

Doctoral Dissertation Doctoral Program in Electrical Engineering (36thcycle)

Advanced Modelling and Design Methodology for Electric Traction Motors

By

Paolo Ragazzo

Supervisor(s):

Prof. Gianmario Pellegrino, SupervisorDr. Simone Ferrari, Co-SupervisorEng. Ruggero Seccia, Co-Supervisor

Doctoral Examination Committee:

Prof. Stjepan Stipetic, Referee, University of Zagreb Dr. Mircea Popescu, Referee, ANSYS

> Politecnico di Torino 2024

Abstract

The current industrial and political momentum advocating for the electrification of the transportation sector underscores the imperative for an enhanced understanding of electric powertrains. While electric machines have been an invention since the 19th century, the research in this field has recently surged in popularity, especially over the last two decades. This thesis is situated within this context, with the objective of enhancing the modelling and design aspects of permanent magnet synchronous machines, namely the most widespread electric machine type in traction applications. The activities undertaken in this thesis are closely aligned with the current necessities of OEMs and Tier-1 companies; indeed, the primary goal is to provide solutions to some of the most intricate challenges faced in the field.

The initial outcome encompasses two innovative design procedures. The first procedure facilitates the initiation of a design from the ground up, integrating sizing equations with minimal reliance on Finite Element Analysis. In contrast, the second procedure is employed for designing a machine based on a reference pre-designed machine, employing scaling techniques.

The second segment of the thesis is dedicated to the estimation of iron, magnet, and copper losses. A significant scientific contribution lies in a novel procedure grounded in simple static simulations, enabling a comprehensive estimation of machine losses. Special emphasis is placed on intricate phenomena, notably the influence of PWM supply and magnet segmentation, which significantly affect losses. These loss estimation techniques culminate in an efficiency mapping procedure that adeptly considers profound phenomena while ensuring a manageable computational burden.

The offered procedures are validated through tests on 4 prototypes, corroborating their validity.

All the processes outlined in this thesis are openly shared through the open-source project SyR-e. This software platform serves as a valuable resource for the design and evaluation of electrical machines, as demonstrated by more than 8 thousand downloads worldwide. Over the last four years, I have been a developer of the tools.

Contents

List of Figures List of Tables					xvii	
					xvii	
1	Intro	oductio	n		1	
	1.1	Motiva	ation and goals of the thesis		1	
	1.2	List of	published papers	•	2	
	1.3	Manus	script Organization	•	4	
2	Syno	chronou	as Machines for Traction Application		7	
	2.1	Indust	rial trends	•	7	
		2.1.1	An outlook on electric motors technologies		7	
		2.1.2	Market objectives		9	
		2.1.3	Target key performance index		10	
	2.2	Examp	ples of e-motors for battery electric vehicles	•	11	
		2.2.1	Tesla Model 3 3D5		12	
		2.2.2	Tesla Model 3 3D6	•	14	
		2.2.3	Tesla Model S Plaid	•	15	
		2.2.4	BMW i3	•	17	
		2.2.5	Lucid Air	•	19	
		2.2.6	KPI comparison		21	

	2.3	Review of e-motor design techniques		
		2.3.1	Analytical methods	22
		2.3.2	Design of Experiments	23
		2.3.3	Optimization algorithms	23
3	(x,b)) Cross-	section Design Plane	25
	3.1	Design	equations	26
		3.1.1	Torque and Power Factor (x,b) Design Plane	26
		3.1.2	Torque and Power Factor Equations	26
		3.1.3	q-axis Design: Stator and Rotor Iron Size	28
		3.1.4	<i>d</i> -axis design: rotor barriers and PMs	29
		3.1.5	Radial ribs size	32
		3.1.6	Characteristic current computation	32
	3.2	FEAfix	simulations	33
	3.3	Graphi	cal design procedure	34
		3.3.1	Manipulation of the design plane results	35
		3.3.2	Number of turns selection	35
		3.3.3	Case study: NdFeB Motor	36
		3.3.4	Case study: Ferrite Motor	38
		3.3.5	Selected Design Comparison	41
4	Turi	n-off Sai	fe Modes	45
	4.1	1 Motor modelling for safe state operations		
		4.1.1	Transient Short-Circuit Computation	46
		4.1.2	Hyper-worst case active short-circuit current	48
		4.1.3	Rectangular flux maps	50
		4.1.4	Demagnetizing current and UGO limits	51

	4.2	Safe conditions in torque-speed domain			
		4.2.1	ASC and OC modes evaluation	52	
		4.2.2	Safe modes evaluation on the PM-SyR machine	53	
		4.2.3	Safe modes evaluation on the IPM machine	55	
	4.3	Indexe	s on the design plane for safe state modes	56	
5	Flux	ux, Loss and Efficiency Maps			
	5.1	Steady	-State Model of the AC Machine	59	
	5.2	Flux m	aps computation	61	
		5.2.1	Flux maps organization	62	
	5.3	Loss m	nap computation	63	
	5.4	Efficie	ncy map under sinusoidal supply	65	
	5.5	Experi	mental flux map	69	
		5.5.1	M2 motor: traction application	72	
		5.5.2	THOR motor: industrial application	73	
		5.5.3	ORLIF motor: lifting application	74	
6	Flux	-Map B	Based Dimensional Scaling	77	
	6.1	Proces	s outline	79	
	6.2	Structu	ral scaling	80	
	6.3	Flux and loss maps scaling			
	6.4	Length	vs number of turns plane	84	
	6.5	5 Thermal scaling		85	
		6.5.1	Scaling of the cooling jacket dimensions	85	
		6.5.2	Scaling of the heat exchange coefficient	86	
		6.5.3	Stall torque of the scaled machine	88	
	6.6	Scaled	efficiency map and continuous performance	89	

	6.7	Case s	tudies	91
		6.7.1	Design case 1: diameter set by the maximum speed	91
		6.7.2	Design case 2: same diameter and length of PRIUS IV	93
7	Accu	urate Fl	EA Calculation of Iron Loss	97
	7.1	Challe	nges on the iron loss model for PMSM	99
		7.1.1	Major and minor hysteresis loops	99
		7.1.2	DC bias on flux density waveforms	100
		7.1.3	Impact of mechanical stress	101
		7.1.4	Impact of the manufacturing process	103
		7.1.5	Impact of the inverter supply	103
	7.2	Review	v of iron loss models	104
		7.2.1	Models based on the Steinmetz equation	104
		7.2.2	Bertotti model	106
		7.2.3	Jiles-Atherton model	107
		7.2.4	FEAs employing hysteresis models	108
		7.2.5	Iron loss models comparison	109
	7.3	Augme	ented iGSE model	110
		7.3.1	Minor and major loops detection	110
		7.3.2	Iron loss due to DC bias and compressive mechanical stress	111
		7.3.3	Computational time minimization	112
		7.3.4	Example results on a case study	114
8	Accu	urate Pl	M Loss Calculation with Static FEA Solver	117
	8.1	Magne	et loss mechanism	119
		8.1.1	Hysteresis loss	119
		8.1.2	Eddy current loss	119

	8.2	Review	of magnet loss evaluation)
		8.2.1	Resistance-limited magnetostatic model	L
		8.2.2	Skin-limited transient model	2
	8.3	Augme	nted magnetostatic FEA for PM loss	3
		8.3.1	Reaction field effect	3
		8.3.2	3D effect	5
		8.3.3	Example results on case studies	7
	8.4	Analyti	cal estimation of the segmentation effect)
		8.4.1	Frequency range of PM loss reduction	2
		8.4.2	Frequency range of PM loss increase	3
		8.4.3	Generalized formulation	1
		8.4.4	Comparison with FEAs	5
	8.5	Conclu	sive comments	7
9	Accu	rate Co	opper Loss Calculation 139)
	9.1	Copper	loss mechanism	1
	9.1 9.2	Copper Propose	· loss mechanism)
	9.1 9.2	Copper Propose 9.2.1	Ploss mechanism 139 ed copper loss model 141 Linear time-harmonics simulations 141)
	9.1 9.2	Copper Propose 9.2.1 9.2.2	Ploss mechanism 139 ed copper loss model 141 Linear time-harmonics simulations 141 Active length and end-windings models 143	ן ן ן
	9.19.29.3	Copper Propose 9.2.1 9.2.2 Examp	Ioss mechanism 139 ed copper loss model 141 Linear time-harmonics simulations 141 Active length and end-windings models 143 le results on case studies 146	1 1 3 5
	9.19.29.3	Copper Propose 9.2.1 9.2.2 Examp 9.3.1	Ploss mechanism 139 ed copper loss model 141 Linear time-harmonics simulations 141 Active length and end-windings models 143 le results on case studies 146 AC loss factor map 146	1 1 3 5 5
	9.19.29.3	Copper Propose 9.2.1 9.2.2 Examp 9.3.1 9.3.2	Ploss mechanism 139 ed copper loss model 141 Linear time-harmonics simulations 141 Active length and end-windings models 143 le results on case studies 146 AC loss factor map 146 Frequency regions 148	1 1 3 5 5 3
	9.19.29.3	Copper Propose 9.2.1 9.2.2 Examp 9.3.1 9.3.2 9.3.3	Ploss mechanism 139 ed copper loss model 141 Linear time-harmonics simulations 141 Active length and end-windings models 143 le results on case studies 146 AC loss factor map 146 Frequency regions 148 Analysis with sinusoidal and non-sinusoidal currents 149	1 1 3 5 5 8
10	9.19.29.3Effic	Copper Propose 9.2.1 9.2.2 Examp 9.3.1 9.3.2 9.3.3	Ioss mechanism 139 ed copper loss model 141 Linear time-harmonics simulations 141 Active length and end-windings models 143 le results on case studies 146 AC loss factor map 146 Frequency regions 148 Analysis with sinusoidal and non-sinusoidal currents 149 Iap Evaluation Under PWM supply 151	9 1 1 3 5 5 3 9
10	 9.1 9.2 9.3 Effic 10.1 	Copper Propose 9.2.1 9.2.2 Examp 9.3.1 9.3.2 9.3.3 iency M Proced	· loss mechanism	1 1 3 5 5 3 9

	10.3	Circuit	al model of the drive	155
	10.4	FEA se	tup and execution	159
	10.5	The PM	IW fix method and efficiency maps	161
11	Expe	eriment	al Validation of the Loss Models	165
	11.1	Copper	loss model	165
		11.1.1	Motor under test and test setup	165
		11.1.2	Test results	167
	11.2	Iron an	d magnet loss model	169
		11.2.1	Motor under test and test setup	169
		11.2.2	Loss evaluation	171
	11.3	Efficier	ncy map validation	173
		11.3.1	Experimental efficiency map	174
		11.3.2	Simulated efficiency map and comparison	174
12	Cone	clusion		177
	12.1	Summa	ary of Scientific Contributions	177
		12.1.1	Design Methodologies	177
		12.1.2	Advanded Efficiency Maps	179
		12.1.3	Experimental findings	181
	12.2	Open P	Points and Future Works	181
Re	feren	ces		183

Chapter 1

Introduction

1.1 Motivation and goals of the thesis

The current industrial and political momentum advocating for the electrification of the transportation sector underscores the imperative for an enhanced understanding of electric powertrains. While electric machines have been an invention since the 19th century, research in this field has recently surged in popularity, especially over the last two decades. Concerning the future, numerous facets of electrical machine modelling, design, and manufacturing stand to gain significant improvements through collaborative efforts among experts in both industry and academia. This thesis is situated within this context, with the objective of enhancing the modelling and design aspects of permanent magnet synchronous machines (PMSMs), namely the most widespread electric machine type in traction applications. The activities undertaken in this thesis are closely aligned with the current necessities of OEMs and Tier-1 companies; indeed, the primary goal is to provide solutions to some of the most intricate challenges faced in the field.

Numerous design procedures are outlined in the literature, with a more comprehensive discussion available in Section 2.3. These approaches vary widely, ranging from effective and time-intensive techniques such as optimization algorithms to more agile yet less precise methods like analytical models. Nowadays, significant attention is dedicated to augmenting the computational power of modern workstations. Capitalizing on this technological trend, optimization procedures are anticipated to become increasingly competitive in the future. That said, the PhD research is grounded in the present computational landscape. The objective is to deliver a design procedure that is both agile and precise, aligning with current computational capabilities. Regarding the performance estimation of PMSMs, one of the most critical contemporary challenges lies in accurately estimating losses. Inaccuracy in this quantity results in imprecise efficiency estimations, leading to incorrect autonomy predictions, as well as inaccurate estimates of machine thermal behaviour (continuous performance - S1). This thesis offers a comprehensive loss estimation framework capable of encompassing intricate phenomena through a simplified approach, specifically tailored to the automotive context.

1.2 List of published papers

In the following, it is reported the list of papers authored and co-authored by the candidate during the M.Sc. thesis [1] and the PhD research [2]–[11]. Conference papers:

- P. Ragazzo, S. Ferrari, N. Rivière, M. Popescu and G. Pellegrino, "Efficient Multiphysics Design Workflow of Synchronous Reluctance Motors," 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 2020, pp. 2507-2513, doi: 10.1109/ICEM49940.2020.9270670.
- S. Ferrari, P. Ragazzo, G. Dilevrano and G. Pellegrino, "Flux-Map Based FEA Evaluation of Synchronous Machine Efficiency Maps," 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Modena, Italy, 2021, pp. 76-81, doi: 10.1109/WEMDCD51469.2021.9425678.
- S. Ferrari, P. Ragazzo, G. Dilevrano and G. Pellegrino, "Determination of the Symmetric Short-Circuit Currents of Synchronous Permanent Magnet Machines Using Magnetostatic Flux Maps," 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021, pp. 3697-3704, doi: 10.1109/ECCE47101.2021.9595806.
- S. Ferrari, G. Dilevrano, P. Ragazzo and G. Pellegrino, "The dq-theta Flux Map Model of Synchronous Machines," 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021, pp. 3716-3723, doi: 10.1109/ECCE47101.2021.9595187.

- P. Ragazzo, G. Dilevrano, S. Ferrari and G. Pellegrino, "Design of IPM Synchronous Machines Using Fast-FEA Corrected Design Equations," 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 2022, pp. 1-7, doi: 10.1109/ICEM51905.2022.9910753.
- G. Dilevrano, P. Ragazzo, S. Ferrari, G. Pellegrino and T. Burress, "Magnetic, Thermal and Structural Scaling of Synchronous Machines," 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2022, pp. 1-8, doi: 10.1109/ECCE50734.2022.9947472.
- P. Ragazzo, S. Ferrari, G. Dilevrano, L. Beatrici, C. Girardi and G. Pellegrino, "Scaling of Ferrite-assisted Synchronous Reluctance Machines for Lifting Systems," 2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Newcastle upon Tyne, United Kingdom, 2023, pp. 1-6, doi: 10.1109/WEMDCD55819.2023.10110927.
- P. Ragazzo, S. Ferrari, G. Dilevrano, L. Beatrici, C. Girardi and G. Pellegrino, "Synchronous Reluctance Machines with and without Ferrite Assistance for Lifting Systems," 2023 IEEE International Electric Machines & Drives Conference (IEMDC), San Francisco, CA, USA, 2023, pp. 1-7, doi: 10.1109/IEMDC55163.2023.10239091.
- G. Dilevrano, P. Ragazzo, S. Ferrari and G. Pellegrino, "Comparative Design of Ferrite- and NdFeB-PMSMs using the (x,b) Design Plane,"2023 IEEE International Electric Machines & Drives Conference (IEMDC), San Francisco, CA, USA, 2023, pp. 1-7, doi: 10.1109/IEMDC55163.2023.10238969.
- P. Ragazzo, G. Dilevrano, S. Ferrari, G. Pellegrino, "Magnet Loss Computation for PMSMs Under PWM Supply via Corrected Magnetostatic FEA", 2024 IEEE International Conference on Industrial Technology (ICIT), Bristol, UK, 2024.
- P. Ragazzo, G. Dilevrano, S. Ferrari, G. Pellegrino, "Fast and Accurate Iron Loss Evaluation Using Static FEA for Traction PMSMs", 2024 IEEE International Conference on Industrial Technology (ICIT), Bristol, UK, 2024.
- 12. **P. Ragazzo**, G. Dilevrano, A. Bojoi, S. Ferrari, G. Pellegrino, "Fast efficiency mapping procedure for PMSM accounting for the PWM supply impact", 2024

IEEE International Conference on Industrial Technology (ICIT), Bristol, UK, 2024.

Journal papers:

- S. Ferrari, P. Ragazzo, G. Dilevrano and G. Pellegrino, "Flux and Loss Map Based Evaluation of the Efficiency Map of Synchronous Machines," *IEEE Transactions on Industry Applications*, vol. 59, no. 2, pp. 1500-1509, March-April 2023, doi: 10.1109/TIA.2022.3221381.
- S. Ferrari, G. Dilevrano, P. Ragazzo, P. Pescetto and G. Pellegrino, "Fast Determination of Transient Short-Circuit Current of PM Synchronous Machines via Magnetostatic Flux Maps," *IEEE Transactions on Industry Applications*, vol. 59, no. 4, pp. 4000-4009, July-Aug. 2023, doi: 10.1109/TIA.2023.3265952.

Submitted journal paper:

 S. Ferrari, G. Dilevrano, P. Ragazzo, G. Pellegrino and T. Burress, "Rapid Magnetic, Thermal and Structural Scaling of Synchronous Machines based on Flux and Loss Maps," *IEEE Transactions on Industry Applications*

1.3 Manuscript Organization

The thesis commences with a review of PMSMs for traction applications in Chapter 2. This chapter first unveils industrial trends and it continues by providing examples of PMSMs mounted in commercial vehicles. Subsequently, it delves into the most prevalent design techniques employed for EMs.

The novel design procedures are presented in Chapters 3 to 6. Specifically, Chapter 3 introduces a procedure for initiating a new PMSM design from the ground up. This is achieved through a graphical approach based on analytical models and Finite Element Analysis (FEA). Expanding on this approach, Chapter 4 addresses the safe turn-off mode, incorporating it into the preliminary design stage. The subsequent Chapter 5 elucidates the performance mapping of PMSMs, focusing on flux and efficiency maps. Also, experimental flux maps are included to validate the adopted motor modelling. These map-based models are then leveraged in Chapter 6 to introduce a novel scaling procedure. This procedure enables the design of a new PMSM starting

from a reference motor in seamless computational time with magnetic, thermal and structural perspectives.

Following the design procedure discussions, the subsequent chapters, from 7 to 9, delve into the estimation of machine losses, namely iron, magnet and copper losses. Each loss contribution is addressed in a dedicated chapter, which incorporates a review of existing models followed by novel models, grounded in static FEA. These are described and applied to case studies; they are also supported by experimental findings. The loss models culminate in an efficiency mapping procedure presented in Chapter 10 capable of contemplating the PWM supply effect.

Finally, the thesis concludes by summarizing key findings, drawing conclusions, and revealing potential paths for future research.