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Abstract

Our society is undergoing profound change, shaped by the rapid progression

of technological advancements, which are not only redefining the dynamics of

interaction, education, and labor but also influencing all other aspects of our lives.

One of the driving forces behind the current social changes is the advent of online

social networks (OSNs). They changed interpersonal interactions and are also

redefining the way businesses, politicians, and media organizations engage with

the wider public. A pressing challenge of our time is to understand how these

changes affect our society and what potential dangers are associated with them.

This thesis aims to provide a broad introduction to social modeling, highlight the

connection between seemingly disparate domains, and introduce some of the

fundamental tools of the social modeler. We will then focus on specific aspects

of society, namely the mechanisms of opinion formation and virus spread in a

population.

On online social platforms, a few individuals, commonly referred to as in-

fluencers, produce the majority of content consumed by users and hegemonize

the landscape of the social debate. Traditional opinion models do not capture

this asymmetry in communication. In Chapter 2, we develop an opinion model

inspired by observations on social media platforms with two main objectives:

first, describing this inherent communication asymmetry in OSNs, and second,

modeling the effects of content personalization. We derive a Fokker-Planck equa-

tion for the temporal evolution of users’ opinion distribution and analytically

characterize the stationary system’s behavior. Analytical results, confirmed by

Monte-Carlo simulations, show how strict forms of content personalization tend

to radicalize user opinion, leading to the emergence of echo chambers and favor-

ing structurally advantaged influencers. As an example application, we apply our

model to Facebook data during the Italian government crisis in 2019.
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The new class of social media influencers plays a crucial role in shaping opin-

ion. While we assumed in Chapter 2 that they have a fixed opinion on a topic,

they actively compete for users’ attention on social media. Through these tar-

geted efforts, influencers seek to captivate users and build a loyal and engaged

fan base, solidifying their position as an authoritative voice in the digital world

and maximizing their impact on the population’s opinion. The goal of Chapter 3

is twofold: first, we formalize the problem of maximizing social media impact

and study the structure of the optimal solution. Then, taking inspiration from the

optimal strategy, we develop a game with two opposing players trying to maximize

their influence on users’ opinions, for which we characterize the Nash equilibria

in pure strategy. Although it may seem far-fetched, the dynamics of belief and

epidemics are described in very similar terms.

In the last chapter of this thesis, we develop a SIR-like stratified model to

better understand the options available to policymakers in the case of an outbreak

of a new pandemic. We consider a scenario where efforts are made to control

the infection and focus on two control strategies. The first aims to control the

rate of new infections; the second directly controls hospitalizations and intensive

care unit (ICU) occupancy. Using a first-order analysis, we show that controlling

the transmission rate can be difficult due to a lack of accurate information. Fur-

thermore, we observe that while hospitalizations and ICU occupancy are easily

accessible and less noisy than the rate of new infections, a delay is introduced

into the control loop that can endanger system stability. Our framework allows

us to assess the joint impact of control strategies and vaccination campaigns

on economic and social costs, taking into account: i) the heterogeneity of the

population in terms of mortality rate and risk exposure, ii) the closed-loop control

of the epidemiological curve, and iii) the progressive vaccination of individuals.
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Chapter 1

Introduction and Motivation

The study of social phenomena has a long tradition, and its importance has in-

creased significantly over the last decades. Today’s society is characterized by

a growing global interconnectedness facilitated by complex infrastructures that

enable, among others, instant communication (e.g., the Internet) and fast and

reliable means of transport (e.g., global airline networks). We have experienced

drastic societal changes, partly due to technological advancements, such as un-

precedented automation, a widespread resort to remote work, and sophisticated

and accurate algorithms that permeate all facets of social dynamics. Furthermore,

the recent introduction of groundbreaking technologies, such as generative Arti-

ficial Intelligence (AI) or Large Language Models (LLM), see ChatGPT and Bard,

for example, has not only stunned the general public but also taken the scientific

community by surprise due to their remarkable capabilities. These significant

changes highlight the imperative for a collective effort in social modeling to antic-

ipate future scenarios, uncover the structures and patterns of social behavior, and

even quantify the risks associated with our “new reality”.

1.1 The Importance of Modeling Social Phenomena

The broad field of social sciences includes but is not limited to sociology, psychol-

ogy, and economics. It has the daunting task of exploring and understanding the

complexity of societies and the interactions between individuals, cultures, and

institutions. The ultimate goal is to find answers to humanity’s most intimate
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questions, to find regularity where chaos seems to reign, and to try to develop

simple explanations for the most complex phenomena.

The social sciences are a melting pot for scholars, both because of the universal

interest they attract and because of the great variety of tools required in this field

of research. In a posthumous article by Ettore Majorana [1], the Italian physicist

argued that the idea of abandoning determinism in the laws of nature makes

“substantial the analogy between physics and social sciences” by recognizing the

statistical nature of the underlying processes [1]. This article presents an inter-

esting and informal discussion that starts from the merits of classical mechanics,

which provides simple “exact laws” determined by the characterization of the sys-

tem’s state. In particular, the success of the classical approach to planetary motion

has led many to believe that any complicated phenomenon should be reducible to

a simple, similar mechanism. Majorana continues presenting the statistical view

of mechanics, best illustrated by the statistical description of the ideal gas, which

leads to the well-known equations of thermodynamics. He concludes by pointing

out the statistical nature of the elementary principles themselves, as illustrated by

the theories of quantum mechanics.

Over the last century, the efforts of scientists have intensified and many com-

munities, notably also outside those traditionally dealing with social sciences,

have contributed to the development of the field, including physicists (following

in the footsteps of Majorana), mathematicians, and computer scientists. This

trend has even intensified in recent years in response to a society undergoing

unprecedented change in a short period, and also thanks to massive production

and collection of behavioral data, extensively used in data-driven modeling ap-

proaches. The wealth of data and the resulting possibilities are far from fully

explored, there are many issues associated with the use of data, first of all, its col-

lection and availability, and then: data quality (i.e., incomplete or inaccurate data),

data diversity, data protection, and the management of a large amount of data.

In the context of social data, for example, many other questions arise in addition

to the issue of trust, e.g.: “Who owns and controls data? [...] Are smart services

inclusive?” [2]. In this thesis, data are used in the context of social interaction and

epidemics to inform modeling decisions and strengthen the framework.

Data-driven and social modeling has experienced one of its biggest challenges

in recent years, when the COVID-19 pandemic interested all national systems
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simultaneously, forcing them to make predictions and informed policy decisions

to control and contain the spread of the epidemic. The response to the pandemic

was one of the few global collaborative social modeling efforts that temporarily

set aside the ongoing friction between countries in favor of the collective bene-

fit. Ideally, this would also be valuable in many other areas, such as healthcare,

social media monitoring (e.g., limit the spread of fake news), and sustainable

environmental practices.

1.2 The Toolkit for the Social Modeler

There are several tools used in social modeling. In this section, we will discuss

some of them that will be the foundation for developing the contributions in this

thesis. We will explore the theoretical concepts using examples of established

models. First, we will discuss the Ising model, provide a mean-field solution

for an arbitrary dimension, and then solve it exactly in one dimension. These

two steps will allow us to introduce the mean-field approach and its inherent

limitations (we will see that the qualitative behavior of the one-dimensional Ising

model resulting from the mean-field does not match that of the exact solution).

Second, we illustrate the link between the Ising model and opinion dynamics,

the main topic of this thesis, by introducing the Sznajd model, one of the most

popular models of opinion dynamics inspired by the Ising model. We will derive

a partial differential equation describing the model’s dynamics along the lines

of the Fokker-Planck equation, which we will derive later in Chapter 2 for the

Communication Asymmetry opinion model. Finally, we will discuss one of the

most famous epidemic models: the Susceptible-Infected-Susceptible (SIS) model.

We provide a stochastic formulation of the model, which naturally leads to an

agent-based modeling framework. We consider its Discrete-Time Markov Chain

(DTMC) formulation and derive a deterministic bound on the average number

of infected individuals in the population. We will examine the link between this

bound and the deterministic SIS model and discuss the differences between

the two models. The interested reader may have a more formal and detailed

introduction to the “tools for the social modeler” from the book “Dynamical

Processes on Complex Network” [3].
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In the upcoming sections, some concepts from physics will be needed, for

which we will give an informal and intuitive definition since we are not interested

in formally introducing them, but will use them as tools for our investigation.

Any statistical mechanics textbook would provide further details to deepen the

understanding of these concepts.

1.2.1 Mean-Field Solution of the Ising Model

The Ising model is a simple model for describing ferromagnetic materials, captur-

ing the emergence of a phase transition in the material’s behavior. In dimensions

greater than 1, the Ising model has two distinct phases separated by a critical

temperature Tc . The paramagnetic phase is a disordered phase in which thermal

fluctuations dominate the spin orientation. Instead, the ferromagnetic phase

corresponds to a spontaneous alignment of the spins in one direction.

The volume of the material is divided into elementary cells as in Fig. 1.1, which,

in arbitrary dimension d , gives rise to a d-regular-lattice L .

Fig. 1.1 Abstraction of the volume of the ferromagnetic material, each small volume
corresponds to a node in the regular lattice.

Each site (node) in the lattice is characterized by a spin variable si , which

describes the site’s orientation of the magnetic moment. Hence, with respect to

the external magnetic field h, si can assume one of two values:

si =
+1 parallel toh

−1 antiparallel toh
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We must now define the Hamiltonian of the system. In physics, the Hamilto-

nian is a mathematical expression that represents the total energy of a system.

In classical mechanics, for example, the Hamiltonian is defined as a function of

the position and momentum of an object and is given by the sum of the kinetic

energy and the potential energy of the object. In our case, considering N sites, the

Hamiltonian for the Ising model can be written as follows:

H (s) =−J
∑
〈i , j 〉

si s j −h
N∑
i

si (1.1)

where J is the ferromagnetic coupling, which we will consider constant for

every pair of sites i , j , and with 〈i , j 〉 we indicate all pairs of neighboring sites (con-

sidering each pair just once). Assuming the interactions have a strong short-range

component and a rapidly decaying tail, the interaction happens only between the

first neighbors. Lastly, h is the external magnetic field. We will follow the steps as

in [4] and omit some details, the reader can refer back to [4] for details.

The magnetization m can be regarded as the empirical mean (over all sites) of

the average orientation si . For the system, m serves as an order parameter, as it

indicates how ordered the system is, since at m = 0 the spins are disordered, while

whenever m ̸= 0 the spins in the systems start to align. The magnetization is used

to distinguish between the paramagnetic and the ferromagnetic phase. We can

formally define it as follows:

m = 1

N

N∑
i=1
E[si ] (1.2)

where E[si ] is the thermal expectation value of spin si , computed consider-

ing the canonical ensemble, i.e., the statistical ensemble1 of a system that is in

thermal equilibrium with a heat bath at a constant temperature T . When con-

sidering this system the probability P(s) of finding the system in a certain state

s = (s1, s2, . . . , sN )T (a possible configuration of the sites), corresponds to the Boltz-

mann distribution:
1A statistical ensemble is an abstraction of a system that considers a (large) “ensemble”of

fictitious copies of a system, each of which represents a possible state the real system may be in.
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P(s) = e−βH (s)

Z
(1.3)

where β = 1
kB T is the inverse temperature, and Z is the partition function,

which in short represents a normalization term in the probability for a given

state s. However, it has a deeper meaning, as it links the microscopic and macro-

scopic properties of the system. It includes the contribution of all states of the

system, weighted by the Boltzmann factor. These concepts may seem quite ab-

stract, but they are instrumental for our analysis. The interested reader can refer to

any introductory book on statistical mechanics (for example [5]) for a deeper un-

derstanding of these concepts, which are intentionally introduced only intuitively

here. Thus, the partition function is:

ZN = ∑
s1=±1

∑
s2=±1

· · · ∑
sN=±1

e−βH (s). (1.4)

Having defined the setting, the expectation of the spin si can be written as:

E[si ] =
∑

s1=±1
∑

s2=±1 · · ·
∑

sN=±1 si e−βH (s)

ZN
(1.5)

In the following section, we will solve the Ising model in one dimension, and

we note that it can also be solved in two dimensions. The solutions are not so

simple and require some technical methods. However, if we make a mean-field

assumption, the system simplifies drastically and can be solved in any dimension

using just some algebra. The mean-field approximation consists of assuming that:

Assumption: The system’s thermal fluctuations are relatively small and can

therefore be neglected to a certain extent. [4]

Let us rewrite the spin si of each site highlighting the deviation δsi from the

mean value defined in Eq. (1.5):

si = E[si ]+δsi (1.6)

It is immediate to derive the interaction terms si s j in light of this rewriting:

si s j = (E[si ]+δsi )(E[s j ]+δs j ) = E[si ]E[s j ]+E[s j ]δsi +E[si ]δs j +δsiδs j



1.2 The Toolkit for the Social Modeler | 7

As we assume that the fluctuations δ are small, we can neglect the second-

order term, i.e., δsiδs j = 0. And by writing δsi = E[si ]− si we easily get:

si s j ≈ E[s j ]si +E[si ]s j −E[si ]E[s j ] (1.7)

Now, observe that each spin is equivalent to the others, making the system

translational invariant. This implies that the empirical mean of the average mag-

netization m coincides with that of a single site: m = E[si ]. This allows us to

rewrite Eq. (1.7) as a function of m itself:

si s j ≈ m[(si + s j )−m] (1.8)

In Eq. (1.8) it appears clear why the mean-field approach drastically simplifies

the study of the system:

The initial system of interacting particles (note the product term si s j in the

Hamiltonian) becomes a system of non-interacting particles, where each site only

interacts with a “mean-field”, capturing the average behavior of the neighboring

sites [4].

With this simplification, we can rewrite the mean-field Hamiltonian as:

HHF (s) =−Jm
∑
〈i , j〉

(si + s j −m)−h
N∑

i=1
si

The summation over all pairs of nodes (taken once) can be viewed from the

perspective of a node i with respect to its neighborhood Ni =
{

j : (i , j ) edge in L
}

.

We can use the symmetry between site i and j , which implies
∑

〈i , j 〉 si + s j =∑
〈i , j 〉 2si . Also note that the summands no longer depend on j and we consider a

regular lattice where each node has
∑

j∈Ni
1 := q neighbors:

HHF =−Jm
1

2

N∑
i=1

∑
j∈Ni

(2si −m)−h
N∑

i=1
si = N q Jm2

2
− (h +q Jm)

N∑
i=1

si (1.9)

This form of the Hamiltonian makes it clear that the sites in the mean-field

approximation do not interact with each other but with an “effective magnetic
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field” equal to h +q Jm. After some manipulations (see [4] for details) we obtain

the self-consistency equation:

m = tanh
[
β(h +q Jm)

]
(1.10)

This is a transcendental equation that has no analytical solution but can be

solved graphically. In the special case of h = 0, for example, it can be determined

that the system undergoes a phase transition at a critical temperature TC = q J
KB

.

When T > TC the only solution is m = 0, which indicates a disordered system

(paramagnetic phase), while when TC < T there could be three solutions ±m0 and

0, but only ±m0 are stable, so the system is magnetized even in the absence of an

external field (h = 0).

This provides a fairly immediate solution for the Ising model in any dimen-

sion. It accurately reproduces the qualitative behavior of the model in dimensions

greater than one, correctly indicates a phase transition, and provides an approxi-

mate value for the critical threshold. However, as we will see in the next chapter, it

incorrectly predicts a phase transition in the one-dimensional case. This exam-

ple is very illustrative because it shows both the strengths and limitations of the

mean-field approach.

1.2.2 The Ising Model in One Dimension

The mean-field approach from the previous section applies, as already mentioned,

in any dimension. Let us now focus on the simplest case of d = 1, for which we

consider toroidal boundary conditions (required to deal with the interactions

between the spins at the extremes, i.e., we assume that s1 = sN ). In the presence of

an external field h, we can write the Hamiltonian as follows, which is simpler than

Equation 1.1, since the spins can only interact with the left and right neighbors:

H =−J
N∑

i=1
si si+1 −h

N∑
i=1

si =−J
N∑

i=1
si si+1 − h

2

N∑
i=1

(si + si+1) (1.11)

Note that all spins become equivalent considering the above Hamiltonian

and a ring structure due to the toroidal boundary conditions. To solve the Ising
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model in one dimension, we apply the transfer matrix method, a powerful tool

that allows us to rewrite the partition function.

Each element of the transfer matrix T is defined as:

Tsi ,s j = e
β
[

J si s j+ h
2 (si+s j )

]
(1.12)

Recall that each spin s can only assume values in {±1}, thus the transfer ma-

trix T , considering all four possible combinations of the two spin values, becomes:

T =
(

T++ T+−
T−+ T−−

)
=

(
eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
(1.13)

We can write the partition function ZN associated with the Hamiltonian in

Eq. (1.11) and factor the exponential term. It becomes immediate that these

factors can be written as elements of the transfer matrix T :

ZN = ∑
s1=±1

∑
s2=±1

· · · ∑
sN=±1

N∏
i=1

e
β
(

J si si+1+ h
2 (si+si+1)

)

= ∑
s1=±1

∑
s2=±1

· · · ∑
sN=±1

Ts1s2 Ts2s3 . . .TsN−1sN

It is useful to recall that the i , j element of the n-th power of a matrix A can be

written as (An)i j =
∑

i
∑

k
∑

l · · ·
∑

z ai k akl al ,m . . . az j . Moreover, as we are consider-

ing toroidal boundary conditions (s1 = sN ), we get:

ZN = ∑
s1=±1

∑
s2=±1

· · · ∑
sN−1=±1

Ts1s2 Ts2s3 . . .TsN−1s1 =
∑

s1=±1
T N

s1s1
= Tr(T N ) (1.14)

We have just established that the partition function can be written as the trace

of the power N of the transfer matrix T . Recall that the trace of a matrix does not

depend on its representation, so we can write the matrix T in diagonal form. T

is square and symmetric, so it has real eigenvalues, which we denote as λ+ and

λ−. This transformation makes the power N of the transfer matrix trivial, and the
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partition function can be written as ZN =λN+ +λN− . By solving the characteristic

polynomial associated with the matrix T , we obtain:

λ± = eβJ coshβh ±
√

e−2βJ +e2βJ sinh2βh (1.15)

To derive the magnetization m, we will use the relationship between the mag-

netization m and the free energy density f , i.e., m =−∂ f
∂h . Let us first derive the

Helmholtz free energy as F =− 1
β

log ZN . We can compute the free energy per spin

(the density), considering a large number of spins N , as follows:

f = lim
N→∞

− 1

Nβ
log ZN = lim

N→∞
− 1

Nβ
log

(
λN
+ +λN

−
)

(1.16)

From Eq. (1.15) it is immediate to see that λ+ > λ−, thus limN→∞
(
λ−
λ+

)N = 0.

We can rewrite Eq. (1.16) and obtain an easy formula for f :

f = lim
N→∞

− 1

Nβ
log

[
λN
+

(
1+ λN−

λN+

)]
≈− logλ+

β
(1.17)

We can finally compute the magnetization m:

m =−∂ f

∂h
= sinhβh√

sinh2βh +e−4βJ
(1.18)

This formula implies that there is no phase transition in one dimension. In fact,

the system shows a paramagnetic behavior as m = 0 for h = 0 (sinhβh|h=0 = 0) for

any finite temperature. Only for T → 0 the model becomes a ferromagnetic one as

lim
β→∞

sinhβhp
sinh2βh+e−4βJ

=±1. A similar derivation and some considerations on the

two-dimensional Ising model can be found in [6].

1.2.3 The Sznajd Opinion Model

We introduced the mean-field approach by analyzing the Ising model. We found

that it is generally easier to obtain results for the mean-field model (almost only

algebraic calculations), while for the simplest case of the one-dimensional Ising

model we needed a more technical derivation. However, the results of the mean-
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Fig. 1.2 Sketch of the spin updating process of the Sznajd model, for 1 agreeing pair and
2 disagreeing pairs.

field model are not always accurate. This can be checked by deriving an exact

solution (if it is possible) or by extensive Monte Carlo simulations. But,

How is this related to opinion dynamics?

One of the most popular opinion models was proposed by physicists drawing

inspiration from the Ising model: the so-called Sznajd model [7]. It was developed

to describe the decision-making process of a closed community. Each site can be

interpreted as an agent and spin value as an opinion or, better, a preference against

an outcome. For example, si =+1 corresponds to the preference for candidate A

in an election, while si =−1 stands for competitor B.

The setting is the same as in the one-dimensional Ising model, with N nodes

(agents) over a line graph characterized by short-range interactions. The idea

underlying the Ising model is that of “united we stand, divided we fall”. If two

agents si and si+1 agree, i.e., si si+1 = +1, they transfer their opinion to their

neighbors. Therefore, si−1 and si+2 adopt the same opinion as the pair si , s+1. On

the other hand, if the two agents disagree, i.e., si si+1 =−1, then the neighbors also

tend to disagree with each agent in the pair, i.e., si−1 takes the direction of si+1

and si+2 takes the direction of si . These rules describe the influence of a pair on

the decisions of its neighbors [7]. Figure 1.2 gives a visual representation of this

simple mechanism from the point of view of an agent pair.
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It is easy to see that there are three equilibrium points for the dynamics: all

spins point up (+1), all spins point down (-1), or all neighbors have opposite

orientations. If we describe the model as a Markov chain (MC), these states would

all be absorbing states for the MC. The authors study the model using Monte Carlo

simulations and find that the three steady states mentioned above occur with

probabilities of 0.25, 0.25, and 0.5, respectively. Thus, the Sznajd model gives rise

to two possible final configurations: complete disagreement or consensus among

the agents.

The Sznajd model has been extensively studied in the literature. Slanina and

Lavička [8] consider two extensions of the model and redefine it over a general

graph. They take a graph G (N ,E ), where N = |N | is the number of agents in the

population and E represents the (undirected) connections between the agents

that capture their relationships.

Algorithm 1: Sznajd Model on a Social Graph G

Input: Social graph G (N ,E ), initial opinion/spin configuration s(0)

while true do
Randomly choose agent i ;
From Ni =

{
j : (i , j ) ∈ E

}
randomly choose agent j ;

if si (t ) = s j (t ) then
Choose a common neighbor k of both i and j (in Ni ∩N j ) ;
sk (t ) = si (t ) ;

Each agent in G has an opinion si (as in the original Sznajd model), which

can take up to q different values. Here, we restrict ourselves to q = 2 for simplic-

ity. The state of the system is represented by the opinion value of each agent:

Σ(t) = [s1(t), s2(t), . . . , sN (t)]. The system is thus a discrete Markov process that

evolves as follows (see Algorithm 1): at each discrete time t , an agent i ∈ N

is randomly selected. Then, a neighbor j ∈ Ni := h ∈N : (i , j ) ∈ E of agent i is

again selected at random. If the two agents disagree, nothing happens, while if

si (t) = s j (t) a common neighbor k (k ∈ Ni ∩N j \ {i , j }) takes the opinion of the

pair: sk (t ) = si (t ) = s j (t ). This extension of the model is particularly interesting be-

cause it allows us to derive a partial differential equation (PDE) for the probability

distribution of the magnetization m = 1
N

∑N
i=1 si when G is a complete graph.
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If we consider G as a fully connected graph, the dynamics are somewhat

simplified, since after choosing the agent i , neighbor j is any node other than i and

the common neighbor k is again any node in G other than i and j . Moreover, each

agent becomes equivalent to every other and the state of the system can be fully

characterized by the empirical magnetization, which we can define as m = N+−N−
N ,

where N+ := ∑N
i=1δsi ,+1 and N− := ∑N

i=1δsi ,−1 are the number of agents whose

opinion/spin points up (+1) or down (-1), respectively. This setup is described

by [8] as a mean-field approximation2, in the sense that “the Ising model on the

complete graph can be considered as an approximation for the Ising model on

hypercubic lattice of high dimensionality” [8].

Given a state Σ(t ), the DTMC describing the model can undergo one of three

transitions: a self-loop to the state Σ(t) itself, when the selected agents have

disagreeing opinions (Case I), a transition to a state with higher magnetization,

whenever the two selected agents have agreeing positive opinions (Case II), and

a symmetric transition to a lower magnetization, as the agents have agreeing

negative opinions (Case III). In the two latter situations the magnetization changes

by 2
N as one agent flips its opinion from one state to the other.

Let us first characterize the probability of Case II. To increase the magnetization

it is needed to take two agreeing neighbors i and j , and that the common neighbor

k disagrees with them:

P (Case I) =P
(
m → m + 2

N

)
=P(

si (t ) =+1, s j (t ) =+1, sk (t ) =−1
)

(1.19)

where si , s j , sk are the opinions of the agents picked sequentially as for Algo-

rithm 1. To evaluate Eq. 1.19, let us recall the definition of the magnetization

m = N+−N−
N and the trivial equality N++N− = N . From these equations, it is easy

to obtain the fraction of spins in a certain state as a function of the magnetization:

N+
N

= m +1

2
and

N−
N

= 1−m

2
2This notion is slightly different from the one we studied earlier in this chapter. However, the

Curie-Weiss model (another mean-field approximation of the Ising model) assumes that any spin
can interact with any other (all-to-all communication), but the interactions are very weak (

si s j

N ).
The same mean-field results in Section 1.2.1 can be obtained.
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From which it is immediate:

P

(
m → m + 2

N

)
= N+

N

N+−1

N −1

N−
N −2

= N

N −1

N

N −2

1−m2

8

[
m +1− 2

N

]
(1.20)

And similarly for Case III we obtain:

P

(
m → m − 2

N

)
= N

N −1

N

N −2

1−m2

8

[
1−m − 2

N

]
(1.21)

Note that the two transition probabilities are not symmetric, which is linked

to the presence of a phase transition [8]. Finally, by subtraction, we get:

P (m → m) = 1− N

N −1

N

N −2

1−m2

4

[
1− 2

N

]
(1.22)

At this point, we would like to derive a PDE for the evolution of the probability

density of the magnetization P(m, t ) in an infinitesimal step τ:

P(m, t +τ) =P (m → m)P(m, t )+
(
m → m + 2

N

)
P

(
m + 2

N
, t

)
+

(
m → m − 2

N

)
P

(
m − 2

N
, t

)

We can consider the thermodynamic limit, as the size of the system becomes

large (N →∞) and considering an appropriate scaling factor for the time (specified

later), we obtain:

P(m, t +τ) =
(
1− 1−m2

4

)
P(m, t )+ 1−m2

8
(m +1)P

(
m + 2

N
, t

)
+ 1−m2

8
(1−m)P

(
m − 2

N
, t

)
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P(m, t +τ)−P(m, t ) =1−m2

8

[(
2

N

)2 −2P(m, t )+P(
m + 2

N , t
)+P(

m − 2
N , t

)
( 2

N
2
)

−m

(
2

2

N

)
P

(
m + 2

N

)−P(
m − 2

N

)
2 2

N

]
(1.23)

If we divide both sides of Equation (1.23) by τ, and scale appropriately the

time as t = 2τ
N , we can take the limit and recognize a time partial derivative on the

left-hand side and two magnetization partial derivatives on the right-hand side,

for which the higher order terms 1
N 2 can be neglected, so that we get:

∂

∂t
P(m, t ) =− ∂

∂m

[
m(1−m2)P(m, t )

]
, (1.24)

which is studied in [8], to which we refer the interested reader. We note that

the logic behind the derivation of Eq. (1.24) is similar to that which we will use in

Chapter 2 later in this thesis.

1.2.4 The Susceptible-Infected-Susceptible (SIS) Model

We now discuss one of the classical epidemic models, the Susceptible-Infected-

Susceptible. First, we present its stochastic formulation, which can be modeled

as a discrete-time Markov chain, and then its deterministic formulation. We will

find that there is a close relationship between the two models and the latter is

a kind of mean-field of the stochastic formulation. This section will show that

epidemics and opinion dynamics, although seemingly distant from each other,

are closely related as much of the underlying structure and analysis is identical.

Furthermore, SIS and SIR (Susceptible-Infected-Removed) models have been

used in the context of opinion dynamics to describe the diffusion of beliefs and

innovations. For example, Cinelli et al. [9] used a SIR model in the context of

opinion dynamics to model the spread of information and to investigate the

emergence of echo chambers in online social networks. In the last Chapter of

this thesis, we will introduce the SIR model, which is another classical model

and can be considered as a complement to the SIS model, as they can be used to
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model viruses that exhibit different biological behaviors (reinfection vs. acquired

immunity).

Stochastic SIS Model

In epidemic models, individuals are classified according to their disease status.

Susceptible individuals are those who, upon contact with an Infected individ-

ual, i.e., one who carries the disease, may develop the disease themselves. The

Susceptible-Infected-Susceptible model describes exactly this situation, where

individuals do not acquire immunity to the disease and become susceptible again

after recovery. This is one of the reasons why the SIS model was used for modeling

sexually transmitted diseases. Note that deaths are not explicitly modeled (while

they are included in the SIR model).

Let us now introduce the random variables3 S (t ) and I (t ), which respectively

denote the number of susceptible and infected individuals in the given popula-

tion at a given time t . We assume that time is discrete, a multiple of a generic

interval ∆t , therefore we have t ∈ {0,∆t ,2∆t , . . . }. We consider a fixed population

of size N , thus S (t ) = N −I (t ), which results in only one independent random

variable: I (t ) ∈ 0,1, . . . , N . We want to describe the stochastic process4 {I (t )}∞t=0,

for which we define the state probability si (t ):

si (t ) =P (I (t ) = i ) (1.25)

Following [10], we can formalize this model as a discrete-time Markov chain.

For a given time t , the process is characterized by the probability vector p(t) =
{p0(t), p1(t), . . . , pN (t)} and satisfies the Markov property, i.e., the process at the

subsequent time depends only on the process at the current time:

P (I (t +∆t ) |I (0), . . .I (t ) ) =P (I (t +∆t ) |I (t ) )

The time interval∆t must be sufficiently small so that only one event (or none)

occurs during ∆t . The event can consist of an infected individual infecting a

3We use calligraphic letters to distinguish the stochastic susceptible and infected individuals
from the deterministic quantities that we will use later in this section and in Chapter 4.

4A stochastic process is a collection of random variables, here indexed by time t .
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1 2

Fig. 1.3 Markov chain representation of the SIS stochastic model.

susceptible individual, which increases the number of infected I (t) = i by one.

The probability that such an event occurs is proportional to a disease-specific

parameter β (the higher β, the more contagious the disease), the chance of a

susceptible individual encountering an infected individual: S (t)I (t) = si and

the time interval of observation ∆t :

pi ,i+1 := pi→i+1 = βi (N − i )

N
∆t , (1.26)

where we have taken advantage of the fact that the population is fixed, i.e.,

s = N − i . The event during the interval ∆t can be that an infected individual

recovers at a rate equal to γ, i.e., with probability γ∆t and proportional to I (t ) = i :

pi ,i−1 := pi→i−1 = γi∆t (1.27)

We are left to consider the case in which neither of the above events occurs,

and the state of the system does not change. The probability of such an event is:

pi ,i := pi→i−1 = 1−
(
βi (N − i )

N
∆t +γi∆t

)
(1.28)

In a DTMC, these probabilities characterize the transitions between states

and are usually called transition probabilities psi→s j . They are the last ingredi-

ent we need to specify for our Markov chain. We have implicitly assumed that

the probabilities are independent of the specific time t , therefore we consider a

homogeneous process.

Interestingly, the process is a birth and death process (see Figure 1.3). Note

that in this Markov chain, the state {0} is an absorbing state, while all other states

are transient states, therefore the state probability in the limit is limt→∞ p(t) =
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(1,0, . . . ,0)T . This means that the population is asymptotically approaching the

disease-free equilibrium [10]. We can rewrite the transition probability as a birth

probability b(i ) and a death probability d(i ):

b(i ) = βi (N − i )

N
∆t and d(i ) = γi∆t (1.29)

In general, the probability of the process to be in state i at time t +∆t can be

easily determined by considering the probability of the three possible events that

lead to it: being in state i −1 and having a new infection, being in state i +1 and

having a recovery, or finally just staying in state i :

si (t +∆t ) = si−1pi−1→i + si+1pi+1→i + si (t )pi→i

= si−1(t )b(i −1)+ si+1(t )d(i +1)+ si (t )[1−b(i )−d(i )] (1.30)

The authors of [10] derive a relation for the expected value of the number of

infected, i.e., E[I (t )] =∑N
i=0 i si (t +∆t ), by making use of Eq. (1.30):

E[I (t +∆t )] =
N∑

i=1
i si−1b(i −1)+

N−1∑
i=0

i si+1d(i +1)

+
N∑

i=0
i si (t )−

N∑
i=0

i si (t )b(i )−
N∑

i=0
i si (t )d(i )

If we make a change of variables in the first two summations, so that we realign

all addends, we can readily obtain:

E[I (t +∆t )] = E[I (t )]+
N∑

i=0
[(i +1)− i ] si (t )b(i )+

N∑
i=1

[(i −1)+ i ] si (t )b(i )

= E[I (t )]+
N∑

i=0
si (t )

βi (N − i )

N
∆t −

N∑
i=1

si (t )γi∆t

= E[I (t )]+ [β−γ]∆t
N∑

i=0
si (t )i − β

N
∆t

N∑
i=0

si (t )i 2

= E[I (t )]+ [β−γ]∆tE[I (t )]− β

N
∆tE[I 2(t )] (1.31)
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Lastly, we derive a straightforward bound observing that E
[
x2

]− E2 [x] ≥ 0

hence E
[
x2

]≥ E2 [x] we can bound from above the right-hand-side:

E[I (t +∆t )] ≤ E[I (t )]+ [β−γ]∆t E[I (t )]− β

N
∆t E2[I (t )] (1.32)

We can now rearrange the equation, divide both sides by ∆t and take the limit

for ∆t → 0. We obtain the differential equation:

dE[I (t )]

d t
≤ (

β−γ)
E[I (t )]− β

N
E2[I (t )]

= β

N
(N −E[I (t )])E(I (t ))−γE[I (t )] (1.33)

Equation (1.33) is a deterministic differential equation that contains the ex-

pectation of the number of infected individuals. It implies that the average value

of the infected for the stochastic model is less than or equal to the solution of the

deterministic equation. Fascinatingly, the deterministic differential equation we

obtained corresponds exactly to the deterministic SIS model. So from a stochastic

instance of our model, we have again obtained a sort of mean-field approximation

of our system, which is governed by deterministic equations.

As a final remark, we would like to emphasize that the stochastic version of

the SIS model can be easily simulated by agent-based modeling, as can the Sznajd

opinion model in both formulations. Agent-based modeling is a computational

modeling technique in which each agent is equipped with a set of predefined

rules for interacting with the rest of the population that can be easily studied and

implemented through computer simulations. The approach, which is also widely

used in this thesis, is to study the emergent behavior of the stochastic system

through simulations and, if possible, derive a deterministic mean-field relation to

evaluate the mean behavior of the system.

Deterministic SIS Model

We present here the deterministic formulation of the classical Susceptible-Infected-

Susceptible model, which is probably the simplest of the so-called compartmental

models. The population is divided into different “compartments” according to dis-
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ease status (as above): individuals can be Susceptible (S) to the virus or Infected (I ).

The system of differential equations describing the system’s dynamics is:

dS

d t
=− β

N
SI +γI

d I

d t
= β

N
SI −γI

(1.34)

As we hinted in the previous section, this deterministic model is closely related

to its stochastic counterpart. Namely, if we replace the expected value of the

number of infected E[I (t )] in Eq. (1.33) by I and remember that S = N − I due to

mass conservation, we get exactly the above deterministic bound:

d I

d t
= β

N
(N − I )I −γI (1.35)

This differential equation can be solved and from the solution, it is possible

to divide the behavior of the system into two different phases depending on the

basic reproduction number R0 := β
γ , which is a disease-specific value5. Let us first

rewrite the right-hand side of Eq. (1.35) and separate the variables:

d I

d t
=− β

N
I

(
I − N (β−γ)

β

)
=⇒ d I

I (I −b)
= a ·d t

where for ease of presentation we introduced a :=− β
N and b := N (β−γ)

β
. To solve

the equation, we can use the partial decomposition method and then integrate

both sides of the equality. We can easily determine that 1
I (I−a) =− 1

b
1
I + 1

b
1

I−b :

∫I (t )

I (0)
−1

b

1

I
+ 1

b

1

I −b
d I =

∫t

0
a ·d t

1

b

[
ln

b

I

]I (t )

I (0)
= at =⇒

1− b
I (t )

1− b
I (0)

= ebat

Finally, after some manipulations, we obtain the exact solution of the SIS:

5Note that the factor 1
N is only a normalization factor. Indeed, the SIS system can be rewritten

in terms of the fractions of individuals in each compartment by dividing both sides of the equation
by 1

N rendering (first equation only): d s
d t =−βsi +γi
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I (t ) = N (β−γ)I (0)e(β−γ)t

βI (0)
[
e(β−γ)t

]+N (β−γ)
(1.36)

From the exact solution, we can gain interesting insights into the asymptotic

behavior of the system. Namely, if β < γ (i.e., R0 = β
γ < 1), then limt→∞ I (t) = 0

hence the epidemic dies out (disease-free equilibrium). While if β> γ, i.e. R0 > 1,

we obtain limt→∞ I (t) = N
(
1− 1

R0

)
, which denotes a point at which the virus

becomes endemic in the population, i.e. part of the population will be infected

at any given time (endemic equilibrium). The reproduction number therefore

plays a very important role in an epidemic, as it determines whether the disease

dies out or becomes endemic in the population. In Chapter 4 we will see that

the reproduction number also has a similar meaning in the Susceptible-Infected-

Removed (SIR) model.

Let us make one final remark. We have seen the connection between the

stochastic model and the deterministic model, but the behavior of the determinis-

tic model is somewhat different from what we have observed for the stochastic

model, where the system always tends to the disease-free equilibrium (regardless

of the value of the basic reproduction number R0). This is related to the fact that

the absorption result for the Markov chain is asymptotic and the rate of conver-

gence to this equilibrium can be very slow [10]. The interested reader can refer

to “Mathematical Epidemiology”by Fred Brauer et al. [10] for a comprehensive

introduction to epidemic modeling.

1.3 Main Contributions and Organization

The above examples have been chosen to provide both an overview of the fields of

opinion dynamics and epidemiology and to show some of the key tools that the

“social modeler” might need in its investigation. The presentation also makes it

clear that the two fields, although appearing very different, are usually explained in

quite similar terms. We will now briefly discuss the contribution of this work. It is

a modeling journey that begins with opinion formation in online social networks,

continues through the competition of online influencers, and ends with the the

control of the COVID-19 pandemic.
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The second chapter of this thesis is dedicated to online interactions. Although

the advent of social media platforms has drastically changed the way individuals

interact with each other, little attention has been paid to the development of opin-

ion models that go beyond the classical models (most of which are appropriate for

face-to-face or small group interactions) and capture the specific characteristics

of online interactions. In Chapter 2, we move in this direction by proposing a

multidimensional opinion model that explicitly divides users into two classes:

regular users and influencers. The latter are popular and influential people on the

platform who produce the majority of the content consumed by users on modern

social networks. The amount of content produced on such social media platforms

is immense. Therefore, to keep users engaged within the social network, the plat-

form performs filtering to select the posts to offer. This filtering mechanism can

reinforce the natural tendency of users to interact with like-minded individuals,

one of the main drivers for building social networks known as homophily[11].

This, in turn, can lead to the formation of echo chambers [9], where people who

share a similar point of view interact with each other while being isolated from

the rest of the users. We propose the Communication Asymmetry opinion model,

the goal of which is to model:

• The asymmetry of OSNs: a relatively small portion of well-known users, i.e.,

the influencers, can reach a vast number of far less known individuals.

• The closed-loop between influencers’ and regular users’ dynamics, triggered

by the content personalization mechanism applied by the social media

platform in one direction and user feedback (e.g., likes) in the other.

In addition, the range of topics discussed in OSNs is very wide and influencers

in particular tend to post about a specific topic, which can be their area of expertise

(e.g., tennis or more broadly sport for tennis players) or the reason why they

are known over a platform (e.g., cooking for someone presenting recipes). We

have empirically observed this tendency in OSNs (Facebook and Instagram) and

proposed the concept of reference direction, over which content personalization

occurs.

For the case of a single topic, we derive a Fokker-Planck equation as a second-

order approximation for the opinion formation process and prove the existence

and uniqueness of the stationary solution. Furthermore, since this approach is
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not constructive, we develop a less accurate first-order approximation, i.e., the

fluid limit, which provides a closed-form expression for the stationary solution.

We then use a Monte Carlo approach to analyze the impact of influencers’ struc-

tural parameters and the interplay with content personalization in a multi-topic

environment. The results highlight some of the dangers associated with con-

tent filtering. We show that it favors structurally advantaged influencers and can

radicalize users’ opinions, leading to the formation of echo chambers.

In Chapter 2, we have always considered influencers as stubborn, conveying

to their user base a fixed opinion that corresponds to their belief about a partic-

ular matter. However, we argue that it is interesting to consider the case where

influencers are strategic and choose a posting pattern to attract the population

towards a certain final opinion (e.g., due to economic interests) rather than stub-

bornly holding the same fixed opinion. Therefore, in Chapter 3 we use a simplified

version of the Communication Asymmetry opinion model from Chapter 2, which

allows influencers to strategically change their expressed opinion.

Our goal is to model the competition between different influencers over an

OSN and to investigate the best possible strategies they can employ to maximize

their influence on the population. In the first step of our investigation, we ad-

dress the fundamental question of how an influencer, considered in isolation,

should best proceed to increase their influence on a specific group of users. An

influencer’s “strategy” is a sequence of posts that convey an opinion and that they

publish on their social media profile. The “best” strategy is the one that brings the

greatest benefit, however it is defined (by a utility function). Although a person’s

opinion generally does not fluctuate frequently, an influencer’s stance can be

affected by both external and personal factors. For example, it is common for

influencers to retract certain viewpoints due to the pressure of public opinion.

Another example: influencers may change their collaborative partnerships and

promote other brands’ products. Similarly, politicians often adjust their positions

to reflect their electorate’s views on certain issues. Therefore, assuming that an

influencer’s opinion can span the entire opinion space, we show that the greedy

strategy which maximizes influence at each post emission is not always optimal.

Our experiments suggest that it is optimal to group the user base, which has dif-

ferent initial views on the topic, around a common viewpoint and then move the

group towards the desired opinion.
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The final Chapter of this thesis is devoted to the development and investigation

of a novel stratified epidemic model which naturally accounts for the correlations

between risk exposure to the virus and mortality. Furthermore, the model assumes

a tightly controlled environment in which the rate of new infections is controlled

by both pharmaceutical (e.g., vaccine) and non-pharmaceutical interventions

(e.g., lockdown measures). Especially during the recent COVID-19 pandemic,

governments worldwide faced the challenge of developing effective strategies

to contain the virus while minimizing the economic and societal impact. It was

crucial to address the question of whether a suppression or a mitigation strategy

would be more beneficial. In Chapter 4, we present our extended SIR-like model

in which we define a control problem that balances economic loss and social loss

(as measured by the number of deaths). We also investigate the impact of control

lags in the feedback loop and how they endanger system stability.

We include vaccinations in our framework, as several vaccines against the virus

became available about a year after the COVID-19 pandemic. The availability of

these vaccines was initially limited and their effectiveness in preventing infection

was not fully understood. Given these uncertainties, developing strategies to

prioritize vaccine distribution became a challenge. The interested reader can refer

to [12] for insights and analysis on the complexity of developing effective vaccine

prioritization strategies in uncertain times. We have defined simple vaccine prior-

itization strategies (that can be easily implemented by governments) and assessed

the interplay between non-pharmaceutical interventions and vaccination cam-

paigns. The joint effect of these two aspects has been largely neglected in the

literature and we aim to fill this gap. We aim to explore in depth the different strate-

gies, measures, and approaches that policymakers can consider and implement

to respond effectively to the challenges of a pandemic in order to protect public

health, minimize the impact on society and ensure the well-being of individuals.

Lastly, even if we consider the case of COVID-19, we remark that the framework is

flexible enough to model any other virus.

The thesis is complemented by several appendices which deal with interesting

but less central aspects in connection with the main part. The work ends with

some concluding remarks in which the findings and contributions of this work

are discussed.



Chapter 2

A Model for Online Interactions

Part of the work presented in this chapter has already been published in [13]:

• Galante, F., Vassio, L., Garetto, M., & Leonardi, E. (2023). Modeling commu-

nication asymmetry and content personalization in online social networks.

In Online Social Networks and Media (Vols. 37–38, p. 100269). Elsevier BV.

https://doi.org/10.1016/j.osnem.2023.100269

In the opinion dynamics landscape, numerous approaches have been pro-

posed to capture the intricacies of human interactions however, a comprehensive

approach tailored to online social networks (OSNs) is still missing. Online interac-

tions have some unique characteristics that strongly distinguish them from other,

more traditional forms of interaction.

The Internet has revolutionized global communication, enabling worldwide,

cost-effective communication like no other technology in human history. Instant

messaging apps, video conferencing tools, and online social networks have har-

nessed the potential of the Internet and other modern information technologies,

bringing together an ever-expanding user base that, to this day, encompasses the

vast majority of the world’s population. Most people use social media daily, with

seven in ten Facebook users saying they visit the site at least once a day [14]. The

study also shows that other platforms, such as YouTube and Instagram, are widely

used (e.g., 81 % of respondents have been using YouTube). It is important to note

that the study only surveyed people aged 18 and over and did not include the

population group that uses social media the most, namely young people, which

vastly underestimates social media usage.
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One of the most striking features of OSNs is the pronounced communication

asymmetry between users, where only a few influential individuals produce a

significant amount of content on social media platforms and are far more popular

than the other users. In addition, the social media platform performs personaliza-

tion of the content that is suggested to users. This happens because the number of

posts (even if it is just your own “friends” on Facebook) is so large that usually only

the posts with the highest relevance are seen. Therefore, social media platforms

try to suggest the most relevant content to maximize user engagement.

This chapter presents and examines a model that accounts for these character-

istic features and provides a flexible and fine-grained description of the influencers

that can be used to describe a whole range of social phenomena. The model is

examined both analytically and experimentally using measures from popular

social media platforms: Facebook and Instagram. The chapter first briefly reviews

the relevant literature on opinion formation, presents contributions from various

research communities, and highlights recent advances in the measurement and

modeling of OSN. Section 2.2 defines the general notation used in this and the

next chapter, along with a table summarizing all the symbols introduced in this

chapter. Sections 2.3 and 2.4 describe the Communication Asymmetry opinion

model and motivate some of the modeling decisions by analyzing social media

data. Section 2.5 is dedicated to the analysis. First, we derive a Fokker-Planck

equation for the opinion distribution and establish conditions for the existence

and uniqueness of the solution. Then, we provide a first-order approximation to

determine the stationary solutions of the dynamical system. In Section 2.6, we

consider a more general bidimensional instance of the model trough a Monte

Carlo approach and examine the model as a function of the characteristics of the

opinion leaders and the population. Finally, in Section 2.7, we relate the posting

frequency of an influencer to its popularity growth using data from Instagram. We

apply our model to the Italian government crisis in August 2019. The chapter ends

with a brief discussion on the implications of the work.

2.1 Related Work and Context

The first steps in the study of opinion dynamics were taken in the late 1950s by a

number of social psychologists [15][16][17]. Ash introduced the concept of social



2.1 Related Work and Context | 27

pressure [15], a conformist tendency in individuals, while French used directed

graphs to model interpersonal relationships [16]. A landmark in the field is Fes-

tinger’s work on social comparison[17]. Individuals tend to evaluate their position

by comparing it to others, and it is inversely proportional to the distance between

viewpoints. Opinion models are continuous or discrete, according to the descrip-

tion of the opinion variable. As for most models [18], the seminal work in the

field is continuous. For example, the DeGroot model [19] considers a networked

social system in which individuals interact with their neighbors. Individuals av-

erage their current opinion with the opinion of their neighbors. Subsequently,

Friedkin and Johnsen [20] developed a linear model which encompasses both

the processes of social conformity and social conflict leading to behavior that

goes beyond simple consensus. Dandekar et al. [21] further examined averaging

dynamics in light of polarization and proposed a model that included biased

assimilation. In the early 2000s, Hegselmann and Krause [22] and Deffuant and

Weisbuch [23] proposed two similar models, introducing the idea of bounded

confidence: individuals interact only with peers whose beliefs are not too different.

The proposed models are nonlinear and challenging to study [24]. A great deal

of attention has also been paid to discrete models. A prominent example is the

voter model [25][26] and its extensions accounting for evolving networks [27][28],

individuals with multiple opinions [29] or spontaneous changes of opinion [30]. A

consistent bulk of research on opinion dynamics comes from the physics literature,

among which early contributions are Ben-Naim [31] and Toscani [32]. Ben-Naim

and Toscani consider two mechanisms of opinion formation: compromise, and

introspection (in other models, e.g., [30], modeled as noise), which the authors

believe represents the impact of external sources of information (e.g., media). The

Sznajd model [7] is a generalization of the Ising model, which implements social

validation and for which [8] derives analytical results. For a comprehensive review

of classic opinion models, we refer to the survey by Castellano et al. [33].

Most of the seminal literature on opinion dynamics is suited to describe the

decision-making process in small groups of individuals, e.g., a board of directors,

or to capture relatively regular patterns determined by the daily personal interac-

tions of individuals. Models such as the voter model have been studied extensively

on regular lattices [34] [35]. The structure of interactions, especially those online,

is far from homogeneous. As mentioned earlier, an inherent asymmetry in com-

munication exists in OSNs where a limited number of individuals (influencers)
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monopolize the discussion. The voter model has been studied over heterogeneous

networks (e.g., [36] [37]) to account for this diversity. On such networks, there can

exist hubs (strongly connected nodes) playing a role similar to influencers in our

framework. However, the authors did not explicitly make such a distinction. Other

works have divided the population into classes, e.g., [38] introduced stubborn

agents, and if such individuals have opposing opinions, they hinder the possibility

of the population converging to consensus. Recent work further draws attention

to online platforms by adapting classical frameworks to the specificity of online

interactions. [39–41] have developed an opinion model that embodies algorithmic

personalization. [39] also compares model predictions and dynamics observed

on Facebook and Twitter. Our work differs from [39–41] as we consider distinct

classes of users, precisely characterizing influencers and closing the interaction

loop between users and the platform by a feedback function.

Attempts to validate opinion models are scarce due to several reasons: i) the

mapping of opinions into values, ii) an adequate definition of links between agents,

and iii) the change of opinion after an interaction is hardly measurable. A recent

survey [42] examines the latest research concerning the use of data in opinion

dynamics. Usually the approach is either through observational data [43] [9] [39]

or controlled sociological experiments [44] [45]. The first type allows us to scale to

a large number of users and is more related to our work. The political environment

has classically been a florid field for opinion dynamics due to the possibility of

attributing a person’s opinion to the political orientation of the chosen candi-

date [43]. Also, a noisy voter model was used to fit data from US elections [46].

The authors of [47] estimate the political ideology of users on Twitter on a single

axis (left-right) using the ground truth reconstructed by roll-call votes of members

of parliament and their network of followees-followers. In [48], opinions are esti-

mated through a sentiment analysis tool applied to the text of posts on Twitter.

Posts are first classified into topics according to their keywords (as we do, see

Section 2.4), and then a continuous sentiment score is given between negative

and positive. The authors of [49] consider users’ opinions in a multidimensional

ideological space. Through doc2vec clustering, they identify the axes of 4 dimen-

sions and then map users to these 4-topics opinions. Validation is made through

well-known positions of famous Reddit groups. Other recent approaches [50]

have used shared news on Facebook to assess the extent to which individuals are

exposed to opposing views through their (online) friendship relationships, using
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users’ self-reported ideological affiliations to infer opinions. Recent work [9] [39]

has directly used data from online social networks, such as Gab, Facebook, Red-

dit, and Twitter, to observe the emergence of echo chambers [9] and to validate

a model encompassing algorithmic personalization in the process of opinion

formation [39].

2.2 Notation

Here we establish the notation that will be used in this and the next chapter of

the thesis. We adopt the following vectorial notation. We denote vectors by bold

characters, whereas we denote their components with normal-font characters

whose subscript is the index in the vector, e.g., a = {ak }k . Lowercase letters indi-

cate parameters and dynamical variables associated with an individual. In general,

index i runs over the set of influencers while the index u runs over that of regular

users. For those parameters/variables that can be associated with individuals of

both classes (either influencers or regular users), the above indices are indicated

between superscript parentheses, e.g., a(i ), a(u), to identify the class to which the

individual belongs immediately. If necessary, the dependence of variables on

other system parameters is made explicit by specifying the independent variables

between parentheses, e.g., α(·, ·). Italic capital letters denote sets, e.g., I is the set

of all influencers in the population, while |I | is its cardinality. Capital letters rep-

resent outcomes of stochastic experiments whose characteristic parameters are

lowercase letters: e.g.,Ω (ω(·, ·)). The operator E[·] represents an expected value,

and a bar over a variable, e.g., Ā, indicates the average value of the corresponding

random variable. Whenever we need to express the probability of an event, we use

the notation Pr[·]. We use 1{·} for the indicator function. Lastly, time is denoted

by t if considered continuous and by n if discrete.

Table 2.1 is intended to provide a comprehensive and self-contained overview

of all the symbols presented in this chapter, together with a concise description of

what they represent.
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Table 2.1 Notation Summary Table

Symbol Description

I Set of influencers within the OSN population
U Set of regular users within the OSN population
X Set of opinions, in general X ⊂Rd but typically [0,1]
Nr Nr = {0,1, ...,d −1} \

{
r (i )

}
set of non reference direction

n Discrete time instant
λ Aggregate posting rate
x (u)(n) Opinion vector of a regular user at time n
z (u)(n) Prejudice vector of a regular user at time n
x (i )(n) Opinion vector of an influencer at time n
r (i ) Reference direction of influencer i
s(i )

j J-th secondary direction for influencer i in Nr

dr (n) Distance over the reference direction dr (n) :=
∣∣∣x(u)

r (n)−x(i )
r (n)

∣∣∣
d j (n) Opinion distance d j (n) :=

∣∣∣x(u)
j −x(i )

j

∣∣∣
c(i )(n) Consistency of influencer i
f (i ) Posting probability of influencer i at any time n
p(n) = {pi }i∈I Vector of all influencer’s popularities pi

π(n) Vector of normalized popularities πi (n) := pi (n)∑
j p j (n)

Ω (ω) Bernoulli random variable, ifΩ= 1 the post reaches the user
ω (dr (n),π(n)) Visibility function modulating the extent to which posts are seen
ρ Parameter which controls the level of personalization in ω
Θ(θ) Bernoulli random variable,Θ= 1 if the user likes the post
θ(d j (n)) Feedback parameter as a function of d j (n)
ΘT Total feedback of the population reached by a post U post

α First opinion update weight
β Second opinion update weight (or inertia)
γ := 1−α−β Third opinion update weight
δ := α

α+γ Degree of stubbornness

F (x, z, t ) Cumulative regular users distribution, F (x, z, t ) := Pr[X (t ) < x, Z < z]
vx (x, z) Velocity of the users/particles in the Fokker-Planck Equation
σ2

x (x, z) Variance of the velocity in the Fokker-Planck Equation

2.3 The Communication Asymmetry Opinion Model

In this section, we present the Communication Asymmetry model in its most

general formulation, explain its novel elements, and discuss the limitations due

to the inherent simplifications of the modeling process. The proposed model

explicitly divides the influential and regular individuals into two classes, that of

influencers and that of regular users. Moreover, it implements the closed-loop

between the regular users and the influencers mediated by the platform, which
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uses user feedback to update the popularity of influencers, which in turn regulates

the way posts are suggested to social media users.

2.3.1 Description of the Model

We propose a continuous opinion model with two interacting classes of agents.

Specifically, the population consists of |U | regular users and |I | influencers. This

division mimics what happens in real social networks, where a small portion of

the population, the influencers, has a much larger number of people following

their posts on the online social network. The opinion space is X ⊂Rd , where each

dimension represents an uncorrelated topic on which users have a belief. Hence,

an opinion is a d-dimensional vector x (u)(n) ∈Rd , which evolves as a result of the

interaction between a regular user and the influencers on every possible topic.

Moreover, we model the tendency toward an a priori opinion z (u), and we refer to it

as the prejudice of a user. Unless otherwise specified, we will assume that the user’s

initial opinion corresponds to the prejudice: x (u)(0) = z (u). We assume that the

generation of new posts, i.e., messages in the OSN, is a Poisson Point Process (PPP)

with intensity λ, where each event of the PPP corresponds to the creation of a new

post from an influencer i ∈I . The corresponding embedded discrete time will

be denoted by the integer n ∈N+, where n is the n-th post. Figure 2.1 illustrates

the social media platform’s role in filtering the posts sent1 to regular users and

receiving feedback from those users. These two aspects implement, respectively, a

selective exposure effect: namely the tendency of both the platform and the users

to suggest/access similar content, and a confirmation bias, namely the tendency

of users to value content that is close to one’s point of view (see [9] and resources

therein).

Influencers are considered stubborn, i.e., x (i )(n) = x (i )(0) = x (i ) = z (i ) ∈ Rd ,

∀n > 0 and i ∈ I . As we will show in Section 2.4, each influencer has a main

topic of interest on which it publishes most of its posts and typically coincides

with the topic it is mainly known for on the OSN. We call it the reference direction

r (i ) ∈ {0, ..,d −1} of the influencer. Another parameter characterizing influencer i

is its consistency c(i )(n), which denotes the (possibly time-varying) probability of

1We use the terms send, suggest and reach interchangeably, referring to a post shown to a user by
the platform. We will refer to regular users simply as users. Moreover, the terms agent or individual
indicate a social network user of either class.
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UserInfluencer popularity update

post generation post suggestion

feedback

Platform
θ

ω

Fig. 2.1 Illustration of the interaction between users, influencers, and social media plat-
forms highlighting the closed loop between user feedback θ and content filteringω, which
will be further characterized below.

posting on the reference direction. High-consistency individuals preferably post

on their reference topic. We denote by f (i ) the probability that a post is generated

by influencer i at any time instant n, with
∑

i∈I f (i ) = 1. At last, we introduce

the popularity vector p(n)≜
{

pi (n)
}

i∈I , containing the current popularity of all

influencers at time n, before the emission of the post at time n. We also introduce

the normalized version of this vector π(n) = {πi (n)}i∈I where the components

are the normalized popularities πi = pi∑
j∈I p j

.

The dynamic variables of users, i.e., their opinion x (u), and influencers, i.e.,

their popularity pi , are updated upon every post generation according to Algo-

rithm 2. Figure 2.2 gives a schematic representation of the model.

At any time instant n, an influencer i , selected according to distribution f (i ),

generates a post. The influencer i posts on its reference direction r (i ) = j with

a probability equal to its consistency c(i ). Otherwise, it posts on one of the sec-

ondary directions j ∈ {0,1, ...,d −1} \
{
r (i )

}=Nr according to a given distribution,

Pr [ j = k ] for k in Nr . In the following, we assume this distribution to be uni-

form over the set of non-reference directions. The emitted post carries the j -th

component of the influencer’s opinion vector x (i ). We suppose posts accurately

reflect the influencer’s true belief and no noise affects user perception.

To decide whether the post reaches a given user (independently from other

users), we extract a Bernoulli random variable Ω with parameter ω. The user

receives the message when Ω(ω) = 1. The parameter ω can be interpreted as a

visibility function from the influencer’s perspective, as it affects the subset of

users reached by its posts. In principle, a post can reach any user as the interac-

tion network is a dynamic complete bipartite network between the set of nodes
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Algorithm 2: The Communication Asymmetry Opinion Model

Input: |I | influencers, |U | users, filtering function ω, feedback function θ
Output: opinion of each regular user x (u)(n), ∀u
popularity of each influencer pi (n), ∀i

while true do
Select influencer i according to f (i );
Select a posting direction j = r (i ) with probability c(i ), otherwise j is

selected uniformly on j ∈ {0, ..,d −1} \
{
r (i )

}
;

pi (n +1) = pi (n);
for each regular user u in the population do

x(u)
j (n +1) = x(u)

j (n);

if Ω
(
ω(|x(i )

r i −x(u)
r i |,πi (n))

)
= 1 then

Get feedbackΘ
(
θ(|x(u)

j −x(i )
j |)

)
;

if Θ= 1 then
x(u)

j (n +1) =αz(u)
j +βx(u)

j (n)+ (1−α−β)x(i )
j ;

Update popularity of i : pi (n +1) += 1/|U |;

U and I whose links are defined by Ω(·) (see Figure 2.3). The visibility func-

tion ω is a decreasing function of the opinion distance on the reference direction

dr (n) = |x(u)
r (n)−x(i )

r (n)|. This dependence embeds the concept of homophily, one

of the main drivers of interaction on social networks[11]: individuals with strongly

divergent opinions interact less frequently than like-minded individuals. More-

over, ω is increasing in the popularity ratio πi . The higher the relative popularity

of an influencer, the more users it can reach. This posts-users matching process

constitutes the content personalization we consider in this work (see Remark 2).

Note that the filtering process for selecting the subset of users who receive the post

is based on the opinion distance along the reference direction between each user

and the influencer who made the post. This because we expect that influencers

mainly attract users whose opinions are similar to their main topic. For instance,

politicians primarily attract users interested in the political landscape and with

similar orientations. Adopting this distance to perform the user selection couples

the dynamics in different directions, which would otherwise evolve independently

of each other (see Remark 1).
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Influencer

post generation

according to    

Platform

popularity update

...

...

Ω=1
Θ=1

Ω=1

Ω=1
Θ=0

Θ=1

not reached

reached

Fig. 2.2 Schematic representation of the model dynamics. The figure highlights the propor-
tions of users who view a particular post U post , i.e., those for which the random variable
Ω equals 1. They react with their feedbackΘ (e.g., likes), which depends on the opinion
distance between them and the influencer i . Then the platform updates the influencer’s i
popularity.

Users express their feedback to a post on the platform through a Bernoulli

random variableΘ
(
θ(|x(u)

j −x(i )
j |)

)
∈ {0,1} whose parameter θ depends on the dif-

ference in opinion on the actual direction j of the contribution. Only posts that

receive positive feedback, i.e.,Θ= 1, can influence the user’s opinion, reflecting

the tendency to ignore unappreciated content. The social media platform col-

lects feedback from all reached users to update the popularity pi of the posting

influencer.

The update rule for the popularity of the posting influencer i reads as follows:

pi (n +1) = pi (n)+ ΘT (θ,U post )

|U | (2.1)

ΘT (θ,U post ) = ∑
u∈U post

Θ
(
θ(|x(u)

j (n)−x(i )
j (n)|)

)
(2.2)

where U post is the subset of users who were made aware of the post by the

platform, i.e., those for whom Ω(ω) takes the value one. The summation in the
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formula gives the aggregate feedback of all users who saw the post, which is nor-

malized by the size of the population of regular users |U | to update the popularity.

This normalization is introduced only to avoid excessive popularity growth of

the influencers when the number of users becomes large. It does not affect the

system dynamics, which depends only on the normalized popularity πi , which is

not affected by the scaling factor 1/|U |.
The core of the dynamics is the opinion update rule, which prescribes how the

user’s opinion changes on the direction j of the post:

x(u)
j (n +1) =


αz(u)

j +βx(u)
j (n)+γx(i )

j ifΩ (ω(dr ,πi )) = 1,Θ
(
θ(d j )

)= 1

x(u)
j (n) otherwise

(2.3)

When the post reaches the user (Ω = 1) who likes it (Θ = 1), then the updated

opinion is a convex combination, i.e., α+β+γ= 1, of the current opinion x(u)
j (n),

the prejudice z(u)
j , and the opinion x(i )

j conveyed by the influencer through the

post. The opinion is not updated if the user does not receive the post (Ω=0) or

does not like it even if it reaches them (Θ= 0). While it is common in the literature

to express the opinion update as the convex combination in Eq. (2.3), we present

an equivalent formulation that sheds more light on the meaning of the update

parameters, which are practically two:

x(u)
j (n +1) = (1−β)

[
δz(u)

j + (1−δ)x(i )
j

]
+βx(u)

j (n), δ,β ∈ [0,1] (2.4)

(2.4) can be easily derived from (2.3) by noting that α+γ = 1−β, and defining

δ≜ α
α+γ . Thus, β represents the inertia of users, i.e., how slowly they change, and

δ their degree of stubbornness, i.e., the relative impact of external opinions w.r.t

their prejudice.

Remark 1. The distance on the reference direction drives filtering action because

we assume the platform is unaware of the specific topic associated with the post just

created. At the same time, homophilic connections between users and influencers

primarily depend on opinion similarity on the main topic of discussion. Note

the joint effect in the model of the distance between the user’s opinion and the

influencer’s opinion on the reference direction and the distance along the direction

defined by the post’s topic. Both contribute to determining the likelihood for the

user to provide positive feedback to the message.
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Fig. 2.3 The bipartite dynamic structure of the underlying graph between reg-
ular users (top) and influencers (bottom) defined by the visibility function

Ω
(
di u(n) = |x(u)

r (n)−x(i )
r (n)|,πi (n) = pi (n)∑

i pi (n)

)
which depends on both the user-influencer

opinion distance and the relative popularity of the influencer at a given time instant n.

Remark 2. Most OSNs have explicit subscriptions to influencers, i.e., the follow

mechanism. Our approach does not explicitly represent such long-term relation-

ships. However, by applying the function Ω(ω(·)), we dynamically determine the

set of users reached by each influencer. Essentially, followers are regenerated at

each post-emission. The resulting network is a dynamic bipartite graph, see Fig-

ure 2.3, whose structure reflects a given degree of homophily of users’ connections.

Typically homophily is one of the elements that mainly influences users’ choices

when they select individuals to connect to [11]. In particular, for some domains

(e.g., product adoption, which is also a good fit for our competing scenario in Sec-

tion 2.6) homophily has emerged as the key driver governing the structure of the

network [51].

At last, observe that, nowadays, most social media platforms (e.g., Facebook,

Instagram, Twitter) do not only offer their users content they explicitly subscribe to

but also what they may like. The selection of such users is based on their previous

activity on the platform. This mechanism reinforces the homophilic structure of the

network and resembles what we are modeling.

Remark 3. In our framework, regular users are passive, as they merely consume

content produced by influencers: this constitutes a rather simplistic assumption.

First, users can share the posts they receive, which increases their reach. Secondly,
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users themselves write posts that reflect their opinions, influencing other users. The

impact of active users is briefly discussed in Section 2.8.

2.4 Observations from Online Social Networks

This section motivates some of our modeling choices by analyzing real-world

social networks. We monitored on Facebook and Instagram the posts of 649

influencers for over 5 years. For a detailed description of the dataset used, see

Appendix A. One of the most important features introduced in this work is the

concept of reference direction, i.e., the main topic an influencer is interested in

and on which they publish most of their posts, which is validated here. Moreover,

we examine the post-generation process to justify the choice of a Poisson Point

Process to describe it.
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Fig. 2.4 (2.4a) Percentage of labeled posts on each of the considered topics for Luca Zaia, an
Italian politician, and AC Milan, an Italian football club. (2.4b)Normalized autocovariance
function for both influencers on a secondary topic, i.e., music.

2.4.1 The Reference Direction

In this section, we show that influencers prefer to post about a specific topic.

We have developed a post classifier that flags posts based on their topic. See

Appendix A.1 for details on the classification and filtering process on the data.

We should point out that classifying posts on OSNs into topics is not straight-

forward, and interpreting the results should be done cautiously. First, the range
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of possible subjects discussed in a social network is practically countless. For

practical reasons, we will only focus on a subset of five topics: Sports, Politics,

Food and Cooking, Music, and Pandemics. These can be considered popular and

general enough to cover a substantial fraction of the influencers’ posts taken into

consideration in our dataset.

After classification, we examined the distribution of posts on the topics for

each influencer. In Figure 2.4a, we show two example influencers. In these two

cases, the influencers have one topic on which they write most of their posts. Luca

Zaia, an Italian politician, posts mainly about politics, and AC Milan, a soccer club,

discuss sports predominantly. This behavior supports the existence of a reference

direction for influencers. Figure 2.5a shows the distribution of the proportion of

posts dealing with the main topic of each influencer. Recall that this proportion

was called consistency in the jargon of our model.
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Fig. 2.5 (2.5a) Distribution of the fraction of posts published on the main topic of interest
by the subset of influencers considered in this experiment, i.e., their consistency. (2.5b)
The average percentage of labeled posts on each topic, in decreasing order for all the
influencers considered. The 95% confidence interval for each average value is reported in
the figure.

Most influencers have a clear reference topic on which they write more than

half of their posts, i.e., with high consistency. Figure 2.5b shows the average per-

topic percentage of all influencers in the dataset in descending order, regardless

of the specific topic. On average, almost 90% of the posts are in the reference

direction. We discovered that influencers with low consistency values are affected

by the presence of news outlets in the considered profiles, for which the lack of a

sharp main topic is sensible.
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2.4.2 Post Generation Independence on Secondary Directions

Users interact in an OSN by posting content (i.e., text, images, videos) and re-

ceiving suggestions about what other users of the OSN posted, according to the

filtering process set up by the social media platform. We examine the normalized

autocovariance2 between posts on each topic by looking at the chronological

sequence of the messages of the individual influencers. We perform this analysis

only on secondary topics, i.e., those that differ from the influencer’s reference. We

do it since influencers post less frequently on these topics, and it would be easier

to detect a bursty behavior pattern (which would not be well captured by the Pois-

son process). Regarding the main topic, since the consistency of the influencers is

generally relatively high, we expect the covariance to be rather small, (see Figure

2.5a). Indeed, the covariance on the main topic tends to zero by construction as

c(i ) approaches one.
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Fig. 2.6 Mean normalized autocovariance values of the post-generation process for each
secondary topic of all the influencers. The last plot represents the average value over all
topics. The 95% confidence interval is shown in each plot.

In the previous section, we were able to assign a reference direction r (i ) to

each influencer. Here we look at the time series of the Influencers’ labeled posts.

For each secondary direction s(i )
j , we define an indicator function 1{postl abel=s(i )

j }

that takes the value 1 if the post was labeled as s(i )
j and 0 otherwise. For each

2Given a wide-sense stationary process {Xn}n ∈Zwith average µ and variance σ2, the normal-

ized autocovariance is given by: ρX X (i ) = E[(Xn−µ)(Xn+i−µ)]
σ2
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influencer, we thus obtain four sequences (recall that we consider five topics in

total) of Bernoulli random variables indicating whether a post belongs to that

particular direction. We calculated the normalized autocovariance function a(t )

for these sequences. Figure 2.4b shows two examples of such functions, limited to

40-time lags, for the profiles of Luca Zaia and AC Milan. The time is discretized,

i.e., the actual time between postings is not considered: only the posting events

matter. An autocovariance that equals zero everywhere except at τ = 0 would

represent uncorrelated samples. In our case, the autocovariance takes moderate

values in most cases (≪ 1). Therefore, it is reasonable to assume that the post-

generation is independent, and a Poisson Point Process is an appropriate choice.

Lastly, note that the autocovariance function for the pandemic topic takes larger

values than for the other topics (see Figure 2.6), suggesting that the samples are

weakly correlated. This fact is due to the exceptional public interest in the topic

and because the outbreak of the epidemic only interested the last part of the

considered time horizon.

2.5 Asymptotic Analysis of the Model

This section is devoted to the analytical study of the model. In particular, results

are derived through a mean-field approach obtained by letting the number of

users | U | → ∞. In this situation, we will show that, under mild assumptions,

the system converges to a unique steady state, independently from the initial

condition. Moreover, in some cases, it is possible to analytically characterize the

equilibrium value for the influencers’ mean-popularity ratios π̄i as well as users’

mean opinion value x̄(z).

Furthermore, transient analysis of the system can be carried out by describ-

ing the dynamics of the users through a Fokker-Plank equation. For simplicity,

we restrict our investigation to the situation where the opinion space is one-

dimensional. However, we remark that it is possible to extend the analysis to the

more general case by following the same approach.
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2.5.1 Mean-Field Approach

When the number of users grows large, it is convenient to characterize the system

state by the users’ opinion distribution over the space. Moreover, from now on, we

will refer to system dynamics over continuous time t .

Let (X (t), Z (t)) = (X (t), Z ) be the current position (opinion) and prejudice

of a randomly selected user. We introduce the cumulative distribution function

F (x, z, t ) = Pr[X (t ) < x, Z < z]. The corresponding probability density function is

f (x, z, t) = ∂2

∂x∂z F (x, z, t). Note that, by hypothesis, there are no dynamics along

the z-axes, thus h(z) = ∫
x f (x, z, t)dx does not depend on t and corresponds to

the initial distribution of users’ prejudice. In Section 2.5.2, we will derive a Fokker-

Plank equation for the evolution of the opinion distribution over time and space.

For what concerns the evolution of the popularity of a generic influencer i ,

recall that we distinguish between its absolute popularity value pi (t) and the

normalized value πi = pi (t )∑
j p j (t ) . Influencer’s popularities concentrate around their

average p̄i (t ) as |U | grows large, as it can be easily shown. We can write down the

equation for the evolution of the mean popularity p̄i (t ):

dp̄i (t )

dt
= 1

|U |λ f (i )
∫

x

∫
z

f (x, z, t )θ
(
|x −x(i )|

)
ω

(
π̄i , |x −x(i )|

)
dz dx (2.5)

Indeed, the rate at which the popularity of influencer i grows is proportional to its

posting rate (term λ f (i )) times the probability that a generic user at (x, z) provides

positive feedback to the post generated at time t (integral term). Moreover, recall

from Algorithm 2 that each positive feedback increases the absolute popularity of

the influencer by 1/|U |.

2.5.2 Fokker-Planck Equation for the Opinion Distribution

The Fokker-Planck (FP) equation [52] is a standard tool that describes the evolu-

tion of an asymptotically large population of particles moving over a given domain

according to a Brownian motion, which is locally characterized by the instanta-

neous average velocity and the relative variance. In general, both average and

variance may depend on the point and time at which they are evaluated.
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Furthermore, the FP approach has been successfully applied in the literature

to approximate the evolution of a large population of particles moving according

to more general laws. The stochastic process describing the movement of particles

is approximated by a Brownian motion which fits the first two moments (average

and variance of the velocity). For these reasons, FP description is referred to in

the literature as a second-order approximation. Here, we essentially identify each

user opinion with a particle moving over the space X 2 (i.e., the set (x, z) with

x, y ∈ [a,b]), and characterize by an average velocity vx(x, z, t) along the x-axes,

and a variance σ2
x(x, z, t ), in Section 2.5.3. Therefore, the Fokker-Plank equation

for the probability density function f (x, z, t ) (where x, z ∈ [a,b]) is given by:

∂ f (x, z, t )

∂t
=−∂vx(x, z, t ) f (x, z, t )

∂x
+ 1

2

∂2σ2
x(x, z, t ) f (x, z, t )

∂x2
(2.6)

2.5.3 Identification of the Parameters vx(x, z, t ) and σ2
x(x, z, t )

To compute vx (x, z, t ), in the continuous-time FP approximation, we assume that

for the effect of a post, users/particles reach their new position by moving at a

constant speed during the interval ∆T equal to the average time 1/λ that elapses

between the generation of two successive posts. Therefore, assuming that at time

t a post is generated by user i , the following equation describes how the opinion

of a user with prejudice z evolves from t to t +∆T :

x(t +∆T ) =αz +βx(t )+γx(i )(t )

Thus, the increment is:

∆x(i ) = x(t +∆T )−x(t ) =α(z −x(i )(t ))+ (1−β)(x(i )(t )−x(t )) (2.7)

where ∆x(i ) is the change in position of a user in position x, providing positive

feedback to a post of influencer i . We can compute its average velocity as:

E[vx(x, z, t ) |X (t ) = x, Z = z] = E
[

[X (t +∆T )−X (t ) | X (t ) = x, Z = z]

∆T

]
=∑

i
λ f (i )∆T θ

(
|x −x(i )|

)
ω

(
π̄i (t ), |x −x(i )|

) ∆x(i )

∆T

=∑
i
λ f (i )θ

(
|x −x(i )|

)
ω

(
π̄i (t ), |x(i ) −x|

)
∆x(i ) (2.8)
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where θ
(|x −x(i )|) is the probability of providing positive feedback (users move

only in this case), while ω
(
π̄i (t ), |x −x(i )|) is the probability with which a user in x

is exposed to a post created by influencer i at time t . Indeed, users only move if

they are exposed to the post and provide positive feedback. Note that, to avoid

a cumbersome notation, we have omitted the dependency on the time of the

distance term |x −x(i )|.
The variance of the velocity is given by the relation:

σ2
x(x, z, t ) =∑

i
λ f (i )∆Tθ

(
|x −x(i )|

)
ω

(
π̄i (t ), |x −x(i )|

) (∆x(i )−E[vx(x, z, t )]∆T )2

∆T 2

= 1

(∆T )2

∑
i

f (i )θ
(
|x −x(i )|

)
ω

(
π̄i (t ), |x −x(i )|

)
(∆x(i )−E[vx(x, z, t )]∆T )2

2.5.4 Steady State Analysis

Now we direct our attention to the existence of stationary solutions for the system.

Stationary solutions of (2.6) necessarily satisfy:

∂

∂x

(
−vx(x, z) f (x, z)+ 1

2

∂σ2
x(x, z) f (x, z)

∂x

)
= 0

where vx(x, z) and σ2
x(x, z) must be constant over time. This requires the normal-

ized popularities to be static (i,e. ω(·) to be constant over time). From the previous

equation, integrating both sides with respect to x, we get:(
−vx(x, z) f (x, z)+ 1

2

∂σ2
x(x, z) f (x, z)

∂x

)
= c0(z) (2.9)

where c0(z) is a uni-dimensional arbitrary in z. Now, observe that, for every z,

previous equation is a first-order linear ODE in x, and therefore an explicitly

solution for f (x, z) can be obtained:

f (x, z) =
(
c1(z)exp(A(x, z)− A(a, z))+

c0(z)exp(−A(x, z))
∫x

a
exp(A(θ, z))dθ

)
h(z) (2.10)



44 | A Model for Online Interactions

where

A(x, z) =
∫x

a
η(u, z)du η(x, z) =−2

vx(x, z)− 1
2
∂σ2

x (x,z)
∂x

σ2
x(x, z)

.

Function c0(z) can be obtained by imposing boundary conditions:(
−vx(x, z) f (x, z)+ 1

2

∂

∂x
σ2

x(x, z) f (x, z)

)∣∣∣
x=a,b

= 0. ∀z

which leads to c0(z) = 0, while function c1(z) is determined by imposing the

normalization condition: ∫
f (x, z)dx = h(z).

Observe that when σ2
x(x, z) → 0 and

∂σ2
x (x,z)
∂x → 0, from (2.9), with x0(z) = 0,

we obtain that necessarily the mass concentrates around the points for which

vx(x, z) = 0. Such points, improperly referred to in the following as equilibrium

points, will be characterized analytically later on.

Turning our attention to popularity dynamics, recall that stationary conditions

necessarily imply normalized popularities to be constant over time:

π̄i (t ) = π̄i ∀i

On the other hand, absolute popularities naturally grow over time. However,

the ratio between any two of them (say i , j ) must converge to a constant value ci j

equal to the ratio of their corresponding normalized popularities:

p̄i (t )

p̄ j (t )
= ci j = π̄i

π̄ j
∀i , j ∈I , i ̸= j (2.11)

Now observe that in stationary conditions the right-hand side. of (2.5) does

not depend on time. Therefore (2.5) admits the following trivial solution:

p̄i (t ) =
(
λ f (i )

∫
x

∫
z
θ(|x −x(i )|)ω(π̄i , |x −x(i )|)dF (x, z)

)
t

|U | + p̄i (0) (2.12)
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Therefore, we meet conditions (2.11) for any t ≥ 0, iff normalized popularities

of influencers {π̄i }i satisfy the following system of equations:

λ f (i )
∫

x

∫
z
θ(|x −x(i )|)ω(π̄i , |x −x(i )|)dF (x, z) = cπ̄i ∀i , for some c ∈R+

s.t. π̄i ≥ 0 and
∑

i
π̄i = 1. (2.13)

and the initial condition {pi (0)}i satisfies (2.11), i.e., pi (0) = kπ̄i for some k > 0.

Let

ki (π̄i )≜λ f (i )
∫

x

∫
z
θ(|x −x(i )|)ω(π̄i , |x −x(i )|)dF (x, z) π̄i ∈ [0,1] (2.14)

We can show that:

Theorem 1. Solutions of (2.13) always exist whenever ki (·) ∈ C1[0,1], ki (·) is in-

creasing, continuous and strictly concave.

The proof is reported in Appendix B.1.

We remark that when ki (0) > 0 ∀i , the solution is always unique with π̄i ∈ (0,1).

Instead when ki (0) = 0 for some i , the solution is not guaranteed to be unique.

Now, the problem is how to jointly solve for stationary solutions of {π̄i }i and

F (x, z). In a schematic way, on the one hand, we have shown that given π̄ =
{π̄i }i , and h(z), we can uniquely determine a Fπ̄(x, z) =H (π̄), where Fπ̄(x, z) =∫x
−∞

∫z
−∞ fπ̄(y, w)dy dw is the opinion distribution of users resulting from fixed

influencers’ popularities π̄ (by (2.10)).

On the other hand, under the conditions: ki (·) ∈C1[0,1], ki (·) is increasing and

strictly concave, ki (0) > 0 ∀i , given F (x, z), we can obtain a π̄F =G (F (x, z)) that

uniquely corresponds to i (Theorem 1). The existence of a unique fixed point for

the joint system of (stationary) users’ opinions and influencers’ popularities is

guaranteed under the condition that the operator H ◦G (·) is a contraction over a

complete space.

Theorem 2. Under the assumption that both ω(·, ·) and θ(·) exhibit a sufficiently

weak dependence on their variables, the operator H ◦G (·) is a contraction over a

complete space, and therefore a unique stationary solution exists.

The proof is reported in Appendix B.2.
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2.5.5 Asymptotic Analysis of the Fluid Limit

Previous theoretical analysis is, unfortunately, non-constructive, meaning that it

does not allow for direct computation of stationary solutions of our dynamical

system. To complement the previous analysis, we propose a methodology to

numerically compute stationary solutions (even in multi-dimensional scenarios)

under stricter assumptions. In particular, if the FP approach is a second-order

approximation (matching the first to moments of the instantaneous velocity),

the approach proposed in this section, and referred to as fluid limit, is a first-

order approach (matching only the first moment of the velocity and assuming the

variance, as well as its spatial derivative, to be negligible). Therefore we expect

that the fluid limit provides reasonably good predictions when |U |→∞, λ→∞,

and 1−β→ 0 (keeping λ(1−β) constant). Previous assumptions, indeed, imply

that σ2
x(x, z) → 0 and

∂σ2
x (x,z)
∂x → 0.

Mean Opinion Assuming Normalized Popularities Convergence

As already observed in Section 2.5.4, recall that, given π̄= {π̄i }i , the distribution

of users with a given prejudice z concentrates around the equilibrium points,

i.e., points x̄(z) at which v(x, z), as given in Eq. (2.8), is null (i.e. v(x̄(z), z) = 0).

Therefore, points x̄(z) must satisfy:

0 =∑
i

f (i )ω
(
π̄i , |x̄ −x(i )|

)
θ

(
|x̄ −x(i )|

)(
α(z −x(i ))+ (1−β)(x(i ) − x̄)

)
(2.15)

Defining for compactness d i ,x̄ = ∣∣x̄ −x(i )
∣∣ and recalling γ = 1−α−β, from

Eq. (2.15) we get:

x̄(z) = α

1−βz + γ

1−β

∑
i∈I f (i )ω

(
π̄i ,d i ,x̄

)
θ

(
d i ,x̄

)
x(i )∑

i∈I f (i )ω
(
π̄i ,d i ,x̄

)
θ

(
d i ,x̄

) (2.16)

We can rewrite this relation in terms of the degree of stubbornness of Eq. (2.4)

as x̄ = δz + (1−δ)
∑

i∈I f (i )ω
(
π̄i ,d i ,x̄

)
θ
(
d i ,x̄

)
x(i )∑

i∈I f (i )ω(π̄i ,d i ,x̄)θ(d i ,x̄) , δ ∈ [0,1]. By doing so, it should be clear

that the assumptionβ→ 1 is well-founded, reinforcing the idea thatβ is associated

with the inertia of the system (see the end of Section 2.3.1) but does not affect the

equilibrium points. This assumption is required to avoid too large oscillations of
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users’ opinions in response to a single post generated by an influencer, which may

reduce the accuracy of our mean-field approximation.

The hypothesis is not restrictive: since β represents the weight individuals give

to their current opinion, we can reasonably assume that users do not dramatically

change their opinion in response to single post events.

Normalized Popularities Assuming Opinion Convergence

Here we assume that users with prejudice z are concentrated in the opinion

point x̄(z), and we look for the stationary popularity ratios π̄i . To simplify the ex-

pressions, we introduce the quantity Fi (π̄i )≜
∫

z f (i )ω(π̄i ,d i ,x̄(z))θ(d i ,x̄(z))h(z)dz.

Observe that solutions of (2.13) are necessarily of the form:

π̄i = Fi (π̄i )∑
j∈I F j (π̄ j )

(2.17)

where c appearing in (2.13) is given by c = 1∑
j∈I F j (π̄ j ) . Under the assumption

that ω(·, ·) is concave in its first argument (for any choice of the second), Theo-

rem 1 guarantees the existence of such solutions for every choice of function x̄(z).

Moreover, even in the more general case, i.e., whenω(·, ·) is non-concave in its first

argument, solutions of (2.17) can be found numerically in many cases, through a

fixed point iteration method.

To conclude, observe that a pair (x̄(z), {π̄i }i ) represents a stationary solution if

it jointly satisfies (2.16) and (2.17). The existence of such a solution can be, again,

only verified numerically through a fixed point approach.

At last, note that, in the special case in which all users have the same prejudice

z we can rewrite (2.16) as:

x̄ = α

1−βz + γ

1−β
∑

i∈I Fi (π̄i , x̄)x(i )∑
i∈I Fi (π̄i , x̄)

= α

1−βz + γ

1−β
∑

i∈I

π̄i x(i ) (2.18)

which provides a direct formula for the mean opinion x̄ in terms of the normalized

popularities π̄i and the influencers’ opinions x(i ).
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2.6 Monte-Carlo Approach for Model Behavior

This section presents a selection of results obtained through a Monte-Carlo ap-

proach. We first vary model parameters to explore the impact of content personal-

ization and influencers’ characteristics in a bidimensional opinion scenario. Then,

going back to the one-dimensional case, we validate the fluid limit approximation

we introduced in Section 2.5.5. To what concerns the model’s behavior, we focus

on the two main dynamic variables of the system: the average opinion x̄ of regular

users and the normalized popularities {π̄i }i for influencers. Note that the quanti-

ties shown in this section, i.e., the pair (x̄ ,π̄), are empirical averages over multiple

runs, and over all the regular users, as far as x̄ is concerned. Hence, they can be

regarded as empirical, finite system approximations of the quantities defined in

the previous section, which refer to the limiting case of an infinite population of

users with the same prejudice z, and where λ→∞ and β approaches 1. Moreover,

in some cases, we omit the results on average user opinion to save space as it is

tightly coupled with the normalized popularities.

Lastly, to facilitate the interpretation of results, we restrict ourselves to the case

of two competing influencers. We are interested in determining the conditions

under which an individual attains higher π̄i than the other. We say that influencer

i wins over the opponent, which is not anymore visible over the platform, when

π̄i → 1 =⇒ ω(·, π̄ j ) → 0 ∀ j ∈ I . Note that this scenario is by no means trivial

and is relevant in various applications, for example, in marketing (e.g., two brands

promoting the same product) or in election campaigns (e.g., two candidates of

different parties). We provide further details on the scenario in Section 2.6.1. In

Section 2.6.2 we show the final opinion distributions of the regular users in a few

paradigmatic cases. Then, in Section 2.6.3, we present the behavior as function of

publication frequency f (i ), and in Section 2.6.4 as function of consistency c(i ). To

conclude, we validate the first-order fluid approximation comparing it to Monte

Carlo results of the system in Section 2.6.6.

2.6.1 Description of the Scenario

The default parameters of our reference scenario are reported in Table 2.2, unless

otherwise explicitly stated. As mentioned earlier, we consider the case of two

competing influencers, i.e., |I | = 2 and a bi-dimensional opinion space. We
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assume that x(0)
j = 0 and x(1)

j = 1 ∀ j ∈ {1,2} hence the influencers are placed on

two antipodal vertices of the square [0,1]2. We consider influencers with different

reference directions r (0) ̸= r (1). Furthermore, most regular users initially take a

moderate position on both topics. More precisely, initial opinions, which coincide

with prejudices, are distributed according to a Beta distribution, independently

on each axis, with shape parameters a = b = 10, see Figure 2.7.

Fig. 2.7 Initial opinion (prejudice) distribution of the regular users, recall x (u)(0) = z (u).

We take as ω(·) a Gaussian function similar to the trust function in [53], but

modulated by π̄i :

ω(d i ,u
r , π̄i ) = e

−ρ
(
x(u)

r −x(i )
r

)2

π̄i (2.19)

Here, the coefficient ρ is a parameter that controls the extent to which the

social media platform filters content, i.e., which expresses the homophilic degree

over the network in a synthetic way. Small values of ρ correspond to smooth

personalization, i.e., influencers can reach users whose opinion strongly differs

from theirs. Conversely, high values of ρ correspond to sharp personalization: only

close users (in the opinion space) are reachable with non-negligible probability.

The function θ(·) is assumed to be a decreasing, linear function of the opinion

difference:

θ(d i ,u
j ) = 1−

∣∣∣x(i )
j −x(u)

j

∣∣∣ (2.20)
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Table 2.2 Parameters and functions shared across experiments

Symbol Value - Form Description

|I | 2 Number of influencers
x(0)

j 0 Opinion of influencer 0 on direction j

x(1)
j 1 Opinion of influencer 1 on direction j

r (0) 0 Reference direction of influencer 0
r (1) 1 Reference direction of influencer 1
p0,1(0) 100 Initial absolute popularity of both influencers
|U | 10000 Number of regular users
Ni ter 100000 Number of iterations for each simulation
α 0.05 First weight in the updating rule in Eq. 2.3
β 0.93 Second weight in the updating rule in Eq. 2.3

θ(·) 1−
∣∣∣x(i )

j −x(u)
j

∣∣∣ Functional form of the feedback function

ω(·) e
−ρ

(
x(u)

r −x(i )
r

)2

π̄i Functional form of the visibility function
a 10 First parameter of the initial Beta distribution
b 10 Second parameter of the initial Beta distribution
z(u)

j x(u)
j (0) Prejudice coincides with initial opinion

2.6.2 Opinion Configurations for Different Combinations of Ref-

erence Directions

In the following sections, we will focus primarily on the influencer perspective

by observing π̄i as a function of their parameters. Here, we present possible

final opinion configurations of the users’ population, in a symmetric scenario in

terms of influencers’ characteristics, i.e., frequency of publication f (0) = f (1) and

consistency c(0) = c(1). As before, they hold opinions x (0) = (0,0) and x (1) = (1,1).

We consider both the case of same (Fig. 2.8a and 2.8b) and different (Fig. 2.8c and

2.8d) reference directions, assessing the impact of smooth (Fig. 2.8a and Fig. 2.8c)

and strict content personalization (Fig. 2.8b and Fig. 2.8d).

In Figure 2.8a, we observe only a negligible perturbation with respect to the

initial distribution (see Figure 2.7). In this case, the platform practically does not

filter the content, so every post reaches all users. From a regular user’s perspective,

individuals are exposed to nearly identical forces, i.e., opposite stimuli from the

two influencers, which almost entirely cancel each other out. In Figure 2.8b, the

impact of sharp personalization is clear: the filtering effect introduced by the

platform leads to the emergence of two echo chambers, whose membership is

determined mainly by the user’s prejudice. Each user reaches an equilibrium
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Different reference dir. r (0) = 0, r (1) = 1

Smooth personalization ρ = 5.0
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Different reference dir. r (0) = 0, r (1) = 1

Strict personalization ρ = 5.0

Fig. 2.8 Users’ opinion distribution and normalized popularities. The two influencers have
same consistency c(0) = c(1) = 0.8 and same frequency f (0) = f (1) = 0.5. The distributions
are obtained as the time average of the opinion distribution in one realization of the
process.
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point at which the resultant attraction induced by the two influencers is balanced

by the attraction exerted by its prejudice. Interestingly, users also tend to cluster

in the non-reference direction (x1 in Fig. 2.8b) and align their opinion with the

influencer associated with the echo chamber they end up in. We remark that

this is a metastable condition, i.e., the influencers have not yet reached a stable

equilibrium, as the gap in the πi in Fig. 2.8b hints. One of the two influencers will

eventually win (similar to Fig. 2.8d) but in a much longer time horizon, which

may be unreasonable.

Figures 2.8c and 2.8d refer to the case of different reference directions: the

two influencers do not primarily compete on the same topic. In Figure 2.8c,

it is clear that there is no competition on their reference directions as the two

influencers are able to attract users to their reference opinion, i.e., xr (0) = 0 for i = 0

and xr (1) = 1 for i = 1. This is a particularly relevant case, whose occurrence is

linked indissolubly to the newly introduced concept of reference direction. In

the last scenario, Figure 2.8d, the influencer i = 1 wins, i.e., π̄1 → 1, which brings

public opinion closer to its belief x (1) on both issues. The final users’ opinion

does not coincide with x (1) because users are anchored by their prejudice. Note

that here sharp personalization leads to a situation where only one individual

monopolizes the public scene. To better understand the dynamics, we simulated

this scenario with 10 different simulator seed selections: 5 times influencer i = 1

won, 3 times influencer i = 0 won, and in 2 cases, the system did not reach full

convergence after Ni = 100000 iterations. The nature of the equilibrium point(
π0 = 1

2 ,π1 = 1
2

)
appears to be unstable. Stochastic fluctuations of the system state

bring it to one of the two asymptotically stable configurations: (π0 = 1,π1 = 0),

where i = 0 wins, or (π0 = 0,π1 = 1), where i = 1 wins.

2.6.3 Behavior as a Function of the Frequency of Publication

The frequency of publication f (i ) is one of the basic parameters that characterize

influencers. The higher f (i ), the higher the structural advantage of the influencer

because it more frequently reaches users through posts, attracting them to its own

opinion. In this section, we examine the value of mean normalized popularity π̄0

as a function of f (0). Note that in the case of two influencers, f (1) = 1 − f (0).

We performed this experiment by fixing the consistency of the two influencers:
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c(0) = c(1) = 0.8, which is approximately the average consistency observed on

real-world data (Figure 2.5a).
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Fig. 2.9 Popularity ratio π̄0 of influencer 0 as function of the publication rate f (0). Each
point is obtained by averaging over 100 time samples and 10 different process realizations.
We consider different levels of personalization by varying the parameter ρ. The two
influencers have the same consistency c(0) = c(1) = 0.8. Recall that f (0) = 1− f (1) and the
identity of the influencer is arbitrary. This symmetry allows us to readily infer the behavior
of the normalized popularity π̄0 for f (0) in the range of [0.5,1.0].
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Fig. 2.10 Opinion distance of the influencers’ opinion on their reference direction x(i )
r (i ) and

the average opinion of the regular users’ population on the same direction x̄r (i ) . Various
degrees of personalization are considered, tuning the parameter ρ. The setting is the same
as that of Figure 2.9.

In Figure 2.9, we consider different levels of personalization by varying the

parameter ρ in the exponent of the visibility function ω. We see that the higher

the degree of personalization (i.e., the higher the value of ρ), the lower the nor-

malized popularity of influencer i = 0, for any given f (0). This result suggests that
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algorithmic personalization favors the structurally advantaged individual, i.e., the

one with higher f (i ). This mechanism, in turn, leads to more radical positions in

the population of regular users, as the platform preferentially exposes them to the

belief of the advantaged influencer. Figure 2.10 clearly shows this behavior. Note

that for high values of ρ, the average user opinion exhibits a significant bias toward

the structurally advantaged influencer. Such bias persists up to a critical value of

posting frequency. For example, when the personalization parameter is ρ = 1.0,

the critical posting frequency value is roughly 0.35; when the personalization

parameter is ρ = 0.5, the critical posting frequency value is approximately 0.25.

Below this critical threshold the advantaged influencers wins, i.e., its normalized

popularity π̄i approaches 1, completely shadowing the opposing influencer. In

Figure 2.10b, the opinion variation is limited since f (1) = 1− f (0) > 0.5 implies that

i = 1 exerts a strong influence over r (1) and suffers little competition from i = 0

(as c(0) = c(1) = 0.8 and r (0) ̸= r (1)). For instance, for f (0) = 0 the opinion values are

those admitted by users’ prejudice and a single winning influencer (similar to

what we discuss 2.6.6). Fig. 2.10a and 2.10b provide complementary information.

Moreover due to the aforementioned symmetry, the reader can easily understand

how the system would evolve for f0 ∈ [0.5,1].

We argue that content filtering in OSN potentially threatens opinion diversity.

This premise is inextricably linked to the goal of usage maximization [41] pursued

by the social media platform. Indeed, many platforms indeed prefer to suggest just

similar content rather than exposing individuals to radically different opinions,

hence often avoiding the so-called serendipity.

2.6.4 Behavior as a Function of the Consistency

In Section 2.4.1, we showed the existence of a reference direction for real in-

fluencers. Here, we investigate the impact on dynamics of the extent to which

an influencer publishes on its reference direction, i.e., its consistency c(i ). In

this experiment, we consider two influencers with the same posting frequency

f (0) = f (1) = 0.5, different reference directions r (0) = 0, r (1) = 1, and we let c(0) vary

while keeping c(1) fixed. We report plots for a few choices of c(1) since the popular-

ity pattern as a function of c(0) depends on the characterization of the competing

influencer i = 1. Figure 2.11 shows that consistency does not significantly affect

the normalized popularities when personalization is smooth (ρ = 0.0001). In con-
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trast, it becomes relevant when the platform applies sharp personalization to the

content (ρ = 1). We consider two cases. First, that of high c(1) (Figs 2.11a and

2.11b), which is in line with the empirical evidence of Section 2.4.1. Second, the

low-consistency scenario (Figs 2.11c and 2.11d) which has an interesting inter-

pretation that goes beyond the scope of this chapter and is briefly discussed in

Section 2.8.2.
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Fig. 2.11 Popularity ratio π̄0 of i0 as function of its consistency c(0), while considering
f (0) = f (1) = 0.5 and keeping fixed the consistency of the second influencer at (2.11a)
c(1) = 1.0, (2.11b) c(1) = 0.8, (2.11c) c(1) = 0.5, and (2.11d) c(1) = 0.2. The two colors
represent two different levels of personalization (i.e., smooth and sharp). Each point is
obtained by averaging over 100 time samples and 10 different realizations of the process.

In Figure 2.11a, c(1) = 1 means that influencer i = 1 posts exclusively in the

reference direction r (1). The corner cases, in which both influencers post all their

posts in one direction, are i) c(0) = 1−c(1), where both post on r (1) but i = 1 has a

slight advantage as it is posting on its reference direction where filtering occurs,

and ii) c(0) = c(1), which is a symmetric scenario. This dichotomy is also found
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in Fig. 2.11b, 2.11c and 2.11d. Whenever the orange curve approaches π̄i = 0.5

and c(0) = c(1) or c(0) = 1−c(1), the influencer with the largest share of posts in the

reference direction has a slight advantage. Again in Fig. 2.11a, if 0 < c(0) < 1, the

influencer i = 0 posts in both directions and does not face competition over r (0).

Therefore, i = 0 attracts users towards its reference opinion x(0)
0 , which in turn

increases the chance of reaching users while competing with the other influencer

in the non-reference direction (content filtering is performed with respect to the

distance on the reference direction). In this rather extreme case, the lower the

consistency c(0), the higher the proportion of posts on r (1), and the higher the

final value of π̄0 as more posts compete for users’ attention with i = 1. The other

scenarios are not as easy to interpret. However, all 2.11a2.11b 2.11c 2.11d are

consistent in pointing out that influencer i = 0 has a structural advantage roughly

when its consistency is min
(
c(1),1− c(1)

)< c(0) < max
(
c(1),1− c(1)

)
.

Figure 2.11 suggests that a value of consistency around 0.5 is nearly optimal for

any value of the opponent’s c(1). This observation reflects the natural tendency of

people to seek varied content. We evaluated argmaxc(0) π̄0(c(1)), and this is indeed

true for c(1) < 0.8. However, for high values of c(1), i = 0 is better off reducing its

consistency, i.e., post less on its reference direction r (0) and more on the reference

topic r (1) of the opponent (recall r (0) ̸= r (1)). This behavior points towards another

potential hazard of content personalization. If influencer i = 0 is well-known on

a platform as it deals with topic r (0) and starts posting massively on the other

topic r (1) (c(0) drops low), it will gain an advantage over the opponent. This is

because the platform filters posts considering the reference direction r (0) where

i = 0 faces little competition from i = 1 (since c(1) is high) and therefore can attract

users more easily over that topic. This results in an increase in popularity, allowing

it to reach more users. This is an indication of how an influencer can leverage

its importance in the reference direction to attract users in a non-reference topic

favored by content personalization.

2.6.5 Behavior as Function of the Updating Weights

The behavior of the system depends not only on the characteristics of the in-

fluencers and the composition of public opinion but also on the parameters

controlling the opinion update rule in equation (2.3). The update is a convex

combination of the prejudice, the current opinion, and the opinion conveyed
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by the post. We chose to hold fixed the weight β (inertia) and vary the degree of

stubbornness, α
α+γ .

We considered an unbalanced scenario in which influencer i = 1 has a struc-

tural advantage, i.e., f (1) = 0.7 > f (0). Figure 2.12 again shows that personalization

favors the structurally advantaged individual (consistent with Section 2.6.3). Note

that the x-scale is logarithmic to highlight the sudden drop of π̄0 for α
α+γ ≈ 10−3

(corresponding to small values of α) when sharp personalization is applied. The

shape of the two curves is quite similar, only the decrease is observed at different

values of α
α+γ . Smooth personalization allows the coexistence of influencers on the

whole domain, while with sharp personalization, for a wide range of parameters,

influencer i = 1 wins.

In both cases, there is an initial phase (for low values of α
α+γ ) in which the two

influencers coexist, and this is followed by a drop in the normalized popularity

of the disadvantaged influencer. This can be explained by the fact that small

values of α
α+γ imply that a negligible weight is given to the prejudice, and therefore

regular users concentrate around the two influencers’ opinions on their reference

direction. This can be easily confirmed by looking at the final opinion configura-

tion of users, who concentrate in the upper corners of the opinion space (around

[0,1] and [1,1]). This is because the influencer i = 1, whose opinion is x(1) = [1,1]

is stronger than the other in terms of popularity and is able to pull users along

its non-reference direction as well. We remark that when users are very close in

opinion to a particular influencer, it is difficult for the other to persuade them,

as the probability of this happening is proportional to the product ω ·θ, both of

which are a function of opinion distance. In these scenarios, the distance from the

further influencer is d j ≈ 1, which drastically reduces the probability of reaching

the users. Thus, as long as α
α+γ is small enough, both influencers can build their

user base. These situations represent rather degenerate cases where the popu-

lation almost disregards their prejudice in favor of the opinion conveyed by the

post. It might be interesting to consider users with varying degrees of volatility

who are able to pull along the opinion of their neighborhood.

As the degree of stubbornness increases, users are more entrenched in their

prejudice and therefore no longer concentrate on a small neighborhood of the

influencer’s opinions. This favors the structurally advantaged influencer, as the

other (i.e., i = 0) is unable to build its user base because users do not get close
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Fig. 2.12 Normalized popularity π̄0 as a function of the degree of stubbornness α
α+γ , the

points are obtained considering 50 realizations of the process and averaging over 100
discrete time instants. Again, smooth (ρ = 0.0001) and strict (ρ = 1) personalization are
considered.

enough to it (see Figure 2.12 for i = 1 and ρ = 0.0001 we have π̄0 → 0). The

subsequent rise in π̄0 depends on the fact that when the degree of stubbornness

approaches one, users give importance only to their prejudice, and therefore they

do not deviate too much from their initial position. As a consequence, it can not

trigger the positive feedback between users’ opinions and influencers’ popularity

that leads to the complete victory of one influencer.

2.6.6 Validation of the Fluid Limit Approximation

In this last section, we compare predictions of the simplified fluid limit with

Monte-Carlo simulations of the stochastic model described in Algorithm 2. We

consider the one-dimensional setting, as in Section 2.5, and only two two com-

peting influencers. A similar analysis could be performed in scenarios with any

number of influencers located anywhere in the opinion space. However, this

would be computationally more challenging as there may be multiple stationary

points, each with its own basin of attraction.

Let us preliminarily specialize the equations presented in Section 2.5.5 for the

mean opinion x̄(z) (Eq. (2.18)) and the normalized popularities π̄i (Eq. (2.17)).

Note that for |I | = 2, π̄0 = 1− π̄1, so it is sufficient to study π̄1.
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As for the mean user opinion x̄(z), Eq. (2.18) allows us to write the asymptotic

mean as a function of π̄1 and the opinions of the two influencers x(0), x(1):

x̄(z) = α

1−βz + γ

1−β
[
(1− π̄1) x(0) + π̄1x(1)] (2.21)

Substituting the functional forms of the visibility ω and feedback θ as given in

Eq. 2.19 and 2.20, into equation (2.17), we obtain the following expression for the

normalized popularity π̄1:

π̄1 =
f (1)e−ρ

(x(1)−x̄)2

π̄1
(
1−|x(1) − x̄|)∑

i∈{0,1} f (i )e−ρ
(xi −x̄)2

π̄1
(
1−|x(i ) − x̄|) = f (π̄1, x̄) (2.22)

Moreover, if we combine the above expression with equation (2.21) for x̄, we get

π̄1 = f (π̄1), which can be solved numerically through a fixed-point approximation

(FPA) (a graphical representation is shown on Fig. 2.14). The outcome of this FPA

and the corresponding simulation results are compared in Figure 2.13.

The combination of equations (2.21) and (2.22) cannot be solved in closed

form in the general case. However, there are at least two scenarios in which this is

possible, separately considered in the following subsections.

When an Influencer “Wins”

We consider an influencer a “winner” if its normalized popularity π̄i approaches 1.

Suppose that the influencer whose opinion is x(1) = 1 wins, then π̄1 → 1. This

implies π̄0 → 0 and thus ω→ 0+: the influencer with x(0) = 0 is seen by a negligible

fraction of users and in practice, only influencer i = 1 remains visible. Note

that in the extreme case in which influencer 1 wins, users see only x(1), and

asymptotically all users move towards it. In this case, the final opinion x̄(z) can be

easily calculated with a recursion of the update rule (2.3):

x(u)(n) =
n∑

i=0
βi (

αz +γx(1))+βn x(0)



60 | A Model for Online Interactions

For n →∞ and considering β< 1 (the case β= 1 coincides with the trivial case

where users remain fixed at their initial opinion) we get:

x(w) = α

1−βz + γ

1−βx(1), (2.23)

which is in agreement with (2.21) if one sets π̄1 = 1. This corresponds to

one of the extreme cases that we will use later to examine the model behavior

as a function of the personalization parameter ρ. It should be noted that this

construction relies on the knowledge of the winning influencer, which is unknown

in advance. However in the fluid limit, we expect that the winning influencer, if

any, is the one that has a structural advantage over the others at the beginning

(e.g., a higher posting rate f (i ), see Figure 2.9).

Constant Personalization Function

The other extreme case we consider is the one in which ρ = 0. In this case, the

personalization function ω no longer depends on π̄i , and it is easy to see from Ta-

ble 2.2 that it returns ω≡ 1. Moreover, we consider x(1) = 1, x(0) = 0, which further

simplifies (2.21). The above formulas (Eq. 2.22 and Eq. (2.21) can then be solved

in closed form. In particular, equation (2.22) for the normalized popularity π̄1

becomes:

π̄1 =
f (1)

(
q +m π̄1

)
f (0)

(
1− (q +m π̄1)

)+ f (1)
(
q +m π̄1

)
where m ≜ γ

1−β and q ≜ α
1−βz for compactness. This leads to a second-order

equation which can be easily solved for π̄1:

π̄2
1 m( f (1) − f (0))+ π̄1

[
f (0)(1−q)+ f (1)(q −m)

]− f (1)q = 0 (2.24)

Simulation, Fluid Limit and Fixed-point Approximation

Finally, we can compare the analytical results derived in Section 2.5 with Monte-

Carlo simulations of the model. We provide numerical and graphical solutions

of equation (2.22), shedding light on the impact of the algorithmic personal-

ization performed by the platform. The scenario is a simplified version of that

described in Section 2.6.1. The main difference is that here we consider a one-
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dimensional opinion space [0,1], with all users having the same prejudice, i.e.,

z(u) = z = 0.4,∀u ∈U matching their initial opinion x(u)(0). The two competing

influencers have opinions at the extremes of the domain (x(0) = 0, x(1) = 1), and

their posting frequencies are f (1) = 0.7 and f (0) = 0.3, i.e., influencer i = 1 has a

structural advantage over influencer i = 0. Note that in a one-dimensional space,

the reference direction r (i ), and hence the consistency c(i ), lose their significance.

To avoid obtaining trivial results in which influencer 1 obviously wins, regular

users are initially placed closer to the disadvantaged influencer i = 0.
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Fig. 2.13 Comparison between analytical results, including the exact extreme points
calculated in 2.6.6 and 2.6.6, and the linear relationship between x̄ and π̄1 according to
Equation (2.21). Diamonds represent the fixed-point approximation for the solution of
equation (2.22). Simulation results of the stochastic dynamics, represented by circles,
were obtained by averaging 100 realizations of the process as described by Algorithm 2. We
consider a scenario in which α= 0.05,β= 0.93, with two influencers at the extremes of the
domain, with f (0) = 0.3, f (1) = 0.7 and the same initial absolute popularity p0 = p1 = 100.
Numerical values from simulation and fixed-point approximation are reported in the
table alongside the plot in Fig. 2.14.

Comprehensive validation and comparison of the approaches used to obtain

the system equilibria are shown in Figure 2.13. First, the stochastic model de-

scribed by Algorithm 2 is “simulated” by obtaining 100 different sample whose

length is 500000 elementary steps. The variables of interest x̄(z) and π̄1 are ob-

tained by averaging the process over both discrete times steps n and sample paths

and are represented by circle marks. Second, equation (2.21), which is a special-
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ization of (2.18) obtained from the fluid limit, indicates that the state of the system

lies on a line in the plane π̄1,x̄ (dashed line in Figure 2.13). Third, the extreme

cases of the model analyzed above, for which we derived a closed-form solution,

are represented by star-like marks. Lastly, diamonds are solutions of Eq. (2.22)

employing the fixed-point approximation (FPA).

Simulation and FPA

ρ π̄1 π̄1

SI M F PA

0.0 0.682 0.684
0.001 0.683 0.684
0.01 0.684 0.685
0.1 0.693 0.695
0.3 0.725 0.728
0.4 0.749 0.758
0.5 0.789 0.999
0.8 0.986 0.999
1.0 0.995 1.0

0.0 0.2 0.4 0.6 0.8 1.0

1

0.0

0.2

0.4

0.6

0.8

1.0

f(
1) = 0

= 0.001
= 0.01
= 0.1
= 0.3
= 0.4
= 0.5
= 0.8
= 1.0
1

Fig. 2.14 Graphical solution of π̄i = f (π̄i ), (2.22). Stable solutions correspond to intercepts
between f (π̄i ) and the bisector, such that f ′(π̄i ) < 1. We observe that non-trivial solutions
(i.e., solutions in which both influencers survive) exist, roughly in the interval [0.7,0.8],
provided that ρ is not too large (i.e., ρ < 0.5). For ρ > 0.5, the only stable solution is π̄= 1.
This explains the results in Figure 2.13. Simulation results reported in the Table, confirm
the validity of the analytical predictions (FPA).

We observe that, for given ρ, simulation marks match well with analytical

marks. The only exception is for ρ = 0.5, for which simulations provide π̄1 ≈ 0.79,

whereas the analysis provides π̄1 ≈ 1 (see also the table on Fig. 2.14). This mis-

match is due to the fact that ρ = 0.5 is close to a phase transition, at which the

system switches from a regime in which two stable solutions exist (in particular,

one in which both influencers survive) to a regime in which influencer i = 1 wins.

In such a situation, the population is exposed to the opinions of a single individ-

ual, hindering diversity on the social platform. This behavior is better illustrated

in Fig. 2.14, where the curve corresponding to ρ = 0.5 is almost tangent to the

bisector. It should be noted that the empty region in Figure 2.13 is directly related

to this behavior since no stable solutions can exist for those values of π̄i . In fact,

there is no stable intersection with the bisector in Figure 2.14 in the corresponding

interval.
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2.7 Online Social Network Data

This section examines data collected from Facebook and Instagram social net-

works (see Appendix A) and compares the observed behavior with some of the

findings of our Communication Asymmetry model.

2.7.1 Correlation Between Posting Frequency and Popularity

In previous sections, especially in Section 2.6, we discussed structural advantage

from the influencer’s point of view. A key advantage parameters is the publication

frequency f (i ): the higher f (i ), the greater the advantage (see Figure 2.9). In

this section, we attempt to validate this finding by correlating the frequency of

publication of influencers with their popularity growth, using the total number

of followers, i.e., the number of people subscribed to the profile, as a proxy for

popularity. We consider temporal sequences from Instagram on a sample set

of 110 influencers.
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Fig. 2.15 Distribution of the Pearson correlation coefficient between the monthly number
of posts and popularity growth (in terms of number of followers).

For each influencer, we considered a temporal granularity of one month, deter-

mined the number of posts during this period, and calculated the relative change

in the number of followers considering the values at the beginning and end of the

interval. Then for each user, we calculated the Pearson correlation coefficient be-

tween the number of posts and the relative variation of followers in the month. In

Figure 2.15, we show the distribution of these correlation coefficients. Results sug-

gest that there exists, in general, a positive correlation between the two quantities,
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i.e., influencers with aggressive posting habits tend (but not always) to get more

followers, which likely favors them when in competition with other influencers on

social media platforms. This is consistent with the model predictions shown in

Section 2.6.3.

2.7.2 Case Study: Italian Government Crisis in August 2019

In June 2018, a few months after the general elections, Giuseppe Conte was ap-

pointed Italian Prime Minister. Two parties formed his supporting coalition:

Movimento 5 Stelle (his party, holding the relative majority of the Italian Parlia-

ment) and Lega, whose leader was Matteo Salvini. In August 2019, Salvini decided

to withdraw Lega’s support to the government, starting a crisis aimed at driving

Italians to new elections and gaining more votes. However, Movimento 5 Stelle

reached an agreement with other parties to form a new government, and on

September 5, 2019, Giuseppe Conte became Prime Minister for the second time,

excluding Lega from the new administration.

In this section, we apply the proposed model to reproduce the sudden rise of

Giuseppe Conte’s popularity in social networks during this government crisis. We

exploit the multidimensional capability of the model considering two directions:

Politics, reference topic for Salvini and Conte, and attitude toward government

fall, End government (see Figure 2.16).

In the opinion space, we assume Salvini has a more radical political view-

point (xPol i t i cs = 0), while Conte has an opposing and more moderate posi-

tion (xPol i t i cs = 0.76). We set these values in a somewhat discretionary manner.

However, we provide a sensitivity analysis in C, proving that results are robust.

Conversely, it is safe to assume that the two politicians take opinions at the ex-

treme of the spectrum on the attitude toward government fall, i.e., Salvini has

xEnd g over nment = 1 and Conte has xEnd g over nment = 0. Moreover, we consider a

population with a moderate initial opinion on Politics (centered at xPol i t i cs = 0.5,

see Figure 2.16a). On End government, we sought a distribution that could explain

the sudden popularity leap of Conte. We found that the user population must be

strongly biased towards Conte’s opinion (Figure 2.16).

Some further simplifying assumptions are necessary to apply the model. We

assume that the two politicians have a consistency c(i ) of exactly one (real values
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(a) Initial distribution (b) After the transient

Fig. 2.16 (2.16a) Initial population’s distribution along the Politics and End government
direction and (2.16b) after transient, at the start of the observed period. The opinion
position of the two leaders in the space is depicted with a green (Salvini) and a yellow
(Conte) point.

are often close to this value, see Figure 2.5a). Moreover, Giuseppe Conte and

Matteo Salvini are the only influencers. Although this hypothesis is restrictive,

in the scenario studied, the two influencers were the main (active and popular)

protagonists during the government crisis. Moreover, we consider the simplest

scenario in which personalization is not employed: ρ = 0 and thus ω ≡ 1. We

consider a feedback function of the form θ = e−8.25(x(u)−x(i ))2
for both opinion

directions. For an exhaustive list of the parameters, we refer to Table 2.3.

A period of eleven weeks is considered, from July 7 to September 22, during

which data was collected weekly from Facebook. A total of 1162 posts were pub-

lished, of which 125 were by Conte. The frequency of publication f (i ) is calculated

as the number of posts by an influencer relative to the total number of posts

( f (Conte) = 0.108, f (Sal vi ni ) = 0.892).

Figure 2.17 shows the timeline of the experiment. The two influencers start

with the same initial popularity. We consider a transient of Nt = 10000 discrete

time-units, after which the stationary normalized popularities πi approximately

correspond to the empirical normalized popularities obtained by dividing the

number of followers of each influencer by the total number of the two. After the



66 | A Model for Online Interactions

Table 2.3 Parameters and functions for the Case Study

Symbol Value - Form Description

Ni 2 Number of influencers
x(Conte)

0 0.76 Opinion of Giuseppe Conte on direction j

x(Sal vi ni )
0 0.0 Opinion of influencer 1 on direction j

f (Conte) 0.108 Opinion of Giuseppe Conte on direction j
f (Sal vi ni ) 0.892 Opinion of influencer 1 on direction j
r (Conte),(Sal vi ni ) 0 Reference direction of both influencers
pConte,Sal vi ni (0) 20 Initial absolute popularity of both influencers
Nu 10000 Number of regular users
Ni ter 15000 Number of iterations for each simulation
Nt 10000 Duration of the transient phase
w 550 Length of the government crisis
α 0.3 First weight in the updating rule in Eq. 2.3
β 0.65 Second weight in the updating rule in Eq. 2.3

θ(·) e−8.25(x(u)−x(i ))2
Functional form of the feedback function

ω(·) ρ = 0 =⇒ ω≡ 1 Functional form of the visibility function

transient
phase


7th July 22nd Sept.

switch

posts along

politics

government crisis

28th July 1st Sept.

switch

posts along

politics

posts along

end government

0

Fig. 2.17 Timeline of modeled scenario from July 7, to September 22. From July 28 to
September 1 we have a consistency switch, with posts along End government direction.

transient, we can see in Figure 2.16b that the distribution of public opinion is

skewed towards Salvini, who has a higher popularity ratio due to his much higher

publication frequency. After the transient, the crisis starts, and both influencers

post in the End government direction (i.e., we observe a consistency switch for

both influencers) during a time window of five weeks that approximates the

duration of the government crisis, after which the two politicians switch back to

posting on the Politics direction.

Even with these simplifications, it is possible to reproduce the observed social

behavior as a whole: it corresponds to a situation where an influencer is in stark
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contrast to the opinions of its user base and loses ground with respect to the other

influencer. In the model, only a very unbalanced population distribution towards

Conte’s opinion (against the government fall) can explain the sudden increase in

Conte’s popularity, despite the remarkable differences in popularity ratios in favor

of Salvini. Figure 2.18 compares the simulation results of the described setting

and Facebook’s measurements.
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Fig. 2.18 Popularity ratio πConte for Conte, from Facebook data (red) and from the model
(blue) along with its 95% confidence interval, computed over 10 realizations of the process.
One can see how the model follows the increase in popularity during August 2019.

Clearly, our model does not precisely fit empirical observations but provides

qualitative insights into the possible causes of the rather sudden popularity shift

that was observed. Many of the model’s parameters are unknown, such as the

opinion distribution, the weights of the updating rule, or the feedback func-

tion. However, by measuring some parameters, e.g., f (0), the phases’ duration,

πConte (7 July), and making reasonable assumptions about the others, i.e., α, β,

θ, x (i ), the emerging behavior is consistent for several choices of the parameters

as demonstrated in C. We conclude that the observed popularity trends can be

explained mainly by considering the fear of political instability in the user base.

2.8 Possible Model Extensions

In this final section, we discuss some possible direct extensions of the model,

which on the one hand make it more realistic, but on the other hand further
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complicate its analysis. First, we consider the interactions between regular users

and then imagine the possibility of strategic influencers, which we further develop

and explore in Chapter 3.

2.8.1 Modeling Interactions Between Users

In our model, we have deliberately ignored the interactions between regular users.

This decision can be justified by the need to keep the model simple enough to

be analyzed with the tools presented so far and by the hypothesis that, opinion

dynamics are primarily driven by the interaction between influencers and regular

users.

Nevertheless, our model could be extended to include interactions between

regular users, and here we outline a possible way forward. First, to preserve the

scalability of the model, we do not represent individual interactions between

regular users as done by other authors, but we represent the average effect of such

interactions on the generic regular user u through a mean-field approach. Second,

we distinguish between two classes of additional interactions that arise from the

activity of regular users: direct (pairwise) interactions between regular users and

influencer-triggered user interactions.

For what concerns the first class, we introduce a monotonic non-increasing

function ζ(d), representing the probability that two regular users whose current

opinion distance is d influence each other. Note that ζ(d) measures the degree of

homophily of regular users as a function of their separation in the opinions space:

more skewed ζ(d) shapes correspond to larger degrees of homophily. Moreover,

we again assume that user u provides positive feedback to a message generated by

user u′ at time t on topic j with probability θ(|x(u)(t )
j −x(u′)(t )

j |). It follows that, to

account for the overall effect on u of pairwise interactions, we need to compute the

center of mass of neighbors receiving positive feedback from u along direction j :

x̂(u)
j (n) = ∑

u′ ̸=u

x (u′)(n)θ(x(u)
j (n)−x(u′)

j (n)|)ζ(||x (u)(n)−x (u′)(n)||)

→
∫

f (x , t )θ(|x(u)
j −x j |)ζ(||x (u) −x ||)dx
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Then we extend the user opinion update rule (2.3) as follows:

x(u)
j (n +1) =


αz(u)

j +βx(u)
j (n)+γx(i )

j +δx̂(u)
j ifΩ (ω(dr ,πi )) = 1,Θ

(
θ(d j )

)= 1

α
1−γz(u)

j + β
1−γx(u)

j (n)+ δ
1−γ x̂(u)

j otherwise
(2.25)

with α+β+γ+δ = 1. Different ratios δ/γ correspond to different relative

strengths between direct interactions between regular users and influencer-triggered

users interactions.

Influencer-triggered user interactions represent a cascading effect of reactions

by a user on a post generated by an influencer, appearing on the timeline of its

friends. This is another form of (indirect) interaction among regular users which

might play a significant role in the overall opinion dynamics. It is reasonable to

assume that all follow-up reactions to posts of influencer i mainly circulate among

the followers of i with the resulting effect of amplifying the strength of the original

post on the users providing positive feedback to it. As a consequence, one can

take into account the impact the influencer-triggered users interactions by playing

on weights α, β, γ and δ, i.e., by increasing the relative weight of γ.

2.8.2 Strategic Influencers

The influence exerted on non-reference directions depends heavily on the size

of the user base that the influencer’s post reaches, which in turn depends on

how popular an influencer is in their main area of expertise. For example, famous

public figures (e.g., athletes, and models) may express their opinions on potentially

sensitive topics and resonate more than experts due to their popularity in their

own field. This mechanism can be deliberately exploited by an influencer to gain

popularity and/or strategically exert influence on a topic other than their own

reference topic. In addition, influencers can also develop a posting pattern that

ensures they maximize their influence on the user population.

For example, we have seen in Section 2.6.4 how low-consistency values allow

an influencer to gain a structural advantage when the consistency of the opposing

influencer (who has a different reference topic) approaches one. We must note at

this point that a consistency c(i ) < 0.5 in a two-dimensional environment is slightly

in contrast with the definition of the reference direction itself if the parameters
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are static. However, if we consider a time-varying consistency, an influencer that

is well-known on a certain field j , i.e., r (i )(n1) = j may modify its consistency at

time n2 if it learns to have little competition on its reference direction.

Our model can be rather easily adapted to study such scenarios by representing

influencers as strategic agents whose selected topics and expressed opinions in

their posts can be dynamically adjusted to maximize a given utility function. A

first step in this direction is presented in Chapter 3, where we consider only a

one-dimensional opinion space and thus we focus on the sequence of expressed

opinions which maximizes a certain utility function.

2.9 Concluding Remarks

In this chapter, a novel multidimensional opinion model tailored to online inter-

actions was presented. Thanks to Monte Carlo experiments, we observed how

the personalization of content by the social media platform plays a central role

in online interactions. The emergence of echo-chambers can occur in the case

of sharp personalization, as long as the influencers compete over the same topic

(i.e., have the same reference direction). In the same setting, we observed also the

rapid rise to the top of one of the influencers, in the case of different reference

directions. It was observed (both in the model and in the empirical analysis on

Instagram) that the frequency of publication correlates positively with the increase

in popularity. The behavior as a function of the consistency value was the most

difficult to interpret and needs further investigation. Our results suggest that since

influencers usually have a high consistency score (see Fig 2.5a), a competitor can

gain a popularity advantage by posting massively in their secondary direction for

a certain period of time and returning to their main topic after a certain period of

time. Finally, in a limited but evocative example, we have seen how the model can

be used in real-life situations by applying it to the 2019 Italian government crisis.



Chapter 3

Modeling Influencers Competition

Part of the work presented in this chapter has been presented at the workshop of the

35th International Teletraffic Congress (ITC) and published in [54]:

• Galante, F., Garetto, M., & Leonardi, E. (2024). Competition of Influencers: A

Model for Maximizing Online Social Impact. In Proceedings of the 16th ACM

Web Science Conference (WEBSCI ’24). Association for Computing Machin-

ery, New York, NY, USA, 343–353. https://doi.org/10.1145/3614419.3644031

One of the simplifications of the Communication Asymmetry model intro-

duced in Chapter 2 is that users are considered to be stubborn and therefore hold

a fixed opinion over the entire time horizon under consideration. This hypothesis

can be reasonable in certain scenarios where the dynamics of opinions are par-

ticularly slow and views are unlikely to be subject to drastic and erratic changes,

such as in long-running brand competitions (e.g., Nike vs. Adidas) or even when

contrasting religious and non-religious beliefs. In other situations, online social

networks (OSNs) appear to be very fluid environments in which individuals can

express very diverse opinions that can change significantly over time. The influ-

encer class in particular has an incentive to exhibit such changeable behavior

for several reasons. It should be borne in mind that many of these personalities

have a strong interest in the performance of their social media profiles, either

because they are used directly to generate income (e.g. through advertising) or

to convey a message (e.g. a political one). Influencers are therefore interested in

maximizing their influence on the social network and the messages they convey

may be subject to frequent change, for example, once they change their brand
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partnership or also due to pressure from public opinion on sensitive issues on

which they have previously held radical views.

In the previous chapter, we discussed the possibility of choosing the posting

pattern strategically. Either to gain popularity on the platform or to facilitate the

dissemination of radical or counterfactual ideas, perhaps by capitalizing on the

visibility of another unrelated topic. Here, we take a first step in this direction

and try to explore how an influencer can maximize its influence on an OSN in

the case of a single topic (one-dimensional situation), which has proven to be

challenging enough in itself. We leave the more interesting multidimensional case

aside for future work, noting that its highly nonlinear nature and the correlation

between popularity on the reference direction and the visibility granted by the

platform makes the analytical study of the model prohibitive. We focus on a

simplified case in which we have duopolistic competition over a single topic

and a large number of users who follow the posts of the two influencers, whose

posts are filtered by the social media platform. We use the framework of game

theory to study the competition and develop a trellis-like approach to solve the

impact maximization problem, which we formalize in Section 3.3, in the case of

an influencer in isolation.

The chapter begins with a discussion of the research context and introduces

some relevant related literature. Then the notation, which largely overlaps with

that of the previous chapter, is briefly introduced, together with a summary ta-

ble of all the symbols used in this chapter. Section 3.3 formalizes the online

influence maximization problem, also specializing the opinion model to the one-

dimensional case. Section 3.4 introduces the trellis-like approach to finding the

optimal solution for this problem. Subsequently, the optimal strategy is com-

pared with a greedy strategy. Sections 3.5 and 3.6 present the game for influencer

competition and its extension, which also considers the popularity of influencers.

Section 3.7 concludes the chapter.

3.1 Related Work and Context

Our work can be considered at the intersection between the literature on opin-

ion dynamics [55] and the more classic economic literature on competition [56].

Widely used models of opinion dynamics include linear models proposed by DeG-
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root [57] and Friedkin–Johnsen [58], and non-linear models by Deffuant–Weisbuch [59]

and Hegselman-Krause [60]. We refer the reader to Section 2.1 of this thesis or

to [61] for a recent review on different models of opinion propagation, and to [62]

for results specific to non-linear (bounded confidence) dynamics.

Influence maximization is a different problem, slightly related to ours [63]. It

aims at finding a (small) set of k agents so that to maximize the adoption of a

certain product. This problem differs largely from ours in that it considers an

explicit network structure and uses a simpler underlying (cascade) opinion model

whose states are binary. Many extensions appeared, [64] considers a negativity

bias, and [65] non only competitive behavior. In the following, we limit ourselves

to mentioning works more similar in spirit to ours, i.e., those dealing with non-

linear (e.g., bounded confidence) dynamics, and focused on opinion manipulation

by a restricted set of strategic agents aiming at maximizing their impact on a

population of users.

A bounded confidence model of opinion dynamics on a fixed network struc-

ture comprising both influencers and followers is proposed and analyzed by

simulation in [66]. In [67] the impact of charismatic leaders is taken into account

in bounded confidence dynamics as a constant exogenous signal. Interestingly,

they discovered that higher signals may have less effect in attracting other agents.

Opinion manipulation through (possibly time-varying) exogenous inputs is an-

alyzed in [68] for an Eulerian (i.e., by considering a probability distribution of

agents) bounded-confidence system. In [69], the authors consider a continuous-

time bounded confidence model with a single leader, showing that it is possible to

control the leader velocity to ensure final consensus at a prescribed opinion value.

We mention that optimal control approaches have also been proposed to

optimize opinion manipulation. For example, [70] takes this direction considering

the case of a single influencer. In [71], a set of (coordinated) controllers is optimally

placed to minimize the convergence time of the system to a final stable state in

the influence graph.

To the best of our knowledge, there are only a few game-theoretical attempts

to study the problem of opinion formation/manipulation. Papers [72–75] con-

sider a scenario in which two competing marketers play a resource allocation

game, whose goal is to establish how many resources to allocate to each poten-

tial customer in the network. Customer dynamics obey a voter model in [72],
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to a consensus model over a graph in [75, 74], and to a Friedkin-Johnsen model

in [73]. A Nash control formulation is proposed in [76] for the case of two opposing

influencers. Opinions spread on an underlying graph in an epidemic manner.

Differently from previous papers, we consider non-linear opinion dynamics

where the interaction between influencers and users is mediated by a social media

platform. Influencers operate on a fixed budget and have to decide what opinion

to express within each of N posts.

3.2 Notation

In this chapter we try to stick to the notation introduced in the previous chapter,

bearing in mind that we are not dealing with vectorial quantities here. Lowercase

letters are used for parameters and dynamical variables associated with an indi-

vidual. The index i runs over the set of influencers, while the index u runs over the

set of regular users. They are specified between superscript brackets, e.g. a(i ), a(u),

to specify which user class the variable a refers to. Italic capital letters denote sets,

e.g., I is the set of all influencers in the population, while |I | is its cardinality.

Capital letters stand for results of stochastic experiments whose characteristic

parameters are lowercase letters: e.g. Ψ
(
ψ(·, ·)). Unlike in the previous chapter,

we specify the discrete time n as the subscript value of a certain variable, e.g., p(i )
n

is the popularity of influencer i at time n.

3.3 Formulation of the Problem

First, we present a slightly modified instance of the Communication Asymme-

try (CA) opinion model from Chapter 2 and specialize it to the case of a one-

dimensional opinion space. We will first use a simplified version of the model that

describes the interaction between popular individuals (i.e., influencers) and the

pool of regular users without considering the reinforcing mechanism implied by

popularity updating. In section 3.6.1 we will use a more complete version of the

CA model that takes into account the close-loop between influencers and regular

users. The main focus of this section is to introduce the social impact maximiza-

tion problem for an influencer considered in isolation. This answers the question:
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Table 3.1 Notation Summary Table

Symbol Description

I Set of influencers within the OSN population
U Set of regular users within the OSN population
X Set of opinions, in general X ⊂Rd but typically [0,1]
n Discrete time instant
N Total time horizon
x(u)

n Opinion of a regular user at time n
z(u) Prejudice of a regular user
x(i )

n Opinion of an influencer at time n
d User-influencer opinion distance d := |x(u)

n −x(i )
n |

µn(x) Regular users opinion distribution
f (·) Influencer’s benefit function for the impact maximization problem
Ψ

(
ψ

)
Bernoulli random variable capturing the platform filtering,
ifΨ= 1 the opinion delivered through the post influences the user

w Width of the rectangular (0-1) ψ function
α First opinion update weight
β Second opinion update weight (or inertia)
δ := α

α+γ Degree of stubbornness

B Set of discrete opinion values
M Set of regular users’ groups with the same prejudice
x(i ;T ) Target opinion for influencer i (xT if |I = 1|)
x(i ;E) Exploratory opinion for influencer i
δ(i ) Difference between the target and exploratory opinion
A Set of actions for the game
a(i ) Action of influencer i
BR(a(i ), a(−i )) Best response of influencer i to the other players
P Payoff matrix of the game
p(i )

n Influencer’s i popularity
T (i )

n Total feedback on a influencer’s post

“What would be the posting pattern of an influencer who wants to maximize her

influence in an online social network where the online social platform filters the

content?” .

3.3.1 The One-Dimensional Communication Asymmetry Model

The element at the core of our approach is clearly the CA opinion model from the

previous chapter. To ensure the coherence of this chapter, we briefly summarize

the model here, furthermore, we specialize it to the case of a one-dimensional

opinion space X = [0,1], and consider a simple characterization of the influencers

compared to Chapter 2. Moreover, we add a mechanism of “self-thinking” for
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the users, i.e. whenever a user is not reached by an influencer’s post, he updates

his opinion and drifts to his original view on the topic. So we recall that the

audience on social media can be divided into two macro-categories: the popular

and influential individuals: the influencers, and the “other” users: the regular

users, who represent the vast majority of OSN users.

Let us denote by I (indexed by i ) the set of influencers and by U (indexed by u)

the set of regular users. These social network users at a certain time instant n ∈N+
0

hold opinions x(i )
n ∈ X and x(u)

n ∈ X , respectively1. We assume that at each

discrete time instant n influencer i ∈ I publishes a post over the social media

network conveying her expressed opinion. In this chapter, as opposed to [13], we

consider influencers with time-varying opinions, i.e., the influencers generate

a sequence of posts {x(i )
n }, n ∈ [0, .., N ], where N represents a considered (finite)

time horizon. An influencer will adapt her expressed point of view strategically in

order to maximize her2 impact on the population (see Section 3.3.2).

A given post is not guaranteed to reach a regular user u ∈U , due to the filtering

effect of the social media platform. This represents the content personalization

performed by most platforms (e.g., the ranking of posts to be shown on the user’s

timeline). We assume a post effectively reaches a regular user with a probability

ψ
(|x(i ) −x(u)|) which depends on the distance between the influencer’s expressed

opinion and the user’s opinion, modeling a homophilic behavior, whereby indi-

viduals are more likely to interact with others who share similar beliefs.

A user holding opinion x(u)
n at instant n updates his opinion according to the

following rule:

x(u)
n+1 =


αz(u) +βx(u)

n +γx(i )
n ifΨ

(
ψ(|x(u)

n −x(i )
n |)

)
= 1

α
α+βz(u) + β

α+βx(u)
n otherwise

(3.1)

where α,β,γ are fixed parameters in [0,1] such that α+β+γ = 1. Ψ(ψ) is a

Bernoulli random variable with parameter ψ and determines whether a post will

be visible to a given user or not. Note that when a user receives a new post from

the influencer, i.e, whenΨ= 1 (first row of Eq. (3.1)), he moves to a new position

1In this chapter, for convenience, we adopt a slightly different notation with respect to Chapter
2, representing the time as a subscript rather than between parentheses.

2In this chapter, to avoid the confusion which would arise using the gender-neutral “they”, we
will, arbitrarily, use she/her for an influencer, and he/his for a regular user.
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in the opinion space, which is a convex combination of three contributions: i)

his prejudice z(u), i.e., the preconceived opinion about a certain matter3; ii) his

current opinion x(u)
n ; and iii) the influencer’s opinion x(i )

n expressed in the post.

Otherwise (second row of Eq. (3.1)), the influencer’s contribution is not present,

either because the post has not been proposed to the user or he has not been

influenced (e.g., not liked it), so a renormalization of the weights is required. This

case in Eq. (3.1) models a process of self-thinking, namely that users who are not

reached by an influencer’s post gradually return to their prejudice z(u).

The above updating rule is simple but does not allow a direct interpretation

of the parameters. Noting that the free parameters in the first line of Eq. (3.1) are

only two, it is possible to rewrite the update rule:

x(u)
n+1 =


(1−β)

[
δz(u) + (1−δ)x(i )

n

]
+βx(u)

n ifΨ
(
ψ

)= 1

δ

δ+ β
1−β

z(u) +
β

1−β
δ+ β

1−β
x(u)

n otherwise
(3.2)

where δ,β ∈ [0,1] have a direct interpretation as the inertia (β) of the user, i.e.,

the weight the users give to their current opinion, and the degree of stubborn-

ness (δ), i.e., the weight on the user’s preconceived opinion.

Remark 4. (Large population) In the large population limit (i.e., when |U | → ∞)

fluctuations of aggregate random variables around their average smooth out. There-

fore macroscopic dynamics tend to become deterministic.

Thanks to the large-population assumption, we do not have to track the mi-

croscopic interactions described in Eq. (3.2) but we can consider a distribution

of regular users characterized by the probability density function µn(x), whose

evolution is driven by influencers’ posts emission. In particular, every time influ-

encer i generates a new post, a fraction ψ(|x −x(i )|)) of the population placed at x

will be hit by the influencer’s messages while the remaining fraction of users will

not be reached by it. This assumption greatly simplifies the analysis, in particular

in Section 3.6.2 where we consider a more complicated function ψ, while it is not

strictly necessary for the rest of the work (see Remark 5). In our framework, the

3This quantity could also be interpreted as the field effect of the total population, which would
represent a process of peer interaction not otherwise included in the model.
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assumption is not restrictive, as our focus lies in the mean-field effects observed

across a large population of individuals.

3.3.2 Social Impact Maximization for an Influencer in Isolation

We are interested in determining the influencer posting pattern that maximizes

her online social impact on a population of regular users. Even considering the

case where a single influencer seeks to maximize her impact over a finite time

horizon, assuming there are no other influencers, is insightful and complicated

enough to be worth exploring. We will then use the observations gathered in this

simplified setting to develop our game of online competition.

Our novel social impact maximization problem, for the case of a single influ-

encer, can be formulated as follows. Recall that we consider a fixed time hori-

zon N , where the influencer has to choose the temporal sequence of opinions

{x(i )
n }N

n=1 to convey through her posts to attract regular users towards a desired

target opinion xT in the opinion space. This value can represent, for example, the

true opinion of the influencer regarding a certain topic or a certain consumption

behavior to be instilled in the population. Regular users obey the dynamics in

Eq. (3.1).

We assume that the influencer knows how users would react to her posts, i.e.,

the parameters of Eq. (3.1), and in particular the shape of ψ(·) as a function of the

opinion distance d ≜ |x(u)
n − x(i )

n |, which dictates whether her posts are received

by users in the first place (platform filtering). Moreover, we assume that the

influencers know the initial distribution of users µ0(x) (e.g., through polls, surveys,

reviews and other forms of users’ feedback).4

The benefit an influencer obtains from a particular distribution of users’ opin-

ions may vary. This variability can be captured by an arbitrary function f (·) that

provides the influencer’s benefit from a generic user at a given distance from the

target opinion. Thus, in its greatest generality, the problem can be formulated as

4It would be possible to incorporate a noisy version of such distribution into the model, along
the lines of what happens in politics, where polls provide a noisy measure of the true distribution
of public opinion. We leave this possibility for future work.
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follows:

max
{x(i )

n }N
n=1

Ex

[
f (|x(u)

N −xT |)
]
=

∫
f (|x −xT |)dµN (x) (3.3)

s.t. dynamics in (3.2)

where µN (x) is the final distribution reached by users over the opinion space at

time N . Note however that the maximization in Eq. (3.3) is over the entire se-

quence of N posts generated by the influencer. The influencer benefit function f (·)
is reasonably a non-increasing function of the distance from the target opinion.

The formulation in Eq. (3.3) leads to a complex optimization problem, given

the generality of the initial user distribution, the probabilistic movement of users

(in the finite population case), the arbitrary choice of the influencer’s opinion at

each step, and the arbitrariness of function f (·). Therefore, we will now make

a series of simplifications that eventually lead to a problem that is solvable in

polynomial time with N .

First, we assume that f (·) is a linearly decreasing function of the distance

from the target point xT , i.e., f =−|x(u)
N −xT |. While this simplification does not

effectively reduce the complexity, it allows us to get a reasonable case study that

does not require us to specify details of the shape function f (·). Therefore, by

linearity of the mean and as max−g (·) = min g (·), the problem becomes:

min
{x(i )

n }N
n=1

Ex

[
|x(u)

N −xT |
]
=

∫∣∣x −xT
∣∣dµN (x) (3.4)

s.t. dynamics in (3.2)

This reformulation also corresponds to a simpler interpretation: the influencer

aims to bring the overall opinion of the population of regular users as close as

possible to her target opinion.

Our main simplification assumes a binary (0-1) behavior for the event related

to whether a post reaches a user at a certain distance d from the opinion expressed

in the post. This is achieved, for example, by the following natural choice for the

function ψ:

ψ
(
d =

∣∣∣x(u)
n −x(i )

n

∣∣∣ ; w
)
=

0 if d > w

1 if d ≤ w
(3.5)
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where w is a fixed width parameter. This means that a post conveying the opinion

of the influencer x(i )
n is deterministically read at time n by users who have an

opinion that is at most w away from it. This formulation of the model essentially

implements the well known concept of bounded confidence (see e.g. [60] and

[59]), where here we consider a single entity (the influencer) publishing posts

to attract regular users. We emphasize that bounded confidence dynamics have

proven quite difficult to analyze, so most of the known results have been obtained

through Monte Carlo simulations.

Remark 5. Due to the assumption of a 0-1 ψ(·) function in Eq. (3.5), the model

becomes deterministic even in the case of |U | < +∞ (finite population). Indeed,

a user either moves or does not move, depending solely on his distance from the

influencer’s expressed opinion.

Even with this simplifying assumption, the optimization problem remains sig-

nificantly challenging. Indeed, it can be formulated as a Markov Decision Process

(MDP), in which the number of states of the underlying Markov Chains (MCs), i.e.,

the MCs obtained by fixing the influencer sequence of posts, is combinatorially

exponential with the number of users.

To gain initial insights into the problem and as a useful benchmark, we con-

sider the greedy solution that, at each time step, selects the influencer’s opinion x(i )
n

that produces the best instantaneous improvement of the objective function. More

formally, let∆x(u)
n ≜ x(u)

n+1−x(u)
n be the opinion shift of a user u holding opinion x(u)

n

at time n:

∆x(u)
n =


(1−β)

[
δz(u) + (1−δ)x(i )

n −x(u)
n

]
ifΨ(ψ) = 1

δ

δ+ β
1−β

(
z(u) −x(u)

n

)
ifΨ(ψ) = 0

For simplicity of exposition, but without loss of generality, consider the case

in which all users are initially to the left of target point xT , so that positive values

of∆x(u)
n translate into equivalent improvements of the objective function, whereas

negative values translate into equivalent utility losses.
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Then, given the users’ distribution µn(x), the greedy algorithm selects, at each

step n, the influencer opinion x(i )
n maximizing the overall users’ opinion shifts:

x(i )
n = argmax

x(i )
n

E
[
∆x(u)

n

]= argmax
x(i )

n

∫
∆x(u)

n dµn(x) (3.6)

Claim 1. The greedy strategy is not always optimal.

As might have been expected, the above greedy strategy is, in general, subopti-

mal. We will demonstrate this in the next section in a simple but representative

scenario. The reason for the suboptimality lies in the fact that the greedy algo-

rithm does not “look into the future,” ruling out solutions that initially reduce the

overall utility but, in the long run, lead to a better final configuration of users in

the opinion space. Understanding when the greedy strategy may be suboptimal

and by how much is of great interest both theoretically and practically. In cases

where the greedy strategy does not lead to an optimal outcome, it is essential to

apply strategies that sacrifice short-term gains in favor of long-term benefits.

3.4 The Optimal Strategy

The optimal strategy can be computed (numerically) under the simplifying as-

sumptions introduced in the previous section by resorting to a discretization of the

opinion space and the user distribution. In particular, let us assume that both the

users’ opinion and the influencer’s opinion expressed in each post can only take

values in a discrete set of cardinality B . In practice, we divide the opinion space

X = [0,1] into bins of constant width, and assume that only the mid-point of each

bin is a feasible opinion value for the influencer’s expressed opinion. For the sake

of simplicity, we take as target points x(T ) ∈ {0,1} for the influencers operating in

the system: these points can be interpreted as two opposing political views or

as two different brands offering the same product to customers. In the case of a

single influencer, we assume xT = 1 (the case xT = 0 is completely symmetrical).

Let B be the set of feasible opinion values, and j be the index running on it.

We will also discretize the prejudice of users, assuming that it belongs to a finite

set Z ⊆B of prejudice values, of cardinality Z . Note that the population is indeed

described by two distributions, the time-varying opinion and the static prejudice.
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At last, we assume that the distribution µn(x) of users over the opinion space

can be well approximated by considering the users belonging to a finite set M

of “groups” of cardinality M , indexed by m. Users of a given group m share

the same (time-varying) opinion x(m)
n ∈B, and the same (static) prejudice value

z(m) ∈Z . Groups represent discrete “masses” of users moving together as a single

unit, that cannot split into smaller sub-units over time. This is guaranteed by the

assumption stated in Eq. (3.5), which leads to deterministic opinion movements.

Note that without the 0-1 assumption for ψ, the position of a group could not be

used to identify the state of the system and that as long as 0 <ψ< 1, there would

be an exponential growth of group subdivisions over time.

It follows that the system state at time n can be fully specified by the vector

{x(m)
n }m , and that there are B M possible system states. At each time step, influ-

encer i has to choose an opinion x(i ) ∈B to convey in her n-th post, and we can

separately evaluate the effect of this post on each group. This can be efficiently

done by exploiting the Trellis-like structure of system dynamics described next.

3.4.1 Trellis-like Structure for the Optimal Strategy

Under the simplifying assumptions introduced before, the optimal solution can

be computed in polynomial time for any n by exploiting the trellis-like structure

sketched in Figure 3.1 for the toy case of M = 2 groups, m ∈ {0,1}, and B = 2

opinion values, x(m)
n ∈ {a,b}, leading to 4 possible system states. Let, for short,

S(s)
n ∈ S denote the possible system states at time n. From each state S(s)

n ∈ S ,

it is possible to evaluate all reachable states and the action x(i ) that leads to the

transition. This allows us to define a transition matrix T , shown on the left in

Figure 3.1. Note that there may be multiple x(i ) leading to the same target state,

and for our purposes these transitions are equivalent. Indeed, we are interested

only in the final best state, and not in finding all particular sequences of traversed

states leading to it.

With the transition matrix in hand, it is possible to unfold the process over time,

starting from a given initial state S1
0 (see right part of Figure 3.1). The resulting

trellis-like structure allows us to account for all paths starting from the initial state

and efficiently compute the one to the final best state.
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Fig. 3.1 A simple illustration with only four states (B = 2) to demonstrate the method used
to determine the optimal solution.

Without loss of generality, we can consider the case where xT = 1 and the

objective of our social impact maximization problem becomes max{x(i )}N
1
E[xN ].

Therefore, the best state is the one that leads to the highest average opinion in

the population for n = N . In principle, the path leading to this state is not unique,

and thus we consider a path as optimal if it leads to the best state in the shortest

possible time.

3.4.2 The Case of Two User Groups

Now that we have a method for deriving the optimal solution to the online impact

maximization problem, we can prove the correctness of Claim 1. For this, we have

considered a very simple system that is computationally tractable and contains

enough features to be of interest. We consider only two regular users groups

whose prejudice and initial opinion are z(m), x(m)
0 , m ∈ {0,1} respectively, and a

large number B of possible opinion values, leading to B 2 possible system states.

The discrepancy between greedy and optimal strategies can be evaluated for a

variety of parameters. However, for the sake of compactness, we limit ourselves to

two representative scenarios whose parameters are summarized in Table 3.2.

There are two ways in which the optimal solution can be better. It is either

faster, i.e., it reaches the best state with a smaller number of posts (first scenario,

Fig. 3.2a), or it leads to a higher value of E[xN ], i.e., a better best final state (second

scenario Fig. 3.2d).
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As a general rule of thumb, we have derived the following empirical rule from

the optimal numerical solution of the system:

Remark 6. The optimal strategy for the online impact maximization problem is to

first bring the (two) user groups close together, and then gradually persuade them

towards the target opinion xT .

Table 3.2 Scenarios of the greedy vs optimal comparison

# z(0) x(0)
0 z(1) x(1)

0 α β N w

1 0.5 0.005 0.5 0.995 0.05 0.3 50 0.1
2 0.005 0.005 0.995 0.995 0.05 0.3 50 0.1

Note that as an effect of our choice of the platform filtering functionψ, group u

is affected by the influencer’s expressed opinion only when |x(u) −x(i )| < w . This

means that a group whose opinion x(u) is too far from the influencer’s expressed

opinion x(i ) is not affected by the post. Recall, however, that a group can still

change its current opinion in the absence of the post’s influence, as it is also at-

tracted to its prejudice. In the next Section, we will go into more detail about what

happens in the two-group scenario and explain the underlying system dynamics.

We will also briefly discuss the effects of the parameters.

3.4.3 Numerical Experiments: Impact of the Parameters

The first scenario considers two user groups with equal prejudice at 0.5 (represent-

ing a moderate position toward a certain topic or indifference between the two

extreme choices) and extreme initial opinions around 0 and 1, respectively. The

second scenario instead assumes that the prejudices of the two groups coincide

with their initial opinions, which are again set at the extremes of the opinion

domain. It is interesting to note that the two strategies lead to different results in

both cases, albeit in different ways. This becomes clear by looking at Figures 3.2b -

3.2c (for the first scenario) and figures 3.2e-3.2f (for the second scenario), showing

detailed locations of the two user groups, as well as the influencer opinion, at each

time step n, separately for the greedy and optimal strategy.

In the first scenario, the greedy strategy (plot 3.2b) leads the influencer to

focus on the first, closest group x(u=1) and ignore the second, distant group x(u=0),
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Fig. 3.2 (3.2a) Scenario # 1 in Table 3.2, (3.2b) greedy, (3.2c) optimal. (3.2d) Scenario # 2 in
Table 3.2. (3.2e) greedy (3.2f) optimal.

which, in the absence of influencer stimulus, starts to gradually shift towards its

prejudice z(0) = 0.5.

Only when the second group is close enough, the greedy influencer finds it

temporarily convenient to jump close to the second group, and immediately after

go back to x(i ) = 1 to bring the first group close to the extreme of the opinion

domain. This results in the erratic behavior of the orange trajectory in plot 3.2b.

These “hectic” moves make the greedy strategy inefficient, and in fact, the

greedy strategy is largely outperformed by the optimal strategy (plot 3.2c) in

terms of the number of steps (posts) to reach the best state. Note that, on the

contrary, the optimal strategy focuses on the second distant group, which at some

point (around n = 10) merges with the first group. The coalesced groups are then

efficiently moved together towards the best state (see plot 3.2c).

In the second scenario, the greedy strategy (plot 3.2e) never allows the first

group x(u=1) to step away from its (already taken) radicalized opinion at x(u=1)=0.995.

Note that since w = 0.1 the first group would move away from its initial position

whenever the influencer conveys an opinion 0.895 ≤ x(i ) < 0.995
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On the contrary, the optimal solution (plot 3.2f) accepts to temporarily worsen

the opinion of the closer group, and by so doing it is able to pull the second group

up to a better (closer to the target point) final position. This requires, at some

point, a non-greedy step (see the non-monotonocity5 in plot 3.2d).

The difference between the two strategies increases when w takes small values

and gradually diminishes as w increases. For w > 0.5, the greedy and optimal

strategies coincide in virtually all cases, as larger w values lead to a more signif-

icant influence over the population. The extreme scenario is the one in which

the entire population is always reached by a post. The optimal strategy in this

case is to publish the target opinion exclusively, as there is no advantage in taking

other viewpoints. Finally, it is worth mentioning that the weight coefficients α

and β in the opinion update determine both the inertia of the system and the

maximum achievable opinion value of each user group. Slow dynamics (high

values of α+β) are more challenging to study numerically because of the smaller

opinion shifts ∆x produced, which require to use a denser discretization of the

opinion space (larger number of bins B).

Results (in terms of greedy vs optimal performance) are consistent despite the

choice of these parameters, considering that the final opinion value depends very

weakly on β (which primarily impacts the convergence time), while α essentially

determines the best target opinion that any strategy can eventually achieve in the

long run.

3.5 The Game: Competing for Influence

The above framework is interesting in that it shows how to optimally target a

population of users, and it provides evidence that it is worth accepting short-term

losses to achieve long-term gains. However, it completely disregards competition

from other influencers on the social media platform. Inspired by the fact that

in the online impact maximization problem an influencer has an incentive to

first take a more moderate position in order to then exert influence over a larger

user base, we will develop a game that embodies this idea. Indeed, Remark 6

suggests that it is better for the influencer to first group users, i.e. to express an

5Sometimes we observe non-monotonic behavior on the greedy trajectory, which can occur
when any greedy step produces a negative increment of the objective function.
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opinion that allows it to reach “distant” users even, potentially, at the expense of

de-radicalizing users close to its target opinion, and then gradually draw them

towards its target. This consideration allows us to propose a fixed structure for an

influencer’s strategy that greatly simplifies the problem and makes it tractable.

We define a game for the duopolistic competition of influencers aiming at

maximizing their online social impact. Indeed, we consider a set I = {0,1} of

two players (influencers), each of which has a target opinion x(i ;T ): the opinion

around which the influencer wants to attract users, recall Eq. (3.3). We will assume,

without loss of generality, to have players having diametrically opposing views:

x(i=0;T ) = 0 and x(i=1;T ) = 1, representing, for example, two opposing political

parties.

The players/influencers are characterized by their willingness to deviate from

their target opinion x(i ;T ) when trying to reach new users. This aspect is modeled

by the parameterδ(i ), which allows us to define x(i ;E) = x(i ;T )−sgn
(
x(i ;T ) −0.5

) ·δ(i ),

which we will refer to as the exploratory6 opinion. We thus assume that the in-

fluencers will only assume one of the two opinions x(i ;T ), x(i ;E). Moreover the

“exploration” phase will always precede the “targeting” phase, the situation is

sketched in Figure 3.3.

Fig. 3.3 Two-phase strategy {x(i )}N
i=1 structure.

Our assumptions may appear rather restrictive, however, they are motivated

in part by the Remark 6 and by the necessity of reducing the space of possible

actions for each player for tractability purposes. As a matter of fact, the set of

actions becomes A (i ) = {0,1, ..., N }, and the action a(i ) determines how long the

“exploration” phase lasts for influencer i , defining a particular {x(i )} sequence.

Recall that knowing (the system’s parameters) and the influencer post sequence,

6This variable represents the opinion that the influencer expresses while trying to approach a
group of users who are far apart in their opinions and whom it would otherwise not reach due to
the filter function ψ.
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the movement of the regular users is described by Eq. (3.2). Note that, once we fix

the sequences of posts emitted by the two influencers (and knowing the system’s

parameters), the movement of the regular users can be deterministically predicted

by opinion dynamics in Eq. (3.2), by superposition of the effects.

The last element to be specified to characterize our game is the payoff (or

utility) function, which in our setting is a function ui : A ×A →R and specifies

the preferences of the players over the outcomes of the game, given the strategy of

the other player(s). In our case, the payoff function corresponds to the objective

function in Eq. (3.3), where the opinion configuration depends on the combined

actions of the two influencers: x(u)
N

(
a(0), a(1)

)
.

The game is a simultaneous game, i.e. both players choose their strategies at

the same time and then stick to their choice for the entire duration of the game.

It is also a game with complete information, i.e. both players know perfectly the

rules of the game, i.e., they know the set of actions playable by the other player

and the effect that such actions exert on the population of users.

3.5.1 The Two-Groups Scenario

We first consider a simplified but illustrative scenario, similar to the one in Sec-

tion 3.4.2, for which it is possible to provide an exact procedure to determine

the Nash Equilibria (NE) under the assumption that only pure strategies may be

adopted.

0 1

Fig. 3.4 Schematic representation of the simplified scenario.

The restriction to two user groups is not strictly necessary, and we could con-

sider a population with M groups, each with a (static) prejudice z(m) ∈Z . Indeed,

the complexity of the procedure to determine the NE would only scale linearly
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with M , as will become clearer later. However, we decided to limit the number

of groups to two for continuity with Section 3.4.2 and ease of interpretation. We

(first) consider a 0-1ψ function to ensure identical reactions from the bulk of users

belonging to the same group. In so doing, we avoid the exponential growth of the

user groups over time generated by their splitting. In Section 3.6 the case of a gen-

eral user distribution and ψ function is discussed. Each group is characterized by

z(m) ∈Z (assuming x(m)
0 = z(m)) and its “proportion” defined as ρ(m) ≜

∫
dµN (x|z(m))∫

dµN (x)

with respect to the overall population. Lastly, we consider influencers whose target

opinions lay at the extreme of the opinion domain: x(i ;T ) ∈ {0,1}. Fig. 3.4 sketches

the setting. We first look into some straightforward solutions to the problem:

Proposition 1. If |x(i ;T ) − z(m)| ≤ w, ∀m ∈M ,∀i ∈I then (0,0) is a Nash equilib-

rium (NE) of the game.

Proof. Without loss of generality, we can consider i ′ such that x(i ′;T ) = 1 (recall

x(i ;T ) ∈ {0,1}). Given that x(m)
0 = z(m), ∀m ∈ M and |1− x(m)

0 | ≤ w, ∀m ∈ M , then

a(i ′) = 0 is a dominant strategy for i ′, i.e., argmaxa(i ′) Ex[x(u)
N ({a(i )}i )] = 0, ∀a(i ), i ∈

I \ i ′. Indeed, the total opinion increment ∆x({x(i )
n }n) ≜ ∆x(0) +∆x(1) for a gen-

eral x(i )
n sequence is weakly smaller than ∆x({x(i ;T )}n), for any strategy of the other

players. Every player would play this dominant strategy, so (0,0) is a NE.

It is clear that such situations are not of interest. Note also that in the explo-

ration phase, a player favors the other player in some way (i.e. the closer user

group moves further away from the player). A player would only do this if there is a

possibility of reaching a larger user base, which is otherwise hindered by filtering.

We make a structural assumption that is in no way restrictive but has the

dual goal of avoiding trivial solutions (see proposition 1) and ensures that the

influencer does not deviate too much from her target opinion. This captures the

fact that the influencer needs to still keep in contact with (and somehow maintain

under control) the more radical individuals (those closer to x(i ;T )).

Assumption 1. Only the closest group in opinion m is reachable (ψ(|x(i ;T )−x(m)|) =
1 ̸= 0) in the targeting phase while b) both (m, M) are reachable in the exploring

phase.
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3.5.2 Exact Solution for the Two-Groups Scenario

Since the set of possible actions A is finite and as |I | = 2, it is possible to find the

Nash equilibria for the two-player game or to determine when no Nash equilib-

rium exists.

Theorem 3. The procedure in Algorithm 3 identifies all the Nash equilibria in pure

strategy of the game, if any exist.

Proof. The rationale for the algorithm is that in a Nash equilibrium, each player

plays a best response BRi (a(i ), a(−i )) to the other player(s). In a two-player game,

it is possible to define a matrix P in which we have as rows the strategies of

player i = 0 and as columns those of player i = 1. Each element pi j is defined

as (u0,u1). This matrix is well-defined because the action space A has finite

cardinality, P is N +1×N +1. For each column k (strategy of player i = 1), we

compute argmaxa(0) u0(a(0), a(1) = k), which is the best response of player i = 0 to

the action k of player i = 1. We do the same over the rows and then consider the

elements (i , j ), if any, for which the procedure identified an argmax over both the

rows and the columns. These are the Nash equilibria in pure strategy, as both

players play their best response to each other’s strategy.

3.5.3 Characterization of the Nash Equilibria as a Function of the

Population Characteristics

Figure 3.5 shows the Nash equilibria computed with the method in Algorithm 3,

as a function of the user inertia β and the degree of stubbornness δ and under

the Assumption 1. The experimental setting includes two equal user groups with

z(0) = 0.25, z(1) = 0.75, the influencers are identical (δ(0) = δ(1)) and the considered

time horizon N = 5, with a rectangular ψ function with width w = 0.7. We see that

the less the population can be influenced, the more time the influencers spend

on exploration. This can be explained by the fact that the closer an influencer is

to a group of users, the more influence she can exert. This is also related to the

fact that (0,0) is not a NE for the game. Since influencers in the exploration phase

have a higher influence and can reach more users, any influencer who knows

that the competing influencer can switch to a milder opinion would also carry
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Algorithm 3: Determine Nash equilibria

Data: players I , groups of users M , ψ function, actions A

// Compute the payoff matrix P
foreach

(
a(0), a(1)

) ∈A ×A do
v ← argmini a(i )

V ←I \ m
for n ∈ {1, ..., N } do

if n < m then
x(m)

n+1 = UpdateBelief (x(v ;E)
n , x(V ;E)

n , ∀m ∈ M

else if m < n < M then
x(m)

n+1 = UpdateBelief (x(v ;T ), x(V ;E)), ∀m ∈M

else
x(m)

n+1 = UpdateBelief (x(v ;T )
n , x(V ;T )

n , ∀m ∈M

P
[
a(0), a(1)

]← (
1−Ex

[
x(u)

N

]
, Ex

[
x(u)

N

])
// Compute Best Responses and Nash equilibria
BR0(a(1)) ← argmaxa(0) P

[ ·, a(1)
]

BR1(a(0)) ← argmaxa(1) P
[
a(0), ·]

N E = {
(a(0), a(1)) : a(0) ∈BR0(a(1)), a(1) ∈BR0(a(0))

}
out an exploration phase. In such a symmetric setting it is reasonable to expect

symmetric equilibria (as in Fig. 3.5), and this is summarized in Proposition 2:

Proposition 2. In the two-group scenario, in the symmetric case (δ(i ) = δ∀i , z(0) =
1− z(1), ρ(0) = ρ1) the actions of the two players in the Nash equilibrium are the

same if the NE is unique.

Proof. It is rather straightforward to see that, in this situation, the best response

of player 0 is BR0 = argmaxi u
(
µn(x)

∣∣a(1)
)

, and it is equal to the best response of

player 1 due to symmetry. Thus, if the NE is unique, the two players play the same

strategy.

Under Assumption 1, the equilibria of the game are non-trivial, i.e., different

from (0,0), and there is for the players a strategic incentive to compete.

So far we discussed a fully symmetric situation but, it is interesting to consider

also an asymmetric distribution, i.e., z(0) = 0.15, z(1) = 0.75, in Figure 3.6 we depict

the Nash equilibria. This setup implies that player 0 has an initial advantage in
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Fig. 3.5 Nash equilibria in a symmetric scenario as a function of the population character-
istics β,δ. The Nash Equilibria are a list (of one element) of tuples of the form

(
a(0), a(1)

)
.

terms of user distribution. The structure of the above Nash equilibria suggests

that the one in a disadvantageous position (here player 1) has a strategic incentive

to prolong the exploration phases in order to approach the average collective

opinion value of the population and thus also reach the most distant group and

try to persuade it.

3.6 Towards a More Realistic Scenario

Online social networks are characterized by pronounced asymmetries in the

interaction between entities. Furthermore, in [13], the authors model the closed

feedback between regular users and influencers. User feedback determines the

popularity of influencers, which in turn is tied to their ability to reach users, i.e.,

their visibility over the platform. In this section, we use the full specification of

the model in [13] in our framework.

3.6.1 Closed-loop Opinion Model

The users are subject to the dynamics described in Section 3.3.1 with the addition

of the closed loop between regular users and influencers. For simplicity, we already
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Fig. 3.6 Nash equilibria as a function of β and δ for different shifts δ(i ) from the target
opinion x(i ;T ), we organize the shifts for the two influencers as (δ(0),δ(1)) and we consider
(0.2,0.2) in (3.6a), (0.1,0.2) in (3.6b), and (0.2,0.3) in (3.6c).
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present the model in its deterministic form, see Remark 4. The user feedback can

be directly derived by the value of ψ, as it describes when a user is reached by a

certain post and the probability of him moving in the direction of the influencer’s

opinion because he likes it (positive feedback). Therefore we can define the total

feedback provided by the users to a post of an influencer as T (i )
n =∫

ψ(i )
n dµN (x).

The feedback allows us to define the popularity p(i )
n update:

p(i )
n+1 = p(i )

n (t )+T (i )
n (3.7)

To close the loop, it is necessary to make ψ a function of popularity, i.e. the

more popular an influence is in the OSN, the more users it can reach. To this end,

consider the factorization of the function ψ into two contributions (ψ = ω ·θ),

where the first factor models the homophily of interactions across OSNs together

with the filtering of the platform, and the second describes the degree to which

a user likes a post7. Considering θ a decreasing function of opinion distance

also models the fact that users with very different opinions are less likely to be

convinced. So even if an influencer is very popular, she will find it difficult to

convince users who are distant in opinion.

3.6.2 Approximate Solution of the Game for Arbitraryψ and User

Distribution

The closed-loop scenario is more realistic but clearly more complicated. The

procedure in Algorithm 3 cannot be applied directly because a group of users m

cannot be tracked perfectly. At each time instant n, a certain group “splits”into a

subgroup that is influenced and updates its opinion (with probability ψ(d , p(i )
n )),

and the complementary group, which does not move. The number of subgroups

grows exponentially as 2N M . To avoid the exponential explosion, one can dis-

cretize the opinion space into B bins and keep the proportion of users from the

groups in M in each of the bins. With this simplification, it is possible to apply

Algorithm 3 and consider any ψ function and also any (discrete) distribution of

7Only the product ωθ is relevant for the total feedback since a user must be reached (Ω= 1) to
give positive feedback (Θ= 1) in the general stochastic model.
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users. The ψ function in the product form we used in our experimental setting is:

ψ(i )
n (d , p(i )

n ) =ω(d , p(i )
n )θ(d) = e

ν· d2

p(i )
n

/∑
i p(i )

n (1−d) (3.8)

only the first factor depends on the relative popularity of the given influencer,

and the parameter ν controls to what extent the visibility of an influencer decays

with the distance.

From now on, we consider two possible scenarios, the “slow-dynamics”, in

which popularity evolves considerably slower compared to opinions, and the

“fast-dynamics”, in which popularity evolves quicker and has a greater impact on

the visibility over the OSN. It is immediate to do so by appropriately normalizing

the total feedback update T (i )
n in Eq. (3.7), choosing a large enough constant.

3.6.3 The Effects of Strategic Behavior and Popularity Evolution

We developed a game for which the solution is limited to a very simplified structure.

We will briefly discuss whether this simplified strategic behavior leads to a sizeable

advantage for the players who behave strategically. To do this, we consider that

one of the players is stubborn, i.e., she only posts her target opinion x(i ;T ). We

can do this by looking at the first column and the first row of the payoff matrix P ,

which correspond respectively to a stubborn player 1 and a stubborn player 2.

We consider a Beta-shaped prejudice distribution (see gray lines in Fig 3.8a -

3.8b), skewed towards x = 0 and whose characterizing parameters a = 2 and b = 4.

Similarly to previous sections, we assume that the initial opinion coincides with

the users’ prejudice. The two players have x(i ;T ) of 0 and 1 respectively and both

have δ(i ) = 0.1. We consider two possible choices for the underlying opinion

update weights, i.e., α= 0.1,β= 0.5 (Scenario 1) and α= 0.1,β= 0.8 (Scenario 2).

In this setting, we slightly modified the dynamical behavior so that the popularity

can evolve macroscopically. For each action, we consider N = 10 posts are emitted

carrying either the target opinion x(i ;T ) or the exploratory one x(i ;E).

The results are shown in Figure 3.7 and reveal two aspects: first, the player

who has a structural advantage, i.e., is favored by the initial distribution, benefits

from the fast-dynamic settings. Second, the two players would exhibit some-

what opposite behavior, in that the favored player is harmed by long exploration
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Fig. 3.7 Player’s payoffs considering the other influencer as stubborn with x(i ;T )
n , ∀n for

Scenario 1 (top) and Scenario 2 (bottom).

phases, while the other receives better payoffs with long exploration phases. This

supports the claim that the one in a disadvantaged position would benefit from

being more “aggressive” and compromising her target opinion to get closer to the

majority opinion in the population. This is also supported by the fact that in our

experiments when looking at the Nash equilibria, we have that: a(0)
N E ≤ a(1)

N E .

Finally, from Figure 3.8, it is clear that the rapid evolution of popularity erases

competition, as the advantaged influencer is able to become more visible on the

platform (see Eq. (3.8)) than the other, and eventually attracts all users. Note the

bimodal nature of the final distribution in the slow-dynamics setting (blue curve)

and the flat nature of the distribution in the fast-dynamics setting (red curve).

3.7 Concluding Remarks

In this chapter, we have developed a game-theoretic framework to model influ-

encer competition. We have seen that even the case of an influencer in isolation is
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Fig. 3.8 Final opinion distribution at the Nash equilibria for (b) Scenario 1 (c) Scenario 2,
with different popularity growth speeds, in gray the prejudice (and initial opinion) distri-
bution of the population is reported.

particularly complex and we were able to develop a method to derive the optimal

solution only in a simplified setting. Thanks to our trellis-like approach, we have

found that the best strategy to influence a population of users is to first group

them around a common opinion and then attract all users towards the target

opinion.

Furthermore, we studied the game between two players (influencers) and

provided a tool to determine the Nash equilibria in pure strategy. We found
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that in unbalanced situations, the structurally disadvantaged influencer has to

compromise more on their opinion and adopt a more “aggressive” behavior in

order not to succumb to the other influencer. In a more complex scenario, where

each player’s popularity is updated according to feedback from regular users, the

filtering effect combined with the rapid evolution of popularity tends to erase

competition in favor of the structurally advantaged player.



Chapter 4

A SIR-like Stratified Epidemic Model

Part of the work presented in this chapter has already been published in [77]:

• Galante, F., Ravazzi, C., Garetto, M., & Leonardi, E. (2023). Planning Interven-

tions in A Controlled Pandemic: The COVID-19 Case. In IEEE Transactions

on Network Science and Engineering. doi: 10.1109/TNSE.2023.3343807

In this chapter, we present a novel SIR-like model that allows us to assess the

impact of delays in disease control measures and the impact of vaccination. We

begin the chapter with an overview of classical epidemic models. The proposed

model improves on the literature by incorporating: i) variability in mortality

rates and risk exposure between different population segments, ii) closed-loop

control mechanisms to regulate the epidemiological curve, and iii) progressive

vaccination campaigns. More precisely, differently from previous works on the

subject (see [78], [79], [80], [81], [82], [83], [84]), our modeling framework explicitly

represents the heterogeneity of risk exposure across population segments, through

the definition of a population-specific distribution fr,p (see Appendix D).

We compare simple vaccination strategies based on assigned population-

segment priorities and intervals between first and second-dose administration.

The combined aspects of rate/ICU occupancy control in feedback and vaccina-

tion prioritization are not explicitly addressed in the literature. Indeed, the two

approaches are usually studied separately. The lack of research addressing the

integration of non-pharmaceutical control in feedback and vaccination prioritiza-

tion points to a significant gap in the literature. Especially in the context of the
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COVID-19 pandemic, where vaccination campaigns were implemented alongside

control measures. This chapter aims to fill, at least in part, this gap.

This chapter opens by presenting a detailed overview of epidemic models,

from the celebrated SIR to more complex compartmental models. Section 4.3

introduces the proposed epidemic model that describes the population in terms

of their risk exposure and susceptibility to the virus. Section 4.4 presents the

control measures for the epidemics considered in this chapter, then Section 4.5

examines the control exercised over new infections, and Section 4.6 examines

the control exercised over hospital and ICU occupancy. Finally, we consider a

comprehensive scenario spanning three years and inspired by the COVID-19

pandemic in Section 4.7, to compare different strategies using our model. We

conclude the chapter with Section 4.8.

4.1 Related Work and Context

In this introductory section, we provide a comprehensive overview of the epi-

demic models from the literature, greatly extending the aspects discussed in the

Introduction for the Susceptible-Infected-Susceptible model.

4.1.1 Modeling Epidemic Spread

The so-called SIR model [85] is paradigmatic in epidemiology and has been widely

adopted to model infectious diseases for which recovered individuals acquire

lasting or at least sufficiently durable immunity. Its complementary model, the SIS,

which we learned about in the Introduction, is used when exposure to the virus

does not confer immunity. In particular, the SIR model and its extensions have

proven useful in modeling the dynamics of epidemic diseases such as seasonal

influenza [86] and swine flue [87], and marked a significant milestone in utilizing

mathematical models to understand disease dynamics and forecast the spread of

epidemics. Since the outbreak of COVID-19 in late 2019, it has been an effective

tool for studying the spread of the novel coronavirus. This model is the prototype

of a broader class of models that partition the population according to disease

status, called compartmental models [88]. One of the keys to the success of the

SIR model is its simplicity, considering only three compartments: Susceptible S(t ),
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Infected I (t ) and Removed R(t ), whose dynamics are described by the following

system of ordinary differential equations:

dS(t )

d t
=−β · S(t ) · I (t )

N
d I (t )

d t
=β · S(t ) · I (t )

N
−γ · I (t ) (4.1)

dR(t )

d t
= γ · I (t )

N in the system of equations represents the total number of individuals in the

population. β is a fundamental parameter and indicates the average number of

contacts per person per time. This factor multiplies the term S(t )I (t )
N , which is

linked with the probability of a virus transmission event (i.e., an infectious individ-

ual infects a susceptible one), assuming homogeneous mixing of the population.

The parameter γ indicates the rate at which an individual exits the infectious state,

either by recovering from the disease or dying. These compartmental models are

better represented by block diagrams which highlight the transitions among states.

For example, Figure 4.1 depicts the SIR model (A) and some of its extensions (B-C)

which we discuss in the following.

However, the model’s simplicity comes at the expense of oversimplifying the

complexities of the disease processes [89]. For example, it assumes (similarly to

the SIS) a homogeneous mixing of individuals. Therefore, it does not consider the

correlation between daily contacts and other specific characteristics of the pop-

ulation (e.g., age). In [90], age-specific contact patterns are derived for different

countries, which allows for a more accurate description of the population’s inter-

actions. The population is no longer considered uniform but grouped according

to the individual’s age. Moreover, the population is assumed to be closed, with

no in-migration or out-migration. Accounting for this would not be complicated.

It is sufficient to have information regarding a particular population’s birth and

death rates, together with immigration (individuals coming to the population

from another population) and emigration information. In most cases, these ef-

fects almost balance out, leaving the overall number of individuals approximately

the same. Indeed, the closed population assumption is reasonable as long as

the time horizon is not too long (a few years). In addition, the SIR model does

not account for the period during which an individual has been exposed to the

virus but does not yet have sufficient infectious levels for transmission to others.
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A

B

C

Fig. 4.1 Diagrams highlighting the transitions among compartments for the SIR, SEIR, and
SIRD models introduced in this section.

A straightforward extension is to incorporate an additional compartment, usu-

ally denoted with E (standing for Exposed), which defines what is known as the

SEIR model [91], Figure 4.1 (B). This only represents a delay in the dynamics for

those individuals who have been in contact with the virus resulting in an infection

and will, after 1
δ

units of time on average, become infectious for others. Another

straightforward extension of the basic SIR model is is to distinguish in the Removed

compartment between those who die as a result of the virus (Deaths) and those

who acquire immunity against the virus (iMmune). Thus the model is referred to

as SIMD, Figure 4.1 (B). It is sometimes called SIRD in the literature, depending

on the convention used to indicate immune individuals, i.e., M from iMmune

or R from Removed. The model extension is relatively simple and only relies on

knowing the probability p with which an infected individual dies after infection.

As it is clear from the block diagram (panel C in Fig. 4.1), this is achieved by simply

multiplying the rates by the probability of dying p. Models that account for both

aspects have long been used in the literature. Much of the most recent works on

COVID-19 [92] [93] use SIR-like models and even add additional compartments,



4.1 Related Work and Context | 103

such as one for asymptomatic individuals, i.e., infected individuals who do not

manifest any COVID-19-specific symptoms, and are potentially more dangerous

than symptomatic individuals who may reduce their contacts rate due to the

insurgence of symptoms.

Fig. 4.2 Schematic representation of the SIDARTHE model, similar to that presented
in [94]. We did not report the transition rates as we do not show the model’s equations,
the word description over the arrows provides more intuition.

One of the most comprehensive models recently appeared in the literature to

model COVID-19 [94] considers eight states that distinguish between detected and

undetected infectious cases, varying severity of illness (symptomatic and asymp-

tomatic cases), non-life-threatening cases and potentially life-threatening cases

requiring ICU admission. It is called the SIDARTHE model, and we present its

block diagram in Figure 4.2. The states are indeed susceptible (S), infected (I), diag-

nosed (D, which represents detected asymptomatic cases ), ailing (A, more severe,

i.e., symptomatic, cases which have not been detected), recognized (R, symp-

tomatic cases detected), threatened (T, acute symptomatic detected), healed (H)

and extinct (E, death as a result of severe infection). This model has been purpose-

fully developed to capture the peculiarities of COVID-19 (e.g., the distinction made

between detected and undetected cases) and fits well data related to COVID-19
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spread in Italy. With respect to the model we present in the next section, this ap-

proach does not consider heterogeneity in the population and the epidemiological

states are specific to COVID-19, our approach aims to be more general.

Another fundamental aspect that has not been considered in the models

above is the effect of vaccinations on the dynamics. In the case of COVID-19,

vaccines started to become available towards the end of 2020, and great debate

sparked around how vaccines should be prioritized. Our model also aims to

answer this question and provide valuable insights into the possible trade-offs the

decision-maker could face. Clearly, in the literature, there already exist models

that consider vaccinations. For example [95] distinguishes between vaccinated

who are protected by the vaccine, vaccinated without protection against COVID-

19, and unvaccinated because of a positive serotest (note that upon recovery,

infected individuals acquire immunity towards the virus) or refusal to vaccinate

(i.e., no-vax). We consider these aspects in our model in one of its extensions

presented in the next section and depicted in Figure 4.6.

A

B

Fig. 4.3 Schematic representation of models with reinfections.

One final observation: the SIR (and SIR-like) underlying assumption of long-

lasting immunity does not apply to all viruses. In the case of SARS-CoV-2, it is not

yet clear how long immunity to the virus will last. Townsend et al. [96] claim that

“reinfection by SARS-CoV-2 under endemic conditions would likely occur between

3 months and 5 years after peak antibody response”. The susceptible-infected-
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susceptible (SIS, see block diagram in Figure 4.3 (B)) model is the most simple

model when reinfection comes into play which we have encountered and studied

in the Introduction. The SIS model assumes that no protection against the virus is

acquired upon infection and, at the end of the acute phase, an individual could be

immediately be reinfected again. The SIMDS model, which is a refined version

of the SIS model and extends the SIMD model, encompasses the possibility of a

temporary immunity against the virus. This is captured by the M state (iMmune),

where individuals do not contract the virus due to the obtained immunity. After an

exponential time with parameterα, an immune individual loses its protection and

returns to the susceptible state. This framework seems to be more appropriate

in the context of COVID-19 since it appears that the acquired immunity is only

temporary.

4.1.2 Control via Non-Pharmaceutical Interventions

For the mode proposed later in this chapter, we assume a central planner per-

spective, where the government can impose control measures on the population

for the overall benefit of public health. Several papers published in the 1970s,

such as [97–101], focused on studying optimal control problems in the context

of the classical SIR model. Building upon these foundations, subsequent works

like [102] and [103] expanded on the research and extended the models. These

studies specifically addressed the challenge of minimizing the size of an epidemic

outbreak and the cost of interventions. The control mechanisms explored in these

models included regulating social distancing levels and implementing measures

like isolation. These control strategies were also subject to rate constraints, en-

suring the rate remained below a specified threshold. Papers on optimal control

problems [104, 105] consider the minimization of a composite function taking into

account the epidemic cost, related to the size of the outbreak or number of deaths,

and the economic cost. The control perspective has been widely embraced in

recent literature regarding the COVID-19 pandemic. Consequently, there has been

considerable discussion about the effects of lockdown measures on healthcare,

society, and the economy. The problem of minimizing the cost of a lockdown

under the only constraint of maintaining the infection below a certain threshold

to cope with ICU congestion problems is also considered in [106].
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There is a growing recognition of the need to proactively design simple and ef-

fective control measures to combat and mitigate the spread of infectious diseases

in the possibility of future pandemics. We refer the readers to [107], which offers

an overview of various mathematical models for epidemic processes, encompass-

ing traditional group models with no assumed graph structures, network-based

models, stability analysis, parameter estimation methods, and simulation models.

4.1.3 Control via Vaccination

The paper [108] focuses on the optimal control of vaccination dynamics during an

influenza epidemic. It provides insights into the design of vaccination strategies

to effectively control the spread of the disease, considering factors such as lim-

ited vaccine supply and variations in transmission and severity across different

groups. In [109], optimal vaccination and treatment strategies are studied in a

multi-group epidemic model. The analysis explores the trade-offs between vac-

cination coverage and treatment allocation to maximize overall disease control,

considering the interactions between different population groups. Finally, [110]

explores the optimal timing and allocation of vaccinations based on age groups to

maximize the effectiveness of the vaccination campaign and minimize the spread

of infectious diseases. The research conducted in [111] and [112] contributes to

the field by addressing the challenge of resource allocation for vaccination efforts

in the context of epidemic control. By utilizing optimization techniques, these

studies provide insights into the most effective strategies for targeting specific

nodes in a contact network or groups within a population, considering both the

budgetary constraints and the dynamics of disease transmission.

4.2 Notation

In this chapter, we use a subscript to indicate the socio-demographic class to

which a particular variable refers. The superscript is used to convey additional

information, such as a specific characteristic of the symbol or to indicate that it

refers to the minimum/maximum/optimal value. The time is continuous and is

denoted with t between brackets. Since the model we present consists of several

compartments (and depends on many parameters), Table 4.1 is not intended
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to be an exhaustive summary of all symbols, but rather a collection of the most

frequently used ones.

Table 4.1 Notation Summary Table

Symbol Description

r Risk exposure to the virus
p Probability of death due to the virus
fr,p Joint probability distribution describing socio-demographic groups
N Size of the population, number of individuals
Sr,p (t ) Susceptible individuals of class (r, p)
Ir,p (t ) Infected individuals of class (r, p)
Mr,p (t ) Immune individuals of class (r, p)
Hr,p (t ) Hospitalized individuals of class (r, p)
Tr,p (t ) Under intensive treatment individuals of class (r, p)
Dr,p (t ) Death individuals of class (r, p)
σ((t ) Exogenous factors in the infection strength
λU (t ) Uncontrolled rate of infection
µ Reinfection rate
γ Removal (recovery/death) rate
φ Hospital discharge rate
τ ICU discharge rate

pC1,C2
r,p Probability of moving from compartment C1 to C2

Ĥ Number of available hospital beds
T̂ Number of available ICUs
R0 Basic reproduction number
∆ Time between two vaccines administration
ζ Vaccine administration rate
VEx Vaccine efficacy of the x-th dose
V xm

r,p Vaccinated individuals in (r, p) who gained protection after the x-th dose
V xs

r,p Vaccinated individuals in (r, p) who are still susceptible after the x-th dose
C v

r,p Individuals in compartment C who got infected after vaccination
ρ(t ) Control parameter
λ(t ) (Controlled) intensity of new infections
C(ρ) Economic cost
tmax Total time horizon

4.3 Model Description

The epidemic model we propose aims to provide a flexible framework that can be

applied to a wide range of viruses. We use COVID-19 as a use case, also due to the

large data availability (see Appendix D). The proposed model considers different

disease severity levels, differentiating between hospitalized individuals (H) and
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those who need to be under intensive care (T ). It considers the possibility of losing

immunity, with a rate of µ, and, in its most general version (see Section 4.3.2),

explicitly models the vaccination process, distinguishing between individuals who

have undergone partial and complete vaccination.

Another distinguishing feature of our model lies in the distribution fr,p , which

characterizes population heterogeneity relating the risk exposure r and the mor-

tality rate p. Furthermore, our modeling framework describes a pandemic in a

tightly controlled scenario in which non-pharmaceutical (e.g., social distancing,

lockdown) and pharmaceutical (i.e., vaccination) interventions are in place. This

better describes an ongoing pandemic scenario.

4.3.1 Base Model

We start by introducing the base version of our compartmental model for the

spread of a disease in a non-homogeneous population of size N without any

intervention (either pharmaceutical or non-pharmaceutical). Socio-demographic

groups are described by the joint distribution fr,p of the risk exposure r , corre-

sponding to the contact rate of individuals, and their probability of death p.

We consider six epidemiological states. Let Sr,p (t), Ir,p (t), Mr,p (t), Hr,p (t),

Tr,p (t ), and Dr,p (t ) denote the number of individuals characterized by (r, p) who

at time t are susceptible, infected, immune, hospitalized, under intensive treat-

ment and dead, respectively. The system presented below can be derived from

stochastic processes, as in [113]. Thus, there is an underlying agent-based model

in which all states have a statistical interpretation. In particular, the time an indi-

vidual spends in the infected, hospitalized, intensive care unit and immune com-

partments is exponentially distributed with mean values 1/γ, 1/φ, 1/τ, and 1/µ,

respectively. Figure 4.4 visually represents the transitions between different com-

partments, which can be described as follows:

• Susceptible to Infected: Susceptible individuals (S) become Infected (I)

when they come in contact with infected individuals. The corresponding

transition rate depends on the risk exposure r (contact rate) and the number

of infected individuals in the population.
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• Infected to Immune: Infected individuals (I) can recover from the disease

and acquire immunity, transitioning to the iMmune state (M). The recovery

rate γ governs the transition and depends on the average infection duration

before recovery.

• Infected to Hospitalized: Some Infected individuals (I) may develop severe

symptoms and require Hospitalization (H). Various factors influence the

transition rate, such as the capacity of the health care system, the proportion

of infected individuals requiring hospitalization, and also disease severity

in relation to the fragility of individuals.

• Hospitalized to Under Intensive Treatment: Hospitalized individuals (H)

who require intensive care Treatment may be transferred to the intensive

therapy state (T). The corresponding rate depends on factors such as the

availability of intensive care units and the duration of hospitalization before

the transfer to ICU.

• Under Intensive Treatment to Deceased: Unfortunately, some infected in-

dividuals under intensive Treatment (T) may succumb to the disease and

move to the Deceased state (D).

In Appendix F we consider a straightforward extension of the model, showing

how direct transitions I → D and H → D can be added to the model.

The following set of ordinary differential equations describes the dynamics:

Ṡr,p (t ) =−σ(t )

( ∑
r ′,p ′

r ′Ir ′,p ′(t )

)
r Sr,p (t )∑

r ′,p ′ r ′N fr ′,p ′
+µM(t )

İr,p (t ) =σ(t )

( ∑
r ′,p ′

r ′Ir ′,p ′(t )

)
r Sr,p (t )∑

r ′,p ′ r ′N fr ′,p ′
−γIr,p (t )

Ḣr,p (t ) = γp I H
r,p Ir,p (t )−φHr,p (t ) (4.2)

Ṫr,p (t ) =φp HT
r,p Hr,p (t )−τTr,p (t )

Ḋr,p (t ) = τpT D
r,p (t )Tr,p (t )

Ṁr,p (t ) = γ(1−p I H
r,p )Ir,p (t )+φ(1−p HT

r,p )Hr,p (t )+τ(1−pT D
r,p (t ))Tr,p (t )−µM(t )
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where σ(t ) ≥ 0 represents all exogenous (uncontrolled) factors changing the infec-

tion strength (e.g., seasonal effects). In this chapter, we will assume for simplicity

that σ(t ) =σ is constant.

Sr,p

Population class r,p

Population class r',p'

Fig. 4.4 Schematic representation of the proposed model.

The total (uncontrolled) rate of new infections is equal to:

λU (t ) =σ(t )

(∑
r,p

r Ir,p (t )

) ∑
r,p r Sr,p (t )∑
r,p r N fr,p

.

The total number of susceptible people is S(t) =∑
r,p Sr,p (t). Similarly, we intro-

duce the total number of people in the other compartments: I (t ), H (t ), T (t ), M(t ),

D(t ). Probabilities p I H
r,p , p HT

r,p and pT D
r,p (t ) denote the probability that an individual

of type (r, p) moves between the two compartments indicated in the superscript.

We make probability pT D
r,p (t ) depend on T (t ), i.e., on the instantaneous total num-

ber of people in ICUs since the death probability dramatically increases when

ICUs are saturated. Denoted with T̂ the number of available ICUs, when T (t ) ≤ T̂ ,

the overall death probability of an infected person is assumed to be equal to p:

p I H
r,p ·p HT

r,p · p̂T D
r,p = p if T (t ) ≤ T̂ , (4.3)

where p̂T D
r,p is the probability to transit from state T to state D in ‘normal’ condi-

tions, i.e., when T (t ) ≤ T̂ . Therefore, pT D
r,p (t ) = p̂T D

r,p as long as T (t ) ≤ T̂ .
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When T (t) > T̂ , we assume that the death probability of people who cannot

receive treatment is increased by a factor θ, hence pT D
r,p (t ) is dynamically adjusted

as follows:

pT D
r,p (t ) = p̂T D

r,p
T̂

T (t )
+min{1,θ · p̂T D

r,p }
T (t )− T̂

T (t )
. (4.4)

We consider the case in which individuals might lose immunity with rate µ,

thus becoming susceptible again. It should be noticed that the mass preservation

Ṡr,p (t )+ İr,p (t )+ Ṁr,p (t )+ Ḣr,p (t )+ Ṫr,p (t )+ Ḋr,p (t ) = 0 holds for all t ≥ 0.

The presented model is an extension of the standard SIR model. This can

become more evident by looking at the block diagram in Figure 4.4. To make it

even more straightforward, it is possible to rewrite the first two equations in the

system of equations (F.1) defining βr↔r ′ := σ(t ) r ′r∑
r ′′,p′′ r ′′N fr ′′,p′′

:

Ṡr,p (t ) =− ∑
r ′,p ′

βr↔r ′ Ir ′,p ′(t )Sr,p (t )+µM(t )

İr,p (t ) = ∑
r ′,p ′

βr↔r ′ Ir ′,p ′(t )Sr,p (t )−γIr,p (t )
(4.5)

where the newly introduced parameter βr↔r ′ represents the pattern of inter-

action between population segments with risk exposure r and r ′.

References as [114, 115, 113, 116, 117] explore SIR-like models with various

extensions, including population heterogeneity, additional compartments, and

considerations of specific epidemics like COVID-19. It is worth noting that while

it can be expected that some individuals will naturally reduce their interactions

out of fear of illness, our model does not explicitly incorporate this behavior as

explored in [118] and [119]. Additionally, we do not consider the concept of “cost

of anarchy” as explored in [120]. Unlike [121], our model does not distinguish

between infected individuals who remain undetected and those who are detected,

nor does it consider this distinction for those who recover. Nonetheless, our

model introduces several innovative features, summarized in the following three

remarks.

Remark 7 (Heterogeneity of population in terms of fatality rate and risk exposure).

At the country level, there are substantial differences in population characteristics,

including age distribution, general state of health, and frequency of interpersonal

interactions. These differences in population contact patterns can potentially in-
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fluence disease transmission and accelerate the outbreak. Unique distributions,

denoted as fr,p , for different countries were derived from data on contact patterns

and case fatality rates. For more information on how these distributions were

determined and to see several examples (e.g. Italy, China), see Appendix D.

The continuous model used in this study can be interpreted as a mean field

approximation of an epidemic model that operates over a dynamic network [122–

124]. According to this interpretation, the risk exposure parameter represents

the average number of contacts (per time unit) an individual experiences with

others over a fixed time window. Therefore it can be seen as the degree of the

corresponding node within a network, in which nodes represent individuals, and

the edges represent the contacts between them. Note that pairs of individuals

establishing contacts are randomly selected, as for the configuration model. This

approach allows us to understand the dynamics of epidemics in terms of the

interactions between individuals in a network setting.

Remark 8 (Quadratic dependence on the risk exposure r ). Note that individuals

with large r , i.e., pronounced social attitudes, represent at the same time the com-

ponent of the population with the highest risk of infection and the highest chance

of transmitting the disease. Therefore, the “impact” of every individual to the spread

of the infection depends quadratically on r .

Remark 9 (Edge-perspective analysis). Defining Ĩ (t ) =∑
r,p r Ir,p (t ) as the number

of infected contacts, multiplying the first and second equation in (4.2) by r and

summing over r and p, we obtain ˙̃I (t ) = γ (R(t )−1) Ĩ (t ) where R(t ) = σ
∑

r,p r 2Sr,p (t )
γ

∑
r,p r N fr,p

.

At early stages of the epidemic, we can approximate Sr,p (t) ≈ N fr,p (see Re-

mark 10), obtaining: ˙̃I (t) = γ (R0 −1) Ĩ (t) where we define the related basic re-

production number R0 = σ
γ
E[r 2]/E[r ]. As it is clear from the system of equations

describing the evolution of the state variables, an edge-perspective analysis provides

a fundamental tool to study the dynamics as a natural generalization of the SIR

model.

The system of equations (4.2) can be greatly simplified when Sr,p (t) ≈ N fr,p ,

and this is instrumental for our subsequent analysis. Indeed:

Remark 10. Observe that whenever we can find a time interval [0,T ] in which

we have
Sr,p (t )
N fr,p

≈ 1 ∀r, p, t ∈ [0,T ] , then (4.2) can be dramatically simplified (i.e.,
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linearized) by replacing Sr,p (t) with N fr,p on the r.h.s. In particular, in such a

case we can set: λU (t) ≈ λU (t) := σ(t)
(∑

r,p r Ir,p (t )
)
. Now, since by construction

we have Sr,p (t ) ≤ N fr,p ∀t ,r, pλU (t ) ≤λU (t ) ∀t and Sr,p (0) = N fr,p ∀r, p, denoted

with E[r ] =∑
r,p r fr,p the average risk exposure, from (4.2) we get

Sr,p (t ) =N fr,p −
∫t

0
λU (τ)

r Sr,p (τ)

NE[r ]
dτ+

∫t

0
µM(τ)dτ

≥N fr,p

[
1−

∫t

0
λU (τ)

r

NE[r ]
dτ

]
+

∫t

0
µM(τ)dτ

Therefore, as long as it holds:

max
r

∫t

0
λU (τ)

r

NE[r ]
dτ≪ 1

we can approximate Sr,p with N fr,p for every (r, p). Lastly, observe that
∫t

0 λU (τ) r
NE[r ] dτ is

an upper bound to the fraction of individuals in class (r, p) who got infected in [0, t ).
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Fig. 4.5 Evolution of S(t), I (t), M(t), D(t) in an uncontrolled scenario with R0 = 2 (left
plot), or R0 = 1.5 (right plot). Comparison between exact solution (thick lines) according
to (4.2), and approximate solution with Sr,p (t ) = N fr,p (thin lines).

To check numerically the limits of the validity of approximation
Sr,p (t )
N fr,p

≈ 1, we

consider our reference scenario (see Table 4.3) related to the Italian population

with N = 60 million, letting the epidemic evolve uncontrolled. In Fig. 4.5 we

compare the exact solution of (4.2) (thick line) with the approximate solution

in which Sr,p (t) remains fixed and equal to N fr,p (thin lines). As expected, I (t),

M(t ), D(t ) grow exponentially in the approximate solution (note the log vertical

scale), matching the exact solution over an initial time window in which the total
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number of infected, roughly equal to the total number of individuals M(t) who

have recovered, is comparatively small with respect to the total population N

(say smaller than 5%). Indeed, when M(t) becomes large, the number S(t) of

susceptible starts to drop (roughly after 100 days, with R0 = 2, or after 200 days,

with R0 = 1.5), and the two solutions deviate from each other. Indeed, in the exact

system, the epidemic eventually dies out due to herd immunity. Allowing the

uncontrolled spread of the virus is not sustainable and, in the case of COVID-19,

has not been considered a viable option by any developed country. Therefore, this

regime is not of interest, the rate of new infections should be controlled and this

makes our assumption reasonable.

4.3.2 Model with Vaccinations

In addition to non-pharmaceutical interventions, vaccination campaigns are a

critical measure to contain the virus. Vaccines are assumed to guarantee par-

tial protection. According to classification in [125], we consider two efficacy

descriptors: reduction in the probability of becoming infected (vaccine efficacy

on susceptibility) and reduction in the pathogenicity (vaccine efficacy to prevent

or diminish symptoms). For simplicity, we neglect the vaccine response transient,

and we consider a single type of vaccine administered in two doses separated

by a fixed interval of ∆ days. We assume that the administration rate of either

dose is fixed, equal to ξ, so the entire population can be potentially vaccinated

(with two doses) after Tv days. Hence we set ξ= N /(Tv −∆). Let VE1,VE2 be the

vaccine efficacy on susceptibility after one or two doses, respectively. Moreover,

we assume that mortality is reduced by a factor qpost after a single dose of vaccine.

We assume that N novax individuals refuse vaccination, uniformly distributed

over the population. Their state evolution is still described by equations (4.2).

Let Snovax
r,p (t) be the number of no-vax people in class (r, p) still susceptible at

time t .

We assume the individuals do not return to the susceptible state after infection

or vaccination. This extension is easy, we omit it for brevity.

Vaccinations require the addition of a few more compartments: Let V 1m
r,p (t ) be

the number of people in class (r, p) who have received just the first dose, which is

already effective against the virus, i.e., they can no longer be infected. Let V 1s
r,p (t )
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be the number of people in class (r, p) still susceptible after receiving just the first

dose. Let V 2m
r,p (t ) be the number of people in class (r, p) who have received both

doses and are immune. At last, let V 2s
r,p (t) be the number of people in class (r, p)

who have received both doses but are still susceptible. Due to strict prioritization

among classes, a given class (r, p) receives the first dose at full rate ξ only within a

specific time window: [T min
r,p ,T max

r,p ] (to be specified later):

ξ(1)
r,p (t ) =


0 t <T min

r,p

ξ T min
r,p ≤ t <T max

r,p

0 t ≥T max
r,p

Let V 1
r,p (t) = ∫t

t−∆ξ
(1)
r,p (t)dt be the number of people in class (r, p) who have

received just the first dose of vaccine at time t . The second dose of vaccine is

administered at a rate:

ξ(2)
r,p (t ) =

V 1s
r,p (t )+V 1m

r,p (t )

V 1
r,p (t )

ξ(1)
r,p (t −∆)

only to individuals who have received the first dose and have not been infected in

the meantime. At last, let

Ŝ(t ) =∑
r,p r (Sr,p (t )+V 1s

r,p (t )+V 2s
r,p (t )+Snovax

r,p (t ))

be the total number of susceptible edges at time t .

Note that λ(t ) = σ
ρ(t )

(∑
r,p r Ir,p (t )

) Ŝ(t )
E[r ]N . Since people who receive at least one

dose are less likely to die, we need to keep track of them, hence vaccinated people

who get infected traverse a separate chain of compartments I v
r,p (t ), H v

r,p (t ),T v
r,p (t )

with respect to those who do not receive any dose (see Figure 4.6). Dynamics

governing the evolution of H v
r,p (t ),T v

r,p (t ) are analogous to those in (4.2) with the

only difference that pT D
r,p (t ) is replaced by pT D

r,p (t )/qpost. The vaccination window

for each class is computed based on the class priority: T (1),max
r,p = inf{t : Sr,p (t ) = 0};

T (1),min
r,p = max(r ′,p ′)∈HP (r,p){T

max
r ′,p ′ }, where HP (r, p) is the set of classes with higher

priority than (r, p).
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The new vaccination dynamics is an extension of (4.2), described by the fol-

lowing system of equations:

Ṡr,p (t ) =−λ(t )
r Sr,p (t )

Ŝ(t )
−ξ(1)

r,p (t )

İr,p (t ) =λ(t )
r Sr,p (t )

Ŝ(t )
−γIr,p (t )

Ḣr,p (t ) = γp I H
r,p Ir,p (t )−φHr,p (t )

Ṫr,p (t ) =φp HT
r,p Hr,p (t )−τTr,p (t )

İ v
r,p (t ) =λ(t )

r (V 1s
r,p +V 2s

r,p )

Ŝ(t )
−γI v

r,p (t )

Ḣ v
r,p (t ) = γp I H

r,p I v
r,p (t )−φH v

r,p (t )

Ṫ v
r,p (t ) =φp HT

r,p H v
r,p (t )−τT v

r,p (t )

Ṁr,p (t ) = γ(1−p I H
r,p )(Ir,p (t )+ I v

r,p (t ))

+φ(1−p HT
r,p )(Hr,p (t )+H v

r,p (t )) (4.6)

+τ
(
(1−pT D

r,p (t ))Tr,p (t )+ (1−pT D
r,p (t )/qpost )T v

r,p (t )
)

V̇ 1m
r,p (t ) = ξ(1)

r,p (t )VE1 −ξ(2)
r,p (t )

V 1m
r,p (t )

V 1s
r,p (t )+V 1m

r,p (t )

V̇ 1s
r,p (t ) = (1−VE1)ξ(1)

r,p −λ(t )
r V 1s

r,p (t )

Ŝ(t )
−

ξ(2)
r,p (t )V 1s

r,p (t )

V 1s
r,p (t )+V 1m

r,p (t )

V̇ 2m
r,p (t ) = ξ(2)

r,p

V 1m
r,p (t )+ VE2−VE1

1−VE1 V 1s
r,p (t )

V 1s
r,p (t )+V 1m

r,p (t )

V̇ 2s
r,p (t ) = ξ(2)

r,p
1−VE2

1−VE1

V 1s
r,p (t )

V 1s
r,p (t )+V 1m

r,p (t )
−λ(t )

r V 2s
r,p (t )

Ŝ(t )

Ḋr,p (t ) = τpT D
r,p (t )

(
Tr,p (t )+

T v
r,p (t )

qpost

+T no-vax
r,p (t )

)

As a final consideration, we emphasize that the rate ξ is typically limited by the

capacity of both the vaccine production and distribution infrastructure. However,

to increase the effectiveness of the vaccination campaign, the vaccination rate

must always be as high as possible under the above conditions.
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Population class r,p
No-vax in class r,p

Fig. 4.6 Schematic representation of the proposed model with vaccinations, Eq. (4.6). For
ease of representation we show the dynamics of only one class (r, p) we remark that the
dynamics of different classes are intertwined both through the infection rate, and the

process of vaccinations prioritization. We defined χ := V 1m
r,p (t )

V 1s
r,p (t )+V 1m

r,p (t )
.

4.4 Epidemic Control

To mitigate the epidemic, several interventions are possible: (a) investments in

the public health system, e.g., increasing the available number of ICUs T̂ and

hospitalization facilities Ĥ , (b) non-pharmaceutical interventions, i.e., public

health measures preventing and/or controlling virus transmission (Section 4.4.1);

(c) vaccination that aims to reduce both the transmission and clinical severity of

the disease (Section 4.4.2).

Our analysis will focus on quantifying the cost and the impact of different

control strategies that jointly exploit non-pharmaceutical interventions and vac-

cination. In this section, first, we formalize the control problems in their most

general formulation and then we introduce our simple strategies. Indeed, our

goal is not to develop a mathematical theory of optimal control for epidemics

but to provide a practical framework that informs public policy in controlling the

spread of epidemics. We intend to offer decision-makers a means to compare and
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evaluate a set of feasible controls, allowing them to make informed choices based

on the outcomes and trade-offs associated with different control strategies. We

will discuss optimal control approaches in Appendix E

4.4.1 Control via Non-Pharmaceutical Interventions

Non-pharmaceutical interventions are measures aimed at controlling the virus by

managing certain behaviors in the population, such as using PPE (e.g. masks), im-

plementing lockdowns, and promoting telework, to name a few. In our framework,

we do not model the effects of social distancing and other countermeasures at a

microscopic (class-specific) level. Instead, we summarize their effects by a single

control parameter ρ(t ) that scales down the overall rate of potential (uncontrolled)

new infections.

Specifically, we include the control in the model described by (4.2) by setting

the actual intensity of new infections λ(t) equal to λU (t )
ρ(t ) , leading to an effective

reproduction number:

Rρ(t ) = σ

ρ(t )γ

∑
r,p r 2Sr,p (t )∑

r,p N r fr,p
.

In this scenario, we will distinguish two main contributions to the cost: the

social and the economic cost. It is crucial to note that the distinction between

social and economic costs is not always clear-cut. Lockdown measures, while

aimed at minimizing the social cost of the pandemic in terms of reducing deaths,

have economic repercussions. Similarly, the economic cost of the pandemic, such

as job losses and reduced economic activity, has social implications. Moreover, for

technical reasons in some cases, we add a third component related to healthcare

stress to the cost. Accordingly, we define:

(a) the social cost, evaluated in terms of the cumulative number of deaths [126];

(b) the stress on the healthcare system induced by the disease’s severity;

(c) the economic cost C= C(ρ), since widespread lockdowns cause a massive

negative impact on the economy.
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In Figure 4.7 we show some examples of economic costs as a function of the

control parameter ρ. The economic costs are assumed monotone increasing with

C(1) = 0. In the optimal control formulation (see [127] and reference therein) a

1 10

1

10

Control ρ

E
co

n
o

m
ic

co
st
C

(ρ
) 10(1−1/ρ)2

0.9(ρ−1)
0.1(ρ−1)2

Fig. 4.7 Examples of economic costs as a function of control parameter

terminal cost is generally defined by taking a linear combination of the above

costs and the policymaker aims at solving the following optimization problem:

ρ⋆(tmax) = argmin
ρ:[0,tmax]→[1,∞)

κ1
D(tmax)

N
+

∫tmax

0

[
κ2

(
T (t )

N

)ζ
+κ3C(ρ(t ))

]
dt

s.t. dynamics in (4.2) (4.7)

where the exponent ζ is typically assumed greater than 1, while κ1,κ2,κ3 ≥ 0 are

the parameters that weigh the social, the healthcare stress and the economic costs

in the objective function, according to how much one values one over the others.

Similarly to [128], we consider two simple control strategies:

Rate Control (Control on New Infections). The rate of new infections is tightly con-

trolled and kept at a certain desired level λC . The main goal is to avoid congestion

in the sanitary system by controlling the circulation of the virus.

HT Control (Control on Hospitalizations and intensive Therapy occupancy). It

directly uses the current level of hospitalization/intensive therapy occupancy as

a control signal. Such a signal is readily available and less noisy than the rate of

new infections. However, it may introduce a delay in the control loop, which may

endanger system stability.



120 | A SIR-like Stratified Epidemic Model

4.4.2 Control via Vaccination Prioritization

The vaccination policy involves assigning a priority to each (r, p) class therefore

determining which classes should be given priority.

Remark 11. Any possible prioritization (permutation) π(r,p) of classes (r, p) cor-

responds to a different vaccination policy, The optimal control problem defined

in (4.7) can be easily extended to account for vaccinations as follows:

(ρ⋆(tmax),π∗
(r,p)) = argmin

ρ:[0,tmax]→[1,∞)
π(r,p)

κ1
D(tmax)

N
+

∫tmax

0

[
κ2

(
T (t )

N

)ζ
+κ3C(ρ(t ))

]
dt

s.t. dynamics in (4.6)

Again, we consider two simple vaccination policies the Most Vulnerable First

(MVF) and the Most Social First (MSF):

MVF Policy (Most Vulnerable First). The MVF policy aims to protect the most

clinically vulnerable people, with the goal of minimizing the number of deaths. It

prioritizes classes with a higher value of p. For the same p, classes with higher r are

vaccinated first.

MSF Policy (Most Social First). The MSF policy prioritizes people with a high

contact rate, aiming to minimize the force of infection. Classes with a higher value

of r are prioritized. For the same r , classes with higher p are vaccinated first.

The MSF policy is similar in spirit to the degree-based vaccination policy in

contact networks [129], which targets the high-degree nodes first before moving

on to lower-degree nodes. The interval ∆ is another design parameter: prolonging

the interval between doses, say from 3 to 12 weeks, might be a sensible choice

under limited vaccine supplies, de facto minimizing hospitalization and deaths,

especially when the efficacy of the first dose is sufficiently high.

4.5 Control on New Infections

In this section, we show that if function C(·) is convex, we can devise a simple

strategy to minimize the overall economic cost. As already observed, a key role in
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the epidemic dynamics is played by Ĩ (t ), which, roughly speaking, represents the

number of potentially infected contacts (see Remark 9). Thus, a sensible strategy

is to control such a quantity. In our derivations, we assume that Sr,p (t) ≈ N fr,p ,

see Remark 10.

This assumption allows for simplifications in the mathematical modeling and

analysis. Indeed, given the definition of Ĩ (t), multiplying the second equation

in (4.2) by r and summing over r and p, we get:

˙̃I (t ) = γ
(

σ
ρ(t )γ

∑
r,p r 2Sr,p (t )∑

r,p N r fr,p
−1

)
Ĩ (t ).

under the assumption Sr,p (t) ≈ N fr,p , and defining Rρ(t) = R0
ρ(t ) , we obtain the

equation:
˙̃I (t ) = γ

(
R0

ρ(t )
−1

)
Ĩ (t ) = γ(

Rρ(t )−1
)

Ĩ (t ). (4.8)

4.5.1 Minimizing the Economic Cost in a Fixed Window

Fixing a target value Ĩ⋆ for Ĩ (t), to be met within a prefixed a time horizon tmax,

Proposition 3 establishes optimality conditions.

Proposition 3. Let C(ρ) be a monotone increasing and convex function in ρ ∈
[1,+∞] and assume Sr,p (t) ≈ N fr,p . Among all trajectories, such that Ĩ (tmax) =∑

r,p r Ir,p (tmax) = Ĩ⋆, the one that minimizes the overall economic cost in [0, tmax],

is the one corresponding to:

Rρ(t ) = 1+ 1

γ
log

(
Ĩ⋆/Ĩ (0)

) ∀t ∈ [0, tmax],

and,

ρ(t ) = σ

γ

E[r 2]

E[r ]

[
1+ 1

γtmax
log

(
Ĩ⋆/Ĩ (0)

)]−1

∀t ∈ [0, tmax].

Proof. Consider Eq. (4.8) and note that the unique solution of the associated

Cauchy problem with initial condition Ĩ (0) is given by:

Ĩ (t ) = Ĩ (0)exp

(
γ

∫t

0

(
Rρ(τ)−1

)
dτ

)
.
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Imposing the constraint Ĩ (tmax) = Ĩ⋆ leads to:

1

tmax

∫tmax

0
Rρ(τ)dτ= 1+ 1

γ tmax
log

(
Ĩ⋆/Ĩ (0)

)
. (4.9)

Now, focusing on a generic trajectory satisfying (4.9), we have: 1
tmax

∫tmax
0 C(ρ(τ))dτ=

1
tmax

∫tmax
0 χ(Rρ(τ))dτ with χ = C ◦ρ, and ρ(Rρ) = σE[r 2]

γE[r ]Rρ(t ) . Since C is a mono-

tonic increasing and convex function in ρ ∈ [1,+∞] then χ is a convex function

over its domain, and by Jensen inequality, we conclude 1
tmax

∫tmax
0 χ(Rρ(τ))dτ ≥

χ
(

1
tmax

∫tmax
0 Rρ(τ)dτ

)
Therefore, from (4.9) the choice given by:

ρ(t ) = σE[r 2]

γE[r ]

[
1+ 1

γtmax
log

(
Ĩ⋆/Ĩ (0)

)]−1

, ∀t ∈ [0, tmax]

minimizes the cost.

Observe that the economic cost of previously defined optimal policy mono-

tonically decreases while increasing the target Ĩ⋆.

Corollary 1. Under the assumptions that C(ρ) is a monotone increasing and convex

function and Sr,p (t ) ≈ N fr,p , among all control strategies that maintain the number

of infected less than or equal the initial value Ĩ (0), the overall economic cost is

minimized when Rρ(t ) is kept equal to 1.

Proof. From Proposition 3 we have that among all strategies guaranteeing Ĩ (tmax) =
Ĩ (0), the one forcing Rρ(t ) = 1 is cost-optimal. The proof is completed by observ-

ing that such a strategy guarantees Ĩ (t ) ≤ Ĩ (0) for every t ∈ [0, tmax].

Remark 12. Rρ(t) = 1 can be achieved by controlling the rate of new infections

and maintaining it equal to the target λC = γĨ (0)E[r ]/E[r 2]. The resulting control

function is ρ(t ) =λU (t −ε)/λC =λ(t −ϵ)ρ(t −ε)/λC , where ε is an arbitrarily small

positive constant.

In conclusion, given an initial condition Ĩ (0), a maximum allowable number of

infected contacts Ĩ⋆ and a time horizon tmax, if the goal is to keep Ĩ (t ) ≤ Ĩ⋆ ∀t ∈
[t⋆, tmax), with t⋆ as small as possible, the following strategy appears to be the

natural answer: if Ĩ⋆ > Ĩ (0), set Rρ(t) = 1+ 1
γtmax

log
(
Ĩ⋆/Ĩ (0)

)
,∀t ∈ [0, tmax]. This

strategy, indeed, minimizes the economic cost in [0, tmax], among all strategies
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that guarantee Ĩ (t) ≤ Ĩ⋆,∀t ∈ [0, tmax], (i.e., t⋆ = 0). If, instead, Ĩ⋆ < Ĩ (0), we can

not guarantee t⋆ = 0, and therefore to minimize t⋆ it is necessary to minimize

Rρ(t ) in [0, t⋆) and then to set Rρ(t ) = 1,∀t ∈ [t⋆, tmax]. Indeed, this is the strategy

that minimizes the economic cost in [0, tmax], among all strategies minimizing t⋆.

Previous arguments can be formalized in the following proposition.

Proposition 4. Given Ĩ (0), Ĩ⋆ and tmax, whenever our goal is to keep Ĩ (t ) ≤ Ĩ⋆,∀t ∈
[t⋆, tmax), with t⋆ as small as possible, the strategy described above is cost-optimal.

It is worth remarking that the optimality criteria depend on various factors,

including the dynamics of the system, the objective function, and the constraints.

In the context of our study, the choice of time horizon tmax plays a crucial role.

If tmax is set too low, it might limit the effectiveness of the control measures. We

emphasize that the selection of tmax should be carefully considered based on the

specific context and dynamics of the epidemic under investigation. The parameter

Ĩ⋆, instead, represents the maximum admissible number of infected over the

considered time horizon tmax and is indissolubly related to the transmission rate

λ. It represents the number of infected it is possible to sustain (in a country, for

example). This again showcases the tradeoffs between social cost (in terms of

deaths) and economic cost (the entity of restriction measures), small values of Ĩ⋆

would result in a small number of deaths but also in a high economic cost. Our

analysis will provide insights for a fixed value of Ĩ⋆, chosen by the decision maker

according to the tradeoff between social and economic cost and the acceptable

number of infected by the overall healthcare infrastructure. We acknowledge that

this choice could potentially be optimized to minimize the cost, and while we do

not explicitly optimize it in our study, we will discuss the implications of different

target numbers and their impact on the control measures (see Section 4.5.3).

4.5.2 Rate Control with Feedback Delay

Policymakers cannot instantaneously react to changes in the rate of new infec-

tions due to several reasons: i) new infections are discovered by tests performed

several days after infection, and high-risk individuals are more likely to undergo

testing [130], ii) new regulations take time to be introduced and become effective,

iii) decisions are based on trends obtained by averaging epidemiological curves,

iv) the actual process of new infections in unknown (think of asymptomatic but
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infectious people). Consequently, the measured process is a delayed, noisy sub-

sample of the actual process. Therefore, we consider the case in which the actual,

instantaneous effectiveness of mobility restrictions, modeled by ρ(t ), is given by:

ρ(t ) = max
{

1,
∫
fd (τ)λU (t−τ)dτ

λC

}
where fd (·) is a feedback delay distribution.

One of our main results is that the system becomes unstable if the feedback

delay is too large with respect to 1/γ (the average time in the infectious state).

To simplify the analytical derivations, we start with the case of deterministic

feedback delay of constant duration d (days). Then we extend the result to a delay

distribution fd .

Theorem 4 (Stability analysis with constant delay). Assume

ρ(t ) = max

{
1,
λU (t −d)

λC

}
= max

{
1,
λ(t −d)ρ(t −d)

λC

}
and Sr,p (t ) ≈ N fr,p . If the delay d < π

2γ then the system is locally stable, otherwise

the system is unstable.

Proof. Since under the assumption Sr,p (t) ≈ N fr,p , the equation governing the

evolution of the number of infected edges under delayed rate control becomes:

˙̃I (t ) = Ĩ (t )

Ĩ (t −d)
λC
E[r 2]

E[r ]
−γĨ (t ) (4.10)

System stability can be analyzed by considering small perturbations around

the equilibrium point Ĩ∗ = λC
γ
E[r 2]
E[r ] , i.e., Ĩ (t ) = Ĩ∗+η(t ), with η(t ) ≪ Ĩ∗. Exploiting

the approximation 1
1+x ∼ 1−x, when x ≈ 0, from (4.10) we obtain:

˙̃I (t ) = γĨ∗
1+ η(t )

Ĩ∗

1+ η(t−d)
Ĩ∗

−γ(Ĩ∗+η(t )) ≈−γη(t −d)

where we have discarded the second-order term η(t )η(t −d). We end up with the

simple differential equation with delay:

η̇(t ) =−γη(t −d) (4.11)



4.5 Control on New Infections | 125

Taking the Laplace transform L {η(t )} we obtain L {η(t )} = η(0)
s+γe−sd . Equation (4.11)

admits solutions of the form η(t ) = Aebt cos(ωt +θ) under the conditions:b =−γe−bd cos(ωd)

ω= γe−bd sin(ωd)
(4.12)

While A and θ can take any value, i.e., can be used to match desired values of η(0)

and η′(0), b and ω are uniquely determined by the feedback delay d . Besides the

trivial solution b = ω = 0, there exists a stationary solution b = 0, ω = γ for the

special case d = π
2γ . If d < π

2γ , from the first constraint we have that b < 0, corre-

sponding to dumped oscillations. For π
2γ < d < 3π

2γ , we have instead amplifying

oscillations (b > 0). Therefore, d = π
2γ is the critical value for stability.

The analysis can be extended to a delay distribution fd .

Theorem 5 (Stability analysis with delay distribution). Let us assume that ρ(t ) =
max

{
1,

∫
fd (τ)λU (t −τ)dτ/λC

}
and Sr,p (t ) ≈ N fr,p . Let Z = {z ∈C : z+γFd (z) = 0},

where Fd (z) is the Laplace transform of the delay distribution. Then, if Re(z) < 0

∀z ∈Z , the system is locally stable.

Proof. Repeating the same approximations as before for small variations around

the equilibrium Ĩ∗, we obtain the differential equation with delay distribution:

η̇(t ) =−γ
∫
fd (τ)η(t −τ)dτ (4.13)

Taking the Laplace transform, we get H(s) = η(0)/(s +γFd (s)). Note that when

fd (τ) = δ(τ−d), we obtain the case with constant delay. We evince that we need

the set of zeros Z = {z ∈ C : z +γFd (z) = 0} to lie in the left half-plane to ensure

stability.

In the following corollaries, whose proof is Appendix F we explore two inter-

esting cases of feedback delay distributions.

Corollary 2 (Exponential delay distribution). If fd (τ) = u(τ)δe−δ(τ), then the system

is always (locally) stable.

Corollary 3 (Shifted exponential delay distribution). Let fd (τ) = u(τ−d)δe−δ(τ−d).

For any given δ> 0, there exists a critical delay d∗ = 1
γ f (δ), such that the system is
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(locally) stable if d < d∗, otherwise the system is unstable. As δ grows from 0 to ∞,

d∗ grows from 1/γ to π/(2γ).

The shifted exponential distribution can represent a system where: i) an ex-

ponentially weighted moving average (with parameter δ) is used to estimate the

current trend of the epidemiological curve, ii) some fixed delay d is introduced

before the control becomes effective. Our results suggest that system stability

is crucially tied (by a factor between 1 and π/2 that depends on δ) to the mean

sojourn time 1/γ in the infectious state. If d is too large with respect to 1/γ, the

control based on the force of infection is prone to instability.

In a finite population system, as time goes on, we can no longer assume that

Sr,p (t) ≈ N fr,p , since the number of initially susceptible individuals is progres-

sively reduced by the number of people who get infected (see (4.2)). Moreover,

Sr,p (t) can vary because of vaccinations and the finite duration of immunity.

Nevertheless, we can still apply the above results by resorting to a time-scale sep-

aration approach, i.e., by assuming that Sr,p (t), though not equal to N fr,p , are

almost constant at the time scale over which we analyze stability.

Remark 13. The assumption of a constant number of susceptible individuals

is fairly accurate when dealing with the dynamics of a large population over a

relatively small window of time. In such a case, the rate of infection spread may

have a minimal impact on the overall number of susceptible individuals in relative

terms (mathematical considerations as in Remark 10 apply). We emphasize that

the rate of newly infected people should be sufficiently small to ensure that the total

number of infected/recovered people in the considered window is negligible with

respect to the number of susceptible individuals.

Indeed, recall from Remark 9 that the evolution of the total number of infected

edges can be written as:
˙̃I (t ) = γ

(
R(t )

ρ(t )
−1

)
Ĩ (t ) (4.14)

where R(t) = σ
∑

r,p r 2Sr,p (t )
γ

∑
r,p r N fr,p

is the basic reproduction in the general case. This

equation is formally identical to (4.8) upon substituting R0 with R(t ). Since our

stability results do not depend on R0, they apply also to a system in which R(t )

can be considered approximately constant at the time scale at which we analyze

the system stability (i.e., time scale of 1/γ).
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4.5.3 Sensitivity Analysis - The impact of λ
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Fig. 4.8 Parametric curves of economic cost vs social cost, as we vary λ, with θ ∈ {1,10}.

Fig. 4.8 reports both the economic cost and number of deaths observed over a

time horizon tmax = 1 year as a function of the control parameter λ. We refer the

reader to Table 4.3 for a detailed description of all the infection parameters. When

controlling the infection rate, the suppression strategy, i.e., minimizing infection

rate λ, appears to be the most reasonable choice since it minimizes the number of

deaths incurring an almost constant economic cost for, e.g., all values of λ< 10000.

Indeed note that, once the system is stabilized around a fixed infection rate1 λ∗,

the economic cost is the same for any λ∗, as long as S(t ) ≈ N .

In the case of COVID-19, some countries, e.g., China, have adopted the sup-

pression strategy, which is particularly effective when restrictions can be geo-

graphically localized to small areas with limited impact on the national economy.

Of course, this cannot be a solution in the long term unless the virus is totally erad-

icated or conditions change, e.g., herd immunity is reached through vaccinations.

Indeed, note that all results discussed so far refer to a fixed time horizon tmax = 1

year.

To understand how the optimal strategy might change as we increase the time

horizon tmax, it is convenient to look at the plot in Fig. 4.9, showing parametric

1Further, note that with proper control, the cost incurred during the transient phase necessary
to bring the system to operate at a given λ is negligible with respect to the long-term accumulated
cost.
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Fig. 4.9 Parametric curves of economic cost vs social cost, as we vary λ, for different time
horizons tmax; θ = 1.

curves of economic cost vs. social cost, as we vary λ, for tmax = 1,2,4,8 years.

These results have been obtained by running the multi-class model with the

parameter θ, representing the increase of mortality due to ICU saturation, equal

to 1, putting us in the most favorable conditions (i.e., in the presence of unlimited

healthcare facilities) to decide to abandon the suppression strategy. Clearly, under

the suppression strategy, the economic cost increases linearly with time, so for

tmax large enough, this strategy becomes necessarily suboptimal2.

Interestingly, curves shown in Fig. 4.9 can be split into two convex parts

connected at the point where the population reaches natural herd immunity (the

knee). The consequences of this behavior on the multi-objective function (4.7), for

κ2 = 0 and κ3 = 1, which is linear with respect to trade-off factor κ1, are illustrated

in Fig. 4.10 for the case tmax = 4 years. We observe that all points between B and C

are not Pareto-efficient, hence cannot be optimal solutions for the optimization

problem (4.7). The optimal strategy exhibits a phase transition with respect to

κ1: for small values of κ1 (social cost much more important than economic cost),

the best strategy is total suppression (point A), whereas for large κ1 we end up

operating beyond the herd immunity knee. Intermediate solutions between A and

B also exist, but only for a very small, particular range of κ1 values.

2It should be noticed, however, that a finite population model like ours is not adequate to
describe a system running for more than, say, a few years.
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Fig. 4.10 Pareto frontier of the multi-objective function (4.7) in the case tmax = 4 years;
θ = 1.

The particular value of κ1 at which the phase transition occurs, in addition to

the time horizon tmax, depends crucially on the exponent α, as one can intuitively

understand from Fig. 4.11, which shows economic and social costs as a function of

the controlled rate λ, for fixed tmax = 4 years, and different values of the exponent

in the economic cost α = 1,2,3: while the social cost is the same for all α, the

economic cost depends dramatically on α. Note that α= 1 is the extreme case for

the validity of Proposition 3.

Proper values of α to be used in the model are difficult to set. However, the

general conclusion remains the same: unless one considers considerably long

(but unlikely to be significant) time horizons, the best option always appears to be

the minimization of λ. With the parameters of COVID-19, and in particular, for

the delta variant, the opposite ‘let it rip’ strategy in which one tries to achieve the

natural herd immunity (while still controlling λ to avoid ICU saturation) produces

an unreasonable social cost in terms of deaths. Some countries (like the UK)

initially considered this option at the onset of the pandemic but quickly switched

back to the suppression strategy after a few months.

Another reason why the ’let it rip’ strategy considered so far is perilous is

that it relies on the assumption that recovered people are immune forever, i.e.,

recovery rate µ= 0. In the case of COVID-19, natural immunity is progressively

lost over time, so reinfections are possible about six months after recovery. Even
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Fig. 4.11 Economic and social costs as a function of controlled rate λ, for fixed tmax = 4
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assuming that reinfected people are much less likely to develop a severe form

of the disease, we expect a significantly higher social cost when µ > 0. This

observation is confirmed by results in Fig. 4.12, showing economic and social

costs for tmax = 4 years, mortality reduction after the first exposure qpost = 10,

and different values of the average sojourn time in the immune state, equal to 6

months (as estimated for COVID-19), 1 year, 2 years, in addition to the optimistic

hypothesis µ= 0.
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Note that at the beginning of the pandemic, the decision on which strategy to

choose was particularly difficult, as the characteristics of the virus were unknown

and the effect of the vaccinations was unclear. Of course, it was also unknown

which mutations of the original virus would emerge and when they would have

replaced the original strain. In later sections, we will take a closer look at these

two fundamental factors that were crucial to the development of the pandemic

after the first year.

4.6 Control on Hospitalizations and ICU Occupancy

Recall that, according to the HT strategy, the control variable ρ(t) is directly

related to the instantaneous numbers H(t ) and T (t ) of patients who are currently

hospitalized or under intensive treatment, respectively. Many countries have

widely adopted this strategy, being particularly simple to implement.

4.6.1 Stability Analysis

We assume that Hospitals and ICUs have a maximum capacity Ĥ and T̂ , corre-

spondingly. A maximum level of restrictions ρmax is applied whenever either H(t )

exceeds Hmax (with Hmax ≤ Ĥ), or T (t) exceeds Tmax (Tmax ≤ T̂ ). When H(t) <
Hmax and T (t ) < Tmax, we assume that two control functions ρH :R+ → [1,∞) and

ρT :R+ → [1,∞) provide two different levels of restrictions, the larger (i.e. stricter)

of which is actually applied: ρ := max{ρH ◦H ,ρT ◦T }.

Assumption 2. Let ρH ∈C 1[0, Hmax], ρT ∈C 1[0,Tmax] such that ρH (0) = ρT (0) = 1,

ρH (Hmax) = ρT (Tmax) = ρmax, with infx∈(0,Hmax) ρ̇H (x) > 0 and infx∈(0,Tmax) ρ̇T (x) > 0.

To analyze the system stability under the above type of control, we first assume

Sr,p (t) ≈ N fr,p . We will later extend the analysis to the general case through a

time-scale separation approach. Under the assumption Sr,p (t ) ≈ N fr,p we have

that the total number of infected ‘edges’ is governed by (4.8).
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Proposition 5 (Stationary solutions). Under the assumption Sr,p (t) ≈ N fr,p and

Assumption 2 the stationary solutions satisfy:

H∗ = γ

φ
Ĩ∗
E[r p I H

r,p ]

E[r 2]
, T ∗ = γ

τ
Ĩ∗
E[r p I H

r,p p HT
r,p ]

E[r 2]
. (4.15)

Proof. From the definition we have Ir,p (t ) = Ĩ (t )
r fr,p

E[r 2]
, I (t ) = Ĩ (t ) E[r ]

E[r 2]
. It should be

noted that at equilibrium necessarily ρ∗(t ) =R0 for all t and, by monotonicity of

ρH and ρT , we have one of the following cases:

• H∗ = ρ−1
H (R0), and T ∗ ≤ ρ−1

T (R0);

• T ∗ = ρ−1
T (R0), H∗ ≤ ρ−1

H (R0).

Hence,

Ĩ∗ = min

(
ρ−1

H (R0)
φ

γ

E[r 2]

E[r p I H
r,p ]

,ρ−1
T (R0)

τ

γ

E[r 2]

E[r p I H
r,p p HT

r,p ]

)
.

Now, from (4.2), we obtain detailed equilibrium points:

I∗r,p = Ĩ∗
r fr,p

E[r 2]
, H∗

r,p = γ

φ
I∗r,p p I H

r,p ,T ∗
r,p = φ

τ
H∗

r,p p HT
r,p

Therefore, summing over (r, p), we get corresponding equilibria for the total

number of people hospitalized or under intensive therapy as given by (4.15).

Theorem 6 (Stability analysis). Let ρH and ρT satisfy Assumption 2 and H∗ and

T ∗ be stationary solutions as given in Proposition 5. If at least one of the following

conditions is satisfied:

• ρH (H∗) > ρT (T ∗)

• ρT (T ∗) ≥ ρH (H∗) and φ+τ≥ T ∗ρ̇T (T ∗)γ
R0

then the system is locally stable.

Proof. Let us consider small perturbations around the equilibrium point Ĩ∗: Ĩ (t ) =
Ĩ∗+ η̃(t ) with η̃(t ) ≪ Ĩ∗.

We will assume that 0 < H∗ < Hmax, and 0 < T ∗ < Tmax. From Assumption 2,

by denoting with α∗
H = ρ̇(H∗) and α∗

T = ρ̇(T ∗) we have the following cases.
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1. If ρH (H∗) > ρT (T ∗) by continuity we get that ρ(t) = ρH (H(t)) > ρT (T (t))

and assuming initial conditions H(0) = H∗, T (0) = T ∗, after some algebra

we get the Laplace transform of η(t ):

L {η(t )} = η(0)(s +φ)

s(s +φ)+ H∗α∗
Hφγ

R0

(4.16)

In this case, the system is always stable for any value of parameters φ, γ,R0,

since the real part of the poles of (4.16) is always negative. As we increase

the amplitude of coefficient
H∗α∗

Hφγ

R0
, the real part of the dominating pole

moves from 0 to −φ.

2. If ρT (T ∗) > ρH (H∗) then, by continuity, we have ρ(t ) = ρT (T (t )) > ρH (H (t ))

and, by first-order analysis and computing the Laplace transform, we get

L {η(t )} = η(0)(s +φ)(s +τ)

s(s +φ)(s +τ)+ T ∗α∗
T τφγ

R0

The system may be unstable since we obtain in the denominator a third-

order equation whose complex solutions can fall in the positive half-plane.

In particular, the system is stable when:

φ+τ≥ T ∗α∗
Tγ

R0
(4.17)

while it becomes unstable otherwise. Indeed, pure imaginary solutions

s = iω are roots of the above third order equation when ω = √
τφ, while

relation (4.17) is satisfied with equality.

Theorem 6 provides conditions guaranteeing the local stability of the system.

In particular, it is worth remarking that once Hmax ≤ Ĥ has been fixed, condition

ρH (H∗) > ρT (T ∗) can always be achieved by arranging a sufficiently large number

of available intensive therapy facilities. Indeed, even when R0 is not perfectly

known, it is sufficient to guarantee:

ρ−1
H (y)

φ

γ

E[r 2]

E[r p I H
r,p ]

< ρ−1
T (y)

τ

γ

E[r 2]

E[r p I H
r,p p HT

r,p ]
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for every ρmin < y < ρmax, i.e.
ρ−1

T (y)

ρ−1
H (y)

> φ
τ

E[r p I H
r,p p HT

r,p ]

E[r p I H
r,p ]

. Observe that the above con-

straint can be met if:

Tmax > φ

τ

E[r p I H
r,p p HT

r,p ]

E[r p I H
r,p ]

Hmax (4.18)

by adopting controllers satisfying: ρH (xHmax) ≥ ρT (xTmax)∀ 0 ≤ x ≤ 1.

When the number of intensive therapies is, instead, under-dimensioned, we

have ρH (H∗) > ρT (T ∗), and the system stability essentially depends on the aver-

age time spent in hospitals and ICU, through the sum φ+τ of transitions rates

out of compartments H , T (both are equally important).

Assuming Sr,p (t ) are almost constant on the time scale on which the stability is

studied, the analysis can be extended by replacing the basic reproduction number

R0 with the effective reproduction number R(t ). In this way, the evolution of the

total number of infected edges (4.14) becomes formally identical to (4.8).

4.6.2 Sensitivity Analysis - The impact of Hmax and Tmax

In the same settings as in Section 4.5.3, we start analyzing the impact of the

maximum tollerable levels of hospitalized and ICU patients Hmax and Tmax on the

system dynamics. Both the implemented controllers are linear.

In all the cases we have set the capacities as Ĥ = 50000 and Tmax = T̂ . The

choice Tmax = T̂ is justified by our previous analysis, according to which the maxi-

mization of ratio Tmax/Hmax favors system local stability around the equilibrium

point. Note that our choice of parameters guarantees local stability also in cases in

which the tightest control at the equilibrium point is exerted by intensive therapy

occupancy Finally note that since in our scenario φ
τ

E[r p I H
r,p p HT

r,p ]

E[r p I H
r,p ]

= 0.331, we should

enforce Tmax/Hmax > 0.331 to guarantee that at the equilibrium point, the tighter

control is exerted by hospitalizations.

Figure 4.13 reports some results. First, we have fixed Tmax = 10000 and we

let Hmax vary. In particular we have chosen: Hmax = 20000 (top left plot), Hmax =
30000 (top right plot), Hmax = 50000 (bottom left plot).

Only the first choice for Hmax satisfies condition (4.18). Note that by reducing

Hmax, we significantly reduce oscillations since the control on hospitalization

becomes reactive. Periods in which the tightest control is exerted by hospital-
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Table 4.2 costs and deaths [k ≡ 103]

Tmax Hmax cost (α= 1) cost (α= 2) cost (α= 3) deaths

5k 10k 2.03k 13.0 k 102 k 13.2 k
10k 10k 2.03k 13.0 k 101 k 13.2 k
10k 20k 1.94k 11.1 k 71.3 k 25.3 k
10k 30k 1.92k 10.9 k 66.6 k 35.9 k
10k 50k 2.12k 14.6 k 115 k 42.2 k
20k 40k 1.88k 10.2 k 59.3 k 49.0 k

izations/intensive therapy occupancy are highlighted in the figures. In no cases,

saturation of intensive treatment facilities is observed. Table 4.2 complements

the previous figure by reporting economic costs (with economic cost exponent

α= 1,2,3) and deaths for all scenarios. In general, more conservative choices of

Hmax lead to significant reductions in the number of deaths, and in some cases

also in the economic cost, as an effect of the reduction of oscillations.

We have also tested, reporting results in Table 4.2), situations in which Tmax/Hmax

is kept fixed equal to two (so to guarantee the satisfaction of condition (4.18),

while Tmax is set respectively to 5000, 10000 and 20000. Note that we obtain dif-

ferent trade-offs between economic cost and number of deaths. In general, by

increasing Tmax, we reduce the economic cost and increase the number of deaths.

Evolution of metrics for the case Tmax = 5000, Hmax = 10000 is shown in Figure

4.13 (bottom right plot). In this case, contrarily to the case Tmax = 10000 and

Hmax = 20000, intensive therapy control exerts the tightest control for a given

short period.

At last, Table 4.2 reports results for the case Tmax = 10000, Hmax = 10000. Ob-

serve that the performance of this last case is almost indistinguishable from the

case Tmax = 5000, Hmax = 10000 (which requires just half of the intensive therapy

facilities) both in terms of deaths and economic cost.

In conclusion, in our scenario keeping the ratio Tmax/Hmax ≈ 2 appears to

be the best choice, as it guarantees that the tightest control is essentially al-

ways exerted by hospitalizations in dynamic conditions. Then Tmax (and conse-

quently Hmax) should be chosen instead to achieve the desired trade-off between

deaths and economic cost (as previously observed, deaths are more sensitive to

parameters than economic costs). In our analysis, we have neglected the costs
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Fig. 4.13 Evolution of I (t ),T (t ) (left y axes) and ρ(t ) (right y axes), for different combina-
tions of Tmax = T̂ and Hmax, and fixed Ĥ = 100000. The rectangles at the bottom of the
plots indicate periods in which ρ(t ) is determined by T (t ).

related to the creation/maintenance of sanitary facilities (which are typically small

with respect to general economic costs due to restrictions) to limit the number of

free parameters. However, extending the model to include such costs would be

relatively immediate.

4.7 Experiments in a Comprehensive Scenario

Our numerical results are obtained in a reference scenario roughly inspired by

the actual evolution of COVID-19 in Italy during a period of 3 years, starting

from the onset of the virus at the beginning of 2020. During this period, the

dynamics of COVID-19 in Italy (and similarly in other European countries) have

been characterized by three main phases, each spanning about one year:
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1. First phase: in this phase the most dangerous strains of the virus, e.g., the

alpha and delta mutations propagated in the absence of pharmaceutical

interventions (vaccines), causing the majority of all deaths attributed to

COVID-19.

2. Second phase: since the beginning of 2021, vaccines started to be massively

distributed to the population, and almost all individuals (excluding no-vax

people) completed the vaccination cycle (by receiving one or two doses) by

the end of the second year.

3. Third phase: since the beginning of 2022, with the onset of the omicron

variant, less dangerous but more virulent strains became prevalent, substi-

tuting the initial strains. Vaccines originally developed for the alpha and

delta mutations also protected people against the omicron variant, though

with reduced efficacy.

To capture the above dynamics, we made some simplifying approximations to

limit the model complexity: we assume that a single variant (strain 1), with basic

reproduction number R1
0 = 6, propagates during the first 2 phases, after which

a new variant (strain 2) appears with higher R2
0 = 12 and reduced mortality (by

factor q21 with respect to the mortality of strain 1, for each class of people).

The parameters of our reference scenario are summarized in Table 4.3 and their

choice is justified in Appendix D. Although our model and parameters can only

roughly describe the actual dynamics of COVID-19 in Italy, they provide a realistic

scenario in which different strategies to contain the virus can be compared. We

stratify the population based on the fr,p distribution calculated for Italy. Transition

probabilities between compartments I ,H ,T ,D satisfying constraint (4.3) are set

for simplicity as follows: p I H
r,p = p HT

r,p = p̂T D
r,p = p1/3.

Strain 1 starts at time 0 with 1 initially infected individual. Similarly, strain 2

starts at time t2 with 1 initially infected individual. We consider the economic

cost function: C(ρ) = (ρ−1)α which satisfies the assumptions of Proposition 3 for

α ≥ 1, and allows us to explore the impact of costs caused by more substantial

non-pharmaceutical interventions by varying the single parameter α. We empha-

size that the resulting scenario is not specific to Italy: similar assumptions and

parameters could describe equally well, at a high level, the dynamics of COVID-19

in other mid-size European countries or a single US state with comparable popu-
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Table 4.3 Parameters of reference scenario

Symbol Value Description

N 60 million total population size
N novax 6 million no-vax population size
tmax 3 years time-horizon
tV 1 year time at which vaccinations start
t2 2 years time at which strain 2 appears
R1

0 6 basic reproduction number of strain 1
R2

0 12 basic reproduction number of strain 2
1/γ 8 days average sojourn time in state I
1/φ 16 days average sojourn time in state H
1/τ 16 days average sojourn time in state T
VE2

1 0.9 vaccine efficacy against strain 1
VE2

2 0.7 vaccine efficacy against strain 2
q21 5 mortality reduction of strain 2 vs strain 1
qpost 20 mortality reduction after exposure

to virus/vaccine
ρmax 15 maximum transmissibility reduction
Tmax 20,000 ICU control parameter
Hmax 40,000 Hospitalizations control parameter
T̂ 20,000 ICU capacity
Ĥ 50,000 Hospitalizations capacity
θ 10 mortality increase due to ICU saturation
α 2 exponent of economic cost

lation size. At last, while each of the first two phases lasted approximately one year,

in our analysis to have a complete view of the potential impact of different control

approaches, we have also considered cases in which no effective treatments have

been available for several years. When the epidemic spread out at the beginning

of 2020, and the first decisions had to be made, no one could predict how long it

would have taken to have effective vaccines/treatments available. In the following,

for the sake of simplicity, we neglect the term associated with the healthcare sys-

tem stress by taking into consideration only social (deaths) and economic costs,

this corresponds to set κ2 = 0.

In the following two subsections, we first examine the interplay between mobil-

ity restrictions, enforced through our two Rate and HT controls, and vaccination

prioritization schemes (MSF and MVF) hence considering the first two years of

our reference scenario. Then, we consider the complete three-year scenario.
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4.7.1 Mobility Restrictions and Vaccinations

We first consider the ‘first’ and ‘second phase’ of our reference scenario, con-

sidering the joint impact of vaccination policies and control strategies during the

first two years of the pandemic. Recall from Section 4.4.2 that we focus on two

extreme vaccine prioritization policies: Most Vulnerable First (MVF) and Most

Social First (MSF).

We will consider a single type of vaccine to be administered in two doses sepa-

rated by a variable interval of∆ days. In this way, we can address an issue raised in

some countries, e.g., the UK, when vaccines started to be available for mass distri-

bution, i.e., whether it is better to follow the recommended protocol (∆= 21 days)

or to give one dose to the largest possible population, before administering the

second dose. The latter policy, which aims at partially immunizing a vast portion

of the population, corresponds to choosing ∆= 135 days. In our investigation, we

assume the vaccination rate to be constant and such that the entire population

can receive two doses after 9 months (270 days).

No vaccine is available during the first year (first phase). To better compare

our two control strategies, we initially start the system at the equilibrium point

(I∗, H∗,T ∗), disregarding the transient needed to reach such equilibrium3. Under

the HT strategy, we assume that control is always determined by the occupation

of regular hospitals, rather than ICU, by adequately setting the ratio Tmax/Hmax.

Moreover, note that the parameters of the HT strategy can be tuned to achieve

the desired number I∗ of infected people at the beginning of the pandemic. This

allows us to compare the trade-offs achievable by our two control policies.

Given the current understanding of COVID-19 vaccines, one limitation of the

approach is the uncertainty surrounding the specific efficacy of different vaccines

and their effectiveness against emerging variants. Vaccine efficacy can vary de-

pending on age, underlying health conditions, and individual immune response.

Additionally, the duration of vaccine-induced protection and the potential for

waning immunity over time are still being studied. As a result, the parameters

related to vaccine prioritization, such as the efficacy rates and the duration of

protection, are subject to a range of values rather than precise estimates. The

lack of comprehensive knowledge about these parameters restricts the ability to

3A comprehensive analysis of the complete scenario also comprising the initial transient will be
presented later in Section 4.7.2.
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Fig. 4.14 Impact of vaccination policies and control strategies on deaths and economic
cost. All individuals are vaccinated in 270 days.

determine an optimal vaccination strategy with certainty. Therefore, the study

may need to consider a range of plausible values for vaccine-related parameters

and perform sensitivity analyses to assess the robustness of the results under

different scenarios. Given the considerations above, we introduce variability in

the efficacy ratio between the first and second doses of the vaccine. Specifically,

we examine two different values for this ratio, denoted as VE1/VE2, namely 0.3

and 0.6. Meanwhile, we keep the efficacy of the second dose fixed at VE2 = 0.9.
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By incorporating this range of values for the efficacy ratio, we account for the

uncertainty surrounding the relative effectiveness of the two vaccine doses.

The achievable trade-offs between economic cost and number of deaths, mea-

sured at the end of the second year, are shown in plots (a),(b),(c), and (d) of

Fig. 4.14, for the four combinations arising from the two considered control poli-

cies and the two considered efficacy ratios (see plot titles). Each plot contains

four curves related to the four combinations of vaccination policies (MSF vs. MVF,

∆= 21 vs. ∆= 135).

Several observations are in order. First, the MSF policy (green and blue curves)

generally outperforms MVF (red and purple curves). This fact is not trivial and

depends crucially on the extent of the negative correlation between r and p in the

population distribution fr,p . Note that the MSF policy is hardly implementable in

practice. Indeed, only the MVF policy has been deployed in many countries, by

simple age prioritization, except for special categories of workers (e.g., healthcare

workers) who have also received the vaccine in advance due to their exposition to

the virus. Second, as expected, the efficacy ratio of 0.6 leads to better outcomes

than the efficacy ratio of 0.3. In particular, delaying the distribution of the second

dose (∆ = 135) is not advisable if the first dose is relatively ineffective (efficacy

ratio 0.3). Third, the impact of different control strategies is fairly small, with rate

control slightly outperforming HT control. The best possible trade-offs, i.e., the

lowest possible curves, are generated by the rate control, MSF, and a properly

tuned ∆ (note the crossing between blue and green curves on plot Fig. 4.14(c)).

The effect of the two control strategies, combined with different vaccination

policies, can be better understood by looking at temporal dynamics shown in

Fig. 4.15 for rate and HT control. In both cases, we assume an initial number

of infected people I∗ = 32,000 (corresponding to λC = 4,000) while restricting

ourselves to an efficacy ratio of 0.6.

The evolution of D(t ), I (t ), T (t ), ρ(t ) in Fig. 4.15 is shown by curves of different

colors, respectively red, green, blue, and black. Thick (thin) lines correspond to

MVF (MSF). Solid (dashed) lines correspond to ∆= 21 (∆= 135). Let us start with

the simpler case of rate control in Fig. 4.15. Here, I (t) is maintained constant

through the entire period of two years. When vaccinations start (day 365), two

extreme behaviors for ρ(t) arise, as expected, by MSF with ∆= 21 (thin dashed

black line) and MVF with ∆= 21 (thick dashed black line), with the other curves
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Fig. 4.15 Evolution of I (t ),D(t ),T (t ),ρ(t ) in the case of Rate control (left) and HT control
(right), efficacy ratio 0.6, and different vaccination policies (different line styles of the
same color).

(related to ∆ = 135) lying in between these two. MSF with ∆ = 21 allows us to

release social restrictions more quickly, lowering the economic cost at the expense

of more deaths. The case of HT control in Fig. 4.15 is more complex, since here I (t )

is not constant and, in fact, decreases drastically during the second year thanks to

the self-adaptive nature of HT control.

The fact that better trade-offs are achieved by the not self-adaptive rate control

at the end of the second year may appear counter-intuitive. Note, however, that

such better trade-offs are only possible under a carefully tuned MSF policy, and

they are thus hardly achievable in practice. At last, observe that in a more realistic

setting, one might not arbitrarily choose the rate of new infections. For example, if

one cannot operate below λC = 4,000, from Fig. 4.15, the best option would likely

be MVF, which produces significantly fewer deaths at the expense of a tolerable

and largely justifiable increase of the economic cost. Interestingly, in this case,

∆= 135 would produce a significantly lower penalty in the economic cost with

respect to ∆= 21 while generating an almost identical number of deaths.

4.7.2 Considering all Three Phases

At last, we consider a scenario that includes all three epidemic phases over three

years, as described in Section 4.7. The MVF-∆= 21 vaccination policy was chosen

because many countries have actually adopted this policy. The ratio between the

efficacy of the first and second dose was set at 0.6.
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(a) Rate Control, λC = 4000. (b) HT control: Tmax = T̂ = 20000;
Hmax = 40000, Ĥ = 100000.
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(c) Imperfect HT control.

Fig. 4.16 Evolution of I (t), H(t), T (t) (left y axes) and ρ(t) (right y axes) in the compre-
hensive scenario.

Figure 4.16(a) and Figure 4.16(b) report the evolution of the metrics, respec-

tively, for the case in which the control is on the rate of new infected (λC = 4,000)

and the HT (with Tmax = 20000 and Hmax = 40000). Parameters have been set so

that the two controls operate around approximately the same operational point

during the first year.

Rate control appears more reactive in the early phase of the epidemic. As

already observed, due to its intrinsic delay in the control ring, HT control exhibits

some initial oscillations, which are not observable when rate control is applied.

Therefore, it should not be surprising that rate control leads to better performance

indices at the end of the first year, as shown in Table 4.4. Note that costs are

expressed in arbitrary units, while deaths are expressed in thousands. However,

when the second variant starts spreading, the rate-control strategy may overreact,

forcing the system to work in over-restricted conditions for quite a long time (note
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Table 4.4 Control strategies in a comprehensive scenario: economic cost and deaths

1st year three years
Cost Deaths Cost Deaths

α 1 2 3 1 2 3

rate 1.68 8.18 39.9 41.1 3.35 13.5 58.0 70.5
HT 1.76 9.22 50.2 45.8 3.19 13.4 64.6 78.8
IHT 2.02 15.5 146 40.6 3.71 22.1 187 68.7

that at the end of the three-year period, rate-control is far from being completely

relieved). Instead, HT control can automatically adjust its operational point as an

effect of the mutated environmental conditions, i.e., a smaller intrinsic lethality

index of the variant and a significant fraction of vaccinated individuals who are

protected against severe outcomes.

We remark that these strategies, which tightly and precisely control either the

infection rate or the hospitalization/ICU occupancy, are hardly implementable.

However, they provide valuable insights. To shed light on more practical controls,

we examine an implementable rough version of the HT control, denoted as Im-

perfect HT (IHT). Figure 4.16(c) shows the evolution of the epidemic when the

IHT strategy is adopted. In this case, the control dynamically selects the current

alert level from the following finite set green, white, yellow, orange, red, purple. A

different set of non-pharmaceutical restrictions corresponds to every alert level,

determining a corresponding value of ρ(t ) ∈ {1,2,3,5,12,15} (note that intermedi-

ate values of ρ(t ) corresponding to different alert levels, do not need to be perfectly

known). Every week a simple threshold mechanism is implemented to establish

the current alert level for the following week, with normalized thresholds (with

respect to Hmax or Tmax) set respectively to {0.01,0.1,0.2,0.4,1.0}. Any alert level

must be maintained for at least three weeks before it can be decreased. Despite

the behavior of IHT does not significantly deviate from HT, a high extra economic

cost is paid for the effect of unavoidable oscillations between consecutive alert

levels, especially for large values of α.

4.8 Concluding Remarks

Our research draws on the lessons we have learned from the COVID-19 pandemic.

It takes a comprehensive approach to address the challenges of effective planning
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and implementation of measures in large communities. The aim is to find a bal-

ance between minimizing economic costs and reducing the number of fatalities,

a crucial task in pandemic management.

We have developed a sophisticated multi-class model that takes into account

the complex relationship between mortality rates and the different risk exposures

of population segments. In fact, it is important to note, that we have observed a

negative correlation between a person’s age and their level of risk exposure to the

virus. Moreover, this correlation is not uniform across countries.

In this chapter, we have found that control strategies based on monitoring

infection rates or assessing the burden on the healthcare system can be subject

to significant instability. This instability becomes particularly notable when one

considers that the key system parameters are often highly noisy.

In line with real-world responses to the COVID-19 pandemic, our research

provides insights into the practical effectiveness of strategies that control infection

rates and hospitalizations. We have also conducted a comparative analysis of

vaccination policies, examining different approaches and variations in dosing

intervals, inspired by the experiences of countries such as the UK and Italy.



Chapter 5

Conclusion

In this thesis, we have looked at processes over networks, considering interactions

between individuals, whether through online contacts, reading each other’s posts

in an online social network, or through physical interactions in the context of

the spread of an epidemic. More broadly, we have presented tools for modeling

and analyzing social phenomena, highlighting the connections between different

subjects. We have seen how such tools can come from different disciplines (see

the Ising model for ferromagnetic materials) and can be used in the social domain.

The first step we took was to describe online interactions in Chapter 2. Online

social networks have recently played an increasingly important role in opinion

formation, and understanding the mechanisms underlying this modern commu-

nication paradigm requires the development of new, flexible frameworks. We have

developed an opinion model specifically tailored to these types of interactions,

with a particular focus on the interplay between regular users and influencers. We

also characterize influential people on online platforms by grounding our design

decisions on data from real-world online social networks. Similar to other recent

work in the literature, we considered content personalization in a flexible and

tunable way. We have shown how content personalization reinforces inequality

by favoring structurally advantaged individuals and, in most cases, preventing

some influencers from remaining visible on the platform, which could potentially

hinder the diversity of opinions in the population. In addition, even in structurally

balanced conditions, personalization can lead to the emergence of echo chambers

in which users’ opinions are radicalized by the influencer’s point of view, even
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on topics that are not the influencer’s reference topic. Or unstable situations in

which a single person hegemonizes the online scene.

The popularity evolution as a function of the consistency parameter is an

interesting aspect that should be given further attention. An influencer can gain

an advantage over the others by simply adjusting the number of posts he pub-

lishes in its reference direction. Note that this behavior is highly dependent on

the underlying distribution of regular users and requires careful evaluation. A

possible future research direction is to consider an influencer with time-varying

consistency that aims to increase its popularity (e.g., using low consistency values,

see Fig. 2.11a), and understand to what extent this behavior may give the influ-

encer an advantage. We would also like to mention that, even if the modeling

framework is quite complicated, many hypotheses have been put forward. It is

true that we have observed that an influencer’s popularity increases the more

they post, but does this phenomenon ever reach saturation? Users, and generally

individuals, have a limited budget of attention, so it may not be a wise decision

to overload them with posts. However, one needs to understand if the platform

is doing such a pruning of posts and how influencers who flood the network are

treated, as there are pages that publish hundreds of posts per day.

The model presented in Chapter 2 is one of the first attempts to faithfully

describe the complexity of online interactions but, again, comes with some limita-

tions. Users are considered passive entities and influencers are stubborn agents.

Moreover, homophily is the primary driver of user interaction, as we did not

consider any other explicit relationship structure. Nonetheless, despite the sim-

plifying assumptions, the emergent behavior of the model proved rich enough

to show the effects of content personalization and shed light on the dynamics

of influencer popularity. In Chapter 3, we addressed one of these limitations

by allowing influencers to modify their opinions to maximize their impact on a

user population. We formalized this problem of maximizing online social impact

over an online social network. In the case of a single influencer over the network,

we characterized the optimal strategy thanks to a trellis-like structure that can

efficiently solve the problem to be solved efficiently. We found that maximizing

the influence at each time step is not always optimal. It seems to be advantageous

to first group users together and then exert influence on the group. Inspired by

this experiment, we developed a competitive game that we extended for the case

of closed-loop interactions (post-feedback-popularity-filtering). We showed that
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a disadvantaged influencer should compromise her target opinion more in order

to get closer to the mass of the population so that she can exert a greater degree

of persuasion on them. We found that an influencer (the advantaged one) tends

to monopolize attention and attract virtually all users to her opinion when her

popularity develops rapidly.

Competition in social networks has proven to be a challenging and rather

unexplored area of research. One aspect that we have only touched on, but which

is probably of great interest, is the evolution of the popularity of influencers who

deal with the same topics. An interesting question is to what extent success on

social media platforms is determined by competence and what role randomness

plays. Do posts go viral by chance? Both empirical and modeling efforts are

required to answer such questions.

Finally, in Chapter 4, we shifted our focus from opinion dynamics to epidemics

and presented a SIR-like model that considers COVID-19 as a use case. We have

defined a comprehensive approach to address the challenges of effective planning

and implementation of countermeasures at the country level in the event of a

pandemic. The aim is to find a balance between minimizing economic costs and

reducing deaths, a crucial endeavor in pandemic management. At the heart of

our approach lies our multi-class model, which takes into account the complex

relationship between mortality rates and the different risk exposures of different

population segments. For example, it considers the negative correlation that often

exists between an individual’s age and their level of risk exposure to the virus.

We have developed a data-driven approach that makes it possible to construct

country-specific distributions using publicly available data.

Our analysis has shown that epidemic outbreak control strategies based on

monitoring infection rates or assessing the burden on the healthcare system can

be subject to considerable instability. We assessed stability under different types

of delays and identified the conditions that lead to instability. Our framework

allows us to examine the interplay of such containment strategies with vaccine pri-

oritization. It is important to emphasize that there is no one-size-fits-all approach

to epidemic control. What is appropriate and effective depends on the context,

objectives, and available resources. Our approach recognizes this and does not

claim to offer a universally superior solution. Instead, it takes a pragmatic per-

spective. We prioritize the simplicity and ease of implementation of our measures.
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We aim to provide a toolkit of strategies that can be considered alongside more

complex models and provide policymakers with a range of options. We conducted

a comparative analysis of vaccination policy, looking at different approaches and

variations in dosing intervals, drawing on the experience of countries such as

the UK and Italy. This comparative approach allows us to examine the potential

impact of different vaccination strategies in different epidemiological contexts

and provide valuable guidance to policy makers.

Apart from the technical contributions, I would like to spend a few words

about the challenges ahead. Our society is undergoing profound change, driven

by technological breakthroughs, new forms of interaction, and also geographical

and political instability. We need to understand these changes and the impact they

can have on all aspects of our lives. This will enable us to better adapt to the new

habits and needs in the areas of education, work, health, and social interaction,

to name a few. To be prepared for these challenges, we must work together to

develop social models to have an interpretive key for the new society.
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Appendix A

Description of the Dataset

We collected data from real online social networks to support the hypotheses of

our model and compare emergent behaviors. We focus on two popular social

networks: Facebook (FB) and Instagram (IG). Facebook has long been the most

popular social media application, while Instagram has undergone a surge in

popularity in recent years.

In Facebook and Instagram, a profile, i.e., a social network user, can be followed

by other profiles, i.e., its followers. A profile with a large number of followers is also

called an influencer - we consider profiles with more than ten thousand followers

as influencers. Influencers post content (i.e., posts) that the profile’s followers and

anyone registered on the platform can see, like and comment. Note that when we

use the term influencer, we do not only mean individuals but also groups, soccer

teams, newspapers, or companies.

To get the list of such popular profiles, we exploited the online analytics plat-

form hypeauditor.com for IG, and www.socialbakers.com and www.pubblicodelirio.

it for FB. We restricted the analysis to influencers with at least 10,000 followers

on June 1, 2021. The obtained 649 influencers are the same as our previous

paper [131] and are publicly available.1 In this work, we are interested in the

posts of influencers and their temporal sequence. For each monitored influencer,

we downloaded all the data related to the posts published between January 1,

2016, and June 1, 2021, using the CrowdTangle tool and its API2. CrowdTangle

1https://mplanestore.polito.it:5001/sharing/P4WnRClQn
2https://github.com/CrowdTangle/API

hypeauditor.com
www.socialbakers.com
www.pubblicodelirio.it
www.pubblicodelirio.it
https://mplanestore.polito.it:5001/sharing/P4WnRClQn
https://github.com/CrowdTangle/API
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is a content discovery and social analytics tool owned by Meta and available to

researchers and analysts worldwide to support research, subject to a partnership

agreement. Finally, we stored the data, which takes around 110 GB of disk space,

on a Hadoop-based cluster, and we used PySpark for scalable processing.

A.1 Details on Post Classification

We developed a classifier that can categorize posts according to a particular set

of subjects, similar to what we have done in our previous work [132]. First, we

arbitrarily identified a subset of topics that sufficiently characterize the discus-

sions on the monitored profiles. Specifically, these topics are sports, politics, food

and cooking, music, and pandemics, which are intentionally loose and relatively

uncorrelated to each other. We developed a keyword classifier to classify the

posts. For each topic, we manually defined a list of representative keywords. For

example, if we consider pandemic, we search for words like COVID, pandemic,

and coronavirus in Italian (and commonly used terms in other languages). We

search for the topic-specific terms in the text corpus of the post, and if we find a

match, we mark the post as belonging to the topic. Notice that since keywords

of various topics may be present in the same corpus, we can flag a message as

discussing multiple topics. In this work, we discard posts marked as multiple and

only consider posts associated with a single topic.

We are not interested in classifying all posts by an influencer, first because

our list of topics does not cover all possible ones, and second, because we only

need a large enough subsample of posts to make some statistical considerations.

Conversely, it is of utmost importance that the accuracy of the classifier is high

since misclassified posts could lead to wrong conclusions about the distribution

among the available topics. Therefore, we manually validate the accuracy of our

methodology for topic detection, as described in the following paragraph.

A.2 Classifier Precision Evaluation

We empirically evaluated the accuracy of the classifier by taking a random subsam-

ple of the labeled posts, i.e., 100 posts for each topic for a total of 500 messages,
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and manually classifying them. To this end, we defined a lower and upper bound

for accuracy. Indeed, even for a human being, it is challenging to univocally

classify posts based on their content. Therefore, we defined three possible states

for each classification decision: t correct classification, f incorrect classification,

and ncc standing for not completely correct (indicating that the assigned topic is

related to the post but may not be the main topic of the post or the classification

of the post is difficult). Given this state subdivision, the precision bounds are as

follows:

PL = Nt

Nt +N f +Nncc
(A.1)

PU = Nt +Nncc

Nt +N f +Nncc
(A.2)

We refined our term selection for each topic to improve precision based on

this analysis .3 The classifier’s precision is subject-dependent but was consistently

above 80% considering the upper bound defined in (A.1). The classification is

particularly effective in the case of politics and pandemic, where the precision

goes above 90%. Table A.1 summarises the bounds on precision achieved by the

procedure described above. These results are sufficient to use the classification to

support our modeling assumptions.

Table A.1 Per-topic Precision

Topic Precision l.b. Precision u.b.

Sports 76.9 83.2
Politics 87.0 94.4
Music 53.4 84.5
Food 65.5 82.4
Pandemic 76.6 93.1

The average percentage of messages classified is 27.8% for all influencers in the

dataset. Considering the final classifier and the analyzed dataset, we automatically

flagged about one million posts4 with at least one topic. Of these, only 6.7% of the

posts were flagged with multiple labels, indicating the message dealt with more

than one topic. We decided to consider in the rest of the work only influencers

3We make the final list of terms available at https://mplanestore.polito.it:5001/sharing/
0wD5oU6xr.

41167963 posts were tagged with at least one label.

https://mplanestore.polito.it:5001/sharing/0wD5oU6xr
https://mplanestore.polito.it:5001/sharing/0wD5oU6xr
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for whom it was possible to classify more than a thousand posts in the observed

period. At the end of this filtering process, we could keep 237 influencers for

whom the average posts’ classification percentage is 53.2%.

The dataset used contains a subset of Italian politicians. To check the cor-

rectness of the labeling procedure, we checked whether the derived reference

topic for all politicians was politics. It turned out that two politicians did not have

politics as reference: Vincenzo De Luca had pandemic, and Renata Briano had

food. However, this is entirely understandable as the latter runs a food blog and

the former was known for his firm and frequent statements on the pandemic

situation during the COVID-19 pandemic.



Appendix B

Proofs of Theorems 1 and 2

B.1 Proof of Theorem 1

Let us start assuming ki (0) > 0 ∀i . In such a case we denote with i0 = argmaxi ki (1)

and with K := ki0 (1). First, we show that the problem:

ki (yi )− c yi = 0, with yi ∈ [0,1] ∀i (B.1)

admits a solution for any c ≥ K . Indeed by choosing c ≥ K we have that necessarily

ki (1) ≤ ki0 (1) ≤ c ·1 ∀i while ki (0) > c ·0 = 0; therefore a zero zi (c) must exist for

every i . This zero is unique as a consequence of the concavity of ki (·). The set

of zeros zi (c)i provides a solution of (B.1). Now to get a solution to the original

problem (2.13) we need to show that there exist a c such that {zi (c)}i are normal-

ized. Observe that for c = K by construction zi0 (K ) = 1 while 0 < zi (K ) ≤ 1 for

i ̸= i0, therefore
∑

i zi (K ) > 1. Now, due to the monotonicity and concavity of ki (·),

zi (c) is by construction decreasing with respect to c , moreover zi (c) → 0 as c →∞
∀i , therefore since

∑
i zi (·) is a continuous function of its argument, there will

necessarily be a c0 in correspondence of which
∑

i zi (c0) = 1. In the case in which

ki (0) = 0, observe that 0 is a solution of (B.1) for any c, i.e. zi (c) = 0. Moreover, for

any c ≥ K a second zero may exist. For example, by construction, zi0 (K ) = {0,1}.

Therefore for c = K , as before, we can always choose as set of zeros {zi (K )}i , such

that zi (K ) = 0 if ki (0) = 0, and i ̸= i0, zi0 (K ) = 1. By construction
∑

i zi (K ) ≥ 1. In

particular
∑

i zi (K ) > 1 is there exists a i such that ki (0) > 0. In this latter case,

by increasing c all the non null zeros decrease, therefore, as before, there will
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necessarily be a c0 in correspondence of which
∑

i zi (c0) = 1. □

B.2 Proof of Theorem 2

We first show that ||π̄(1)−π̄(2)||L∞ = maxi |π̄(1)
i −π̄(2)

i | = ||G (F1(x, z))−G (F2(x, z))||L∞ ≤
M ||F1(x)−F2(x)||L∞ ; then we show that we can always enforce: ||F1(x, z)−F2(x, z)||L∞ =
||H (π̄(1))−H (π̄(2))|| ≤ 1/(2M)||π̄(1) − π̄(2)||L∞ by properly choosing ω(·, ·) and θ(·).

Therefore, we can conclude that ||H ◦G (F1(x, z))−H ◦G (F2(x, z))|| ≤ 1/(2M)||(G (F1(x))−
(G (F2(x))|| ≤ M/(2M)||F1(x, z)−F2(x, z)|| = 1/2||F1(x, z)−F2(x, z)||.

First note that ||F1(x, z)−F2(x, z)||L∞ = supx |F1(x, z)−F2(x, z)| coincides with

the Kolmogorov distance between the two distributions.

Let us denote with

ki (y,F1(x, z)) =λ f (i )
∫∫

θ(|x −xi |)ρ(π̄i , |x −xi |)dF1(x, z),

and similarly for ki (y,F2(x, z)) we assume that:

sup
y∈[0,1],i

|ki (y,F1(x, z))−ki (y,F2(x, z))| :=∆K (F1,F2) ≤ a||F1(x, z)−F2(x, z)||L∞ a ∈R+

and

dki (y,F1(x, z))

dy
|y=0< max

i
ki (1,F1(x, z))

dki (y,F2(x, z))

dy
|y=0< max

i
ki (1,F2(x, z))∀i .

Without lack of generality we assume maxi ki (1,F1(x)) ≥ maxi ki (1,F2(x)). Let the

pair (π̄(1) = {π̄(1)
i }i ,c1) be the solution of

ki (yi ,F1(x, z))− c yi = 0 s.t
∑

i
yi = 1, yi ≥ 0, ∀i

now let ({p̂(2)
i }i ) the non necessarily normalized solution of

ki (yi ,F2(x, z))− c1 yi = 0 s.t yi ≥ 0, ∀i .

by means of elementary geometric considerations we can bound:

|π̄(1)
i − p̂(2)

i | ≤ ∆K (F1,F2)

c1 −h1
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where h1 = dki (y,F1(x))
dy |y=min(π̄(2)

i ,p̂(2)
i )≤

dki (y,F1(x))
dy |y=0. We recall that by construc-

tion (see proof of Theorem 1) we have c1 > maxi ki (1,F1(x))).

Denoting with |p̂(2)| =∑
i p̂(2)

i , we have

1−∑
i
|p̂(2)

i − π̄(1)
i | ≤ |p̂(2)| ≤ 1+∑

i
|p̂(2)

i − π̄(1)
i |

Now denoted with ({π̄(2)
i }i ,c2) the solution of

ki (yi ,F2(x, z))− c yi = 0 s.t
∑

i
yi = 1, yi ≥ 0, ∀i

we have, by construction, that:

1

max(1, |p̂(2)|) <
c1

c2
< 1

min(1, |p̂(2)|)

and therefore, exploiting again elementary geometrical arguments, we can bound:

|p̂(2)
i − π̄(2)

i | ≤
∣∣∣∣(c1 −h2

c2 −h2
−1

)
p̂(2)

i

∣∣∣∣
where h2 = dki (y,F2(x,z))

d y |y=min(p̂(2)
i ,π̄(2)

i )=
dki (y,F2(x,z))

d y |y=0. Putting everything to-

gether, we have proved that:

max
i

|||π̄(1)
i − π̄(2)

i || = ||G (F1(x, z))−G (F2(x, z))||L∞ ≤ M ||F1(x, z)−F2(x, z)||L∞

To conclude the proof, first note that by properly choosing ρ(·, ·) and θ(·) we can

assume vx(x, z) and σ2
x(x, z) to depend sufficiently smoothly on π̄, i.e. ∀ε> 0 we

can assume:

sup
x

∣∣∣∣v (1)
x (x, z)− v (2)

x (x, z)
∣∣∣∣

L∞ ≤ ε||π̄(1) − π̄(2)||L∞ ∀z,

sup
x

∣∣∣∣σ2,(1)
x (x, z)−σ2,(2)

x (x, z)
∣∣∣∣

L∞ ≤ ε||π̄(1) − π̄(2)||L∞ ∀z,

and

sup
x

∣∣∣∣∣
∣∣∣∣∣∂σ2,(1)

x (x, z)

∂x
− ∂σ2,(2)

x (x, z)

∂x

∣∣∣∣∣
∣∣∣∣∣
L∞

≤ ε||π̄(1) − π̄(2)||L∞ ∀z.
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Then observe that the solution of the Fokker-Planck equation given in (2.10)

on a compact interval (and so also its primitive) depends smoothly on func-

tion vx(x, z), function σ2
x(x, z) and its first derivative, as long as infx,z σ

2
x(x, z) is

bounded away from zero. As a final remark note that the set of weakly-increasing

functions F (x), such that F (a) = 0 and F (b) = 1 equipped with the L∞-norm forms

a closed set in a complete metric space. □



Appendix C

Sensitivity Analysis of the Case Study

For the Case Study in Section 2.7.2, we were able to measure or define some

characteristic parameters (e.g., f (i ) and xEnd g over nment ). However, others were

unknown, and even if there are methods to measure, for example, user’s opinions

(see Section 2.1), this is far beyond the scope of the present work. We could not

measure the updating weightsα, β, the feedback function θ, and the users’ opinion

on Pol i t i cs. Nevertheless, it is sufficient to assume that a) Conte and Salvini have

opposing views over Politics, i.e., x(Sal vi ni ) < 0.5 and x(Conte) > 0.5 and that b)

Salvini has a more extreme viewpoint, i.e., |x(Sal vi ni ) −0.5| > |x(Conte) −0.5| c) the

population is not too volatile in their viewpoints, i.e., the degree of stubbornness is

not too low c) the feedback function θ decreases quickly with the opinion distance

(exponential), motivated by the fact that about politics people do not easily like

viewpoints too far from theirs, we were able to obtain the results in Figure 2.18.

These are obtained with the parameters specified in Table 2.3.

To justify our choices, we run a sensitivity analysis on the parameters we did

not measure, defining the scenarios in Table C.1. Figure C.1 presents the results. It

is evident that the increase in the normalized popularity πConte does not depend

on these parameters and is due to the timing (see Fig. 2.17) and the skewness

in the population distribution, see Figure 2.16. Note that in Figure C.1 there is a

negative offset that tends to underestimate Conte’s normalized popularity. This

is because we use the measured rate f (Conte) = 0.108, which puts him at quite a

disadvantage compared to Salvini, who has a much higher publication frequency.
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Table C.1 Definition of the scenarios for the sensitivity analysis

Scenario α β θ param. x(Conte)
0 x(Sal vi ni )

0

1 0.25 0.708 8.0 0.74 0.01
2 0.25 0.708 8.0 0.74 0.05
3 0.25 0.708 8.0 0.78 0.01
4 0.25 0.708 8.0 0.78 0.05
5 0.45 0.475 8.0 0.74 0.01
6 0.45 0.475 8.0 0.74 0.05
7 0.45 0.475 8.0 0.78 0.01
8 0.45 0.475 8.0 0.78 0.05
9 0.25 0.708 8.25 0.74 0.01

10 0.25 0.708 8.25 0.74 0.05
11 0.25 0.708 8.25 0.78 0.01
12 0.25 0.708 8.25 0.78 0.05
13 0.45 0.475 8.25 0.74 0.01
14 0.45 0.475 8.25 0.74 0.05
15 0.45 0.475 8.25 0.78 0.01
16 0.45 0.475 8.25 0.78 0.05
17 0.25 0.708 8.5 0.74 0.01
18 0.25 0.708 8.5 0.74 0.05
19 0.25 0.708 8.5 0.78 0.01
20 0.25 0.708 8.5 0.78 0.05
21 0.45 0.475 8.5 0.74 0.01
22 0.45 0.475 8.5 0.74 0.05
23 0.45 0.475 8.5 0.78 0.01
24 0.45 0.475 8.5 0.78 0.05

07 Jul 14 Jul 21 Jul 28 Jul 04 Aug 11 Aug 18 Aug 25 Aug 01 Sep 08 Sep 15 Sep 22 Sep
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Fig. C.1 Sensitivity analysis for the Figure 2.18 considering the 24 different scenarios (in
terms of parameters set) defined in Table C.1.



Appendix D

Data-Driven Modeling Framework

D.1 Modeling Population Heterogeneity

D.1.1 A Data-Driven Approach

The model proposed in this work assumes the knowledge of some characteristics

of the population involved in the epidemiological process. At the country level,

populations present notable differences in their features, for instance, in terms of

age distribution, overall health condition, or the daily contacts among individuals,

which in turn depend on the country’s customs and, more broadly, on the coun-

try’s wealth and employment conditions. The heterogeneity in the population

may play a role in the disease transmission process. Indeed, different contact pat-

terns among individuals may result in a faster virus outbreak. To account for this

heterogeneity, we characterized the population through a distribution function

fr,p (equivalently fr,a , where a is the age, assuming a one-to-one correspondence

between the age a and p, see Section D.1.4) whose parameters represent the av-

erage daily contacts of an individual with other individuals in the population r

and the probability of dying p as a consequence of the contraction of COVID-19.

The parameters on which these variables depend are numerous (i.e., gender, oc-

cupation, individual habits, and pre-existing medical conditions, to name a few);

a precise population characterization is outside this work’s scope. We considered

the individual’s age as the main factor on which the average daily contacts r and

the probability of death p depend. Thus, we stratified the population by age and
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derived country-specific distributions exploiting the contacts patterns presented

in [90] and the case fatality rate from [133], which have both been obtained for

various age classes. The construction procedure of the function fr,p is discussed

in depth in the following paragraphs.

D.1.2 Chance of Death due to COVID-19

One of the characterizing parameters of our population is the probability of dying

after infection p, for which it is crucial to have an estimation. To this end, we

considered the Case Fatality Rate (CFR); see Table I for the values we used, which

refer to Italy. The CFR represents the proportion of deaths due to a specific

disease compared to the total number of people diagnosed with that disease in

a certain period. The data we leveraged come from [133] in which CFR values

have been obtained for 10-year-wide age classes considering Italian COVID-19

epidemiological data by 18th August 2020.

An observation at this point is in order, the case fatality rate refers to confirmed

cases. In contrast, another popular indicator: the Infection Fatality Rate (IFR),

considers the actual number of infected cases. Since COVID-19 can give rise

to infections with mild or no symptoms, the number of actual cases might be

significantly higher than the confirmed cases. For these reasons, it has been

debated that the CFR overestimates the probability of death. However, the actual

number of cases is unavailable, and the studies considering the IFR relied on

estimations. In this direction, it is worth mentioning the work of Ghisolfi et

al. [134] in which values for the IFR have been extrapolated accounting for age,

gender, comorbidities, and health system capacity by discriminating between low-

income and high-income regions. Considering the controversy around the CFR

and IFR indicators, we decided to employ the CFR values to obtain an estimate for

the mortality probability.

Moreover, for the characterization of our synthetic population, we have not

considered other comorbidities (i.e., seropositive status, pre-existing medical

conditions) nor gender differences (see [134] for such differentiated values). Again,

the scope of this work is not to faithfully describe the population but to capture

some quantitative differences in population classes and retain the significant

traits of a heterogeneous population. Many studies confirm the strong correlation



174 | Data-Driven Modeling Framework

between age and CFR (or IFR) [133][134][135]. The latter study considers data

from 25th January to 10th December 2020 for the State of Victoria, Australia. In

this period, the state experienced two waves of the virus, and by the end of the

data series, the infection was eradicated from the Victorian population [135]. This

observation made the writers conclude that their estimate of the CFR is not spoiled

by the underestimation bias, which is customary for an ongoing outbreak. We

report the observed CFR data in Table II. Even though the values for the CFR vary

slightly among the cited studies, the trend is clear: older individuals are more

fragile, and the CFR drastically increases with age.

Age Class CFR

0-19 0.1
20-29 0.1
30-39 0.3
40-49 0.9
50-59 2.8
60-69 10.9
70-79 26.7
≥ 80 34.6

Table I - Italy

Age Class CFR

0-9 0
10-19 0
20-29 0.02
30-39 0.06
40-49 0.04
50-59 0.63
60-69 2.16
70-79 14.41
80-89 31.90
≥ 90 40.03

Table II - Australia

The data from [133] have been assumed as representative of the mortality

probability for all the countries considered for the fr,p distribution construction.

It is a simplification justified by the absence of an extensive and precise study

concerning the case fatality rate at a country level. Figure D.1 represents these data

on the Case Fatality Rate as a function of age. The linear fitting of the empirical

points is also shown in the figure, which allows the expansion of the number of

age classes considered in the synthetic population.

D.1.3 Daily Number of Contacts

Another crucial piece of information for describing a population in epidemiologi-

cal terms is the daily number of contacts of an individual. Indeed, an infection

can occur when an infected individual encounters a healthy individual. The more
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Fig. D.1 Values for the Case Fatality Rate for the various age classes from [133]. The graph
shows the empirical points (in red) and the linearly fitted values of CFR in order to expand
the number of available age classes for our population. The strong correlation between
age and the probability of dying is well depicted by this graph.

individual-to-individual contacts, the higher the chance of an infection. In [90],

age-specific contact matrices have been generated from detailed census and sur-

vey data on key demographic features for 35 countries. Four different settings

are considered (household, school, workplace, and community), producing as

many specific contact matrices. A linear combination with appropriate weights

of these matrices produces an overall contact matrix {Mi j } which indicates the

daily per capita number of contacts an individual of age i has with individuals of

age j (the interested reader is referred to [90] for more details). For this work, the

entire contact matrix M is not necessary. We are only interested in the average

number of contacts of an individual of age i regardless of the age of the individual

encountered. This value is easily computed from M by summing over the columns

of the matrix: E[ri ] =∑
j Mi j . In [90] for each country considered in the study, the

number of people belonging to 1-year-wide age classes is also provided, allowing

for the definition of the age distribution da(age) of the population. Figure D.2 re-

ports the age distribution for Italy truncated at 84 years, together with the average

daily contacts for each age class.
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Fig. D.2 Characterization of the Italian population in terms of the age distribution and the
daily average contacts among individuals as reported in [90].
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Fig. D.3 Pictorial representation of the construction’s procedure for the synthetic distribu-
tion fr,a . Starting from empirical data a discrete fr,a distribution is obtained for arbitrary
values of the risk exposure r and age classes a.



D.1 Modeling Population Heterogeneity | 177

(a) Australia with Var= 0.002 (b) Australia with Var= 0.01 (c) Australia with Var= 0.02

(d) China with Var= 0.002 (e) China with Var= 0.01 (f) China with Var= 0.02

(g) Italy with Var= 0.002 (h) Italy with Var= 0.01 (i) Italy with Var= 0.02

Fig. D.4 fr,a distributions for the countries that have been considered: Australia, China,
Italy. The age bins are A = {0-2,3-5, ..,≥ 87}, and the daily number of contacts r ∈ [0,rmax =
30].

D.1.4 Construction of the Distribution

The quantities reported in the previous paragraphs are the essential ingredients for

constructing the fr,p distribution function. Indeed, we start from the knowledge

of the age distribution da , the average daily contacts E[ra], and the case fatality

rate pa , both given for certain age classes a. The flowchart reported in Figure D.3

exemplifies the procedure followed to construct the fr,p distribution, highlighting

at what point we used which data. First, we partitioned the population into

uniform age classes, each with a width equal to three years A = {0−2, ..,≥ 87}. It
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(a) Japan with Var= 0.002 (b) Japan with Var= 0.01 (c) Japan with Var= 0.02

(d) Spain with Var= 0.002 (e) Spain with Var= 0.01 (f) Spain with Var= 0.02

(g) USA with Var= 0.002 (h) USA with Var= 0.01 (i) USA with Var= 0.02

Fig. D.5 fr,a distributions for the countries that have been considered: Japan, Spain and
the United States. The age bins are A = {0-2,3-5, ..,≥ 87}, and the daily number of contacts
r ∈ [0,rmax = 30].

must be observed that the raw data refer to age bins of different sizes: one-year

width for the average contacts as well as the population’s composition and ten-

year width for the case fatality rate. They must be manipulated to refer to the

same age classes v ∈ A. Thus, we averaged the mean daily contacts, weighting the

average value by the relative frequency of the sub-bin of the wider class v . Starting

from E[ri ], for i ∈ Ar = {0−1,1−2, ..,> 85} we obtained:

E[rv ] = ∑
j∈v

n j∑
k∈v nk

r j ∀v ∈ A = {0−2, ..,≥ 87} (D.1)
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where n j indicates the number of individuals in the age class j ∈ Ar . Similarly, we

have to adapt the CFR defined for ten-year wide classes Ap = {0−9, ..,> 80} to the

new three-year bins. For this purpose, the empirical values of the CFR have been

linearly interpolated. This allows finding a CFR (p) value for each v ∈ A.

Given that we do not consider individual traits such as gender, ethnicity, or

pre-existing medical conditions, we consider the death probability p as a fixed

value, given the age class v ∈ A. This value has some variability because of the

aspects just discussed and individuals’ intrinsic differences. Nevertheless, the

mortality probability p does not directly affect the system’s dynamical behavior;

it just determines the number of individuals entering the “death” D state, so its

contribution matters on average. Note that in our setting, it is equivalent to talking

about fr,p and fr,a due to the one-to-one relationship between an age class a and

the corresponding probability of death pa . On the other hand, the number of daily

contacts r enters directly into the epidemiological system’s dynamical rule (see

Equations 4.2. Assuming r constant over a specific age interval would be a too

substantial simplification. It is known that individuals of the same age have very

different mobility patterns due to, for instance, their occupation, their lifestyle,

and their medical condition. To account for this variability, we spread the indi-

vidual’s daily contacts around their mean value according to a Beta distribution

with a given variance σ. We choose the support of the Beta distribution to be

[0,rmax]. It is clear that r ≥ 0, at the same time, we decided to fix an upper bound

for the number of contacts assuming that just a negligible number of individuals

would fall outside this interval. The average value of contacts E[rv ] fixes one of

the Beta distribution parameters. The other parameter characterizing the Beta

distribution appears to be a free variable for which we selected different values

to obtain sufficiently different variance values. The resulting distributions have

been fed as input to the dynamical model giving qualitatively the same results.

Since the desired fr,a distribution needs to be discrete. We defined a set of equi-

spaced r values for which we computed the discrete probability by integrating

the Beta distribution in the interval of interest. This procedure allows obtaining a

discrete bi-dimensional distribution for 3-year-wide age bins (each corresponding

to a certain mortality probability p) and equispaced values of r in the interval of

definition [0,rmax].
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D.1.5 Estimation of Years of Life Lost

One of the metrics employed to compare the proposed vaccination strategies

consists of evaluating the years of life lost (YLL) due to deaths attributable to the

virus. It is a measure of premature mortality that not only considers the chance

of death from the virus but also the age of the deceased individuals. In order

to perform such an estimation, country-specific demographic data are needed

for all countries considered to construct the synthetic populations. The World

Health Organization (WHO) collects health-related statistics in the Global Health

Observatory [136], gathering information regarding all 194 WHO member states.

In particular, it provides the life expectation stratified by age E[La], pivotal to

compute the years of life lost. E[La] is provided for 5-year-wide age bins except for

the first bin, which is partitioned into the individuals younger and older than one,

and the last one, which groups all people older than 85. We made an interpolation

to obtain a E[La] value for each of the age classes of our synthetic populations.

We linearly interpolated the empirical data of the Global Health Observatory,

providing the life expectation for each three-year-wide age class. To present some

of the differences that might be present in E[La] considering different countries,

we report the WHO’s life expectation values for Italy (left) and China (right) in

Table III.

D.2 Disease Specific Parameters Choice

The parameters specified in Table IV refer to the specific behavior of the COVID-19

pandemic. This section discusses the choice of such parameters, providing the

necessary references that justify them.

In our reference scenario, we considered two phases of the pandemic, which is,

of course, a first simplification. In the first phase of our scenario, there was more

than one variant on the national territory. Indeed, there were several different

variants with slightly different basic reproduction numbers. For simplicity, since

our work does not aim to represent the pandemic’s evolution accurately but rather

to provide a data-driven demonstration of the proposed model, we considered

only one reproduction number for the period, roughly equivalent to that of the

Delta variant but also compatible with earlier variants. The Delta variant was
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Age Class Life Expectation

<1 82.97
1-4 82.20
5-9 78.24

10-14 73.27
15-19 68.30
20-24 63.36
25-29 58.44
30-34 53.52
35-39 48.61
40-44 43.73
45-49 38.90
50-54 34.15
55-59 29.53
60-64 25.04
65-69 20.73
70-74 16.63
75-79 12.80
80-84 9.24
≥ 85 6.21

Age Class Life Expectation

<1 77.43
1-4 76.96
5-9 73.04

10-14 68.11
15-19 63.18
20-24 58.28
25-29 53.44
30-34 48.60
35-39 43.79
40-44 39.05
45-49 34.39
50-54 29.79
55-59 25.33
60-64 21.06
65-69 17.01
70-74 13.24
75-79 9.95
80-84 7.06
≥ 85 4.76

Table III: Life expectation - Italy (left) and China (right).

first identified in India in October 2020 and has a basic reproduction number

that ranges from 3.2 to 8 [137]. Indeed, the value chosen for strain 1 is not far

from the values of the basic reproduction number in the early outbreak, which

averaged 4.22 when considering several European countries, and was estimated

to be 6.33 in Germany and 5.88 in the Netherlands, while in Italy it was 4.25 [138].

The value of 6 chosen for strain 1 is roughly between the values for the early

outbreak and the later Delta variant. For strain 2, “The Omicron variant has an

average basic reproduction number of 9.5 and a range from 5.5 to 24” [138]. These

values motivate us to choose a basic reproduction number of 12 for the second

strain in our reference scenario since its occurrence corresponds approximately

to the onset of the Omicron variant in Italy.

Regarding the average length of stay in the different states, it is reported in [139]

that the time spent in the ICU was 18.4 days (before 25th March) and 15.4 days

(after 7th April), which is why we chose 16 days. This choice is also consistent with
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the study in [140], which examined several studies and found that the median

length of total hospital stay (Length of Stay) ranged from 5 to 29 days. “Most studies

(43/52) reported LoS for total hospitalization only, with four studies reporting

LoS for ICU only, and five studies reporting both.” [140]. Regarding the length

of stay in the ICU in this study, the median ranged from 5 to 19 days [140]. We

used an average sojourn time of 16 days for both hospitalizations and ICU. Table

4 of [141] reports the infectious period (IP) for symptomatic cases from several

studies, ranging from 3 to 20 days. The infectious period seems to be about a week.

We set it at eight days in our scenario.

On the website of the Italian Government [142], a report regarding vaccinations

is available, as of 17th July 2023, 90,25% of the population over 12 has completed

the vaccinal cycle, justifying the 10% of no-vax individuals considered in our

scenario.

To what concerns the mortality reduction of strain 2 compared to strain 1 and

the mortality reduction associated with acquired/natural immunity: In [143], it is

found that in South Africa, the infection fatality ratio was reduced by 78.7%, which

approximately corresponds to a factor 5 decrease, as used in our scenario. For the

reduction in mortality, we assumed the effect of vaccination and natural immunity

are comparable. In [144] is reported that the COVID-19-related mortality of the

Pooled Vaccine Effectiveness (PVE) was 92%, corresponding to a hazard ratio

of 0.08, which we optimistically associated with a factor of reduction of 20.

As for the number of “regular” hospital and intensive care beds, we rely on

the ISTAT (Italian Institute of Statistics) report [145]. The number of “regular”

beds is not easy to determine since there are different types of hospital beds,

depending on the expected length of stay and the medical service to be provided.

This number has declined over the last 30 years and is now about 200000 units.

We took a conservative approach in our analysis and assumed Ĥ = 50000 for two

reasons: First, the above number concerns all types of hospital beds; second,

not all beds can be reserved for COVID-19 patients; we considered a quarter

of the total number a reasonable choice. Regarding ICU, the report mentioned

earlier [145] states that the number of ICU beds is, on average, 15.1 for every

100000 individuals, which is about 10000 beds. Note that while we have set T̂ to

20000, we have considered Tmax = 10000 in most of our simulations. We argue

that it was also interesting to investigate scenarios with a larger capacity.



Appendix E

Comparative Analysis with Optimal

Control

E.1 Our Study and the Optimal Control Framework

Our study takes a different perspective than the optimal control approach. We de-

liberately examine simple control strategies to provide practical insights and guide-

lines for decision-makers who may not have access to sophisticated optimization

techniques or detailed knowledge of the underlying epidemic mathematical laws

(e.g., parameters).

Optimal control approaches in epidemiology have certain drawbacks worth

mentioning. These approaches often lack closed-form analytical solutions, re-

quiring numerical methods for their implementation [146, 147]. While numerical

solutions can provide valuable insights, they can be challenging to interpret and

translate into practical control measures. This lack of interpretability hampers

the ability to univocally understand the implications and consequences of the

obtained optimal control strategies. Another drawback is that optimal control

solutions may strongly depend on parameters, leading to abrupt changes in the

optimal interventions. These “phase transitions” can make implementing and

managing the control measures in practice difficult. Minor changes in the pa-

rameters or system conditions may result in significant shifts in the optimal

strategies. Furthermore, optimal control approaches often rely on detailed and

precise knowledge of the system dynamics, including accurate parameter values
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Fig. E.1 (a) Economic cost and control effort via optimal control (b) Percentage of threat-
ened and deceased individuals via optimal control implementation. (c) Comparison of
optimal control and Rate control strategies

and functional forms of the underlying equations. In real-world scenarios, such

detailed information may be unavailable or subject to significant uncertainties. In

the same spirit as [128], we will mainly focus on two control feedback strategies

based on controlling the rate of new infections or maintaining the occupation of

healthcare facilities below a given level, and we evaluate the economic cost of non-

pharmaceutical interventions and the social cost in terms of number of deaths.

For the sake of simplicity and analytical tractability, we consider an “ideal” sce-

nario in which the system operates near the equilibrium point, where the effective

reproduction number equals one (we provide local stability results). This regimen

appears to be a desirable condition whereby the number of infected individuals,

and thus those requiring intensive treatment, is maintained at a sustainable level,

even over long periods, while applying minimal durable mobility restrictions.

E.2 Comparative Analysis

In this section, we perform a comparative analysis of the proposed model against

optimal control and homogeneous models to assess its effectiveness and advan-

tages in addressing the research problem.

In this section, we compare the Rate and HT controllers with optimal control

during the first phase of the pandemic in which vaccines are still unavailable. All

experiments refer to the single-class version of the model in (4.2).

In [148], various government intervention strategies are compared against a

specific percentage of the deceased population while employing different control



E.2 Comparative Analysis | 185

0 50 100 150 200 250 300 350

time

0

200

400

600

800

1000

1200

1400

1600

T
o
ta

l 
c
o
s
t

0

200

400

600

800

1000

1200

1400

1600

E
c
o
n
o
m

ic
 c

o
s
t

0 50 100 150 200 250 300 350

time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

time

0

0.01

0.02

0.03

0.04

0.05

0.06

P
e
rc

e
n
ta

g
e
 t
h
re

a
te

n
e
d

0

0.5

1

1.5

2

2.5

P
e
rc

e
n
ta

g
e
 d

e
c
e
a
s
e
d

(a) (b) (c)

Fig. E.2 (a) Comparison of different control strategies: (a) Overall costs and economic
costs; (b) Control function. (c) Percentage of threatened and deceased individuals.

policies. We replicate similar experiments and present the numerical solutions

obtained via the optimal control approach within a time horizon tmax = 365 days.

We fix κ1 = 200, κ3 = 20, and ζ= 4, and we let κ2 to vary from 105 to 108.

The considered economic cost corresponds to the teal curve depicted in Figure

4.7. Such cost has been chosen non-convex, on purpose, to put the Rate control

strategy in the most challenging conditions (indeed Proposition 3 and 4 do not

hold). Observe that, with our choice of parameters, the first term of the objective

function in (4.7) is typically small with respect to the third, and therefore the

choice of κ2 becomes fundamental to determine the proper trade-off between

economic cost and death/ICU occupancy, where the last two metrics are highly

correlated, since by tightly controlling ICU occupancy, we exert tight control on

the deaths and vice versa.

The average sojourn time in state I has been set equal to 8 days and that

in states H and T to 16 days. Therefore γ = 1/8, φ = τ = 1/16. The transition

probabilities between compartments I, H, T, and D, satisfying constraint (2), are

set for simplicity as follows: p I H = p HT = p̂T D = p1/3 with overall mortality rate

p = 0.01. The assumed value for the basic reproduction number has been fixed to

R0 = 3, as reported in [149], and the healthcare capacity parameter to 3.33 ·10−3.

In Figure E.1(a), the economic cost (in blue) and the control (in red) are shown

as a function of time. For lower values of the parameter (κ2 ∈ [105,106]), the

control measures are moderate and remain relatively constant for a brief period

of approximately 50 days. After this initial phase, the control is tighter, reaching

its maximum level of restriction. During this period, stringent measures are

implemented to contain the epidemic effectively. Subsequently, as the situation
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improves or specific goals are achieved, the control is gradually relaxed, allowing

for a more lenient approach to managing the epidemic. This sequential pattern of

moderate-tightened-relaxed control measures aims to strike a balance between

mitigating the spread of the disease and minimizing the socioeconomic impact

on the population. The stringent initial intervention effectively disrupts the early

exponential growth of the epidemic, leading to a dampened peak number of

infections. In both previous cases at the end of the observation window, i.e.,

for t ≈ tmax, the population reaches herd immunity. As we increase the value

of κ2, as expected, the control becomes more stringent and is kept constant for

most of the time (around 350 days). At the same time, the healthcare system

experiences less stress, and the number of deaths decreases at the expense of

higher economic costs. Notably, when setting κ2 above 2 ·107, we can confidently

guarantee that the peak number of patients requiring intensive care remains

below around 30000 (see Figure E.1(b) where blue curves refer to ICU occupancy

and red curves to cumulative deaths). This behavior highlights the importance

of appropriately calibrating control parameters to achieve optimal outcomes in

managing the epidemic and preventing overwhelming pressure on the healthcare

infrastructure. Observe that at the end of the observation window, i.e., for

t ≈ tmax, the control is always completely released, i.e., ρ(tmax) = 1. This effect is

a by-product of the optimal control approach, which does not account for what

happens when t > tmax. Indeed, as t approaches tmax, releasing the control leads

to an instantaneous reduction of the economic cost, while, due to the delay, the

resulting increase in ICUs and deaths is negligible (as it will take place after tmax ).

The analysis in Figure E.1(c) highlights the trade-offs between economic cost

and human lives achieved by optimal control and Rate control, respectively. The

curves have been obtained by varying parameterκ2 ∈ [105,108] for optimal control,

λ ∈ [1000,700000] for Rate control. We have disregarded the healthcare stress

cost, using the total number of deaths as a proxy of it. It should be noted that the

optimal control strategy proves to be the most effective, outperforming the rate

control strategy. However, if we fix the number of deaths, for example, to 0.2% (i.e.,

100000 deaths), the rate control strategy exhibits only a slightly worse economic

cost. The difference between the economic cost curves of the two strategies is

not substantial, with a modest 7% increase obtained by the rate control strategy.

Despite the increase in economic costs resulting from the rate control strategy, the
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difference is relatively small, indicating that both strategies remain competitive in

managing the epidemic.

It is worth remarking that approximately the same value of the overall objective

function in (4.7), which takes into account economic cost, deaths, and healthcare

stress in the optimal control strategy, can be achieved through fairly different

approaches. Figure E.2 provides a comparison of the optimal control strategy

with κ2 = 2 ·107, the Rate control with λ= 120000, and the linear HT control with

ρH (H) = min
(
15, H0

H0−H

)
and ρT (T ) = min

(
15, T0

T0−T

)
, with and H0 = 480000 and

T0 = 300000.

While the overall cost for the three strategies is approximately the same, the

different components of the cost are significantly different. For what concerns

the economic cost, the optimal control strategy appears to be the least favorable,

resulting in the highest economic burden compared to the other strategies (the

economic cost for the optimal control strategy is hardly distinguishable from the

overall cost). On the other hand, the rate control strategy is the most efficient in

minimizing economic costs, offering a more economically sustainable approach.

The HT control strategy falls in an intermediate position, achieving a balance

between cost-effectiveness and epidemic management. Regarding the number

of deaths, the optimal control strategy demonstrates its strength, resulting in the

lowest fatality rate among the three strategies. It effectively minimizes the loss of

life during the epidemic. Conversely, the rate control strategy shows the highest

number of deaths, indicating that this approach is less effective in preventing

fatalities. The HT control strategy lies in between, offering an intermediate level

of protection against the loss of life compared to the other two strategies. In

conclusion, adopting the overall cost as the unique driver for the choice of ρ(t)

turns out to be not particularly appealing to decision-makers because it does not

allow them to exert direct control on the different components of the cost.



Appendix F

Miscellaneous

F.1 Model Extension - Adding Direct Transitions

To extend the base model, it is possible to consider that infected people die without

being hospitalized or undergoing intensive treatment. This requires specifying the

probabilities p I D
r,p and p HD

r,p associated with direct transitions from state I (state H )

to state D, respectively, representing the occurrence of premature death events.

Previous probabilities p I H
r,p and p HT

r,p are then redefined as transition probabilities

conditioned to the event that such premature deaths do not occur. The new model

is depicted in Figure F.1 and the modified system is:

Ṡr,p (t ) =−σ(t )

( ∑
r ′,p ′

r ′Ir ′,p ′(t )

)
r Sr,p (t )∑

r ′,p ′ r ′N fr ′,p ′
+µM(t )

İr,p (t ) =σ(t )

( ∑
r ′,p ′

r ′Ir ′,p ′(t )

)
r Sr,p (t )∑

r ′,p ′ r ′N fr ′,p ′
−γIr,p (t )

Ḣr,p (t ) = γ(1−p I D
r,p )p I H

r,p Ir,p (t )−φHr,p (t )

Ṫr,p (t ) =φ(1−p HD
r,p )p HT

r,p Hr,p (t )−τTr,p (t )

Ḋr,p (t ) = τpT D
r,p (t )Tr,p (t )+γp I D

r,p Ir,p (t )+φp HD
r,p Hr,p (t )

Ṁr,p (t ) = γ(1−p I D
r,p )(1−p I H

r,p )Ir,p (t )

+φ(1−p HD
r,p )(1−p HT

r,p )Hr,p (t )

+τ(1−pT D
r,p (t ))Tr,p (t ) −µM(t )

(F.1)
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Note that in this case, we must ensure that the overall death probability p

satisfies (for T (t ) ≤ T̂ )

p I D
r,p + (1−p I D

r,p )p I H
r,p

[
p HD

r,p + (1−p HD
r,p )p HT

r,p p̂T D
r,p

]
= p (F.2)

which replaces (4.3).

As a final remark, we point out that while this extension is straightforward,

it introduces the need for additional parameters that could be difficult to be

determined. Moreover, models such as the SIDARTHE [94], discussed above and

explicitly developed for COVID-19, do not consider such transitions. Lastly, there

is evidence that the majority of deaths due to COVID-19 have occurred in hospitals

or care homes [150]. Therefore, we employed the first version of the model in our

simulations.

Population class r',p'

Population class r,p

Fig. F.1 Schematic representation of the proposed model without vaccination adding
transitions from the Infected (I ) and Hospitalized stets to the Death (D) state, as detailed
by the system of equations (F.1). This model is rather similar to that in Figure 4.4, only two
transitions for each {r, p} individual’s class have been added.
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F.2 Motivating Heterogeneity - Rate Control

F.2.1 Comparison with a Single-Class Model

In this section, we question the importance of introducing in the model a strat-

ification based on distribution fr,p , given that, at least when Sr,p (t) ≈ N fr,p , our

multi-class (stratified) model is equivalent to a single-class (non-stratified) model

with a transmission rate modified by a factor β=
∑

r,p r 2 fr,p∑
r,p r fr,p

.

We now show that, besides being necessary to evaluate prioritized vaccination

strategies, our stratification is fundamental also to compute the cost of pure non-

pharmaceutical interventions. To this purpose, we consider a simple SIR model

under perfect control of new infections, i.e., where ρ(t) = max
{

1, λU (t−ε)
λ

}
with

ε= 1/100 day.
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Fig. F.2 Comparison between single-class and multi-class models, and impact of parameter
θ, on economic and social costs, as a function of controlled rate λ of new infections.

In Fig. F.2, we compare the economic and social costs derived by our model

with those computed by a single-class model in which the contact rate and mor-

tality of all individuals are set equal to mean values E[r ] and E[p], respectively. In

this experiment, the time horizon is tmax = 1 year.

We also compare the case in which saturation of intensive therapy capacity

does not affect mortality (θ = 1) and the case where mortality is severely increased
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Fig. F.3 Zoom of Fig. F.2 on the more reasonable control regime of small λ.

by ICU saturation (θ = 10). Fig. F.2 uses a log horizontal scale to encompass also

large values of λ, corresponding to an almost uncontrolled epidemics, i.e., the

attempt to quickly reach the naturally-acquired herd immunity (which occurs at

the ‘knees’ of the curves for the number of deaths). Notice that such a strategy to

achieve herd immunity produces a dramatic number of deaths (2 million out of a

population of 60 million) even in the most favorable case (multi-class model with

θ = 1). We remark that the case fatality rate varies by time and location, and its

measurement is affected by well-known biases exacerbated during the COVID-19

pandemic. Hence, the mortality in the numerical results might be overestimated,

as the case fatality rate has been retrieved from data statistics that include both

deaths due to or with COVID-19.

Fig. F.3 reports identical results, but zooming in on the more reasonable control

strategy in which small λ values are enforced. The economic cost (left y axes)

is approximately the same under single/multi-class models. This observation

depends on the fact that, under the considered distribution fr,p , E[r ] = 12.1 and

E[r 2]/E[r ] = 13.5, are very close to each other. Moreover, the economic cost does

not depend on θ, as expected. In contrast, the predicted number of deaths (right

y axes) is highly diverse across different models and considered values of θ. Even

with θ = 1, the single-class model predicts a much larger number of deaths. This

can be explained by the fact that under any realistic distribution fr,p (see Fig.
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D.4 and Fig. D.5), contact rate r and mortality p are negatively correlated, such

that most vulnerable individuals (elderly) have lower contact rate. Therefore, the

single-class model, in which all individuals are identical, is more pessimistic in

terms of deaths. More significant discrepancies between single- and multi-class

models are observed with θ = 10, since after saturation of ICU, occurring at the

“bifurcation” points appearing in Fig. F.3, saturation effect of mortality probability

(Eq. (4.4)) occurs in the multi-class scenario for some disadvantaged classes, but

not in the single-class model.

F.3 Additional Proofs

Here, we present the proofs of Corollary 2 and 3, for completeness, we report again

the statement of the corollaries. The two corollaries explore two interesting cases

of delay distributions.

Corollary 4 (Exponential delay distribution). If fd (τ) = u(τ)δe−δ(τ), then the system

is always (locally) stable.

Proof. Consider an exponential delay distribution of parameter δ (mean 1/δ). We

obtain

L {η(t )} = η(0)

s + γδ
s+δ

(F.3)

The poles of (F.3) are the roots of the second-order equation s2+ sδ+γδ. Since the

real part of both roots is negative for any δ, the system is always stable. For 1
δ > 1

4γ

it exhibits dumped oscillations, otherwise it exhibits an exponential decay.

Corollary 5 (Shifted exponential delay distribution). Let fd (τ) = u(τ−d)δe−δ(τ−d).

For any given δ> 0, there exists a critical delay d∗ = 1
γ

f (δ), such that the system is

(locally) stable if d < d∗, otherwise the system is unstable. As δ grows from 0 to ∞,

d∗ grows from 1/γ to π/(2γ).

Proof. Consider the shifted exponential distribution: fd (τ) = u(τ−d)δe−δ(τ−d). In

this case we have

L {η(t )} = η(0)

s + γδ
s+δe−sd

(F.4)
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whose poles z = b + iω satisfy the equations:b2 −ω2 +bδ+γδe−bd cos(ωd) = 0

2bω+ωδ−γδe−bd sin(ωd) = 0
. (F.5)

At the critical point, b = 0, and above equations reduce to:ω2 = γδcos(ωd)

ω= γsin(ωd)
. (F.6)

For given δ, we can solve the above two equations in the unknowns ω⋆, d⋆,

obtaining:

ω⋆ =
√

−δ2 +√
δ4 +4γ2δ2

2
, d⋆ =

arcsin(ωγ )

ω
.

Fig. F.4 shows the critical values d⋆ and τ⋆ = 2π/ω⋆ as a function of 1/δ (in the

plot all quantities are normalized by the average sojourn time 1/γ in the infectious

state).
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Fig. F.4 Critical values d⋆ (left y axes) and τ⋆ (right y axes) as function of 1/δ. All quantities
are normalized by 1/γ.

Interestingly, the critical value d⋆ of the shift decreases as we increase the

average 1/δ of the exponential distribution. For example, with δ = γ we have

d⋆γ≈ 1.15, in constrast to d⋆ ≈ 1.57 with deterministic delay.
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