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Abstract

The proliferation of indoor location-based systems (sLBSs) has been notably acceler-
ated by the successful integration of Internet of Things (IoT) technologies, advance-
ments in wireless network technology, and the unprecedented impact of the COVID-
19 pandemic. Indoor LBS encompass a spectrum of hardware and software technolo-
gies, rendering them adaptable and applicable across diverse industrial sectors.

While hardware technologies based on electromagnetic waves (EMW), such as
Wi-Fi or Bluetooth, dominate the landscape, they predominantly cater to device-
based applications, thereby potentially marginalizing the elderly demographic. In-
deed, this demographic cohort exhibits a reduced inclination towards mobile device
utilization and diminished adeptness in sustained daily engagement with such tech-
nology. Furthermore, these technologies primarily serve sales and marketing sectors,
focusing on functions like customer preference tracking, inventory management, and
supply chain optimization. Conversely, device-free localization (DFL) assumes a
pivotal role in facilitating ambient-assisted living (AAL) within intelligent infrastruc-
tures, encompassing functionalities such as intrusion detection, fall detection, and
occupancy monitoring to promote energy efficiency and illumination management.
Furthermore, certain applications such as fall detection and emergency response for
elderly or vulnerable individuals, navigation guidance for the visually impaired, and
security and access control necessitate high accuracy. These specific fields constitute
the focus of our investigation.

This thesis endeavors to implement a proficient device-free indoor location-based
system, with focus on accuracy and resource efficiency. The main contributions are:

• Design and characterization of a novel front-end based on slope modulation for
long-range load-mode capacitive sensors that rejects sensor drift and increases
sensing range and stability.
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• Investigation into advanced neural network architectures conducive to continu-
ous indoor human tracking.

• Setting up a neural network optimization methodology, integrating multi-step
knowledge distillation and neural architecture search techniques for continuous
indoor human tracking.

Capacitive sensors, falling within the electric field sensing domain, present them-
selves as promising candidates for the implementation of an efficient DFL system.
This is due to their attributes of being cost effective, energy efficient, easy to deploy,
privacy conscious and unobtrusive. Of the capacitive sensor operating modes, the
load mode allows the use of a single sensing plate, making the system architecture
lighter and more manageable. Nevertheless, over long distances (e.g., more than 10
times the plate diameter), the measurement field becomes highly susceptible to envi-
ronmental noise, thereby compromising stability and accuracy. Electric charge varia-
tions in their environment cause variable electric fields that can induce a slow, quasi-
constant drift current that can alter sensor readings even when their capacitance does
not change. To address this challenge, we introduce a novel slope modulation inter-
face. This interface functions on the galvanostatic charge-discharge principle of plate
capacitance, akin to period modulation interfaces. However, it utilizes distinct mea-
surements and employs data post-processing techniques to mitigate environmental
noise, thereby extending the monitoring range and improving measurement stability.
The technique uses a constant current generator driven by a square wave to charge
and discharge the transducer plate with a fixed period. Subsequently, the average
slope of two consecutive charge-discharge ramps of the triangular waveform of the
plate voltage is measured to determine both the transducer capacitance and reject
drift (low frequency) noise.

To evaluate the effectiveness of the method, is compared and examined the slope
modulator front-end against the constant-current and RC period modulator analyti-
cally. Following this, the circuit is simulated and results validated using implementa-
tions of the front-ends and a noise generator. The findings are highly encouraging;
specifically, the slope modulator exhibits an inversely proportional noise attenuation
relative to frequency, rejecting mostly the range of very low frequencies character-
istic of quasi-constant drifts. Inversely, the period modulators exhibit a flattening
behavior in noise rejection below a specific frequency, where constant drift currents
become dominant. Additionally, the slope modulator achieves noise rejection while
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preserving high sensitivity, detecting people at distances up to 230 cm. Compara-
tively, period modulator interfaces can sense people up to 130 cm beyond which the
noise increases significantly, surpassing signal levels around 250 cm.

In LBS context, sensor measurements are typically post-processed with general
techniques such as outlier removal, frequency filtering and averaging, and then us-
ing specialized processing often based on machine learning (ML) techniques. The
latter are increasingly used because their ability to process effectively noisy and non-
linear responses, while also offering scalability and robustness. Tariq, Lazarescu,
and Lavagno [115] employ digital filters in conjunction with neural neural networks
(sNNs) to mitigate noise and extract position and motion dynamics. Their design
space exploration encompasses various popular NN architectures, including mul-
tilayer perceptron (MLP), 1D convolutional neural network (1DCNN), and long
short-term memory (LSTM). Their findings indicate that 1DCNN achieves superior
accuracy, whereas LSTM excels in capturing natural movement dynamics.

However, the pooling operations employed in convolutional neural networks
(sCNNs) is acknowledged in literature that can lead to the loss of significant relational
information, while the recursive nature of LSTM networks may introduce time-
consuming complexities. In light of these considerations, we opt to investigate two
enhanced network architectures, namely, the capsule network (CAPS) and temporal
convolutional network (TCN), both of which avoid the use of pooling and recursion.
Through hyperparameter optimization, the CAPS network achieves comparable
accuracy to top-performing 1DCNN, utilizing only 78.7 % of the computational
resources, while the TCN, albeit with a slight decrease of accuracy, uses merely
26.7 % of the 1DCNN computational resources.

Among the most sought-after characteristics of DFL systems are low cost, low
power consumption, ease of deployment and management, and unobtrusiveness.
However, their effectiveness may often require resources beyond what can be offered
by the typically restricted IoT devices. In this regard, we propose a novel method
based on KD and NAS aimed at optimizing the resource requirements of NN models.
The KD technique involves the transfer of knowledge from a large NN (referred to
as the teacher) to a smaller NN (referred to as the student). While this technique has
been extensively studied in the context of classification problems, there is a paucity
of research addressing its application to regression tasks and specifically to indoor
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continuous human tracking. The NAS optimizes NN and KD parameters for teachers
and students.

To evaluate the efficacy of the optimization method, we utilize the enhanced mod-
els (TCN and CAPS), along with several LBSs employing diverse sensing principles
and data formats, each subject to varying levels of noise, including capacitive, in-
frared radiation (IR), and radar-based systems. We start with the capacitive environ-
ment, considered as the most complex scenario, and iterate through multiple steps,
experimenting with different teacher-student configurations in each step of KD.

The results indicate that employing a teacher of the same type as the student in
the initial KD stage, followed by a teacher of a different type in the subsequent stage,
offers varied perspectives on the features, thereby aiding the student in enhancing
accuracy and generalizability. Subsequently, the effectiveness of the optimal work-
flow is validated through distinct experiments conducted across the capacitive envi-
ronment and other LBSs. These experiments, conducted under similar yet distinct
conditions on different days, confirm the robustness of the proposed methodology.

The experimental outcomes demonstrate that the proposed method frequently
reduces the size of NNs significantly, while concurrently improving their accuracy
and generalizability in comparison to both state-of-the-art models and the original
teacher NNs. Notably, NNs optimized via two-stage KD process tend to demonstrate
enhanced generalization, showcasing an average mean squared error (MSE) improve-
ment of 9.57 % for capacitive,14.4 % for infrared, and 4.86 % for radar LBS. This im-
provement is accompanied by an average reduction in resource utilization of 59.9 %,
56.4 %, and 61.28 % respectively. These findings underscore the effectiveness of the
mixed two-step KD approach implemented within the proposed framework.
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Chapter 1

Introduction

Indoor LBSs facilitate the tracking of individuals and objects within defined spaces
through the integration of hardware and software technologies. The indoor LBS
market witnessed substantial growth, particularly in the aftermath of the COVID-19
pandemic, as the surveillance and monitoring of individuals within buildings became
imperative to prevent overcrowding and ensure a safe environment.

According to a report from Grand View Research, the global market size for
indoor LBSs reached USD 15.48 billion in 2022, with a projected compound annual
growth rate (CAGR) of 14.1 % from 2023 to 2030. The report emphasizes that
the increasing prevalence of interconnected devices worldwide, coupled with the
rising deployment of local and home area networks such as Wi-Fi and WLAN, is
anticipated to drive market expansion throughout the forecast period.

The application of LBSs extends across various industries, encompassing field
such as sales and marketing for comprehending customer behavior and interests,
inventory and supply chain management, as well as considerations related to energy
efficiency and safety. Additionally, persistent indoor person tracking proves beneficial
in the domain of assisted living, particularly for the elderly or individuals with health
concerns. In this context, sensors play a crucial role in detecting falls, monitoring vital
signs, and analyzing alterations in daily activities. Such monitoring mechanisms serve
to identify potential indicators of emerging health conditions, thereby necessitating
timely alerts to caregivers or emergency services.

Localization methodologies are categorized into active and passive systems
based on their sensing processes. Active methodologies involve the generation and
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transmission of signals, while passive methodologies rely on the detection of existing
signals. Additionally, these methodologies can be further classified into tag-based
or tagless categories, depending on the level of human cooperation necessary for
effective monitoring.

Methods that are both active and tag-based often require substantial computa-
tional, networking, and energy resources, which may have implications for reliability
and usability. Examples of such methods include those utilizing EMW, such as Wi-
Fi [125], ZigBee [25], Bluetooth [23], ultra-wide band [38], and radio frequency
identification (RFID) [35]. Ultrasonic systems [16] have also been explored as active
solutions, with the flexibility of implementation with or without individuals wearing
physical tags. However, challenges arise from ambient noise and multipath effects,
necessitating the use of intricate algorithms to address potential inaccuracies [58].

Active tagless solutions, exemplified by Infrared (IR) sensors emitting infrared
light beams [48], and radar systems [61] utilizing radio waves for emission and
reflection, provide viable options for non-intrusive monitoring.

On the passive tagless front, approaches include video or image-based methods
and passive infrared (PIR) sensors [5]. While these methods require a direct field
of view, the former may raise privacy concerns, and the latter may lack reliable
stationary occupancy detection.

An alternative passive tagless system can be devised by employing capacitive
sensors capable of detecting and tracking both conductive and non-conductive ob-
jects. Long-range capacitive sensors operating in load mode, as detailed in [108],
utilize single-plate transducers, with the electrically conductive human body serving
as the other plate. These sensors are characterized by their cost-effectiveness, ease of
aesthetic concealment, and privacy considerations. However, at prolonged distances
(e.g., approximately 10 times the plate diameter), the measurement field encounters
challenges in effectively mitigating drift and noise, as evidenced by studies such as
[15, 98]. Consequently, various environmental conditions can impact measurement
stability and accuracy, this issue becomes particularly pronounced due to the minute
capacitance variations of interest at long sensing ranges, falling below 0.01 %, as
reported in [117, 56]. Within this study, a novel frontend is introduced, employing
slope modulation and differential measurements. This innovative approach demon-
strates efficacy in mitigating noise arising from slow drifts, concurrently maintaining
the sensitivity of capacitance measurements. Analytical comparisons of sensitivity
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and noise rejection are conducted with period modulation techniques, subsequently
corroborated through simulations and experimental validations. The findings reveal
a twofold expansion in the human body sensing range and a noteworthy reduction in
the noise floor when juxtaposed with the prevailing state-of-the-art method (period
modulation).

In contemporary applications of LBSs, machine learning techniques have been
increasingly employed in post-processing stages. This strategic integration serves
to enhance adaptability to complex indoor environments, address non-line-of-sight
challenges, and improve the overall accuracy and reliability of location estimates by
leveraging diverse data sources and learning from dynamic conditions.

Indoor tracking/localization has traditionally been achieved through ML algo-
rithms such as k-nearest neighbor (KNN) and support vector machine (SVM) [128],
which require hand-crafted features and have limited representational power. To-
day, deep learning (DL) architectures are widely used [12, 128] that can operate on
raw sensor data, extract valuable features, and identify spatial and temporal patterns.
However, they require massive training datasets and many resources for inference,
which are difficult to provide on resource-constrained IoT systems [128].

The acquired data from capacitive sensors exhibit pronounced noise and sub-
stantial non-linearity, necessitating extensive post-processing. Tariq, Lazarescu, and
Lavagno [115] integrate digital filters with neural networks to effectively atten-
uate noise and deduce both position and motion dynamics. Design space explo-
ration (DSE) performed on the most popular feedforward (MLP, autoregressive
and 1DCNN) and recurrent (LSTM) neural networks reveals that sequence-aware
(LSTMs) networks capture the movement dynamics best while 1DCNNs have the
least error.

However, the pooling operations used in CNNs are known to lose important rela-
tions [4]. In the literature, two promising candidate neural networks for time-series
tasks are identified: TCNs [9, 45, 66] and CAPS [59, 112]. TCNs leverage multi-
ple layers of dilated convolutions with progressively increasing intervals between
adjacent taps, enabling them to encompass broader input ranges while maintaining
resource efficiency. CAPSs address fundamental limitations associated with CNN,
including challenges in comprehending hierarchical and relational structures, inade-
quacies in handling rotations and resizing, and weakened inference resulting from
average/max pooling layers. The innovative approach of CAPS involves decompos-
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ing intricate objects into a hierarchical representation of pre-learned patterns and
employing dynamic routing mechanisms instead of traditional pooling operations.
When appropriately tuned, both TCN and CAPS models demonstrate superior ac-
curacy and resource efficiency (evaluated in terms of the number of parameters) in
comparison to 1DCNN for capacitive sensors [115]. However, the relatively high
resource utilization motivates ongoing research endeavors aimed at optimizing these
models to minimize size without compromising accuracy and generalization.

Numerous compression techniques, including quantization and pruning [71],
have been proposed to diminish the size and complexity of neural networks. However,
these methods often entail a trade-off with network accuracy. A relatively recent
approach, referred to as KD [50, 40], has emerged, aiming to transfer knowledge from
a larger network (teacher) to a smaller one (student), mimicking a teacher-student
relationship. While many existing KD methods primarily focus on classification
problems [67, 92, 121], where softened logits from the teacher offer valuable insights
into class relationships absent in one-hot encoded ground-truth labels, this advantage
is not present in regression problems with continuous and unbounded ground-truth
predictions. A study exploring the amalgamation of teacher, student, and ground-
truth losses in the context of visual odometry regression [101] revealed that the
most effective formulation is the attentive imitation loss. This approach considers
the uncertainty associated with teacher predictions and adjusts the weight of the
distillation loss accordingly.

Limited research has delved into the application of KD specifically in the context
of indoor human tracking. Existing studies have predominantly concentrated on
location classification, rather than regression for the continuous estimation of location
coordinates. Our emphasis, however, is directed towards the latter, as the estimation of
movement trajectories provides a more comprehensive and informative representation
of human dynamics. This approach demonstrates superior adaptability to dynamic
environments. Moreover, an enhanced understanding of motion patterns enables
applications in various fields, empowering them to make more informed decisions,
predictions, and interactions.

To address this objective, we propose a multi-step KD approach coupled with
optimization based on NAS tailored specifically for regression-based indoor human
tracking. We aim to achieve fine-grained continuous tracking of an individual’s posi-
tion. The proposed methodology incorporates NAS to simultaneously optimize both
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Fig. 1.1 Flowchart illustrating the organization of work and outlining objectives.

the hyperparameters of the NNs and the KD strategy. This dual optimization is de-
signed to minimize resource requirements and enhance the localization performance
of the NN models. Prior to determining the most effective multi-step optimization
procedure, we explore multiple types and combinations of teachers and students. The
validation and testing of the proposed method are conducted using various LBSs.
These systems employ different sensing principles, data formats, and are exposed to
diverse types and levels of noise, including long-range capacitive, IRs, and radar.

This research endeavors to achieve several objectives (Fig. 1.1). Firstly, it seeks
to identify a cost-effective, integrated, and robust solution for noise rejection in a
capacitive sensor operating in load mode. Secondly, it aims to enhance the reliability
of long-range measurements by employing advanced time-sequence NNs. Thirdly, it
aims to evaluate a resource-conscious optimization technique for the efficient deploy-
ment of NNs in resource-constrained devices, adaptable to diverse environmental
conditions and various types of LBSs. All of these advancements contribute to the
development of an IoT-deployable LBS that is device-free, unobtrusive, and low-
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cost, while providing fine-grained accuracy. This system is particularly effective for
applications aimed at assisting individuals facing various challenges. Aligned with
these goals, the principal contributions of this dissertation encompass:

• Development of a novel front-end based on slope modulation tailored for
long-range capacitive sensors operating in load mode, designed to mitigate
environmental noise interference, thereby augmenting the monitoring range
and stability.

• Investigation into advanced neural network architectures conducive to continu-
ous indoor human tracking.

• Setting up a neural network optimization methodology, integrating multi-
step knowledge distillation and neural architecture search techniques for fine-
grained continuous indoor human tracking.



Chapter 2

Sensing and Processing for Indoor
Human Tracking

Indoor localization holds promising applicability across diverse sectors, including
but not limited to retail, manufacturing, healthcare, smart buildings, and sports indus-
tries. The design phase of LBS necessitates meticulous consideration of numerous
parameters such as cost, energy efficiency, reception range, localization/tracking ac-
curacy, latency, scalability, and privacy. These factors are pivotal in configuring a
deployable system tailored to quality of service requirements. This chapter will ex-
pound upon and analyze various existent technologies employed for the provision
of device-free indoor localization services, along with machine learning techniques
applied in the postprocessing of the sensor readings.

2.1 Sensors Technologies for Device-Free Localization

DFL denotes a methodology for localizing a target without the requisite use of a
wearable tag or device to facilitate the localization process. This mode of localization
holds notable utility in fostering AAL within intelligent structures. Moreover, its
applicability extends to diverse domains such as intrusion detection, fall detection,
and remote monitoring of the elderly. Furthermore, DFL serves as an effective tool
for occupancy detection in optimizing energy utilization within heating, ventilation,
and heating, ventilation and air conditioning (HVAC) systems, as well as for lighting
control. In emergency scenarios, it proves valuable for occupancy counting, notably
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Fig. 2.1 Categories of DFL technologies categorized by sensing modality.

during the emergency evacuation of offices and public buildings. Beyond these
applications, DFL contributes to business analytics in retail settings and provides
assistance in enhancing accessibility for visually impaired individuals, among other
potential uses [3].

The methodologies employed within DFL encompass a diverse array of sensing
modalities. This section undertakes an examination and analysis of these modalities
(with focus on those utilized later in our experiments), identifying five primary cate-
gories: visible light, infrared, physical excitation, electric field, and radio frequency
(Fig. 2.1). Each category may involve either an active or passive sensing approach.
The former entails the emission of energy or signals into the environment by the sen-
sor itself, followed by the detection of the reflected or scattered signal. In contrast,
the latter simply observes and records the existing energy sources or signals.

Visible Light Sensing

Device-free visible light positioning (VLP) systems rely on light sources and light
sensors, such as photodiodes. These systems operate by detecting alterations in the
optical channel between the light source and sensor caused by the movement of a
target. Typically, these changes manifest as variations in light level or illuminance
recorded by a sensor in proximity to the target. The positioning system’s architecture
involves strategically placing sensors across different surfaces, including the floor



2.1 Sensors Technologies for Device-Free Localization 9

(for shadow detection) [69], ceiling (for analyzing reflected signals) [85], or wall
(for observing variations in received signal strength (RSS) of ambient light) [37].

The key advantages of these technologies include immunity from radio frequency
interference, the absence of small-scale fading, and low power consumption. How-
ever, it is important to note that the infrastructure required for implementation is
relatively complex, and maintenance can pose challenges.

Infrared Sensing

Device-free infrared technology relies on passive infrared (PIR) sensors, which ex-
ploit IR emitted by a warm target, typically a human, within the sensor’s field of
view (FoV). Unlike configurations with distinct senders and receivers, in this tech-
nology the PIR sensor directly localizes the signal source. A PIR sensor comprises
a pair of pyroelectric sensing elements separated by a small gap. The variation in
IR signals received by the two sensing elements is analyzed through a differential
amplifier, rendering the system capable of detecting dynamic sources while being
immune to static sources.

Two processing modes are available for investigation utilizing PIR sensors: binary
output [47] and analog voltage output [83]. The former entails the generation of a
voltage signal proportional to IR change, which is subsequently compared with a
predefined threshold to ascertain the presence or absence of a target. In contrast,
the latter mode directly employs the raw voltage analog output for localization
purposes. The binary technique, characterized by its coarser resolution, necessitates
the installation of numerous sensors, whereas the analog output, leveraging cluster-
based strategies, can achieve finer-grained localization with a reduced number of
devices.

Thermopile sensors are also based on IR, but unlike PIR sensors, they employ
a configuration of series-connected thermocouples. This configuration enables the
measurement of incident IR flux, thereby facilitating the generation of a thermal
image. Most of the works use a ceiling mounted 8 x 8pixel array.

Hevesi et al. [49] use “Grid Eye” from Panasonic with 8x8pixel, 0.25 ◦C sensi-
tivity. In conjunction with decision tree and KNN models, the researchers employed
this sensor for household activity recognition, with a tracking accuracy of 1 m.
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In [22], an 8x8pixel “Grid Eye” thermopile sensor is integrated into a rotational
platform, which also incorporates a time-of-flight (TOF) VL53L0X sensor module
and placed above a table. The primary objective of this system is to discern the
facing direction of a target utilizing thermal imaging data, followed by feature
extraction using CNN techniques and classification employing SVM algorithms.
Simultaneously, the system tracks the occupancy within a rectangular area measuring
1.2x2.4 using the distance sensor. Remarkably, the system achieves a localization
root mean square error (RMSE) of 0.19 m.

Kowalski. et al. [62] employ a wall-mounted configuration of thermopile sensors.
In order to achieve comprehensive area coverage spanning 180°, they devise an
interconnected cluster comprising three 8x8pixel “Grid Eye” sensors. Positioned at a
height of approximately 1.5 m, two such clusters are affixed onto the wall, one on
the upper-hand and another on the right-hand side, to monitor a rectangular region
measuring 2x2.5. Subsequently, employing SVM classification techniques, they
undertake the task of localizing targets within a grid composed of 20 discernible
0.5x0.5 segments. The classification accuracy for tracking targets within a single
cell and within a neighborhood comprising four cells is reported as 73.1 % and 93 %,
respectively.

In the work presented by Gu, Yang, and Li [43], the utilization of a high-resolution
thermopile sensor with dimensions of 24x32pixel is demonstrated to confer wider
coverage and enhanced accuracy. Positioned at a height of 3 m on the ceiling, this
sensor configuration effectively surveils a rectangular area measuring 2x3.72. Em-
ploying techniques such as interpolation, filtering, and adaptive threshold-based
background removal, the authors enhance the efficacy of the system. Experimental
evaluation conducted along predetermined paths reveals an average RMSE below
0.15 m, indicative of the system’s robust performance. Conversely,

Kuki et al. [63] utilize a thermopile sensor with markedly lower resolution,
specifically 4x4pixel, for area monitoring purposes. Their system covers an area of
1.58x1.58. Employing fuzzy logic for background removal and centroid calculation
for target positioning, the authors report a mean positioning error of 0.215 m. This
demonstrates the compromise in accuracy inherent in employing sensors of lower
resolution.
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Physical Excitation Sensing

In closed environments, the act of taking a single step on the floor generates a distinct
physical excitation, which can be leveraged to localize the movement of individuals.
Consequently, the system operates by discerning and pinpointing the source of this
excitation to achieve accurate localization.

The earliest reported technique for target localization involves pressure excitation,
which necessitates an intelligent floor embedded with piezoelectric or resistive
pressure sensors. These sensors, typically arranged in a grid-like array, analyze the
ground reaction force by means of small tiles composed of load cells [6, 29, 84, 1].

Alternatively, vibration-based sensing systems [80, 81, 27, 105], utilize geo-
phones or seismic sensors to detect footstep-induced vibrations. Multiple sensors cap-
ture these vibrations, enabling the application of time difference of arrival (TDoA)
algorithms for source localization. To discern footstep events amidst other excitation
events (such as the fall of a chair), classifiers are commonly employed.

While pressure-based systems entail a complex architecture and costly deploy-
ment, vibration-based systems may capitalize on preexisting sensors. However, the
latter is susceptible to interference from ambient noise.

Electric Field Sensing

Electric field sensing relies on capacitive coupling and offers two distinct sensing
modes: 1) Active sensing involves the use of a transmitter that actively generates an
electric field. Measurements are then conducted to evaluate changes in the electric
field caused by the movement of the target; 2) Passive sensing, on the other hand,
does not utilize a transmitter. Instead, it leverages the ambient electric field and
measures variations in it resulting from the presence or movements of the target.

The active sensing technique offers three distinct modes, namely transmit, shunt
and loading mode [108]. In the transmit mode, a transmitter generates the electric
field, and a receiver measures the field. When the target is in close proximity to the
transmitter, the field between the transmitter and the receiver may be interrupted. In
such cases, the subject’s body can act as an emitter, affecting the field and enabling
detection. The shunt mode involves both a transmitter and an emitter. Here, the target
obstructs a portion of the field, redirecting it to the ground. However, the receiver
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can still detect the remaining field, allowing for localization. Conversely, the loading
mode solely utilizes the transmitter. In this mode, the target’s body effectively serves
as the second plate of the capacitor to the ground, influencing the electric field and
enabling detection. Many studies in the field of loading mode sensing predominantly
rely on floors outfitted with sensors.

SensFloor [65] organizes the floor into a grid comprising independently func-
tioning modules. Each module features a microcontroller board positioned centrally,
connected to a power supply, and surrounded by eight triangular sensor shapes. The
authors subsequently employ a LSTM network to discern various walking gaits.

Conversely, CapFloor [19] situates electronic components at the periphery, with
passive elements (wires) positioned beneath the floor. For their prototype, they utilize
passive floor mats of rectangular shape furnished with eight active sensor elements
on two adjacent outer sides, covering a total area of 6 m2. According to [19], the
estimated positioning error falls below 0.5 m.

The SensingFloor technology discussed in [36] exhibits significant promise,
capable of achieving a median position error of 0.013 m and a median angular error
of 10.4° for stationary foot placement. The authors employ thirty-six copper foil
squares arranged in a panel measuring 0.6x0.6, with four such panels constituting the
testbed. The acquired data undergoes interpolation, and subsequently, the detection
of the “blob” is performed.

Ramezani Akhmareh et al. [95] employs a configuration comprising four loading
mode capacitive sensors affixed to the walls. Each sensor, crafted from small copper-
clad tiles measuring 0.16x0.16, is positioned centrally on each wall at a height equiva-
lent to that of the chest. These tiles are interconnected to a period modulator front-end,
which is implemented using a 555 timer, thereby facilitating a frequency modulation
response in correspondence with alterations in capacitance. The evaluation of this sys-
tem involves conducting tests along pre-defined trajectories delineated by fixed grid
positions. The experimental setting encompasses diverse sources of interference, such
as a refrigerator and a metal cupboard within a 3x3 room. The reported findings indi-
cate a mean localization error of 0.2 m for static positioning under these conditions.

TileTrack in [119], implements transmit mode sensing in conjunction with a
distinct receiver, thereby enabling the mitigation of stray capacitances that may form
with the environment. The transmitting electrodes are positioned beneath the floor,
while two types of receiving electrodes are affixed to a wooden frame adjacent to the
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floor tiles: either a copper plate or a power-line cable. Both receiver configurations
demonstrate validity and exhibit comparable performance characteristics. Regarding
the positioning of a standing individual, an accuracy of 0.143 m is attained, while in
the context of a tracking task, the error consistently remains below 0.41 m.

Passive electric field sensing relies on detecting the electric field emitted by
the mains power line (operating at 50/60 Hz). Movement of a charged target leads
to changes in the electric field or the generation of a potential buildup due to the
triboelectric effect. Positioning is determined by measuring these alterations in the
ambient electric field caused by the target, as outlined by Prance et al. [93], Grosse-
Puppendahl et al. [42], and Tang and Mandal [114].

Radio Wave Sensing

Radar systems consist of key components: transmit (TX) and receive (RX) radio fre-
quency antennas, along with analog-to-digital converters (sADCs), microcontroller
units (sMCUs), digital signal processors (sDSPs), and clocks. These systems operate
by transmitting shaped radio waves and analyzing their modified back-scattered sig-
nals to determine parameters like distance, angle, velocity, and target shape. TX and
RX components are usually housed together, with the transmitter emitting a modu-
lated signal and the receiver detecting its back-scattered version after a short delay.
Modern radar systems commonly utilize pulsed wave (PW) and frequency modu-
lated continuous wave (FMCW) functions, with mmWave-based radar emerging as a
low-power option for short-range environmental sensing. Most of the applications
deal with human activity recognition (HAR) and tracking.

Pegoraro, Meneghello, and Rossi [88] utilizes a radar operating at a frequency
of 77 GHz. Signal processing procedures encompass a sequence of steps including
micro-Doppler mapping, the DBSCAN algorithm, Kalman filtering, and the uti-
lization of a deep convolutional neural network (DCNN). Integration of identifica-
tion data with trajectory tracking enhances identification accuracies, particularly in
scenarios involving multiple targets. Results indicate an identification accuracy of
95.26 % for the range-Doppler (RD) configuration with three targets and 98.27 %
for the range-Doppler-azimuth (RDA) and four targets.

In the same vein, the study presented in [54] focuses on movement pattern
detection for one or two patients as a primary outcome. Employing DBSCAN and
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Kalman filtering techniques, the trajectory of each patient is tracked. The proposed
CNN model classifies movement patterns such as walking, falling, swinging, seizure,
and restless movements, achieving accuracy values ranging from 82.77 % to 95.74 %.

Similarly, Zhang and Cao [130] employ a 77 GHz radar device to recognize
various human behaviors. Their processing methodology involves micro-Doppler
analysis, DBSCAN, and CNN, resulting in an accuracy exceeding 90 %.

In their work [44], the authors introduce a framework named “mmSense”, which
utilizes an LSTM-based classification model for localization purposes. Initially,
the framework conducts environment fingerprinting both with and without human
presence. Subsequently, utilizing the LSTM model, it estimates the presence and
location of individuals within the environment. Additionally, a novel approach is
developed, which combines human outline profile with vital sign measurements
extracted from the reflected signal strength series at 60 GHz, aiming to identify the
targets. Testing of the mmSense framework involves scenarios with five individuals
concurrently sharing the same physical space, resulting in an accuracy of 97.73 %
for classification tasks and 93 % for identification tasks, respectively. Radar sensors
at 77 GHz were used in a 2x8 space with a denoising autoencoder and a sequence-to-
sequence NN to infer the position of a moving target with 15 cm accuracy [89].

Other works use 3D point clouds and deep neural networks (sDNNs) to classify
activities, postures, or human gaits [107, 102, 79, 60].

Device-free ultra-wideband (UWB) technology employs ultra-wideband radio
waves for the detection and tracking of objects or individuals, eliminating the need for
them to carry specific devices or tags. Instead, it relies on analyzing variations in the
UWB signals propagating through the environment, which interact with surrounding
objects and people, undergoing reflections, diffractions, and scattering.

UWB technology utilizes extremely short-duration pulses of electromagnetic
energy spread across a broad frequency band, typically lasting only nanoseconds.
This bandwidth is significantly wider than that of traditional RF signals.

Through the analysis of received UWB signals, including factors like time-of-
arrival, angle-of-arrival, signal strength, and multipath effects, device-free UWB
systems can estimate the presence, location, and movement of objects or individuals
within the sensing area [26, 122].
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In the radio frequency spectrum, various wireless communication standards
such as Wi-Fi, ZigBee, and Bluetooth operate. These systems are distinguished
by the presence of numerous access points (APs) within the relevant environment.
Employing signal processing techniques like fingerprinting or trilateration, these
systems analyze and compare signal characteristics observed with a database of
signal maps or reference measurements.

Wi-Fi typically delivers superior localization accuracy and broader range com-
pared to ZigBee and Bluetooth owing to its higher data rates. Additionally, Wi-Fi
signals possess the ability to traverse obstacles, facilitating localization across multi-
ple rooms or floors. Conversely, Wi-Fi generally entails higher power consumption
and necessitates intricate configuration and calibration processes [30, 111, 68].

2.2 Post-processing Machine Learning Techniques for
Indoor Localization

Indoor human tracking/localization has conventionally relied on ML classification
algorithms like KNN and SVM. These methods typically necessitate manual feature
engineering and exhibit limited representational capacity.

KNN [46], for instance, is a lazy learner, meaning it does not have a training
phase as such. It simply memorizes the training dataset. Given a new, unlabeled
data point, KNN predicts the label (classification) or value (regression) based on the
majority vote (for classification) or averaging (for regression) of the labels or values
of its nearest neighbors. Its performance can degrade with high-dimensional data
or when the dataset size is large due to the computational cost of finding nearest
neighbors. Additionally, it does not perform well with imbalanced datasets or when
feature scaling is required.

SVM [90] works by finding the optimal hyperplane that best separates different
classes in the feature space. SVM can handle non-linearly separable data by mapping
the input features into a higher-dimensional space through a kernel function. This
allows SVM to find a linear decision boundary in the higher-dimensional space,
which corresponds to a non-linear decision boundary in the original feature space.
SVM performance can be sensitive to the choice of kernel function and its parameters,
and it may become computationally expensive with large datasets.



16 Sensing and Processing for Indoor Human Tracking

Random forest (RF) [87] is a versatile ensemble learning method used for both
classification and regression tasks. It is based on the idea of building multiple deci-
sion trees during training and merging them to get a more accurate and stable predic-
tion. Data samples are randomly selected to ensure tree independence. Classification
is then performed through a majority vote among the decisions of all trees. This algo-
rithm is known for its robustness, scalability, and ability to handle high-dimensional
data with ease, however, it may not perform well on very imbalanced datasets.

Today, DL architectures are widely used [99] that can operate on raw sensor
data, extract valuable features, and identify spatial and temporal patterns. However,
they require massive training datasets and many resources for inference, which are
difficult to provide on resource-constrained IoT systems.

Artificial neural networks (sANNs) encompass various architectures, such as the
MLP, CNN, and autoregressive models. Additionally, LSTM networks represent a
recurrent neural network (RNN) architecture.

An MLP [21] consists of input, hidden, and output layers, where neurons in
adjacent layers are fully connected via weighted connections. Each neuron (excluding
input layer neurons) has an associated bias term. Activation functions introduce non-
linearity to the network, enhancing its ability to learn complex patterns. MLPs find
wide application in domains such as image recognition, natural language processing,
and time series prediction.

In an autoregressive [118] model, the value of a variable at a specific time point
is predicted based on its past values, reflecting the model dependence on its own
historical data. Autoregressive models are adept at capturing temporal dependencies
and patterns in time series data. However, their effectiveness may be diminished in
cases where there is nonlinearity or nonstationarity in the data.

CNNs [70] consist of convolutional layers, which use filters to extract features
from input images, followed by activation functions like ReLU. Pooling layers
then downsample the feature maps while preserving important information. Finally,
fully connected layers combine these features for classification or regression tasks.
CNNs excel in various computer vision tasks, such as image classification and object
detection.

LSTM [127] networks, a subset of RNNs, are adept at handling sequential data
by addressing the vanishing gradient problem and capturing long-term dependencies.
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Widely used in tasks like time series prediction and natural language processing,
LSTMs represent each data point in a sequence as a vector. They employ memory
cells with input, forget, and output gates to effectively capture and retain information
over extended sequences.

While CNNs can extract sophisticated features with simple computations that
are invariant to translations, they (1) fail at rotations and shrinking/enlargement
transformations, (2) cannot understand hierarchical and relational structures, and (3)
their inference is brittle mainly because of their average/max pooling layers [34],
which increase their field of view but may discard relevant features where they are
not the maximum or overlook complex patterns that require finer resolution.

CAPSs overcome the CNN major limitations due to information loss using
dynamic routing instead of max pooling operations. They decompose a complex
novel object into a hierarchical representation of previously learned patterns. While
a CNN neuron outputs a scalar that signals only if a feature is recognized, without
relative object relationships, CAPSs explicitly model these relationships in the
vector-form of the neuron outputs: the vector length (modulus) encodes the detection
probability, while the direction (placement in space) encodes the feature/object
state (instantiation parameters e.g., pose, deformation, velocity). Capsule networks,
originally designed for understanding spatial relationships in 2D data, have also been
explored for time-series analysis [52, 100, 103, 112].

Recurrent and recursive networks for sequence modeling tasks have two major
drawbacks: exploding/vanishing gradients and high resource consumption. Recent
works combine the low-level spatio-temporal features extraction using CNN with the
classification of high-level temporal information using RNNs ([106, 17, 20]). Bai,
Kolter, and Koltun [9] argue that convolutional networks are best suited for modeling
sequential data, obtaining good performance using TCNs. They use multiple layers
of exponentially increasing dilated convolutions to cover a wider range of inputs with
fewer resources. The convolution blocks are followed by normalization, nonlinear
activation, and a dropout layer for regularization, forming residual blocks (two
identical sub-blocks of dilated convolutions and a residual connection).

Various domains, including indoor localization, have benefited from the remark-
able results of DNNs, but their large computational requirements limit their applica-
bility on resource-constrained devices and real-time scenarios. Several compression
techniques, such as quantization and pruning [71], have been proposed to reduce
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the network size and complexity, but they often compromise the network accuracy.
A more recent technique, known as KD, was introduced [50, 40] to transfer the
knowledge from a large network (teacher) to a smaller one (student), mimicking a
teacher-student relationship. Most of the existing KD methods focus on classifica-
tion problems [67, 92, 121], where the softened logits of the teacher provide useful
information about the class relationships, which is missing in the one-hot encoded
ground-truth labels. However, this advantage does not exist in regression problems,
where the ground-truth predictions are continuous and unbounded.

A study on how to combine the teacher, student, and ground-truth losses in a
visual odometry regression problem [101] showed that the most effective formulation
is attentive imitation loss, which considers the uncertainty of the teacher predictions
and adjusts the weight of the distillation loss accordingly.



Chapter 3

Noise Rejection Front-End for
Long-Range Capacitive Sensing

At long sensing ranges (e.g., 10 times the plate diameter), small capacitive sensors
find applications for inconspicuous low power low cost indoor person localization
or identification [10, 117, 51] for home automation or assisted living [18, 73].
Nonetheless, over extended ranges, maintaining the integrity of the measurement
field against drift and noise becomes challenging. As evidenced in previous research,
the stability and accuracy of measurements are susceptible to fluctuations induced
by diverse environmental factors. This vulnerability is particularly pronounced due
to the minute capacitance variations of interest, measuring below 0.01 % at these
extensive sensing distances [117, 56].

In protracted monitoring applications involving stationary or slowly evolving
scenarios, the mitigation of slow measurement drift proves to be a challenging task,
often constraining the efficacy of long-range capacitive sensing methodologies. This
drift may arise from actual changes in capacitance, such as those attributable to vari-
able air humidity, which can be compensated for. Furthermore, other potential causes,
may include variations in environmental conditions that influence the operation of
the sensor frontend, independent of any changes in sensor capacitance.

Period modulation frontends represent a common approach for sensing the ca-
pacitance of sensor plates. Tan et al. [113] introduce self-calibration techniques and
several trade-offs aimed at significantly reducing the power consumption of such
frontends for prolonged monitoring via wireless sensor networks. In a separate study,
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De Marcellis, Ferri, and Mantenuto [32] propose an astable multivibrator circuit
employing a Schmitt trigger with adjustable thresholds for wide-range capacitance
measurements. A period modulation frontend tailored for capacitive sensors utilized
in sub-nanometer displacement measurement is presented in [2]. The design incorpo-
rates chopping, self-calibration, and active shielding to mitigate errors.In our prior
research [95], we employed a straightforward period modulation frontend relying
on a 555 timer, which exhibited heightened vulnerability to environmental noise,
for the purpose of gathering capacitive sensor data geared towards person localiza-
tion through machine learning techniques. Furthermore, we explored alternative ap-
proaches, including differential measurement methods. A direct interface, using only
passive components, is proposed in [97] with 1 % full scale accuracy, and a method
based on dual ramp integrator is proposed in [82] with errors below 0.2 %.

This chapter focuses on the initial objective of our study (Fig. 3.1), which
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Fig. 3.1 Flowchart illustrating the organization of work and outlining objectives.

involves enhancing the precision, stability, and sensitivity range of a capacitive sensor
operating in load mode. This technology aligns well with attributes such as cost-
effectiveness, low power consumption, unobtrusiveness, and privacy consciousness.
The chapter commences with an extensive analysis of the noise induced by variable
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environmental electric fields on period modulation frontends. Subsequently, a novel
frontend is proposed, leveraging slope modulation and differential measurements.
This innovative approach effectively mitigates noise stemming from gradual drifts,
while preserving the sensitivity required for precise capacitance measurements.

3.1 Sensor Drift Problem

The electrical capacitance C of an object is defined as the ratio between the variation
of its electrical charge, ∆Q, and the corresponding variation of its electrical potential,
∆VC

C =
∆Q
∆VC

. (3.1)

While the capacitance is fully defined by the electric and dielectric properties and
geometries [11], the measurement frontends can instead be susceptible to several
other environmental influences, e.g., from electromagnetic fields.

Fig. 3.2 shows the operating principle of a period modulation frontend for single-
plate capacitance sensors. The sensor plate forms capacitances with bodies in the
environment (Ce1 , Ce2 , . . . ) and with nearby objects, such as the frontend circuits
and the ground (Cg). Period modulation frontends, with the block schematic shown
in Fig. 3.3, cyclically charge and discharge the sensor plate with a constant current
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Fig. 3.3 Period modulation frontend block schematic with the drift current εI model-
ing the charge induction of the sensor plate mutual capacitance Cp with surrounding
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I measuring the variation of its potential VC against a fixed reference. The plate
potential is defined by the electric charge density σ on the plate surface, Splate, which
balances the electric flux ΦE from the environmental electric field E on the same
surface

σ = ΦE , ΦE =

‹
Splate

E ·dS. (3.2)

E variations change σ , hence induce currents εI [11] that add algebraically to the
frontend driver current I. Here we focus mostly on the slow, quasi-constant E
variations, e.g., created during the dispersion of environmental charge buildups, and
on measuring frontend rejection of the noise from the induced drift currents, εI.
Significant charge can accumulate during common industrial or home activities, e.g.,
walking on carpeted floors can generate electrostatic voltages up to 15 kV [57].

Period modulation constant-current frontends (see Fig. 3.3) repeatedly charge-
discharge the mutual plate capacitance Cp (made with the surrounding objects) with
a current ±I from a constant current source, or an exponential current from a voltage
source through a resistor. Under constant current I, the plate voltage VC changes
linearly (see the dashed plot in Fig. 3.4)

Cp =
I∆t
∆VC

, ∆VC =
I

Cp
∆t. (3.3)

When VC reaches the thresholds of a hysteresis comparator (VTL, VTH), the sign of
the current I changes to satisfy VTL ≤VC ≤VTH. With constant Cp and no noise, the
charge and discharge times are identical

Cp
VTH −VTL

I
=Cp

VTL −VTH

−I
=

TN

2
, (3.4)
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Fig. 3.4 Period modulation frontend errors due to the drift current, εI

Cp can be calculated from the oscillation period TN

Cp =
I

2(VTH −VTL)︸ ︷︷ ︸
constant

TN. (3.5)

and the sensitivity of the output frequency to changes of Cp is

∂ fN

∂ Cp
=− I

2(VTH −VTL)
· 1
C2

p
, fN =

1
TN

. (3.6)

However, as shown in Fig. 3.4, an external quasi-constant drift current εI unbal-
ances the durations of the rising TDR and falling TDF ramps. From (3.4) we have

TDR =Cp
VTH −VTL

I + εI
, TDF =Cp

VTL −VTH

−I + εI
(3.7)

and the oscillation period TD becomes

TD = TDR +TDF = 2(VTH −VTL)
I

I2 − ε2
I︸ ︷︷ ︸

not constant

Cp. (3.8)

The relative period error is obtained from (3.5) and (3.8)

εT =
TD −TN

TN
=

ε2
I

I2 − ε2
I
. (3.9)
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Fig. 3.5 RC period modulation frontend block schematic with the drift current
εI modeling the charge induction of the sensor plate mutual capacitance Cp with
surrounding objects of different electrical potentials

Hence, a constant drift current εI always increases the oscillation period TD of the
frontend, leading to measurement errors when calculating Cp using (3.5).

The oscillation period of period modulating frontends using RC astable multi-
vibrators, rather than based on constant currents, is affected by similar errors. The
block schematic in Fig. 3.5 shows how the frontend charges and discharges the plate
capacitance Cp between the voltage thresholds of a hysteresis comparator through a
resistor R from two constant dc voltages, ±V . The charging current i(t) is

i(t) =
V −VC(t)

R
,

dVC(t)
dt

=
i(t)
Cp

=
V −VC(t)

RCp
. (3.10)

Solving for VC we obtain the well-known RC charge expression

VC(t) = (VTL −V )e−
t
τ +V, τ = RCp (3.11)

where VTL is the voltage of the lowest threshold of the hysteresis comparator and V
is the source (charging) voltage.

Assuming distinct dc voltages for charging, VH, and discharging, VL, the charging,
TNr, and the discharging, TNf, times are

TNr =−τ ln
VTH −VH

VTL −VH
(3.12)

TNf =−τ ln
VTL −VL

VTH −VL
(3.13)
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and the noise-free oscillation period is

TN = TNr +TNf =−τ ln
(VTH −VH) · (VTL −VL)

(VTL −VH) · (VTH −VL)

=−τ ln
Ka

Kb
Ka < 0, Kb < 0. (3.14)

An induced quasi-constant drift current εI (see Fig. 3.5) algebraically adds to i(t)
in (3.10). During charging we have

dVC(t)
dt

=
VH−VC(t)

R + εI

Cp
=

VH −VC(t)+ εV

RCp
, εV = RεI (3.15)

and solving for VC

VC(t) = (VTL −VH − εV)e−
t
τ +VH + εV. (3.16)

Thus, the charging, TDR , and the discharging, TDF , times considering a quasi-constant
drift current εI are

TDR =−τ ln
VTH −VH − εV

VTL −VH − εV
, (3.17)

TDF =−τ ln
VTL −VL − εV

VTH −VL − εV
, (3.18)

the frontend oscillation period is

TD = TDR +TDF =

=−τ ln
(

VTH −VH − εV

VTL −VH − εV
· VTL −VL − εV

VTH −VL − εV

)
=

=−τ ln
|Ka|− ε2

V

|Kb|− ε2
V
, (3.19)

and the relative oscillation period error due to drift current εI

εT =
TD −TN

TN
=

ln |Ka|−ε2
V

|Kb|−ε2
V

ln |Ka|
|Kb|

−1 =

not constant︷ ︸︸ ︷
ln

1− ε2
V

|Ka|

1−
ε2
V

|Kb|

ln |Ka|
|Kb|

. (3.20)
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Fig. 3.6 Slope modulation frontend block schematic with the drift current εI modeling
the charge induction of the sensor plate mutual capacitance Cp with surrounding
objects of different electrical potentials

In a first approximation, εT ∝ ln
(
1− ε2

I
)

(since εV = RεI), higher than for constant
current period modulation frontends.

3.2 Drift Rejection Method

The operation of the proposed slope modulation frontend shown in Fig. 3.6 is similar
to the period modulation frontend shown in Fig. 3.3. The timing of the charge-
discharge cycles is constant because we use the ramp slopes for Cp calculation, which
allows to better reject drift noise.

The VC ramp slope S is inversely proportional to Cp in (3.3)

S =
∆VC

∆t
=

I
Cp

. (3.21)

and a constant drift current εI changes both the rising Sr and the falling Sf slopes

Sr =
I + εI

Cp
, Sf =

−I + εI

Cp
. (3.22)

But the average of the slope magnitudes, Sa, is invariant to εI

Sa =
|Sr|+ |Sf|

2
=

1
2

(
I + εI

Cp
− −I + εI

Cp

)
=

I
Cp

. (3.23)

Moreover, the measurement sensitivity to Cp is comparable with the period modula-
tion frontend in (3.6)

∂Sa

∂Cp
=− I

C2
p
. (3.24)
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Fig. 3.7 Slope measurement elements and timings

Hence, by measuring the slope of two adjacent charge-discharge ramps we can
calculate Cp using (3.23) and reject as common mode signals the errors from quasi-
constant drift currents, εI, as from other drift sources, e.g., flicker (1/ f ) noise.

Importantly, drift rejection depends on how well the constant εI (and noise in
general) is matched on two adjacent ramps, and on the component nonlinearities and
value mismatches.

3.2.1 Measurement Method

Fig. 3.7 shows the main elements used to measure the slopes of the charge-discharge
ramps to calculate Cp using (3.23). The measurement period Tm is accurately set by
a microcontroller (signal v in Fig. 3.6), and should be at most half of the shortest
sensor signal period according to the Nyquist–Shannon sampling theorem [104]. Tm

is synchronized with an ADC that acquires NR samples of VC on each ramp. The
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voltages VA of two A points must be determined to calculate the slope of each ramp.
Each A is the midpoint of an NS sample segment S. To lower the quantization noise
through oversampling and decimation [14], we optimize NS to a power of four

VAi =
1
NS
2

NS

∑
j=1

VSi, j , i ∈ {1,2,3,4} , NS = 4n, n ∈ N (3.25)

where VSi are the samples of the NS ramp in the segment Si.

Note that the frontend in Fig. 3.6 controls only the amplitude of VC, through
the current I and the period Tm, but not its absolute value. Circuit asymmetries
or environmental effects may accumulate over time and bring VC partly into the
frontend nonlinearity region, which may distort its extremes. Anti-aliasing filters
(see Fig. 3.6) may also distort the VC ramp ends. Hence, for better measurement
accuracy the segments S must be long and well spaced, but also far enough from the
ramp ends to skip distortions (NG skipped samples in Fig. 3.7).

The time between the two A points on each ramp is

TA1,2 = TA3,4 =
Tm

2NR

[
NR −2

(
NG +

NS

2

)]
. (3.26)

Eq. (3.26), (3.21) give the rising, Sr, and falling, Sf, ramp slopes

Sr =
2NR (VA4 −VA3)

Tm (NR −2NG −NS)
, Sf =

2NR (VA2 −VA1)

Tm (NR −2NG −NS)
(3.27)

then we obtain Cp from (3.23)

Cp =
I Tm

VA4 −VA3 − (VA2 −VA1)
· NR −2NG −NS

NR
. (3.28)

Hence, from the frontend design parameters I, Tm, NR, NS, NG and the voltages VA of
midpoints A of the acquisition segments S we can calculate the plate capacitance Cp.

3.3 Simulation and Experimental Testing

Plate capacitance slow measurement drifts may indicate actual capacitance varia-
tions (e.g., due to changes of air humidity), or measurement interface errors upon
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Fig. 3.8 Improved Howland current source modeling the noise current

changes of measurement conditions (e.g., charge induction currents from variable
environmental electric fields from charge buildup or leakage). While the former vari-
ations can be usually independently measured and compensated, the latter can hardly
be detected and the measurement interface should be intrinsically insensitive.

In Section 3.1 the slope modulation measurement interface rejection capability
of the low frequency drift currents is analytically demonstrated. Here analytic results
are validated through simulations and laboratory experiments for drift currents at
different frequencies.

For grounded capacitors [75], changes of electrical potential of the grounded
plate (surrounding objects in our case) often determine charge induction currents.
Because mutual plate capacitance and relatively large voltage variations are hard to
produce and control, the charge induction current is injected directly into the sensor
plate node using a voltage-controlled current source (see Fig. 3.8).

The slope modulation frontend (see Fig. 3.6 and Fig. 3.9) uses a high input
impedance differential amplifier made of operational amplifiers OPB and OPD to
measure the voltage across the current sensing resistor R9. The result drives the OPA
inverting input, while its non-inverting input is set to the constant reference voltage
driven by a microcontroller through the R1–R2 voltage divider. Thus, the current
through R9 (hence through Cp) is

I =
(Vin −1.65V) R2

R1+R2
+1.65V

R9
, (3.29)
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Fig. 3.9 Schematic of the slope modulation frontend

where Vin is a digital output assuming either 0 V (logic low) or supply voltage, 3.3 V
(logic high). The same current source is used also for the constant current period
modulation frontend.

The RC period modulation frontend uses an exponential current limited by a
resistor R. Moreover, for the typically small Cp, practical R values increase the
average current well beyond the constant current of the other two frontends.

3.3.1 Testing Parameters

The sensor plate capacitance is modeled with a constant Cp = 10pF capacitor con-
nected to the ground, comparable to the 16cm×16cm plate self-capacitance of the
prototype.

The parameters of the slope modulation front-end (see Fig. 3.9) are set as dis-
cussed in Section 3.2.1. The measurement period Tm (see Fig. 3.7) must be long for
the ADC to acquire many NR samples per ramp (to increase accuracy and reduce
quantization noise), yet short enough to keep VC swings within OPA input limits. VC

swings also depend on the charge/discharge current magnitude, I. Thus, low Cp re-
quires low I. But since I is set mainly by (see Fig. 3.6) the voltage divider R1, R2 and
by R9 value (3.29), the output voltage of the divider must be much higher than the
OPA input voltage offset for low errors, and R9 value is capped by practical values
and to keep the driving impedance of the plate node relatively low, less susceptible
to noise. Yet R9 cannot be too low, because higher I values tend to decrease measure-
ment sensitivity (3.24), as shown in Fig. 3.10.
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Fig. 3.11 Printed circuit board assembly of the slope modulation interface (top) with
the STM32L412 microcontroller board (bottom)

The STM32L412 [31] low-power low-cost general purpose microcontroller board
is selected to drive the prototype frontend. It provides sufficient onboard memory
and processing power, a 5 Msample/s ADC, and a regulated 3.3 V supply. It plugs
into the frontend (see Fig. 3.11) keeping the high sensitivity analog circuits distant
and shielded from the noisy digital parts.
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ADC acquisition is set at 2 Msample/s, more available on low-end microcon-
trollers. Table 3.1 lists, with the considerations above and in Section 3.2.1, the Tm pe-
riods using at least half of the ADC samples, the resolution bits n gained from over-
sampling, and the peak-to-peak VC for I = 40nA. An integer number of ADC sam-
ples per ramp (see Fig. 3.9) is split in two NS = 4n segments for quantization noise
reduction through oversampling, two NG samples covering non-linear regions at
ramp ends, and NR samples between the NS segments to improve the slope measure-
ment accuracy. Tm is chosen with n = 4bit from oversampling and a high VC = 2Vpp

to reduce quantization noise. Other Tm may require higher I values, which may lower
the frontend sensitivity (see Fig. 3.10). The parameters should be optimized when
the plate capacitance changes significantly, e.g., for different plate dimensions.

For better comparison, the constant current period modulation frontend uses
the same current, I = 40nA, and measurement period, Tm = 1ms. However, the
RC period modulation frontend must use higher average currents (and oscillation
frequencies around fm ≈ 2200Hz) for practical R values.

The drift noise in simulation and experiments is modeled using a Howland [28]
(see Fig. 3.8) voltage controlled current generator. The errors induced on capacitance
measurement by frontends are measured for 3 decade frequencies, 100 Hz to 0.1 Hz
(the low end relevant for drift rejection analysis), and amplitudes 1 nA (the lowest
reliably distinguishable from noise) and 2 nA.

Table 3.1 Slope modulation frontend possible measurement frequencies (1/Tm)
for 2 Msample/s sampling rate, oversampling bits (n), unused samples per ramp
(2NG + r) and their percentage of total, and plate capacitance voltage swing (VC) for
I = 40nA

Measurement Over- Unused Ramp VC amplitude
frequency sampling samples coverage (I = 40nA)

(Hz) (bit) per ramp (%) (V)

1600 4 113 82 1.25
6250 3 32 80 0.32
5000 3 72 64 0.4
1250 4 288 64 1.6
4000 3 122 52 0.5
1000 4 488 52 2.0
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Fig. 3.12 Drift noise attenuation by slope modulation (sm), constant current period
modulation (pm cc), and RC period modulation (pm rc) frontends for frequencies
0.1 Hz to 100 Hz and amplitudes 1 nA and 2 nA

3.3.2 Simulation Results

Using the parameters discussed in Section 3.3.1, drift noise rejection of all frontends
in LTspice [74] simulations are analyzed and compared.

Fig. 3.12 comparatively shows the noise rejection for all three frontends. The
attenuation at low frequencies is plotted against a reference set at a much higher
frequency, 100 Hz. Note that for the slope modulation frontend the quantization error
from the 12 hardware bits of the ADC and the 4 bits obtained from oversampling
and decimation (see Section 3.3.1) is also implemented in simulation. For the period
modulation frontends we use instead the double precision numerical representation
of the simulator.

Above a certain frequency, the rejection of all frontends decreases linearly with
the increase of the noise frequency. Below that, the rejection of both period modula-
tion frontends has an inflection (at higher frequencies for the RC period modulation
frontend), beyond which the noise rejection flattens. This is because these frontends
have limited attenuation for constant (dc) drift currents (as discussed in Section 3.1,
it is lower for the RC period modulation), which becomes dominant. However, noise
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attenuation of the slope modulation frontend remains inversely proportional to fre-
quency, according to the theoretically infinite attenuation of constant (dc) noise (see
Section 3.1).

It can be also noticed that low frequency attenuation of period modulation
frontends (in the flattened zone) depends on noise amplitude. This is because the
attenuation of constant (dc) noise depends on the intensity of the noise current (εI in
Section 3.1).

3.3.3 Experimental Results

The analytical and simulation results are tested experimentally using implementations
of the frontends and noise generator.

The stability of the current source is important for both the slope modulator and
constant current period modulator frontends. The circuit in Fig. 3.9 is used for both.
It operates in uncontrolled environmental conditions (temperature, humidity, . . . )
without compensations, with the sensor plate replaced by a constant 10 pF capacitor,
supplied at 3.3 V by an REF2033AIDDCR [96] accurate voltage regulator providing
both the supply and the half-reference voltages (see Fig. 3.11). The measurement is
stable over extended time periods as shown in Fig. 3.13.

After checking the stability, the frontends are first characterized using a lumped
capacitor instead of the sensor plate to reduce the uncontrolled environmental noise.
For practical reasons, the frequency range is limited from 25 Hz down to the lowest
frequency where the injected noise can be distinguished from the total measurement
noise (low frequencies are the most interesting for analyzing drift noise rejection of
the frontends).

Fig. 3.14 shows comparatively both the experimental (dashed line) and the simu-
lation (solid line) results for all three frontends, for a drift noise amplitude of 1 nA.
As mentioned above, the new reference is the attenuation at 25 Hz instead of the
attenuation at 100 Hz that is used in the simulation results in Fig. 3.12. Albeit nois-
ier, the experimental results follow closely the simulation results. They reproduce
the inflection and flattening behavior for the period modulation frontends (see Sec-
tion 3.3.2), and the proportional increase of the drift noise attenuation with the de-
crease of the noise frequency (up to 1.56 Hz) of the slope modulation frontend.
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Fig. 3.13 Stability of the mean value of capacitance for two hours of acquisition of
the slope modulator frontend with a fixed capacitor of 10 pF
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Fig. 3.14 Simulation and experimental results for the rejection of 1 nA amplitude
sinusoidal noise with frequency



36 Noise Rejection Front-End for Long-Range Capacitive Sensing

10-1 100 101

Noise Frequency (Hz)

0

10

20

30

40

50
N

oi
se

 A
m

pl
itu

de
 a

tte
nu

at
io

n 
(d

B)

sm sim 2 nA
sm exp 2 nA
pm cc sim 2 nA
pm cc exp 2 nA
pm rc sim 2 nA
pm rc exp 2 nA

Fig. 3.15 Simulation and experimental results for the rejection of 2 nA amplitude
sinusoidal noise with frequency

Fig. 3.15 shows the same comparison of the simulation (solid line) and experi-
mental (dashed line) results for all three frontends for a higher drift noise amplitude,
of 2 nA. The effects can be measured with better accuracy, thus the experimental
data match better the simulation results for all frontends, which validates the analytic
analysis and the simulation results.

Then the rejection of uncontrolled environmental noise (from sensor circuitry
and the environment, electromagnetic, temperature, humidity, etc.) is measured
for all frontends. A 16cm×16cm sensing plate is connected to each frontend and
measurements for 12 h (from 6:30 PM to 6:30 AM) are collected in the laboratory
room. The frequency analysis results are shown in Fig. 3.16. The expected inflection
point below which the 1/f noise becomes dominant can be seen for all frontends.
The RC period modulation frontend is the noisiest over the whole spectrum, it
has the inflection point at the lowest frequency (around 0.05 Hz), and the highest
noise power below that. The constant current period modulation frontend has lower
noise power at higher frequencies, the inflection point at a higher frequency (around
0.25 Hz), and shows an improved noise attenuation around 0.01 Hz and below. The
slope modulation frontend has comparable noise envelope at higher frequencies and
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Fig. 3.16 Frequency analysis of 12 h measurements collected in uncontrolled lab-
oratory conditions by slope modulation (sm), RC period modulation (pm rc), and
constant current period modulation (pm cc) frontends

an inflection point roughly at the same frequency, yet the best noise attenuation at
lower frequencies.

Although this is beyond the scope of the comparison of the frontend intrinsic
performance, it can be noticed that unlike for the period modulation frontends, for
the slope modulation frontend an antialiasing filter can be included before the ADC
to further improve noise rejection, as shown in Fig. 3.6.

3.4 Sensitivity Characterization

Sensor noise is usually directly correlated to sensor sensitivity. Thus, it must be
checked if a higher sensitivity is in fact the cause of the higher noise of the period
modulation frontends.

The frontend noise is evaluated through two main parameters. First, the level
below which the person movements produce no discernible changes of the frontend
readings. Second, the stability of the frontend readings while the person remains still
at various distances in front of the sensor.



38 Noise Rejection Front-End for Long-Range Capacitive Sensing

30 50 70 90 110 130 150 170 190 210 230 250 270 290
Distance (cm)

10-1

100

N
or

m
al

iz
ed

 c
ap

ac
ita

nc
e

sm
step avg

Fig. 3.17 Plate capacitance measured 4 times/s with the slope modulation frontend
for body-plate distances changing by 20 cm every 10 s

For these experiments, the input of each frontend is connected to a 16cm×16cm
copper plate, mounted at chest level and several meters away from the surrounding
objects. The person stations 10 s in each position, spaced 20 cm along a straight path
orthogonal to the plate, at distances from 290 cm to 30 cm. The three frontends are
characterized in sequence, in the same conditions, all sampling at 4 sample/s, which
is suitable for monitoring indoor person movements [33].

Fig. 3.17 shows the sensitivity characterization for the slope modulation frontend,
as the logarithm of the normalized capacitance on the Y axis function of the distance
between the person and the sensor plate on the X axis. Capacitance is normalized
for better comparison between frontends, because the absolute values depend on
uncontrolled stray capacitances from PCB and components. The average of the
readings is also drawn for each stationary position of the person to reduce the
influence of the noise. The top of the scale is set at 0.1 % higher than the highest
average level, and the bottom of the scale at 0.1 % lower than the lowest average level.

First, it can be observed that the sensitivity of the slope modulation frontend
extends up to 230 cm, about 10 times the diagonal of the sensor plate. Second, the
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Fig. 3.18 Sensor capacitance measured 4 times/s with the constant current period
modulation frontend for body-sensor distances changing 20 cm every 10 s

plate capacitance decreases linearly (on logarithmic scale) with the distance for the
whole sensitivity range. This indicates a power dependence of capacitance on the
distance to the person, in line with other empirical results in the literature [123].
Third, barring spikes when the person changes position, the measurement noise
markedly increases beyond 130 cm, and around 250 cm it exceeds the signal.

Fig. 3.18 shows the results for the constant current period modulation frontend.
For better comparison, it uses similar settings and considerations as Fig. 3.17. A quasi-
linear capacitance-distance dependence (on logarithmic scale) is characterizing up
to 110 cm–130 cm. Noise visibly afflicts measurements beyond 110 cm and shortly
after it limits the sensitivity.

Fig. 3.19 shows the results for the experimental evaluation of the sensitivity of
the RC period modulation frontend, using similar settings and considerations as
Fig. 3.17 and Fig. 3.18. The linear capacitance-distance dependence (on logarithmic
scale) is visible also here up to 90 cm–110 cm. Noise markedly afflicts the readings
beyond 90 cm, then quickly limits the sensitivity.
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Fig. 3.19 Sensor plate capacitance measured 4 times/s with the RC period modulation
frontend for body-sensor distances changing by 20 cm every 10 s

The experimental sensitivity characterizations show that the slope modulation
frontend is the least afflicted by noise, thus extending the sensing range to become
roughly twice as large as the frontends based on period modulation. The latter are
more afflicted by noise, which limits early their sensing ranges as well as the accuracy
at closer distances, especially for the RC period modulation frontend.

Fig. 3.20 comparatively shows the frontend sensitivities calculated as the absolute
value of the capacitance reading variation between two adjacent person positions.
For all frontends, the sensitivity decreases exponentially with the distance (linearly
on logarithmic scale) until it abruptly drops at noise level. The period modulation
frontend sensitivities decrease faster and are limited earlier by the higher noise level.
Instead, the sensitivity of the slope modulation frontend decreases more slowly and
is limited by noise at a much longer sensing distance.

Overall, the experimental results show that the slope modulation frontend is less
afflicted by noise and has higher sensitivity, thus longer sensing range than the period
modulation frontends.
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Fig. 3.20 Frontend sensitivity function of person distance for slope modulation (sm)
and period modulation [using RC (pm rc) and constant current (pm cc)]



Chapter 4

Neural Network Processing for
Human Indoor Tracking

Raw sensor data is often contaminated by various forms of noise, including random
fluctuations, interference, and measurement errors. Post-processing techniques, such
as signal filtering and statistical averaging, are instrumental in mitigating these noise
sources, resulting in cleaner and more reliable estimates of location.

In addition to noise, sensors may exhibit inherent inaccuracies or biases that can
adversely impact the accuracy of location estimates. Post-processing methods, such
as calibration and error modeling, play a crucial role in rectifying these imperfections
and enhancing the overall accuracy of the localization system.

Post-processing techniques assume a critical role in refining raw sensor data,
addressing errors, integrating information from multiple sources, adapting to dynamic
environmental conditions, enhancing system robustness, and optimizing performance
metrics within indoor localization systems.

Specifically, ML models have the capability to learn from indirect signals or
environmental features, thereby improving localization accuracy in non-line-of-sight
scenarios, and they can capture complex relationships between sensor data and
location, leading to more precise localization estimates. Furthermore, ML techniques
can effectively filter out noise, thereby enhancing the reliability and robustness of
the localization system.
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Fig. 4.1 Flowchart illustrating the organization of work and outlining objectives.

Tariq, Lazarescu, and Lavagno [115] evaluate several NN architectures for indoor
person localization and tracking with data collected from a tagless localization system
with four single-plate long-range capacitive sensors operating in load mode [41],
mounted in the middle of the four sides of a 3 x 3 experimental space. The sensors
are noisy and have a pronounced nonlinear characteristic, exposing the NN abilities
to denoise, infer, and generalize both the location, for which the 1DCNN excels, and
the human motion dynamics, for which the LSTM gives the best results. However,
the pooling operations used in CNNs are known to lose important relations [4].

We explore two NNs designed for or adapted to sequential data analysis without
pooling, the TCN [9, 45, 66] and the CAPS [59, 112]. Ye et al. [126] have used
CAPS for indoor localization using a Wi-Fi network spread over 3 rooms with an
average error of 0.68 m, outperforming ML based on CNN, SVM, CNN with stacked
autoencoders, and KNN. Jia et al. [53] used TCN for indoor localization with Wi-Fi
fingerprints in a reading area of a library (965.6 m2) with an average error of 3.73 m,
outperforming SVM, KNN, decision tree (DT), RF, and an 8-layer MLP.

This chapter is dedicated to the pursuit of the second objective outlined in our
research (Fig. 4.1), focusing on the exploration of optimal NN models capable
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of inferring the x and y positions of individuals within indoor environments in
continuous mode. Initially, we delve into a detailed explanation of TCN and CAPS
networks. Then, we discuss the utilization of NAS for conducting design space
exploration aimed at optimizing the performance of NNs, with the obtained results
compared to those presented in [115].

4.1 Background

4.1.1 Temporal Convolutional Networks

The state of the art suggests using recurrent and recursive networks for sequence
modeling tasks. However, there are two major drawbacks: exploding/vanishing gradi-
ent and high resource demand. Recent works combine the low-level spatio-temporal
features extraction using CNN with the classification of high-level temporal informa-
tion using RNN ([106, 20, 17]). Bai, Kolter, and Koltun [8] persuade the audience to
consider convolutional network as the primary candidate for modeling sequential
data, due to the good performance achievement of the temporal convolutional model.

TCN is a type of neural network architecture designed for sequential data process-
ing tasks, such as time series forecasting, natural language processing, and speech
recognition. TCNs are particularly effective at capturing temporal dependencies
within sequences while maintaining computational efficiency.

The main properties of a TCN are the following:

• Dilated convolution. In a normal convolution the kernel takes n contiguous
input elements, whereas the dilated one inserts holes between two adjacent
taps, achieving a wider range of inputs in the window with fewer resources.

• Multiple Dilated convolutional layers. In a forecasting model, the output
should ideally depend on the full input window. In a normal convolutional
network, this can be achieved at the expense of having a very deep network or
very large filters. TCN stacks multiple dilated layers on top of each other, with
a dilation value that increases exponentially (Fig. 4.2).

• Layer output sequence has the same length as the input sequence. This requires
the use of zero-padding.
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Fig. 4.2 Dilated causal convolutional blocks of a temporal convolutional net-
work (TCN) have an input tensor of input_size length repeated input_channel
times. Each dilated convolution block has nb_layers, each with nb_filters of
kernel_size (purple arrows). The dilation factor (hole size between convolved ele-
ments) increases exponentially along the hidden layers.

• No pooling layers.

• Residual blocks. In the improved version of TCN instead of a single block
of dilated layers, a residual block is implemented (Fig. 4.3). It consists of
2 identical blocks of dilated convolutions and a residual connection. The
convolution blocks are followed by a normalization, a nonlinear activation,
and a dropout layer for regularization.

• Receptive field. It is the maximum number of steps back in time that a filter
can hit to predict the T element. The receptive field can be computed as:

Rfield = 1+2 · (Ksize −1) ·Nres_block ·∑
i

di (4.1)

where Nres_block is the number of stacked residual blocks, d is a vector contain-
ing the dilations along the hidden layers, and Ksize is the kernel size.

Fig. 4.2)

4.1.2 Capsule Networks

CAPSs overcome the CNN major limitations due to information loss using dynamic
routing instead of pooling operations. They decompose a complex novel object into
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Fig. 4.3 Residual block of a temporal convolutional network. It consists of two
identical sub-blocks of a dilation convolution block followed by normalization,
activation and dropout layers for regularization. A residual connection is introduced
between the input and output tensor.

a hierarchical representation of previously learned patterns. While a CNN neuron
outputs a scalar that signals only if a feature is recognized, without relative object
relationships, CAPSs explicitly model these relationships in the vector-form of
the neuron outputs. Here, the length (modulus) of the vector signifies the detection
probability, while the direction (position in space) conveys the characteristics of
an entity (instantiation parameters e.g., pose, deformation, velocity). In contrast
to conventional neural networks, which predominantly focus on isolated features,
capsules in CAPS consider part-whole relationships. During the training of a CAPS,
the network learns to adjust the instantiation parameters of each capsule, and the
routing process aids capsules in reaching a consensus regarding the presence of
higher-level features. To delve deeper into the conceptual underpinnings of CAPS,
let’s consider a common example often used for illustration: the recognition of a
face. In this scenario, a face typically consists of recognizable components such as
the face oval, two eyes, a nose, and a mouth. For a CNN, the mere presence of these
individual components can serve as strong indicators for detecting a face within an
image. However, CNNs may not inherently prioritize the orientational or relative
relationships between these components.

Due to the vector-representation all the subsequent neuron steps are modified as
follows (Fig. 4.4):
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Fig. 4.4 Capsule network operations. Conversely to the normal neuron output, which
is a scalar value, the vector-form can encode the state of the detected feature/object
and the probability. At layer Li the incoming vectors are multiplied by matrices
W, then, the transformed vectors are weighted and summed. Finally, the activation
function squash is applied to keep the vector length in 0 to 1, without altering the
direction.

• Matrix multiplication. At layer Li, the input vectors (outputs of the capsules at
layer L(i−1)) are multiplied by matrices W that encode the relationship between
the features in L(i−1) and Li. This step is called affine transformation.

• Weighting and adding. This is very similar to what happens in a normal CNN,
but the scalar weights are learned through dynamic routing and not during
backpropagation. These weights represent the probability distribution that a
lower level feature belongs to a higher level feature

• Vector-to-Vector non-linear function. This function takes a vector in input and
forces it to have a length < 1 without changing the direction.

The backbone implementation in [112] (see Fig. 4.5) is composed of two 1D-Conv
layers with ReLU activation to extract basic features. Then a PrimaryCaps layer does
feature combination and encapsulation. Each nb_caps1 capsule applies dim_caps1×
kernel_size×nb_filters convolutional kernels. Then ClassCaps has nb_class repre-
sented as dim_caps2 vectors, with length encoding the detection probability, and di-
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Fig. 4.5 Capsule network (CAPS) architecture has two 1D-convolutional layers,
a PrimaryCaps layer where encapsulation takes place, a ClassCaps high-level
feature capsule layer where low-level features converge, and the vector with the
highest detection probability is fed to a fully connected layer.

rection encoding the state of the recognized class/feature. Finally, a fully connected
layers which take as input the vector with the highest detection probability output
the final prediction.

4.2 Methodology and Experimental Setup

Our main goal is to improve the performance and the resource consumption of the
NNs used for indoor human tracking with low-end noisy capacitive sensors [115].

4.2.1 Input Data

To compare the results with Tariq, Lazarescu, and Lavagno [115], the same sensor
data and preprocessing are used. The input data come from four single-plate load-
mode capacitive sensors mounted in the center of the virtual walls in the 3 x 3
laboratory experimental space, labeled with the person’s coordinates, sampled at 3 Hz,
and preprocessed using a median filter with a 50 s input window followed by a low-
pass filter with a transition band within 0.3 Hz to 0.4 Hz. The experiment is conducted
by a single person and lasts about 540 s. The data set is divided into 60 % for training,
20 % for validation, and 20 % for testing, each in time order (see Fig. 5.5).
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Fig. 4.6 Full trajectory (9 min) of the single person in the experiment 3 x 3 space
divided into segments: 60 % for training, 20 % for validation, and 20 % for testing.

4.2.2 Neural Architecture Search

NAS aims to automate the design of NN to a level equal to or better than hand-
designed architectures. It can optimize the NN architecture, and estimate or test its
performance. NAS is a subfield of automated machine learning (AutoML), closely
related to hyperparameter optimization and meta-learning.

As NAS was used AutoKeras [55], an AutoML system based on Keras [24] using
a controller for generating NN architectures with a predefined grammar and encoding
scheme, a searcher for evaluating the architectures with criteria such as accuracy,
complexity, and resource consumption, and a trainer for training and validating the
architectures.

The tuned TCN hyperparameters (see Fig. 4.2) and their values are chosen to
ensure both that the receptive field (i.e., the number of time steps accessible to the
filters for predicting the element at time step t (4.1)) is at least equal to the input
sequence length, and to avoid excessive growth of the network size [110]. The number
of dilated convolution filters in each hidden layer of the dilated convolution block
is nb_filters = [8,16,32], which are typical DSE values [115, 116]. The number of
input tuples to convolve is kernel_size = [2,3,5], where a kernel size of 2 captures
localized patterns and nuanced fluctuations, while a kernel size of 5 is a good balance
between input sequence length, broader patterns, and computational resources. The
number of hidden layers in the dilated convolution block is nb_layers = [2,3,5],
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with upper bound 5 ensures that both computational resources and receptive field
length remain within reasonable bounds, even under the most challenging parameter
combinations. The size of a dense layer before the dense output layer of 2 used
to perform the prediction of (x,y) position, is dense_unit = [0,8,16,32], adding an
extra dense layer could boost the model’s capacity to comprehend intricate patterns
and relationships, however, it concurrently heightens the susceptibility to overfitting,
thus providing the possibility of its removal (0) as an option. Given the limited length
of the input window, the number of residual blocks is constrained to 1. Typically,
multiple residual blocks are employed for longer sequences (hundreds of thousands
of time steps) or in NLP tasks [8]. The dilation base is set to 2 to sufficiently expand
the receptive field without exceeding the input sequence length for all parameter
combinations.

Also CAPS hyperparameters are tuned (see Fig. 4.5) by NAS. The number of con-
volution filters in the layers 1DConv1 and 1DConv2, nb_filters = [0,8,16,32] which
are used to extract features. The number of convolved tuples, kernel_size = [2,3,5],
are typical DSE values [115, 116] considering the length of the input sequence. The
number of capsules in the PrimaryCaps layer where feature combination and encap-
sulation take place, nb_caps1 = [3,5,7,10,12] and the number of high-level classes
in the ClassCaps layer, nb_class = [3,5,7,10,12], both selected to stay within the
limits of the computational resources of the baseline [115, 116], and the range 3 to
12 allows for flexibility in capturing different levels of abstraction and complexity in
extracting movement patterns. The dimension of the capsules in the PrimaryCaps
layer, dim_caps1 = [3,5]. The dimension of the class vectors in the ClassCaps layer,
dim_caps2 = [3,5], where the lower bound 3 ensures meaningful vector representa-
tions and minimum movement characteristic representation (e.g., positional displace-
ment), while the upper bound 5 allows for a richer covering of movement aspects
(e.g., positional displacement, velocity, acceleration). The size of two dense layers
before the dense output layer of 2 used to perform the prediction of (x,y) position, is
dense_unit = [0,8,16,32]. These final dense layers receive the learned representa-
tions of movement features and translate them into actionable predictions of next
positions. The CAPSs require at least one routing iteration to update the capsule
weights, but excessive iterations can reduce convergence and increase overfitting.
Therefore, the routing iteration is set to 3, consistent with the state-of-the-art, and
the convolution step of PrimaryCaps is set to 2 [86, 120, 132].
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Table 4.1 Our TCN and CAPS NNs optimized using neural architecture search
(NAS) compared to [115] (highlighted) through the number of parameters, mean
squared error (MSE), and average euclidean distance error (ADE)

Model Number of MSE ADE
parameters

(
m2) (m)

1DCNN (2 layers) 14530 0.078 0.343
1DCNN (4 layers) 7618 0.063 0.307
1DCNN (6 layers) 8018 0.078 0.328
LSTM (bidirectional) 2754 0.079 0.326

CAPS (NAS) 5996 0.063 0.303
TCN (NAS) 2034 0.065 0.309

The NAS is repeated 3 times for each NN type. The AutoKeras tuner tries 50
different parameter combinations, retraining each 10 times for 800 epochs using the
Adamax optimizer tuned autonomously by AutoKeras. We force the NAS to return
the most compact network architecture whose MSE deviates by no more than 5 %
from the optimal performance achieved by the leading 1DCNN as reported in the
study by [115].

4.3 Experimental Results

As Tariq, Lazarescu, and Lavagno [115], the performance of the NNs is evaluated us-
ing the MSE, average euclidean distance error (ADE), speed, acceleration (smooth-
ness), and resource consumption (number of parameters).

Table 4.1 shows the best results of our optimized networks, TCN and CAPS,
compared to [115] (grey background). 1DCNN uses (2, 4, 6) convolutional layers
followed by an average pooling layer (tested to perform better than max pooling)
and two fixed dense layers with 64 neurons each.

The inference accuracy of the CAPS optimized by NAS (MSE = 0.063m2 and
ADE = 0.303m) matches the best in [115], but consumes less resources (5996
parameters) when it is configured with nb_filters = 16, kernel_size = 2, nb_caps1 =

10, dim_caps1 = 3, nb_class = 3, dim_caps2 = 5, 2 dense layers with dense_unit =
32, and trained with Adamax with learning rate 0.001.

The TCN optimized by NAS has inference accuracy (MSE = 0.065m2, ADE =

0.309m), slightly higher than the best in [115] (0.063 m2), but it achieves these
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Fig. 4.7 Ground truth and inference of trajectory coordinates X (top) and Y (bottom)
by the best neural network in [115], 1D convolutional neural network (1DCNN)
(4 layers), and our temporal convolutional network (TCN) optimized using neural
architecture search (NAS).

results with much fewer resources (2034 parameters vs. 7618) when configured with
nb_filters = 8, kernel_size = 5, nb_layers = 3, dense_unit = 8, and trained with
Adamax with learning rate 0.0001.

Fig. 4.7 shows the inference of the X and Y coordinates of the person in the room
by the TCN optimized by NAS, the inference of the best 1DCNN (also the best NN)
in [115], and the ground truth for reference. For both coordinates, the TCN inference
shows more susceptibility to noise (more oscillations) than the 1DCNN, and it also
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Fig. 4.8 Ground truth and inference of trajectory coordinates X (top) and Y (bottom)
by the best neural network in [115], 1D convolutional neural network (1DCNN) (4
layers), and our capsule network (CAPS) optimized using neural architecture search
(NAS).

seems to infer less accurately the extremes of either coordinate. Fig. 4.8 allows us
to evaluate similarly the CAPS optimized by NAS. Its inference appears smoother
than the TCN, less afflicted by noise, often comparable and occasionally exceeding
the quality of the inference of the 1DCNN in [115], e.g., around the extremes of the
coordinates.

Table 4.2 compares the NN inferences with the ground truth using several met-
rics: trajectory correlation, and RMSs of speed and acceleration. The speed and ac-
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Table 4.2 Movement inference quality of our TCN and CAPS compared to [115]
(highlighted) as ground truth correlation, and root mean square of speed and acceler-
ation

Model Correlation RMS speed RMS acc.
(%) (m/s)

(
m/s2)

Ground truth 100.0 0.180 0.333

1DCNN (2 layers) 83.3 0.157 0.172
1DCNN (4 layers) 87.5 0.162 0.187
1DCNN (6 layers) 84.5 0.176 0.259
LSTM (bidirectional) 84.0 0.133 0.129

TCN (NAS) 86.0 0.180 0.347
CAPS (NAS) 87.1 0.164 0.384

celeration RMS are calculated as the square root of the mean square of the first and
the second derivatives of the inferred locations, respectively. The correlations of both
the TCN and CAPS are slightly lower than that of the 1DCNN (87.5 %), but while
the TCN RMSs of speed and acceleration agree very well with the ground truth, the
CAPS inference appears to be too smooth.



Chapter 5

Neural Network Minimization for
Continuous Indoor Human Tracking

Today, deep learning architectures are widely used that can operate on raw sensor
data, extract valuable features, and identify spatial and temporal patterns (Chapter 4).
However, they require massive training datasets and many resources for inference,
which are difficult to provide on resource-constrained IoT.

Several compression techniques, such as quantization and pruning [71], have
been proposed to reduce the network size and complexity, but they often compromise
the network accuracy. A more recent technique, known as knowledge distillation,
was introduced [50, 40] to transfer the knowledge from a large network (teacher) to
a smaller one (student), mimicking a teacher-student relationship.

Knowledge distillation encompasses a wide variety of knowledge types, including
response, feature, and relationship-based knowledge, as well as different methodolo-
gies such as offline, online, and self-distillation. Additionally, KD involves the utiliza-
tion of various algorithms, including adversarial, attention-based, similarity-based,
and ensemble-based approaches. The efficacy of KD hinges predominantly upon sev-
eral critical factors, notably the quality of the teacher’s knowledge, the chosen distil-
lation strategy, and the formulation of the teacher-student architecture. This formula-
tion encompasses architectural design considerations and interactive elements [40].

Most of the existing KD methods focus on classification problems [67, 92,
121], where the softened logits of the teacher provide useful information about the
class relationships, which is missing in the one-hot encoded ground-truth labels.
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However, this advantage does not exist in regression problems, where the ground-
truth predictions are continuous and unbounded.

NN optimization using KD-based training has previously been applied to indoor
person location classification [76, 78, 94], which allows only rough tracking of the
person’s activities.

Many proposed KDs address classification involving either multiple teachers
or stages (different depths of the student network) or multi-step. The latter can use
intermediaries (assistants) of the same architecture but different sizes for commu-
nication between teacher and student [77, 109]. Zhao et al. [131] suggested using
two teachers to train a smaller student, all of the same type, to classify images: an
expert teacher trained offline would focus the student on critical regions, while a
scratch teacher trained alongside the student would provide incremental assistance.
Liu, Zhang, and Wang [72] use heterogeneous teachers to guide a student learning
image classification through an adapter that dynamically learns relevant instance-
specific teacher weights from soft-targets and formulates the standard knowledge
distillation loss, similar to [129]. Classification of human location indoors is rela-
tively coarse and poorly suited to more advanced LBS applications that require con-
tinuous fine-grained tracking. In addition, most existing work focuses on coarser
surveillance of larger indoor areas and typically does not address much sought-after
LBS features such as low cost or privacy.

We propose a multi-step KD combined with network optimization specifically for
regression-based indoor human tracking, providing fine-grained continuous tracking
of a person’s position.

We assess the efficacy of the proposed methodology through several key metrics,
including the reduction of NN resource requirements, tracking accuracy, and gener-
alization accuracy across unrelated experimental data, encompassing different move-
ments and days. The methodology is systematically tested across various types of
NN architectures to ascertain its effectiveness, irrespective of sensor characteristics
or data format. Furthermore, we integrate the NNs into three distinct tagless LBSs,
each employing disparate human body sensing techniques: capacitive, radar, and in-
frared sensors; enabling person tracking within a 3 x 3 virtual room in the laboratory.

This chapter addresses the concluding aspect of our study (Fig. 5.1), which entails
the investigation of a resource-conscious optimization approach for ML models
which maintains high precision levels. Having low-resource models is essential
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Fig. 5.1 Flowchart illustrating the organization of work and outlining objectives.

for the deployment into IoT devices. The development of low-resource models is
imperative for their successful deployment within Internet of Things (IoT) devices.
The initial segment of the chapter delineates the tools, environmental parameters, and
the methodology employed. Subsequently, the experimental outcomes pertaining to
diverse multi-step and multi-configuration KD optimization flows for three distinct
LBSs, namely capacitive, radar, and infrared, are expounded upon. Finally, the
chapter culminates with a demonstration of the generalization capability of the most
effective multi-level KD optimization flow. This demonstration involves assessing
its performance using data from various days and movements distinct from those
encompassed during the training phase.

5.1 Tools

We assess the proposed methodology by employing TCN [9, 45, 66] and CAPS [59,
112] models. These models are selected based on the comprehensive exploration
of NNs for indoor human tracking outlined in Chapter 4. Notably, both models cir-
cumvent the utilization of pooling operations specific to CNNs, as such operations
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are recognized to potentially compromise the preservation of crucial data relation-
ships. A comprehensive elucidation of the architecture and implementation details is
provided in Section 4.1.1, Section 4.1.2, and Section 4.2.2.

NAS is used to optimize NN sizes and architectures and is based on the widely
used AutoKeras framework [55] with the Bayesian tuner [39]. The objective func-
tion includes the teacher and KD attentive imitation loss [101]. NAS is used with
default values for parameters, except for the maximum number of different parame-
ter combinations, which is limited to 50; this choice represents a reasonable balance
between processing time and space exploration. Additionally, the number of indepen-
dent trainings per trial is limited to 10, a tradeoff between improving robustness and
minimizing optimization time. The training cycle uses early stopping and Adamax
optimizer tuned autonomously by AutoKeras.

Offline KD involves the transfer of knowledge from pre-trained larger neural
networks (referred to as teachers, optimized for accuracy) to smaller ones (referred
to as students, optimized for size) with the aim of enhancing their accuracy. Larger
models typically possess a greater knowledge capacity and are adept at learning
compact representations of knowledge. Intuitively, through KD, these representations
are imparted to student models that may struggle to acquire them independently.

Although KD for regression problems has not been extensively researched be-
cause it lacks exploitable hidden knowledge such as the class labels incorporated
in softened logits that can be used for correlations, posing a significant risk of mis-
guiding the student model, teacher predictions can still benefit regression problems.
Notably, the reliability of such predictions may be estimated based on teacher loss.
Saputra et al. [101] outline different formulations of blending teacher, student and
imitation loss:

• Imitation loss regularization (Iloss), implies that the student uses also labels
sampled from the teacher distribution, as regularization, in addition to the
ground-truth labels.

• Attentive imitation loss adaptively adjusts the weighting of imitation loss based
on the reliability of teacher predictions, effectively mitigating its influence
in instances where such predictions demonstrate diminished reliability. This
adjustment is informed by the empirical error derived from the teacher loss.
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Fig. 5.2 Experimental setting in a 3 x 3 laboratory space for (a) capacitive, (b)
infrared radiation, and (c) radar location-based systems

• Teacher loss as upper bound, which implies that the loss function used to train
a student to imitate a teacher should not exceed the loss function used to train
the teacher itself, which is assumed to be more accurate and reliable.

Attentive imitation loss formulation was selected due to its demonstrated superiority
in achieving optimal results for regression problems [101]. The specific expression
for the attentive imitation loss is

Lreg =
1
n

n

∑
i=1

α
∣∣pS − pgt

∣∣2
i +(1−α)Φi |pS − pT|2i (5.1)

where pS is the student prediction, pgt is the ground truth, pT is the teacher prediction,
and Φ is the normalized teacher loss for each sample, it is the attentive term in
charge of putting different relative importance to the imitation loss. α ∈ [0,1] is a
hyperparameter tuned by NAS to balance the weights of student and distillation
losses.

5.2 Location-based systems

The capacitive LBS [115] (see Fig. 5.2a) consists of four single-plate load-mode ca-
pacitive sensors mounted in the center of the virtual walls. The sensors are sensitive
to electromagnetic noise and have a highly nonlinear distance-capacitance charac-
teristic. They are sampled at 3 Hz and their data is pre-processed by a median filter
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with a window size of 5 s, followed by a low-pass filter with a transition band from
0.3 Hz to 0.4 Hz [115].

The IR LBS (see Fig. 5.2b) uses a single 4 x 4pixel Omron D6T-44L-06 ther-
mopile infrared sensor with a resolution of 0.06 ◦C installed in the center of the vir-
tual room ceiling at a height of 3.05 m covering a field of view of 2.48 x 2.57 at floor
level. The 16 thermal sensor readings are sampled at 5 Hz. The IR sensor output is
less noisy than that of the capacitive sensor and has a linear relationship between the
thermal readings and their location, so we do not pre-process it.

The radar LBS (see Fig. 5.2c) uses the 60 GHz Infineon BGT60TR13C radar
[13]. Its output data is made of range-angle-magnitude point clouds. The sensor
is placed in a corner of the virtual room pointing towards its center with a 45°
downward inclination, and situated at a height of 1.30 m above the floor. Its setup is:
2.5 MHz ADC sample rate, chirp frequency from 61.8 GHz to 63.5 GHz, 64 chirps
per frame, 128 samples per chirp, 0.3 ms chirp repetition time. These parameters are
configured using the Infineon framework tool to meet a sensing range requirement
of approximately 5 m (roughly equivalent to our diagonal) and a 4 Hz sampling
rate. The intentional avoidance of sophisticated settings and complex point cloud
extraction algorithms is deliberate, aiming to increase the workload for the NNs.
The output seems to be less sensitive to noise than the capacitive sensor, but more
sensitive than the IR sensor.

5.3 Methodology

As outlined in the introductory section of the chapter, our aim is to assess the
efficacy of the suggested methodology for continuous indoor person tracking from
various perspectives and under diverse experimental conditions. This includes testing
with different types of NNs, employing training datasets collected under varying
conditions, and integrating the methodology into different LBSs.

The experimental data is collected with the LBSs described in Section 5.2 in
similar but distinct experiments (denoted exp1, exp2, exp3 see Appendix A). These
experiments were carried out on different days by the same individual and each lasted
for a duration of 9 minutes. This variability is useful to test the generalization ability
of the NN optimization and training in the proposed methodology for continuous
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Fig. 5.3 Flowchart of multi-level optimization and two-level knowledge distillation
(KD) with multiple optimization branches

indoor human tracking. To do this, NNs are trained on data collected during an
experiment, then tested both on an unseen segment of the same experiment and on
data from distinct experiments, (see Section 5.4 and Section 5.5 for details). The
comparison of these test results indicates the generalization ability of the NNs, i.e.
how well they have captured the essential features that lead to robust accurate tracking
in unrelated experimental conditions. The training and testing process outlined above
is reiterated using a different experiment as the training dataset. This repetition aims
to evaluate the robustness and effectiveness of the framework under varied conditions.

KD can be used multiple times [40] and in the proposed methodology it is used
twice in the combinations shown in Fig. 5.3, while the main phases are summarized
in Table 5.1. For each combination and experiment, the student NN is compared to
teacher NN in terms of size (a proxy for resource requirements), inference accuracy,
and generalization ability.

The sensor data is used for training the teacher NNs, while the student NNs are
trained by KD based on the sensor data and teacher’s knowledge.

The following processing is divided into three main stages. In the first stage,
Teacher Optimization (top of Fig. 5.3), the sensor data of the LBS is used to train
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Table 5.1 Algorithmic table outlining the steps of the NN optimization procedure
that incorporates KD and NAS

Stage Action Description

0NAS_T NAS opt. NAS optimizes the TCN teacher.

0NAS_T NAS opt. NAS optimizes the CAPS teacher.

1KD_TS_same NAS for
1st stage
KD

NAS optimizes: TCN student with KD
from same type (TCN) teacher, or CAPS
student with KD from same type (CAPS)
teacher.

1KD_TS_cross NAS for
1st stage
KD

NAS optimizes: TCN student with KD
from different type (CAPS) teacher, or
CAPS student with KD from different type
(TCN) teacher.

2KD_TS_same,
2KD_TS_cross

2nd stage
KD

Continue KD-based training of students
from 1KD_TS_cross or 1KD_TS_same,
respectively, with teachers of a different
type than those trained in the first stage.

2KD_SS_same 2nd stage
KD

Students trained in 1KD_TS_same now
act as teachers to continue the training of
a copy of them through KD.

and optimize the hyperparameters of all teachers NNs using NAS (see Section 5.1)
to maximize their accuracy. The NAS is based on AutoKeras [55] and driven by a
Bayesian optimization tuner.

In the second stage, Student Optimization 1st stage (middle of Fig. 5.3), KD-
aware NAS minimizes the size and errors of student NNs using the knowledge of the
pre-trained teacher NNs. The teacher and student NNs can be of the same type (left
flow, 1KD_TS_same) or different (right flow, 1KD_TS_cross).

In the third stage, Student Optimization 2nd stage (bottom of Fig. 5.3), continues
the training of the student NNs. In the left (2KD_TS_cross) and right (2KD_TS_same)
flows, the student NNs from 1KD_TS_same and 1KD_TS_cross, respectively, are
trained by teacher NNs of a different type, to ensure that student NNs are always
trained by teachers of different types. The concept entails presenting the student with
an additional perspective on the given task, thereby facilitating ongoing refinement
and enhancement of their understanding and performance.

The middle flow in the third stage, 2KD_SS_same, freezes a student NN after
the first stage and uses it as teacher in the second stage to further train as teacher a
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Fig. 5.4 Input layer organization

copy of itself. Here the idea is that of enabling students to acquire new knowledge
while retaining the foundational understanding obtained in prior stages of learning.

5.4 Input Data and Dataset Organization

Capacitive LBS data has 4 sample tuples (one sample per sensor, see Fig. 5.2a),
processed using a 5 s sliding window [115] (see Fig. 5.4a).

IR LBS data has 16 sample tuples (one sample per pixel of the IR sensor),
processed using a 1 s sliding window. The window is smaller to limit the size of NN
input layer, since IR LBS tuples are nearly four times larger than those of capacitive
LBS (see Fig. 5.4b).
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Radar LBS data has 3 sample tuples (range, angle, magnitude), processed using
a 3 s sliding window (see Fig. 5.4c), because in our experiments 1 s windows give
poor accuracy, while there is little difference between 3 s and 5 s windows.

For meaningful comparisons, the tracking data with each LBS was collected in
different but similar experiments, 9 min long, with trajectories of similar character-
istics, segmented into 60 % for training, 20 % for validation, and 20 % for testing,
as shown in Fig. 5.5a for capacitive LBS, Fig. 5.5b for infrared radiation LBS, and
Fig. 5.5c for radar LBS. In each experiment was also collected a ±2cm accurate
ground truth location using an ultrasound-based Marvelmind Starter Set HW v4.9
localization system (see Section 5.2).

5.5 Experimental Results

Several similar but different experiments (exp1, exp2, exp3 see Appendix A) for
each LBS, lasting 9 minutes each, were performed on different days and using
different LBSs as described in Sections 5.2 to 5.4.

The experimental data is used to train and optimize the teacher NNs using NAS,
and the student NNs with the additional teacher’s knowledge using NAS in the first
stage, and without NAS in the second stage, as discussed in Section 5.3 and shown in
Fig. 5.3, Teacher Optimization, Student Optimization 1st stage, Student Optimization
2nd stage. NAS tunes the hyperparameters of the two NNs of interest, TCN and
CAPS, to minimize their inference MSE. As a first approximation, NN complexity is
evaluated based on its number of NN parameters, since computing effort, measured
as floating point operations per second (sFLOPs), is closely related. Complexity is
limited by underfitting at the low end, and by the complexity of the well-optimized
NNs in the state-of-the-art [115, 116] at the high end.

The validity and robustness of the proposed methodology are evaluated through
the following procedures: 1) The methodology is subjected to rigorous testing by
repeating its steps three times, each time utilizing a distinct experiment (exp1, exp2,
exp3) as the training dataset. The other two experiments are then employed to assess
the robustness of the optimized student (NNs) in terms of their ability to generalize.
The performance of these optimized NNs is compared against that of the larger
teacher NNs, particularly in terms of tracking accuracy, using data from experiments
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(b) Experimental path exp1 for infrared radiation location-based system
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(c) Experimental path exp1 for radar location-based system

Fig. 5.5 Experimental path exp1 in a 3 x 3 virtual room for (a) capacitive, (b) infrared
radiation, and (c) radar location-based systems split into 60 % for training, 20 % for
validation, and 20 % for testing the neural networks
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Table 5.2 Mean squared errors (sMSEs) for best temporal convolutional network
(TCN) and capsule network (CAPS) teachers for capacitive location-based system

Experiment NN model Parameters MSE
(m2)

exp1
TCN 7242 0.059
CAPS 6734 0.061

exp2
TCN 16826 0.071
CAPS 11479 0.085

exp3
TCN 16826 0.066
CAPS 10323 0.067

that were not used during training. 2) Additionally, the methodology is tested using
LBSs that are based on different operating principles, outputs, and noise levels.

5.5.1 Training and Optimization

Teacher NNs are optimized by NAS by varying various parameters, discussed in
Section 5.1. For this purpose, the NN complexity of the two evaluated teacher
network architectures is divided into intervals that double in size until they reach the
maximum complexity of the best state-of-the-art implementations [115, 116]. For
each of these intervals, NAS is used to obtain the best teacher network of each type.

Three different experiments, exp1, exp2, and exp3 were used for training. For
exp1, the complexity of the networks and their inference MSEs are shown in Fig. 5.6,
while Table 5.2 summarizes the best configurations for all experiments.

Although within each experiment the teachers NNs have comparable accuracies
(TCN slightly better), the number of parameters can vary significantly depending on
the quality (e.g., noise level) of the experimental data, with TCN always being larger
than CAPS. Note that NNs size is a measure of both memory and computational
cost, FLOP (see Section 5.5).

The typical “V” shape of the inference MSE function of network complexity in
Fig. 5.6 is largely due to the tendency to underfit of small networks and to overfit
of larger networks [7]. Also, large networks like in exp2 are prone to overfitting
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Fig. 5.6 Neural architecture search-optimized mean squared error (MSE) accuracy
and number of parameters for (a) temporal convolutional network (TCN) and (b)
capsule network (CAPS) teachers for exp1

because the training dataset is relatively small, 972 tuples (60 % of 9 min of the
experiment duration sampled 3 times/s).

The teacher networks are then used both as a source of knowledge for the
KD-based optimization stages of the proposed methodology, and as a baseline for
evaluating the performance gains of the optimizations, characterized in terms of
resource requirements, inference accuracy, and generalization ability.

5.5.2 Results for Capacitive location-based system

Optimization of NNs in experiments with capacitive LBS is more difficult, resulting
in larger and less accurate NNs due to higher noise and strongly nonlinear character-
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Table 5.3 TCN student with KD from TCN first teacher for capacitive LBS (gains
from best exp1 TCN teacher, Table 5.2)

KD stage Size ΔSize MSE ΔMSE
(Fig. 5.3a, b, Table 5.1) (%) (m2) (%)

ex
p1

1KD_TS_same

986 -86.4 0.067 13.6
1346 −81.4 0.059 0
2034 -71.9 0.055 -6.78
3210 −55.7 0.073 23.7
4586 −36.7 0.065 10.2
5010 −30.8 0.063 6.78

2KD_TS_cross 2034 -71.9 0.05 -15.3

2KD_SS_same 2034 −71.9 0.052 −11.9

istic of sensors [115]. Thus, for this LBS are analyzed in detail all the steps of the
proposed methodology. Then, for the sake of brevity, only the most effective opti-
mization procedures from the analysis of the capacitive LBS will be analyzed.

As shown in Figs. 5.3 and 5.7, KD has two stages, each using a different type
of teacher NN, optimized before using sensor data and NAS, as discussed in Sec-
tion 5.5.1.

In the first KD stage, the student NN is trained by a teacher NN of either the same
architecture (1KD_TS_same, Fig. 5.7a) or a different architecture (1KD_TS_cross,
Fig. 5.7c). This is followed by a second KD stage where the same student NN
continues training with a teacher NN of a different architecture than in the first
KD stage: 1KD_TS_same → 2KD_TS_cross (Fig. 5.7a) and 1KD_TS_cross →
2KD_TS_same (Fig. 5.7c). For the second KD stage, a third option is also explored,
namely to freeze the student NN after the first stage and continue training a copy of
it in the second stage, using the frozen student NN as the teacher (Fig. 5.7b).

For exp1, the results of all multi-stage KD optimizations flows shown in Figs. 5.3
and 5.7a are reported in Table 5.3 for TCN students and in Table 5.4 for CAPS
students. In the first KD stage, 1KD_TS_same, the performance of the student NNs
was optimized using NAS in six intervals of the number of parameters, up to that
of the teacher TCN (see exp1 in Table 5.2). The best TCN student NN has 2034
parameters (1KD_TS_same in Table 5.3), while the best CAPS student NN has
4151, more than double (1KD_TS_same in Table 5.4).
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Fig. 5.7 Flowchart of optimization branches using neural architecture search (NAS)
and two-level mixed knowledge distillation (KD)

Table 5.4 CPS student with KD from CAPS first teacher for capacitive LBS (gains
from best exp1 CAPS teacher, Table 5.2)

KD stage Size ΔSize MSE ΔMSE
(Fig. 5.3a, b, Table 5.1) (%) (m2) (%)

ex
p1

1KD_TS_same

1389 -79.4 0.076 24.6
2366 −64.9 0.064 4.59
3276 −51.4 0.062 2.62
4151 -38.4 0.061 0
5274 −21.7 0.064 4.92

2KD_TS_cross 4151 -38.4 0.057 -6.56

2KD_SS_same 4151 −38.4 0.061 0
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Table 5.5 TCN student with KD from CAPS first teacher for capacitive LBS (gains
from best exp1 TCN teacher, Table 5.2)

KD stage Size ΔSize MSE ΔMSE
(Fig. 5.3c, Table 5.1) (%) (m2) (%)

ex
p1

1KD_TS_cross

986 -86.4 0.075 27.1
1346 −81.4 0.062 5.08
2122 −70.7 0.06 1.69
3074 -57.6 0.057 -3.39
4738 −34.6 0.063 6.78
5609 −22.6 0.061 3.39

2KD_TS_same 3074 -57.6 0.054 -8.47

In the second KD stage (2KD_TS_cross in Fig. 5.7a), the best students from the
first KD stage (1KD_TS_same) are further trained by teacher NNs of a different
type, because they can intuitively give the student a different view on the meaningful
features, thus reinforcing the learning of the useful ones. The TCN student performs
best (2KD_TS_cross in Table 5.3), reducing its parameters by 71.9 % and inference
MSE by 15.3 % to 0.05 m2 from the TCN teacher (exp1 TCN in Table 5.2). The
CAPS student (2KD_TS_cross in Table 5.4) improves accuracy much less from the
CAPS teacher, by 3.39 % (exp1 CAPS in Table 5.2), but still significantly reduces
its number of parameters, by 38.4 %.

Figure 5.7b shows another option for the second KD stage, 2KD_SS_same,
where the best student NN from the first stage is frozen and used as a teacher NN
in the second stage to train a copy of itself. However, this flow yields fewer gains
for both the TCN student (2KD_SS_same in Table 5.3) and the CAPS student
(2KD_SS_same in Table 5.4). This is probably because the students that learn the
essential teacher knowledge in the first KD stage do not acquire enough diversity to
improve their learning in the second KD stage.

The flow of the third optimization branch shown in Fig. 5.7c reverses the flow
of Fig. 5.7a: in the first KD stage, 1KD_TS_cross, the student NN is trained with
the knowledge of a teacher NN with a different architecture, while in the second
KD stage, 2KD_TS_same, its training continues with a teacher NN of the same
architecture. Table 5.5 shows the results for the TCN student NNs, the best of which
with 3074 parameters and 0.054 m2 MSE is less performant than the one optimized
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Table 5.6 CPS student with KD from TCN first teacher for capacitive LBS (gains
from best CAPS teacher, Table 5.2)

KD stage Size ΔSize MSE ΔMSE
(Fig. 5.3, Table 5.1) (%) (m2) (%)

ex
p1

1KD_TS_cross

1733 -74.3 0.081 32.8
2375 −64.7 0.075 23
3814 -43.4 0.064 4.92
4139 −38.5 0.067 9.84
5274 −21.7 0.066 8.2

2KD_TS_same 3814 -43.4 0.058 -4.92

Table 5.7 Student NNs with KDs from first teacher of same type for capacitive LBS
in exp2, exp3 (gains from best teacher, Table 5.2)

KD stage Network Size ΔSize MSE ΔMSE
(Fig. 5.7a) (%) (m2) (%)

ex
p2

1KD_TS_same TCN 8274 −50.8 0.058 −18
CAPS 5371 −53.2 0.085 0

2KD_TS_cross TCN 8274 −50.8 0.057 −18.6
CAPS 5371 −53.2 0.073 −14.9

ex
p3

1KD_TS_same TCN 7242 −56.96 0.059 −10
CAPS 8877 −14.01 0.074 10.1

2KD_TS_cross TCN 7242 −56.96 0.057 −12.9
CAPS 8877 −14.01 0.07 3.71

with the flow in Fig. 5.7a (Table 5.3), when the first teacher has the same architecture.
Table 5.6 shows the results for CAPS student NNs, of which the best (highlighted)
is less accurate than the optimization flow in Fig. 5.7a (Table 5.4), although it has
slightly fewer parameters.

These results suggest that student NNs learn better if they are first trained by
teacher NNs with affine architectures through the flow in Fig. 5.7a. Since the opti-
mization using the KD flow in Fig. 5.7b was also less performant, only the KD in
Fig. 5.7a flow will be used in the following.

Thus, the proposed methodology, limited to the flow in Fig. 5.7a, is then applied
to capacitive LBS data from another experiment, exp2, to verify its validity. Table 5.7
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shows the best results for the KD optimization flow in Fig. 5.7a for both the TCN and
CAPS students. The results for the best teacher NNs are reported in Table 5.2, exp2.

As discussed in Section 5.5.1, capacitive LBSs can be affected by high variability
and noise, and thus the best teacher and student NNs in exp2 are much larger than for
exp1. The best TCN teacher NN has 16826 parameters and 0.071 m2 MSE, while
the best CAPS teacher NN with 11479 parameters is smaller, but less accurate with
0.085 m2 MSE. The best TCN student NN with 8274 parameters is about half the
size of the best TCN teacher NN, and has also better accuracy by 18.6 %, 0.074 m2

MSE. The best CAPS student NN also more than halves the best CAPS teacher
NN size to 5371 parameters, but improves less the accuracy, by 14.9 % to 0.073 m2

MSE. Note that the second KD stage, done with a TCN teacher NN, significantly
improves the CAPS student accuracy.

In exp3, the best teacher NNs have sizes comparable to those in exp2 (Table 5.2)
and accuracies in the range of those in exp1 and exp2. The best TCN student
NN (Table 5.7, exp3) has about half the parameters of the best TCN teacher NN
and 12.9 % better accuracy at 0.057 m2 MSE. The CAPS student NN has 8877
parameters, less than the best CAPS teacher NN by 14 %, but with 3.71 % lower
accuracy for 0.07 m2 MSE from 0.067 m2 MSE of the teacher NN.

Experimental results for capacitive LBS show that KD can significantly reduce
the parameters of NNs, and a second KD, with a different teacher NN, very likely
improves the accuracy, best when the first KD is from a teacher with the same
architecture as the student.

5.5.3 Results for infrared radiation location-based system

The experiments and methodology for the IR LBS are similar to those for capacitive
LBS discussed in Section 5.5.2. Again, only the KD in Fig. 5.7a flow is discussed
that gives the best results, and it is tested on data from three experiments, exp1,
exp2, and exp3.

The performance of the optimized teacher NNs are reported in Table 5.8. They
typically require more parameters than capacitive LBS (Table 5.2), because the
sensor tuples have 16 values for the 4 x 4pixel camera used, which is 4 times higher
than for capacitive LBS. But they are much more accurate, in part because IR sensor
data is much less affected by ambient noise.
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Table 5.8 Mean squared errors (sMSEs) for best temporal convolutional network
(TCN) and capsule network (CAPS) teachers for infrared radiation (IR) location-
based system

Experiment NN model Parameters MSE
(m2)

exp1
TCN 8658 0.0046
CAPS 7726 0.005

exp2
TCN 19130 0.0137
CAPS 12654 0.0132

exp3
TCN 9218 0.0075
CAPS 7046 0.0078

Table 5.9 Student NNs with KD from first teacher of same type for infrared radiation
LBS (gains from best teacher, Table 5.8)

KD stage Network Size ΔSize MSE ΔMSE
(Fig. 5.7a) (%) (m2) (%)

ex
p1

1KD_TS_same TCN 2546 −70.6 0.0038 −17.4
CAPS 2334 −69.7 0.0051 2.8

2KD_TS_cross TCN 2546 −70.6 0.0035 −23.9
CAPS 2334 −69.7 0.0047 −5.8

ex
p2

1KD_TS_same TCN 11962 −37.5 0.0182 32.8
CAPS 5506 −56.5 0.0197 49.9

2KD_TS_cross TCN 11962 −37.5 0.0181 32.2
CAPS 5506 −56.5 0.0195 48.3

ex
p3

1KD_TS_same TCN 3570 −61.3 0.0074 −1.2
CAPS 4946 −29.8 0.0081 3.8

2KD_TS_cross TCN 3570 −61.3 0.0074 −0.4
CAPS 4946 −29.8 0.0078 0

Student NNs optimization following the flow shown in Fig. 5.7a, determined
to be optimal in Section 5.5.2, yields the results shown in Table 5.9. In exp1, the
best TCN student NN improves the accuracy of the best TCN teacher NN (exp1 in
Table 5.8) by 17.4 % in the first KD stage and by 23.9 % in the second, to 0.0035 m2,
and also requires much fewer parameters, 2546 from teacher’s 8658, 70.6 % less.
But the best CAPS student NN improves the accuracy of the best CAPS teacher
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(exp1 in Table 5.8) only in the second KD stage, by 5.81 % to 0.0047 m2 MSE, also
using much less parameters, 2334 from teacher’s 7726, 69.7 % less.

In exp2, all NNs are larger. The best student NNs improve only the size of their
respective teacher NNs (exp2 in Table 5.8), but by less than in exp1: TCN student by
37.5 %, to 11962 parameters from teacher’s 19130, and CAPS student by 56.5 %,
to 5506 parameters from teacher’s 12654. However, the lower resource requirements
correspond to losses in accuracy, by 32.2 % (0.0181 m2 MSE) for the best student
TCN NN from TCN teacher’s 0.0137 m2 MSE, and by 48.3 % (0.0195 m2 MSE) for
the best student CAPS NN from CAPS teacher’s 0.0132 m2 MSE. This may be due
to the greater variability in the experimental data of exp2, which, combined with
the relatively limited size of the training set of 1620 tuples (60 % of 9 min of the
experiment with the sensor sampled at 5 Hz) and a narrow input window of 1 s, may
have caused the teacher NN to learn fewer or less useful features, potentially leading
to overfitting, and thus guide the student less efficiently during KD.

NN dimensions in exp3 shown in Tables 5.8 and 5.9 are similar to exp1 for both
teachers and students, but for smaller differences to their teachers: the best TCN
student at 3570 parameters is a reduction of 61.3 % of the best TCN teacher 9218
for practically the same accuracy, while the best CAPS student achieves 29.8 %
reduction of parameters to 4946 from the best CAPS teacher 7046 for the same
accuracy.

Experimental results for IR LBS confirm that KD can very much reduce the
parameters of NNs and improve the accuracy, but not always, e.g., when it is less
likely that the teacher NNs capture the most important features from the sensor data.
However, a second KD, with a different teacher NN, usually improves the accuracy.

5.5.4 Results for Radar location-based system

The radar LBS uses a completely different sensor and operating principle than the
capacitive and IR LBSs, but the experiments and methodology remain similar to
those discussed in Sections 5.5.2 and 5.5.3. The data from three experiments, exp1,
exp2, and exp3, are processed using only the Fig. 5.7a flow that gives the best results.

Teacher NNs are optimized as for capacitive and IR LBSs. The results in Ta-
ble 5.10 show that they have a number of parameters typically in the same range
as the best teachers in the capacitive (Table 5.2) and IR (Table 5.8) LBSs. Because
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Table 5.10 Mean squared errors (sMSEs) for best temporal convolutional network
(TCN) and capsule network (CAPS) teachers for radar location-based system

Experiment NN model Parameters MSE
(m2)

exp1
TCN 7754 0.0182
CAPS 7589 0.0187

exp2
TCN 16634 0.116
CAPS 16250 0.115

exp3
TCN 7970 0.053
CAPS 3227 0.054

Table 5.11 Student NNs with KD from first teacher of same type for radar LBS (gains
from best teacher, Table 5.10)

KD stage Network Size ΔSize MSE ΔMSE
(Fig. 5.7a) (%) (m2) (%)

ex
p1

1KD_TS_same TCN 954 −87.7 0.0169 −7.14
CAPS 2725 −64.1 0.0149 −20.3

2KD_TS_cross TCN 954 −87.7 0.0155 −14.8
CAPS 2725 −64.1 0.0132 −29.4

ex
p2

1KD_TS_same TCN 7906 −52.5 0.11 −5.32
CAPS 4523 −72.2 0.114 −0.5

2KD_TS_cross TCN 7906 −52.5 0.107 −7.55
CAPS 4523 −72.2 0.113 −2.01

ex
p3

1KD_TS_same TCN 449 −43.7 0.0481 −9.42
CAPS 1508 −53.3 0.0557 2.2

2KD_TS_cross TCN 449 −43.7 0.051 −3.95
CAPS 1508 −53.3 0.0495 −9.17

occasionally the noise of the radar LBS can be comparable to that of capacitive LBS
and thus higher than that of the IR LBSs, the accuracy of the best teacher NNs for
the radar LBS fluctuates around that of the teachers for the capacitive LBS, but is
always worse than that of the IR LBS.

The best results for both TCN and CAPS NN optimization through KD are shown
in Table 5.11. In exp1, the best TCN student NN improves the best TCN teacher NN
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accuracy (exp1 in Table 5.10) by 7.14 % (0.0169 m2 MSE from teacher’s 0.0182 m2)
after the first KD stage, and by 14.8 % (0.0155 m2 MSE) after the second stage
with 87.7 % fewer parameters (only 954 parameters from teacher’s 8658). Also the
CAPS student NN improves the accuracy of the best CAPS teacher NN by 20.3 %
(0.0149 m2 MSE from teacher’s 0.0187 m2) after the first KD stage, and by 29.4 %
(to 0.0132 m2 MSE) after the second stage, with 2725 parameters, 64.1 % fewer than
the teacher’s 7589, but much more than the best TCN NN with 954 parameters.

In exp2, all NNs, teacher and student, are larger and less accurate because of
greater movement and speed variations. However, the best TCN student NN improves
both the best TCN teacher NN size by 52.5 % (7906 parameters from teacher’s
16634 in Table 5.10, exp2) and accuracy by 7.55 % (0.107 m2 MSE from teacher’s
0.116 m2). The best CAPS NN with 4523 parameters is smaller than the best TCN
and 72.2 % smaller than the best CAPS teacher NN with 16250 parameters. It also
has a lower accuracy (0.113 m2 MSE) than the best TCN NN, but higher than the
best CAPS teacher NN’s 0.115 m2, although the differences are small, in the order
of a few percent.

In exp3, the best TCN student NN has 43.7 % fewer parameters (4490) than the
best TCN teacher NN (7970), and slightly improves the accuracy by 9.42 % in first
KD stage and 3.95 % in the second, to 0.051 m2 MSE from teacher’s 0.053 m2. The
best CAPS student NN has 1508 parameters, 53.3 % less than the 3227 of the best
CAPS teacher NN, also improving its accuracy after the second KD stage by 9.17 %
to 0.0495 m2 MSE from the teacher’s 0.054 m2.

Experimental results for radar LBS also confirm that KD can significantly reduce
NN parameters, and typically also improve accuracy. Also this experiment shows that
a second KD stage, with a different teacher NN, very often improves the accuracy.

5.5.5 Generalization Performance

For the NNs optimized by the best two-stage KD flow shown in Fig. 5.7a, the
generalization ability is further evaluated by testing their localization accuracy
compared to the best teacher NNs trained directly with the LBS sensor data. To do
this, the NNs are tested on data from experiments that are unrelated to the experiments
that provided the training data.

Generalization accuracy for the capacitive LBS is summarized in Table 5.12. As
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Table 5.12 Generalization MSE for capacitive LBS of CAPS and TCN student NNs
tested on unseen experiments

Network_role Size ΔSize MSE ΔMSE
(%) (m2) (%)

Tr
ai

n
ex

p1

Te
st
ex

p2

TCN_T 7242 n/a 0.316 n/a
TCN_S1 2034 −71.9 0.44 39.3
TCN_S2 2034 −71.9 0.393 24.6

CPS_T 6734 n/a 0.393 n/a
CPS_S1 4151 −38.4 0.409 4.2
CPS_S2 4151 −38.4 0.416 11.1

Te
st
ex

p3

TCN_T 7242 n/a 0.334 n/a
TCN_S1 2034 −71.9 0.34 0.65
TCN_S2 2034 −71.9 0.278 −17.8

CPS_T 6734 n/a 0.328 n/a
CPS_S1 4151 −36.4 0.279 −15
CPS_S2 4151 −36.4 0.29 −11.5

Tr
ai

n
ex

p2

Te
st
ex

p1

TCN_T 16826 n/a 0.433 n/a
TCN_S1 8274 −50.8 0.374 −13.8
TCN_S2 8274 −50.8 0.357 −17.7

CPS_T 11479 n/a 0.536 n/a
CPS_S1 5371 −53.2 0.409 −23.7
CPS_S2 5371 −53.2 0.493 −8.04

Te
st
ex

p3

TCN_T 16826 n/a 0.293 n/a
TCN_S1 8274 −50.8 0.263 −10.2
TCN_S2 8274 −50.8 0.293 0

CPS_T 11479 n/a 0.333 n/a
CPS_S1 5371 −53.2 0.385 15.6
CPS_S2 5371 −53.2 0.346 3.9

Tr
ai

n
ex

p3

Te
st
ex

p1

TCN_T 16826 n/a 0.535 n/a
TCN_S1 7242 −57 0.367 −31.5
TCN_S2 7242 −57 0.324 −39.6

CAPS_T 10323 n/a 0.403 n/a
CAPS_S1 8877 −14 0.435 7.99
CAPS_S2 8877 −14 0.439 8.88

Te
st
ex

p2

TCN_T 16826 n/a 0.773 n/a
TCN_S1 7242 −57 0.846 9.49
TCN_S2 7242 −57 0.719 −6.92

CAPS_T 10323 n/a 0.493 n/a
CAPS_S1 8877 −14 0.531 7.74
CAPS_S2 8877 −14 0.53 7.48

Av
er

ag
e

TCN_S1 5850 −59.9 0.438 −1.01
TCN_S2 5850 −59.9 0.394 −9.57

CAPS_S1 6133 −35.19 0.408 −0.53
CAPS_S2 6133 −35.19 0.422 1.97

Notations: T→teacher NN, S1→student NN from KD stage 1, S2→student NN from
KD stage 2
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expected, the accuracy of all NNs, teacher and student, is lower (by up to an order of
magnitude) from testing on data from the same experiment (Tables 5.2 to 5.6), from
which are reported the number of parameters (size).

Optimized NNs usually generalize better than the teacher NNs, but not always.
For TCN NNs after the first KD stage, it ranges from +39.3 % to −31.5 % with
an average of −1.01 %, and after the second KD stage from +24.6 % to −39.6 %
with an average of −9.57 %. For CAPS NNs after the first KD stage, it ranges from
+15.6 % to −23.7 % with an average of −0.53 %, and after the second KD stage
from +11.1 % to −11.5 % with an average of +1.97 %. Most of the averages are
negative, indicating better generalization than the corresponding teacher NNs, but
they have a wide spread due to the large variability of the capacitive sensors. It does
not seem to be a correlation between the number of parameters of the NNs and their
generalization performance.

Generalization accuracy for the IR LBS is summarized in Table 5.13. Again, the
accuracy of all NNs, teacher and student, is several times lower (up to an order of
magnitude) than when tested on data from the same experiment (Tables 5.8 and 5.9)
from which the number of parameters (size) is reported.

Similar to the capacitive LBS, the generalization accuracy of the optimized NNs
is usually better than that of the teacher, but not always. For TCN NNs after the first
KD stage, it ranges from +27.9 % to −40.4 % with an average of −9.4 %, and after
the second KD stage from +15.3 % to −43.5 % with an average of −14.4 %. For
CAPS NNs after the first KD stage, it ranges from +12.7 % to −32.3 % with an
average of −8 %, and after the second KD stage from +9.59 % to −37.4 % with an
average of −10.3 %. Averages are negative, indicating better generalization than the
corresponding teacher NNs, but with a relatively large spread, this time probably due
to the poor feature extraction of the teacher NNs discussed in Section 5.5.3. Also
for this LBS, there seems to be no discernible correlation between the number of
parameters of the NNs and their generalization performance. In particular, larger
networks do not seem to generalize better than smaller ones.

As future work, it is worth investigating the effects of reduced size of the train-
ing set combined with increased variability of the person movements on the size of
the NNs and the extraction of meaningful features that can improve KD and general-
ization.

Finally, generalization accuracy for the radar LBS is summarized in Table 5.14.
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Table 5.13 Generalization MSE for infrared radiation LBS of CAPS and TCN
student NNs tested on unseen experiments

Network_role Size ΔSize MSE ΔMSE
(%) (m2) (%)

Tr
ai

n
ex

p1

Te
st
ex

p2

TCN_T 8658 n/a 0.131 n/a
TCN_S1 2546 −70.6 0.078 −40.4
TCN_S2 2546 −70.6 0.086 −34.2

CAPS_T 7726 n/a 0.159 n/a
CAPS_S1 2344 −69.7 0.179 12.7
CAPS_S1 2344 −69.7 0.174 9.59

Te
st
ex

p3

TCN_T 8658 n/a 0.232 n/a
TCN_S1 2546 −70.6 0.143 −38.4
TCN_S2 2546 −70.6 0.131 −43.5

CAPS_T 7726 n/a 0.224 n/a
CAPS_S1 2344 −69.7 0.145 −32.3
CAPS_S2 2344 −69.7 0.14 −37.4

Tr
ai

n
ex

p2

Te
st
ex

p1

TCN_T 19130 n/a 0.028 n/a
TCN_S1 11962 −37.5 0.028 −0.22
TCN_S2 11962 −37.5 0.025 −13.2

CAPS_T 12654 n/a 0.079 n/a
CAPS_S1 5506 −56.5 0.081 2.8
CAPS_S2 5506 −56.5 0.081 2.44

Te
st
ex

p3

TCN_T 19130 n/a 0.053 n/a
TCN_S1 11962 −37.5 0.068 27.9
TCN_S2 11962 −37.5 0.062 15.3

CAPS_T 12654 n/a 0.095 n/a
CAPS_S1 5506 −56.5 0.081 −14.9
CAPS_S2 5506 −56.5 0.082 −14

Tr
ai

n
ex

p3

Te
st
ex

p1

TCN_T 9218 n/a 0.051 n/a
TCN_S1 3570 −61.3 0.042 −17.2
TCN_S2 3570 −61.3 0.04 −21.1

CAPS_T 7046 n/a 0.078 n/a
CAPS_S1 4946 −42.5 0.065 −15.7
CAPS_S2 4946 −42.5 0.062 −20.7

Te
st
ex

p2

TCN_T 9218 n/a 0.067 n/a
TCN_S1 3570 −61.3 0.075 11.9
TCN_S2 3570 −61.3 0.074 10.5

CAPS_T 7046 n/a 0.082 n/a
CAPS_S1 4946 −42.5 0.081 −0.6
CAPS_S2 4946 −42.5 0.08 −1.6

Av
er

ag
e

TCN_S1 6026 −56.44 0.072 −9.4
TCN_S2 6026 −56.44 0.070 −14.4

CAPS_S1 4265 −56.20 0.105 −8
CAPS_S2 4265 −56.20 0.103 −10.3

Notations: T→teacher NN, S1→student NN from KD stage 1, S2→student NN from
KD stage 2



80 Neural Network Minimization for Continuous Indoor Human Tracking

Table 5.14 Generalization MSE for radar LBS of CAPS and TCN teacher and student
NNs tested on unseen experiments

Network_role Size ΔSize MSE ΔMSE
(%) (m2) (%)

Tr
ai

n
ex

p1

Te
st
ex

p2

TCN_T 7754 n/a 0.295 n/a
TCN_S1 954 −87.7 0.302 2.42
TCN_S2 954 −87.7 0.306 3.58

CAPS_T 7589 n/a 0.289 n/a
CAPS_S1 2725 −64.1 0.278 −3.79
CAPS_S2 2725 −64.1 0.293 1.25

Te
st
ex

p3

TCN_T 7754 n/a 0.174 n/a
TCN_S1 954 −87.7 0.16 −8.1
TCN_S2 954 −87.7 0.157 −9.51

CAPS_T 7589 n/a 0.168 n/a
CAPS_S1 2725 −64.1 0.173 2.77
CAPS_S2 2725 −64.1 0.166 −1.2

Tr
ai

n
ex

p2

Te
st
ex

p1

TCN_T 16634 n/a 0.124 n/a
TCN_S1 7906 −52.5 0.125 1.42
TCN_S2 7906 −52.5 0.114 −7.33

CAPS_T 16250 n/a 0.1 n/a
CAPS_S1 4523 −72.2 0.099 −0.247
CAPS_S1 4523 −72.2 0.098 −1.66

Te
st
ex

p3

TCN_T 16634 n/a 0.468 n/a
TCN_S1 7906 −52.5 0.469 0.1
TCN_S2 7906 −52.5 0.452 −3.6

CAPS_T 16250 n/a 0.446 n/a
CAPS_S1 4523 −72.2 0.441 −1.12
CAPS_S2 4523 −72.2 0.452 1.3

Tr
ai

n
ex

p3

Te
st
ex

p1

TCN_T 7970 n/a 0.085 n/a
TCN_S1 4490 −43.7 0.079 −7.06
TCN_S2 4490 −43.7 0.077 −9.65

CAPS_T 3227 n/a 0.076 n/a
CAPS_S1 1508 −53.3 0.072 −5.11
CAPS_S1 1508 −53.3 0.072 −5.87

Te
st
ex

p2

TCN_T 7970 n/a 0.551 n/a
TCN_S1 7906 −43.7 0.543 −1.44
TCN_S2 7906 −43.7 0.537 −2.67

CAPS_T 3227 n/a 0.526 n/a
CAPS_S1 1508 −53.3 0.518 −1.42
CAPS_S2 4523 −53.3 0.521 −0.924

Av
er

ag
e

TCN_S1 4450 −61.28 0.280 −2.11
TCN_S2 4450 −61.28 0.274 −4.86

CAPS_S1 2918 −63.176 0.264 −1.49
CAPS_S2 2918 −63.176 0.267 −1.18

Notations: T→teacher NN, S1→student NN from KD stage 1, S2→student NN from
KD stage 2
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As expected, the accuracy of all NNs, teacher and student, is several times lower
(up to two orders of magnitude) than when tested on data from the same experiment
(Tables 5.10 and 5.11) from which the number of parameters (size) is reported.

The generalization accuracy of the optimized NNs closely follows that of its
teacher NNs, between +3.58 % and −9.65 % overall, with a relatively small spread.
Moreover, the optimized NNs have relatively few parameters, often much less than
for the capacitive and IR LBSs.

It is imperative to acknowledge that the observed levels of generalization exceed
those achieved on the 20 % test split. It is widely recognized that the accuracy of NNs
can experience significant degradation when confronted with data originating from
disparate distributions. This degradation is contingent upon various factors, including
but not limited to distributional shifts, NN architectures, and task complexities.

Our principal objective is to undertake a comparative analysis of the generaliza-
tion capacity and robustness exhibited by distinct models, with a specific focus on
delineating discrepancies between teacher and student models. Rather than directly
assessing the quality of generalization per se, our emphasis lies in discerning dispari-
ties in performance across model variants.

While we acknowledge the potential efficacy of methodologies such as dynamic
normalization, feature alignment, and drift detection and adaptation in bolstering the
consistency and reliability of model predictions across diverse recording periods and
datasets, the investigation of these techniques lies beyond the immediate scope of
our current research endeavor. Such considerations, however, remain pertinent and
shall be duly addressed in subsequent investigations.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The proliferation of IoT technologies has underscored the growing need for accurate
real-time location tracking in various applications. Location identification involves
assessing the spatial coordinates of targets using various methods, with pivotal
factors including precision, accuracy, cost-effectiveness, reliability, scalability, energy
efficiency, and robustness. The advent of the IoT has spurred increased interest
in device-free location research, resulting in a variety of innovative applications.
DFL plays a crucial role in enabling AAL in smart buildings. Its applications span
across intrusion detection, fall detection, remote monitoring of the elderly, occupancy
detection for energy-efficient HVAC and lighting, emergency occupancy counting,
business analytics in retail, and accessibility aids for the visually impaired.

Among the device-free passive technologies, capacitive sensors working in load
mode fulfil most of the requirements listed above. However, environmental drift
noise can affect the measurement stability of single plate capacitive sensors for
long-time long-range environmental monitoring. Based on a measurement principle
similar to period modulation frontends and comparable processing complexity, a
slope modulation frontend can effectively reject drift noise for single plate capacitive
sensors without sensitivity loss. Moreover, the overall lower noise level notably
extends the sensing range of the slope modulator frontends (≈ 230cm) compared to
period modulation frontends (90 cm to 110 cm) using the same 16cm×16cm sensor
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plate. Additionally, the slope modulation frontends are compatible with antialiasing
filters, further reducing the noise.

These features make frontends based on slope modulation more suitable for long
term indoor monitoring of persons using small size sensors that are easier to conceal
to avoid discomfort and reduce cost, e.g., in assisted living applications.

Neural network architectures designed to infer the dynamics of the human body
movements can improve the results due to the smoothing of the noise. 1DCNNs have
been shown to excel in processing experimental time series data for indoor human
localization and tracking from noisy long-range single-plate capacitive sensors [115].
However, NNs that do not use the CNN max/average pooling operations can exceed
the accuracy of 1DCNNs with fewer resources. TCNs and CAPSs are designed to
process time series data without using the CNN max pooling operations. Combining
hyperparameter optimization with NAS can significantly improve both their accuracy
and resource consumption. With NAS optimization, the CAPS was as accurate as
the 1DCNN, but used only 78.7 % of the resources. Similarly, the TCN was almost
as accurate as the 1DCNN after the NAS optimization, but used only a small fraction,
26.7 %, of the resources.

While deep learning models offer significant representational capabilities with
minimal effort, they also require large training datasets and significant computational
resources for inference. These requirements pose challenges, particularly in resource-
constrained IoT systems where providing such abundant data and computing power is
inherently difficult. The inherent conflict between the effectiveness of deep learning
models and the practical limitations of IoT environments highlights the importance
of devising innovative strategies to address these divergent requirements.

A method is proposed to optimize NNs for continuous indoor human tracking
based on regression of the person’s position. It combines two state-of-the-art opti-
mization techniques: multi-level mixed-teacher KD and KD-aware NAS.

KD contributes to the proposed method an efficient transfer of knowledge from
larger NNs (teachers) to smaller ones (students), helping to reduce their resource
requirements and often also improving their accuracy and generalizability. Mixing the
teacher NN types in a two-step KD helps student NNs focus on the relevant features
that improve accuracy and generalizability by providing a different perspective on
the features in the sensor data.
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The NAS simultaneously optimizes both NN and KD parameters, such as NN
architecture, size, and loss functions for teacher and student NNs, to achieve the best
tradeoff between resource consumption and person tracking accuracy.

The test and validation of the proposed method is done using several LBSs, each
using different sensing principles and data format, and affected by different noise
types and levels: long-range capacitive, IRs, and radar. The experiments were also
independent, conducted similarly but on different days and conditions, to help verify
the robustness and applicability of the method for continuous indoor human tracking.
For practical evaluation, two NNs optimized for sequential data analysis are used,
TCN and CAPS.

The experimental results show that the method often significantly reduces the
size of NNs and can improve their accuracy and generalizability compared to state-
of-the-art models and teacher NNs. Most NNs optimized by two-stage KD generalize
better, which indicates the effectiveness of the mixed two-stage KD adopted in the
proposed methodology.

The proposed method proves effective and robust to minimize NN resource
requirements for continuous indoor human tracking, and can be applied to other
regression problems that require small and accurate NNs. Regression allows for
finer-grained tracking of human activity indoors. This can improve the accuracy and
overall quality of service of existing applications, as well as potentially extract more
information from accurate human tracking, such as intent, mood, or other changes.
They can support more tailored actions, responses, improved quality of service, or
virtual or augmented reality applications such as games, guidance, or advertising.

6.2 Future Work

In the initial phase of our research, focusing on the capacitive sensor frontend, we
did not account for the impact of body shape and attire on capacitive sensitivity. Ex-
ploring these factors could prove beneficial in discerning individual characteristics
while respecting privacy boundaries. Moreover, all the experiments conducted in
this study entail the tracking of a single individual within a stationary environment,
thereby posing limitations on real-world deployment scenarios. In the future, it is
envisioned that these localization techniques can be expanded to accommodate mul-
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tiple individuals and larger experimental spaces, potentially encompassing furnished
real rooms. Such extensions would impose greater demands on the system, thereby
facilitating a more comprehensive evaluation of its capabilities.

In the post-processing phase, we will delve into a new class of NNs known as
neuro-symbolic system (NSS). The evolution of artificial intelligence (AI) can be
delineated into three distinct phases. The initial wave, spanning from the 1970s to
the 1990s, was characterized by expert systems and symbolic, heuristic, and rule-
based algorithms. Although proficient in reasoning tasks, these systems lacked the
ability to learn. In contrast, the second wave emerged in the 2000s, marked by the
advent of ML and neural networks. These systems exhibited remarkable learning and
perception capabilities but were limited in their reasoning abilities. Recently, a third
wave, signed by NSS, has emerged in the 2020s, bringing significant advancements
in contextual adaptation. These systems demonstrate the capacity to comprehend
context and meaning, allowing for adaptive responses [64].

Symbolic systems and NNs occupy opposite ends of the spectrum. Symbolic
systems exhibit a high sensitivity to errors or inconsistencies in inputs or rules, po-
tentially leading to unexpected or catastrophic outcomes. Additionally, they demand
considerable human effort and significant computational resources, impeding their
suitability for real-time applications or processing large datasets. In contrast, NNs,
as discussed extensively in Chapter 5, pose challenges due to their resource-intensive
nature for both training and execution, particularly for DNNs, rendering them energy-
intensive, slow, and challenging to scale up [124]. Moreover, NNs lack comprehen-
sive theoretical understanding and interpretability, hindering aspects such as their
operational principles, optimal design and training, explanation, debugging, improve-
ment, and ultimately trust [91]. Lastly, the absence of common sense and reasoning
abilities poses a significant concern for NN, as it hampers their ability to compre-
hend contextual information and solve novel problems effectively.

Our intention is to employ this approach for indoor continuous human monitoring
and tracking, with the primary objectives being to improve the system’s reliability,
reasoning capabilities, and, most importantly, its ability to adapt to new environments
autonomously.
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Appendix A

Generalization Experiments

Capacitive location-based system

In Fig. A.1 multiple experimental paths for capacitive LBS, related to exp2 and exp3
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Fig. A.1 Multiple experimental paths for capacitive location-based systems.

discussed in Chapter 5 are displayed. All the trajectories are conducted by a single
young individual in a 3 x 3 virtual room and they are split into 60 % for training,
20 % for validation, and 20 % for testing the neural networks. In Table A.1
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Table A.1 Details for exp1 exp2 exp3 capacitive location-based system datasets

Exp Sampl.Freq. Duration Total Dist. Avg.Speed
(Hz) (minutes) (meters) m/s

exp1 3 ∼9 72 0.13
exp2 3 ∼9 148 0.27
exp3 3 ∼9 117 0.21

detailed characteristics of each dataset are reported.

Infrared location-based system

In Fig. A.2 multiple experimental paths for IR LBS, related to exp2 and exp3
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Fig. A.2 Multiple experimental paths for IR location-based systems

discussed in Chapter 5 are displayed. All the trajectories are conducted by a single
young individual in a 3 x 3 virtual room and they are split into 60 % for training,
20 % for validation, and 20 % for testing the neural networks. In Table A.2



100 Generalization Experiments

Table A.2 Details for exp1 exp2 exp3 IR location-based system datasets

Exp Sampl.Freq Duration Total Dist. Avg.Speed
(Hz) (minutes) (meters) m/s

exp1 5 ∼9 78 0.13
exp2 5 ∼9 142 0.23
exp3 5 ∼9 106 0.18

detailed characteristics of each dataset are reported.

Radar location-based system

In Fig. A.3 multiple experimental paths for radar LBS, related to exp2 and exp3
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Fig. A.3 Multiple experimental paths for radar location-based systems.

discussed in Chapter 5 are displayed. All the trajectories are conducted by a single
young individual in a 3 x 3 virtual room and they are split into 60 % for training,
20 % for validation, and 20 % for testing the neural networks. In Table A.2
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Table A.3 Details for exp1 exp2 exp3 radar location-based system datasets

Exp Sampl.Freq. Duration Total Dist. Avg.Speed
(Hz) (minutes) (meters) m/s

exp1 4 ∼9 154 0.31
exp2 4 ∼9 207 0.41
exp3 4 ∼9 224 0.44

detailed characteristics of each dataset are reported.
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