrial
applications. Finally, we set the Weber number We = 5 to limit interface deformation for
all the investigated values of the Rayleigh number (Liu et al. 2021a). All the cases are
first simulated without evaporation until a statistically stationary condition. Following the
procedure proposed for NOB flows (Demou & Grigoriadis 2019), temporal convergence is
assessed by comparing the Nusselt number at the bottom and top wall, ensuring that the
relative difference is lower than 1 %. Next, evaporation is activated until a new statistically
stationary regime is reached. Also in this case, temporal convergence is assessed by
comparing the top and bottom values of Nu. First- and second-order statistics of the generic
variable g (denoted as 〈g〉x and 〈grms〉x with x the periodic direction) are collected for a
sampling period sufficient to ensure their being independent of the size of the sample. Note
that we use both Favre and Reynolds averaging. Unless otherwise stated, only the latter is
employed in the current work, as we found the difference between the two negligible. In
table 1, we report the sample size and the time step employed for each case with and
without evaporation.

The computational domain is a two-dimensional cavity with aspect ratio A = 2,
periodic in the horizontal direction and with two walls at the bottom and top. Here, a
no-slip condition is applied for the velocity, a Dirichlet condition for the temperature,
while zero flux is imposed on the remaining quantities. In all the cases, we employ the
same uniform grid with Nx = 1024 and Nz = 512 along the periodic and the wall-normal
directions. This resolution fulfils the two requirements proposed in Shishkina et al. (2010).
Taking as a reference the case at Ra = 108 and ε = 0.20 (the most demanding among our
cases in terms of grid resolution), we perform two checks summarized below.

First, we ensure that the grid size Δ̂ = l̂z/Nz is smaller than the Kolmogorov length
scale:

Δ̂b ≤ πη̂ ≈ πl̂z
4

√
Pr2

RaNu
. (3.9)
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Case Tavg: WO EV Tavg: WT EV Δtavg: WO EV Δtavg: WT EV

Ra = 106 − ε = 0.05 200 200 5.7 × 10−5 2.5 × 10−5

Ra = 106 − ε = 0.10 200 200 5.7 × 10−5 2.5 × 10−5

Ra = 106 − ε = 0.15 200 200 5.7 × 10−5 2.5 × 10−5

Ra = 106 − ε = 0.20 200 200 5.7 × 10−5 2.5 × 10−5

Ra = 107 − ε = 0.05 600 800 5.5 × 10−5 5.5 × 10−5

Ra = 107 − ε = 0.10 600 800 5.5 × 10−5 5.5 × 10−5

Ra = 107 − ε = 0.15 600 800 5.5 × 10−5 5.5 × 10−5

Ra = 107 − ε = 0.20 600 800 5.5 × 10−5 5.5 × 10−5

Ra = 108 − ε = 0.05 1000 1200 5.5 × 10−5 5.5 × 10−5

Ra = 108 − ε = 0.10 1000 1200 5.5 × 10−5 5.5 × 10−5

Ra = 108 − ε = 0.15 1000 1200 5.5 × 10−5 5.5 × 10−5

Ra = 108 − ε = 0.20 1000 1200 5.5 × 10−5 5.5 × 10−5

Table 1. Time window for statistical sampling (Tavg) and the fixed time step Δtavg employed to collect the
statistics, for both the cases with (WT) and without (WO) evaporation (EV). Time is reported in units of
free-fall time t̂ff . The cases where the gas density and the gas–liquid diffusion coefficient are the only variable
properties are conducted at Ra = 106, 107 and 108, and for ε = 0.05, 0.10, 0.15 and 0.20. The cases where all
the gas thermophysical properties are varied are conducted at Ra = 106 and 108, and for ε = 0.05, 0.10, 0.15
and 0.20.

Using the a posteriori estimation of the Nusselt number Nu ≈ 40 at Ra = 108 and ε =
0.20, we get Δ̂/(πη̂) ≈ 0.20; thus the requirement is well met. When μ, ρ and cp are
not uniform, Prg slightly increases above unity up to 1.53. Therefore, even though the
Batchelor scale is smaller than the Kolmogorov scale, the limited Pr makes the employed
resolution suitable for our configuration.

Next, we estimate the minimum number of grid points required to fully resolve the
thermal and hydrodynamic boundary layers of the gas phase Ngp, which represents the
most stringent condition. Following once more Shishkina et al. (2010), this requirement
reads as

Ngp =
√

2aNu1/2
g Pr0.3215+0.011 log(Pr), (3.10)

with a = 0.482 in (3.10) and the Nusselt number on the gas side Nug estimated as

Nug = Q̂gĥg

k̂g,r(T̂Γ − T̂t)
= Nu

α0fg,h

(ΘΓ + 1/2)
. (3.11)

Taking α0 = 0.5, fg,h = 1.05 and ΘΓ = 0.36 in (3.10), Ngp is equal to 5, significantly less
than the value of 10 employed in the current set-up. Finally, given the spatial variation
of ρg and Dlg with the state variables, the local Sc may differ from unity. Taking once
more the case at Ra = 108 and ε = 0.2, the mean gas density and the vapour diffusion
coefficient become 1.8 and 0.9 times the corresponding reference values, corresponding
to an effective Sceff ≈ 0.6. Since Sceff < Pr, the velocity and thermal fields impose the
stricter resolution requirement.

We have performed a mesh convergence study for the case at Ra = 108 and ε = 0.2 by
doubling the grid in both directions (i.e. 2048 × 1024) and comparing the result with the
corresponding coarser simulation. As shown in figure 2, the chosen resolution (1024 ×
512) guarantees excellent spatial convergence for first- and second-order temperature
statistics, confirming once more that it can be considered as adequate for the current study.
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Figure 2. Grid convergence studies for the case at Ra = 108 and ε = 0.20: (a) mean vertical profile and
(b) root mean square of temperature using 1024 × 512 and 2048 × 1024 grid points.

4. Results and discussion

4.1. Temporal evolution of Nu and ΘΓ

All the cases are first simulated without evaporation until a statistically stationary
equilibrium is reached. Once this condition is met, evaporation is activated at the
gas–liquid interface. During the phase-change process, the liquid height is reduced, and
the gas region changes its mean temperature, composition and pressure due to increased
vapour content. Moreover, phase change introduces another heat transfer component,
i.e. latent heat, which is responsible for the mismatch between the Nusselt number values
measured at the top and the bottom of the cell, Nut and Nub, during the transient phase.
This condition is clearly displayed in figure 3 for Ra = 106 and 108, and ε = 0.05 and 0.20.
In particular, Nub rapidly increases since evaporation is an endothermic process, while Nut
rapidly reduces since less heat is transported from the interface to the upper wall. Note
that, irrespective of Ra, the transient between the two statistical equilibria is faster for
larger values of ε since more vapour is released in the gas layer. Eventually, the gas layer
saturates with a balance of evaporation and condensation at the gas–liquid interface, and a
new statistical equilibrium is achieved. In this new condition, the time-averaged mass flux
is zero, i.e. ∫ teq+T

teq

(∫
Γ

ṁΓ dS
)

dt = 0, (4.1)

where teq is the physical time at which a statistical equilibrium is reached and T is the time
window employed for statistical sampling. Accordingly, the latent heat exchanged at the
interface is statically zero, only sensible heat is exchanged and, thus, the Nusselt number
values measured at the top and bottom walls converge to the same statistical mean. This
final condition is also displayed in figure 3 for Ra = 106 and 108, and ε = 0.05 and 0.20.
Higher ε leads to a larger Ȳv

l and, thus, to an enhancement of the heat transfer in the cell.
Moreover, large values of Ȳv

l increase the fluctuations of the Nusselt number around its
mean value, an effect more pronounced at lower Ra.

Figure 4 displays the time evolution of the interface temperature ΘΓ for the same
cases. When evaporation is active, the interface cools and ΘΓ suddenly drops due to
the latent heat. The final statistically stationary condition is reached when condition (4.1)
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Figure 3. Temporal evolution of the Nusselt number Nu for (a) Ra = 106 and (b) 108, considering ε = 0.05
and 0.20, measured at the bottom wall (BW) and top wall (TW). The time instant teq = 0 refers to the instant
when evaporation at the gas–liquid interface is activated.
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Figure 4. Temporal evolution of the interface temperature ΘΓ for (a) Ra = 106 and (b) 108, considering
ε = 0.05 and 0.20. The instant teq = 0 refers to the time that evaporation at the gas–liquid interface is

activated.

is met. Similarly to the temporal behaviour of Nu, larger values of ε cause more significant
fluctuations of the interface temperature ΘΓ and reduce the transient before the saturation
condition is met. It is worth mentioning that a different choice of Stefan number would
affect the system’s behaviour during the transient phase. On the other hand, different
values of Ste would lead to the same statistical equilibrium, i.e. Nue/Nu and Θe

Γ when
the condition (4.1) is met.

4.2. Validation of the model
The model described in § 2 is here validated against two-dimensional interface-resolved
DNS of the evaporating system. We first study the variation of ρ, cp, μ and k, together with
the molar mass M̄m, with the temperature differential ε. The results, displayed in figure 5,
are computed by combining the analytical model described in § 2.1 together with the
equations of state reported in Appendix B. For this reason, a non-negligible dependence
on the scaling exponent γ is observed, especially for the gas density and the molar mass.
The current set-up considers a mixture of air and light hydrocarbon with molar mass
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Figure 5. (a) Variation of the normalized mean density fg,ρ and molar mass M̄m as a function of ε. (b) Variation
of the normalized mean dynamic viscosity fg,μ, thermal conductivity fg,k and specific heat capacity fg,cp.
Parameters fg,i with i = ρ, μ, k and cp are computed using the definition, i.e. (2.3), and the equations of
state detailed in Appendix B.

ratio λM larger than 1. Therefore M̄m increases with ε. Also fg,ρ , computed with (2.18),
increases with the temperature differential ε, but, as shown in figure 5, the variation of
fg,ρ is dominant over M̄m. Figure 5 displays the dependence of dynamic viscosity, thermal
conductivity and specific heat capacity with ε. Since the specific heat capacity of the
gas, cp, increases with the mean vapour content, its normalized variation, fg,cp > 1, and
increases with ε. The opposite occurs for μg and kg; therefore, their normalized variations
fg,μ and fg,k are lower than unity with a decreasing trend with ε.

To better disentangle the effects of evaporation in the RB cell, we start the discussion
by considering a subset of the general model, where the gas density and the liquid–gas
diffusion coefficient are the only thermophysical properties that vary. This simplification
allows us to isolate the effect of the density variations and omit, without further
approximations, the Prandtl number dependence in the scaling Nug ∼ Raγ

g , since the
Prandtl number is not a function of ρg. In this simplified setting, fg,μ = fg,cp = fg,k = 1
and (2.12) for the interface temperature ΘΓ becomes

ΘΓ = −1
2

+
⎛⎝1 +

(
α0

1 − α0

fl,h
fg,h

)(1−3γ )/(1+γ )
(

f 2
g,ρλμ

λ2
ρλcpλβ

)γ /(1+γ ) (
1
λk

)(1−γ )/(1+γ )
⎞⎠−1

.

(4.2)
Similarly, the Nusselt number ratio Nue/Nu reads

Nue

Nu
=
(

1 + 2εΘc

1 + 2εΘe
c

)γ (Θe
Γ + 1/2

ΘΓ + 1/2

)1+γ f 2γ,e
g,ρ

f 1−3γ,e
g,h

. (4.3)

Figure 6 compares the analytical prediction of ΘΓ and Nue/Nu against the values extracted
from the DNS. For both quantities, the predicted results agree very well with the theory,
for a choice of scaling exponent 1/4 ≤ γ ≤ 1/3, as suggested by the GL theory (grey
region).

The data also reveal different aspects of the role of the temperature differential ε in ΘΓ .
First, ΘΓ shows no or little dependence on ε in a dry environment (i.e. no evaporation).
This suggests that strong density variations have a negligible impact on ΘΓ and Nu.

957 A12-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.57


N. Scapin, A.D. Demou and L. Brandt

0.42 1.5

1.4

1.3

1.2N
ue /N

u

1.1

1.0

0.41

0.40

0.39

0.38

0.37

0.36

0.35

0.34
0.01 0.05 0.10

γ = 1/4
γ = 1/3
Ra = 106

Ra = 107

Ra = 108

γ = 1/4
γ = 1/3
Ra = 106

Ra = 107

Ra = 108

0.15 0.20 0.25 0.01 0.05 0.10

ε ε
0.15 0.20 0.25

ΘΓ

(b)(a)

Figure 6. Comparison between the analytical predictions (with γ ∈ [1/4, 1/3]) and the numerical simulations
for (a) the interface temperature ΘΓ and (b) the ratio Nue/Nu as a function ε for different values of Ra,
when only the gas density is varied. Note that in (a), the dotted lines correspond to the prediction of ΘΓ

without evaporation.

Second, when evaporation is active, the gas mixture has higher density and ΘΓ decreases
with respect to the case without evaporation, exhibiting a stronger-than-linear dependence
on ε. Based on the proposed model, the increase of the gas density is expected to occur
regardless of the value of λM (equation (2.18)). Nonetheless, λM affects the statistically
steady value of pth. For λM < 1, typical of mixtures of water vapour and inert gas, M̄m < 1
and, therefore, variations of density and molar mass, fg,ρ and M̄m, contribute to the increase
of pth (equation (2.19)). The opposite occurs for λM > 1 as in mixtures of hydrocarbons
and inert gases, where there is a competitive effect between fg,ρ and M̄m, with the former
dominating the latter in the current set-up (see figure 5). Finally, note that the increase
in the gas density with ε, i.e. fg,ρ > 1, compensates the drop in the interface temperature
and, thus, contributes to an enhancement of the global heat transfer, i.e. Nue/Nu > 1. We
now consider the general case when all the gas thermophysical properties are varied with
temperature and composition. Note that the dependence on the thermodynamic pressure
is assumed only for the gas density. Based on the parameters and the equations of state we
employ for μ, cp and k (reported in Appendix B), the temperature dependence is weaker
than the effect of the composition. The variation of Ȳv

l drives the change of cp, μ and k
compared with the dry case. More specifically and as anticipated in figure 5, cpg increases
with ε, i.e. fg,cp > 1, while k and μ decrease with ε, i.e. fg,μ < 1 and fg,k < 1. Note that
from (2.12), fg,cp > 1 and fg,μ < 1 promote a reduction of the interface temperature in
the case of evaporation. Conversely, fg,k < 1 promotes an increase in ΘΓ . For the current
choice of parameters, the changes in viscosity and heat capacity have a stronger effect
compared with the thermal conductivity. This factor leads to a decrease of ΘΓ with ε.
Figure 6 displays the analytical predictions for these two quantities and the results from
DNS conducted for Ra = 106 and 108, and ε = 0.05, 0.10, 0.15 and 0.20. As for the other
cases, the scaling exponent γ is chosen in the interval [1/4, 1/3]. Compared with the
simplified setting where the gas density is the only variable thermophysical property, ΘΓ

exhibits slightly lower values (see figure 6a). This behaviour is attributed to the larger
sensitivity of the interface temperature to cp and μ than to variations of k. By comparing
figure 6(b) with figure 7(b), we note that accounting for the variability of μ, cp and k leads
to a more significant increase of the heat transfer, Nue/Nu. As shown in (2.23), the increase
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Figure 7. Comparison between the analytical predictions (with γ ∈ [1/4, 1/3]) and the numerical simulations
for (a) the interface temperature ΘΓ and (b) the ratio Nue/Nu as a function ε for different values of Ra, when
all the gas thermophysical properties are varied. Note that in (a), the dotted lines correspond to the prediction
of ΘΓ without evaporation.

of Nue/Nu with ε is driven by the decrease in the heat capacity and viscosity ratio. This
increase is only partially compensated by the increase in the thermal conductivity ratio.

It is worth noticing that in all the cases and irrespective of which gas thermophysical
properties vary, the solution does not converge to the case without evaporation for ε → 0,
i.e. Θe

Γ /ΘΓ � 1 and Nue/Nu � 1 for ε → 0. This can be explained by considering
the Span–Wagner equation of state as in (2.1) and, in particular, the parameter ηsw =
1 − ΠT(1 + 2ε). When ε is reduced, ηsw approaches 1 − ΠT and, therefore, some vapour
still reaches the gas region, i.e. Ȳv

l,Γ > 0. The presence of vapour changes the local
composition, modifies the bulk thermophysical properties and affects both ΘΓ and Nue

even for ε → 0.

4.3. Assessment of the hypotheses
We finally assess the validity of the assumptions invoked at the beginning. With regards to
the first assumption, it is reasonable to neglect the variation of the liquid thermophysical
properties. This assumption can be easily relaxed by using the mathematical framework
proposed here to include appropriate equations of the state for the liquid thermophysical
properties.

Moving to the second assumption, previous studies in single-phase and multiphase
thermal convection have already proven that the GL theory accurately predicts the Nusselt
number in the case of NOB effects (Weiss et al. 2018) and two phases (Liu et al. 2022b).
In this work, we have employed a simplified scaling of the form Nu = ARaγ Prm, rather
than the complete GL theory. Since the simplified scaling is an explicit relation for Nu as
a function of (Ra, Pr), we could also derive explicit laws for ΘΓ and Nue/Nu as shown
in § 2. This would not be possible if adopting the complete GL theory, which provides
an implicit relation for (Nu, Re) as a function of (Ra, Pr) (Grossmann & Lohse 2000,
2001). Even though it is possible to extend the present model with the complete GL theory
without conceptual modifications, the simplified scaling is still a valid approximation for
the present set-up since the liquid Rayleigh and Prandtl numbers, Ral and Prl, are similar
to those in the gas phase, Rag and Prg. It is worth emphasizing that the GL theory ceases

957 A12-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.57


N. Scapin, A.D. Demou and L. Brandt

1.010

1.005

1.000

0.995
0.5 0.6 0.7

z

〈Y
lv
〉 x/

Y– lv
,Γ

0.8 0.9 1.0

Ra = 106, ε = 0.20

Ra = 107, ε = 0.20

Ra = 108, ε = 0.20

Ra = 106, ε = 0.05

Ra = 107, ε = 0.05

Ra = 108, ε = 0.05

Figure 8. Vertical distribution of the vapour mass fraction 〈Yv
l 〉x (normalized by Ȳv

l,Γ ) for Ra = 106, 107 and
108, and ε = 0.05 (dot-dashed lines) and ε = 0.2 (solid lines).

to be valid when the interface breaks and significant topological changes occur, as shown
in Liu et al. (2022b).

To confirm the validity of the last assumption, we employ the results of the DNS.
Figure 8 displays the mean vertical profile of Yv

l , normalized by Ȳv
l,Γ , for the different

flow configurations under investigation. In all cases, we observe a small positive deviation
from the interface values, less than 1 % for the highest ε, which confirms the validity of
approximating Yv

l with Ȳv
l,Γ .

Finally, it is worth mentioning that despite the overall model being assessed with
two-dimensional simulations, we believe its validity is going to be confirmed also in a
three-dimensional configurations without any apparent modification. As discussed in Van
Der Poel, Stevens & Lohse (2013), the simplified scaling Nu ∼ Raγ is valid in both two and
three dimensions and none of the three assumptions set restrictions on the dimensionality
of the problem.

5. Conclusions

We propose a model for the analytical estimation of the interface temperature ΘΓ

and the heat transfer modulation, quantified by the Nusselt number, for an evaporating
two-layer RB configuration at a statistically stationary state. The model is based on
three assumptions: (i) the OB approximation can be applied to the liquid phase, while
the gas thermophysical properties are generic functions of the thermodynamic pressure,
local temperature and vapour composition, (ii) the GL theory for thermal convection
can be applied to the liquid and gas layers separately and (iii) the vapour content in
the gas can be taken as the mean value at the gas–liquid interface. The model provides
a quantitative prediction of the ratio Nue/Nu, enabling us to predict the global heat
transfer of the evaporating system once the value for the same system in dry conditions,
i.e. without phase change, is known. We validate the analytical predictions using DNS
in the low-Mach-number regime in a parameter space defined by 106 ≤ Ra ≤ 108 and
0.05 ≤ ε ≤ 0.20. Simulations are performed in two settings: (i) assuming the gas density
and liquid-diffusion coefficient are the only variable property and (ii) in the general case
where all the gas thermophysical properties depend on the state variables. Irrespective
of the setting, a very good agreement between the model predictions and the numerical

957 A12-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.57


Evaporating Rayleigh–Bénard convection

0.50

0.25

0

–0.25

〈Θ〉x

z
–0.50

0 0.2 0.4

Ra = 108, We = 5 - DNS

Ra = 108, We = 5 - Liu et al. 2021a

0.6 0.8 1.0

Figure 9. Mean temperature profiles obtained with the numerical code employed in the present study
(continuous line) and the results in Liu et al. (2021a) (circles) for a two-dimensional two-fluid RB flow with
Ra = 108, λρ = 3.33 and We = 5.

simulations is found by just adopting reasonable values for the scaling exponent of the GL
theory, i.e. 1/4 ≤ γ ≤ 1/3. Finally, we assess the basic assumptions on which the entire
model is built and conclude that they are generally valid unless the interface undergoes
large deformation and breakup, which would make the GL theory no longer valid (Liu et al.
2022b). We believe that the proposed model and further extensions may find applications
where accurate predictions of ΘΓ and Nu are required and to improve single-phase models
of turbulent convection in the presence of evaporation (Schumacher & Pauluis 2010; Hay
& Papalexandris 2020).
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Appendix A. Validation

For completeness, we validate our code using the data from the two-layer RB convection
study in Liu et al. (2021a). Here, the OB approximation is assumed for the gas and liquid
layers, and phase change is absent. To reproduce this condition, we ‘switch off’ phase
change and solve only (3.1), (3.2) and (3.4) setting ε = 0.005. Moreover, we consider
Ra = 108, λρ = 3.33 and Weber number We = 5, while the remaining thermophysical
property ratio λξ = 1. Simulations are conducted in a two-dimensional domain discretized
with Nx = 1024 and Nz = 512. Figure 9 displays the mean vertical temperature profile. The
excellent agreement between our simulations and the reference data in Liu et al. (2021a)
validates our numerical algorithm for a two-layer RB configuration in the OB limit.
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Appendix B. Equations of state

We detail the equations of state employed to compute the gas density, specific heat
capacity, dynamic viscosity and thermal conductivity of the gas phase. Note that the gas
density is a function of temperature, thermodynamic pressure and vapour composition.
The dependence on the thermodynamic pressure is usually negligible for the remaining
thermophysical properties (Reid et al. 1987) and, therefore, it is omitted in the present
work.

B.1. Gas density
The gas density ρ̂g is evaluated with the equation of state for an ideal gas:

ρ̂g = p̂thM̂m

R̂uT̂g
, (B1)

where p̂th is the thermodynamic pressure, R̂u is the ideal gas constant, T̂g is the gas
temperature and M̂m is the molar mass, computed using the harmonic average between that
of the liquid and that of the gas, i.e. M̂m = (Yv

l /M̂l + (1 − Yv
l )/M̂g)

−1. By introducing a
reference thermodynamic pressure p̂th,r, a reference temperature difference Δ̂T = 2εT̂r, a
reference molar mass M̂g,r = M̂g and using Θg = (T̂g − T̂r)/Δ̂T , (B1) can be written in
dimensionless form as

ρg = pthMm

1 + 2εΘg
. (B2)

Note that in (B2) the reference density ρ̂g,r = p̂th,rM̂g/(R̂uT̂r).

B.2. Specific heat capacity
The specific heat capacity ĉpg of the gas phase is computed as a linear combination
between that of the vapour, ĉp,v , supposed to be independent of temperature, and that
of the dry gas, ĉp,dg, as

ĉpg = ĉp,vYv
l + ĉpg,d(1 − Yv

l ). (B3)
The gas heat capacity in dry conditions, ĉpg,d, is a function of temperature and it is
computed as

ĉpg,d = Ĉ1 + Ĉ2((Ĉ3/T̂g)/(sinh(Ĉ3/T̂g)))
2 + Ĉ4((Ĉ5/T̂g)/(sinh(Ĉ5/T̂g)))

2, (B4)

where Ĉi=1,5 are semi-empirical constants for the dry gas taken equal to
Ĉi=1,5 = [4.13 × 104 J (kmol K)−1, 1.34 × 104 J (kmol K)−1, 3012 K, 1.08 × 104 J
(kmol K)−1, 1484 K], as suggested in Reid et al. (1987).

Equation (B3) can be rewritten in dimensionless form using the reference specific heat
capacity evaluated at T̂r from (B4):

cpg = ΠcpYv
l + cpg,d(1 − Yv

l ), (B5)
where Πcp = ĉp,v/ĉpg,r, in the present work equal to 2.0216. Parameter cpg,d is computed
from the dimensionless expression of (B4). By using Δ̂T = 2εT̂r, (B4) can be written in
dimensionless form as

cpg,d = C1 + C2((C3/Θ
∗
g )/(sinh(C3/Θ

∗
g )))2 + C4((C5/Θ

∗
g )/(sinh(C5/Θ

∗
g )))2, (B6)

where Θ∗
g = 1 + 2εΘg and Ci=1,5 = [0.6966, 0.2259, 8.0175, 0.1824, 3.9502].
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B.3. Dynamic viscosity
The dynamic viscosity of the gas phase μ̂g is computed as a combination between that of
the vapour, μ̂v , supposed to be independent of temperature, and that of the dry gas, μ̂dg.
Differently from the specific heat capacity, the mixture rule is typically nonlinear. In the
present work, we employ the Wilke–Lee mixture rule as suggested in Reid et al. (1987).
This reads as

μ̂g = Yv
l,mμ̂v

Yv
l,m + (1 − Yv

l,m)φvg
+ (1 − Yv

l,m)μ̂dg

Yv
l,mφgv + (1 − Yv

l,m)
. (B7)

Equation (B7) requires to first evaluate Yv
l,m as

Yv
l,m = Yv

l

M̂l
+ 1 − Yv

l

M̂g
. (B8)

Next, the weighting coefficients φvg and φgv , which are functions of the molar mass of the
vapour and the dry gas, are evaluated as

φvg =

(
1 +

√
μ̂v

μ̂g,d
λ

−1/4
M

)2

√
8(1 + λM)

, φgv =

(
1 +

√
μ̂g,d

μ̂v

λ
1/4
M

)2

√
8(1 + λ−1

M )

. (B9a,b)

The gas viscosity can be evaluated with the simplified Sutherland’s law:

μ̂g,d = μ̂g,r

(
T̂g

T̂r

)2/3

. (B10)

Equation (B7) can be rewritten in dimensionless form using the reference viscosity
evaluated at T̂r from (B10):

μg = Yv
l,mΠμ

Yv
l,m + (1 − Yv

l,m)φvg
+ (1 − Yv

l,m)μg,d

Yv
l,mφgv + (1 − Yv

l,m)
, (B11)

where Πμ = μ̂v/μ̂g,r = 0.3321. Moreover, by using Δ̂T = 2εT̂r, (B10) can be written in
dimensionless form as

μg,d = (1 + 2εΘg)
2/3. (B12)

B.4. Thermal conductivity

The thermal conductivity k̂g of the gas phase is computed similarly to the gas viscosity,
i.e. using the nonlinear Wilke–Lee mixture rule with suitable modifications:

k̂g = Yv
l,mk̂v

Yv
l,m + (1 − Yv

l,m)φvg
+ (1 − Yv

l,m)k̂dg

Yv
l,mφgv + (1 − Yv

l,m)
, (B13)

where Yv
l,m is evaluated with (B8). Next, the weighting coefficients φvg and φgv , which are

functions of the molar mass of the vapour and the dry gas, are evaluated using expressions
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similar to (B9a,b):

φvg =

(
1 +

√
k̂v

k̂g,d
λ

−1/4
M

)2

√
8(1 + λM)

, φgv =

⎛⎝1 +
√

k̂g,d

k̂v

λ
1/4
M

⎞⎠2

√
8(1 + λ−1

M )

. (B14a,b)

The gas thermal conductivity in dry condition can be evaluated with the following
expression:

k̂g,d = Ĉ1T̂Ĉ2
g

1 + Ĉ3

T̂g
+ Ĉ4

T̂2
g

, (B15)

where Ĉi=1,4 are semi-empirical constants for the dry gas taken equal to
Ĉi=1,4 = [3.8889 × 10−4 W (K m)−1, 0.7786, −0.7716 K, 2121.7 K2], as suggested
in Reid et al. (1987). Equation (B13) can be rewritten in dimensionless form using the
reference thermal conductivity evaluated at T̂r from (B10):

kg = Yv
l,mΠk

Yv
l,m + (1 − Yv

l,m)φvg
+ (1 − Yv

l,m)kg,d

Yv
l,mφgv + (1 − Yv

l,m)
, (B16)

where Πk = k̂v/k̂g,r = 0.5824. Parameter kg,d is computed from the dimensionless
expression of (B15), obtained defining appropriate reference quantities as for the previous
thermophysical properties:

kg,d = C1Θ
∗,C2
g

1 + C3

Θ∗
g

+ C4

Θ
∗,2
g

, (B17)

where Ci=1,4 = [0.3039, 0.7786, −0.0021, +5.6476].
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