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Vehicles are currently undergoing a digital transformation, increasingly equipped
with advanced sensing devices, electronic control units, and communication inter-
faces that enhance their capabilities. The richness of information generated by these
systems fosters the development of data-driven approaches that facilitate context-
aware decision-making. The thesis focuses on developing data-driven frameworks in
two key research directions: vehicle trajectory prediction and vehicle motion control.
The thesis aims to enhance safety, traffic efficiency, comfort, and the overall driving
experience through the implementation of these frameworks.

Initially, for vehicle trajectory prediction, a machine learning-aided, uncertainty-
aware framework is introduced to detect collisions in complex urban environments.
The proposed framework leverages Long Short-Term Memory (LSTM)-based mod-
els to predict vehicles’ future trajectories and estimate the uncertainties associated
with them. Subsequently, a random forest classifier leveraging both the trajectory
predictions and their associated uncertainties is employed to detect collisions pre-
emptively. The framework was evaluated using mobility traces from two urban
intersections, and the results demonstrated that it could detect all collisions at the
intersections preemptively, unlike its alternatives. In addition, it has fewer false
positives, emphasizing the framework’s effectiveness. The use of prediction intervals
along with the predicted trajectories led to a 61% improvement in the median reaction
time available for drivers. Given their timely detection, automated vehicles can avoid
all collisions at both intersections.

Subsequently, for vehicle motion control, two Deep Reinforcement Learning
(DRL)-based frameworks have been introduced: 2-Layer Learning Cooperative
Adaptive Cruise Control (2LL-CACC) and Adaptive Autopilot. The 2LL-CACC
framework utilizes a two-layer learning strategy designed to tackle challenging ma-
neuvers with the objective of enhancing safety, comfort, and traffic efficiency. The
top layer hosts a context recognition model to appropriately weigh the target metrics
such as headway, jerk, and longitudinal wheel slip. The bottom layer leverages a



DRL-based control strategy that optimizes vehicle acceleration to achieve the objec-
tives. To evaluate this approach, CoMoVe (Communication, Mobility, and Vehicle
dynamics), a virtual validation framework, is employed to realistically simulate
the challenging cut-in and cut-out scenarios using domain-specific simulators. The
results show that the framework achieved a better trade-off among the objectives and
outperformed its counterparts. In terms of traffic efficiency, the approach maintained
the desired headway for 73% of the simulation time on average across two scenarios,
while its counterparts achieved only 30%. Additionally, SCALEXIO AutoBox is
used for rapid control prototyping to experimentally validate the simulation results.

Modern vehicles, despite being equipped with Advanced Driver Assistance
Systems (ADAS), often encounter their ADAS functionalities disengaged by drivers
due to their limitations in adapting to driver preferences. To tackle the disengagement
rate, the adaptive autopilot framework focuses on achieving human-like driving
behavior by tailoring control actions according to the driver’s preferred driving style.
It addresses three interconnected sub-problems in the car-following scenario. Initially,
a rule-based (RB) approach categorizes driving styles into three types: aggressive,
normal, and conservative. Subsequently, deep neural network-based regressor models
are trained on this categorized data to predict human driver-like acceleration values
for each driving style. Finally, a Constrained Deep Reinforcement Learning (C-DRL)
approach is trained to mimic human-like driving behavior by controlling the vehicle’s
acceleration. The C-DRL agent is trained to reduce the difference between its action
and the predicted human driver-like acceleration, while also guaranteeing safety.
Performance assessments show that each sub-problem has achieved its respective
objectives. The RB classifier effectively categorizes drivers’ driving styles, while the
regressor models predict human driver-like accelerations, with 80% of the absolute
errors falling below 0.21 m/s2, outperforming its alternatives. Following that, C-DRL
agents can safely mimic human-like driving across all styles, thereby enhancing the
driving experience and reducing the disengagement rate of ADAS functionalities.


