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Abstract

Deep Neural Networks (DNNs) are the state of the art in different tasks of computer
vision. Although in continue development, neither their hidden structure is not yet
fully understood, even for the first and simplest architectures.

This thesis aims to provide some instruments to understand the representation of
some architectures and provide new techniques to improve them in different tasks,
from classification to inverse problems.

These instruments come from neuroscience and geometry. Indeed neuroscience
inspired artificial intelligence since its infancy, adapting the knowledge and the
modelling of biological networks to build artificial networks. In particular a very
popular field of study today is the so called Explainable Artificial Intelligence
(AI), aiming to give an interpretation of artificial networks mechanisms. However
sometimes these methods lead to contradictory results.

In this thesis, we propose a new explainability pipeline that resumes the inspiring
principles of AI, i.e. neuroscience methods that served to understand neurons in
the brain. With the same spirit, we are going to consider a DNN as an artificial
brain and analyze single units to determine their role and give it a label to identify
it. The project is composed of various sections, each offering a unique perspective
from neuroscience that ultimately converges towards a shared interpretation. The
whole pipeline aims also to provide a benchmark that uses such networks to get
predictions on biological networks. Indeed in the last part of the project we show
some preliminary results from biological neurons of the visual cortex of a macaque.

Beyond understanding of the hidden structure of DNNs, this thesis shows how to
explore and improve the representation in some vision models by studying the hidden
geometrical structures. This is the case of e-GLASS, that stands for "exploring the
Gan LAtent Space Solutions", and is a framework that exploits the image prior learnt
in the latent space of Generative Adversarial Networks (GANs) to provide sets of
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possible solution to linear inverse problems, such as super-resolution and inpainting.
The method is entirely built upon the geometry of the latent space, providing useful
directions to solutions perceptually different from each other more quickly than
existing approaches.

While this method and in general most of the DNNs exploit the geometry induced
by learning features in Euclidean space, in this thesis we study and propose new
regularizations to learn features in a non Euclidean geometry, i.e. the hyperbolic
space.

Even if most of the networks extract features and build representations in Eu-
clidean space, spaces with more representative geometries may exist, especially
when data have particular structures, e.g. images, graphs or molecules. It is the case
of the hyperbolic space, a space that was already used to study the physics of the
space-time in special relativity. It turned out that the hyperbolic space is particularly
relevant to embed data with hierarchical structures. Indeed it was demonstrated that
tree graphs can be embedded with arbitrary low distortion in the hyperbolic space, a
property that does not hold for flat spaces who distort the embeddings, losing the
true distances in the graph.

In this thesis we propose a new methodology to represent the hierarchical com-
positionality of 3D objects, based on a regularization in the hyperbolic space. In fact
3D point clouds exhibit a part-whole hierarchy made by the parts composing the
object, and capturing this property could reveal a better representation, leading to
improvements in classification and segmentation. These new methods revealed high
adaptability to different architectures, tasks and datasets.

In the future, we’d like to generalize some of the techniques presented in this
thesis to other problems and adapt to new state of the art models, e.g. vision
transformers and diffusion models.
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Chapter 1

Representation Learning: A journey
from Neuroscience to Computer
Vision

Representation learning lies at the heart of modern Artificial Intelligence (AI), illu-
minating pathways towards understanding the structures of data in its rawest form.
At its essence, representation learning endeavors to uncover meaningful patterns
hidden within vast and often noisy datasets.

Imagine data as the raw material of intelligence, akin to uncut gems waiting
to be polished. Traditional approaches to machine learning often require explicit
feature engineering, where human intuition and domain expertise sculpt the raw data
into formats more amenable to algorithms. However, representation learning takes a
different route. It seeks to automate this process of feature discovery by empowering
machines to extract and construct their own representations from the data itself.

At its core, representation learning operates on the principle of abstraction. It
aims to distill complex and high-dimensional data into compact, informative represen-
tations that capture the underlying essence of the information. These representations
serve as the currency of intelligence, enabling machines to comprehend, generalize,
and make decisions in ways that mimic human cognition.



2 Representation Learning: A journey from Neuroscience to Computer Vision

Fig. 1.1 Illustration of the myth of Plato’s Cave.

Back to the Ancient Greece, the principle of abstraction was already dear to
many philosophers. A well-known example is the myth of the Plato’s Cave.

In this allegory written by Plato in his work Republic, he depicts a group of
prisoners who have spent their entire lives chained to the wall of a cave, facing a
rough wall. These individuals observe shadows projected on the wall by real objects
passing in front of a fire situated behind them. They assign names to these fleeting
projections, perceiving these a constituents of the reality, yet they are distorted
reflections of the true world. An illustration is depicted in Figure 1.1.

The shadows symbolize the limited fragment of reality accessible to our senses
and perception, while the objects illuminated by the sun represent the genuine forms
of reality discernible only through reasoned inquiry. Plato delineates three higher
levels of understanding: the realm of natural sciences, the domains of mathematics,
geometry, and deductive reasoning, and the realm of the theory of forms. According
to Plato, philosophers is assigned the role of understanding and capture all the ele-
ments to build a principle of abstraction, leading to discover the true reality.

Considering that the acronym "PhD" stands for "Philosophiae Doctor", we, as
PhD students, have inherited this fundamental role, exploring different disciplines of
science to understand the world.
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However, nowadays, the new field of AI is challenging researchers from different
scientific fields, because the real understanding of AI is still unrevealed. Yet these
models have being able to build representations of the world that are similar to those
of the human mind, allowing them to overcome humans in different tasks. Since AI
systems draw inspiration from many disciplines such as mathematics, probability
theory, geometry, and biology, a real understanding would require a vast knowledge
of each field and the relationships between them, making it difficult to formalize a
comprehensive theory of this area.

At the core of AI is Deep Learning, i.e. the learning of data driven models
(deep neural networks) with tousands to millions of parameters. These models have
replaced in recent years classical and deterministic approaches in different fields,
such as computer vision, natural language processing and time series forecasting.
The focus of this thesis is the study of deep learning in computer vision, firstly
providing a neuroscience inspired framework to understand deep neural networks,
then proposing new methods in vision tasks such as segmentation of satellite images,
classification and segmentation of 3D objects,image generative models and inverse
problems.

The next chapter of the thesis concerns the ATHENA-N project. This project is
motivated by challenging questions that struggles almost all the AI experts (not only
in computer vision): Can we understand Deep Neural Networks? Can we keep track
of the role of each unit in these huge networks? How is the representation at a single
unit level? built

These questions recall what have been the main objectives of neuroscience for
centuries. Indeed humans always tried to understand what is inside the brain and
which representations are built in different parts of it (recalling the theory of rep-
resentation introduced by Greek philosophers). These questions led to the birth of
neuroscience, dated in 1700 b.C. with earliest studies of the ancient Egypt, where
surgical practices were carried out to heal mental disorders or brain damage [9].
The modern evolution of neuroscience was driven by molecular biology, electro-
physiology and computational neuroscience. Still, nowadays, we are not able to
comprehensively understand how the brain works, nor do we understand emerging
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models that mimic human intelligence. It is known that the two fields are strictly
correlated and AI got inspiration from biological networks. Hence the understanding
of AI models is fundamental also from a neuroscientific perspective.

ATHENA-N is the acronym of "Analyzing The Hidden Encoding of Artificial
Neural Networks" and aims to partially answer to the above questions. It is an
explainability pipeline aiming to provide neuroscientific analyses to understand the
role of single units in Convolutional Neural Networks (CNNs), since these networks
have assumed a central role in computer vision, apart from being inspired by the
architecture and functionality of the biological brain.

Looking at single units among the millions of units that typically compose
deep neural networks could appear misleading and without an intuitive justification.
However, as first introduced by the important project of Christopher Olah in 2020
[4], the approach of studying individual neurons in artificial networks is similar to
the approach of zooming in that was essential in many scientific discoveries. In his
project page Olah justifies the new approach as a change of point of view: "These
transitions weren’t just a change in precision: they were qualitative changes in
what the objects of scientific inquiry are. For example, cellular biology isn’t just
more careful zoology. It’s a new kind of inquiry that dramatically shifts what we
can understand. The famous examples of this phenomenon happened at a very
large scale, but it can also be the more modest shift of a small research community
realizing they can now study their topic in a finer grained level of detail."

ATHENA-N is in line with the aims proposed by Olah, and, like a microscope,
studies the fine-grain structure of the constituent of artificial and biological networks,
i.e. the neurons. According to this approach, each neuron can be understood and
catalogued. Then neurons are grouped in layers where higher level information can
be extracted, and this process can continue like a matryoshka until the emergence
of general properties about the whole network. In this case the whole process starts
with a zoom in and slowly zooms out to the overall network.

Chapter 2 will introduce the entire framework, exploring all the sections that
compose the project. Each part recalls historical and consolidated analysis in neuro-
science that will be discussed with appropriate references. For example, selectivity
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and invariance properties will be investigated firstly in single units of CNNs, then
among layers and at the end among different architectures.

On the other hand, ATHENA-N can be seen as an in silico benchmark that serves
for getting intuition and set up new electrophysiology experiments in biological
neurons of the primate visual brain. Indeed the last section will be dedicated to
provide some examples, showing biological data about single neurons recorded in
the visual cortex of primate brain and providing results compared to those of artificial
neurons.

In this initial chapter a central role is covered by Generative Adversarial Net-
works (GANs). In the second chapter of this thesis 3 a study of generative models
is carried out. Some general properties of their latent spaces will be illustrated. As
an application, the latent space of some GANs will be explored to solve inverse
problems in image processing. Indeed it turns out that GANs’ latent spaces are good
approximations of the distribution of natural images and could serve as a prior to
solve inverse problems.

The chapter will introduce e-GLASS that stands for exploring Gan LAtent Space
Solutions. It aims to explore multiple feasible solutions of linear inverse problems
navigating the latent space through interpretable diretcions found by geometrical
analysis. The chapter is concluded by some results that prove the efficiency and
effectiveness of the proposed method with respect to state of the art methods.

A key aspect of deep learning is the learning process. Although the supervised
approach is the most diffused in AI research, other learning paradigms are gaining
popularity. The supervised learning requires huge datasets with the corresponding
labels, and sometimes this is not possible for some specific applications. For example
either in the remote sensing domain, there are no datasets as large as Imagenet dataset
of natural images, since the labeling process in satellite imagery is expensive due to
the need of domain experts and the difficulty to label the data.

Self-supervised learning techniques are a possible solution due to their capability
of building models that are effective even when scarce amounts of labeled data
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are available. Chapter 4 will introduce a framework for self-supervised training of
multichannel models with applications to some specific tasks, such as the fusion of
multispectral and synthetic aperture radar images. It turns out that the self-supervised
approach is highly effective at learning features that correlate with the labels for land
cover classification. This is enabled by an explicit design of pretraining tasks which
promotes bridging the gaps between sensing modalities and exploiting the spectral
characteristics of the input. When limited labels are available, using the proposed
self-supervised pretraining, followed by supervised finetuning for land cover classifi-
cation with SAR and multispectral data, outperforms conventional approaches such
as purely supervised learning, initialization from training on Imagenet and recent
self-supervised approaches for computer vision tasks.

Different learning paradigms are fundamental for constructing improved fea-
ture spaces that accurately represent data. Enhanced data representation directly
correlates with higher model performance. A complementary approach to that of
self-supervised learning is the direct regularization of the feature space during the
supervised learning. Regularization techniques have been explored since classical
machine learning methods, e.g. l1 or l2 regularization in linear regression where they
found theoretical justifications. In chapter 5 a new regularization technique will be
proposed, aiming to regularize the learning process of 3D computer vision. The new
strategy exploits the hierarchical relationships between objects and their parts in a
new feature space that was never explored before.

Point clouds of 3D objects exhibit an inherent compositional nature where sim-
ple parts can be assembled into progressively more complex shapes to form whole
objects. Explicitly capturing such part-whole hierarchy is a long-sought objective
towards building effective models, but the tree-like nature of the problem has made
the task elusive. In the first two sections, a new regularization technique will be
introduced for point clouds classification and segmentation. The method proposes to
embed the features of a point cloud backbone into the hyperbolic space and explicitly
regularize the space to account for the part-whole hierarchy. The hyperbolic space is
the only space that can successfully embed the tree-like nature of the hierarchy. This
leads to substantial improvements in the performance of state-of-the-art supervised
models for point cloud classification and segmentation.
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In the last section a new method is proposed to merge feature spaces of 3D objects
and images in the hyperbolic space. Indeed reconstructing both objects and hands in
3D from a single RGB image is complex. Existing methods rely on manually defined
hand-object constraints in Euclidean space, leading to suboptimal feature learning.
Compared with Euclidean space, hyperbolic space better preserves the geometric
properties of meshes thanks to a non flat space, preserving the structures in the
feature space. The new method provides the first precise hand-object reconstruction
method in hyperbolic space, namely Dynamic Hyperbolic Attention Network, which
leverages intrinsic properties of hyperbolic space to learn representative features.
Extensive experiments on three public datasets demonstrate higher performances
than state-of-the-art methods.

1.1 Publications

The publications correlated to each chapter of this dissertation are listed below:

• Chapter 2 Ongoing work.

• Chapter 3 Montanaro, Antonio, Diego Valsesia, and Enrico Magli. "Exploring
the solution space of linear inverse problems with GAN latent geometry." 2022
IEEE International Conference on Image Processing (ICIP). IEEE, 2022 [10].

• Chapter 4 Montanaro, Antonio, Diego Valsesia, Giulia Fracastoro, and Enrico
Magli. (2022). Semi-supervised learning for joint SAR and multispectral land
cover classification. IEEE Geoscience and Remote Sensing Letters, 19, 1-5
[11].

• Chapter 5

1. Montanaro, Antonio, Diego Valsesia, and Enrico Magli. "Rethinking the
compositionality of point clouds through regularization in the hyperbolic
space." Advances in Neural Information Processing Systems 35 (2022):
33741-33753 [12].

2. Montanaro, Antonio, Diego Valsesia, and Enrico Magli. "Towards Hy-
perbolic Regularizers For Point Cloud Part Segmentation." ICASSP
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2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2023 [13].

3. Zhiying Leng, Shun-Cheng Wu, Mahdi Saleh, Antonio Montanaro, Hao
Yu, Yin Wang, Nassir Navab, Xiaohui Liang, Federico Tombari. (2023).
Dynamic hyperbolic attention network for fine hand-object reconstruc-
tion. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (pp. 14894-14904). [14]



Chapter 2

The World of Neural Networks

This section is dedicated to the development of an explainability pipeline for artifi-
cial neural networks. Although it focuses only on Convolutional Neural Networks
(CNNs) it could be expanded to any other architectures and modalities.
The are two reasons for choosing CNNs. In the AI historical evolution CNNs were
the first networks beating human performance in image classification, signaling the
AI revolution of 2012. Nowadays CNNs are still used in many fields of computer
vision and many industries are starting to implement these networks in real applica-
tions such as space, security and biology.
The second motivation arises from the relationship between this model architecture
and the visual cortex of animals, including humans. In the past decade, visual neuro-
science has relied on CNNs as models of primate visual cortex. This project started
during an internship at the Department of Neurobiology at Harvard Medical School,
and it is under active development. Here I will give some insights and examples
about what this tool can do and its current limitations. While there will be some
results, these are preliminary, meant to illustrate the potential and the power of this
framework. In addition, real data related to biological neurons will be shown to
further support some intuitions extracted from this tool.

Convolutional Neural networks were indirectly inspired by the architecture and
functionality of the primate brain. They trace their origins from the work of David
Hubel and Torsten Wiesel, via Fukushima’s Neocognitron, to Lecun’s first trained
CNN. They constitute a dynamic and expansive realm within the field of artificial
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intelligence. This section provides an overview of the foundational concepts and
historical evolution with a constant recall to the evolution of the neurobiology that
inspired CNNs. Then, a new explainability pipeline will be introduced to study the
single units of Convolutional Neural Networks (CNNs), inspired to neuroscience
analyses, as a way to further understand potential new functional cell types in the
brain. CNNs are the original networks that led to a resurgence of AI, as described
below.

The origins of fully connected neural networks can be traced back to the mid-
20th century when early pioneers attempted to emulate the learning processes of
the brain in computational models. From the foundational work of McCulloch and
Pitts to the perceptron model introduced by Rosenblatt, the historical trajectory
underscores the persistent quest to replicate cognitive processes within machines.
This historical journey sets the stage for understanding the evolution of neural
networks from their early stages to the architectures we see today. In the parallel
world of neurobiology, David Hubel and Torsten Wiesel discovered the role of single
neurons in the primary visual cortex of cats, opening a new field of research aiming
to understand neurons in the brain. The approach proposed by these and other
neurobiologists is to understand the function of a whole network by understanding
its elemental components (neurons), and this is an inspiration to study and explain
artificial neural networks in the same way. In the following section I will introduce a
large project named ATHENA-N, for Analyzing The Hidden Encoding of Artificial
Neural Networks. The project is a years-long enterprise, currently under development
in collaboration with the Ponce laboratory at the Department of Neurobiology at
Harvard Medical School. ATHENA-N is a pipeline consisting of various parts,
with each offering a unique perspective that ultimately converges toward a shared
interpretation framework between Artificial and Biological neurons. The sections
are inspired by classical neuroscience studies, but they are applied to CNNs to have
a mechanistic interpretation. It is important to underline that although ATHENA-N
focuses on CNNs and the similarity between their artificial neurons and the biological
ones, the framework is general enough to be applied to any kind of architecture
trained for different tasks, such as transformers for NLP or multimodal models. This
is left as future work.



2.1 ATHENA-N: A biologically inspired tool to understand Neural Networks 11

2.1 ATHENA-N: A biologically inspired tool to un-
derstand Neural Networks

Since ATHENA-N aims to provide an explainability pipeline with ideas coming from
neuroscience, the framework has been divided into sub-modules named by pivotal
stages of neuroscience, such as

• Anatomy

• Feature Visualization

• Selectivity

• Invariance or tolerance

The following sections will present and investigate each module, focusing on
a subset of CNNs as test cases. These include AlexNet, VGG19, and ResNet-18.
These choices combine historical and practical factors. AlexNet and VGG19 are
commonly used models in visual neuroscience, and they represent the first CNNs
that have begun to approach human-level performance. ResNet-18 is a more recent
significant advancement in CNN architecture and is associated with more human-
like performance. It is also notable because it includes "bypass" pathways, skip
connections across non-sequential layers, which also resembles the anatomy of the
primate brain. These networks are trained on Imagenet dataset, comprising 1.2
million images with 1000 classes, the most used dataset in image classification. The
pretrained models are publicly available through torchvision libraries. Some analyses
will also include ResNet-18 (robust), which has the same architecture as ResNet-18
but was trained by making network robust to adversarial attacks.

2.1.1 Anatomy

Convolutional Neural Networks (CNNs) are specialized deep learning models for
visual data. They employ convolutional layers to extract features, pooling layers
to reduce spatial dimensions, and activation functions like ReLU for non-linearity.
CNNs consist of multiple layers arranged hierarchically, starting with input data,
followed by convolutional and pooling layers, and ending with fully connected layers



12 The World of Neural Networks

Fig. 2.1 Example of one of the first CNN, Alexnet, as presented in the original paper [1].

for making predictions. Their structure allows them to automatically learn and repre-
sent complex visual features, making them crucial for tasks like image classification
and object detection. Figure 2.1 shows an example of network processing an input in
downsampled and informative features up to the last conv layers with the smallest
feature that are converted in one layer (through flatten or average pooling) to go to
the final classification layer.

The convolution operation in a CNN involves sliding small filters over the input
data to capture local patterns and features. These filters, or kernels, perform element-
wise multiplication and summation with the input data, creating feature maps that
highlight the presence of specific features. An important aspect of the convolutional
layer is the receptive field.

Receptive fields in convolutional neural networks (CNNs) are inspired by the
concept of receptive fields in visual neuroscience. In the context of CNNs, a receptive
field refers to the portion of the input image that a particular neuron or filter in a
convolutional layer "sees" or is responsive to.

From a visual neuroscience perspective, receptive fields in the brain are the
specific regions of the visual field that activate a particular sensory neuron or group
of neurons. Neurons in the visual cortex are responsive to specific features in their
receptive fields, such as edges, textures, or colors. If these stimuli move away from
the receptive field the neurons will not fire anymore.

In CNNs, each neuron in a convolutional layer has a receptive field defined by the
size of the convolutional kernel (filter) applied to the input image. These filters are
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responsible for detecting and learning various features in the input data, similar to
how neurons in the visual cortex respond to specific visual stimuli in their receptive
fields.

As you move deeper into the layers of a CNN, neurons have an effective larger
receptive fields (due to the composition of the previous receptive fields), which allows
them to capture more complex and abstract features by combining information from
smaller receptive fields in earlier layers. This hierarchical structure enables CNNs
to recognize and classify patterns in images effectively, similar to how the human
visual system processes visual information through layers of neurons with different
receptive fields. However the receptive field does not increase linearly with the
depth due to other types of layers present in the network. Hence estimating the
receptive field is challenging and could depend on various factors. In [15] the authors
show an effective way to compute the receptive field by optimizing the input image
showing that it could be different by the linear computation of it. In figure 2.2
(left) the effective receptive field is shown for each layer for different networks. As
we can notice the larger the receptive field the higher the accuracy of the network
is. However another observation is that for most networks the composite receptive
field saturates very quickly, becoming equal to the image size (224x224). To see a
difference beyond that, a 2d gaussian surface is fitted on the receptive field of each
layer and its standard deviation is shown in figure 2.2 (right). Through this fit the
trend is clear even in deeper layers, and only the last layers of deep architectures
(like Densenet) reach the image size.

In the realm of deep learning, three prominent convolutional neural network
(CNN) architectures have played pivotal roles in advancing the field of computer
vision: AlexNet, VGG19, and ResNet18. Each of these architectures has distinct
characteristics and represents significant milestones in the evolution of deep neural
networks. In addition these networks are small enough to allow reasonably simple
analyses.

AlexNet, introduced in 2012, marked a breakthrough by demonstrating the po-
tential of deep learning in image classification tasks. Its architecture comprises five
convolutional layers followed by max-pooling layers, complemented by three fully
connected layers. Notable features include the use of ReLU activation functions and
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Effective Receptive Field 68.2th percentile in a fitted normal distribution

Fig. 2.2 Right: Effective receptive field of different networks; the size saturates on the image
size , i.e. 224. Left: Standard deviation of fitted 2d gaussian surface of the receptiove field
for each layer; a clear increasing of the standard deviation is visible along layers with only
final layers reaching the whole image.
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local response normalization.

VGG19, introduced in 2014, is known for its simplicity and uniformity. With 19
layers, it predominantly employs 3x3 convolutional filters and max-pooling layers.
Like AlexNet, VGG19 concludes with fully connected layers, maintaining a consis-
tent architectural pattern throughout the network.

ResNet18, introduced in 2015, introduced a groundbreaking concept: residual
learning. Residual blocks with shortcut connections allow the network to learn residu-
als, mitigating the vanishing gradient problem and enabling the training of very deep
networks. The architecture comprises 18 layers, primarily consisting of 3x3 convo-
lutional filters, and utilizes global average pooling before the final classification layer.

While AlexNet and VGG19 follow more traditional architectures, ResNet18
introduces a paradigm shift with its emphasis on residual learning and shortcut
connections. The incorporation of residual blocks in ResNet18 has proven to be
instrumental in addressing challenges associated with training deep neural networks.

The main differences among these architectures lie in their depth, architectural
style, inclusion of shortcut connections, utilization of fully connected layers, and the
year of introduction. AlexNet is comparatively shallower, while VGG19 represents a
deeper yet straightforward architecture. ResNet18, with its revolutionary residual
learning approach, stands out as a key advancement, showcasing the significance of
addressing the challenges associated with training deep neural networks.

In the landscape of image classification, the exploration of these architectures
provides valuable insights into the evolution of CNNs, contributing to the ongoing
discourse in the pursuit of more efficient and effective deep learning models.

2.1.2 Feature Visualization

Single neurons in the brain respond to specific stimuli, as first discovered by Kuffler,
Barlow, and others, as early as the 1950s. Hidden units in CNNs can be selective to
stimuli too. To find these stimuli, the usual strategy is to screen images (stimuli) until
one finds specific examples that maximally activate the unit. While foundational, the
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maximal activation of the unit is a measure that has led to a challenging debate both in
neuroscience and AI. The discussion is related to understand if networks in brains and
machines develop local or distributed code in their layers. Intuitively, in local coding,
each unit can be assigned a specifically named feature (such as a color value, an
orientation value, or an object category), building a kind of dictionary for the whole
network with non-overlapping information. Unfortunately, decades of study have
shown this is not a feasible solution, because it would require a number of neurons
much larger than all the stars in the universe. A qualitative estimation considering all
the visual stimuli that we received along our life through the environment around us,
social media, and monitors, lead to something like 10300000 images. Considering that
the neurons in the human visual cortex are 5×1012, truly local coding could not exist.

On the other hand, distributed coding involves neuronal populations, with a
capacity to represent many concepts, and, although the dictionary will be messy, the
network can be efficient and process information with fewer units than a localist
coding scheme. This coding is also less interpretable since neurons can respond to
features that are not correlated. There are also strategies between these two extreme
cases, like semi-distributed and semi-local coding. For a further discussion see
Thorpe (1989) [3].
Recent studies have found a plausible solution named sparse coding. In this case units
are sparse, meaning that some are local units while some serve within distributed
coding. How can we understand which units are local and which are distributed? Dif-
ferent works have studied the problem, for example the Circuits project introduced
by Christopher Olah [4]. This study treats the existence of polysemantic units, i.e.,
units in vision deep models that are highly activated by simper stimuli not correlated
with each other. In the next section, I will introduce the concept of selectivity to
determine which units are highly responsive to specific stimuli and which units serve
in more distributed codes. The working hypothesis is that if we can find highly
selective units, then we can find the best feature encoded by such units.

At this point, one could ask the most practical question: how can we find the
stimuli that maximally activate a single unit? This is straightforward for the initial
layer of all the CNNs since the first layers are filters with a certain spatial dimension
and three channels (as they are designed to operate on red-green-blue [RGB] images,
defined by three color channels). This means that this first layer of filters can be
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visualized as RGB images too. In deeper layers the convolutional filters have higher
channel dimensions (e.g. 256 channels) and small spatial dimensions, so direct
visualization would not work the same way.
To get a sense of which is the information in the image that a particular filter encodes,
and have a visual interpretation corresponding to a high-dimensional filter, there are
different methods to construct artificial stimuli that maximally activate any given
unit. Here three methods, based on different strategies, are introduced:

• MENI Most Exciting Natural Image. A sample of images are passed through
the networks and the image that most activate the unit is selected as a MENI.
We can also select the top-k images rather than one. Another possibility is
considering the MINI, i.e. the Most Inhibiting Natural Image, that can be seen
as the opponent of the MENI. It is important to remark that the MINIs do not
play any role in the information processing with networks that have ReLu
activations (since these push to 0 any negative activation). In our experiments,
the set of images used to select MENIs and MINIs is the validation dataset of
Imagenet, because it has the same statistics of the Imagenet train dataset that
is used to train the networks studied in this chapter.

• Prototype A prototype is defined by an image synthesized by a generative
model (such as a generative adversarial network, GAN). The GAN latent space
is optimized to generate an image that maximally increases the activation of
one unit. This method was proposed first by Brox and Dosovitskiy (2016), and
then imported into visual neuroscience by Ponce, Xiao et al. (2019); follow-up
work by Wang et al. further showed it was possible to use a novel search
algorithm (Spherical covariance matrix adaptation, CMA) to optimize search
within the GAN latent space. In this chapter the selected generative models
will be the same proposed by Wang et al., i.e. the DeepSim fc6 GAN by Brox
and Dosovitskiy (some examples with BigGAN will also be provided).

• BT-MENI Bayesian-Transformed, Most Exciting Natural Image. Given a
MENI for a unit, Bayesian optimization across simple color and spatial trans-
formations is performed to increase the activation of that unit. The trasforma-
tions are selected among torchvision augmentations and include the following:
increasing the color contrast, rotating in color hue space, changing spatial
rotation, scale and shift.
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Fig. 2.3 Most exciting stimuli for unit 32 of the last convolutional layer of AlexNet generated
by three different approaches: MENI (top right), BT-MENI (top left), fc6-prototype (bottom
left), BigGAN-prototype (bottom right).

Figure 2.3 show an example of the most exciting stimuli generated by all three
approaches, customized for unit 32 of the last convolutional layer of AlexNet. In
the first row, there is the natural image (MENI and the corresponding BT-MENI,
while in the second row, we have two prototypes generated by two different GANs
(DeepSim-fc6, left; BigGAN, right). In the following only prototypes generated by
fc6 will be considered.

The BT-MENI proposed in this thesis got inspiration by some observations about
the differences between MENIs and the synthetic prototypes. Indeed, as it will be
clear in the next examples, prototypes look like enhanced versions of MENI with
higher color contrast, more pronounced contours, and otherwise generic spatial
transformations. An important fact is that, in all the layers of AlexNet (and other
networks), prototypes evoke stronger activations than the corresponding natural
MENIs. If this difference is related to some image transformations that applied to
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Fig. 2.4 Figure taken from the work of Kobatake and Tanaka [2] illustrating neuronal response
to natural and stylized stimuli.

MENIs can relate to prototypes, then BT-MENIs serve as a bridge between these two
sets of different stimuli. This hypothesis will be investigated in this section.

The fact that prototypes excite more than MENIs is interesting since this obser-
vation holds also in biological neurons as first discovered in [16]. In this paper, the
authors adopted the same optimization algorithm by using the fc6 GAN to maximize
the response of neurons in the ventral stream of macaques in different visual area,
i.e., V1, V4 and IT. The results were interesting since prototypes generally stimu-
lated neurons more than natural images did. This evidence resembled the theory
of Keiji Tanaka, who showed in his works, e.g. [2] and [17], that simplified and
stylized versions of natural images could activate neurons more than their natural
counterparts, leading to a representation vocabulary similar to the one discussed in
local coding . An image from his studies is shown in figure 2.4.

The simplest case to observe this phenomenon in AlexNet is by analyzing its
first layer. Here, we do not need to find the MENI because we can directly compare
the generated prototypes to the filters themselves — as noted above, the filters in the
first convolutional layer have three channels, which means they can be visualized as
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Fig. 2.5 Filters learnt in the first layer of Alexnet (left). Prototypes for the first layer of
Alexnet (center). The same filters as in (left) with color contrast enhancement.

color (RGB) images. It is key to note that the convolutional filters are learnt during
training using a dataset of 1.2-million natural images, hence the learnt filters should
acquire the statistics characterizing these natural images. The key insight is that any
given filter should be activated most effectively by itself : that is, if a natural image
contains a local visual pattern that perfectly matches the first-layer convolutional
filter, then this filter should show a maximal activation at that location (considering
the right normalization coming from the training dataset). This activation evoked by
this perfectly matching filter should be the equivalent of the l2 norm of the filter itself.
We explored this hypothesis below. Filters extracted in the first layer of AlexNet
are shown in figure 2.5 (left). As expected, the filters included orientation filters
(Gabor-like filters), color filters, with some filters mixing both orientation and color.
This is in agreement with classical image processing that uses similar deterministic
filters to process images. A further analogy is also with the visual stream of the brain,
as first discovered by Hubel and Wiesel, that cat’s neurons in the primary visual area
V1 are tuned to orientations [18].

We then used the DeepSim fc6 GAN to generate Prototypes for each AlexNet
conv1 filter (figure 2.5 (right)). It was evident that the synthetic prototypes were
similar to the original filters, but by eye, they looked more colorful and saturated.
To quantify the statistical differences of the median activations of both stimulus sets,
we used the Wilcoxon’s rank test. The Wilcoxon test is a non-parametric statistical
method to compare two populations. It is suitable for ordinal or non-normally dis-
tributed data, often applied to paired observations. The test is similar to the Student’s
t-test (that assumes a normal data distribution) but it can be an alternative when it
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is tested if there is a better chance (above 50 %) that a sample from a population
is greater than a second one from another population. Indeed it relies on ranks of
differences, while the t-test uses means and standard deviations. Since the aim of
this study is comparing if there is a statisticaldifference between the activations of
the filters and the activations of the prototypes, these two populations are compared
with this test.
Figure 2.6 (left) shows the activations for each unit by the filter itself and the fc6-
prototype linked by a red line, and the corresponding Wilcoxon, i.e. the number of
samples and the p-value at 5%. From this analysis we can conclude that the hypoth-
esis that the filters are more active than prototypes can be rejected at a confidence
level of 5%. In other words, prototypes activate more than the filters themselves, a
result that could appear counter-intuitive.

To investigate more this result, we reasoned that if prototypes were only high
contrast versions of the filters themselves, we could test, through the same statistical
analysis above, that filters with high contrast would be more activating than proto-
types. First, the original filters were modified by increasing their contrast (through a
torchvision augmentation transformation). These modified filters (saturated filters)
are shown in figure 2.5 (center). We repeated the same statistical test between origi-
nal and saturated filters in figure prototypes (center), and between prototypes and
saturated filters in figure ( figure prototypes (right). In both cases the saturated filters
were more exciting, confirming the hypothesis at a confidence level of 5%.

These results strengthened an important intuition that could bridge the gap
between prototypes and highly activating natural images (MENI), specifically, that
there could exist simple transformations (such as color contrast enhancement and
spatial transformation) that transforms a MENI to evoke activations comparable to
that of the synthetic prototype.

This motivated us to propose two methods involving Bayesian optimization
to search the best parameters of some image transformations. We propose two
optimization techniques:

• OPT-1. The function to be maximized is the activation itself. This generates
the BT-MENI as described above.
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Fig. 2.6 Wilcoxon test measuring the significance of the highest activation between the two
populations, filters-prototypes (left), filters-saturated filters (center) and protoypes-saturated
prototypes. As it can be seen, the saturated filters are the stimuli that most exciting the units
in the first layer of Alexnet.

• OPT-2. The other option considers the fact that MENIs activate less than
prototypes and there could exhist some image transformations that can bring
MENI to be more similar to prototypes, resulting in a higher activation of
the considered unit. Hence we optimize image transformations parameters to
minimize a distance function between the MENI and the prototype.

To test OPT-1, we need to verify that the BT-MENIs significantly activate more
than the corresponding MENIs, and then that BT-MENIs were more similar to the
prototypes according to an objective distance measure. To do this, we computed the
activation of units in the last convolutional layer of AlexNet to prototypes, to MENI,
, and BT-MENI, then tested statistical significance using the Wilcoxon test .

Figure 2.7 illustrates the results. The BT-MENI were more activating than natural
MENI, confirming the hypothesis at a confidence level of 5%. However, the last
plot in figure 2.7 (right) shows that BT-MENI are still less exciting than prototypes.
Figure 2.8 displays two examples for two different units. The perceptual similarity
metric LPIPS [19] (that computes distance in the embedding space of deep CNNs)
is also applied for each pair of stimulus. The stimuli are also visualized by their
effective receptive field that is calculated as explained in the Anatomy section 2.1.1.
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Fig. 2.7 Wilcoxon test measuring the significance of the highest activation between two
populations, MENI-prototypes (left), MENI-BT-MENI (center) and protoypes-BT-MENI. As
it can be seen, the prototypes generated by OPT-1 are the most exciting stimuli followed by
BT-MENI and then MENI.

Notice that in figure 2.8 BT-MENIs were more similar to prototypes than the
MENI according to the LPIPS distance. To verify this observation in all the popula-
tion of stimuli, the Wilcoxon test is computed with the hypothesis that there a signifi-
cant difference in the distance between BT-MENI-prototypes and MENI-prototypes.
In figure 2.9 we can observe that the statistical test confirms the hypothesis at a
confidence level of 5%.

In conclusion, these statistical analyses served to confirm the claims related to
OPT-1, i.e. simple image transformations can be tuned to activate more the units
(in this case of the last convolutional layer of AlexNet, but similar results hold for
other networks) than the original MENI and the resulting optimized images appear
perceptually more similar to the prototypes.

For OPT-2, the same analysis was conducted. OPT-2 used Bayesian optimization
to make a MENI as similar as possible to the corresponding prototype. The optimiza-
tion ran over the parameters of image operations, including color transformations
(i.e., hue rotation and contrast enhancement), spatial transformations such as rotation,
translation, horizontal flip and shift, and high spatial frequency enhancement.
Every transformation was used to minimize the perceptual distance between proto-
type and the natural images, and this perceptual distance was the Learned Perceptual
Image Patch Similarity or LPIPS (Zhang et al., 2018). Figure 2.10 illustrates two
examples, where the optimization was successful and the distance was lower for the
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Fig. 2.8 The two rows show the resulting prototypes and MENI with the corresponding
activity on top of each image. Then BT-MENI are also generated with the methodology
presented in OPT-1 starting from the MENI and shown in the third column. As it can be
noted, BT-MENI activate more than the corresponding MENI. Note that images are shown in
the original form and either with the proper receptive field (this could slightly change the
activation).
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Fig. 2.9 Wilcoxon test measuring the significance of the perceptual LPIPS distance between
two populations, MENI-prototypes and BT-MENI-protoypes. As it can be seen, BT-MENI
generated using OPT-1 are perceptually closer to prototypes than MENI to prototypes.
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Fig. 2.10 The two rows show the resulting prototypes and MENI with the corresponding
activity on top of each image. Then BT-MENI are also generated with the methodology
presented in OPT-2 starting from the MENI and shown in the third column. As it can be
noted, BT-MENI activate more than the corresponding MENI.
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Fig. 2.11 Wilcoxon test measuring the significance of the perceptual LPIPS distance between
two populations, MENI-prototypes and BT-MENI-protoypes. As it can be seen, BT-MENI gen-
erated using OPT-2 are more similar to prototypes than MENI as it should be by construction
of OPT-2.



26 The World of Neural Networks

MENI PROTO

20

40

60

80

100

120

140
Ac

tiv
at

io
n

Wilcoxon Test (7260,1E-21)

MENI BT-MENI

−20

0

20

40

60

Wilcoxon Test (672,1E+00)

PROTO BT-MENI

−25

0

25

50

75

100

125

150
Wilcoxon Test (0,1E+00)

Fig. 2.12 Wilcoxon test measuring the significance of the highest activation between two
populations, MENI-prototypes (left), MENI-BT-MENI (center) and protoypes-BT-MENI. As
it can be seen, the prototypes are the most exciting stimuli followed by MENI and then
BT-MENI generated using OPT-2.

optimized MENI. The statistical reliability of this distance estimate was confirmed by
the Wilcoxon test in figure 2.11 at a confidence level of 5% confirming the success
of the optimization.
However, the activation was higher for the first example (top row) and lower for the
second one (bottom row). Indeed, by repeating the Wilcoxon test, represented in
figure 2.12, the hypothesis that the optimized MENIs activate more than MENIs is
rejected at a confidence level of 5%.

A possible explanation is that the MENI and the prototype come from two differ-
ent distributions, and a global match could not exist. Indeed the optimized image
transformations, when applied to the whole image, could alter some features causing
a change in the activation of all the neurons in the network, and specifically to the
reference unit. In other words, to have an adeguate match between a MENI and a
prototype, the correct way would be to optimize separetely local parts of the image
(where local could mean up to the single pixel), a method that is investigating as
future work. To conclude, while the maximization leads to small changes enhancing
local features of the image to be more similar to prototypes, the optimization of
the distance between the MENI and prototypes leads to global changes that distort
features important to the unit.

The difficulty to match MENIs to prototypes preserving features that are impor-
tant for the units of the CNN could be related by their different low-level statistics.
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Fig. 2.13 Power Spectrum

For example, we know that the power spectrum of natural images follows a power
law, so we asked, is it the same for prototypes?

To answer to this question, we performed another analysis. Figure 2.13 shows the
difference in logarithmic scale between the power spectrum of MENIs and prototypes.
A significant difference is mainly encountered in the high frequencies spectrum, as
expected perceptually by looking at the examples of this section.

In conclusion, the optimization in OPT-1 revealed successful and statistically
robust generating images that were more exciting and more similar to prototypes.
Unfortunately, the optimization with OPT-2 revealed results that were not statistically
robust and showed that there could be some optimized images that are more exciting
and more similar to prototypes but most of the time the optimization led to images
that activate less than the corresponding MENIs. This analysis is important and will
be in the last section dedicated to biological results, to understand similarity and
differences with this in silico experiment. However, this work is ongoing.

2.1.3 Selectivity

This section aims to introduce an historical discussion that started in neuroscience
many years ago, and then propagated in AI in recent years. The discussion is still an
open question that challenges scientists in both fields: how is information represented
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Fig. 2.14 Main coding schemes aimed to represent the coding process in the brain: local
coding, a one stimulus-to-one neuron representation, distributed coding, a one stimulus-to-
many neurons representation, and sparse coding, a few stimuli-to-few neurons representation.
Image credit: [3].

in neurons? What kind of coding scheme do they involve, is the coding more local
or distributed?

In neuroscience, for a long time scientists were divided by these two factions
precisely introduced by an early paper of Simon Thorpe in 1989 [3]. Illustrative
examples of his paper are presented in figure 2.14. Even if the local coding is unfea-
sible, since it requires more than all the atoms in the universe to store the information
we see everyday in our lives, many pioneering works have shown single or few
neurons tuned to specific stimuli, from simple stimuli like orientations in V1 [18] or
colors [20] in V1 to more complex shapes [21] in deeper area like curvatures [22]
until complex natural shapes such as hands or faces [23], [24]. For example, in [25]
the authors reported neurons in the human medial temporal lobe tuned to face identity.
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Alternatively, distributed coding is an optimal strategy to efficiently process infor-
mation. In deep learning a similar process has been discovered, i.e. the superposition
principle that is thought to be a natural emergence of packing many features during
learning [26], a strategy to efficiently represent and compress information.
However the strategy that is widely accepted in both the communities is the sparse
coding, where information is strongly encoded by a small populations of neurons.
Indeed it is this mechanism that enables the formation of Gabor-like filters that
resemble the receptive fields of simple cells in the visual cortex [27]. Moreover,
sparse coding could serve as a widespread approach in neural systems to enhance
memory capacity. In order to thrive in their surroundings, animals need to acquire
knowledge about stimuli linked to rewards or punishments and differentiate them
from similar but inconsequential stimuli. This necessitates the establishment of
stimulus-specific associative memories, where only a limited number of neurons
within a population activate in response to a particular stimulus. Each neuron, in turn,
is dedicated to responding to only a selected few stimuli from the entire spectrum.

Theoretical investigations into sparse distributed memory propose that sparse
coding enhances the capacity of associative memory by minimizing overlap between
representations [28].

Apart from the specific theory involved in the brain, an important evidence is the
existence of grandmother cells, a term introduced by Jerry Lettvin in 1969 at MIT
and firstly examined in 1953 by Horace Barlow [29]. The term indicates neurons
tuned for a complex but specific concept, like the grandmother of a person. By
2005, Charles Connor noted that the term had transformed into a shorthand for
encompassing all the compelling practical arguments against a one-to-one object
coding scheme. People were reluctant to be associated with the notion of believing in
"grandmother cells". However, during that same year, UCLA neurosurgeons Itzhak
Fried, along with his mentee Rodrigo Quian Quiroga and their colleagues, released
findings on what they later referred to as the "Jennifer Aniston neuron" [30–32].
While performing surgeries on patients with epileptic seizures, the researchers dis-
played images of celebrities, including Jennifer Aniston. Interestingly, conscious
patients often exhibited the activation of a specific neuron, hinting at the existence of
neurons dedicated to processing information related to Jennifer Aniston in the brain.
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In deep learning, grandmother units have been searched since its infancy. A
relevant work is in [33] where the authors discovered in sparse autoencoders (with a
unsupervised learning paradigm), high level features such as face, animal and human
body detectors. Subsequently other works explored the search of GM cells in CNNs
[34–36].
However, a challenge present in these works is how to create quantitative, objective
measures for potential GM-like cells across brains or neural networks. An important
instrument to find GMs and more generally to study the coding properties in neurons
populations is selectivity.
Selectivity is an experimentally defined property used to identify which units respond
specifically to some images or visual features. A unit that is highly selective to a very
specific feature means that the coding related to images with that feature is local,
and so in agreement with local coding. Since in deep learning the discussions about
coding processes faced similar challenges, the concept of selectivity is important
to investigate. Some papers already study the concept in small networks or to
characterize the single layers [37–39, 36, 40] , while according to my knowledge no
one used this analysis to understand single units in each layer of CNNs. Indeed in [4]
the challenge to find how many polysemantic neurons exhist in different networks
emerged as a valuable investigation.
To quantify selectivity, there are different statistical measures, already discussed in
neuroscience works of Lehky et al. [41–43]. Here we list the measures used in this
section:

• Kurtosis is the most common selectivity index. It is defined as the normalized
fourth moment of the distribution subtracted by three, such that a Gaussian
has 0 kurtosis. The formula is the following:

Kurt =
1
N ∑

N
i=1(ri−µ)4

[ 1
N ∑

N
i=1(ri−µ)2]2

−3

where N is the number of images and ri is the activation for each image i; µ is
the average activation across the N images.

• Activity Fraction measures the fraction of units active on average over N
images, where the activation is continuous rather than binary. To be consistent
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to selectivity, a normalized version of the activity is defined as:

SA =
1−A
1− 1

N

, A =

(
∑

N
i=1

ri
N

)2

1
N ∑

N
i=1 r2

i

Notice that this measure has been also used in other studies and named PSI
or Population Sparseness Index with the difference of adding a normalization
factor. It is a value between 0 and 1, where 1 means high selectivity and 0 low
selectivity.

Results

In figure 2.16 the kurtosis curves for four convolutional layers of AlexNet are shown.
Remember that AlexNet has only five convolutional layers and one was omitted for
visualization purposes.
The units in each plot are sorted for decreasing kurtosis, and for each layer nine
prototypes are generated for three parts of the curve: high, middle and low selectivity.
As it can be observed, in regions of high kurtosis, prototypes present very specific
features in all the layers, like orientation bars and opponent colors. In contrast,
in the region of low kurtosis, prototypes can include more than one interpretable
feature. Nevertheless, one could argue that this interpretation is strongly dependent
on prototypes that, as we saw in previous section, are super stimuli that activate
more than MENI and they are perceptually different from natural images. For this, in
figure 2.18 the top 9 MENIs are shown for each unit together with the corresponding
prototype.

Looking at this figure, prototypes may appear more homogeneous and hence
easier to identify, while the top 9 MENIs (again, maximally exciting natural images)
are limited to the search data set of images (in this case, the validation dataset of
Imagenet, a small sample of all possible natural images). For high selective units, the
top9 MENIs share interpretable features more than low selective ones. For example
the high selective unit in Conv10 can be interpreted as a detector of fine rays spread
from the center, and this is a description true both for prototypes and MENIs that
present objects like flowers or wheels that include this feature. Note that even if top
9 MENIs belong to very different classes, since they share a common feature, they
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Fig. 2.15 Two examples of units (left: prototypes, right: MENI) tuned for more than one
feature, defined as polysemantic by Olah [4].

are put together to interpret this unit.

This study helps to find not only high selective units but also polysemantic units
as previously defined in Olah [4], that are units with middle-low selectivity that can
respond to more than one feature. These units can be identified in the middle-low
part of the selectivity curve. While prototypes could mix features that highly activate
the unit, generating images with entangled features difficult to interpret, the top9
MENIs could be more interpretable since they respect the statistics of the natural
world, avoiding the coupling of uncorrelated features. It is an example the unit 158
in Conv6 in figure 2.18. This unit has a middle selectivity and prototypes look like
detectors of vertical bars surrounded by different colors; by looking at the MENIs we
can observe both vertical bars present in different objects (bus and house windows)
but also writings on objects. Other two examples are shown in figure 2.15.

It is straightforward to underline the both kurtosis and PSI present some limita-
tions. Indeed the kurtosis computes the fourth power of a difference, and hence it is
highly sensitive to noise, while the PSI is sensitive to the distribution’s mean and
variance.
To complete the information about one single unit, we can include the mean activity.
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Fig. 2.16 Selectivity curve (kurtosis) for each unit in: conv0, conv3, conv6, conv10.

It is computed for each unit across all the images. This gives us a sense of how the
unit is generally responsive to stimuli, and if we can determine the unit as dead unit
or as really active in the computational graph.

In figure 2.17 four units are shown, two with the highest activity means and two
with the smallest one. We can expect that a unit with very low activity can be tuned
for very rare feature, while units with high activity fire for different features.

Let us remember that even if the images belonged to different classes, they share
a particular feature for which that unit is tuned. Going deeper in the network, we
expect that neurons learn higher level features. In the final layers, features of the
same classes are aggregated together to do classification. However there could be
units in deep layers that still encode simple features present in early layers. An
example is unit 32 in conv10 (Figure 2.3, tuned for green color patches. This is
reminiscent of observations in neurons of macaque’s visual cortex, which are tuned
for simple stimuli.

One difference with respect to the color filters of the first layer is that the unit
was not tuned only for that particular feature, but seems to be tuned for some shapes
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Fig. 2.17 Top9 MENI for two units with highest mean activity (top) and lowest mean activity
(bottom).
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Fig. 2.18 Top9 MENI and the corresponding prototypes for high, middle and low selectivity
units in different layers of AlexNet.
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Fig. 2.19 Two selectivity measures, Activity fraction (top row) and kurtosis (bottom row),
for different architectures (Alexnet, VGG19, Resnet18 and Resnet18 robust) without training
(i.e. random initialization) and trained on Imagenet.

and built an invariance for orientation. This leads to an observation essential in
information processing: the invariance is entangled with selectivity, together these
concepts provide complementary aspects of the single unit analysis. Nevertheless, it
is important to note that, as seen in previous section with the optimization producing
BT-MENI, there could exist specific transformation that the unit particularly "likes,"
by losing the invariance of the transformation itself. In other words, the invariance
is a double-edged weapon: for example, a unit can have built invariance to features
that are not relevant (e.g., color), while at the same time, it could be very specific to
other transformations (e.g., orientation). The analysis of invariance and the related
discussions will be investigated in the next section.

These analyses so far focused on the understanding of single units. We can also
get some intuitions of of the entire behaviour of the network by studying populations
of units grouped in different layers. The selectivity across layers can be computed as
the average of the selectivity of each unit.

In figure 2.19, we show the activity fraction and the kurtosis of each layer
(through the median across units) for AlexNet and other networks, including VGG,
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Fig. 2.20 Fc6-prototypes for one unit of Resnet18 and Resnet18 robust in the first convolu-
tional layer and in all the other convolutional layers where a residual connection is added,
indicated as Add layer.
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Resnet-18 and Resnet-18 Robust. For VGG, a clear growing trend was visible for
both metrics. The trend for AlexNet was less evident. Indeed the activity fraction
was very high for all layers and slowly increased, indicating a high sparseness present
in almost all the layers. The kurtosis indicated an increasing trend except for the
penultimate layer, which showed a drop.
For ResNet-18 and ResNet-18 (robust) the trend was less clear but still interesting.
Even if there is a piece-wise growing trend, there were periodic drops in kurtosis,
corresponding to the add layers representing residual connections. After residual
connections, the kurtosis seemed to suddenly increase again and then decreasing after
the residual connection. This could be motivated by the fact that residual connections
add one layer to the previous one, mixing the features of two layers making the unit
selective to its feature and the feature that was added. An example of this behaviour
is shown in figure 2.20 where layers that have been connected with the first layer
(through residual connections) share part of features that were already present in the
first layer.

2.1.4 Invariance

Invariance is a concept investigated in many fields of science, from math and physics
(treated within group theory and symmetry theory), to neuroscience and recently in
deep learning. In neurophysiology, invariance refers to a neuron showing consistent
responses to visual stimuli despite variations in certain features of those stimuli,
such as size, position, orientation, or illumination. In deep learning, symmetries
lead to insights of the problem under study, and also to new strategies to build more
robust architectures; for example, CNNs are built with convolutional filters that are
invariant under translation. More general invariant architectures are group-invariant
CNNs and self-attention mechanisms in transformers.
Beside the invariances induced by the architecture itself, there are invariances learnt
by the training procedure involving image augmentations, an important strategy that
led the success various computer vision tasks, from image classification in supervised
learning to the fundamental property in self-supervised learning ( e.g. contrastive
learning is one of the most important and it will be introduced in chapter 4).
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The concept of invariance introduced in AI was formulated and adapted from
neuroscience. Indeed, the brain shows almost perfect invariance to a wide variety
of transformations of input stimuli. For example we are able to recognize objects
in very challenging conditions, like in dark or noisy environments by looking at the
object or at parts of it.
On the other hand, CNNs struggle to achieve this capacity and in fact they are very
fragile to some imperceptible perturbations like adversarial attacks. Where does this
weakness come from? The question was explored from different sides, for example
to improve robustness to adversarial attacks to make the networks more similar to
biological networks or to improve its performances.
Here we focus on invariance at a single-unit level and study its influence on the whole
network. As in previous section the analysis is complementary to the selectivity
study and in the last part of this section we will make some considerations involving
jointly both aspects.

To study the invariance, we employed simple statistical measures. Considering
one unit, its activity, i.e., the value of one unit in the feature map, recorded over
samples of images, and then the same activity recorded with the same images but
processed by the transformation we want to study, for example a color to greyscale
transformation. Then, the correlation of the two activations was computed. The
correlation is the cosine similarity, and the activations were re-sampled via bootstrap.
This process was repeated for each unit in the layer and then the median of correla-
tions was computed for each layer, repeating the bootstrap sampling. In this way we
have a measure of the invariance for each layer and we can observe how this depends
on the depth of the network.

As an example in figure 2.21, the cosine similarity was shown for units of
AlexNet conv0, conv3, conv6 and conv10, in sorted order. The property under
study was color, hence the images (already in RGB colors) were transformed to gray
scale. The plots are similar to the selectivity plots in figure 2.16: in the figure, nine
prototypes for each region were generated, allowing us to observe that units tuned to
color are at the bottom of the plot while units invariant to colors are at the top of the
plot. These units usually are black and white filters, like orientation or frequencies
filters.
Similar figures can be obtained for other image transformations that encode other
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Fig. 2.21 Invariance plots for different layers of Alexnet measured by cosine similarity. Top-9
prototypes are also showed for units in different part of the plots.
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invariance properties. The average of units across different layers and different
networks is illustrated in figure 2.19.

Besides AlexNet, ResNet-18, ResNet-18-robust and VGG were included, with
the image transformations selected among a plethora of transformations to highlight
what kind of changes (spatial, orientations, colors, frequencies) the single units and
consequently the layers were more sensitive.

An interesting transformation was the horizontal flip. The plots for this transfor-
mation show that units in early layers were not invariant, as expected since orientation
units become inactive when stimuli are flipped; in deeper layers units manifest a
restoration of the invariance. This is a general property true in all the architectures.
While AlexNet manifested a monotonic increase, VGG19 presented a minimum in
Conv2d7 and this is the case also for other transformations. The case of the two
ResNets was less clear: while layers showed high variability in the first layers, after
layer conv2d1-3.1 we observed a monotonic increase.
The strong invariance for horizontal flip was likely related to the fact that this image
transfomation was intentionally used during the training as image augmentation.

The grayscale transformation has a different trend. It was almost constant and
very high, meaning that the networks seemed to be invariant to color transformations,
even if, as we saw before, there were units tuned to colors.

Rotation had an effect similar to the horizontal flip, even if this transformation
was not always used during the training.

Important insights can be inferred by removing high or low frequencies. As
studied in [44], different transformations (e.g. Gaussian blur) have precise spectra in
Fourier domain that make the network more robust to some frequencies rather than
other. Moreover, several studies have shown that standard CNNs are biased to low
frequencies and lack robustness in small changes in high frequencies (as generally
adversarial attacks show).
This is confirmed in the invariance plots, where layers are not invariant to low fre-
quencies drops. On the other hand, units in all the layers seemed to be invariant to
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Fig. 2.22 Invariance measure for different architectures (Alexnet, VGG19, Resnet18 and
Resnet18 robust) pretrained on Imagenet or randomly initialized

high-frequency changes, with ResNet-18 (robust) showing an invariance close to
one, motivated by the adversarial training with which it is trained.

Generally there are several observations that could be noticed. For example the
layer Conv2d7 in VGG19 corresponded to the minimum of several invariance plots
and interestingly, this layer had a selectivity peak in the selectivity plots in 2.19. This
is expected, since units that are less invariant should be more selective to particular
features.
Another observation regards the residual layers that increase the invariance and
hence lower the selectivity. Indeed peaks in the invariance plots indicate these layers.
Again the role of adding layers of different depth is that of mixing different features
leading to less selectivity and hence more invariance.

In conclusion, we can put all the pieces together and solve a puzzle to see a
complete description of single units in different CNNs. This can be represented
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Table 2.1 Units description for low selective units

Unit ID Activity Selectivity Invariance

Mean Act Kurt-PSI Rotation Color High Freq

Unit 107 Conv10 AlexNet 0.29 0.23-0.86 0.0 0.94 0.56
Unit 70 Conv10 AlexNet 0.34 0.39-0.94 1.0 0.0 0.93
Unit 22 Conv10 AlexNet 0.23 0.1-0.66 0.53 0.6 0.0

Unit 238 Conv34 VGG19 0.08 0.12-0.89 0.0 0.75 0.38
Unit 504 Conv34 VGG19 0.25 0.2-0.87 0.84 0.0 0.76
Unit 117 Conv34 VGG19 0.04 0.14-0.93 0.4 0.67 0.0

Unit 459 Conv4.1-2 Res18-rob 0.19 0.17-0.7 0.0 0.9 0.96
Unit 421 Conv4.1-2 Res18-rob 0.22 0.19-0.7 0.66 0.0 0.98
Unit 270 Conv4.1-2 Res18-rob 1.e-06 0.17-1 0.52 0.87 0.0

by a description table where for values (normalized from 0 to 1 for each layer)
are assigned to each unit, with 0 representing no invariance or no selectivity and 1
the contrary. As examples some units from the last layer of different networks are
included in the table 2.1 and shown in figure 2.23.
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Alexnet
Last conv Conv10)
Unit: 107 - 70 - 22

Orientation     Color High Frequencies

Resnet18-robust
Last conv (layer4.1conv2)
Unit: 459 - 421 - 270

VGG19
Last conv (Conv34)
Unit: 238 - 504 - 117

Fig. 2.23 Top9 MENI and the corresponding prototypes for units selective to a particular
feature (color, orientation and high frequency) in the last convolutional layer of three different
networks.
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2.1.5 Biological Results

This section aims to give an introduction to neurophysiology experiments inspired by
the in silico experiments explained in previous sections. The experiments were con-
ducted at the Department of Neurobiology in Harvard Medical School. The subject
under study is a male adult macaque implanted with chronic floating microelectrode
arrays in visual cortex areas V1, V4, and posterior inferotemporal cortex.
These results are preliminary and need to be confirmed with other tests and possibly
other monkeys, yet they are interesting and promising. After a brief introduction of
the neural recording process, some results and discussions will be presented.

2.1.6 In vivo experimental set up

First, we detail the method by which we conducted in vivo image synthesis exper-
iments, termed Evolution experiments (Ponce et al., 2019b; Rose, Johnson, Wang
and Carlos R. Ponce, 2021). One macaque monkey (C) was used as subject with
Floating Multielectrode Array (FMA) implanted in his visual cortex, in V1/V2, V4
and posterior IT. There are 96 channels, where the first 32 record in V1 area, from
the 33rd to the 64th in V4 area, and from 65th to 96th in IT area. In a typical electro-
physiology experiment, the voltage signal recorded in each electrode (channel) is
processed and the voltage event threshold crossings are detected via an online spike
sorting algorithm from Plexon. These signals could represent the output of a single
neuron, a few neurons (multiunits) or a local population (hash) in the visual cortex.
In an in vivo session, we first performed a receptive field mapping experiment. An
image was rapidly (100-ms duration) showed in a grid of positions in the visual
field. The spike times following the stimuli onset were binned into a histogram, i.e.
post-stimulus time histogram (PSTH). We measured the spatial extent where the
image evoked neuronal responses above the baseline level. Based on the PSTH of
the recorded units, we selected a responsive unit, with a well-formed receptive field
as our target unit for subsequent experiments. These were the in vivo counterpart of
units we selected in CNN in silico.

First, prototypes were generated through an Evolution experiment. During this,
the images were presented to the animal subject on the screen in front of him,
centered at the receptive field found previously; each image presented for 100-ms
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followed by a 150-ms blank screen. The spike count in [50, 200] ms time window
after the stimulus onset was used as the score for each image.

Initially, a set of 30 images among texture images generated by the work of
Freeman and Simoncelli [45] were inverted and then generated from the generator
FC6; they were used as the initial stimuli with the corresponding latent codes from
the latent space (that has 4096 dimensions). In other experiments, we simply sampled
randomly from the generator latent space as a first generation, with no differences
in the overall effect. After the neuronal responses to all images in a generation
were recorded, the latent codes and recorded responses were sent to the optimizer
(CMA-ES or Covariance Matrix Adaptation Evolutionary Strategy), which proposed
the next set of latent codes. These codes were mapped to new image samples which
were showed to animal subjects again. This loop continued for 20-80 rounds until the
activation saturated or the activation; if no firing rate change is noted, the experiment
was terminated after 20 generations.

Once the prototypes are created, the Most Exciting Natural Images (MENI) are
found among samples of natural images from different datasets, i.e. (ImageNet,
EcoSet and custom datasets). Since the MENIs have to be shown during the neural
recording process, their search algorithm must be very fast and efficient. To do this,
the natural images and prototypes were compressed to feature vectors and the cosine
similarity is computed between them. Prototypes were reliably more activating than
MENIs, a result already confirmed in [16]. To bridge the gap between these two
sets of stimuli, inspired by the previous sections, a Bayesian optimization of image
transformations was conducted to make the MENI more similar to the corresponding
prototype, leading to BT-MENI similar to those generated in the section 2.1.2. Indeed,
the image transformations were kept the same as the in silico experiments, i.e. color
transformations (hue rotation, contrast enhancement) and spatial transformation
(rotation, horizontal flip, scale, shift, high frequencies enhancement).

2.1.7 In vivo experimental results

Peristimulus time histograms (PSTHs) are the most basic data presentations to pro-
vide a sense of how the neurons responded to specific stimuli. In figure 2.24 PSTHs
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BT-MENI

Prototype

BT-MENI

MENI
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MENI

Exp Monkey C, channel 89 unit 1

Fig. 2.24 In vivo experiment neural recording of a population of neurons in IT (channel 89
unit 1). Left: PSTH for the three different stimuli, prototypes, MENI and BT-MENI; below
the PSTH the mean activity is shown for each stimulus. Right: images shown during the
experiment.

were shown for the three different sets of stimuli: prototypes, MENI and BT-MENI,
for channel 89 in IT area. As it can be seen, prototypes were more activating than
MENI, as expected. The feature encoded by this population of neurons seemed
to be vertical repeated bars, a simple feature expected to be encoded in the early
visual areas. Although MENI contained this feature, they were not pronounced as
in prototypes. The proposed Bayesian optimization algorithm tried to enhance this
feature by making the natural images more similar to the prototypes. In figure 2.24
we can observe the resulting BT-MENI and how these stimuli excite more than MENI,
closing the gap between the two sets of stimuli.

However there were some cases in which the Bayesian optimization did not work
as expected. In figure 2.25 the same experiment was run for channel 13 (area V1).
In this case study all the BT-MENI excited the neuron less than the corresponding
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Fig. 2.25 In vivo experiment neural recording of a population of neurons in IT (channel 89
unit 1). Left: PSTH for the three different stimuli, prototypes, MENI and BT-MENI; below
the PSTH the mean activity is shown for each stimulus. Right: images shown during the
experiment.

MENI. The feature for this population of neurons seemed to be a vertical bar (similar
to Gabor-orientation filters), which were already present in the natural images that
excited similarly to the prototype. Similar results are encountered also in other
experiments. This could be explained by a similar motivation discussed in section
2.1.2 for the in silico benchmark. Since natural images and prototypes can be really
different, making these images more similar to each other could be hard, especially
when the interesting feature occupies only a small portion of the whole image (due
to a small receptive field of the neurons). In this case a better strategy would involve
independent optimization in different regions of the image. This strategy is being
explored in current experiments leading to promising results confirmed in different
visual areas.



48 The World of Neural Networks

In conclusion, although there were cases when the BT-MENI were successful,
such as in the experiment shown of figure 2.24, this is true when MENI are similar to
prototypes and the Bayesian optimization can easily find an optimal sets of stimuli
even more similar.

In other cases, the Bayesian optimization could be stucked in local minima and
the resulting stimuli were not optimal. Current ongoing work is trying to define a
more robust optimization that works even in cases where MENI and prototypes are
really different each other, bridging the gap between the two set of stimuli and give a
natural interpretation to prototypes.



Chapter 3

The solution space of GAN latent
geometry for inverse problems

Inverse problems consist in reconstructing signals from incomplete sets of mea-
surements and their performance is highly dependent on the quality of the prior
knowledge encoded via regularization. While traditional approaches focus on ob-
taining a unique solution, an emerging trend considers exploring multiple feasibile
solutions. In this chapter, we propose a method to generate multiple reconstructions
that fit both the measurements and a data-driven prior learned by a generative ad-
versarial network. In particular, we show that, starting from an initial solution, it is
possible to find directions in the latent space of the generative model that are null
to the forward operator, and thus keep consistency with the measurements, while
inducing significant perceptual change. Our exploration approach allows to generate
multiple solutions to the inverse problem an order of magnitude faster than existing
approaches; we show results on image super-resolution and inpainting problems.

3.1 Introduction

Linear inverse problems are ubiquitous in the sciences as they are tasked with
reconstructing a signal of interest from a set of typically incomplete or degraded
measurements. In the imaging field alone [46], numerous problems of interest
such as deblurring, super-resolution, inpainting, compressed sensing, and many
more fit this framework. Due to the ill-posed nature of the problem, one needs
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strong regularization to find reconstructions that fit the measurements and the a
priori knowledge of the signal properties. Traditional approaches focused on hand-
crafting regularizers to yield a unique solution by casting reconstruction as a convex
optimization problem [47]. However, one must accept that the quality of this unique
solution can only be as good as how well the chosen regularizer function captures
the signal properties. For this reason, recently, data-driven methods based on neural
networks [48, 49] started learning priors directly from the complex distributions of
the signals of interest, resulting in improved reconstruction capabilities.

Nevertheless, even when using data-driven priors, we can hardly hope to capture
a perfect model of our signals of interest, which in turn affects how faithful our
reconstruction is to the true signal that generated the measurements. For this reason,
a novel paradigm is emerging where multiple feasible reconstructions are generated,
in an effort to boost interpretability of the inversion process and expose the biases of
the models.

In this chapter, we use generative adversarial networks (GANs) as priors model-
ing the distribution of our signals of interest. We present a geometrical perspective on
the latent space of such models, which allows to explore the solution space of a linear
inverse problem. By exploration of the solution space, we mean finding multiple
reconstructions that are consistent with the measurements but also consistent with
the model of the data distribution. We show that it is possible to modify an initial
solution by moving towards directions in the latent space that are “null” with respect
to the measurements operator (i.e., they do not significantly perturb the measure-
ments) while inducing semantic change. Our proposed technique, called e-GLASS
(exploring GAN LAtent Space Solutions), is general as it can be applied to any linear
inverse problem and is an order of magnitude faster than state-of-the-art methods
such as PULSE [50] which generate multiple solutions by solving an optimization
problem from different random initializations.

3.2 Background

Let us start from a general linear forward model of the form:

y = Ax+n (3.1)
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where y ∈ Rm is a noisy observation from an unknown signal x ∈ Rn with m ≤ n,
depending on the specific problem; n is an additive noise and A is a measurement
matrix.

As an example, y can be a degraded image, e.g., with low resolution or blurred,
and we want to reconstruct the image x starting from the measurements y. However,
this problem is ill-posed as there can be infinitely many solutions satisfying the
measurements, or even none due to noise. A large body of work has been devoted
to the development of priors to model x as accurately as possible to regularize the
problem towards admitting a unique solution. Such works frame reconstruction as a
Maximum a Posteriori (MAP) estimation problem, with the unique solution obtained
by solving

x̂ = argmin
x
∥y−Ax∥2

2 +λR(x),

for some handcrafted regularizer R encoding the prior. This line of works typically
defines priors such that the reconstruction problem is convex with a unique global
minimum. This means that a single solution to the problem can be obtained, whose
properties are strictly intertwined with the ability to craft a suitable prior R.

New recent approaches involve generative models, such as GANs, to learn priors
in a data-driven fashion [51], [52]. A GAN learns a function G that maps a latent
vector z into a sample from the data distribution. The popular approach of GAN
inversion solves inverse problems by seeking the latent vector ẑ that best fits the
measurements y. This is done by minimizing the distance between y and the degraded
version of the generated data G(ẑ), under the forward model A:

ẑ = argmin
z
∥y−AG(z)∥2

2, x̂ = G(ẑ). (3.2)

Unlike convex optimization methods with handcrafted priors, GAN inversion is
non-convex due to the use of neural networks, thus admitting multiple local minima.

While most works have used GAN inversion to generate a single solution to the
inverse problem, there has been recent growing interest in exploring the solution
space of inverse problems, i.e., finding multiple solutions, among the infinitely many
possible, that are consistent with the measurements and some data prior. The seminal
work on this topic is PULSE [50], which uses GAN inversion to super-resolve
low-resolution faces. PULSE generates multiple plausible solutions by solving Eq.
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(3.2) via gradient descent, and starting from different random guesses of z. Due
to the non-convex nature of the optimization, different solutions may be reached
when starting from different initializations. The main drawback of PULSE lies in its
complexity, requiring to solve an optimization problem for each solution and the lack
of any guarantee that a different initialization will converge to a different minimum.
Other works [53] have sought to generate multiple solutions for the super-resolution
problem, but they lack generality and can only be applied to very specific neural
networks devised only for the super-resolution task.

Finally, we remark that there is extensive literature on GAN editability [54], [55],
[56], [57], seeking to manipulate the latent space of GANs to induce semantically
interesting transformations. However, such works are not in the framework of
solutions to inverse problems and are not concerned with fidelity with measurements.

3.3 Proposed method

In this chapter, we propose a method to explore multiple solutions of a linear inverse
problem, starting from a first solution G(z0). The method exploits geometrical
properties of the GAN latent space Z to navigate in a neighborhood of z0 in such a
way that the new generated data preserve the condition in Eq. (3.1) (i.e., they are
solutions to the inverse problem) while manifesting novel semantic information with
respect to G(z0).

The latent space Z can be seen as a Riemannian manifold, and a GAN G
parametrizes a submanifold to the data space X , and, ultimately to the measurement
space Y via the composition of generator and forward model φ = G ◦A. Wang
and Ponce [58] argue that the geometry of Z in a neighborhood of z0 can be
approximated by a positive semi-definite quadratic form H(z0):

d2(z0,z)≈ δzT ∂ 2d2(z0,z)
∂z2

∣∣∣∣
z0

δz, H(z0) :=
∂d2(z0,z)

∂z2

∣∣∣∣
z0

,

dependent on a distance metric d between latent vectors. While the authors in
[58] define d between latents as the distance in the generated data space X , we
also consider it in the measurement space Y , since we are interested in exploring
how variations in the measurement space affect the latent geometry. In particular,
we define dY (z1,z2) := ∥φ(z1)−φ(z2)∥2

2 = ∥AG(z1)−AG(z2)∥2
2 and induce the
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corresponding manifold described by Riemannian metric:

HY (z0) =
1
2

∂ 2

∂z2∥φ(z)−φ(z0)∥2
2|z0 = JT

φ (z0)Jφ (z0),

being Jφ (z0) = ∂zφ(z)|z0 the Jacobian of φ = G◦A evaluated at point z0. Similarly,
metric HX (z0) is induced by a suitable distance in the data space. In this work, we
will focus on images and, consequently, we use the LPIPS distance (a perceptual
metric defined from features extracted by a pretrained network) [19] as dX (z1,z2) :=
LPIPS(G(z1),G(z2)). Backpropagation can be used to compute HY and HX .

Armed with this characterization of the geometry of the latent space, we seek
to generate a new latent vector corresponding to a solution as z1 = z0 +ηd, i.e., by
perturbing z0 along a direction d that maximizes perceptual distance in the image
space (large dX (z1,z0)) but minimizes distance in the measurement space (small
dY (z1,z0)). In other words, we seek to explore the subspace of Z around z0 that is
“null” with respect to the measurements operator but not so with respect to perceptual
distance.

One might wonder whether this is possible at all, and, in fact, the answer is
affirmative and relies on two main phenomena. The first was observed by Wang and
Ponce [58] and it is the anisotropy of the space described by HX (z0), i.e., HX is
described by a small number of principal components, meaning that there is a large
number of directions that have little to no effect on perceptual quality and some
significantly changing it1. We empirically observe the same regarding the geometry
induced by the measurements fidelity, i.e., HY (z0). The second phenomenon, which
is at the basis of our work, is that the directions from HX and HY can be empirically
decoupled. This means that it is indeed possible to find directions that significantly
affect perceptual distance while having little to no impact on measurements, yielding
novel solutions to the inverse problem.

Algorithm 1 summarizes our proposed e-GLASS scheme to find such directions.
We first start by finding the latent code z0 corresponding to a single solution by means
of any state-of-the-art GAN inversion technique. Then we compute the Hessians
HY (z0), HX (z0) and their eigenvectors: HY (z0) = UΛUT , HX (z0) = VΩVT . We
then need to measure the coupling between the two sets of eigenvectors via the

1[58] also note that the space is homogeneous, meaning that this property is valid everywhere,
regardless of the specific z0.
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Algorithm 1 e-GLASS: exploring GAN LAtent Space Solutions
Input: z0, K
Output: New solution x̂

Compute Hessian HY (z0) =
1
2

∂ 2

∂z2∥AG(z)−AG(z0)∥2
2

Compute Hessian HX (z0) =
1
2

∂ 2

∂z2 LPIPS(G(z),G(z0))

Compute eigenvectors HY (z0) = UΛUT

Compute eigenvectors HX (z0) = VΩVT

d← vK

J = {top-k eigenvectors of HY }
for j ∈J do

d← d− (dT u j)u j

d← d/∥d∥
end for
x̂ = G(z0 +ηd)

coupling matrix C = UT V. It is expected that the top eigenvectors in U are coupled
with the top eigenvectors in V as large perceptual distances typically also correspond
to large differences on the measurements. However, the bottom eigenvectors are not
correlated, indicating that the corresponding null spaces do not necessarily intersect
each other. The most interesting directions for our problem are the eigenvectors that
are among the top in V but do not correlate with the top eigenvectors in U. However,
directly choosing such direction is in general suboptimal, as it might still increase
the distance in the measurement space more than desired.

To solve this problem, we propose a geometrical method that removes the most
relevant correlations with the top eigenvectors of HY . This allows to obtain a
new direction that is hopefully still creating perceptually significant differences but
projected as much as possible onto the null space of HY to minimally change the
measurements. To do this, we first choose d = vK as the K-th top eigenvector to
discard the very top eigenvectors that are coupled with the top ones in U. Then, we
project vK onto the hyperplane orthogonal to the top eigenvectors u j with correlation
larger than a threshold:

d← d− (dT u j)u j, d← d/∥d∥.

This procedure is iterated until the resulting direction has no significant correlation
to the top eigenvectors of HY . This leads to a projection of vK onto the null space of
HY . Multiple solutions to the inverse problem can be explored by either changing
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the step η along the direction, or trying a new direction by computing d starting
from vK−1, vK−2, ...

3.4 Experimental Results

In this section, we experimentally evaluate the proposed method against state-of-the-
art techniques to explore multiple solutions. While the proposed method is general
and holds for different generative models and different inverse problems, we focus
on two notable inverse problems, i.e., image super-resolution (SR) and inpainting
(IP), presenting results for two different generative models, i.e. BigGAN [59] and
PGGAN [60]. For super-resolution, we downscale the 256×256 image to a 32×32
image, while for inpainting, we delete a semantically interesting area of a face from
a full image of size 1024×1024.

We first present empirical evidence about our claims that directions that induce
little change on measurements and significant perceptual change on the reconstruc-
tions do exist. To show this we want to see that the chosen direction correlates with
the top eigenvectors of V while being as orthogonal as possible to the top eigenvec-
tors of U. Fig. 3.1 shows in blue the correlation coefficient between the starting
direction vK and the eigenvectors in U and V and in red the same correlations but
with respect to the final direction d provided by our method. It can be noticed that
the final direction has been successfully orthogonalized with respect to the directions
inducing significant variation on the measurements, while it retains good correlation
with directions inducing perceptual change.

We now qualitatively and quantitatively examine the performance of the proposed
method for the chosen inverse problems in comparison with PULSE [50]. PULSE
generates multiple solutions by solving the GAN inversion problem multiple times
from different random initialization, in the hope of converging to a different local
minimum. For our proposed method, we generate the initial solution by means of the
state-of-the-art GAN inversion technique proposed by Abu Hussein et al. [56], where
the inversion problem in Eq. (3.2) also optimizes with respect to the GAN parameters
to finetune them. Once the initial solution is computed, we apply Algorithm 1 to find
a new solution to the problem.

Fig. 3.2 shows a few results on the SR problem. The middle row shows what
reconstructions would be obtained if direction vK were used without our proposed
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Fig. 3.1 Correlation of initial direction vK and final direction d with eigenvectors of latent
space metrics HY and HX . The final direction is orthogonal to directions inducing large
change in measurements, but correlates with directions inducing significant perceptual
change.

algorithm. It can be noticed that there is significant perceptual change but the ℓ2 norm
with respect to the measurements is poorly constrained, so that these reconstructions
can be hardly called feasible solutions. The last row shows the images generated
by the direction found by our method. We successfully constrain the ℓ2 norm with
respect to the measurements below the 10−2 threshold we consider acceptable for
feasibility. At the same time, perceptual variations are still present in those regions
where the highly downsampled nature of the measurements leaves more freedom to
fill in information, such as the color and shape of the dog’s coat (from pale yellow to
white, and the shape of the ears). Finally, the top row shows some good solutions
found by PULSE. Those solutions are feasible according to our ℓ2 criterion but are
less perceptually convincing. Indeed while some solutions show different dogs, these
present some artifacts around the dog’s mouth or some blurring over the whole dog’s
coat. Instead, the two central solutions in Fig 3.2 (top row), show unnatural dogs
found by the PULSE algorithm that still satisfy the ℓ2 criterion.

Fig. 3.3 shows the results for the IP problem. Even in this case, PULSE (top
row) found solutions with different perceptual changes, but still some of them seem
to introduce unnatural variations, like the one on the nose or some distortion on the
mouth. The second row shows images along two starting eigenvectors of the Hessians
without applying our method. Although notable perceptual changes are visible, the ℓ2

distance on the measure is outside of our constraint and indeed some differences on
the eyes are created with respect to the observations. Finally, the last row, exploits our
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Fig. 3.2 Top row: solutions found by PULSE (LR ℓ2 range: [1.8×10−3,3×10−3]). Mid row:
solutions found by using v8 and v12 as directions (LR ℓ2 range: [2.4× 10−2,4.5× 10−2]).
Bottom row: solutions found by optimized d as direction (LR ℓ2 range: [2.9×10−3,4.8×
10−3]).

Fig. 3.3 Top row: solutions found by PULSE (ℓ2 range: [1.3× 10−4,1.5× 10−4]). Mid
row: solutions found by using v8 and v26 as directions (ℓ2 range: [3.9×10−3,4.7×10−3]).
Bottom row: solutions found by optimized d as direction (ℓ2 range: [1.2×10−3,2×10−3]).
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Table 3.1 Computational time required to find 10 solutions, with our method and using
different initializations (PULSE).

Inverse Problem Model Time (s) to 10 solutions
PULSE SR BigGAN 3.5×104

e-GLASS SR BigGAN 3.7×103

PULSE IP PGGAN 7.9×103

e-GLASS IP PGGAN 1.3×103

optimized direction showing how the ℓ2 distance on the measurements is decreased
while retaining good semantic changes in the masked area, such variations in the lip
thickness or the amount of beard.

We remark that PULSE may be able to find good solutions but it has two main
drawbacks that are solved by the proposed technique. First, it lacks any explicit con-
trol on the measurements distance. Constraining the ℓ2 distance between the original
measurements and the measurements of the reconstruction to a feasibility threshold
can only be done by enforcing a stopping criterion on the inversion optimization
problem. However, due to the non-convex nature of the problem this often results in
degenerate solutions that no longer belong to the manifold of realistic images like
some of the ones previously shown.

Another advantage of the proposed method with respect to PULSE is the compu-
tational complexity due to PULSE requiring to solve a full optimization problem to
generate a new solution. For our proposed method, this needs to be only done once,
coupled with the estimation of the Hessians, but then multiple solutions can be gener-
ated almost instantaneously. Table 3.1 reports the time required for the two methods
to generate ten solutions. This time does not account for bad solutions: indeed,
discarding bad minima found by PULSE would further increase its computational
requirements.



Chapter 4

Self-supervised learning for remote
sensing

Self-supervised learning techniques are gaining popularity due to their capability
of building models that are effective, even when scarce amounts of labeled data
are available. In this chapter, we present a framework and specific tasks for self-
supervised training of multichannel models, such as the fusion of multispectral
and synthetic aperture radar images. We show that the proposed self-supervised
approach is highly effective at learning features that correlate with the labels for land
cover classification. This is enabled by an explicit design of pretraining tasks which
promotes bridging the gaps between sensing modalities and exploiting the spectral
characteristics of the input. When limited labels are available, using the proposed self-
supervised pretraining, followed by supervised finetuning for land cover classification
with SAR and multispectral data, outperforms conventional approaches such as
purely supervised learning, initialization from training on Imagenet and recent self-
supervised approaches for computer vision tasks.

4.1 Introduction

Deep learning is nowadays an established way of designing powerful models that are
able to effectively solve problems in a wide variety of fields, from natural language
processing, to computer vision and remote sensing. The most striking successes
are obtained by supervised learning, where huge annotated datasets are used to
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learn end-to-end models addressing a specific task. However, supervised learning
has been increasingly under scrutiny due to data requirements, since huge datasets,
like ImageNet, are not available in all domains. This is the case of remote sensing
imagery, where carefully annotating satellite images requires domain experts, and
doing so for large amounts of data can be expensive and error-prone.

The emerging field of Self-Supervised Learning (SSL) addresses this data bottle-
neck, studying techniques that can be used to train deep models to extract features
that are relevant to the problem of interest, without requiring labeled data.

This chapter addresses the problem of developing SSL techniques that are effec-
tive for the land cover classification problem in remote sensing. This is not a trivial
objective since there are several challenges that are unique to this problem and find
no correspondence in other fields such as the computer vision field. In particular, in
Earth observation, several imaging modalities (e.g., optical and radar) can be used to
acquire a scene of interest, and it is not obvious how to train a model that is capable
of exploiting both. In this chapter we address the problem of using multiple imaging
modalities, namely multispectral and synthetic aperture radar (SAR) images, to infer
the land cover classes, proposing a general and modular framework that does not
pose specific requirements on the employed neural network architecture.

Recent works in the context of the 2020 IEEE GRSS Data Fusion Contest [61]
have shown difficulties in building competitive end-to-end models based on deep
learning for land cover classification with both SAR and multispectral data. This
is a symptom of deep models being unable to extract high-quality features due to
a variety of reasons such as difficulties in integrating two widely different imaging
modalities, lack of large labeled datasets, pretraining techniques suffering from large
domain gaps with respect to remote sensing data, and more.

For this reason, we propose a method, named Spatial-Spectral Context Learning
(SSCL), which is composed of a generic modular architecture for neural networks
and two self-supervised pretraining approaches, allowing to effectively train models
for multichannel data having an arbitrary number of channels representing imaging
modalities (multispectral bands, SAR polarizations, etc.). SSCL is a universal frame-
work that can be used whenever the available input data have many channels and it
is more effective than transfering models from computer vision datasets due to the
large existing domain gaps. For example, image classification on ImageNet deals
with RGB instead of multichannel images, its classes are mostly object-centric and
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require reasoning about spatial geometry rather than spectral characteristic of mate-
rials. Instead, the self-supervised tasks in SSCL are explicitly designed to account
for the existence of multiple channels with possibly very different representations,
and promote learning a model of the correlations across channels, as the spectral
properties of materials can be jointly inferred from the visible and infrared spectral
bands in multispectral images, and from the microwave wavelengths captured by
SAR. Since the classes of interest in problems such as land cover classification
involve discriminating materials, this multichannel approach is more effective at
extracting features for remote sensing problems.

Extensive experiments show how the proposed method is effective in the semi-
supervised setting, where the model pretrained with self-supervision is finetuned
with a few labels. In particular, SSCL is superior to purely supervised learning,
pretraining from ImageNet and recent self-supervised pretraining paradigms from
computer vision [62] and remote sensing [7], when labels are scarce.

4.2 Background

Recently, many researchers have started investigating SSL approaches since they do
not require external labelled data. The most popular approach consists in learning to
capture relevant image features by solving a pretext task. A wide variety of pretext
tasks have been proposed [63]. Some of them involve geometric transformations
such as guessing the rotational angle of an image, others consider generation-based
tasks such as image inpainting. More recently, contrastive learning is emerging as
a new appealing paradigm for SSL. This approach aims at embedding augmented
views of the same input close to each other, while trying to separate embeddings
from different inputs. All the methods following this approach employ a siamese
network and a contrastive loss [64], but they differ from each other mainly in the
way they collect negative samples.

Remote sensing is strongly affected by limited data availability, where datasets
are several but sparsely annotated. In order to overcome these issues, a limited
number of works have started to explore using SSL approaches in remote sensing
applications, in particular for land scene classification. In [65], the authors propose
to use colorization as pretext task for remote sensing imagery, leveraging the spectral
bands to recover the visible colors. Instead, in [66] the authors compare three
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different SSL techniques, namely image inpainting, relative position prediction and
instance discrimination, showing that the latter provides better performance for scene
classification. Another work [67] extends the constrastive approach proposed by
MoCo to remote sensing imagery, defining the augmented views as randomly shifted
patches of the same image.

However, little attention has been paid to develop self-supervised deep learning
models that can effectively combine information from different spectral channels or
sensing modalities, such as multispectral and SAR. In this field, the most common
techniques are still based on standard machine learning methods. Most of them are
supervised methods [68], [69], and few are unsupervised [70]. Contrastive Multiview
Coding (CMC) [71] tries to combine information from different channel subsets of a
multispectral image, using a contrastive approach. Although this method seems to
be effective when evaluated using a linear classification protocol after SSL only, it
is not able to improve over the classic ImageNet pretraining in the semi-supervised
setting, when supervised finetuning is performed. This might be a symptom that
the features learned via SSL do not generalize well and supervision has to undo
part of the learning process. In addition, it does not consider land cover mapping
as downstream task. Recently, Chen et al. [7] proposed SSL for joint land cover
classification with SAR and multispectral images adopting a contrastive approach
at image level and super-pixel level. As shown in Sec. 4.4.1 can be considered
complementary to our work, as it is superior in the self-supervised regime, while
SSCL outperforms it in the semi-supervised finetuning regime.

4.3 Proposed method

In this section we present the proposed approach to land cover mapping from joint
SAR and multispectral imagery, i.e. Spatial-Spectral Context Learning (SSCL).

The main novelty of the proposed method lies in the development of self-
supervised pretraining strategies that are able to train feature extractors for the land
cover classification task. If labeled data are available, further supervised finetuning
can be performed to achieve improved performance.

The proposed self-supervised approach comprises two stages of pretraining,
which we call Unifeat and CoRe, accomplishing different goals. In addition, an
important concept that we introduce regards the overall neural network architecture,



4.3 Proposed method 63

FE

FE

FE

...

C
A
T

SEGMENTATION
NET

SINGLE-CHANNEL
FEATURE EXTRACTOR

FE

FE

PROJ

PROJ

λ

BAND
DROPOUT

CUTOUT BLUR

(a) Architecture

FE

FE

FE

...

C
A
T

SEGMENTATION
NET

SINGLE-CHANNEL
FEATURE EXTRACTOR

FE

FE

PROJ

PROJ

λ

BAND
DROPOUT

CUTOUT BLUR

pixel-wise 
NT-Xent 

loss

F

Nx

Ny

channel 
c1

channel 
c2

F

Nx

Ny

NET
SINGLE-CH
FEATURE

EXTRACTOR
DEGRADATION

L1 loss

... ...

(b) UniFeat

FE

FE

FE

...

C
A
T

SEGMENTATION
NET

SINGLE-CHANNEL
FEATURE EXTRACTOR

FE

FE

PROJ

PROJ

λ

BAND
DROPOUT

CUTOUT BLUR

pixel-wise 
NT-Xent 

loss

F

NROWS

NCOLS

channel 
c1

channel 
c2

F

NROWS

NCOLS

NET
SINGLE-CH
FEATURE

EXTRACTOR
DEGRADATION

L1 loss

... ...

(c) CoRe

Fig. 4.1 General architecture and self-supervised pretraining stages. a) Overall architecture:
each channel of the input is processed independently by the same feature extractor (FE) via
weight sharing. Outputs are concatenated along the feature axis and fed to a state-of-the-art
network for image segmentation; b) Unifeat: contrastive learning pretrains the single-channel
FE to bring features of different sensing modalities closer; c) CoRe: Context Reconstruction
from dropped channels, spatial areas and blur pretrains the entire architecture to promote
feature clustering according to spectral material properties.

which is illustrated in Fig. 4.1a. State-of-the-art semantic segmentation models
are often developed for single-band or RGB images. It is important to carefully
adapt them to the scenario where multiple channels, possibly from multiple imaging
modalities, are available. For this reason, we also present a preprocessing stage,
composed by a few convolutional layers, acting on the individual channels and
sharing its model weights across them. The goal is to slowly extract features from
the single channels themselves, before merging them. We call this block as single-
channel Feature Extractor (single-channel FE). This, compared to early fusion,
allows to build a richer feature space and ties into the working of the first stage of
self-supervised pretraining, which promotes a convergence of the statistics of the
various channels to reduce their domain gap. It is also a flexible approach that can
be used for any number of spectral bands or sensing modalities.

UniFeat – contrastive uniforming of sensing modalities

A first issue lies in the multi-channel nature of the input and the domain gap that
exists between the channels, particularly different sensing modalities such as SAR
and optical images due to coherent and incoherent imaging. Since the same scene is
being imaged across the modalities, it is desirable for the features that are derived to
be robust to low-level variations which do not carry discriminative information to
infer the class label. Examples of such low-level nuisances can be the different noise
characteristics of each channel, the local patch statistics, and so on. Promoting simi-
larity of low-level features across the input channels can help bridge the domain gaps,
and avoid large distances between points in the feature space representing the same
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class. This is the goal of the first self-supervised task we propose, namely UniFeat,
depicted in Fig. 4.1b. This task addresses the pretraining of the single-channel FE.
We consider the features extracted by the single-channel encoder, consisting in one
vector with F features for each spatial location (i, j) and each channel c. We use
a contrastive learning approach where we promote similarity between the feature
vectors of two patches representing the same area from different input channels.
Conversely, dissimilarity is promoted if the patches do not represent the same geo-
graphical area. Several contrastive losses have been studied for this kind of tasks in
computer vision problems [64]. We choose to follow the SimCLR approach [72],
where we consider the single-channel feature extractor as the base encoder f (·) and
we introduce an additional projection head g(·) that maps the output features of the
single-channel encoder to the space where the discriminative loss is applied. Notice
that, contrary to the base encoder adopted in SimCLR which targets whole-image
classification, the proposed single-channel encoder does not pool all the feature
vectors of the patch into a single representation to be further projected, but rather
produces a pixel-wise mapping of the input. This promotes features with higher
spatial resolution, as shown in Sec. 4.4, which is particularly useful for the land
cover classification task. The projection head depicted in Fig.4.1b is removed after
pretraining.

More in detail, given a minibatch of N image patches, we define two correlated
views xc1

k and xc2
k of the same input patch xk in the minibatch by randomly selecting

two channels c1 and c2. We then promote similarity between their feature represen-
tations by minimizing the Normalized-Temperature Cross-Entropy (NT-Xent) loss
[73], defined as:

ℓ(c1,c2) = ∑
(i, j)

∑
k
− log

exp(sim(zc1
(i, j),k,z

c2
(i, j),k)/τ)

∑l ̸=k exp(sim(zc1
(i, j),k, z̃(i, j),l)/τ)

where zc1
(i, j),k is the value of zc1

k = g( f ((xc1
k )) at spatial location (i, j), z̃(i, j),l is the

value of z̃l = g( f (x̃l)) at (i, j), x̃l is a view of the input image xl (i.e., x̃l corresponds
to either xc1

l or xc2
l ), sim(u,v) = uTv

||u||||v|| is the cosine similarity between the feature
vectors u and v, and τ is a temperature hyper-parameter which controls the rate of
convergence. Notice that this task is applied not only to promote similarity between
SAR and optical but also between different optical bands.
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Since this pretraining task is applied to the outputs of the single-channel encoder,
a relatively shallow preprocessor, the feature space is still mostly affected by low-
level image characteristics, as desired.

CoRe – context reconstruction to promote material features

The second issue we address is also specific to the remote sensing scenario. In many
remote sensing problems, such as land cover classification, the class label is mostly
related to the spectral properties of the scene, and only weakly to its geometric
appearance. This suggests that features representing material properties useful for
land cover mapping cannot be extracted by self-supervised approaches that contrast
views obtained via geometric augmentations (e.g., rotations). For this reason, we
propose CoRe (Context Reconstruction), depicted in Fig. 4.1c: a pretext task that
can be solved in a self-supervised manner and whose solution promotes features that
capture material properties and thus cluster according to land cover labels. In this
pretext task, the input image is first corrupted using a given degradation process,
then the network learns to reconstruct the clean image by minimizing the ℓ1 distance
between the output of the network and the original image. In contrast to UniFeat,
which only pretrains the early layers of the network, this task pretrains the entire
architecture of Fig.4.1a. Notice that a projection head with C output channels is used
during pretraining and then discarded, to be replaced with the actual head estimating
the class probabilities. The input degradation process consists in the following steps:
Channel dropout, Cutout, Gaussian blur. Channel dropout randomly drops a number
of input channels (putting them to 0) to promote learning features that accurately
represent the spectrum, which is highly informative for material discrimination. The
additional cutout and blurring degradations also add robustness, improving resilience
to noise, and avoid convergence to trivial solutions, forcing the network to reason
across spatial neighborhoods due to the missing regions. We remark that it might
happen that different channels have different spatial resolutions (e.g., in a Sentinel
1-2 fusion problem, the multispectral bands can have resolutions of 10m, 20m or 60m,
and 10m or more for SAR). In the case where all the channels at higher resolutions are
dropped, the pretraining task becomes an inter-band super-resolution problem, which
further promotes the emergence of features with high spatial resolution. Additionally,
in a SAR-optical fusion setting, the task also requires to predict one modality from
one other, further enhancing the creation of a shared feature space.
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(a) Input (b) Baseline (c) Image-Net (d) SimSiam (e) SSCL (f) GT

Forest Shrubland Savanna Grassland Wetlands Croplands Urban/Built-up Snow/Ice Barren Water

Fig. 4.2 Land cover maps generated by different methods. We can see that the proposed
method is able to segment finer details than existing methods. Also notice that, according to
visual inspection, it sometimes is even more accurate than the ground truth due to mislabeling
issues.

4.4 Experimental Results

We test the proposed SSCL method on the dataset used for Track 2 of DFC2020
challenge [61] organised by the Image Analysis and Data Fusion Technical Commit-
tee of the IEEE Geoscience and Remote Sensing Society, which is a subset of the
SEN12MS dataset [74]. The input images are acquired by 2 sensors: Sentinel 1 (S1)
SAR with 2 channels (VV and VH polarizations) and Sentinel 2 (S2) multispectral
with 13 channels. All data are provided at a ground sampling distance equal to 10m
and a fixed image size of 256×256 pixels. The semantic maps have a resolution of
10m and follow a simplified version of IGBP classification scheme, aggregated to
10 less fine-grained classes. We use 5128 scenes for pretraining, then the same are
employed for supeervised finetuning (4128 for training, 1000 for validation). Finally,
the model is tested on 986 scenes never seen before. We use overall accuracy (OA),
average accuracy (AA) and mean Intersection over Union (mIoU) as evaluation
metrics.
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Table 4.1 Test accuracy for the linear protocol of DeepLab at different initializations.

Random init ImageNet SimSiam SSCL
AA 35.1±0.1 30.9±0.3 29.2±0.1 41.6±0.1

OA 50.1±0.1 45.4±0.3 46.8±0.2 57.2±0.2

mIoU 19.0±0.1 15.5±0.1 14.5±0.1 24.5±0.3

Table 4.2 Class-wise average and overall accuracies for a single-channel FE DeepLab with
different initializations.

Random init. ImageNet SimSiam SSCL

Forest 64.2±24 62.5±17.2 76.3±3.1 73.1±11.6

Shrubland 55.4±2.8 50.7±3.7 52.7±4.1 56.5±1.7

Grassland 47.1±12 46.3±17.1 37.9±7.1 54.0±22.0

Wetlands 7.8±4.8 21.6±11.8 5.2±1.0 21.7±16.8

Croplands 77.5±10.3 83.9±6.4 81.6±6.3 78.2±7.1

Urban 82.2±2.3 77.5±1.8 78.1±2.8 83.1±1.6

Barren 79.6±3.1 78.3±3.3 76.6±4.5 80.6±3.7

Water 99.5±0.1 99.3±0.1 99.6±0.1 99.3±0.3

AA 64.2±3.1 65.0±2.2 63.5±0.6 68.3±1.2

OA 67.4±2.7 69.8±1.4 67.0±0.8 71.6±0.4

mIoU 45.3±3.1 48.0±1.5 45.1±0.5 49.6±0.8

4.4.1 Main results

We first assess the effectiveness of the self-supervised learning stages. The estab-
lished method to evaluate this is the linear protocol, which consists in training a linear
classifier on top of the network, while the weights of the neural network are frozen
to the values optimized by the self-supervised pretraining. We compare the proposed
method against a randomly initialized network with the same architecture, with
respect to using classic pretraining on ImageNet and a self-supervised pretraining
method which is state-of-the-art on computer vision tasks, namely SimSiam [75].
Note that in this case we follow the standard augmentations in computer vision, i.e.
geometric transformations and Gaussian blur. Our architecture follows the general
scheme of Fig. 4.1a, with DeepLabv3 as state-of-the-art segmentation network.
Table 4.1 reports the results in terms of AA , OA and mIoU. We can observe that the
pretraining on ImageNet and SimSiam are not effective, confirming the domain gap
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Table 4.3 Test accuracy of SSCL compared to the self-supervised strategy PixIF [7] .

Linear Protocol Finetune
PixIF SSCL PixIF SSCL

AA 57.0±0.4 41.6±0.1 60.1±0.4 68.3±1.2

OA 63.0±0.2 57.2±0.2 65.2±0.6 71.6±0.4

mIoU 34.7±0.2 24.5±0.3 38.0±0.2 49.6±0.8
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Fig. 4.3 Test average accuracy over the training samples.

between traditional whole–image classification in computer vision and land cover
classification. On the other hand, the proposed method shows higher accuracy than
random initialization, confirming our conjecture that the proposed self-supervised
tasks are able to better capture the information related to material properties.

We then focus our attention on evaluating the finetuning performance (Table 5.9),
i.e., when the entire pretrained model is optimized using the available labels. We
compare against the same initialization schemes of the previous experiment. It can
be noticed that the proposed approach is the only one that is able to significantly
improve over random initialization.

These results suggest that the proposed method is highly effective at improving
the performance of end-to-end deep learning models for land cover classification
when SAR and multispectral data are jointly used. A qualitative comparison is
shown in Fig. 4.2, which shows some examples of predicted maps obtained using
the different methods considered in the evaluation. We can observe that the proposed
SSCL is able to segment finer details than existing methods. Also notice that,
according to visual inspection, in some cases, SSCL seems to be even more accurate
than the ground truth due to mislabeling issues in the dataset, especially for similar
classes such as Shrubland, Grassland and Forest.
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Fig. 4.4 Spatial resolution of a feature map for SimSiam (centre) and the proposed SSCL
(right). Notice the significantly higher spatial resolution of SSCL.

Finally, Table 4.3 reports a comparison with the recently proposed self-supervised
contrastive learning method PixIF [7]. We retrained PixIF to match our experimental
setting using the authors’ code. We can notice that PixIF is very effective in the
self-supervised setting, outperforming SSCL on the linear protocol. However, SSCL
is superior in the semi-supervised setting when finetuned using labels (even a small
amount, as in Fig. 4.3). We thus consider PixIF complementary to our work.

4.4.2 Analysis and ablation experiments

First, we are interested in evaluating the performance improvements provided by
SSCL under label scarcity. Fig. 4.3 shows the test AA reached when finetuning
with a limited number of labels. It is interesting to notice that SSCL with just 1000
samples provides comparable performance to a randomly initialized network trained
on 4128 samples.

Then, we want to validate our claim that SSCL is able to capture high-resolution
features with its self-supervised tasks. Fig. 4.4 shows some representative feature
maps from the last network layer and compares them between the SSCL and SimSiam.
We can immediately notice that the spatial resolution of the feature maps obtained
with the proposed method is much higher than SimSiam, and finer details are
preserved. This correlates with the finer segmentation maps in Fig. 4.2 and could be
explained by the fact that the pretraining reconstruction task promotes high-resolution
solutions since it has to solve problems that amount to super-resolution/deblurring
(e.g., when the highest-resolution channels are dropped) or inpainting, thus heavily
relying on fine spatial clues.
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Table 4.4 Test average accuracy for DeepLab with or without single-channel FE and with or
without SAR images.

Std Deeplab Single-ch. FE SSCL
with SAR 61.7±2.0 64.2±3.1 68.3±1.2

w/o SAR 59.7±1.9 59.5±2.3 67.6±1.6

only SAR 54.8±1.2 55.9±0.6 56.3±0.3

Table 4.5 Test average and overall accuracy of our SSCL with and without UniFeat and a
manual preprocessing

CoRe Preproc + CoRe SSCL Preproc + SSCL
AA 67.4±1.3 68.3±1.5 68.3±1.2 69.4±0.7

OA 70.2±0.9 71.0±0.9 71.6±0.4 72.3±0.6

In the following we report ablation experiments to validate the contributions of
various proposed components. Firstly, the importance of the general archicture based
on single-channel feature extractors is assessed in Table 4.4. The results show that
Deeplab with a single-channel feature extractor outperforms a standard Deeplab with
the first layer merging all the input channels and comparable number of parameters.
Note that, for a fair comparison, we show the models without any pretraining in
the first two columns and the model with SSCL pretraining in the last column. In
addition, the same table shows the performance difference when those models do
or do not process SAR images or have only SAR images, in order to evaluate how
well they are able to exploit this information and fuse it with multispectral images.
We can observe that effective fusion between SAR and multispectral information is
achieved by the proposed method.

Finally, in Table 4.5 we test the effect of UniFeat. In particular, we are interested
in showing that it can perform more than a simple denoising of the SAR input and
without manual design of the preprocessing function. We substitute UniFeat with a
conventional despeckling algorithm (SAR BM3D [76]) and notice that we obtain
similar results. However, when we use the SSCL including UniFeat and the manual
preprocessing, we observe an improvement, confirming that UniFeat acts not only as
a denoiser of SAR images but as a more complex regularizer reducing intra-class
variance across modalities.



Chapter 5

Hyperbolic Learning for point-clouds
and meshes

5.1 Regularization in Hyperbolic space: application
to point-clouds classification

Does the entirety surpass the aggregate of its components? Although philosophers
have engaged in profound debates on this matter since Aristotle’s era, it is indis-
putable that comprehending and depicting the interconnection among parts as integral
elements of intricate structures is crucial in constructing models of reality. This
chapter directs its focuses on the compositional essence of 3D objects, delineated
as point clouds and meshes, where basic components amalgamate to craft progres-
sively complex forms. Indeed, unraveling the implicit hierarchy of an object’s parts
provides a more profound grasp of its intricate geometry, useful to downstream
tasks such as classification or segmentation. This hierarchy, akin to a tree, intu-
itively captures nodes near the root as fundamental universal shapes, evolving into
increasingly intricate configurations towards the whole-object leaves. To transform
one object into another requires replacing some of its parts by navigating the tree
until reaching a common ancestral component. It is evident that a feature-extracting
model, claiming to encapsulate the essence of 3D objects, must include implicitly or
explicitly this hierachical structure.
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5.1.1 Background and Related works

Point clouds, a fundamental concept in the realm of computer vision and 3D model-
ing, serve as a rich and detailed representation of physical objects or environments.
Instead of relying on traditional surfaces or meshes, point clouds are constructed
by capturing and storing a multitude of individual data points in three-dimensional
space. Each point in the cloud corresponds to a specific location in the object or
scene, capturing its spatial coordinates and often additional attributes such as color
or intensity.

These point clouds are typically generated through various sensing technologies
like LiDAR (Light Detection and Ranging) or structured light scanners, which emit
beams or patterns to measure distances and angles, creating a dense set of points that
collectively form a comprehensive digital representation.

One of the distinctive features of point clouds is their ability to faithfully capture
the intricate details and geometry of complex objects or environments. This makes
them invaluable in numerous applications, ranging from industrial design and urban
planning to augmented reality and autonomous vehicle navigation.

Analyzing and processing point clouds involve extracting meaningful informa-
tion, identifying patterns, and understanding the spatial relationships between points.
Researchers and practitioners often employ sophisticated algorithms and techniques
to derive insights from these data-rich representations.

In essence, point clouds serve as a powerful tool in the digital realm, enabling us
to bridge the physical and virtual worlds with a nuanced and accurate portrayal of
the objects and spaces that surround us. As technology advances, the applications
of point clouds continue to expand, shaping the landscape of various fields and con-
tributing to innovations in how we perceive and interact with our three-dimensional
reality.

In recent years, many works focused on designing complex geometric modules
to appropriately extract information from nodes and neighbors. However, with
PointMLP [77] and SimpleView [78], the authors show that it is important rethinking
on simple models that are more effective than complicated networks such as Trans-
former. Moreover, the various data augmentation and preprocessing steps impact
significantly on the effectiveness of an architecture.
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For this, another line of works studies self-supervised strategies to inject geomet-
ric information to existing models. Examples are PointGLR [79], Info3D [80] and
DCGLR [81] . These works investigate how the part- and whole-object reasoning
can influence the generation of high-level features useful for downstream tasks. In
the specific, their goal is maximizing the mutual information between parts and
the complete objects, leading to the understanding of local and global relations.
Although the effectiveness of these universal features manifest in the good results
of the linear protocol, fine-tuning the pretrained models does not lead to decisive
improvements with respect to random initialized networks.

In our work we show that different architectures can lead to better results if a
compositional hierarchy between parts and objects is induced. To do this, we need a
space that accommodate the tree-like structures of parts at different scales. Indeed,
we can imagine a tree where at the root there is a general shape (e.g. a square or a
disk), and, as more points are included, the tree branches to more detailed parts up to
complete objects that represent the terminal leaves of the tree. The complete objects
can belong to the same class or to different classes that share common parts, e.g. a
chair and a table can share the leg and the edge upon it. An example is visible in Fig.
5.2. The underlying structure generates inherent clusters along the tree depth and we
use it as a prior to regularize the supervised learning.

At this point, the important question is if we can embed the compositional
hierarchy in the usual space of vectors and neural networks, i.e. the Euclidean space.
As pointed out in [82], the fact that the volume of the Euclidean space grows only
as a power of its radius limits the representation capacity towards the embedding
of tree-like data. This is due to the flatness of Euclidean space which, although
crucial for many geometric properties, cannot embed data such as trees and cyclic
graphs with arbitrarily low distortion. The space that accomodate this property
is a non-flat manifold called hyperbolic space. In fact, hyperbolic space can be
seen as the continuous version of a tree and hence hierarchical structures can be
embedded into it. This unique characteristic inspired many researchers to use it
with the aim of representing hierarchical relations in many domains, from natural
language processing [83], [84] to computer vision [85] , [86]. The general idea is
that of building the relations between data and the elements they are composed of,
and create an appropriate framework where the corresponding features are properly
distributed. This motivated the introduction of neural networks in the hyperbolic
space [84] and Riemannian optimization [87]. In addition, new losses along geodesic
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paths force the network to follow specific relations that are beneficial to the data
representation.

A 3D point cloud, as a set of points, has an implicit hierarchy made by the
different parts from which it is assembled. Indeed, from the more elementary part
that is a single point considered as the atom of the object, as we include more points,
new shapes emerge, quite generic initially, then more and more specific depending
on the global structure of the complete 3D object. In this chapter, for the first time,
to the best of our knowledge, we study this kind of inherent compositionality in the
hyperbolic space. We further demonstrate that regularizing the train by including
such priors increases the representation power of different neural networks. Experi-
ments on point clouds classification and part segmentation on different architectures
reveal the effectiveness of our method.

Point cloud data are sets of multiple points and, in recent years, several deep
neural networks have been studied to process them. Early works adapted models
for images through 2D projections [88], [89]. Later, PointNet [90] established new
models working directly on the raw set of 3D coordinates by exploiting shared
architectures invariant to points permutation. Originally, PointNet independently pro-
cessed individual points through a shared MLP. To improve performance, PointNet++
[91] exploited spatial correlation by using a hierarchical feature learning paradigm.
Other methods [92], [93], [94], treat point clouds as a graph and exploit operators
defined over irregular sets to capture relations among points and their neighbors at
different resolutions. This is the case of DGCNN [95], where the EdgeConv graph
convolution operation aggregates features supported on neighborhoods as defined
by a nearest neighbor graph dynamically computed in the feature space. Recently,
PointMLP [77] revisits PointNet++ to include the concept of residual connections.
Through this simple model, the authors show that sophisticated geometric models
are not essential to obtain state-of-the-art performance.

Successfully capturing the semantics of 3D objects represented as point clouds
requires to learn interactions between local and global information, and, in particular,
the compositional nature of 3D objects as constructed from local parts. Indeed, some
works have focused on capturing global-local reasoning in point cloud processing.
One of the first and most representative works is PointGLR [79]. In this work, the
authors map local features at different levels within the network to a common hyper-
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sphere where the global features embedding is made close to such local embeddings.
This is the first approach towards modeling the similarities of parts (local features)
and whole objects (global features). The use of a hypersphere as embedding space
for similarity promotion traces its roots in metric learning works for face recogni-
tion [96]. In addition to the global-local embedding, PointGLR added two other
pretext tasks, namely normal estimation and self-reconstruction, to further promote
learning of highly discriminative features. Our work significantly differs from Point-
GLR in multiple ways: i) we adopt the hyperbolic space for embedding because a
positive-curvature manifold, such as the hypersphere, is unable to accurately embed
hierarchies (tree-like structures); ii) we actively promote a continuous embedding of
part-whole hierarchies by penalizing the hyperbolic norm of parts proportionally to
their number of points (a proxy for part complexity); iii) we move the classification
head of the model to the hyperbolic space to exploit our regularized geometry. A
further limitation of PointGLR is the implicit assumption of of a network architecture
that supports the generation of progressive hierarchies (e.g. via expanding receptive
fields) in the intermediate layers. In contrast, our work can be readily adopted by
any state-of-the-art model with just a replacement of the final layers. Other works
revisit the global-local relations using maximization of mutual information between
different views [80], clustering and contrastive learning [97], distillation with con-
strast [81], self-similarity and contrastive learning with hard negative samples [98].
Although most of these works include the contrastive strategy, they differ each other
in the way they contrast the positive and negative samples and in the details of the
self-supervision procedures, e.g., contrastive loss and point cloud augmentations.
We also notice that most of these works focus on unsupervised learning, and, while
they show that the features learned in this manner are highly discriminative, they
are also mostly unable to improve upon state-of-the-art supervised methods when
finetuned with full supervision. These approaches differ from the one followed in
this chapter, where we focus on regularization of a fully supervised method, and we
show improvements upon the supervised baselines that do not adopt our regularizer.

The intuition that the hyperbolic space is crucial to embed hierarchical structures
comes from the work of Sarkar [82] who proved that trees can be embedded in the
hyperbolic space with arbitrarily low distortion. This inspired several works which
investigated how various frameworks of representation learning can be reformulated
in non-Euclidean manifolds. In particular, [83] [87] and [84] were some of the first
works to explore hyperbolic representation learning by introducing Riemannian adap-
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tive optimization, Poincarè embeddings and hyperbolic neural networks for natural
language processing. The new mathematical formalism introduced by Ganea et al.
[84] was decisive to demonstrate the effectiveness of hyperbolic variants of neural
network layers compared to the Euclidean counterparts. Generalizations to other
data, such as images [99] and graphs [100] with the corresponding hyperbolic vari-
ants of the main operations like graph convolution [100] and gyroplane convolution
[86] have also been studied. In the context of unsupervised learning, new objectives
in the hyperbolic space force the models to include the implicit hierarchical structure
of the data leading to a better clustering in the embedding space [86], [85]. To the
best of our knowledge, no work has yet focused on hyperbolic representations for
point clouds. Indeed, 3D objects present an intrinsic hierarchy where whole objects
are made by parts of different size. While the smallest parts may be shared across
different object classes, larger parts become more and more specific as they grow
in size. This consistently fits with the structure of a tree where simple fundamental
parts are shared ancestors of complex objects and hence we show how the hyperbolic
space can fruitfully capture this data prior.

Hyperbolic Space and Neural Networks

Hyperbolic space, characterized by a Riemannian manifold with a consistent negative
curvature, defines the metric of the space through the following formula:

gR = (λ c
x )

2gE =
2

1+ c∥x∥2 gE (5.1)

where gR is the metric tensor of a Riemannian manifold, λ c
x is the conformal

factor that is determined by the curvature c of the point x on which is computed, and
gE is the metric tensor of the Euclidean space Rn, i.e., the identity tensor In. Note
how the metric depends on the coordinates (through ∥x∥) for c ̸= 0. when c = 0 we
have gR = 2gE , i.e., the Euclidean space is a flat Riemannian manifold with zero
curvature. Spaces with c > 0 are spherical, and with c < 0 hyperbolic.

The Poincarè Ball in n dimensions Dn is a hyperbolic space with c =−1, and it
is isometric to other models such as the Lorentz model. The distance and norm are
defined as:
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dD(x,y) = cosh−1
(

1+2
∥x−y∥2

(1−∥x∥2)(1−∥y∥2)
)

)
, ∥x∥D = 2tanh−1 (∥x∥)

(5.2)

Since the Poincarè Ball is a Riemannian manifold, for each point x ∈ Dn we
can define a logarithmic map logx : Dn→ TxDn that maps points from the Poincarè
Ball to the corresponding tangent space TxDn ∈ Rn, and an exponential map expx :
TxDn→ Dn that does the opposite. These operations [84] are fundamental to move
from one space to the other.

The formalism to generalize tensor operations in the hyperbolic space is called the
gyrovector space, where addition, scalar multiplication, vector-matrix multiplication
and other operations are redefined as Möbius operations and work in Riemannian
manifolds with curvature c. These become the basic blocks of the hyperbolic neural
networks. In particular, we will use the hyperbolic feed forward (FF) layer (also
known as Möbius layer). Considering the Euclidean case, for a FF layer, we need
a matrix M : Rn→ Rm to linearly project the input x ∈ Rn to the feature space Rm,
and, additionally, a translation made by a bias addition, i.e., y+b with y,b ∈ Rm

and, finally, a pointwise non-linearity φ : Rm→ Rm.

Matrix multiplication, bias and pointwise non-linearity are replaced by Möbius
operations in the gyrovector space and become:

y = M⊗c(x) =
1√
c

tanh
(
∥Mx∥
∥x∥

tanh−1(
√

c∥x∥)
)

Mx
∥x∥

(5.3)

z = y⊕c b = expc
y

(
λ c

0
λ c

y
logc

0(b)

)
, φ

⊗c(z) = expc
z (φ(logc

0(z))) (5.4)

where M and b are the same matrix and vector defined above, c is the magnitude of
the curvature. Note that when c→ 0 we recover the Euclidean feed-forward layer.
An interesting property of the Möbius layer is that it is highly nonlinear; indeed the
bias addition in hyperbolic space becomes a nonlinear mapping since geodesics are
curved paths in non-flat manifolds.
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Fig. 5.1 HyCoRe overview. A point cloud classification model is regularized by promoting
the feature space to include compositional information. Hierarchy regularizer: simple parts
should be mapped closer to the center of the Poincarè disk (common ancestors of whole
objects). Contrastive regularizer: parts of the same class should be embedded closer than
parts of other classes.

5.1.2 HyCoRe: Hyperbolic Compositional Regularizer

The proposed method, named HyCoRe (Hyperbolic Compositional Regularizer) is
presented and analyzed in this section. An overview is shown in Fig. 5.1. Broadly
speaking, HyCoRe elevates the performance of any cutting-edge neural network
model designed for point cloud classification through two key mechanisms. Firstly,
it substitutes the final layers of the model with layers specialized in hyperbolic space
transformations (refer to Section 5.1.1). Secondly, it introduces regularization to
the classification loss, guiding the formation of a favorable configuration in the
hyperbolic feature space. This configuration ensures that embeddings of individual
components adhere to a hierarchical structure and group together based on their
respective class labels.

The role of regularization is building a strong prior that during the training
process helps the network to learn the distribution of the data by encoding a vector
representation in the feature space. If we force the system to preserve some relations
in this space, these can benefit the overall training and lead to a better representation
of the network.
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5.1.3 Compositional Hierarchy in 3D Point Clouds

The objective of HyCoRe is that the network, during the training, has to learn the
compositional structure of the 3D point cloud at different levels, i.e. encoding chunks
of different sizes up to the whole 3D object. This induces a kind of hierarchy, where
at the head there are universal shapes (made by few points), e.g. disks, squares,
triangles, that are included in many different objects. As this general shapes acquire
more points, they become more specific to some categories up to specific objects
belonging to different categories. This hierarchy can be mathematically represented
in a tree. In Fig. 5.2 we give an example. We start from a small cylinder, where at
the second level, adding more neighbors in different ways, we obtain two different
leaves. The first one is a parallelepiped that is a table leg, while the second one
encompasses points above the cylinder representing part of a chair. As we go further
in the tree levels, the shapes become more specific acquiring more points and fitting
in different classes. In the terminal leaves of the tree, we can see different objects
obtained by the shapes of the previous levels. This leads to separable classes, where
objects belong to the same class are related through their parents, while classes that
share only universal shapes can belong to the same tree but are far from each other.

At this point, it is crucial to emphasize that the graph distance between leaves
is determined by the shortest path passing through the first common ancestor for
objects in the same or similar classes. Therefore, for objects that belong to dissimilar
classes, the shortest path traverses through the root of the hierarchy. To embed
this tree structure in a feature space successfully, the chosen space must preserve
the geometric properties of trees, especially the graph distance. Specifically, the
embedding space must accommodate the exponential volume growth of a tree depth.

A seminal finding by Sarkar [82] demonstrates that flat Euclidean space does
not fulfill this requirement, resulting in high errors when embedding trees, even
in high dimensions. In contrast, hyperbolic space, a Riemannian manifold with
negative curvature, supports exponentially increasing volumes and can embed trees
with arbitrarily low distortion. Notably, the geodesic (shortest path) between two
points in this space passes through points closer to the origin, mirroring the behavior
of distance defined over a tree.

The Poincaré ball model of hyperbolic space is used among different descriptions
of such space (remembering that an isomorphism exists that maps one space to
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Fig. 5.2 3D objects possess inherent hierarchies due to their nature as compositions of
small parts. The hyperbolic space can embed trees and hierarchical structures with lower
distortions than the Euclidean space. The number of points in the embedded part point
cloud is highlighted in figure. Embeddings shown are experimental results projected to 2D
Poincarè disk with hyperbolic UMAP.

another). As hyperbolic space is a non-Euclidean manifold, conventional vector
representations and linear algebra cannot be applied. Consequently, classical neural
networks are incompatible with such a space. However, we will leverage extensions
[84] of classic layers defined through the concept of gyrovector spaces.

5.1.4 Proposed Method

Equipped with the formalism introduced in the preceding section, we introduce
our HyCoRe framework, as anticipated in Fig. 5.1. Let’s consider a point cloud
PN represented as a set of 3D points p ∈ R3 with N elements. Employing any
state-of-the-art point cloud processing network as a feature extraction backbone
E : RN×3→ Rm, we encode PN into the corresponding feature space. Subsequently,
we apply an exponential map expc

x : Rm→ Dm to transform the Euclidean feature
vector into the hyperbolic space. Following this, a Mobius layer H : Dm → D f

is employed to project the hyperbolic vector into an f -dimensional Poincarè ball.
This results in the hyperbolic embedding of the entire point cloud PN , denoted as
zwhole = H(exp(E(PN))) ∈ D f . The same process is iterated for a sub-part of PN ,
referred to as PN′ with a number of points N′ < N, to generate the part embedding
zpart = H(exp(E(PN′))) ∈ D f within the same feature space as before.
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Fig. 5.3 Geodesic path.

The objective is to introduce regularization to the feature space, aiming to en-
force the properties mentioned earlier—specifically, the part-whole hierarchy and
clustering based on class labels. This is accomplished by establishing the following
triplet regularizers:

Rhier(z+whole,z
+
part) = max(0,−∥z+whole∥D+∥z+part∥D+ γ/N′) (5.5)

Rcontr(z+whole,z
+
part,z

−
part) = max

(
0,dD(z+whole,z

+
part)−dD(z+whole,z

−
part)+δ

)
(5.6)

where z+whole and z+part are the hyperbolic representation of the whole and a part from
the same point cloud, while z−part is the embedding of a part of a different point cloud
from a different class.

The first term maximizes the mutual information between local and global
embedding of the input PN , while pushing away a local part of a different input.
This ensures to incorporate a local information near the global representation and at
the same time clustering similar inputs into the hyperbolic feature space. Note that
with this procedure, we can contrast local parts of the same category, but selecting
different parts for each input guarantees that we can lead to hard negative samples
where different parts are pushed farther.

While the Rcontr induces a contrastive learning, with the first term Rhier we induce
the compositional hierarchy at different levels. Indeed in this case, we enforce the
encoder and the hyperbolic layers to encode global representations closer to the
Poincarè edge and local representation of the same input closer to centre of the ball.
In particular we use a variable margin α/N′ that depends on the number of points N′

of the sub-part PN′ . This means that representations of small parts with few points (
i.e. elementary shapes) will be far from the global representation and near the centre,
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instead representations of bigger parts with more points (i.e. complex objects) will
be closer to the edge, since these include enough information to classify the whole
object (e.g. a part including a wing and an engine is enough to understand that the
whole object is an aircraft).

The two regularizations are included in the final loss in this way:

L = LCE +αRcontr +βRhier (5.7)

where LCE is the conventional classification loss (e.g., cross-entropy) evaluated on
the whole objects. The classification head is a hyperbolic Möbius layer followed
by softmax. In principle, one could argue that LCE could already promote correct
clustering according to class labels, rendering Rcontr redundant. However, several
works [84] have noticed that the Möbius-softmax hyperbolic head is weaker than its
Euclidean counterpart. We thus found it more effective to evaluate LCE on the whole
objects only, and use Rcontr as a metric penalty that explicitly considers geodesic
distances to ensure correct clustering of both parts and whole objects.

During each training iteration with HyCoRe, shapes are sampled with a random
variable N′ that varies within a predefined range. A part is defined as the N′ nearest
neighbours of a randomly selected point. In future research, it would be intriguing
to explore alternative part definitions, such as incorporating part labels if available.
However, currently, we solely address the definition through spatial neighbors to
circumvent additional labeling requirements.

5.1.5 Experimental results

Experimental setting

The performance of the regularizer HyCoRe is evaluated on the synthetic dataset
ModelNet40 [101] (12,331 objects with 1024 points, 40 classes) and on the real
dataset ScanObjectNN [102] (15,000 objects with 1024 points, 15 classes). The
method is simply adapted over multiple classification architectures, namely the
widely popular DGCNN and PointNet++ baselines, as well as the recent state-of-
the-art PointMLP model. We substitute the standard classifier with its hyperbolic
version (Möbius+softmax), as shown in Fig. 5.1. We use f = 256 features to be
comparable to the official implementations in the Euclidean space, then we test the



5.1 Regularization in Hyperbolic space: application to point-clouds classification83

Table 5.1 Classification results on ModelNet40. *: re-implemented. **: re-implemented but
did not exactly reproduce the reference result.

Method AA(%) OA(%) Training

*PointNet++ [91] - 90.5 supervised
*DGCNN [95] 90.2 92.9 supervised
Point Transformer [104] 90.6 93.7 supervised
PA-DGC [105] - 93.6 supervised
CurveNet [106] - 93.8 supervised
**PointMLP [77] 91.2 93.4 supervised
**PointMLP (voting) 91.4 93.7 supervised

DGCNN+Self-Recon. [107] - 92.4 finetuned
DGCNN+STRL [108] - 93.1 finetuned
DGCNN+DCGLR [81] - 93.2 finetuned
*PointNet++ +PointGLR [79] - 90.6 finetuned

PointNet++ +HyCoRe - 91.1 regularized
DGCNN +HyCoRe 91.0 93.7 regularized
PointMLP +HyCoRe 91.7 94.3 regularized
PointMLP +HyCoRe (voting) 91.9 94.5 regularized

model over different embedding dimensions in the ablation study. Moreover, α and
= β are set to 0.01, while γ to 1000 and δ to 4. The number of points of each part,
N′, is sampled as a random number between 200 and 600, and for the whole object a
random number between 800 and 1024 to ensure better flexibility of the learnt model
to part sizes. The models are trained by using Riemannian SGD optimization. The
implementation is on Pytorch and geoopt [103] is used for the hyperbolic operations.
Models are trained on an Nvidia A6000 GPU.

Main Results

Table 5.1 presents the ModelNet40 classification results. In the initial part of the table,
we detail the outcomes for well-established supervised models, including PointNet++,
DGCNN, and the state-of-the-art PointMLP, with a note on potential challenges in
precisely reproducing official results for PointMLP [112]. Subsequently, the second
part showcases the performance of methods [107], [108], [81], which propose self-
supervised pretraining techniques followed by supervised finetuning. For PointGLR
[79], a method closely related to HyCoRe, we ensure fair comparison by utilizing
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Table 5.2 Classification results on ScanOb-
jectNN.

Method AA(%) OA(%)

DGCNN [95] 77.8 80.3
SimpleView [78] - 80.8
PRANet [109] 79.1 82.1
MVTN [110] - 82.8
PointMLP [77] 84.4 86.1
**PointNeXt [111] 86.4 88.0

DGCNN+HyCoRe 80.2 82.1
PointMLP+HyCoRe 85.9 87.2
PointNeXt+HyCoRe 87.0 88.3

Table 5.3 Effectiveness of hyperbolic space.

Average Accuracy (%)

Dim 16 64 256 512 1024

DGCNN 76.6 77.5 77.8 76.6 76.3
DGCNN+EuCoRe 78.2 78.9 79.0 78.8 79.0
Hype-DGCNN 76.8 75.9 76.5 76.0 77.5
DGCNN+HyCoRe 79.1 80.0 80.2 80.2 79.7

only the L2G embedding loss, excluding the pretext tasks of normal estimation and
reconstruction.

In the final part of the table, we present the outcomes with HyCoRe applied to the
chosen baselines. The results indicate substantial improvements not only compared
to randomly initialized models but also in comparison to finetuned models. When
implemented with PointMLP, HyCoRe surpasses the state-of-the-art performance
on ModelNet40. Notably, the embedding framework of PointGLR is less effective
without the pretext tasks, highlighting the unsuitability of the spherical space for
embedding hierarchical information. Moreover, the results achieved with HyCoRe
in Euclidean space are comparable to those obtained in the spherical space without
the pretext tasks.

Table 5.2 reports the classification results on the ScanObjectNN dataset. In this
case, HyCoRe significantly enhances the baseline DGCNN, bringing its performance
on par with state-of-the-art methods such as SimpleView [78], PRANet [109], and
MVTN [110]. Additionally, PointMLP, which already holds the state of the art
for this dataset, demonstrates further improvement with our method, achieving
an impressive overall accuracy of 87.2 %, outperforming all previous approaches.
Despite claims in [77] that classification performance has reached a saturation point,
our results illustrate that incorporating novel regularizers in the training process can
still yield significant gains. This underscores that the proposed method introduces
innovative ideas complementary to research on novel architectures, enhancing the
performance of even state-of-the-art methods. It is noteworthy that an older yet still
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Fig. 5.4 Embeddings produced by the hyperbolic encoder, projected to 2 dimensions with
hyperbolic UMAP. Each color represents a class; small points correspond to parts; large
points correspond to whole objects. Parts are closer to the center, sitting higher in the
hierarchy (whole objects at the border may share a common part ancestor reachable via the
geodesic connecting the objects).

Table 5.4 Classification results when one of
the two regularizations is omitted.

AA(%) OA(%)

DGCNN 77.8 80.3
DGCNN+Rhier 77.9 80.5
DGCNN+Rcontr 79.2 81.6
DGCNN+HyCoRe 80.2 82.1

Table 5.5 Performance vs. curvature of the
Poincarè Ball

Average Accuracy (%)

Curvature c 1 0.5 0.1 0.01

Hype-DGCNN 76.5 76.9 76.6 76.9
DGCNN+HyCoRe 80.2 79.4 78.7 78.5

popular architecture like DGCNN can outperform complex and sophisticated models
such as the Point Transformer when regularized by HyCoRe.

Additionally, to provide further evidence that enforcing the hierarchy between
parts contributes to building improved clusters, we present a 2D visualization with
UMAP of hyperbolic representations for the ModelNet40 data in Fig. 5.4. In this
visualization, colors indicate classes, large points represent whole objects, and small
points represent parts. Apart from the evident clustering based on class labels, the
emergence of the part-whole hierarchy is noteworthy, with part objects closer to the
center of the disk. Significantly, certain parts act as bridges across multiple classes,
as observed in the bottom right zoom, forming a geodesic connection between two
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class clusters and serving as common ancestors. This phenomenon arises from the
occurrence of simple parts with roughly the same shape appearing with multiple
class labels during training. The net effect of Rcontr is to position these parts midway
across the classes.

The tree-like structure of the hyperbolic space is also evident in the visualization
in Fig. 5.2 (right). Shapes are embedded with a gradually increasing number of
points up to the whole object composed of 1024 points. Notably, parts move towards
the disk edge as more points are added. Furthermore, a quantitative analysis of the
part-whole hierarchy is presented in Table 5.6. Here, we computed the hyperbolic
norms of compositions of labeled parts. The results indicate that as parts are assem-
bled with other parts, their hyperbolic norms increase, eventually reaching the whole
object, which is positioned close to the edge of the ball.

Another evidence of the tree-like structure is the geodesic path between two
objects that traverse common part ancestors. In particular, we start from the hyper-
bolic embedding of object A zA = H(exp(E(PA

N ))), and trace the geodesic to the
hyperbolic embedding of object B zB = H(exp(E(PB

N ))). For a number of points
on the geodesic we look for the nearest neighbors (hyperbolic distance) among the
embeddings of objects and parts in the dataset. To this aim, we use the parametric
version of the geodesic, defined as:

γzA→zB(t) = zA⊕c (−zA⊕c zB)⊗c t,γx→y : R→ Dn
c , (5.8)

where t is the step size along the geodesic, such that γ(t = 0) = zA and γ(t =
1) = zB. The Mobius operations, i.e. the addition and the scalar multiplication, are
defined in the gyrovector space through the following formulas:

x⊕c y =
(1+2c⟨x,y⟩+ c∥y∥2)x+(1− c∥x∥2)y

1+2c⟨x,y⟩+ c2∥x∥2∥y∥2 , (5.9)

t⊗c x = (1/
√

c) tanh(t tanh−1(
√

c∥x∥)) x
∥x∥

, (5.10)
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Fig. 5.5 Illustration of a geodesic path along two points close to the edge, representing the
embeddings of two different objects. Colored points are steps we sampled to interpolate
between the two embeddings.

Table 5.6 Hyperbolic Norms of labeled parts from the whole object up to the single parts.

Table Plane+uprights Legs+uprights Plane Legs Uprights

5.32 4.56 2.08 4.07 2.05 1.99

Aircraft Wings+tail+engines Wings+tail Wings Fuselage Tail
4.98 4.56 4.45 4.22 3.37 2.94

We analyze different paths in the hyperbolic 256-dimensional space for DGCNN
regularized by our method HyCoRe. A sketch of the geodesic interpolation is
represented in Fig. 5.5. In Fig. 5.6 we show three geodesics between different pairs
of objects. We can see that, near the whole objects, the parts are bigger and specific
to that class, while in the midpoints of the geodesic, common part ancestors emerge
and are shared by the two objects.

Furthermore, since geodesics length changes according to the connecting objects,
we add a geodesic in Fig. 5.7 for two objects of the same class. Even in this case
common parts are visible. This additional analysis reinforces our claim that the
tree-like structure of point cloud data is preserved at different hierarchies.

Ablation study

Here, an ablation study focusing on the DGCNN backbone and the ScanObjectNN
dataset is presented. The choice of the dataset is driven by its real-world nature, which
is expected to yield more stable and representative results compared to ModelNet40.

Firstly, we compare HyCoRe with its Euclidean counterpart (EuCoRe) to assess
the effectiveness of the hyperbolic space. While the basic principles and losses
remain the same, EuCoRe operates in the Euclidean space, as opposed to the hyper-
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Fig. 5.6 Hyperbolic nearest neighbors of points along a geodesic from the embedding of
object A and object B (ModelNet40) using our DGCNN+HyCoRe. As we approach to the
midpoint of the geodesic, smaller parts are encountered, indicating common ancestors shared
by the two objects.

Fig. 5.7 Interpolating a geodesic across two objects belonging to the same class leads to
consistent parts that become smaller and more general, respecting the tree-like structure
induced by our HyCoRe.
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bolic space in HyCoRe. Table 5.3 displays the results. We denote the hyperbolic
version of DGCNN without regularization as Hype-DGCNN, serving as a baseline
to isolate the individual impact of the regularizer. Models are also tested across
different numbers of embedding dimensions. The results indicate that EuCoRe offers
only modest improvement, underscoring the significance of the hyperbolic space.
The hyperbolic baseline struggles to match its Euclidean counterpart, as noted in
recent works [99], [84]. However, with the application of HyCoRe, significant gains
are observed, even in low dimensions. This raises a potential research question
about the development of better hyperbolic baselines to provide HyCoRe with a less
disadvantaged starting point.

Table 5.4 presents an ablation study on HyCoRe by removing one of the two
regularizers. The results demonstrate that the combined effect of both regularizers
yields the overall best performance.

To examine the impact of different space curvatures c, Table 5.5 evaluates
HyCoRe across standard curvature values from 1 down to 0.01. It’s noteworthy
that while some works [99], [113] report significant improvements at very low
curvatures (e.g., 0.001), our results show improved performance at higher curvatures,
contradicting the counterintuitive trend observed in certain studies.

Since HyCoRe guides the network to learn relations between parts and whole
objects, we posit that, at the end of the training process, the model should exhibit
improved capabilities in classifying coarser objects. Figs. 5.8a and 5.8b illustrate
the test accuracy of DGCNN on ModelNet40 when presented with a uniformly
subsampled point cloud and a small, randomly chosen, spatially-contiguous part,
respectively. HyCoRe demonstrates a gain of up to 20 percentage points for very
sparse point clouds and successfully detects objects from smaller parts. For a
fair comparison, we include the baseline DGCNN trained with random crops of
parts, which, although beneficial for accuracy, proves less effective than HyCoRe,
emphasizing the importance of compositional reasoning.
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Fig. 5.8 Test inference of DGCNN on ModelNet40.

5.2 Hyperbolic Regularization for Point Cloud Seg-
mentation

5.2.1 Motivation

Part segmentation in point clouds involves the classification of individual points
within the cloud based on the various parts that constitute the entire object. Unlike
point cloud classification, which classifies entire objects within the point cloud,
part segmentation focuses on finer details by identifying and categorizing distinct
components or parts of the objects.

While the hyperbolic framework demonstrated remarkable effectiveness in the
preceding section for the comprehensive classification of point clouds, it is crucial to
highlight a fundamental, and perhaps counterintuitive, distinction when tackling the
task of point cloud part segmentation.

The classification issue establishes the intended compositional hierarchy by
positioning entire objects as leaves on a tree and situating smaller parts closer to
the root. This hierarchy encapsulates the concept that complete objects represent
specializations of more basic universal parts. Navigating the hierarchy from object A
to object B involves passing through shared ancestral parts. This concept is mirrored
in the hyperbolic embedding, where entire objects are positioned near the edge of the
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Fig. 5.9 HyCoRe-seg architecture. A state-of-art network encodes a point cloud into a feature
space with per-point feature vectors. A part is extracted as the k nearest neighbors of a
random point in the feature space, its average feature vector is computed and moved to the
hyperbolic space via Exponential map. Regularizers impose the desired part-whole hierarchy
and correct clustering according to labels.

Poincarè ball and parts closer to the center as they become more universal (shared
across more objects).

In part segmentation we need to reverse this concept, since we do not want to
classify whole objects but parts of it.

Indeed, in the classification task, we separate as much as possible the clusters of
embeddings of whole objects belonging to different classes. Instead for point cloud
segmentation, the goal is to group together points that belong to separate objects
within the overall scene. This results in a broader classification of entire entities or
structures present in the point cloud, often with the aim of understanding the overall
composition of the surround.
This condition is more effectively met when those embeddings are situated closer to
the edge of the Poincaré ball, where space undergoes exponential expansion, provid-
ing more space for enhanced cluster separation. In other words, the regularization in
the hyperbolic space is determined by the hierarchy we aim to incorporate as a form
of regularization, and concurrently, it has to depend on the specific task we seek to
address.

5.2.2 Proposed method

An overview of the proposed method and how it fits a generic neural network
architecture for the segmentation task is shown in Fig. 5.1. At a high level, the
segmentation head of the neural network is replaced with a hyperbolic counterpart
with Mobius layers. The segmentation loss is augmented by two regularizers which
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work on the embedding of the entire point cloud (feature vector average-pooled
from all points) and of a part (feature vector average-pooled from a neighborhood
of points, defined as k-NN in feature space) after mapping to the hyperbolic space.
The contrastive regularizer promotes separation among embeddings of different
classes, while the hierarchy regularizer promotes a part-whole hierarchy, placing
whole objects closer to the origin of the Poincarè ball and smaller parts towards
the edge. As mentioned, the geometry of this hyperbolic setting is very different
from that employed in [12] for classification; the geometry is further explained in
the following section, then we provide an intuition about the obtained whole-part
hierarchy.

Hyperbolic feature space regularization

In this section, we present the proposed method to regularize neural networks for
part segmentation of point clouds via the hyperbolic space. Let the input to the
model be a point cloud PN as a set of N 3D points p ∈ R3. We consider a generic
encoder backbone providing a feature vector per point, i.e., E : RN×3→ RN×F . A
segmentation head processes these features to derive class scores for each point. In
HyCoRe-seg, this module is implemented with hyperbolic neural network layers.
In particular, we use an exponential map to move from the Euclidean to hyperbolic
space and then use one or more Mobius layers shared across points to reduce the
dimensionality from F to the desired number of classes.

We seek to regularize the feature space produced by the encoder and ultimately
used to estimate the segmentation labels so that it leverages prior knowledge about
the existence of a hierarchy between parts and whole objects. In particular, we
assume that this hierarchy can be described by a tree whose root is a whole object
and leaves are small constituent parts. Each level of the hierarchy decomposes the
object into smaller and simpler parts. This tree can be embedded in the Poincarè ball
by placing the embedding of a whole object close to the origin of the ball and the
embedding of small parts close to the ball edge. This is motivated by the properties
of the hyperbolic space. In fact, a geodesic (shortest path) between two points passes
closer to the origin, emulating the fact that traversing a tree from leaf to leaf requires
to pass closer to the root. With this objective in mind, we need to analytically define
what a part is for the purpose of training. A straightforward definition would be a
number of spatially neighboring points, or the subset defined by the available part
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Table 5.7 Effectiveness of regularizers.

Inst. mIOU
DGCNN+HyCoRe-seg 85.7
DGCNN+Rcontr 85.6
DGCNN+Rhier 85.5

labels. Notice, however, that our definition of hierarchy may be more general than
the specific semantic part labels that are available, so it even makes sense to create
parts, for the purpose of regularization, that do not necessarily follow either the
labels or clear semantic concepts. In this chapter, we introduce a different definition
of part, based on finding the N′ nearest neighbors of a random point in the feature
space produced by the encoder E. This definition allows to capture “parts” in a more
general sense and exploiting, possibly non-local, self-similarities thanks to the fact
that neighbors in a feature space capture higher-level properties.

HyCoRe-seg combines the classic cross-entropy loss on the outputs of the hyper-
bolic segmentation head with two regularizers working on the embeddings of the
parts and the whole point cloud. In particular, the overall loss function for training is
as follows:

L = LCE +αRcontr +βRhier. (5.11)

The Rhier regularizer promotes the aforementioned part-whole hierarchy by means
of a triplet cost:

Rhier(zwhole,zpart) = max(0,∥zwhole∥D−∥zpart∥D+ γ(N′)).

The embedding of the whole point cloud zwhole is obtained by averaging the features
of all points in the Euclidean space, as produced by the encoder E, and then mapped
to the hyperbolic space via exponential map, while the embedding of the part zwhole

is obtained in the same way but only restricted to the points selected as a part. We
remark that we experimentally verified that average pooling in the Euclidean domain
seems superior to doing that in the hyperbolic space. This might be related to the
difficulty in defining the hyperbolic average operation (Einstein midpoint), as it is not
available in closed form for the Poincarè ball, and the typical approach of mapping
to the Klein model seems to introduce undesirable approximations.
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Table 5.8 Performance of DGCNN+HyCoRe-seg where the parts are defined as local neigh-
borhood of a point in the feature space or in the input space.

Inst. mIOU
Parts in Feature Space 85.7
Parts in Input Space 85.6

Additionally, the Rcontr regularizer promotes correct clustering of parts and whole
point clouds in the hyperbolic space. It is defined as follows:

Rcontr(z+whole,z
+
part,z

−
part) = (5.12)

max
(
0,dD(z+whole,z

+
part)−dD(z+whole,z

−
part)+δ (N′)

)
(5.13)

where z+whole and z+part are the hyperbolic representation of the whole and a part from
the same point cloud, while z−part is the embedding of a part of a different point cloud
from a different class. In both regularizers, hyperparameters γ ,δ are functions of the
number of points N′, computed as γ(N′) = δ (N′) = 1024/N′.

5.2.3 Experimental results

In this section, the experimental results obtained by HyCoRe-seg for the part seg-
mentation task are shown. As dataset, the widely-known ShapeNetPart dataset [114],
composed of 16881 3D objects spread across 16 categories, is used. The proposed
method is applied to the DGCNN architecture to observe how HyCoRe-seg can boost
the performance of a recent widely-used model. The Euclidean segmentation head
of the original model is replaced with a hyperbolic equivalent with a Mobius and
softmax layer shared across points. The overall number of parameters is unchanged.
We set α = β = 0.01, γ = 1000 and δ = 4. A part has N′ points selected as nearest
neighors in the feature sapce of a random point. N′ is chosen as a random number
between 200 and 600. We train the models using Riemannian SGD optimization.
Pytorch and the geopt library are used for hyperbolic operations. Models are trained
on Nvidia Titan RTX GPUs. To evaluate performances we used the common mean
Intersection Over Union (mIOU) defined as follows:
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mIOU =
1
C

C

∑
j=0

Area j o f Intersection
Area j o f Union

where Area of Intersection is defined as the number of points correctly labeled
for the class j in the predicted output and Area of Union is the total number of points
labeled for the class j. Finally the average over all the C classes is computed.

Table 5.9 shows the results for part segmentation. It can be seen that regular-
ization via HyCoRe-seg significantly improves the performance of the DGCNN
baseline model. We can also see that HyCoRe-seg outperforms techniques such as
self-reconstruction [107] aimed at capturing global-local hierarchies via pretraining
strategies.

Table 5.7 shows that the combination of the two proposed regularizers, i.e., hier-
archy and contrastive, to superior to using each individually. This can be attributed
to a better penalization of degenerate feature space configurations promoted by the
individual costs.

Finally, Table 5.8 shows the effect of defining parts as spatial neighborhoods
rather than feature-space neighbors. It can be seen that exploiting similarities in the
feature space leads to a more effective definition of parts.

5.3 Dynamic Hyperbolic Attention Network for Fine
Hand-object Reconstruction

5.3.1 Background and Related Work

3D hand-object reconstruction from monocular RGB images is a fundamental task
in computer vision. Given a single RGB image of a hand interacting with an
object, it aims at predicting a 3D mesh of both the hand and the object under the
correct pose and precisely modeling the hand-object interaction. Although the 3D
posed reconstruction has a wide application in human-machine interaction, robotic
grasping/learning, and augmented reality, the challenges of this task still remain in
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two aspects: 1) reconstructing meshes with the pose and scale consistent with the
input; and 2) fulfilling the physiological rules on hands and physical characteristics
of hand-object interaction.

Existing methods deal with hand-object images or meshes in Euclidean space
[5, 115–122, 8], learning image features and regress model parameters of hand and
object from Euclidean embeddings. To accurately reconstruct meshes of hands
and objects, especially around the area of mutual occlusion, existing methods [115–
117, 120, 118, 119] optimize the reconstruction by taking the physical interaction
between the hand and the object as a cue. These methods can be broadly divided into
two categories: learning-based methods and optimization-based methods. Learning-
based methods employ attention mechanism [115–117], and other advanced models
[120, 118, 119] to model hand-object interactions. Optimization-based methods
integrate physical constraints, like Spring-mass System [121] and 3D contact priors
[122, 8] with contact loss functions, constraint the optimization process. Existing
methods almost directly regress the model parameters of hand-object meshes from
image features and manually define interaction constraints without exploiting the
geometrical information. In this section, we seek for learning geometry-image
multi-modal features in hyperbolic space to reconstruct accurate meshes.

As mentioned in recent research on Representation Learning in hyperbolic space
[123–127], the effectiveness of Euclidean space for graph-related learning tasks is
still limited and has failed to provide powerful geometrical representations. Com-
pared to Euclidean space, hyperbolic space exhibits the potential to learn represen-
tative features. Due to the exponential growth property of hyperbolic space, it is
innately suitable to embed tree-like or hierarchical structures with low distortion
while preserving local and geometric information [126, 127]. There have been
attempts to represent and process mesh and image features in hyperbolic space [128–
131, 124, 123]. However, joint feature learning of meshes and images in hyperbolic
space for accurate hand-object reconstruction has not yet been explored.

To this end, we propose the first method based on hyperbolic space for hand-
object reconstruction, named Dynamic Hyperbolic Attention Network , to leverage
the benefits of hyperbolic space for geometrical feature learning. Our approach
consists of three modules, image-to-mesh estimation, dynamic hyperbolic graph
convolution, and image-attention hyperbolic graph convolution. Firstly, the image-
to-mesh estimation module geometrically approximates the hand and object from
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an input image. Secondly, hand and object meshes are projected to hyperbolic
space for better preserving the geometrical information. Our dynamic hyperbolic
graph convolution dynamically builds neighborhood graphs in hyperbolic space
to learn mesh features with rich geometric information. Thirdly, we project mesh
and image features to a unified hyperbolic space, preserving the spatial distribution
between hand and object. Our image-attention hyperbolic graph convolution embeds
the distribution into feature learning and models the hand-object interaction in a
learnable way. With these modules, our method learns more representative geometry-
image multi-modal features for accurate hand object reconstruction. Comprehensive
evaluations of our method on three public hand-object datasets, namely Obman
dataset [5], FHB dataset [6], and HO-3d dataset [8], where DHANet outperforms
the state-of-the-art methods, confirms the superiority of our design.

Hand-object reconstruction is an attractive research area. Earlier methods focused
on reconstructing hand and object from multi-view images [132, 133] or RGBD
images [134, 135] due to severe occlusion between hand and object. In recent trends,
joint reconstruction of both shapes from a single RGB image has become popular. It
is a more challenging task due to the limited perspective. Existing methods can be
divided into two categories: optimization-based and learning-based methods.

Optimization-based methods design contact patterns manually based on a pa-
rameterized representation of hand and object to model the hand-object interaction
explicitly. Cao [122] leveraged the 2D image cues and 3D contact priors to constrain
the optimizations. 2D image cues include the estimated object mask via differen-
tiable rendering and the estimated depth. 3D contact priors are based on hand-object
distance and collision. Yang [121] presented an explicit contact representation,
Contact Potential Field (CPF). Each contacting hand-object vertex pair is treated as
a spring-mass system. They also introduced contact constraint items and grasping
energy items in their learning-fitting hybrid framework. Ye [136] parameterizes the
object by signed distance, leveraging the input visual feature and output hand mesh
information to infer the object representation. Zhao [137] represents hand and object
as a hand-object ellipsoid, recovering hand-object driven by the simulated stability
criteria in the physics engine. However, the performance of these methods is limited
by the manually defined interaction.

Learning-based methods employ advanced mechanisms to model the relation-
ship between hand and object implicitly. These methods can be divided into two
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Fig. 5.10 DHANet overview. Given an image with hand-object interaction, image encoder-
decoders first approximate the mesh with an initial form. Subsequently, image features from
encoders and meshes are projected to hyperbolic space via the Exp function. Our dynamic
hyperbolic graph convolution (DHGN) and image-attention hyperbolic graph convolution
(IHGN) learn representative mesh features, projected to Euclidean space via the Log function
and concatenated with image features to derive an accurate hand-object reconstruction.

categories: non-graph-based and graph-based. Non-graph-based methods model
without the use of graph structure.

The first end-to-end learnable model is presented by Hasson [5] and exploits
a contact loss to model the interaction. Cheng [138] proposes a pose dictionary
learning module to distinguish infeasible poses. Liu [115] builds a joint learning
framework where contextual reasoning between hand and object representations.
Li [139] proposes ArtiBoost, a lightweight online data enhancement method that
constructed diverse hand-object interactions using a data enhancement approach.
Graph-based methods represent hand-object as graphs, utilizing graph convolution
to learn the hand-object interaction. Doosti [118] is the first to design an Adaptive
Graph U-Net to transform 2D keypoints to 3D. A context-aware graph network and a
learnable physical affinity loss are proposed to learn interaction messages [119]. Tse
[120] transfers mesh information to the decoder of image features in a collaborative
learning strategy. An attention-guided graph convolution learns mesh information.
However, these methods learn the embedding of keypoints or meshes in euclidean
space, failing to capture rich geometry information. In our work, we aim to capture
geometry information in hyperbolic space, which is beneficial to the reconstruction
of hands and objects.
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Fig. 5.11 This figure illustrates the pipeline of DHGC, which involves several steps. A given
mesh is projected from Euclidean to hyperbolic space using the exponential function. We
then conduct dynamic graph construction and employ hyperbolic graph convolution to learn
the geometry features of the mesh.

Hyperbolic Graph Neural Network

Hyperbolic Graph Neural Networks (HGNN) [140] generalizes graph neural net-
works to hyperbolic space. In comparison to graph neural networks in Euclidean
space, HGNN is more suitable for tree-like data and therefore learns more powerful
geometrical representations [127]. HGNN consists of four steps: feature projec-
tion, feature transformation, neighborhood aggregation, and activation. For the l-th
layer in HGNN, given a graph G = (V ,E ) with a vertex set V and an edge set E ,
xl−1,E

i ∈ V is the input node feature for i-th vertex in Euclidean space. The feature
projection is to project node features to hyperbolic space by Exp function. The
feature transformation is usually operated by a Mobius layer [141], which involves
Mobius vector multiplication ⊗ and Mobius bias addition ⊕. The neighborhood
features are aggregated by hyperbolic aggregation functions, AGGB. The last is a
non-linear hyperbolic activation, σB. In short, a hyperbolic graph convolution layer
can be formulated as:

xl−1,B
i = Exp(xl−1,E

i ), (5.14)

hl,B
i = xl−1,B

i ⊗W l⊕bl, (5.15)

yl,B
i = AGGB(hl,B), (5.16)

xl,B
i = σ

B(yl,B
i ). (5.17)

For more details on the functions, please refer to [127].
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5.4 Methodology

In this section, we present our novel method for hand object reconstruction, called
the Dynamic Hyperbolic Attention Network (DHANet). As shown in Figure 5.10,
our approach consists of a two-branch network that jointly reconstructs both the hand
and object meshes. Specifically, our method comprises three main steps: 1) Image-
to-mesh estimation (Section 5.4.1), 2) Dynamic Hyperbolic Graph Convolution for
learning mesh features (Section 5.4.2), and 3) Image-attention Hyperbolic Graph
Convolution for modeling the hand-object interaction (Section 5.4.3).

5.4.1 Image-to-mesh estimation

As depicted in 5.10, the image-to-mesh estimation step aims to estimate the initial
3D meshes of the hand and object from a given image. Each branch employs an
encoder-decoder architecture, where the encoder consists of two pre-trained ResNet-
18 [142] encoders pre-trained on ImageNet [143]. The decoders are specifically
designed to output the hand or object meshes, respectively.

Hand Reconstruction Decoder. The hand reconstruction decoder predicts the
hand parameters from image features using the MANO model [144], which is an
articulated mesh deformation model rigged with 21 skeleton joints. The MANO
model is represented by a differentiable function D(β ,θ), where θ ∈ R51 denotes
the shape parameters and β ∈ R10 denotes the pose parameters. We employ a multi-
layer perceptron (MLP) to directly regress β and θ from the image features. Then,
a differentiable MANO layer [5] applies D to generate a hand MANO model from
β and θ . The hand mesh of the MANO model is defined as mh = (vh, fh), where
vh ∈R778×3 denotes the mesh vertices and fh ∈R1538×3 denotes the mesh faces. The
supervision signal for this branch comes from the L2 loss, which consists of the L2
distance between the predicted mesh vertices and the ground truth mesh vertices, as
well as the L2 distance between the predicted joint positions and the ground truth
joint positions.

Object Reconstruction Decoder. The objective of the decoder for object re-
construction is to predict the 3D object mesh from the image features. We employ
AtlasNet [145] as the object decoder, following the approach of existing methods
such as [5, 120, 146]. The AtlasNet branch takes the image features from the en-
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coder and generates the object mesh mo = (vo, fo), where vo ∈ R642×3 represents
the mesh vertices and fo ∈ R1280×3 represents the mesh faces. The branch is trained
to minimize the Chamfer distance [145], which measures the average minimum
distance between points on the predicted mesh and the nearest points on the ground
truth mesh.
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Fig. 5.12 Our image attention hyperbolic graph convolution. The operations in the yellow
rectangle are implemented in hyperbolic space, while the blues are in Euclidean space.

5.4.2 Dynamic hyperbolic graph convolution

Hyperbolic space has been shown to be well-suited for processing tree-like graphs
due to its exponential growth property, which preserves local and geometric informa-
tion with low distortion [126, 127]. As meshes are naturally tree-like graphs, we aim
to learn mesh features with rich geometric information in hyperbolic space. Building
on DGCNN [95], which captures the local geometry structure of point clouds in
Euclidean space, we propose a dynamic hyperbolic graph convolution to learn mesh
features. This module consists of three steps: projection, graph construction, and
hyperbolic graph convolution.

Projection. We project the vertices of a mesh vE ∈ Rn×3 into hyperbolic space
using an exponential map function, vB = exp(vE), as illustrated in 5.11. Here, vB

denotes the set of mesh vertices in hyperbolic space.

Graph Construction. To construct a neighborhood graph for the vertices, we
employ a hyperbolic k-nearest neighbors (k-NN) algorithm, which searches for the k
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closest points for each vertex based on the geodesic distance between two vertices,
d(vB

i ,v
B
j ). This approach allows us to capture the local geometry structure of the

mesh in hyperbolic space.

Hyperbolic Graph Convolution. Hyperbolic graph convolution is to learn a
neighborhood feature for each vertex, including transforming vertex features on an
m-dimensional Poincaré ball by a Mobius layer [141], aggregating and activating
neighborhood features, as shown in 5.11. This process can be formulated as

vl,B = σ
B(AGGB(Möbius(exp(vl−1,E)))). (5.18)

For the aggregation function, we adapt mean aggregation in Poincaré ball, which
returns the Einstein midpoint among vertices in a k-neighborhood [127]. Compared
to EdgeConv in DGCNN [95], DHGC solely focuses on learning pointwise node
features without considering edge features, as there is no defined edge vector in
hyperbolic space unlike in Euclidean space.

5.4.3 Image-attention hyperbolic graph convolution

As mentioned in the previous sections, due to the exponential growth of distance in
hyperbolic space, image features projected to hyperbolic space are more expressive
for semantic segmentation [124] and image classification [123]. Inspired by these
works, we project image features to hyperbolic space. Projected image features
preserve the spatial relationship between hand and object, which is beneficial for
model hand-object interaction. Hence, we propose an image-attention hyperbolic
graph convolution to learn geometry-image multi-modal features, modeling hand-
object interaction. As shown in 5.12, this module consists of four steps, projection,
neighborhood graph construction, feature transformation, and image attention.

Inputs. Taking hand reconstruction as an example, this module takes as input
image features in Euclidean space and mesh features in hyperbolic space denoted
as FB

mesh. The image features include shallow image features of the hand FE
sh, deep

image features of the hand FE
dh, and deep image features of the object FE

do. To ensure
consistency in dimensions, fully connected layers are applied to the image features
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Projection. We use the exponential function defined in 5.14 to map the image
features to hyperbolic space. This results in obtaining image features in hyperbolic
space denoted as FB

sh,F
B
dh,F

B
do, are obtained.

Graph Construction. To construct the k-neighborhood for each vertex in FB
mesh,

we utilize a hyperbolic KNN algorithm Specifically, We construct four types of
k-neighborhood constructed for each vertex. These four neighborhoods of each
vertex are successively composed of k mesh features, k shallow image features, k
deep hand image features and k deep object image features, which are defined as f1,
f2, Q and K. Through building four types of k-neighborhood, image features and
mesh features are aligned in a unified hyperbolic space.

Feature Transformation. Mesh features are enhanced by similar shallow image
features. In a neighborhood, mesh features f1 are concatenated with similar shallow
image features f2. The concatenated feature is transformed into V with a similar
dimension as Q and K, by a Mobius layer, formulated as:

V = Möbius(C( f1, f2)), (5.19)

where C represents the concatenation operation.

Image Attention. We define the image attention to model the hand-object
interaction. V indicates hand mesh features. Q refers to hand deep image features
similar to hand mesh, while K refers to object deep image features similar to hand
mesh. Then we use the object image feature to fetch the hand image feature and
hand mesh feature, as shown 5.12. The process can be formulated as

FE
o→h = softmax(

log(Q)log(K)T
√

d
)log(V ) (5.20)

where Fo→h is the hand-object attention mesh features encoding the interaction be-
tween hand and object, and d is a normalization constant. For ease of calculation, we
map features by log function into Euclidean space. At last, image-attention hyper-
bolic graph convolution learns geometry-image multi-modal features, concatenated
with image features from encoders to reconstruct a mesh by decoders, as shown in
5.10.



5.5 Experiments 105

5.5 Experiments

5.5.1 Datasets

Obman is a large-scale synthetic image dataset of hands grasping objects [5]. The
objects in Obman are 8 types of common items, whose models are selected from the
ShapeNet [147] dataset. The hands in this dataset are modeled with MANO [148].
The dataset is labeled with 3D hand and object meshes, divided into 141K training
frames and 6K test frames.

First-person hand benchmark (FHB) is a real egocentric RGB-D videos
dataset about hand-object interaction [6]. There are 105,459 RGB-D frames anno-
tated with 3D object meshes for 4 items and the 3D location of hand joints. We use
the same way to divide a training set and a testing set, like [5]. To be consistent with
the existing methods [5, 120], we exclude the milk model and filter frames in which
the hand is further than 10 mm from the object. This subset of FHB is called FHB−.

HO-3D is also a real image dataset for hand-object interaction [8]. The objects in
HO-3D are 10 objects from YCB dataset [149]. The dataset contains hand-object 3D
pose annotated RGB images and their corresponding depth maps. Our experiment
uses HO-3D (version 2) split into 70K training images and 10K evaluation images
as in [150].

5.5.2 Evaluation metrics

The reconstruction quality of hands and objects are evaluated with the following
metrics.

Hand error. The mean end-point error (mm) over 21 joints and the mean vertices
error of meshes are computed to evaluate the hand reconstruction.

Object error. To evaluate the object reconstruction, we report the Chamfer
distance (mm) between points sampled on the ground truth mesh and vertices of the
predicted mesh.

Contact metrics. Reconstructed hand-object should be impenetrable according
to the laws of physics. For assessing the physical validity of the results, we also adopt
penetration depth (mm) and intersection volume (cm3) as [5, 120]. Penetration depth
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Input Hasson et al. Ours

Fig. 5.13 Qualitative comparison with Hasson [5] on Obman dataset [5]. The red circles
highlight the errors from Hasson . [5]. The green arrows point to improvements of our
method.
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Methods
Hand
error

Object
error

Max.
penetra.

Intersect.
vol.

Hasson [5] 11.6 641.5 9.5 12.3
Tse [120] 9.1 385.7 7.4 9.3
Ours 10.2 529.3 9.3 10.4

Table 5.10 Comparison to state-of-the-art methods on Obman dataset [5]. The hand error
is calculated on joints. Here we report the result of Hasson [5] without contact loss. “Max
penetration" is shortened to “Max. penetra.". “Intersection volume" is shortened to “Intersect.
vol."

is the maximum distance between hand mesh to object mesh when the hand collides
with the object. Otherwise, the penetration depth is 0. Intersection volume is the
intersection volume of the hand and object. We compute the volume by voxelizing
the hand and object under a voxel size of 0.5 cm.

5.5.3 Implementation details

We use the work of Hasson [5] as encoder-decoder, namely baseline. We initialize our
baseline with the model parameters of Hasson [5]. When training our network, we
adopt Riemannian Adam optimizer [141], a generalization optimizer for Riemannian
manifolds. For the Obman dataset, the training strategy is the same as [5]. We first
train the object branch for 100 epochs at a learning rate 10−4, then train the hand
branch for 100 epochs at a learning rate 10−4 while freezing the object branch. For
datasets of real scenes, HO-3d and FHB−, we train the hand and object branches
together for 300 epochs with a learning rate of 10−4, then train them for other 300
epochs with a learning rate of 10−5. For more details on the implementation of our
model please refer to the supplementary material.

5.5.4 Hand-object reconstruction results

Method for comparison. In the single image hand-object reconstruction field, there
are a few methods [5, 122, 121, 120, 151], which represent a hand as MANO model
and represent an object as 3D mesh. While existing methods include two categories,
one for known object models [121, 122, 151], the other for unknown object models
[5, 120], Our method belongs to the latter category. There are still some hand-object
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Methods
Hand
error

Object
error

Max.
penetra.

Intersect.
vol.

Hasson [5] 28.1 1579.2 18.7 26.9
Tse [120] 25.3 1445.0 16.1 14.7
Ours 23.8 1236.0 14.43 20.7

Table 5.11 Comparison to state-of-the-art methods on FHB− dataset [6]. The hand error is
calculated on joints. Here we report the result of Hasson [5] without contact loss. “Max
penetration" is shortened to “Max. penetra.". “Intersection volume" is shortened to “Intersect.
vol."

Methods
Hand
error

Object
error

Hasson [5] 14.7 26.8
Cao [122] 9.7 19.9
Tse [120] 10.9 -
Ours 6.1 13.8

Table 5.12 Comparison to state-of-the-art methods on HO-3d dataset [8]. The hand error is
calculated on the vertices of the hand mesh.

reconstruction works based on SDF [146, 136], representing objects as a dense 3D
mesh, while in our work we reconstruct an object as a simple mesh with 642 vertices.
Hence, we compare our method with [5] and [120].

Results. Table 5.10 indicates our method achieves better results on Obman
dataset [5] than the baseline method [5] in hand and object errors. Compared with
the baseline method [5], our method yields a smaller hand error of 10.7 mm vs. 11.6
mm and a smaller object error of 563.5 mm vs. 641.5 mm. Our method also achieves
better results on contact metrics. As shown in Figure 5.13, our method reconstructs
better the fine-grained pose and shape of hands with respect to the input image. Like
the drum in Figure 5.13, the reconstructed drum by our method is more consistent
with the original shape in the image. And it can be observed that hands reconstructed
by our method are more consistently posed with the objects. This suggests that our
method better models hand-object interaction. However, the performance of our
method is less than Tse [120] in Figure 5.13. The reason is that the work of Tse
[120] is an iterative network, iterating twice to get better results.
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Input Hasson et al. Ours

Fig. 5.14 Qualitative comparison with Hasson . [5] on FHB− dataset [6].The red circles
hightlight the errors from Hasson . [5]. The green arrows point to improvements of our
method.

The experimental results compared with existing methods on FHB− dataset [6]
is listed in Table 5.11. In FHB− dataset, our method achieves SOTA results whit
smaller hand error (23.8 mm) and smaller object error (1236.0 mm). The qualitative
results of this dataset are shown in Figure 5.14. And the comparison results on
HO-3d [8] are shown in Figure 5.12. We also reach SOTA results on the hand error
and the object error. FHB− dataset and HO-3d are captured in real scenes, not
synthetic data. The decent results manifest our method can handle not only synthetic
data but also real-world cases. Furthermore, our method outperforms the work of Tse
[120], since encoders pre-trained on ImageNet [143] provide better image features
for images of real-world.

5.5.5 Ablation study

We conducted ablation studies to demonstrate the effectiveness of our proposed
dynamic hyperbolic graph convolution (DHGC) and image-attention hyperbolic
graph convolution (IHGC). As shown in Figure 5.13, adding DHGC with baseline
reduces the hand error to 10.9 mm while reducing the object error to 582.9 mm.
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(a) (b) (c) (d) (e)

3.4

5.55 16.55

29.53

(f) (g) (h) (i) 

Thumb
Index finger
Midfinger
Ring finger
Pinkie
Palm

Hand mesh features
Shallow image features of hand 
Deep image features of object in contact area 
Deep image features of object in no-contact area 
Deep image features of hand in contact area 
Deep image features of hand in no-contact area 

The legend of (b), (c), (f) and (g)

The legend of (h) and (i)

Fig. 5.15 Visualization of features in hyperbolic space and Euclidean space. (a): a sample
image from Obman dataset [5]. (b): vertices of the hand mesh reconstructed from (a). (c) is
rotated by (b). (d): the hand deep image features from the encoder of the hand branch. (e):
the object deep image features from the encoder of the object branch. The description of (f),
(g), (h), (i), and (j) is in 5.5.6.

This suggests that the mesh feature learned by DHGC provides richer geometric
information. Furthermore, IHGC further improves the reconstruction results, which
further reduced the hand and object error to 10.2 mm and 529.3 mm. And the
performance on contact metrics also declined. These results demonstrate that IHGC
effectively enhances mesh features with image features while modeling hand-object
interactions.

In order to verify the superiority of our method in hyperbolic space, we also
implement dynamic graph convolution and image-attention graph convolution in
Euclidean space. The comparison results are listed in 5.13. We can observe that
these two modules in Euclidean space have improved from the baseline [5], while
the improvement is less than ours in hyperbolic space. It proves quantitatively that
our method achieves better performance in hyperbolic space than in Euclidean space.

5.5.6 Visual analysis of hyperbolic learning

We further prove the superiority of our method visually and by analysis of features
in hyperbolic space in 5.15. To facilitate observation, we use UMAP [152] to project
features to 2 dimensions, as in [12]. Given an image as in 5.15 (a), we visualized the
distribution of the corresponding 3D mesh in hyperbolic space and Euclidean space,
depicted in 5.15 (f) and 5.15 (g). As shown in 5.15 (c), pink points are near blue
points and far from brown points. The relative position is reflected in hyperbolic



5.5 Experiments 111

Methods
Hand
error

Object
error

Max.
penetra.

Intersect.
vol.

Baseline [5] 11.6 641.5 9.5 12.3
Baseline+1(EU) 11.6 589.2 10.8 13.5
Baseline+1+2(EU) 11.1 586.1 11.2 10.7
Baseline+1(H) 10.9 582.9 10.7 10.9
Baseline+1+2(H) 10.2 529.3 9.3 10.4

Table 5.13 Ablations on modules and feature spaces. 1 refers to dynamic hyperbolic graph
convolution. 2 refers to image-attention hyperbolic graph convolution. EU represents the
operation in Euclidean space, while H represents hyperbolic space.

space, as depicted in 5.15 (f), but not in Euclidean space, as depicted in (g). It
indicates that embedding mesh into hyperbolic space can preserve the geometry
properties of the mesh.

In image-attention hyperbolic graph convolution, we project mesh features,
shallow image features, deep image features of hand, and deep image features of
object to hyperbolic space. In 5.15 (h), some yellow points are overlapping with red
points. It indicates that shallow image features are aligned with mesh features in
hyperbolic space. However, shallow image features and mesh features are separated
in Euclidean space, as shown in 5.15 (i). Aligned features are conducive to feature
learning in a unified space. In addition, there are overlapping regions in deep image
features of hand and object, as shown in 5.15 (d) and 5.15 (e), expressing the area
of hand-object interaction. It is reflected in hyperbolic space, as shown in 5.15 (h).
Some light blue points are close to a few light green points, others vice versa. The
closer region in hyperbolic space represents the area of hand-object interaction in
the image. Furthermore, the spatial relationship is not expressed in Euclidean space.
As shown in 5.15 (i), the light blue points are far from the light green points. This
highlights the ability of hyperbolic space to align multi-modal features and preserve
spatial relationships.



Chapter 6

Conclusions and future directions

In this thesis different aspects of deep learning in computer vision have been inves-
tigated. First we started by an explainability pipeline inspired by the analysis and
theories coming from neuroscience, i.e. the ATHENA-N project. It revealed effective
for explaining and characterize single units in different convolutional arvhitectures,
aggregate units to extract information in different layers and then highlight general
properties of the networks.

A natural extension of the project will involve new architectures other than CNNs,
such as transformers and graph networks, trained with different modalities, e.g. text-
to-image models or video understanding. Already in Olah’ project [153], they
discovered multimodal neurons tuned to the same subject in photographs, drawings
and text in CLIP model [154]. The ATHENA-N analysis could reveal other prop-
erties in these foundational models that now are the state of the art in computer vision.

In addition, we also showed the importance of ATHENA-N as a in silico bench-
mark for the set up of electrophysiology experiments in the primate visual brain.
We showed promising results through techniques completely developed in silico
with CNNs. This means that even if CNNs are considered far from the real model
of the visual cortex, experiments and studies of these artificial networks revealed
predictions that then are confirmed in biological networks.
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This line is currently being explored through a statistically significant analysis
across many experiments in different visual areas (V1, V4, IT) and in different
monkeys.

It would be also interesting to adapt some of these studies to humans. Although
electrophysiology is not allowed, other non invasive techniques are being explored in
human brains, like fMRI and EEG. These instruments could allow to answer to some
questions already posed in the ATHENA-N project with more context, for example,
what do humans perceptually prefer as visual stimuli? Natural stimuli or artificial
prototypes generated by generative models? What is the neuronal activity tuned for?
Does the perception align to the neuronal activity?

In the following chapter we have presented eGLASS, a framework to navigate
the latent space of GANs to find many solutions for linear inverse problems, e.g.
denoising and super-resolution. GAN inversion is a powerful method to solve image
inverse problems when the forward operator is known. However it may take time to
find many solutions due to the optimization algorithm in the latent space. To solve
this issue, once a solution is found, eGLASS exploits the geometry of the latent
space to find new solutions that are perceptually different from the starting solution
while keeping the measurement error as small as possible. This is possible since the
solution space has not a global unique minimum, rather a flat manifold of minima
where different solutions can be found. A further analysis in this direction could
confirm the existence of this sub manifold and it is a general concept emerged in
different generative models.

We showed examples for two inverse problems, i.e. super-resolution and in-
painting. Further work could be done expanding eGLASS to other networks and
other inverse problems. An interesting question is also how to adapt the method
to Diffusion Models. These models are now the state of the art generative models,
hence they are a better prior for natural images. Studying the geometrical properties
of their latent spaces is an important direction to both understand the image manifold
they build and understand how to navigate it to solve inverse problems.
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The third chapter proposed a self-supervised learning paradigm aiming to merge
different modalities tipically coming from different sensors in satellite imagery, e.g.
optical and SAR modalities. This strategy revealed effective as a pre-training process
and we show results that overcome current pre training strategies. With increasingly
better architectures proposed in artificial vision, a future direction could be building
systems that are pre trained with all the modalities available in satellite imagery,
including different sensors and satellites, and handle a different number of modalities
specific to the required task to solve. Merging many modalities could appear a sub
optimal process where the merged information loose parts of the modalities, but
recent works in computer visions showed that the more modalities are included in
the training the more models become powerful and beat models trained for single
modalities.

The last chapter introduced non Euclidean deep learning. This is a promising
direction, since many data in the world present complex structures and classical
networks that embeed features in the Euclidean space could be limited. Indeed, if
we think of data such as molecules or tree structures defined on graphs, embedding
these structures in flat spaces led to break distance consistency between nodes of the
graph. Non flat spaces such as hyperbolic spaces investigated in this thesis offer an
alternative, even when we want to capture more abstract structures, i.e. the hierarchy
related to the compositionality of parts in different objects. We have shown that
hyperbolic neural networks learnt features in this space that are more representative
and effective in 3d computer vision, for the classification and segmentation of 3d
points clouds and for hand-object reconstruction from images to meshes. The main
feature of hyperbolic space is the power of embedding tree structures without any
distortion. This fact is mathematically demonstrated and leads to a general property:
indipendently of the type of data, e.g. images, graphs, videos and texts, as long as we
can represent the data in an hierarchical tree we could exploit the hyperbolic space
to better embed the implicit and explicit hierarchy. This is an important property
that could be studied to the aim of recent developments in multi-modal deep neural
networks, with the aim of building general architectures with non Euclidean layers
to better capture the inner structures of different data together.
A final direction that could be investigated is how we can relate the embeddings of
different spaces, highlighting the benefits of each space and connect them to a final
feature space composed of different geometries. Now that architectures design is
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constrained on billion of parameters, geometrical priors and self-supervised strategies
could provide new insights to build models more efficient and intelligent, similar to
our brain.
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