
Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (36thcycle)

Orchestrating Edge Computing
Services with Efficient Data Planes

By

Federico Parola

Supervisor(s):
Prof. Fulvio Risso

Doctoral Examination Committee:
Prof. Dejan Kostic, Referee, KTH Royal Institute of Technology (SE)
Prof. Gabor Retvari, Referee, Budapest University of Technology and Economics
(HU)
Prof. Mario Baldi, AMD Research (US)
Prof. Guido Marchetto, Politecnico di Torino (IT)
Prof. K. K. Ramakrishnan, University of California Riverside (US)

Politecnico di Torino

2024

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Federico Parola
2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Acknowledgements

This thesis marks the end of a journey that shaped the way I am, both professionally
and personally. A rich journey full of ups and downs, moments of enthusiasm and
hard work, and moments of impasse, many successes and satisfactions and some
failures. Overall, this PhD was a successful and enriching experience, and many
people contributed to this achievement.

First of all, I’d like to thank my supervisor, Fulvio Risso, for introducing me to
the world of scientific research and guiding me during these years. He taught me to
think out of the box and pursue my ideas without giving up even in front of setbacks,
and was always there to give me advice when I most needed it.

A thank also goes to TIM S.p.A. for sponsoring my PhD, and to Roberto Procopio
and Roberto Querio, my TIM supervisors, for the fruitful exchange we had during
the PhD.

I’d like to thank all the people from lab 9, with whom I shared many days of
work. It was always a pleasure to have lunch together and chat and laugh to relieve
the pressure of work.

Special thanks go to the people from the UCR, Professor K.K. Ramakrishnan,
people from the computer networks laboratory, people from the international scholars
group, and my housemates, they all helped make my time in California an awesome
experience, both professionally and personally, and always made me feel at home.

Thanks to all my friends with whom I shared many happy experiences during
these years which were always a pleasant and usually much-needed distraction from
work.

Last but not least, my deepest thanks to my family, in particular my parents and
my brother, who supported me during this journey despite all the ups and downs and
were always there to listen to my complaints and give me good advice.

Abstract

In the rapidly evolving landscape of telecommunications, the advent of the 5G
technology has emerged as a revolutionary force, promising to redefine the way we
connect, communicate, and experience the digital world. One of the architectural
cornerstones enabling 5G innovation is represented by Multi-access Edge Computing
(MEC), which involves deploying computing resources at the edge of the network,
closer to the end-users and devices, guaranteeing lower latencies and reducing the
amount of data that needs to traverse the network backbone. This paradigm shift
is coupled with the almost complete migration to Network Function Virtualization
(NFV) for networking tasks which, by moving traditional networking functions
from dedicated hardware appliances to software-based solutions, provides greater
flexibility, scalability, and efficiency in the deployment and operation of network
services.

The transfer of an increasing share of computing workloads to small edge deploy-
ments, coupled with the execution of network functions on the same general-purpose
servers, pose non-trivial challenges in how edge data centers are managed. This
makes resource consumption, an already strategic topic in the cloud context, an even
more crucial requisite to make edge computing an effective solution. Hence, in this
dissertation, we analyze the problem of resource optimization in edge data centers,
with the goal of maximizing the number of applications and network functions that
can be deployed in the constrained network edge and benefit from its improved
performance. We do so by focusing on three main optimization areas. We start by
studying how to enable the consolidation of cloud and network workloads on the
same physical server as the first building block for a more efficient and flexible
edge. Since kernel-bypass frameworks widely used for packet processing (e.g.,
DPDK) pose non-negligible drawbacks in terms of integration and resource-sharing
with traditional kernel-based cloud applications, we explore the capabilities recently
introduced by the eBPF and XDP technologies to perform fast packet processing in

v

the kernel, as well as to flexibly redirect packets to user space without completely
bypassing the former. We show how, thanks to these technologies, a combination of
in-kernel and user space packet processing can be leveraged to maximize the per-
formance of both cloud native and network workloads. Then, we move to enabling
secure and efficient multi-tenancy on edge servers, aiming to facilitate safe access
to this precious resource. To this end, we design a virtualization environment based
on unikernels, to combine the leanness of containers with the strong isolation of
virtual machines, and integrate it with a high-performance zero-copy data plane to
handle inter-service communication. Finally, we focus on the increasing demands
that interconnecting application modules poses on data center networking, both in
terms of performance and flexibility. In this respect, we design ways of improving
the management of services through eBPF, for both traditional cloud workloads
and chains of network functions. Focusing on Kubernetes, the most widespread cloud
orchestrator, we design an alternative to classic, monolithic eBPF-based networking
providers, proposing an approach based on modular, reusable building blocks coming
from the traditional networking world, such as routers, bridges, and load balancers,
which despite its higher level or abstraction does not compromise performance. We
also enable applying the automatic scaling capabilities of Kubernetes to network
function chains, leveraging a mechanism of flexible cross-connections to efficiently
interconnect replicas of network functions.

Overall, the work presented in this dissertation contributes to enhancing the
capabilities of edge data centers to support the ever-increasing load they have to
handle, with a high degree of efficiency, making the promises of 5G closer to
becoming reality.

Contents

List of Figures xii

List of Tables xvi

I Introduction 1

1 Introduction 2

1.1 Summary of contributions . 6

1.1.1 Enabling efficient coexistence of cloud and network work-
loads on the same physical server 7

1.1.2 Enabling secure and efficient execution of serverless work-
loads on multi-tenant servers 8

1.1.3 Improving the management of services through eBPF 9

1.1.4 Previously published work 11

II Enabling efficient coexistence of cloud and network work-
loads on the same physical server 12

2 Providing Telco-oriented Network Services with eBPF: the Case for a
5G Mobile Gateway 13

2.1 Introduction . 13

Contents vii

2.2 Design . 14

2.2.1 Overall Architecture . 15

2.2.2 GTP Handler . 16

2.2.3 QoS Management . 16

2.2.4 Traffic Classifier . 19

2.2.5 Router . 19

2.3 Evaluation . 19

2.3.1 Rate limiting algorithms 20

2.3.2 Scalability with multiple users 22

2.3.3 Multicore scalability . 23

2.3.4 Modules overhead . 23

2.4 Conclusions . 25

3 Comparing User Space and In-Kernel Packet Processing for Edge Data
Centers 26

3.1 Introduction . 26

3.2 Background . 28

3.2.1 eBPF/XDP . 28

3.2.2 AF_XDP sockets . 29

3.2.3 Packet steering mechanisms 31

3.3 Benchmarking methodology . 33

3.3.1 Objectives . 33

3.3.2 Benchmarked technologies 34

3.3.3 Testbed . 36

3.4 Dropping traffic . 37

3.4.1 Pure I/O performance . 37

3.4.2 Impact of memory demand 39

viii Contents

3.4.3 Impact of CPU demand . 41

3.4.4 Traditional NF performance 42

3.5 Pass-through traffic . 43

3.5.1 Pure I/O performance . 43

3.5.2 Impact of memory demand 46

3.5.3 Impact of CPU demand . 47

3.5.4 Traditional NF Performance 47

3.6 Local traffic . 49

3.6.1 Pure I/O performance . 50

3.6.2 Traditional NF performance 54

3.7 Discussion and suggested best practices 55

3.7.1 Mixing pass-through and dropped traffic 56

3.7.2 Mixing pass-through and local traffic 58

3.8 Related work . 63

3.8.1 DPDK user space drivers 63

3.9 Conclusions . 65

III Enabling secure and efficient execution of serverless work-
loads on multi-tenant servers 66

4 SURE: Secure Unikernels Make Serverless Computing Rapid and Effi-
cient 67

4.1 Introduction . 67

4.2 Background and motivation . 71

4.2.1 Isolating Serverless Functions 71

4.2.2 Inter-function networking and service mesh in serverless
computing . 72

Contents ix

4.2.3 Related work . 75

4.3 Overview of SURE . 76

4.3.1 System architecture of SURE 76

4.3.2 SURE’s trust model . 77

4.3.3 SURE’s threat model . 78

4.3.4 Isolation in SURE . 78

4.4 Data plane design in SURE . 80

4.4.1 Intra-node shared memory processing 80

4.4.2 Inter-node communication in SURE 84

4.4.3 Library-based sidecars . 86

4.5 Memory-level isolation in SURE 87

4.5.1 Secure APIs based on SURE call gates 87

4.5.2 Preventing privilege escalation of MPK 88

4.6 Performance Evaluation of SURE 90

4.6.1 Microbenchmark Analysis 91

4.6.2 Realistic Workload Evaluation 96

4.7 Conclusions . 98

IV Improving the management of network services through
eBPF 99

5 Creating Disaggregated Network Services with eBPF: the Kubernetes
Network Provider Use Case 100

5.1 Introduction . 100

5.2 Background . 101

5.2.1 Kubernetes networking . 101

5.2.2 Service disaggregation with Polycube 104

x Contents

5.3 Architecture . 105

5.3.1 Main components . 106

5.3.2 Communication scenarios 108

5.4 Evaluation . 109

5.5 Related work . 111

5.6 Conclusions . 112

6 Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections113

6.1 Introduction . 113

6.2 Related Work . 114

6.3 System design . 115

6.3.1 Goals . 115

6.3.2 Modeling SFCs . 117

6.4 Implementation Overview . 119

6.4.1 SFC CNI Plugin . 119

6.4.2 eBPF Load Balancer . 119

6.4.3 SFC Operator . 120

6.4.4 SFC Lifecycle . 121

6.4.5 NF scaling . 122

6.5 Evaluation . 123

6.5.1 NF scaling efficiency . 123

6.5.2 eBPF Load Balancer performance 124

6.5.3 Reaction Time . 126

6.6 Conclusions . 127

Contents xi

V Concluding Remarks 129

7 Concluding Remarks 130

References 132

Appendix A List of Publications 146

List of Figures

2.1 Mobile Gateway prototype architecture. 15

2.2 Sliding Window scenarios. 18

2.3 Output rate with 10 Mbps rate limit. 20

2.4 Rate limiters on multiple cores with a single traffic class. 21

2.5 Rate limiting on six cores with different numbers of buckets. 22

2.6 Multiple users scalability, downlink (a) and uplink (b). 23

2.7 Multicore scalability (downlink). 24

2.8 Packet processing time breakdown. 24

3.1 The life cycle of a UMEM buffer in an application receiving traffic
from the network. 30

3.2 Maximum manageable rate in the pure I/O test case (mac address
swap) when dropping packets. 38

3.3 Per-packet LLC accesses in the pure I/O test case (mac address swap)
when dropping packets. 38

3.4 CPU usage in the pure I/O test case (mac address swap) when drop-
ping packets. 39

3.5 Impact of an increasing memory demand on the throughput when
dropping traffic. 40

List of Figures xiii

3.6 Number of accesses in the LLC cache (reads + stores) per packet,
with increasing amount of allocated memory, when dropping traffic.
The vertical dashed lines represent the size of the L2 and L3 caches.
The line for XDP-sk is totally overlapped with AF_XDP-sysc in LLC
accesses and with XDP in LLC misses. 40

3.7 Impact of an increasing CPU demand on the throughput when drop-
ping traffic. 41

3.8 Firewall throughput with an increasing number of processed sessions. 43

3.9 Maximum manageable rate in the pure I/O test case (mac address
swap) when redirecting packets out of the receiving interface. 44

3.10 Per-packet LLC accesses in the pure I/O test case (mac address swap)
when redirecting packets out of the receiving interface. Misses can
hardly be seen since they are close to zero. 45

3.11 CPU usage in the pure I/O test case (mac address swap) when redi-
recting packets out of the receiving interface. 45

3.12 Impact of an increasing memory demand on the throughput when
redirecting traffic. 46

3.13 Number of accesses in the LLC cache (reads + stores) per packet,
with increasing amount of allocated memory, when dropping traffic.
The vertical dashed lines represent the size of the L2 and L3 caches.
LLC misses are almost overlapped. 46

3.14 Impact of an increasing CPU demand on the throughput when redi-
recting traffic. 47

3.15 Load balancer throughput with an increasing number of active sessions. 48

3.16 Path of traffic reaching a local application, when the NF runs as XDP
code (blue continuous line) or as AF_XDP code (red dashed line). . 50

3.17 Throughput when delivering a packet to the TCP/IP stack based on
the different processing paths highlighted in Figure 3.16. 51

3.18 Distribution of the cores between NF, Linux network stack and
application. 53

xiv List of Figures

3.19 TCP/IP-based application throughput (memcached) when applying
some simple processing (mac swap) to packets. 54

3.20 TCP/IP-based application throughput (memcached) when applying
some complex processing (load balancing) to packets. 55

3.21 Pass-through + dropped traffic: effect of kernel offloading of packet
dropping logic (Hybrid sysc) if compared to pure user space (AF_XDP
sysc) and pure in-kernel (XDP) processing. 58

3.22 Pass-through traffic only: impact of additional in-kernel packet
dispatching logic applied to AF_XDP sysc (AF_XDP sysc + XDP
disp) compared to pure XDP or pure AF_XDP sysc. 59

3.23 Pass-through + local traffic: effect of hardware-based splitting of
local and pass-through traffic processing between kernel and user
space (Hybrid) compared to pure kernel processing (XDP). 61

4.1 An abstract diagram of serverless support for loosely-coupled mi-
croservices. We list existing sidecar designs: (a) container-based
sidecar using TCP/IP socket [1, 2], (b) container-based sidecar using
UDS acceleration [2], (c) eBPF-based sidecar [3, 4]. 73

4.2 The overall architecture of SURE. Note that we only show a single
security domain here. 77

4.3 Intra-node data plane in SURE. Communication across security
domains within the same node uses SURE gateway (GW) to copy
data between memory pools. ISR: Interrupt Service Routine. 81

4.4 Descriptor exchange and event-driven signaling mechanism between
a pair of SURE VMs (sender and receiver). The flow depicts the
blocking receive in SURE. 83

4.5 Processing flow of the back-pressure mechanism in SURE; (a) the
sender block on a full ring, (b) the receiver wakes up the sender. . . 84

4.6 Protocol Processing Pipeline within the Z-stack. 85

4.7 Library-based sidecar in SURE. The sidecar contains a sequence of
handlers that perform certain sidecar functionalities on both RX and
TX data path of the user function. 86

List of Figures xv

4.8 SURE uses call gates to secure function calls by user code. SURE
can dynamically change the access privilege of memory pages. . . . 88

4.9 Intra-node data plane performance. CT: container with Linux bridge;
OSv_u: OSv with userspace OVS; OSv_k: OSv with Linux bridge;
UK_u: Unikraft with userspace OVS; UK_k: Unikraft with Linux
bridge; (average of 30 repetitions) 92

4.10 The impact of MPK on SURE’s performance. We show the normal-
ized latency and RPS. 93

4.11 Performance of inter-node data plane: (left) latency with 1 connec-
tion; (right) RPS under different concurrency levels. FS: F-stack; KS:
kernel stack. 95

4.12 Online boutique results (intra-node): (a) RPS, (b) Response Time,
(c) CPU usage. 97

4.13 Online boutique results (inter-node): (a) RPS, (b) Response Time,
(c) CPU usage. 97

5.1 Chaining and ports in Polycube. 104

5.2 Overall architecture of the eBPF K8s network provider. 105

5.3 Modules involved in single (a) and multi-node (b) communications. 109

5.4 Throughput comparison (TCP). 110

5.5 Reaction time in case of scale up/down events. 111

6.1 An example of a scalable SFC composed of a NAT, a Firewall and a
Gateway. 116

6.2 Description of a simple SFC, referred to the chain of Figure 6.1. . . 118

6.3 Chain creation process . 122

6.4 Requested milliCPU as the number of scaled instance increase. . . 124

6.5 Performance comparison between scenarios’ sub-cases. 125

6.6 Reaction time composition for a new replica event. 126

6.7 Reaction time composition for a terminating replica event. 127

List of Tables

3.1 Main characteristics of the encompassed test modes. 35

4.1 Library-based sidecar (SR) vs. Individual sidecar (NGINX) 93

4.2 Polling tax of Z-stack. 95

Part I

Introduction

Chapter 1

Introduction

The advent of the 5G technology has emerged as a revolutionary force in the land-
scape of telecommunications, promising to redefine the way we connect, commu-
nicate, and experience the digital world. The fifth generation of mobile network
represents a significant leap forward from its predecessors, offering unprecedented
speed, reliability, and capacity [5]. 5G’s exponential increase in speed does not only
enable quicker downloads of large data and high-definition content but also opens
the door to a multitude of innovative applications, such as augmented reality (AR)
and virtual reality (VR). Furthermore, 5G boasts remarkably low latency, reducing
the delay between sending and receiving data. This low latency is crucial for ap-
plications that demand real-time responsiveness, such as autonomous vehicles and
remote surgery. 5G is also designed to support a vast number of connected devices
simultaneously. This improved capacity is particularly critical as we transition into
the era of the Internet of Things (IoT), where everyday objects are interconnected
to exchange data seamlessly. The enhanced connectivity of 5G can accommodate
the growing number of IoT devices, enabling smart cities, smart homes, and a more
interconnected world [6].

Fulfilling this set of promises and the stringent requirements that follow calls for
a complete architectural redesign of 5G networks with respect to their predecessors.
One of the cornerstones of this architecture redesign is represented by Multi-access
Edge Computing (MEC) [7]. MEC involves deploying computing resources at the
edge of the network, closer to the end-users and devices, rather than relying solely
on centralized cloud data centers. MEC significantly reduces latency by bringing

3

computing resources closer to the point of data generation and consumption. This is
crucial for applications that demand ultra-low latency, such as augmented and virtual
reality, autonomous vehicles, and real-time industrial automation. By processing data
at the edge, MEC minimizes the time it takes for data to travel between the device and
the centralized cloud, resulting in faster response times. Moreover, by offloading data
processing tasks from the central cloud to local edge servers, MEC helps reducing the
amount of data that needs to traverse the network backbone, optimizing bandwidth
usage and improving overall network efficiency, a fundamental feature given the huge
capacity that 5G foresees to provide. MEC architecture also enables scalability and
flexibility in deploying computing resources. By distributing computing capabilities
across multiple edge locations, the network can scale more efficiently to handle
increasing data traffic and the growing number of connected devices. Concerning
privacy, edge computing allows sensitive data to be processed locally, reducing the
need to send raw, sensitive information to centralized cloud servers. This enhances
security, as critical data stays closer to its source and is subject to localized security
measures [8]. It also minimizes the exposure of data during transit over the network.

Another key enabler of 5G innovation is represented by the almost complete
migration to Network Function Virtualization (NFV). NFV is a concept that shifts tra-
ditional networking functions from dedicated hardware appliances to software-based
solutions, providing greater flexibility, scalability, and efficiency in the deployment
and operation of network services. At its core, NFV involves decoupling network
functions from proprietary hardware and implementing them in software. This ab-
straction allows network services to run on standard servers, storage, and switches,
eliminating the need for specialized, purpose-built hardware. With the ability to
deploy and scale network functions through software, service providers can adapt
quickly to changing demands without the need for significant hardware changes.
Moreover, by virtualizing network functions, NFV enables efficient resource utiliza-
tion, with multiple VNFs that can run on a shared physical infrastructure, optimizing
the use of computing resources and reducing the overall hardware footprint. Vir-
tualized network functions can be dynamically scaled to meet changing demand,
ensuring optimal service quality and performance. This leads to cost savings and
improved energy efficiency. Last but not least, NFV accelerates the deployment of
new network services: since functions are implemented in software, the time and
effort required to roll out updates are significantly reduced.

4 Introduction

The transfer of an increasing share of computing workloads to small edge de-
ployments, combined with the execution on general-purpose servers of networking
functions previously relegated to dedicated hardware, poses non-trivial challenges in
how edge data centers are designed and operated. Compared to the traditional cloud
computing environment, which can rely on big, centralized data centers with plenty
of available resources, edge computing is based on a multitude of small, distributed
data centers, which should provide the same functionalities of cloud deployments
while relying on a limited number of servers. This makes resource consumption,
already a strategic topic in the cloud context, an even more crucial aspect to make
edge computing an effective solution. The goal of leveraging resources efficiently is
challenged by different aspects that characterize the edge scenario.

In the first place, while the cloud infrastructure is commonly known to adapt
elastically to load and leverage resources efficiently, the integration of cloud-native
workloads with data plane network functions still remains an open problem given
the different nature of these two workloads. Cloud-native applications are usually
structured as a mesh of loosely-coupled services following the microservices-based
approach. This multitude of services, running in containers or Virtual Machines
(VMs), leverage the Linux networking stack to communicate with each other to
provide the final service, with orchestration tools such as Kubernetes interacting with
the Linux kernel to handle resource allocation and provide connectivity. However,
while providing a widespread and consolidated abstraction layer to build feature-rich
applications, the Linux network stack is known to yield sub-optimal performance
in the case of packet processing applications [9], that may need to handle traffic
rates up to 150 Mpps per interface in the case of 100 Gbps Ethernet links [10]. In
this context where every nanosecond matters, the generality of the Linux kernel,
which allows it to support a multitude of applications, comes at a price that usually
cannot be afforded. As a consequence, the data plane VNF scenario mainly relies
on kernel bypass frameworks, to provide the packet processing application with
direct access to the network card, hence cutting away all the costs related to Linux.
Frameworks such as DPDK [11], netmap [9], and PF_RING ZC [12] provide direct
access to the network hardware from userspace and allow to build highly specialized
network stacks focused on performance. Multiple individual network functions as
well as higher-level VNF frameworks rely on these solutions or other forms of kernel
bypass as the base for their performance [13, 14, 15, 16]. Nevertheless, kernel bypass
solutions present some limitations when it comes to integration with cloud-native

5

workloads. First, they are usually resource-hungry, requiring the static allocation of
a set of cores dedicated to busy polling on NIC queues to receive packets avoiding
the cost of interrupts. This however does not mix nicely with the resource-sharing
needs of cloud deployments, and even less in the resource-constrained edge scenario.
Second, they either require completely detaching the network interface from the
control of the Linux kernel or the use of custom drivers. Custom drivers might not be
available in every environment, and exclusive control of the NIC prevents services
leveraging the traditional Linux TCP/IP stack from accessing the network. Solutions
to the second problem exist but have their limitations as well. Re-injection of traffic
in the kernel from user space usually comes with poor performance (as also shown in
this dissertation, Chapter 3), while user-space implementations of the TCP/IP stack
[17, 18] require changes to application code and do not provide all the tools (e.g.,
iptables, tc) and security guarantees that the well-tested Linux kernel carries with
itself.

Recently, the introduction of a novel technology in the Linux kernel, eBPF
[19], has opened a third alternative to packet processing. The Extended Berkeley
Packet Filter (eBPF) is a general-purpose in-kernel virtual machine that enables the
execution of custom programs within the kernel space. This allows developers to
efficiently extend and customize kernel functionality without the need for kernel
code modifications. eBPF programs are designed to be memory-safe and run in a
restricted environment, preventing them from causing harm to the system. This safety
is enforced by a verifier that checks the program’s integrity before it is loaded into
the kernel, ensuring that it adheres to a set of predefined rules and constraints. eBPF
programs can be attached to different hook points inside the Linux kernel, in order to
react to different events such as system call executions, file access, packet reception
and transmission, and so on, providing a useful tool in the fields of observability,
security, and networking. In the latter field, the introduction of a high-performance
hook point, the eXpress Data Path (XDP) [20], has helped to close the gap with
kernel bypass solutions. XDP allows the processing of packets at the earliest possible
stage in the Linux kernel, at the driver level, before expensive operations such as
the allocation of the sk_buff structure are performed. This allows achieving high
performance in scenarios where packets are dropped (e.g., firewalling and DDoS
mitigation [21, 22]) or redirected out of the machine (e.g., load balancing [23]),
while still being able to yield traffic to the Linux TCP/IP stack.

6 Introduction

The different networking needs of data plane network functions and cloud-native
workloads is not the only obstacle to the efficient and flexible resource sharing
required by edge computing. Multi-tenancy is a key component to guarantee that
edge resources can be leveraged by different operators that, for cost-related reasons,
might not be able to reach the level of extensiveness required by edge computing with
their proprietary resources. When multi-tenancy comes into play, isolation between
the workloads of different customers becomes a key concern. However, given that
revenues for edge providers are directly connected to the number of services they
can pack on their servers, this isolation cannot come at the cost of performance and
resource consumption. Traditional virtualization solutions, Virtual Machines and
containers, stand at the edges of the performance-isolation spectrum, with the first
providing a strong level of isolation at the cost of a higher resource footprint, and the
second being more lightweight and flexible albeit with weaker security guarantees
[24].

Given the new demands introduced by edge computing and its tight resource
budget, this dissertation faces the problem of resource optimization in the context
of edge computing with a focus on the networking component. We study the
applicability of both kernel-based and kernel-bypass approaches when facing the
problem of efficient resource sharing between cloud-native workloads and packet
processing network functions, as well as providing efficient chaining mechanisms
between them.

1.1 Summary of contributions

This dissertation is structured into three main topics that translate into the three
central parts of the work. The first part deals with the coexistence of cloud and
network workloads on the same physical server, to address the resource constraints
of edge data centers. To do so we explore the potential of in-kernel packet processing,
enabled by eBPF and XDP, in supporting telco-level network functions, and then
combine it with user-space alternatives to achieve a balance of high performance
for packet processing applications and good integration with kernel-based cloud-
native applications. We then move to the topic of multi-tenancy to allow efficient
allocation of edge resources to customers. We do so by focusing on the increasingly
widespread serverless computing paradigm, and by designing a framework that

1.1 Summary of contributions 7

allows efficient sharing of server resources between tenants, by supporting high-speed
communication between application modules without compromises on isolation and
security. To achieve this goal we focus mainly on kernel-bypass technologies, by
envisioning a scenario in which the whole edge infrastructure can be migrated to
our framework. On the other hand, in the last part, we focus on supporting the
microservices design for vanilla kernel-based applications, by providing efficient and
straightforward service chaining facilities leveraging the powers of eBPF, targeting
both the interconnection of cloud-native applications and network functions.

We introduce in the following the above contributions, with a greather level of
detail.

1.1.1 Enabling efficient coexistence of cloud and network work-
loads on the same physical server

Since the edge is in charge of providing the network-related functionalities by mobile
users to access the Internet (e.g., routing, QoS, security), as well as running offloaded
cloud workloads, being able to efficiently co-schedule cloud applications and packet
processing network functions is a key component to achieve optimal resource utiliza-
tion. When starting this study, however, both research-oriented and production-grade
telco network functions operating on the user plane were based on DPDK or other
kernel-bypass technologies, a choice driven by the high performance enabled by
these frameworks, albeit at the cost of higher resource consumption. Still, the rigid
resource partitioning required by these technologies, such as dedicated CPU cores
and network interfaces, can end up in wasted resources. In this respect, eBPF/XDP
looks like a more appealing solution, thanks to its capability to process packets in the
kernel, achieving a low-overhead integration with non-data plane applications relying
on the kernel TCP/IP stack, albeit with lower packet processing performance than
DPDK. Hence, we start the dissertation by exploring the applicability of eBPF and
its high-performance packet processing hook, XDP, to telco-grade network functions.
To do so, we focus on a 5G User Plane Function (UPF), the key network function of
the 5G core network in charge of, as the name suggests, handling the user plane. We
propose the first proof-of-concept open-source implementation of a 5G UPF based
on eBPF/XDP, highlighting the possible challenges (e.g., to create traffic policers,
as buffering is not available in eBPF) and the resulting architecture. To verify its

8 Introduction

applicability to real scenarios, we characterize it in terms of performance and scal-
ability and compare it with alternative technologies, showing that it outperforms
other in-kernel solutions (e.g., Open vSwitch) and is comparable with DPDK-based
alternatives.

Given the promising results of this first work, we take a step forward and dig
deeper into the capabilities offered by the XDP Linux subsystem. We analyze
AF_XDP, a new family of Linux sockets that allows to efficiently steer packets
in user space. Unlike “traditional” kernel-bypass technologies such as DPDK,
AF_XDP allows keeping the NIC under the control of the kernel, with an XDP
program in charge of selecting which packet should be sent to user space and which
not. We leverage the XDP/AF_XDP combo to provide a thorough comparison of
user space vs in-kernel packet processing, focusing on how these two approaches
can be leveraged and optionally combined to address the network traffic mix that
traverses an edge data center, composed of pass-through traffic, processed by a chain
of NFs and redirected to a remote destination on the internet, local traffic, directed
to applications running locally (i.e., offloaded on the same edge node running the
network function), and dropped traffic, which has to be discarded e.g., for security
reasons. Our results provide useful insights on how to select and combine these
technologies to improve overall throughput and optimize resource usage.

1.1.2 Enabling secure and efficient execution of serverless work-
loads on multi-tenant servers

To maximize the number of players that can take advantage of edge computing capa-
bilities, edge providers strive to pack as many workloads as possible on a limited set
of physical nodes. Serverless computing maps nicely to this attempt, with customers
providing only their business logic (usually in the form of functions, following
the Function-as-a-Service approach) and the cloud (or edge) operators in charge
of handling resource allocation, connectivity, security, and other management as-
pects. This provides more opportunities for resource optimization, with the operator
orchestrating applications of all customers in a centralized way, instead of each cus-
tomer handling its pool of (usually over-provisioned) resources. On the other hand,
running unknown workloads of different, potentially competing customers on the
same shared infrastructure requires leveraging sandboxing mechanisms stronger than

1.1 Summary of contributions 9

plain containers, which fail to provide proper security and isolation in a multi-tenant
environment. However, mechanisms such as VM-based execution or other sand-
boxes (e.g., Google’s gVisor) introduce non-trivial overheads when compared to the
already taxing containerized runtime. This incentivizes the exploration of a server-
less design that is both secure and lightweight. To address this need we describe
SURE, a unikernel-based serverless framework with a high-performance and secure
data plane. Unlike in the previous part, where we address support for unmodified
applications leveraging the Linux TCP/IP stack, our design of a custom virtualization
runtime pushes us toward an architecture based mainly on kernel bypass. SURE’s
data plane supports both intra-node and inter-node zero-copy communication. The
first leverages the reliable nature of inter-process communication within a single host
to provide a high-performance data plane based on shared memory buffers exchange,
to move messages without needing additional protocols such as TCP/IP. The second
leverages a user-space zero-copy TCP/IP stack (Z-stack), that seamlessly interacts
with the shared memory processing. Additionally, SURE provides library-based
sidecars to establish a lightweight service mesh. Unlike traditional service mesh so-
lutions that rely on an individual userspace sidecar for each application instance, this
approach provides the same monitoring and enforcement capabilities at a fraction of
the cost. SURE employs a group-based security domain design that strictly isolates
shared memory processing between untrusted functions, incorporating access control
enabled by sidecars and Z-stack. To tackle the security concerns of shared memory,
we leverage Intel’s Memory Protection Keys (MPK) to ensure safe access to the data
plane and library-based sidecar from untrusted application code, while preserving the
efficient single-address-space nature of unikernels. These combined efforts create a
more secure and robust data plane while improving throughput up to 17 times over a
traditional approach, based on containers and gRPC interconnections.

1.1.3 Improving the management of services through eBPF

In the last part, we go back to supporting standard kernel-based applications and
notice how, within the data center, the interconnection between application modules
themselves provides opportunities for optimization. Indeed, one of the strengths of
the widespread microservice application design is its ability to flexibly and granularly
scale each module composing the full application by creating or removing replicas,
to adapt to application load. This however makes networking within a data center

10 Introduction

increasingly complex, with the need to efficiently interconnect application modules
(or pods in Kubernetes terminology), whose number and location can change at
a high rate. In Kubernetes, the most widespread microservices orchestrator, the
task of handling networking is carried out by an external component, the network
provider. In this context, eBPF has already found a widespread application, with
multiple eBPF-based network providers existing. However, we notice how the most
prominent examples of eBPF network services follow a monolithic approach, in
which all required code is created within the same program block. This makes the
code hard to maintain and extend, and difficult to reuse in other use cases, especially
for network operators used to traditional networking components such as bridges and
routers. To address this concern we leverage the Polycube framework to demonstrate
that a disaggregated approach is feasible also with eBPF, with minimal overhead,
introducing a larger degree of code reusability. We design and implement a complete
Kubernetes network provider based on elementary basic blocks coming from the
traditional networking world (e.g., bridge, router, firewall, NAT, load balancer, and
more) and evaluate its performance showing no penalties with respect to existing
solutions.

Aside from the management of traditional applications, the microservice ap-
proach is gaining increasing attention from network operators, who want to leverage
its benefits for the management of their packet processing network functions. Indeed,
service function chains, ordered sets of network functions that provide network
services to the handled traffic, need to adapt to traffic which is usually highly variable
over time. Although Kubernetes has already brought benefits to general-purpose
applications, it is not natively suitable for network workloads since it lacks some
functionalities required by network services. We close this gap by designing a simple,
cloud-native architecture that integrates SFCs in Kubernetes, to seamlessly leverage
cloud-native features such as horizontal autoscaling. The solution is based on flexible
cross-connections, namely logical links that connect adjacent network functions,
which can promptly adapt the distribution of the network traffic to the existing net-
work functions in case of scale in/out events affecting the number of NF instances.
We validate the solution with an open-source proof-of-concept implementation based
on dedicated Kubernetes operators and an eBPF load balancer, demonstrating the
feasibility and the efficiency of the proposed approach.

1.1 Summary of contributions 11

1.1.4 Previously published work

This thesis includes previously published and co-authored works. In particular,
Chapter 2 and Chapter 3 are adapted from the works presented in [25] and [26],
while Chapter 5 and Chapter 6 are an adaptation of [27] and [28]. Chapter 4 is
adapted from a work not yet published, carried out in collaboration with the research
group of prof. K. K. Ramakrishnan at University of California, Riverside.

Part II

Enabling efficient coexistence of cloud
and network workloads on the same

physical server

Chapter 2

Providing Telco-oriented Network
Services with eBPF: the Case for a 5G
Mobile Gateway

2.1 Introduction

With the diffusion of Multi-access Edge Computing (MEC), the 5G Mobile Gateway,
implementing the User Plane Function (UPF), is increasingly deployed nearby the
Radio Access Network (RAN), enabling telcos to provide services at close proximity
to mobile users.

In this scenario, high performance data plane technologies such as DPDK may
not be appropriate because of their complexity, with a support model that requires
significant investment to maintain and integrate due to proprietary drivers. Further-
more, they take full control on portions of the server, relying on polling to retrieve
packets (hence requiring dedicated CPU cores) and using their own drivers to control
the NIC, which cannot be longer used by the operating system TCP/IP stack. This
behaviour creates a rigid partitioning of the resources of the system, a constraint
that is not acceptable in “mini” data centers, which are often deployed at the edge
of the network (i.e., close to each 5G site), where resources should be dynamically
shared between both data and control plane services. In this scenario, eBPF/XDP can
represent a better solution; while its raw performance are inferior to DPDK-based
platforms [20], its better integration with vanilla Linux kernel makes it suitable to be

14
Providing Telco-oriented Network Services with eBPF: the Case for a 5G Mobile

Gateway

used with different kind of workloads, and transparently be integrated with cloud
orchestrators such as Kubernetes.

However, no eBPF/XDP implementations of a MGW exist so far, with the closest
available ones being proof-of-concept implementation relying on different frame-
works for software network functions and software switches (e.g. Open vSwitch)
presented in [29]. Other works like [30] and [31] focus on improving the perfor-
mance of the Gateway (in the first case proposing its offload to programmable switch
ASICs) but do not consider integration issues discussed in this work. The lack of an
eBPF Gateway is due to the event-driven nature and limitations of the eBPF platform,
which poses non trivial challenges in the implementation of key components such as
shapers/policers, and the difficulties in writing complex data plane services. This
chapter aims at filling this gap, presenting the first proof-of-concept open-source1

implementation of a mobile gateway and its preliminary benchmarking. This work
confirms the feasibility of a MGW in eBPF/XDP and shows that the performance of
this first PoC implementation greatly outperform other in-kernel solutions and it is
comparable with more efficient DPDK-based platforms.

2.2 Design

Figure 2.1 illustrates the high-level architecture of a mobile network, with different
instances of a mobile gateway that are placed on the the same servers where the
others MEC services are running. The Mobile Gateway handles the data traffic of
the user equipment (UE), encapsulated into GTP-u tunnels and delivered to the 5G
Mobile Packet Core through radio Base Stations (BSs). It replaces and merges the
roles carried out by the data plane of the Serving Gateway and PDN Gateway in
the LTE Evolved Packet Core. Its functionalities include routing and forwarding of
traffic between the Access Network and an external Packet Data Network (e.g. the
Internet), management of GTP-u tunnels, access control, per-flow QoS, guaranteed
and maximum bit rate, traffic charging, traffic monitoring and the support of user
mobility across different radio Base Stations.

1https://github.com/polycube-network/polycube/

2.2 Design 15

Radio Access Network (RAN) Mobile Packet Core (MPC) Packet Data Network (PDN)

Base Stations
(BS)

User Equip.
(UE)

Mobile Edge
Gateway

GTP
Handler

Traffic
Policer Traffic

Classifier
Router

Mobile Edge Gateway

Internet

eBPF

Data traffic

GTP tunnels

ContainerMEC Service
(Container)

ContainerMEC Service
(VM)

Packet Metadata

Fig. 2.1 Mobile Gateway prototype architecture.

2.2.1 Overall Architecture

We selected some of the most significant functionalities and implemented them as
four separate in-kernel network services, leveraging one or more eBPF programs
deployed through the Polycube [32] eBPF framework. This framework provides
useful abstractions for the creation of eBPF-based network functions and their
chaining to compose complex services. Every module is composed by (i) a user
space control plane, accessible through a RESTful API, and (ii) an in-kernel data
plane, leveraging one or more eBPF programs.

A packet flowing in the uplink direction (from the access to the data network)
crosses a GTP Handler in charge of removing the GTP encapsulation, a Traffic
Policer, that applies rate limit to flows in order to enforce QoS, and a Router that
forwards the traffic to either the external network or towards a service running on the
local server. In the opposite direction, the packet is received by the router, processed
by a Classifier that determines the GTP tunnel and QoS flow it belongs to, handled
by the Policer and eventually encapsulated in GTP.

To simplify the implementation of the prototype while still being able to compare
with other solutions (Section 2.3), we adopted a QoS model with one class associated
to each GTP tunnel (identified by a Tunnel Endpoint ID, TEID). A user needing
multiple QoS classes can set up different GTP tunnels towards the data network. The
information about the QoS class / TEID is shared between modules using an eBPF
PERCPU map and is provided by the GTP Handler in the uplink direction and by the

16
Providing Telco-oriented Network Services with eBPF: the Case for a 5G Mobile

Gateway

Classifier in the downlink path. Despite our simplification, the implementation of
the full 5G QoS model with multiple QoS flows per GTP tunnel does not require
architectural changes, since the Classifier is already able to classify packets at flow
level.

Following sections provide a more detailed description of each different module.

2.2.2 GTP Handler

In the upstream direction (UE-to-MGW) this module acts as a GTP tunnel terminator;
it removes the GTP headers (i.e., GTP, UDP and outer IP) and retrieves the Tunnel
Endpoint Identifier (TEID), which is then passed to the next module in the chain
(i.e., Traffic Policer) through a shared eBPF PERCPU hash map. On the downstream
direction (MGW-to-UE), it matches the IP destination address of the packet (i.e.,
the IP address of the UE) with an eBPF HASH map containing the UE-BS mapping.
Then, it encapsulates the packet into a new GTP tunnel, retrieving the TEID from
the shared eBPF map, and sends it to the base station.

2.2.3 QoS Management

The next module provides a way to enforce the required QoS thanks to its ability to
drop, pass or limit the packets of a specific traffic class. For bandwidth management,
we implemented and evaluated three different policing mechanisms in order to
determine the best trade-off between complexity (hence, performance penalty) and
performance. All have reduced memory overhead since they are bufferless, and they
have small CPU overhead because there is no need to schedule or manage queues.
More complex traffic shapers (e.g., pacing, hierarchical token bucket) are not entirely
implementable in eBPF/XDP due to its event-based model, and require a cooperation
with the Linux Traffic Control (TC) subsystem for buffer management and queuing.

Fixed Window Counter (FWC): Once a new packet is received, the MGW atomi-
cally decreases the Window Counter (WC) size in the map based on the packet size;
when the value is zero the packet is discarded. A user space thread is in charge of
resetting, every W seconds an eBPF HASH map containing the mapping TEID - WC,
which is defined as the product of the desired rate R and the window size W . This
is the simplest rate limiter, with a lightweight and fast data plane, albeit with some

2.2 Design 17

limitations. It is not possible to independently configure the average rate and the
maximum burst size, since once one of these parameters is defined the other one is
dictated by the size of the window. This size moreover cannot be too small due to
the need of the user-space thread to periodically scan the counters associated to all
QoS flows (potentially hundreds of thousands), and this may produce a coarse and
bursty traffic.

Token Bucket (TB): To be forwarded, each packet needs to consume a number of
tokens equal to its size. The bucket is refilled at a rate equal to the desired average
rate, while its capacity represents the maximum burst. Unlike the Fixed Window
Counter the refill of the bucket in user space is not a viable solution, since eBPF does
not provide an adequate synchronization primitive between user and kernel threads.
In fact, only map update operations are guaranteed to be atomic in user space, but
this is not enough as the following racing condition can occur, affecting the precision
of the TB and resulting in an output rate higher than the desired one:

1. The user space reads the current value of the bucket and computes the new
number of tokens based on the refill rate and the maximum capacity.

2. At the same time, multiple packets are forwarded in the kernel, consuming
tokens.

3. The user space writes the new value of the bucket in the map, hiding the tokens
consumed in the former step.

To solve the above problem, we perform the bucket refill directly in the data plane:
every bucket is associated with the timestamp of its last refill and tokens are optionally
added on every packet reception. The bpf_spin_lock() and bpf_spin_unlock()
eBPF helpers allow to update each bucket atomically.

Sliding Window (SW) [33]: Given the rate limit of R and burst limit of B, a
window of size W = B/R is defined (i.e. the time needed to transmit an entire burst
at the desired rate). Every time a new packet arrives, the time needed to transmit
it at the desired rate is computed: for a packet of size S bits, T = S/R. In order to
transmit the packet we must be able to shift forward the sliding window of a time T
without exceeding the arrival time of the packet. The three possible scenarios shown
in Figure 2.2 may occur:

18
Providing Telco-oriented Network Services with eBPF: the Case for a 5G Mobile

Gateway

time

packet in

t0tx time

W

PASS

Wnext

time

packet in

t0tx time

W

DROP

time

packet in

t0tx time

W

PASS

Wnext

a. Packet passed

b. Packet dropped

c. Window realigned

Fig. 2.2 Sliding Window scenarios.

a. The arrival time of the packet falls in the window and its distance from the
begin time of the window is bigger than the transmit time T : we pass the
packet and move the window forward of T .

b. The arrival time of the packet falls before (on the left) the window or its
distance from the begin time of the window is smaller than the transmit time
T : we drop the packet and do not touch the window.

c. The arrival time of the packet falls after (on the right) the window: this means
that we have not moved the window for too long (due to the absence of received
packets). In this case we realign the end of the window to the arrival time and
the shift it forward of a time interval T .

Also in this case (such as for the TB) we update the position of the window in the
data plane and use spin locks to guarantee atomic operations.

2.3 Evaluation 19

2.2.4 Traffic Classifier

This module is used to map a packet in the downlink direction to its corresponding
TEID, which is used to enforce the correct QoS and to perform GTP encapsulation.
To support more complex classification rules we used the same algorithm defined
in [21]. The Linear Bit Vector Search classification algorithm is compatible with
the limited number of data structures available in eBPF and allows to speed up the
classification process exploiting the parallelism of CPU registers, while maintaining a
linear cost. The eBPF code is dynamically generated every time the configuration of
the service changes, in order to include only parsing of needed headers and perform
lookups only on the protocol headers actually used for the classification.

2.2.5 Router

The router component can work in both “shared” mode, where the host FIB table
is used to decide the next hop of the packet through the Internet, or in “private”
mode where a separate BPF LPM_TRIE map is used and configured by the MGW
control plane. For the rest, no novel algorithms or implementation details are worth
mentioning in this chapter.

2.3 Evaluation

We compared our eBPF MGW with equivalent pipelines based on different data
plane technologies (BESS [34], OvS-DPDK and OvS-kernel [35])2 available in
TIPSY [36], a benchmark suite to evaluate and compare the performance of pro-
grammable data plane technologies over a set of standard scenarios rooted in telecom-
munications practice. Where not differently specified, we performed all throughput
tests according to RFC2544, tuning the input rate in order to obtain a packet loss
lower than 1%, and using 64 bytes frames, since packet size turned out not to affect
the results.

2Tester and Device Under Testing (DUT) are connected with a dual-port Intel XL710 40Gbps
NIC. DUT has an Intel Xeon Gold 5120 14-cores CPU @2.20GHz (hyper-threading disabled) and
Ubuntu 18.04.1 LTS. Moongen packet generator. Kernel 5.9 for eBPF, kernel 5.0 with DPDK 19.11
for other technologies.

20
Providing Telco-oriented Network Services with eBPF: the Case for a 5G Mobile

Gateway

 0

 2

 4

 6

 8

 10

 12

1 1/10 1/100

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Burst/rate ratio

Linux tbf 100 pkts queue
Linux tbf 1 pkt queue
eBPF Token Bucket

Fig. 2.3 Output rate with 10 Mbps rate limit.

2.3.1 Rate limiting algorithms

We tested the algorithms proposed in Section 2.2.3 to evaluate both their accuracy
and the impact on performance.

Accuracy: For UDP traffic we generated packets at a high rate (40 Mpps) using
MoonGen and fed them to the DUT, obtaining an almost perfect output rate in all
cases, provided that the burst limit was big enough (for algorithms requiring it3). We
used iperf3 to evaluate the effect of the algorithms on the TCP protocol and used
the Token Bucket Filter (tbf) queuing discipline of the kernel as a reference. Results
in Figure 2.3 show that the Token Bucket is not able to produce the desired rate if
it is configured with a burst limit smaller than the desired rate. This behaviour is
due to the fact that the TCP protocol assumes (huge) intermediate buffers in mind,
which have to be “emulated” by our bufferless solution by increasing the burst size.
To prove this theory we emulated a bufferless behaviour with the (vanilla) Linux tbf
by configuring a queue size of one packet and the results show that the qdisc is not
able to produce the desired rate as well. We obtained a similar behavior by testing
different rate limits and using the Fixed Window Counter and the Sliding Window
algorithms.

3With a millisecond clock resolution a burst bigger than 1/1000th of the desired rate is required.

2.3 Evaluation 21

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

of cores

Baseline

FWC

TB Full Lock

SW Full Lock

TB Reduced Lock

SW Reduced Lock

Fig. 2.4 Rate limiters on multiple cores with a single traffic class.

Overhead: One of the key features of an eBPF MGW is the ability to leverage
all the CPU cores provided by the machine, since the traffic reaching the server is
usually distributed on different cores by Receive Side Scaling (RSS) based on the 5-
tuple of the packet. The Traffic Policer is the most critical module for what concerns
multi-core scalability since multiple flows belonging to the same QoS class could be
processed concurrently on different cores and try to access the same window/bucket.
In this scenario the naive use of spinlocks, covering all the rate limiting portion of
code, could become a bottleneck. Figure 2.4 exacerbates the problem trying to police
all the traffic processed by different cores in the same QoS flow. On the other hand,
the Fixed Window Counter, which relies only on an atomic increment operation to
update its counter (sync_fetch_and_add()), is able to scale, even if not in a linear
way. In order to reduce the usage of spinlocks in the other two algorithms we made
the following observations:

• In the Token Bucket the spinlock is only needed when refilling the bucket, since
we need to atomically add the tokens and update the timestamp of last refill.
Tokens can be consumed by packets with the atomic increment operation.

• In the Sliding Window the spinlock is only needed in scenario (c), when
reattaching the window to the current time, since we need to prevent multiple

22
Providing Telco-oriented Network Services with eBPF: the Case for a 5G Mobile

Gateway

 0

 4

 8

 12

 16

 20

1 3 10 30 100 300 1000 3000

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

of buckets

TB Full Lock

TB Reduced Lock

Fig. 2.5 Rate limiting on six cores with different numbers of buckets.

cores from overwriting their reattach operation. Vice versa, Moving forward
the window in scenario (a) can be done with an atomic increment operation.

• The maximum rate of execution of the two operations listed above is bound to
the time resolution we use.

We restricted the use of spinlocks to the sections specified above and chose a
millisecond time resolution, that should limit the execution of locked sections of code
while keeping a good precision. This also allows us to replace the bpf_ktime_get_ns()
helper, whose overhead proved to be non-negligible, with a custom clock stored in a
PERCPU_ARRAY map and updated every millisecond by a thread in user space. We
obtained values similar to the Fixed Window Counter as shown by the Reduced Lock
in Figure 2.4.

We evaluated the impact of the cross-cores interference discussed above by
steering the traffic on six different cores and increasing the number of buckets used
to handle that traffic. Results in Figure 2.5 show that the effect of cross-cores
interference becomes negligible when traffic is managed by more than 100 buckets,
however our improved solution still retains a performance boost of about 10% since
it avoids the overhead needed to acquire and release spinlocks.

2.3.2 Scalability with multiple users

We scaled the number of configured users (each one with a single tunnel) up to
3000, setting one base station every 100 users and one additional route on the PDN
every 10 users. We configured Moongen to generate an average of 10 UDP flows

2.3 Evaluation 23

1 3 10 30 100 300 1000 3000
of users

0

2

4

6

8

Th
ro

ug
hp

ut
 (

M
pp

s)
a) Downlink

eBPF-mgw
OvS-DPDK
BESS
OvS-Kernel

1 3 10 30 100 300 1000 3000
of users

0

2

4

6

8

Th
ro

ug
hp

ut
 (

M
pp

s)

b) Uplink
eBPF-mgw
OvS-DPDK
BESS
OvS-Kernel

Fig. 2.6 Multiple users scalability, downlink (a) and uplink (b).

per user. Figure 2.6-a shows that, in the downlink direction, the eBPF pipeline
outperforms both the in-kernel alternative and also (user space) BESS with a high
number of configured users, due to the poor scalability of the latter (w.r.t [29] section
V-B), while OvS-DPDK still retains a high-performance lead. This changes in the
uplink direction shown in Figure 2.6-b: here the eBPF pipeline does not need to
classify packets (an expensive operation whose cost grows linearly with the number
of users) and its throughput is more consistent. While in the downlink direction the
OvS-DPDK pipeline relies on the Linux kernel to perform routing, in uplink it uses
its internal, less optimized, longest-prefix-matching algorithm (w.r.t [29] section
V-A), resulting in a higher performance drop with an increasing number of users.

2.3.3 Multicore scalability

We configured a base of 100 users, 10 routes, and 1 base station per core, increasing
the number of cores used to process the traffic, generating again an average of 10
flows per user. Figure 2.7 shows that the scalability of the eBPF implementation is
in line with that of its in-kernel and user space counterparts. We omit the results of
BESS since its throughput seems to decrease even adding more cores to computation.

2.3.4 Modules overhead

We analyzed the impact of the different modules on the performance of the eBPF
gateway with both low (1) and high (1000) number of configured users. Figure 2.8

24
Providing Telco-oriented Network Services with eBPF: the Case for a 5G Mobile

Gateway

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 6 8

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

of cores

eBPF-mgw

OvS-DPDK

OvS-Kernel

Fig. 2.7 Multicore scalability (downlink).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Router +Classifier +Policer +GTPHandler

Pa
ck

et
 P

ro
ce

ss
in

g
Ti

m
e

(n
s)

eBPF-mgw (1 user)
eBPF-mgw (1k users)

Fig. 2.8 Packet processing time breakdown.

shows the average time needed to process each packet, starting with the Router
module alone and then adding the others. Results show that the most resource-
hungry service is the Classifier, whose algorithm scales linearly with the number of
rules we use in this scenario. However, we feel that this can be reduced with a more
careful implementation.

2.4 Conclusions 25

2.4 Conclusions

In this chapter, we presented a proof-of-concept 5G Mobile Gateway based on the
eBPF and XDP technologies and made a point for its use in scenarios with limited
resources such as Edge Computing, where servers need to be shared between network-
related tasks and generic workloads. We prototyped a simplified architecture and
showed the limitations imposed by eBPF in its implementation as well as possible
solutions. While our solution proposes a completely in-kernel implementation of the
network function, the introduction of the AF_XDP socket type opens the possibility to
perform some of the more complex tasks in user space while avoiding the drawbacks
of traditional kernel-bypass technologies [37]. We leave a careful evaluation of
this technology to our future work. Our evaluation and comparison with other
technologies shows that eBPF is an interesting alternative, especially in those cases
where some performance can be sacrificed in exchange for a higher integration with
the kernel and a more flexible resource usage.

Chapter 3

Comparing User Space and In-Kernel
Packet Processing for Edge Data
Centers

3.1 Introduction

Edge computing is a paradigm that moves computational capabilities close to the
end user, in order to provide services with lower latency and increase the amount
of available bandwidth. Unlike cloud computing, where user data is processed in
big, centralized data centers with almost unlimited resources, processing at the edge
requires telco operators to support a large number of small, distributed data centers,
each one featuring a few servers. Traffic of the user reaching these data centers has
to be processed by a fixed chain of Network Functions (NFs) that provide basic
connectivity to the global network (e.g. 5G User Plane Functions, a.k.a. UPFs,
NATs). This traffic might be further processed by additional network services (e.g.,
firewalls) and can be either directed to the Internet or to applications running in the
same data center (e.g., 5G control plane services, object recognition software, content
caches, etc.), located at the edge for different reasons such as latency requirements,
data aggregation, or resiliency concerns.

Traditionally, the above two types of workload (data plane NFs and traditional
applications) are handled by partitioning available servers in two subsets. Data-
plane workloads are usually executed on servers that leverage kernel-bypass packet

3.1 Introduction 27

processing frameworks such as Intel DPDK. Instead, traditional applications are
orchestrated by platforms such as Kubernetes and leverage the widespread Linux
TCP/IP networking stack. In fact, kernel-bypass technologies allow to process
packets in user space, completely avoiding the overheads introduced by the kernel
network stack. They are well known for their flexibility and for providing very high
throughput, but can hardly be executed in servers running also traditional applications
due to the necessity to rely on rigid resource allocation schemes (e.g., CPU pinning
with dedicated CPU cores, huge memory pages), and the difficulties to support
applications that leverage the standard TCP/IP stack (which, in fact, needs to be
re-implemented in user space [17]). On the other side, existing kernel-level network
processing primitives (e.g., Netfilter, Traffic Control, etc.) are highly integrated with
applications relying on the network stack, but introduce an unnecessary overhead
(hence, low throughput) to pass-through traffic, that only needs NF processing.

While the approach based on rigid servers partitioning may be appropriate in
cloud data centers, it may provide a sub-optimal resource usage when a few servers
are available, which could severely impact the edge scenario. On one side, packets
moving between NF and application servers generate additional traffic in the data
center (east-west traffic) and require additional I/O operations. On the other side, the
rigid partitioning of servers based on the type of application may lead to wasting
some of the available resources. In this scenario, a shared approach that consolidates
both workloads on the same machine(s) would enable a more efficient usage of
resources, allowing to co-locate NFs and applications working on the same traffic
and to allocate spare resources to any kind of workload.

In recent years, the introduction of the eXpress Data Path (XDP) [20] and
AF_XDP has provided the missing ingredients to efficiently handle traffic either in
kernel or in user space, on the same platform. XDP allows to process packets in the
NIC driver [38, 39], retaining the possibility to yield a packet to the Linux network
stack, while AF_XDP sockets can be used to bypass limitations of eBPF programs
and provide flexible processing in user space. However, it is still unclear how to use
the above technologies at the same time in a single server, to handle the complex
processing scenario envisioned at the edge of the network.

This chapter presents the performance analysis of in-kernel and user space packet
processing based on XDP/AF_XDP, including pass-through traffic, processed by
a chain of NFs and redirected to a remote destination, local traffic, directed to

28 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

applications running locally, and dropped traffic, which has to be discarded e.g., for
security reasons. This has the aim of determining which technology is best suited for
each case, and to provide insights on how to optimally handle the mixed scenario
typical of edge data centers.

While most recent network cards, such as Intel 800 series, provide customized
hardware packet processing at the NIC level, we did not include this technology in
our evaluation. Indeed, this chapter focuses on a fully software approach, which
allows to be completely independent from the underlying hardware and supports the
case (rather common at the time of writing) of the many data centers that feature
network cards with limited packet processing capabilities (such as our Intel 700
series).

This chapter is structured as follows. Section 3.2 provides a background on the
two main technologies considered in this chapter (namely, XDP and AF_XDP), as
well as on HW/SW packet steering mechanisms that proved to be a key to further im-
prove performance. Section 3.3 details the methodology and scenarios encompassed
in our tests, while Sections 3.4 to 3.6 present the results of our experiments for the
above tests scenarios, namely dropped, pass-through and local traffic. Section 3.7
combines the takeaways from previous experiments to provide guidelines to handle
heterogeneous combinations of traffic and experimentally verifies their effectiveness.
Section 3.8 reviews the literature related to the topic, while Section 3.9 draws the
main conclusions.

3.2 Background

3.2.1 eBPF/XDP

eBPF is a virtual machine that allows the extensions of the functionalities of the
kernel with custom code that can be injected at run time and executed at various hook
points (e.g. trace points, system calls, every kernel function, etc.). eBPF programs
leverage a special bytecode that is generated by the Clang/LLVM toolchain starting
from a source code written in a (restricted) C language, which can be compiled
just-in-time into native machine code for extra performance. Upon injection, eBPF
programs are analyzed by a verifier, whose aim is to guarantee that the code cannot
harm the kernel, for example checking that only allowed memory accesses are

3.2 Background 29

performed and that the program will eventually terminate. As a consequence, eBPF
programs have some limitations, such as a maximum number of instructions and
the lack of support for unbounded loops. Moreover, they cannot access memory
in a custom way, but need to rely on maps, a set of key-value stores with different
access semantics (array, hash, queue, etc.), that can be shared between several eBPF
programs and with the user space, and can be used to preserve the state among
multiple executions of a program. Despite these limitations, eBPF has proven to be
suitable to the creation of reasonably complex NFs, especially if limited to headers
processing [40].

The eXpress Data Path provides a hook to execute high speed eBPF packet
processing programs before actually entering the main Linux kernel. XDP allows, in
its native mode, to execute these programs in the NIC driver, at the earliest possible
point after a packet is received from the hardware, before the kernel allocates its
per-packet sk_buff data structure or performs any parsing. Based upon the result
of the processing, the program can either ask the kernel to drop the packet, let it
continue for further processing in the network stack, send it back on the receiving
interface or redirecting it to another net device or to user space thanks to AF_XDP
sockets.

3.2.2 AF_XDP sockets

AF_XDP sockets are a new socket family that allows user space code to exchange
packets with the NIC with very limited overhead, very similar to existing kernel-
bypass technologies [41]. An application leveraging AF_XDP has to create an
array of user-space memory called UMEM. The UMEM is a chunk of contiguous
memory divided into equal-sized buffers, each one holding a single Ethernet frame.
These buffers are used to move packets between the NIC driver and the user space
application, exchanging their pointers through four circular rings allocated by the
kernel. Figure 3.1 shows the lifecycle of a UMEM buffer in an application receiving
packets from the network and dropping/redirecting them. At startup, buffers are
waiting in the fill ring (1). When a packet arrives, the NIC stores it in a buffer
available in the fill ring and moves its pointer to the rx ring (2), where it is
consumed (i.e., processed) by the user space application (3). If the packet is dropped,
its buffer is re-added to the fill ring (3a); otherwise it is queued to the tx ring
for redirection (3b). The driver transmits packets from the tx ring and moves their

30 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

FILL RX TX COMP

Packet
RX

Packet
TX

Packet
processing

User space

Kernel space

UMEM

5

1

2 4

3
3a

3b

Driver

Kernel memoryPure XDP

AF_XDP sockets
enabled sk_buff allocation

Fig. 3.1 The life cycle of a UMEM buffer in an application receiving traffic from the network.

buffers to the comp (i.e., completion) ring (4), leaving to the user space application
the responsibility to move the above buffers back to the fill ring (5), ready to keep
new packets.

Every AF_XDP socket is bound to a single {netdev, queue} couple (multiple
sockets for the same couple are allowed), and is associated with one rx and one tx
ring. A single UMEM can be shared between different sockets, however, a new pair
of fill and comp rings is needed for every {netdev, queue} couple handled. This
allocation of rings guarantees a single-producer single-consumer access pattern on
the kernel side, allowing faster operations. In user-space, the responsibility to make
sure that no concurrent access to the same ring can occur is left to the programmer.
When a packet is received by the NIC, it is first processed by an XDP program,
that can choose to redirect it towards an AF_XDP socket stored into a map of type
XSKMAP. In the initial implementation of AF_XDP, packets where first DMAed by
the NIC into a kernel-owned XDP buffer, then copied into a UMEM buffer and sent
to user space (a similar operation was performed for transmission). A zero-copy
mode was later introduced [42], allowing the NIC to DMA packets directly into/from
a UMEM buffer and move them to user space without expensive copies. While the

3.2 Background 31

copy mode works on all drivers supporting XDP, the zero-copy mode requires an
explicit driver support.

In a standard AF_XDP-based packet processing program, the NIC triggers an
interrupt after the reception of one or more packets. Packets are then processed by
the driver poll function in the NAPI software interrupt context (softirq) and possibly
moved to the AF_XDP rx ring, and the application has to check the ring for the
presence of new packets (a similar process happens for transmission). This can be
done either with a busy loop or with the poll() system call that puts the program
into a wait state until buffers are available. The user space application and the driver
can either be executed on the same core, with the consequent cost of continuous
context switching between app and softirq, or on separated cores, this time adding
the cost of realigning the caches of the different CPU cores (cache coherency).
An additional preferred busy-polling mode was recently introduced in [43]. With
this mode, interrupts are disabled and the user space application is responsible of
periodically executing the driver poll function with a system call (sendto() or
recvfrom()). This allows running the application and the driver on a single core
eliminating all the context switching and coherency traffic costs, but at the cost of
executing a syscall for each batch of transmitted/received packets.

3.2.3 Packet steering mechanisms

Given the massive number of processing cores available in modern CPUs, a key
problem is how to distribute traffic load among the different available CPU cores,
which is important for both NFs and traditional applications. This can be achieved
leveraging either software-based techniques running in the kernel, or hardware-based
mechanisms available on the NIC, such as the following.

Receive Side Scaling (RSS) [44]

It allows a NIC to distribute incoming packets on multiple queues, which can then
be processed by different CPU cores without contention (assuming no dependencies
are present in the above traffic). RSS typically applies a hash function to the packet
5-tuple to identify the target queue, which guarantees that packets belonging to the
same session are processed on the same core.

32 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

Receive Packet Steering (RPS) [45]

It is a software implementation of RSS in Linux. Whereas RSS selects the queue
and hence CPU that will run the hardware interrupt handler, RPS selects the CPU
to perform protocol processing above the interrupt handler. This is accomplished
by placing the packet on the desired CPU’s backlog queue and waking up the CPU
for processing. Like in RSS, the target CPU is selected applying a hash function on
the packet 5-tuple. Each receive hardware queue has an associated list of CPUs to
which RPS may enqueue packets for processing.

Receive Flow Steering (RFS) [46]

It is an extension of RPS that redirects packets to the core where the consuming
application is running. This increases the performance by improving the cache local-
ity for data structures handling the session (both kernel and user/space processing
happens on the same core), and avoids copies of the packet among cores [47].

Ntuple filters [44]

They define a set of rules, configured on the NIC hardware, that can (i) steer packets
to a given queue, (ii) drop traffic or (iii) enforce specific hash options for RSS; this
is called Ethernet Flow Director [48] on Intel NICs. Flow Director rules can be
either inserted manually (Externally Programmed Mode) such as through ethtool,
or automatically populated through the proprietary Application Targeting Routing
technology (ATR).

Application Targeting Routing (ATR) [48]

It represents the hardware acceleration of RFS available on selected Intel NICs:
the NIC driver samples some of the outgoing packets and automatically generates
hardware rules that force the incoming traffic to be sent to the same queue/core
where the application is running.

3.3 Benchmarking methodology 33

3.3 Benchmarking methodology

3.3.1 Objectives

This section defines a benchmarking methodology for the performance characteriza-
tion of XDP and AF_XDP, with the final objective of determining the best technology
to be used on servers that host both traditional (i.e., computing intensive) and data
plane (i.e., network intensive) workloads. For this aim, we identified three classes
of traffic that must be handled by our server, each one characterized by a different
processing path in the Linux networking stack. Dropped traffic refers to packets
discarded by the NF, such as in case of a firewall, a DDoS mitigator or (partly) a
traffic shaper. Pass-through traffic refers to packets that are forwarded to a remote
destination after being processed by one or more NFs on the local server, such as in
case of a load balancer redirecting packets towards backends running on different
servers. Local traffic refers to packets that have to be processed by an application
running on same server as the NF, e.g., traffic that is inspected by a firewall and is
terminated on a local application, such as a Kubernetes pod running locally. Even
though the above three scenarios are usually combined in a common deployment, we
analyzed them in isolation to facilitate the profiling of the technologies under test,
and then used results to determine their best combination in real use cases.

For each class of traffic we analyzed four cases. First, we evaluated raw I/O per-
formance (Pure I/O), i.e., the impact of non-avoidable components such as the NIC
driver and the basic XDP and AF_XDP mechanisms on the overall throughput, using
a minimal program that simply swaps the MAC addresses of the packet. This test
highlights the maximum theoretical throughput obtained by each technology, which
can be considered our ideal target. Second, with respect to the dropped and pass-
through test cases, we profiled the performance by running software with increasing
complexity, either in terms of CPU demand (i.e., programs whose processing logic
has different degrees of complexity) and Memory demand (i.e., different amount of
RAM addressed by the application). The former aims at determining the impact of
the data plane program complexity on the overall performance, while the latter aims
at determining the impact of the amount of allocated memory, which, surprisingly to
us, is not orthogonal to the chosen processing technology. Processing complexity
was measured by creating a program that recomputed the L4 checksum of the packet
an increasing number of times. Memory demand was measured by allocating an

34 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

array with increasing size and performing, for each packet, one random access in the
above memory. In this respect, we verified how the generation of a random number
introduces a minimal additional (but constant) CPU processing cost and has almost
no memory impact. At the same time, random memory accesses make irrelevant
the hardware pre-fetching capabilities of the CPU, hence avoiding the forecast of
future requests and the masking of memory access costs. Finally, we ended our
evaluation with a (proof-of-concept) real application (Traditional NF), to confirm
that our findings are actually verified in a realistic scenario.

Our analysis focuses on the throughput of the technologies under test; albeit
the latency represents another important metric, for the sake of space we leave its
evaluation for a future work.

3.3.2 Benchmarked technologies

For in-kernel packet processing we executed our NFs in the standard XDP native
mode (XDP in Table 3.1) to leverage all the advantages of early packet redirec-
tion/discarding.

For user space packet processing we executed our AF_XDP-based NFs in three
different modes, all relying on the zero-copy user-kernel interaction. In standard
mode (AF_XDP in Table 3.1) the NIC driver execution is triggered by the tradi-
tional interrupt/NAPI based mechanism; we performed a busy loop to check for
the presence of new descriptors in AF_XDP rings in our user-space packet process-
ing thread. In the system call mode (AF_XDP sysc in Table 3.1) we enabled the
SO_PREFER_BUSY_POLLING flag to trigger the execution of the NIC driver through
a system call executed in a (user-space) busy loop, leaving interrupts disabled, and
configured the network interface as suggested in [43]1. Instead, the poll mode
(AF_XDP poll in Table 3.1) replaced the busy loop mechanism with the poll()
system call, leaving the user space code in a waiting state until packets are received,
all triggered by an interrupt.

Enabling AF_XDP sockets changes the way packet buffers are managed and
how the code of the NIC driver handles packets, therefore impacting also XDP
performance. Hence, we defined two combined test modes (XDP-sk and XDP-sk

1echo 2 | sudo tee /sys/class/net/<ifname>/napi_defer_hard_irqs
echo 200000 | sudo tee /sys/class/net/<ifname>/gro_flush_timeout

3.3 Benchmarking methodology 35

Test mode Processing User space packet Driver AF_XDP
location notification mode execution mode enabled

XDP Kernel - Interrupt No
AF_XDP User Busy loop Interrupt Yes

AF_XDP sysc User Busy loop Syscall Yes
AF_XDP poll User poll() Interrupt Yes

XDP-sk Kernel poll() Interrupt Yes
XDP-sk sysc Kernel Busy loop Syscall Yes

Table 3.1 Main characteristics of the encompassed test modes.

sysc in Table 3.1, the former relying on the traditional interrupt-based mechanism
to trigger the NIC driver, the latter relying on a system call executed in a busy loop
running in user space), in which AF_XDP sockets are enabled even if packets are
completely processed at the XDP level and never reach user space.

All our tests (unless specified differently) run on a single CPU core, to prevent
entering the multi-core scalability domain, whose study is left to a future work.
While this configuration fits perfectly in-kernel processing, where a single processing
context is scheduled (i.e., the NIC interrupt context), it may raise some concern in
the user space case, in which both the interrupt and the user space application are
potentially running at the same time. For example, [49] suggests to handle NIC
interrupt requests (IRQ) and applications (hence, kernel vs user-space processing)
on different CPU cores to avoid context switches and maximize performance.2

Nonetheless, we scheduled them on the same core to simplify the comparison with
other technologies, paying attention not to affect the validity of our results. In
fact, we always tuned the offered load to maximize the throughput of the system,
achieving a result that was more than half the one obtained with two distinct CPU
cores. This guarantees the fairness of our results, because our tuning avoids the
livelock phenomenon in which the code running at the highest priority, i.e., the
kernel, consumes most of the resources while the rest tends to starve, as shown in
[50].

2Notably, this does not apply to the AF_XDP sysc case in which IRQs and application have to be
scheduled on the same core to achieve decent performance; more in Section 3.2.2.

36 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

3.3.3 Testbed

Our testbed is composed of two servers equipped with a dual-port Intel XL710 40
Gbps NIC, only one port used, connected back-to-back. One server operates as
Device Under Test (DUT) and the other one as tester/load generator. Both machines
feature an Intel Xeon Gold 5120 14-cores CPU @ 2.20 GHz with Hyper-Threading
and Turbo Boost disabled. The processor is provided with 32 KiB of per-core L1
data cache (corresponding to 512 x 64B lines), 1 MiB of per-core L2 cache (∼16K
x 64B lines) and a 19.25 MiB unified L3 cache (∼315K x 64B lines). The servers
run Ubuntu 20.04.4 LTS with kernel 5.14. The traffic is terminated on the DUT for
the Dropped and Local tests, while is sent back to the traffic generator for the Pass-
through tests. The DUT supports Intel DDIO technology, that allows the network
card to DMA packets directly to/from the Last Level Cache (LLC, a.k.a. L3), hence
avoiding high latencies due to the access to the main memory. As suggested in [51]
(and confirmed in our tests), we increased the number of LLC ways available to Intel
DDIO from 2 to 63 to improve the throughput of NFs and reduce packet losses.

For the dropped and pass-through test cases we used MoonGen as packet gen-
erator, generating minimum size UDP packets (64B Ethernet frames) towards the
XDP/AF_XDP NF running on the DUT. We measured the throughput of the NFs
according to RFC2544, tuning the input rate till the packet loss was lower than
0.1%. For local traffic tests we selected memcached [52] as a sample application,
since it is likely to be deployed at the edge of the network and it is rather network
intensive. We executed it with a variable number of threads and with a memory limit
extended to 128MB (default is 64MB), and we pinned it to a set of cores (taskset
command), either shared or disjoint from the ones used by the NF depending on
the benchmarked technology (more details in Section 3.6). Requests on the tester
machines were generated with Memoslap4 running on four cores, 128 clients per
core, each one establishing a TCP connection and requesting items with random
keys for ten seconds. The sar tool was used to measure the CPU utilization of the
DUT, split between user space (User), system calls (System) and software interrupt
processing (SoftIRQ), the latter two both related to kernel space code. We also
leveraged the perf tool to monitor the number of LLC hits and misses (the latter
representing the number of memory accesses), since (i) memory access latency is

3sudo wrmsr 0xc8b 0x7e0.
4https://github.com/FedeParola/memoslap

3.4 Dropping traffic 37

one of the main bottlenecks in packet processing [53] and (ii) the LLC is the target of
packet transfers to/from the NIC (DDIO). Due to space concerns, the above numbers
are presented only when they provide some insights on the causes of the achieved
throughput. In all cases we repeated our measurements 10 times and our plots show
the average value and the standard deviation as error bars.

All the code used for testing is publicly available.5

3.4 Dropping traffic

3.4.1 Pure I/O performance

Results in Figure 3.2 show the performance in terms of dropped traffic of the
technologies under test in a pure I/O scenario (packets are only touched by swapping
their MAC addresses). In general, XDP packet dropping is highly efficient, as it
avoids additional kernel processing (if the Linux network stack is traversed) or to
exchange frames on AF_XDP rings (if AF_XDP processing is involved). However,
XDP dropping performance are even better if AF_XDP sockets are enabled, with a
21% improvement when the driver is executed in interrupt mode (XDP-sk). Numbers
in Figure 3.3, which shows LLC accesses (hits and misses), seem to suggest a higher
memory usage of pure XDP, which needs one LLC load and one LLC store per
packet, while other technologies do not need the store operation. However, this
LLC store is due to a prefetchw() operation in the NIC driver, which prepares
the memory area to store the metadata for packet transmission (the xdp_frame).
However, since the prefetchw() assembly instruction is executed asynchronously,
we detected no difference in performance when removing the above operation from
the driver, even when this memory region is not needed (i.e., when dropping traffic).

We speculate that the root cause of the performance improvement in XDP-sk is
the different buffer management model introduced by AF_XDP, since, to the best of
our knowledge, this is the only main difference when enabling AF_XDP sockets in
the drop scenario. In addition, Figure 3.4 shows the execution context of the packet
processing code, namely user space, system call or software interrupt, where the
last two are both in kernel space. Interestingly, the usage of a system call to retrieve

5https://github.com/FedeParola/xsknf

38 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

XDP AF_XDP
AF_XDP sysc

AF_XDP poll

XDP-sk
XDP-sk sysc

0

5

10

15

20

25

M
pp

s

Fig. 3.2 Maximum manageable rate in the pure I/O test case (mac address swap) when
dropping packets.

XDP AF_XDP
AF_XDP sysc

AF_XDP poll

XDP-sk
XDP-sk sysc

0

0.5

1

Ac
ce
ss
es

pe
rp

ac
ke
t

LLC load hits LLC load misses LLC store hits LLC store misses

Fig. 3.3 Per-packet LLC accesses in the pure I/O test case (mac address swap) when dropping
packets.

packets is convenient when dropping traffic in user space (AF_XDP sysc), but it has
a negative effect when this operation is performed in the kernel (XDP-sk sysc), since
we still have to spend some processing time in user space just to trigger another
driver loop. Finally, Figure 3.4 shows also that technologies that include a context
switching (e.g., part of the processing is done in user space, part in SoftIRQ) tend to
perform worse, suggesting the opportunity to choose a technology that completes all
the processing in the same context.

3.4 Dropping traffic 39

XDP AF_XDP
AF_XDP sysc

AF_XDP poll

XDP-sk
XDP-sk sysc

0

50

100

CP
U
%

User System SoftIRQ

Fig. 3.4 CPU usage in the pure I/O test case (mac address swap) when dropping packets.

In conclusion, dropping packets at the kernel level always proved to be more
efficient (XDP, XDP-sk and XDP-sk sysc), with an extra improvement when enabling
AF_XDP sockets (XDP-sk), suggesting a more effective buffer management model
introduced by AF_XDP.

3.4.2 Impact of memory demand

Figure 3.5 shows the throughput achieved by the most effective I/O configurations
(namely XDP, AF_XDP-sysc, and XDP-sk) while increasing the memory allocated
to our NF and randomly accessed. Results show a stable throughput as long as
the allocated memory is limited in size, with an advantage of in-kernel (XDP and
XDP-sk) over user space (AF_XDP). However, the gap shrinks when the amount
of allocated memory exceeds 16K cache lines (the size of our L2 cache), with user
space processing eventually outperforming XDP first and XDP-sk next.

Comparing these results with the number of per-packet accesses in the LLC
cache (Figure 3.6) we can see that they remain stable as long as the size of the
allocated memory fits in the L1/L2 caches. All LLC accesses in this region are
related to a load/store in the packet buffer: in fact, DDIO transfers (through DMA)
packets to/from the LLC, hence all packet accesses result in an LLC access. As in the
pure I/O test case, pure XDP presents one additional LLC access due to a prefetch
operation. While this operation should intuitively affect the memory scalability, we

40 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

102 103 104 105 106 107
0

5

10

15

20

Accessed cache lines

M
pp

s
XDP AF_XDP sysc XDP-sk

Fig. 3.5 Impact of an increasing memory demand on the throughput when dropping traffic.

XDP AF_XDP sysc XDP-sk

103 105 107
0

1

2

3

4

Accessed cache lines

Ac
ce
ss
es

pe
rp

ac
ke
t

LLC accesses

103 105 107
0

0.5

1

Accessed cache lines

LLC misses

Fig. 3.6 Number of accesses in the LLC cache (reads + stores) per packet, with increasing
amount of allocated memory, when dropping traffic. The vertical dashed lines represent the
size of the L2 and L3 caches. The line for XDP-sk is totally overlapped with AF_XDP-sysc
in LLC accesses and with XDP in LLC misses.

did not detect any performance difference when removing that operation. In general,
pure XDP performance showed to be the most affected by memory demand, with
an improvement achieved when enabling AF_XDP sockets (XDP-sk). However,
user space processing with AF_XDP (AF_XDP-sysc) proved to be the most resilient
solution with respect to memory demand, which suggests the presence of some
important difference beyond the buffer management model, whose identification is
left for future studies. For instance, this is confirmed in Figure 3.8 (e.g., 5M entries),

3.4 Dropping traffic 41

in which AF_XDP-sysc is less efficient when a limited memory is involved, but it
outperforms XDP-sk when a large amount of memory is requested (in that case, the
identifiers of many TCP sessions).

In general, processing packets in user space with AF_XDP proved to be less
affected by the amount of memory accessed by the NF.

3.4.3 Impact of CPU demand

Figure 3.7 shows the throughput achieved by the technologies under test with NFs of
increasing processing complexity. Unlike the memory case, all technologies were
similarly affected by this increase in CPU requirements, with in-kernel processing
keeping its performance gap over user space (even if this became less relevant with
higher processing complexity becoming dominant over the I/O processing cost). As
expected, we did not detect variations in the number of LLC/memory accesses, that
always remained equal to the ones measured in the pure I/O test. Interestingly in this
test we did not experience the gap between the XDP and the XDP-sk modes, likely
because the NF processing cost dominates over the cost of pure I/O.

2 4 6 8 10
0

5

10

CSUM computations

M
pp

s

XDP AF_XDP sysc XDP-sk

Fig. 3.7 Impact of an increasing CPU demand on the throughput when dropping traffic.

42 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

3.4.4 Traditional NF performance

In this experiment we evaluated the performance of a realistic NF, namely a simple
L4 firewall dropping all traffic whose 5-tuple matches a set of pre-configured rules
stored in a hash table. The main parameter that influences its performance is the
number of ACL entries, as well as the number of different flows matching those
entries. Therefore, in our test we scaled this variable, influencing the degree of
memory dependency of the function.

We wrote two versions of the firewall, an XDP-based and an AF_XDP-based
one, keeping them as similar as possible. To avoid a bias in the results due to the
characteristics of the hash table, the AF_XDP firewall leveraged a user space clone
of the eBPF hash map available in kernel,6 which differs only in how concurrent
read and write operations are handled. The eBPF hash map leverages Read-Copy-
Update [54], which supports multiple reads to be executed in parallel with one
update, with a negligible cost on the read side. Unfortunately there is no ready-to-use
implementation of this mechanism in user space, so we decided not to support this
type of concurrency in our map and our tests included only read operations, in which
the overhead would be negligible anyway; hence, we pre-populated the maps before
starting our measurements.

We configured the firewall with an increasing number of ACL entries (each one
with a different source IP address), and tested the maximum throughput achievable
by the NF when dropping all the received packets, which were randomly distributed
across all configured sessions. Results in Figure 3.8 confirm the advantage of drop-
ping packets at XDP level (both with AF_XDP sockets enabled and with standalone
XDP) but only as long as the size of the ACL is limited (and fits the L2 cache size
size). XDP reaches up to 29% higher throughput compared to AF_XDP sysc, but this
advantage tends to shrink as the number of sessions increases (i.e., when the cost of
memory access tends to dominate over pure I/O cost). When the size of the ACL
exceeds 10K entries, there is no appreciable difference between the two technologies,

6For the sake of precision, the data structure has the following features: it uses the list_nulls
double linked list of the kernel to store elements that collide on the same bucket; the maximum size of
the map is defined at initialization time and the number of buckets is defined rounding this number to
the next power of two; the memory for map nodes (storing both the key and the value) is pre-allocated
in a contiguous area; the jhash function is used for hashing and the hash value is mapped to the
corresponding bucket selecting its lower n bits (with 2n buckets); when an element is modified (added,
deleted or updated), the concurrent access to the corresponding bucket is protected with a spin lock.

3.5 Pass-through traffic 43

100 101 102 103 104 105 106
0

5

10

Sessions

M
pp

s
XDP AF_XDP sysc XDP-sk

Fig. 3.8 Firewall throughput with an increasing number of processed sessions.

and for an even larger number of sessions, dropping packets in user space becomes
much more efficient with a 51% performance improvement over XDP. This confirms
the better memory efficiency of AF_XDP found in our Memory demand test: while a
hash map makes hard to predict in advance when the data structure starts generating
accesses in the LLC, our cache measurements (omitted for the sake of brevity) show
an increase of LLC accesses in the 10K-100K sessions range.

Takeway 1: Dropping packets at the XDP level (XDP and XDP-sk) is more
efficient when the packet processing function operates mainly in the lower levels of
cache (L1 and L2), thanks to the smaller amount of code traversed to process the
traffic. Bringing packets in user space (AF_XDP sysc) results advantageous when
the NF becomes more memory bound, hence representing the most effective solution
for memory intensive processing logic.

3.5 Pass-through traffic

3.5.1 Pure I/O performance

We evaluated raw packet I/O performance by measuring the maximum throughput
when performing a swap of MAC addresses and sending back the packet out of the

44 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

XDP AF_XDP
AF_XDP sysc

AF_XDP poll

XDP-sk
XDP-sk sysc

0

5

10

M
pp

s

Fig. 3.9 Maximum manageable rate in the pure I/O test case (mac address swap) when
redirecting packets out of the receiving interface.

receiving interface (return code XDP_TX at the XDP level).7 Figure 3.9 shows that
the clear winner is AF_XDP sysc, with a 29% improvement over XDP. With respect
to user space processing, AF_XDP sysc outperforms AF_XDP, hence differing from
the dropping test case in which interrupt-based or system call-based modes brought
to similar performance. Instead, AF_XDP yielded a lower throughput, which can be
explained with the need to periodically perform a system call to inform the driver of
the presence of new packets to transmit. This represents an operation that consumes a
CPU time similar to the (less efficient) poll() based mode, as shown in Figure 3.11
(AF_XDP and AF_XDP poll bars). Curiously, when redirecting packets with XDP-
sk*, we always obtained a very low throughput (about 2.5 Mpps). The reason may
be due to the number of LLC accesses shown in Figure 3.10: while the number of
LLC loads per packet is similar for all tests (and in line with the results of the drop
test case), a notable difference exists for store operations. This number ranges from
0.1 per packet (with AF_XDP) to one per packet (with XDP) (unlike the drop test
case, here the additional LLC write is needed to populate the xdp_frame metadata
for transmission; see Section 3.4.1) till two per packet (with XDP-sk*). In fact, an
analysis of the Linux kernel (at least till version 5.14) shows that when AF_XDP
sockets are enabled and packets are re-transmitted at the XDP level, the packet is

7This chapter does not include the results when the traffic is redirected on a different interface,
which can be achieved with return code XDP_REDIRECT at the XDP level, and with minor changes at
the AF_XDP level. In the above conditions, our experiments showed lower performance for both
XDP and AF_XDP, with a trend that is very similar to the presented one.

3.5 Pass-through traffic 45

XDP AF_XDP
AF_XDP sysc

AF_XDP poll

XDP-sk
XDP-sk sysc

0

1

2

Ac
ce
ss
es

pe
rp

ac
ke
t

LLC load hits LLC load misses LLC store hits LLC store misses

Fig. 3.10 Per-packet LLC accesses in the pure I/O test case (mac address swap) when
redirecting packets out of the receiving interface. Misses can hardly be seen since they are
close to zero.

XDP AF_XDP
AF_XDP sysc

AF_XDP poll

XDP-sk
XDP-sk sysc

0

50

100

CP
U
%

User System SoftIRQ

Fig. 3.11 CPU usage in the pure I/O test case (mac address swap) when redirecting packets
out of the receiving interface.

copied from its UMEM frame to an in-kernel XDP page before being sent out of the
interface. This expensive operation is probably the cause of the higher number of
LLC stores and consequent lower throughput of the XDP-sk test cases.

46 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

3.5.2 Impact of memory demand

Results of the memory test shown in Figure 3.12 and Figure 3.13 underline a trend
similar to the one observed in the dropping traffic scenario, with AF_XDP broadening
its gap over XDP as memory accesses shift from L1/L2 caches to the LLC and to
main memory. This gap goes from a 19% improvement when the function uses
little memory to a maximum of 39% higher throughput when a notable number of
accesses hits the LLC and the main memory.

102 103 104 105 106 107
0

5

10

Accessed cache lines

M
pp

s

XDP AF_XDP sysc XDP-sk

Fig. 3.12 Impact of an increasing memory demand on the throughput when redirecting traffic.

XDP AF_XDP sysc XDP-sk

103 105 107
0

2

4

6

Accessed cache lines

Ac
ce
ss
es

pe
rp

ac
ke
t

LLC accesses

103 105 107
0

0.2

0.4

0.6

0.8

1

Accessed cache lines

LLC misses

Fig. 3.13 Number of accesses in the LLC cache (reads + stores) per packet, with increasing
amount of allocated memory, when dropping traffic. The vertical dashed lines represent the
size of the L2 and L3 caches. LLC misses are almost overlapped.

3.5 Pass-through traffic 47

3.5.3 Impact of CPU demand

Similar considerations apply to the CPU-intensive test (Figure 3.14); XDP and
AF_XDP sysc score similar, with the limited advantage of the latter that disappears
when increasing the complexity of the processed function, i.e., when the raw I/O
cost becomes less relevant. The reduced memory efficiency of XDP-sk has a huge
impact in this CPU-intensive test as well, hence sitting at the bottom.

2 4 6 8 10
0

2

4

6

8

CSUM computations

M
pp

s

XDP AF_XDP sysc XDP-sk

Fig. 3.14 Impact of an increasing CPU demand on the throughput when redirecting traffic.

3.5.4 Traditional NF Performance

To assess the performance of traffic redirection with a realistic function, we wrote
a minimal load balancer that parses the packet till level 4 and uses the 5-tuple to
access an hash map of the active sessions. If the lookup is successful, the retrieved
value contains the information to update the packet, that can be either the destination
IP, port and MAC address of the backend for incoming packets (client to service),
or the original service IP and port for return packets (service to client). In case the
lookup fails, a new load balancing decision is taken and two entries are added to
the table of active sessions to handle both incoming and return packets. In the end,
the fields of the packet are updated and the packet is sent back on the receiving
interface. As presented in Section 3.4.4 with respect to the user space implementation
of the hash map, we limited our performance measurements on packet processing

48 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

100 101 102 103 104 105 106
0

2

4

6

Sessions

M
pp

s
XDP AF_XDP sysc XDP-sk

Fig. 3.15 Load balancer throughput with an increasing number of active sessions.

scenarios involving only lookup operations, avoiding write operations. Therefore, we
populated in advance the table of active TCP sessions of the load balancer generating
traffic that is randomly distributed among those sessions.

Figure 3.15 shows the maximum throughput handled by the NF for an increasing
number of active sessions. For a small number of sessions (i.e., limited memory
used) the performance advantage of AF_XDP against XDP is reduced compared
to the one measured with raw I/O performance (a 14% improvement vs the 29%
recorded in the former test). However, when the number of sessions increases and
the NF becomes more memory bound, the same behavior observed in the dropping
scenario applies, with user space processing increasing its performance gap over
XDP, with a maximum of 38% higher throughput when processing packets of 100K
different sessions.

Takeway 2: AF_XDP sysc, i.e., AF_XDP sockets with system call-triggered
driver, provides the highest performance when processing pass-through traffic. The
advantage over XDP is limited for simple packet processing functions but increases
as the logic becomes more memory bound, requiring frequent accesses to the LLC
and to the main memory. In general, considering the higher flexibility of user space
processing that, unlike eBPF, does not impose any limitation (e.g., on the program
size, on the type of data structures used, on loops, etc.), AF_XDP sockets should be
preferred for pass-through traffic with respect to in-kernel processing.

3.6 Local traffic 49

3.6 Local traffic

This section investigates the case of traffic processed by one or more NFs before
landing on an application running on the local server, usually as a container (e.g., a
Kubernetes pod). In this case, the traffic has to traverse the entire TCP/IP stack before
data is eventually delivered to the application. In our analysis we do not consider
the case of applications running in a virtual machine because of the increasingly
diffusion of cloud-native workloads, particularly with respect non-NF applications
running in telco-oriented datacenters.

While processing a packet at XDP level, the XDP_PASS return code can be used to
inform the kernel that the packet has to continue its journey in the standard network
stack and reach the application running locally. Instead, for what concerns AF_XDP,
traffic is handled in user-space and therefore we need a way to re-inject packets
into the kernel, which is needed to complete the remaining TCP/IP processing and
deliver the packet to the application.8 Therefore we leveraged a veth interface to
re-inject the packet in the kernel; however, this introduces more overhead due (i) to
the necessity to perform an additional copy of the packet, as veth devices do not
support the zero-copy mode,9 and (ii) to the additional context switch. Therefore,
given that the zero-copy capability is a property of the UMEM, we relied on two
different UMEMs, the first one bound to the physical interface and operating in
zero-copy, while the second one associated to the veth and operating in copy mode.
This solution requires an additional copy of the packet between the two UMEMs
each time a packet traverses the two interfaces, resulting in two copies per packet,
the first in user space (with AF_XDP) and the second in the kernel (on the veth).
Unfortunately, leveraging a single UMEM shared among the two interfaces does not
solve the problem. In fact, while the first (user-space) copy would be avoided, this
method requires the physical interface to work in copy mode, resulting anyway in
two copies per packet for local traffic (performed by the kernel on each one of the
two interfaces), but losing the performance advantage of zero-copy on the physical
interface in case of pass-through traffic.

8We did not encompass user space implementations of the TCP/IP stack (e.g., [17]) since they are
not widespread and require patched applications in order to be leveraged.

9At the time of writing, all physical and virtual NICs supporting XDP are also compatible with
AF_XDP sockets, but only physical NICs support the more efficient zero-copy mode, even if an
attempt to add it to the veth driver was made in the past [55].

50 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

Kernel

Driver

XDP

AF_XDP App

X
D

P
_R

ED
IR

EC
T

XDP_PASS

veth

User
Space

eBPF TC

TCP/IP
Stack

Fig. 3.16 Path of traffic reaching a local application, when the NF runs as XDP code (blue
continuous line) or as AF_XDP code (red dashed line).

While with AF_XDP the traffic is processed on the ingress and the egress paths
(thanks to the packet redirection in user-space done by the veth), XDP programs can
only be attached to ingress hooks. In this case, egress traffic processing leverages
the TC eBPF hook, which executes the same packet processing function on traffic
leaving the server. Figure 3.16 highlights the different paths followed by the traffic
to reach a local application, depending on where the NF is implemented (XDP or
AF_XDP).

3.6.1 Pure I/O performance

The first test determines the raw I/O performance limited to the early part of the
Linux TCP/IP stack, by assessing the overhead of adding custom NF processing to
packets reaching the local application. Particularly, it assesses the cost of the initial
processing of the packet before reaching the TCP/IP stack, which is different in XDP
and AF_XDP + veth cases, while the remaining processing stack is the same for
both. We used Moongen to generate UDP traffic with non-existing MAC addresses,
and executed an XDP/AF_XFP program that performs a MAC swap on the packets,
which are then passed to the network stack. Due to the wrong destination MAC
address, which does not correspond to the ones present on the server, packets are

3.6 Local traffic 51

Baseline
XDP AF_XDP

AF_XDP sysc
AF_XDP poll

XDP-sk
XDP-sk sysc

0

1

2

3

M
pp

s

Fig. 3.17 Throughput when delivering a packet to the TCP/IP stack based on the different
processing paths highlighted in Figure 3.16.

dropped very early in the network stack. Results in Figure 3.17 show that adding
some processing at the XDP level has very little overhead (9%) with respect to the
baseline (i.e., when packets are dropped by the kernel without being first processed
by XDP/AF_XDP). On the other hand, when moving packets into user space and then
back into the kernel, the hit on performance is considerable, with a 64% reduction of
throughput. Interestingly we did not experience any difference for the three different
AF_XDP-based modes.

On the other side, XDP-sk* experiments measure the cost of enabling AF_XDP
sockets on traffic that is not redirected in user space. This is the price we may have
to pay if we want to leverage both XDP and AF_XDP at the same time, e.g., by
splitting the traffic and handling it in part with AF_XDP (which represents the best
choice for pass-through traffic, Section 3.5), in part with XDP (which represents the
best choice for dropped traffic, Section 3.4). One of the reasons of this additional
cost is due to the necessity to copy the received packet from the UMEM to a new
buffer before sending it up to the network stack, assuming the NIC operates in the
more efficient zero-copy mode. This is needed because the UMEM can be modified
in user space, hence the packet could be corrupted during kernel processing, causing
unexpected behaviors. Vice versa, in vanilla XDP the buffer is only accessible by the
kernel, hence allowing true zero-copy operations [56]. This cost could be prevented
by using AF_XDP sockets in copy mode that, like XDP, receives packets in a private

52 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

kernel buffer and then copies them to the UMEM. This however would result in
very poor performance for the traffic reaching the user space (in our experiments
we were able to achieve a maximum of 1.17 Mpps when redirecting packets in copy
mode, way below the performance of other zero-copy versions of AF_XDP shown in
Figure 3.9), hence forcing us to discard this alternative. Results show that, at least in
this I/O-intensive test, the overhead of enabling AF_XDP sockets is significant, with
a 22% performance reduction of XDP-sk against pure XDP (Figure 3.17).

The second test analyzes the raw I/O performance including the entire Linux
TCP/IP stack and the receiving application, by using our sample application (memcached),
hence evaluating the impact of added packet processing in a real scenario. In this
test, the number of CPU cores to be used, and the allocation of different processing
tasks to each core proved to be more problematic than in the previous cases. For
instance, the Linux scheduler gets confused by the polling-based working mode of
AF_XDP, which looks like a user-space process always requiring more resources.
Hence, the CPU allocation is partitioned among all the requesting processes (in
this case AF_XDP and memcached), reaching the best equilibrium when the core is
equally shared among the two (50% each). However, this would achieve sub-optimal
performance, because the 50% allocated to AF_XDP is only partly spent in doing
actual processing, while the rest is spent in empty busy polling iterations. To over-
come the above limitation, in this test we used multiple cores. We dedicated one
core to packet processing and then we added a number of cores to memcached that
enabled to reach stable performance, which implies a saturation the NF core. This
lead to the usage of (1+3) cores, achieving an average 96% usage of memcached
cores, indicating that we were wasting almost no resources. It is important to notice
that with this configuration the ingress TCP/IP stack is executed on the NF core
(where the software interrupt of the veth interface is triggered), while the egress
stack is executed on the application cores (where the system call sending packets is
executed). In fact, when we leveraged Receive Packet Steering (Section 3.2.3) to
move the network stack processing to the memcached cores, we simply increased
load imbalance (i.e., some fully utilized cores along others with more idle time), re-
sulting in lower overall throughput, hence confirming that the previous configuration
was the best choice in our operating conditions.

For the XDP-sk sysc experiments, even if packets are processed at the XDP level,
the code is executed in the context of the user space application, within a busy loop
triggering the driver with a system call. From the Linux scheduler perspective, the

3.6 Local traffic 53

AF_XDP* cores

0 1 2 3 0 1 2 3

XDP and XDP-sk cores

NF
(ingress/egress)

MemcachedIngress stack

Egress stack
NF (ingress/egress)

Ingress/egress stack

Memcached

XDP-sk sysc cores

0 2

Ingress NF

Ingress stack

1 2

Memcached

Egress stack

Egress NF

Fig. 3.18 Distribution of the cores between NF, Linux network stack and application.

NF is therefore seen as an application requiring all resources available on the core,
and is subject to the same considerations that apply to AF_XDP, hence we handled
it with the same (1+3) cores partitioning. For what concerns other solutions based
on in-kernel, interrupt-based processing (i.e., XDP and XDP-sk), we were able to
partition available cores in a more granular way thanks to RSS, allowing the NF
and memcached to share each one of the 4 available cores according to their needs
and the overall traffic load. The final cores distribution used in our test is shown in
Figure 3.18.

With XDP, we achieved the highest performance by enabling Application Target-
ing Routing (Section 3.2.3), that moves the XDP processing on the same core where
the recipient application is running (Figure 3.19, XDP ATR on). This technology is
not available when processing traffic in user space because it requires the execution
of a part of the driver that is bypassed by AF_XDP. Since not all network cards
support ATR (or equivalent technologies), and it might not always be effective (e.g.,
in the case of connectionless traffic), we evaluated the performance of in-kernel
processing also with ATR off (i.e., relying on the classic RSS packet steering). Fig-
ure 3.19 shows the throughput we achieved in terms of requests per second handled
by memcached. The gap between in-kernel and user space packet processing reduced
significantly with respect to the former test case (Section 3.6.1), but running our
NF at the XDP level still guaranteed a considerable lead over AF_XDP, with a
throughput advantage of 42% with ATR on, and 27% when this technology is not
available. In this test, the performance reduction when enabling AF_XDP sockets
(i.e., XDP-sk) is limited to no more than 5%.

Final remark, no NIC-based accelerations were used with XDP-sk sysc and all
AF_XDP-based technologies, as the entire traffic goes on the single core that executes
the NF. Instead, XDP and XDP-sk look more efficient when ATR is on, compared to

54 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

XDP ATR on

XDP ATR off

AF_XDP

AF_XDP sysc

AF_XDP poll

XDP-sk ATR on

XDP-sk ATR off

XDP-sk sysc

0

2 · 105

4 · 105

Re
qs
/s

Fig. 3.19 TCP/IP-based application throughput (memcached) when applying some simple
processing (mac swap) to packets.

the simpler RSS (active when ATR is off). In the XDP context, enabling RFS did
not prove to have any positive impact with respect to plain RSS. This is due to the
fact that RFS is applied at a later stage in the networking stack with respect to XDP,
after the NIC driver has completed its operations, resulting in the XDP program and
the application thread potentially being executed on different cores.

3.6.2 Traditional NF performance

To evaluate the impact of a more complex NF, we extended the load balancer
presented in Section 3.5.4 to balance sessions also toward a local memcached backend
running on the same server. Results in Figure 3.20 are very similar to the ones that
we observed in the simple processing scenario (Figure 3.19), indicating that the
cost of the NF is negligible compared to the complexity of the network stack and
the application. However, our tests show that in the AF_XDP* and XDP-sk* cases
the additional pressure put on the (single) NF core exacerbates the load imbalance
problem caused by the rigid partitioning of cores. In fact, in this test the bottleneck
imposed by the NF core caused our application cores to be leveraged only at about
88% (compared to the 96% of the mac swap test), slightly increasing the gap between
in-kernel and user space processing performance.

3.7 Discussion and suggested best practices 55

XDP ATR on

XDP ATR off

AF_XDP

AF_XDP sysc

AF_XDP poll

XDP-sk ATR on

XDP-sk ATR off

XDP-sk sysc

0

2 · 105

4 · 105

Re
qs
/s

Fig. 3.20 TCP/IP-based application throughput (memcached) when applying some complex
processing (load balancing) to packets.

Takeway 3: When processing traffic that is directed to a service running on
the local server and leveraging the TCP/IP stack, XDP is much more efficient than
AF_XDP, thanks to its smooth integration with all the TCP/IP processing code that
runs also in the kernel, hence avoiding expensive kernel-to-user (and vice versa)
context switches. Moreover, XDP facilitates distributing the processing power of
the CPU cores in a simpler and more granular way between NFs and applications,
particularly when ATR is available.

3.7 Discussion and suggested best practices

In previous sections we characterised the performance of the analyzed packet pro-
cessing technologies on homogeneous classes of traffic (either dropped, redirected
out of the machine or delivered to a local application). While for each one of the
above categories we were able to identify the most efficient processing technology
for the NFs, a one-size-fits-all winner does not exist. Hence, this section leverages
previous results to provide some guidance for real world deployments, focusing on
resource-limited edge datacenters in which each server may need to handle all the
three types of traffic (dropped, forwarded, terminated locally) at the same time, with
the highest efficiency. To do so, we derive two preliminary guidelines that could

56 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

drive the design and optimal placement of NFs, starting from the simple combination
of the takeaways presented in the previous sections, which assumed the presence
of a single class of traffic. Then, in the following sections we verify whether these
guidelines hold also in real world scenarios, with a combination of traffic of different
classes.

• Tentative guideline 1. When handling only pass-through and dropped traffic,
process it in user space with the system call-triggered driver (AF_XDP sysc),
thanks to its higher performance (which is even more evident when a huge amount
of memory is requested, due to its higher efficiency in that case) and superior
processing freedom (no eBPF limitations) (Takeway 2). In addition, offload only
the most accessed packet dropping rules in the kernel (as long as they fit in the
L2/L3 cache), in order to leverage earlier packet discarding without incurring in
the memory penalty of XDP (Takeway 1), while the rest is left to user-space.

• Tentative guideline 2. When handling also local traffic, process this class of
traffic in the kernel, to avoid the expensive crossing of the user-kernel barrier
multiple times (Takeway 3). However, in case a NF needs to operate on all types
of traffic, this may require to duplicate its logic both in user space and XDP,
which might not always be possible due to the limitations of eBPF. In this case,
the developer could evaluate whether (other) existing kernel networking facilities
(such as qdisc, netfilter, etc.) can be used to achieve the desired function,
overcoming the limitations of eBPF. Alternatively, he can move local traffic to
user space, incurring in the additional cost of re-injecting packets into the kernel
to send them to the application through the TCP/IP stack, unless he can modify
general-purpose applications to receive the TCP/IP traffic directly from user-space.

3.7.1 Mixing pass-through and dropped traffic

To evaluate the effectiveness of Tentative guideline 1 we defined a NF chain com-
posed of our firewall followed by the load balancer. We compared the performance of
the chain running (i) purely in user-space (i.e., AF_XDP), (ii) purely in kernel-space

3.7 Discussion and suggested best practices 57

(i.e., XDP), and (iii) in hybrid mode, in which the firewall logic is at the XDP level
and the load balancing logic sits in user space10.

In this first test, which does not include local traffic, we generated a total of
11K flows: 1K matched the ACL of the firewall (hence were dropped), while the
remaining 10K reached the load balancer. Figure 3.21 shows the throughput globally
handled by the chain (both dropped and redirected packets) varying the share of
traffic belonging to each class. Curiously, the performance advantage of user-level
processing with respect to XDP when all packets are redirected decreased from
33% when only the load balancer was used (Figure 3.15) to 19% in this case,
suggesting that the user space code seems to be more affected by the additional ACL
lookup than XDP. Unfortunately moving the firewall logic in the kernel (Hybrid
sysc in Figure 3.21) highly impacted the performance of the chain also in the
scenario where all traffic was redirected (20% throughput reduction with respect to
AF_XDP sysc), making even pure XDP processing more effective than the hybrid
approach. The performance advantage of both XDP and the Hybrid approach over
full user space is noticeable only when the share of dropped traffic exceeds 75%.
While in this scenario, with huge amount of dropped traffic, XDP performs slightly
better than the Hybrid solution, the latter is much more suitable to a be enabled
dynamically, hence allowing to switch from pure AF_XDP to Hybrid upon necessity.
In fact, this requires only to replace the existing XDP program with a new one (an
atomic operation without service disruption), while switching from AF_XDP to XDP
requires creating/destroying sockets and/or changing the interrupt configuration of
the NIC queues, which can hardly be done with the current technology.

Takeaway 4: When handling only pass-through and dropped traffic, process all
traffic in user space under normal conditions (i.e., when most traffic is forwarded) and
dynamically offload the most accessed packet dropping rules in the kernel (as long
as they fit in the L2/L3 cache) when the amount of dropped traffic is predominant,
for example during the mitigation of a DDoS attack.

10Our proof-of-concept implementation repeats the parsing of the packet both in kernel and user
space. A possible improvement would be leveraging XDP metadata to share information already
computed in the eBPF program with the user space [57], whose evaluation is left as a future work.

58 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

0 25 50 75 100

4

6

8

Amount of dropped traffic (%)

M
pp

s
XDP AF_XDP sysc Hybrid sysc

Fig. 3.21 Pass-through + dropped traffic: effect of kernel offloading of packet dropping logic
(Hybrid sysc) if compared to pure user space (AF_XDP sysc) and pure in-kernel (XDP)
processing.

3.7.2 Mixing pass-through and local traffic

The Tentative guideline 2 speculates that the best choice for pass-through traffic
is AF_XDP in user space, while local traffic stays in kernel with XDP. However, to
have both the above technologies running at the same time, we need some processing
logic that analyzes incoming traffic and redirects each packet to the appropriate
pipeline. In this section we assume to have both pass-through and local traffic and
we evaluate the feasibility and effectiveness of this hybrid approach, analyzing the
different options for the processing logic that separates the two classes of traffic.

First, we analyze a software-based solution running at the XDP level, which
redirects part of the traffic in user space for AF_XDP processing, while the rest
continues along the TCP/IP stack (XDP_PASS return code). Then, we will explore
an hardware-based alternative, which leverages the capabilities of the NIC to steer
different flows to different receive queues. These tests used a load balancer NF, which
redirects local traffic to the proper pod replica of the final application (running on the
server itself), while the pass-though traffic was redirected to multiple external servers.
In case of traffic splitting, the load balancing logic of each instance will operate only
on the portion of traffic handled on that path (e.g., either local or pass-through).

3.7 Discussion and suggested best practices 59

100 101 102 103 104 105 106
0

2

4

6

Sessions

M
pp

s
XDP AF_XDP sysc AF_XDP sysc + XDP disp

Fig. 3.22 Pass-through traffic only: impact of additional in-kernel packet dispatching logic
applied to AF_XDP sysc (AF_XDP sysc + XDP disp) compared to pure XDP or pure
AF_XDP sysc.

Software-based splitting

In this chapter, we assume that the traffic terminating locally can be detected by
simply checking the 5-tuple of the packet, which enables the detection of traffic
directed to local destinations with a simple lookup on a hash table. To assess the
feasibility of this solution we started by measuring the overhead of the additional
XDP dispatching logic on the traffic redirecting performance of the AF_XDP sysc
load balancer, in the optimal case in which the hash table of local sessions contains
only one element that is never hit (we generated only pass-through traffic). Results
in Figure 3.22 show that the overhead of this solution (AF_XDP sysc + XDP disp)
greatly affects overall performance, compromising the benefits of user space pro-
cessing (AF_XDP sysc) and making even a pure XDP implementation of the load
balancer more appealing in case part of the traffic reaches local applications through
the TCP/IP stack. This result does not surprise since the dispatching logic has almost
the same complexity as the load balancing program, and it is not needed in case of
pure XDP. Since the addition of the required splitting logic reverted previous results
and made XDP a better solution even in the pass-through-only scenario, which is
the preferred battlefield for AF_XDP, we avoided additional tests with local/dropped
traffic that, as confirmed by our previous tests, are already pushing further for an
XDP-based solution. Nonetheless, a pure software-based splitting mechanism may

60 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

still be useful, for example when eBPF limitations prevent the implementation of the
correct logic at the XDP level, and therefore we need to rely on slower kernel network
stack facilities (e.g. the TC layer, Netfilter). In this case the performance benefit of
AF_XDP sockets over the kernel stack for pass-through traffic may overweight the
cost of flows dispatching.

Takeaway 5: When handling also local traffic (in addition to pass-through/dropped
one), and no hardware-based packet steering mechanism is available, process all
the traffic in the kernel with XDP, given the prohibitive overhead of software-based
packet dispatching.

Hardware-based splitting

An alternative to software (XDP-based) flows dispatching is to rely on the capabilities
of the NIC to steer different flows to different receive queues, leveraging the Ethernet
Flow Director technology (Section 3.2.3). This greatly simplifies the operations
of the XDP splitter, which can now operate on the (simpler) input queue instead
of the 5-tuple. To evaluate this option we extended our setup with an additional
traffic generation machine (with the same configuration described in Section 3.3) and
connected all of them with a 40 Gbps switch. The first traffic generator leveraged
MoonGen to create pass-through traffic, while the second traffic generator sent
requests to memcached running on the DUT (local traffic). As in the former test,
we leveraged the load balancer as a sample NF and selected a pool of 4 CPU cores,
allocated in different ways depending on the test configuration. Since pure XDP
proved to be the most effective solution for local traffic (Section 3.6), we leveraged
the XDP implementation of the load balancer as a baseline, relying on RSS and
ATR to ‘naturally’ distribute all traffic (both local and pass-through flows) across
all four available cores, that were therefore shared between NF and application
(memcached) processing. As an alternative we experimented with an hybrid solution,
partitioning our cores in a first set dedicated to pass-through traffic and running the
load balancer in AF_XDP mode (with system-call-triggered driver) and another set
executing memcached and processing packets in-kernel at the XDP level. We used
Flow Director rules to instruct the NIC to steer all pass-through traffic to the first set
of queues/cores, leaving RSS/ATR to balance local flows on the second set. Since the
driver of our NIC supports a single XDP program running on the interface, we added

3.7 Discussion and suggested best practices 61

0 5 10 15 20
0

2 · 105

4 · 105

Pass-through traffic (Mpps)

M
em

ca
ch
ed

lo
ad

(re
qs
/s
)

XDP (shared CPU cores) Hybrid (dedicated CPU cores)

Fig. 3.23 Pass-through + local traffic: effect of hardware-based splitting of local and pass-
through traffic processing between kernel and user space (Hybrid) compared to pure kernel
processing (XDP).

a simple dispatching logic to the XDP load balancer, using the input queue to decide
whether to redirect traffic to user space or to proceed with in-kernel processing.

Figure 3.23 shows the maximum number of requests per second handled by
memcached (local traffic) for an increasing amount of pass-through traffic hitting
the server. The Hybrid configuration presents a step behavior, with the performance
of memcached remaining constant regardless of the amount of pass-through traffic
(due to the dedicated CPU cores), until we need to reallocate a core from the set
dedicated to local traffic to the one dedicated to pass-through traffic to accommodate
the increasing offered load. On the other hand, XDP processing proves again to be
the most flexible solution with respect to resource allocation, with processing power
gradually being re-allocated from local traffic / application to pass-through traffic,
although the pass-through traffic seems to have the precedence over local traffic
(i.e., the system tends to process all incoming pass-though traffic, at the expense
of an inferior number of memcached served requested). Despite this increased
flexibility, XDP outperforms the Hybrid configuration in some operating conditions
characterised by a low amount of pass-through traffic (particularly, when the XDP
line sits above the Hybrid line in Figure 3.23). When the pass-through traffic
exceeds 7.5 Mpps, the Hybrid solution provides consistently higher performance
to memcached with an equal amount of pass-through traffic hitting the server, and

62 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

allows to achieve a higher global throughput when all cores are dedicated to pass-
through processing.

It is worth mentioning that we faced some limitations in implementing the hybrid
solution due to the hardware at our disposal. Flow Director rules available on our
NIC only allow to perform exact match on packets (no wildcards allowed) and to
steer traffic to a single queue. Therefore, to guarantee a fair load distribution among
pass-through cores we had to generate a specific pattern of pass-through traffic. Some
modern NICs provide wildcard rules able to steer packets to an RSS context operating
on a set of queues, so that further load balancing can be applied. A second problem
was related to ATR, that is automatically disabled as soon as Flow Director rules
are manually added to the NIC. Since ATR internally relies on Flow Director rules
automatically generated by the NIC driver, this prevents clashes with user-provided
rules. A possible solution would be re-implementing the ATR logic by sampling
egress packets, for example with a TC eBPF program. Nonetheless, despite the
absence of this acceleration, the Hybrid solution was still able to outperform pure
XDP by a good margin.

Takeaway 6: When processing all kinds of traffic (i.e., pass-through, dropped
and local) resort to in-kernel processing with XDP if the fraction of pass-through load
is low. If (i) hardware dispatching mechanisms are available, (ii) a more complex and
rigid partitioning of resources (e.g., CPU cores) is acceptable and (iii) a high volume
of pass-through traffic is handled, split pass-through and local traffic between user
space and in-kernel processing to achieve best overall performance.

For the sake of precision, the above experiment assumes that the traffic splitting
operation is simple, e.g., based on IP destination addresses or the session 5-tuple.
In some cases, e.g., edge clusters running 5G mobile core components, the traffic
processing may include some heavy operations (e.g., User-Plane Function - UPF,
GTP de-tunneling) in order to derive the above parameters, raising the question
where to implement the above (expensive) processing. The analysis of the above
case is left for future work.

3.8 Related work 63

3.8 Related work

Different works in the recent literature studied the properties and characterized the
performance of in-kernel and user space packet processing with a focus on the XDP
and AF_XDP technologies.

In [58] Hohlfeld et al. analyze the performance of offloading packet processing
both to the kernel and to a SmartNIC leveraging XDP. While advantages and draw-
backs of these two approaches are thoroughly studied, the paper does not analyze
the possibilities of interaction between in-kernel and user space processing. In [37]
authors propose an architecture for eBPF based NFs called eVNF. This architec-
ture encompasses a fast path executed at the XDP level to carry out simple but
critical tasks, while a slow path, based either on the kernel network stack or on a
user space application accessible through AF_XDP sockets, handles corner cases.
Both these papers however, probably due to the early stage of development of the
AF_XDP technology, do not consider user space packet processing as a valid fast
path alternative.

In [59] authors present the maintainability, flexibility and performance consider-
ations that led to the selection of AF_XDP as the base for the future data plane of
Open vSwitch. The paper identifies the performance limitations of user space when
processing traffic directed to containers leveraging the TCP/IP stack, and provides
some preliminary considerations on the possibility to rely on in-kernel processing for
this type of traffic. Our work extends these considerations. [60] proposes a different
solution to the problem, experimenting with a user space implementation of the
TCP/IP stack to support standard applications and layer 7 NFs.

[61] makes the case for automatically decomposing eBPF/XDP based NFs in
multiple programs and between in-kernel and user space components to bypass the
limitations imposed by the eBPF verifier.

3.8.1 DPDK user space drivers

The most common solution for high-speed packet processing is currently DPDK
coupled with custom user space drivers, which enable direct access to the hardware
from user space. While the DPDK can leverage AF_XDP and standard Linux
drivers for packet I/O, user space drivers present multiple advantages with respect to

64 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers

AF_XDP, at the cost of taking complete control over the NIC, which is no longer
visible by the kernel. In fact, an all-userspace design enables higher performance
because it avoids expensive system calls and/or context switches. Furthermore,
unlike AF_XDP programs, user space drivers can access many hardware offloadings
features such as TSO and GRO, as well as packet metadata (e.g., checksum) provided
by modern NICs11.

However, we did not consider the DPDK technology in this chapter because
it is more appropriate for dedicated servers, which may not be the case of small
edge-based data centers as well as cloud-native deployments, as suggested also
by [59]. DPDK requires the use of memory hugepages, and the mmap()ing of
large contiguous memory areas, an operation that could fail. Both these constraints
complicate the coexistence with other traditional applications. Moreover, user space
drivers would prevent native traffic processing in the Linux TCP/IP stack, given the
full control of DPDK over the NIC, requiring to re-inject packets from user space
into the kernel, whose (low) performance is expected to be similar to the one showed
in Figure 3.17. On the other hand, AF_XDP can easily enable part of the traffic to
be natively processed by the Linux kernel TCP/IP stack, with traffic steering done
either in software (with an XDP program) or with rules installed on the NIC.

A possible way to enable a similar behavior with DPDK would be leveraging
SR-IOV with user space drivers bound to one or more Virtual Functions (VFs), the
kernel bound to the Physical one (PF), plus the proper additional logic at the NIC
level to steer packets among the two as in Section 3.7.2. This logic however might
not be supported by the NIC, as in the case of our Intel XL710, where each VF must
have a different MAC address used for packet steering, that would make VFs and the
PF behave like completely different interfaces.

Given the above considerations, it is worth noting that, in a context in which
no traffic has to be processed locally and packets are either dropped or forwarded,
DPDK’s user space drivers can represent a more efficient choice with respect to the
results presented in Section 3.4 and Section 3.5, which builds on the assumption
of having shared server. We leave a holistic evaluation, encompassing all available
technologies, as a future work.

11An attempt to support the above features in AF_XDP was proposed in [62].

3.9 Conclusions 65

3.9 Conclusions

This chapter presented the performance characterization of in-kernel and user space
packet processing based only on the recent kernel-provided XDP/AF_XDP infras-
tructure, without the need to maintain and integrate custom kernel modules. Our
analysis focused on the scenario of telco edge data centers, where the processed
traffic includes both a pass-through portion, handled by a chain of NFs and redirected
towards a remote destination, as well as a local portion, directed to applications
running on the same set of servers and leveraging the local TCP/IP stack.

We carried out a set of experiments studying these classes of traffic, with the
aim of optimizing the usage of (scarce) edge resources by running both data plane-
oriented workloads and traditional applications on the same (shared) servers. Our
results underline which technology is best suited for each possible mix of traffic,
deriving six guidelines that can help telecom operators to select the best technology
based on the actual operating conditions, and to achieve optimal performance in a
mixed workload scenario such as the one present in the data centers at the edge of
the network.

Part III

Enabling secure and efficient
execution of serverless workloads on

multi-tenant servers

Chapter 4

SURE: Secure Unikernels Make
Serverless Computing Rapid and
Efficient

4.1 Introduction

Online interactive services are evolving to composable, loosely-coupled microser-
vices [63, 64], where each microservice is more quickly developed, tested, and
deployed independently. The request from an external client triggers a series of
calls between dependent microservices, described as a call graph [63]. Serverless
computing, often referred to as Function-as-a-Service (FaaS [65]), is a natural fit for
loosely-coupled microservice because of the fine-grained billing (“pay-as-you-go”)
and the unlimited elasticity provided by a serverless infrastructure, thus simplifying
the management of the application [66, 67, 68, 69, 70].

Serverless support for loosely-coupled microservices. With serverless computing,
loosely-coupled microservices can be organized into a “function chain”, following
their call graph dependencies [3, 63, 71, 66]. As depicted in Fig. 4.1, serverless
computing has three important infrastructural building blocks to support loosely-
coupled microservices: (1) Inter-function networking for communication between
decoupled functions; (2) A service mesh (e.g., Istio [1]) transparently facilitates the
orchestration (observability, traffic management, and access control) of serverless
functions in distributed environments by attaching an individual sidecar to the

68 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

serverless function [2]; (3) A virtualized function runtime (sandbox) at the individual
microservice (function) level is needed for fine-grained isolation in public clouds.

State of the Landscape. Despite serverless computing bringing many positive ca-
pabilities, current platforms have high latency (millisecond-scale), and overheads.
Kernel-based inter-function networking and a heavyweight service mesh using a
loosely-coupled userspace sidecar are significant contributors [3, 72, 2]. While exist-
ing works have sought to improve on these aspects of serverless computing [3, 73, 66],
they all rely on containers for their agility. However, containers are vulnerable to
an ever-increasing number of exploits due to the expanding attack surface of kernel
APIs [74]. Production serverless platforms often use more secure sandboxes by
reintroducing virtualization based on userspace kernels [75] or virtual machines
(VMs) [76, 77], but this can result in lower performance and slow function startup.

Recent efforts [78, 79] towards secure, lightweight virtualized function runtimes
for serverless computing seek to reduce a VM’s footprint by stripping unnecessary
libraries and drivers from the OS. They create a single address space library OS
(LibOS [80])-based function runtime - a unikernel [81, 82, 83, 84]. Unikernels are
at least as lightweight as containers, boot faster than traditional VMs, and also have
the strong isolation of traditional full-size VMs [85]. Further, the entire software
stack of a unikernel can be specialized, typically resulting in a much smaller Trusted
Computing Base (TCB) and potentially fewer vulnerabilities [86]. These desirable
characteristics make unikernels well suited for secure, lightweight deployment of
serverless functions, compared to widely used containers or heavyweight virtual-
ization [78]. Additionally, compatibility with existing applications is managed by
introduction of a compatibility layer in the unikernel [87]. Popular container orches-
tration platforms, such as Kubernetes [88], have also expanded support to interface
with unikernels [89]. These efforts make unikernels a production-ready solution,
such as with NanoVMs [90].

But, considering the “killer microseconds” [91] that serverless computing needs
to address, a naive unikernel-based solution is not yet ready to support loosely
coupled microservices. Nor can we stand on the shoulders of existing work due to
the deficiencies in their designs themselves, or their incompatibility with unikernels:
(1) Unikernel-based serverless environments [78] face the same problem of slow
inter-function networking as with containerized environments. While shared memory
processing helps with optimizing containerized environments [3, 73], these designs

4.1 Introduction 69

only considered a single-node data plane optimization and don’t fully address the
isolation across functions within the same chain. Cross-node communication still
uses kernel-based networking. (2) The performance and resource consumption
drawbacks of using an individual sidecar for service mesh functionality persist. Even
eBPF-based acceleration [3] faces limitations in achieving full (L7) payload visibility
and corresponding functionality in unikernel-based environments.

This chapter describes a unikernel-based serverless computing framework that
strives to operate in the best possible region of the design space to support loosely-
coupled microservices, while maintaining isolation. We call our work SURE, for
Secure Unikernels that are Rapid and Efficient. SURE deploys the serverless func-
tion as a VM-based unikernel (called a SURE VM), which offers substantial agility
and inherently adapts the VM-based isolation at the granularity of independent func-
tions. SURE facilitates low-latency and high-performance inter-function networking
through zero-copy communication rather than kernel-based networking. First, lever-
aging the reliable nature of communication within a single host, it utilizes shared
memory processing for zero-copy intra-node direct message exchange, ditching the
TCP/IP stack as demonstrated in [3] and [73]. Going beyond those designs, we
introduce a zero-copy protocol stack (called Z-stack) to facilitate communication
across nodes. Z-stack has a full-fledged FreeBSD TCP/IP stack implementation run-
ning in the userspace with DPDK to mitigate kernel-related overhead. Importantly,
Z-stack seamlessly interfaces with the local shared memory data plane, thereby
augmenting zero-copy communication to span multiple nodes. To amortize the costs
of busy-polling-based packet processing we have a per-node SURE gateway that
consolidates cross-node communication (i.e., TCP/IP protocol processing) for all
co-located functions in a node.

SURE fully takes advantage of the LibOS-based design of unikernels by de-
ploying the sidecar as a library linked into the function code within the unikernel.
The unikernel’s single-address-space design eliminates boundary crossings between
kernel and userspace. It simplifies data exchange between the library-based sidecar
and user code by using internal function calls. This overcomes the shortcomings
of an individual userspace sidecar. The execution of the library-based sidecar is
event-driven, just like an eBPF-based sidecar. But unlike eBPF, this design allows us
to implement complex L7 sidecar functionality with full payload visibility to enable
a full-functional service mesh.

70 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

SURE pays particular attention to the security vulnerabilities from the use of
shared memory processing and running the sidecar as a library residing in the same
address space as the application code (details in §4.3.3). Going beyond existing
solutions (e.g., [3]) that use group-based security domains to enable coarse-grained
isolation at the level of shared memory pools, SURE offers more fine-grained
isolation at the level of memory pages. This allows us to manage the ownership of
shared memory pages for each individual function, which can prevent a misbehaving
function from inadvertently manipulating shared memory pages owned by other
functions, even if they are in the same security domain. Additionally, we isolate
SURE’s LibOS modules which are part of the serverless infrastructure and contain
sensitive data, such as sidecar statistics, from user code that is typically untrusted in
a cloud environment.

To achieve these design goals without introducing expensive overheads such as
system calls, SURE chooses to use Intel’s Memory Protection Keys (MPK) [92] for
its lightweight memory isolation. SURE protects the memory pages storing data of
trusted components (i.e., the shared memory data plane and the library-based sidecar)
with a privileged MPK key which prevents access from untrusted user code. We
provide a “call gate” abstraction for the user code to invoke the secure API provided
by our trusted LibOS modules. The call gate uses MPK to grant access to protected
pages, guaranteeing that only trusted code can operate on them. Moreover, user code
is selectively enabled to access shared memory pages containing messages owned
by the current VM, allowing overhead-free direct access. Despite that, a single-
address-space unikernel where all code runs at supervisor privilege level means the
untrusted user code is capable of causing potential MPK privilege escalation and
gaining unallowed access to protected pages. The root cause is access to core kernel
components such as the scheduler, the paging API, and the interrupt service routine
infrastructure, which on a traditional OS would be protected by the user/supervisor
privilege separation. These components involve sensitive data structures and allowing
arbitrary access to their internals can compromise MPK-based isolation. SURE
moves these components in its TCB and protects them to prevent such exploits (see
§4.5.2).

Summary of Contributions.

• SURE uses event-driven, shared memory processing as in [3], while retaining
the philosophy of serverless computing. But SURE makes key extensions

4.2 Background and motivation 71

to shared memory processing, including connection management and back-
pressure for lossless communication between functions.

• SURE enhances existing designs [3, 73] by extending zero-copy communica-
tion to go across nodes and integrates zero-copy TCP/IP processing with the
local shared memory data plane for intra-node communication.

• Our use of a library-based sidecar fully exploits the single-address-space
benefits of a unikernel, resulting in more than 100× CPU cycle savings and
16× performance improvement compared to the individual userspace sidecar.

• SURE’s MPK-based call gates allow running trusted components within the
unikernel, benefiting from low overhead interaction with user code while
retaining strong isolation. By managing the ownership of each shared memory
page, SURE exploits the high performance of shared memory processing
while avoiding the vulnerabilities introduced by this processing model.

4.2 Background and motivation

We start by examining serverless architectures, understanding the challenges that
remain necessitating SURE. We also discuss the work related to SURE.

4.2.1 Isolating Serverless Functions

Serverless computing improves overall efficiency and reduces operational costs by
enabling different users to share the same cloud infrastructure [70]. This means that
different users’ functions and network traffic will coexist in the same environment,
hence, without proper isolation, there is a risk of unwanted access to sensitive data
and resource contention. The use of conventional hardware-level virtualization soft-
ware (e.g., Xen [93], QEMU [94]) provides strong isolation between co-located VMs
as well as flexible resource management by resizing or migrating VMs. However,
bare-metal virtualization is heavy since each VM runs an entire operating system
and applications. Containers, on the other hand, implement OS-level virtualization,
which utilizes the capabilities of the host kernel (such as networking stack) and thus
does not include the OS kernel of its own. This makes containers more lightweight
compared to VMs. However, they are less secure due to their sharing of the host

72 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

OS [85, 95, 96, 97, 74]. This has incentivized commercial serverless providers to
revert to virtualization similar to VMs to enhance their platform’s security [77, 75].

A Primer on Unikernels. Using the concept of a LibOS [80], we can rebuild a tra-
ditional OS into libraries and bind the application with only the required OS libraries,
creating a specialized VM image as a single-address-space virtual machine [81]
(also called a unikernel). This customization makes unikernels lightweight, with fast
startup, while offering stronger isolation than containers [82]. This design also elimi-
nates the kernel-userspace boundary crossing within the unikernel, further reducing
the runtime overhead compared to a conventional VM [82].

Design Implication#1: Serverless computing requires strong isolation to allow
safely multiplexing workloads of multiple tenants on few physical nodes. How-
ever, to achieve high density, this isolation cannot come at the cost of agility
and leanness. Unikernels strike a good balance between isolation and agility,
representing a promising runtime environment for serverless functions.

4.2.2 Inter-function networking and service mesh in serverless
computing

Fig. 4.1 shows an abstract view of a typical serverless data plane. Essential building
blocks include a virtual switch (vSwitch) for L2 forwarding, the network protocol
stack (e.g., TCP/IP) for handling application layer messages, and virtual device
interfaces (vDevices) to interface the virtualized functions and the vSwitch. A
separately running sidecar is attached to each serverless function, connected via the
local loopback interface [2]. Depending on the virtualization option chosen (e.g.,
containers, VMs), the exact building blocks in Fig. 4.1 differ. Common vDevices
include veth pairs (for containerized environments) and virtio/vhost devices (for
VM-based environments) [98].

Cost of kernel-based inter-function networking.

Most of the data plane overheads for function chains: e.g., data copies, context
switches, interrupts, protocol processing and serialization/deserialization, come from
kernel-based networking [3, 99]. There is duplicate processing at different layers,
even if functions are co-located on the same node [3].

4.2 Background and motivation 73

Virtualized runtime
fn

TCP/IP

vDevice

sidecar
UNIX
socket

TCP
socket

UNIX
socket

(b) Container-based sidecar
(with UDS acceleration)

Virtualized runtime

TCP/IP

vDevice

TCP
socket

(c) eBPF-based sidecar

fneBPF
program

Virtualized runtime
fn

TCP/IP

vDevice

sidecar
TCP

socket

(a) Container-based sidecar
(TCP/IP socket)

TCP
socket

vSwitch
NIC

Fig. 4.1 An abstract diagram of serverless support for loosely-coupled microservices. We
list existing sidecar designs: (a) container-based sidecar using TCP/IP socket [1, 2], (b)
container-based sidecar using UDS acceleration [2], (c) eBPF-based sidecar [3, 4].

Existing solution: shared memory processing. [3, 73] design a high-performance
data plane for serverless function chaining using shared memory, enabling zero-
copy communication between functions without incurring any kernel networking
overheads.

Zero-copy networking is limited to intra-node communication. The zero-copy
shared memory communication in [3, 73], is limited to a single node. For cross-node
communication or when functions need to interact with external clients/servers, [3,
73] still depend on kernel-based networking. Both [71] and [100] suggest maximiz-
ing locality in workload placement to reduce cross-node communication which is
not always feasible. Production workloads may contain complex and large-scale
microservice call graphs. E.g., Alibaba reports a trace analysis showing that more
than 3000 microservices in their workload have interdependencies [63]. Functions
can also be resource-intensive (as in data analytic jobs [71]) and need to be spread
across multiple nodes.

Design Implication#2: Zero-copy networking should be extended to inter-node
communication. It is important to reduce kernel-related overheads to achieve high
performance for cross-node communication.

Shared memory processing is considered not safe. Shared memory processing
can become a potential conduit for data leakage and corruption [101, 102, 103]. [73]

74 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

assumes functions from different users are never co-located, thereby, functions on the
same node are from the same user and can trust each other. [3] considers group-based
separation, assuming the same user’s functions trust each other. Different users have
separate memory pools, even in the same node. However, even if functions operating
on the same shared memory pool trust each other, an attacker gaining control of
one of the functions (by exploiting a vulnerability) might still leverage the shared
memory data plane to access and manipulate data belonging to other functions.

Design Implication#3: A naïve shared memory implementation that grants access
to the whole shared memory pool can compromise functions isolation. Carefully
granting access privileges at the individual message buffer level is needed to
provide the same isolation level as kernel-based networking. However, this
operation must be cheap enough to retain the performance advantages of shared
memory processing.

Cost of individual userspace sidecars.

Service meshes contribute to the success of microservices [3, 100, 104, 72], the
most popular function deployment paradigm in serverless computing. A service
mesh acts as a configurable infrastructure layer that facilitates interaction between
different functions. In the service mesh, each function is accompanied by a sidecar
proxy that deals with aspects related to monitoring, routing, load balancing, and
access control [105, 106, 107, 108]. By leveraging the capabilities of the sidecar
proxy, a service mesh can effectively manage user functions without being tightly
coupled to them. Existing service mesh designs deploy a sidecar as an individual
component (e.g., container), independent of the user function. Communication
between the individual sidecar and the user function needs to traverse the TCP/IP
stack [2] (Fig. 4.1 (a)), incurring unnecessary networking overheads in the data
plane [2, 3, 72]. Acceleration includes using Unix domain sockets [109] to redirect
the payload between the user function sockets and the individual sidecar (Fig. 4.1
(b)), bypassing protocol processing. But, running an individual sidecar still incurs
data copy and serialization/deserialization overheads.

eBPF streamlines the Service Mesh. eBPF-based acceleration [4] has been used
in containerized environments to provide the service mesh functionality [3, 110]
replacing individual sidecars (Fig. 4.1 (c)). eBPF-based sidecars are developed

4.2 Background and motivation 75

as run-to-completion programs attached to in-kernel eBPF hooks (e.g., XDP [20],
TC [111], and SOCK_MSG [3]). Executed in the kernel, the eBPF-based sidecar
avoids the frequent userspace-kernel boundary crossing and duplicate overhead of
inter-container communication with the individual userspace sidecar. The execution
of the eBPF-based sidecar is triggered upon events, which makes it particularly
suitable for event-driven serverless computing [3].

Limitations of eBPF-based service mesh. Despite its flexibility, eBPF does not allow
completely custom processing, due to the need to verify programs injected into the
kernel to prevent compromising its functionality. The size of programs is limited and
operations such as unbounded loops or dynamic memory allocation are forbidden.
This can make tasks such as parsing arbitrary (L7) messages very complex, if not
impossible [112]. Moreover, the use of eBPF in a unikernelized environment is
not a straightforward operation. Hook points providing direct access to messages
exchanged on sockets (e.g., SOCK_MSG) are not available since sockets reside
inside the guest OS, while intercepting traffic at the packet level can be challenging
due to the need to handle aspects such as packet reordering or retransmission.

Design Implication#4: An ideal sidecar design should combine the message
processing flexibility of a user space sidecar with the low overhead of an eBPF-
based one. These properties cannot come at the expense of the isolation of the
sidecar from user code, since serverless providers rely on the integrity of this
component for service operation.

4.2.3 Related work

We have discussed prior work [3, 73] for their limitations in secure shared memory
processing and high-performance inter-node communication. The eBPF-based
sidecar in [3] is also not viable for an unikernel-based serverless environment. Both
[113] and [78] use unikernels as the runtime for serverless functions. But, they lack
support for zero-copy communication and a lightweight service mesh, making them
less suitable for supporting decoupled microservices. No intra-unikernel isolation in
[113] and [78] also is a concern.

Unikernel/LibOS Virtualization: Jonas et al. [69] observed a growing demand
for fine-grained isolation in serverless computing and identified unikernels as a
potential solution to minimize the attack surface. Several past works have optimized

76 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

different aspects of unikernels, including system development kits [84, 82, 80, 114],
multi-process support [115, 116, 117], fast startup [118, 85, 119], TCP proxies
for connection acceleration [120]. SURE can take advantage of these unikernels’
startup optimizations [118, 85, 119] to reduce the cold-start penalty of serverless
computing. CubicleOS [121] and FlexOS [122] offer intra-unikernel isolation using
MPK. However, they are not focused on data plane optimization and lack service
mesh support, crucial for serverless computing.

High-performance data plane: Many high-performance data plane designs have
been proposed [9, 123, 124, 125, 126, 3, 118, 127, 128], focusing on performance in
a disaggregated environment. Some are designed for NFV, which is less suitable for
supporting serverless computing. They lack necessary isolation or memory protection
on the data plane [3, 126], or do not support lightweight manageability [124, 118,
127, 128], making them not ideal for serverless computing.

MPK-based isolation: Multiple proposals study the application and optimization
of Intel’s MPK [117, 129, 130, 131, 132, 133]. Jenny [132] filters MPK-related
syscalls to prevent unauthorized changes to the MPK key. ERIM [129] enforces
binary inspection and rewriting to prevent misuse of MPK. libmpk [133] overcomes
the limit of 16 MPK keys by carefully recycling and redistributing keys. These works
(ERIM [129] and libmpk [133]) are complementary to SURE.

4.3 Overview of SURE

4.3.1 System architecture of SURE

The goal of SURE is to create an appropriately isolated serverless environment
while providing high-performance inter-function networking and lightweight service
mesh for loosely-coupled microservices. Fig. 4.2 shows the overall architecture of
SURE, including the following core building blocks: (1) Unikernel-based function
runtime. SURE employs a unikernel-based function runtime (the SURE VM
in Fig. 4.2) that strikes an ideal balance between providing isolation and being
lightweight. The hypervisor on each worker node is in charge of controlling the
life cycle of SURE VMs: creating and destroying VMs, allocating addresses, and
initializing shared memory. (2) Intra-node shared memory data plane. When
functions are co-located on the same node, we leverage shared memory processing for

4.3 Overview of SURE 77

Secure domain

SURE Gateway

Hypervisor

Z-stack

NIC

DPDK PMD

SURE VM SURE VM

DMA

Worker
node

User
code

MPK-based Call Gate

TCB

SURE runtime
sched.

Sidecar NETIO

booter

TCB

data
region

signal
region

shared memory pool

ISR_ENTRY

Secure domain

SURE Gateway

Hypervisor

Z-stack

NIC

DPDK PMD

SURE VM SURE VM

DMA

Worker
node

TCB

data
region

signal
region

shared memory pool

Signal handler

User
data

protected memory
Page Table

PTE_1

…
PTE_2

page_1
page_2

…

Pages

sidecar statistics thread ctx

Fig. 4.2 The overall architecture of SURE. Note that we only show a single security domain
here.

zero-copy intra-node communication (§4.4.1). (3) A zero-copy protocol stack for
the inter-node data plane. For cross-node traffic, we develop a high-performance,
zero-copy user-space TCP/IP stack, Z-stack (§4.4.2) — a zero-copy enhancement to
the existing DPDK F-stack [18]. Z-stack seamlessly interfaces with SURE’s zero-
copy intra-node data plane. (4) Consolidated protocol processing. To amortize the
costs of busy-polling-based packet processing, we consolidate TCP/IP processing in
a single per-node SURE gateway (§4.4.2). (5) Lightweight library-based sidecar.
As shown in Fig. 4.2, SURE moves each sidecar to be a library within the SURE
VM (§4.4.3). The message exchanges between the sidecar and the functions are
simple internal function calls, entirely eliminating a number of data plane overheads
of the individual sidecar deployment model.

4.3.2 SURE’s trust model

SURE assumes a one-way trust model typically considered in a public serverless
cloud: User functions trust the serverless infrastructure (i.e., SURE VM) provided
by SURE. However, SURE does not trust tenants, since applications may contain
security vulnerabilities, e.g., buggy code. We assume that functions from the same
tenant (i.e., same serverless user) trust each other. But, functions running in SURE

78 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

are exposed to threats from other, potentially adversarial, tenants in the same cloud.
As shown in Fig. 4.2, SURE treats the hypervisor and associated toolchains (e.g.,
emulation of hardware devices and peripherals that are required by VMs) as part of
the TCB. We further establish another layer of trust within the SURE VM, which is
responsible for enforcing intra-unikernel isolation between the untrusted user code
and the unikernel TCB modules (scheduler, sidecar, network I/O lib, etc).

4.3.3 SURE’s threat model

Based on SURE’s trust model and system architecture, we identify the following
threat sources in SURE: (1) Vulnerabilities from shared memory processing.
Without rigorously enforced access controls, a malicious function might exploit
shared memory to gain unauthorized access to sensitive data or perform memory-
based attacks, such as Flush+Reload attack [101], buffer overflows [134] or injection
attacks [135]. This risk is particularly pronounced in a public cloud environment,
shared by functions from different users. In addition, buggy (even if not malicious)
code in user functions may accidentally and improperly manipulate shared data. (2)
Intra-unikernel vulnerabilities. SURE’s function runtime (SURE VM), including
the library-based sidecar, the code interacting with the shared memory data plane, and
other components needed to guarantee security (see Fig. 4.2), are part of the serverless
infrastructure and require additional isolation from untrusted user functions. This
cannot be guaranteed by the single address space design of a unikernel. A typical
threat involves tampering with application-level observability: e.g., buggy function
code could inject false metrics into the sidecar, disrupting the service mesh control
plane that relies on the integrity of metrics to orchestrate functions.

4.3.4 Isolation in SURE

By operating each function within an unikernel-based SURE VM, SURE leverages
the sandboxed environment provided by VMs and the inherent hardware-level virtu-
alization to ensure stronger isolation than containers. SURE additionally introduces
the following features to enable inter-function access control, protect shared memory
processing, and enable intra-unikernel isolation to separate user code with LibOS
modules in the unikernel:

4.3 Overview of SURE 79

Group-based security domains with isolated memory pools. We require a “se-
curity domain” to be specified when deploying a function on SURE. We assign
mutually trusted SURE VMs (typically from the same user) to the same security
domain. Each security domain possesses a private memory pool, established as
a POSIX shared memory backend in the host file system, corresponding to a file.
SURE only allows shared memory processing when functions are within the same
domain.

Access control with sidecar and SURE gateway. Ownership transfer of a shared
memory buffer occurs through a descriptor exchange within the security domain. We
verify the eligibility of the receiver of the descriptor to prevent unauthorized shared
memory access. SURE takes advantage of the library-based sidecar to apply traffic
filtering (with a whitelist of allowed peers) on the RX and TX paths of the SURE
VM (Fig. 4.7). The sidecar discards the descriptor if the whitelist does not match.
Further, we use the SURE gateway to perform a copy between memory pools (on the
same node) in different security domains (Fig. 4.3). We also use the SURE gateway
to enforce cross-node access control by having traffic filtering as part of Z-stack’s
protocol processing.

Memory isolation and MPK-based call gates. While bringing performance bene-
fits, running trusted components such as the sidecar within the same address space
as the untrusted user code can compromise their integrity, since buggy or mali-
cious code can easily access and corrupt their internal data structures. The same
considerations apply to the shared memory data plane, where the code of a single
function has access to the buffers of all services operating on the same memory
pool, resulting in reduced isolation. This requires an additional layer of memory
isolation to prevent unwanted memory access in SURE. Rather than adhering to the
conventional approach of kernel-userspace separation and relying on heavyweight
system calls (e.g., sendmsg(), recvmsg()) to guarantee the integrity of trusted
components, SURE opts for a more streamlined and rapid solution by using Intel’s
MPK [92] to mitigate the risk of unwanted memory accesses. This effectively retains
the data plane performance enhancements of SURE, while enabling isolation at the
granularity of memory pages. We protect the memory pages storing data of trusted
components (including the shared memory data plane and the library-based sidecar)
with an MPK key which prevents access from untrusted user code. SURE enforces
the policy that access to this protected memory initiated by the user code can only
be performed through secure APIs provided by SURE. Functions of these APIs are

80 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

wrapped into “call gates” which elevate the privilege through MPK to allow access
to protected pages and are the only controlled locations where MPK manipulation is
allowed. Additionally, user code can selectively be granted direct access to message
buffers in the shared memory to remove the overhead of accessing messages. To
build a secure isolation mechanism upon MPK, SURE also needs to secure some
core components of the unikernel, such as the scheduler and the paging API, whose
operations also manipulate MPK’s foundations (see Section 4.5.2)

Implementation: We base the development of SURE on Unikraft [84], an automated
system for building unikernels. This allows us to reuse key OS building blocks
from Unikraft, such as the scheduler, memory allocator, and file systems. SURE
makes several key enhancements, including a redesigned intra-node and inter-node
data plane, the library-based sidecar, and security domain extensions. We use
QEMU/KVM as the hypervisor, however, SURE can also work with others, such as
Firecracker [77].

4.4 Data plane design in SURE

4.4.1 Intra-node shared memory processing

SURE is the first to comprehensively utilize shared memory for unikernels in server-
less computing. SURE uses efficient, event-driven shared memory processing to
match the event-driven execution of serverless functions. SURE supports reliable
(i.e., no loss, in-order) data transfer for shared memory processing without depend-
ing on heavyweight protocol processing such as TCP. Fig. 4.3 shows the intra-node
shared memory data plane of SURE. VMs in the same security domain on a node
share a dedicated memory pool. Each memory pool is composed of pre-allocated
buffers (in the data region) to store actual message payloads,1 and a signal region for
the purpose of descriptor exchanges. By owning a descriptor, functions can access
the payload in shared memory directly, thus avoiding data copying.

1SURE doesn’t impose any constraint on the format of exchanged data, allowing the exchange of
both serialized content (e.g., an HTTP payload) for decoupled applications, or raw binary data for
binary-compatible applications, avoiding the serialization/de-serialization overheads. Applications in
SURE can also allocate a large enough buffer to store the complete payload, avoiding assembly and
disassembly during shared memory data transfer.

4.4 Data plane design in SURE 81

SURE
GW

Data
copy

data region Buffer

signal region

VM VM

Buffer

signal reg.

VM

Worker node

signal (Inter-VM IRQ)

ISR_ENTRY

Secure
domain 1

waiting_recv
waiting_send

Connection ctx

desc. desc.

shm access (zero-copy)

Secure
domain 2

descriptor
ring

signal
ring

signaling
flow

descriptor
flow

zero-copy
shm access

cross-secure-
domain flow

Signal
handler

ISR_ENTRY
Signal

handler

ISR_ENTRY
Signal

handler

Fig. 4.3 Intra-node data plane in SURE. Communication across security domains within the
same node uses SURE gateway (GW) to copy data between memory pools. ISR: Interrupt
Service Routine.

Reliable, in-order message exchange through connection management

SURE provides the connection abstraction as a bi-directional communication channel
between two endpoints, which guarantees reliable, in-order delivery of messages. As
Fig. 4.3 shows, each connection is represented by a “connection context” in the signal
region, with a single-producer, single-consumer descriptor ring used by the receiver
to receive the descriptor. This eliminates potential race conditions in descriptor
exchanges between a sender and receiver. Entries in the descriptor ring are handled
in FIFO (first-in, first-out) order. This guarantees the message produced by the sender
is always consumed by the receiver in order when no loss happens, ensured by the
back-pressure mechanism. Back-pressure in SURE blocks the sender if receiver’s
descriptor ring is full, indicating the recipient is not consuming descriptors at a
sufficient rate.

Event-driven signaling mechanism

Different operations in SURE require a peer to block until a specific event happens
(e.g., a message is available). This allows to avoid expensive busy-polling processing,
which can result in a waste of resources not acceptable in the serverless context.

82 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

Currently, a thread within a SURE VM can block because the connection it is
receiving from doesn’t contain any message, the ring of the connection it is sending
to is full (back-pressure) or it is waiting for an incoming connection to be accepted.
To support event-driven signaling, each SURE VM has a signal ring where peer
VMs can push the identifier of the thread that needs to be woken up. The signal
ring is a multiple-producer, single-consumer ring. Before blocking, a thread stores
its identifier in a proper data structure (e.g., in the connection context), indicating
its desire to be woken up. When a peer VM wants to wake up the thread, it pushes
its identifier on the signal ring of the target VM and optionally sends an inter-VM
interrupt, if the ring was previously empty. In the target VM, a signal handler
is in charge of handling signals. An interrupt service routine is triggered upon
reception of inter-VM interrupts and wakes a thread in charge of draining the signal
ring and waking up the corresponding threads. The use of a dedicated signal
polling thread allows to reduce the number of inter-VM interrupts in scenarios where
many signals are exchanged. The following sections describe how the signaling
mechanism operates when receiving a message and in implementing the back-
pressure mechanism.

Blocking receive

Fig. 4.4 depicts the SURE’s event-driven signaling mechanism and how it facilitates
the descriptor exchange without active polling: 1 The receiver thread calls the
recv() to consume the descriptor from the descriptor ring, but if no descriptor is
available, 2 the receiver thread registers its pointer in the waiting_recv field of
the connection (via waiting()), and blocks. 3 After the sender thread produces
a descriptor on the descriptor ring via send(), 4 it calls wake_up() to 5 inspect
the waiting_recv in connection context to check if the receiver thread is currently
blocked. 6 If the receiver thread is blocked, the sender writes the receiver thread
pointer to the signal ring of the receiver VM. Optionally, if the signal ring was
previously empty, 7 the sender issues an inter-VM interrupt to the receiver’s VM.
8 The Interrupt Service Routine wakes the signal_poll thread to 9 consume all
signals (i.e., thread pointers) currently enqueued in the signal ring. 10 The signal
handler wakes up the corresponding receiver thread 11 to consume the available
descriptor on the descriptor ring.

4.4 Data plane design in SURE 83

Receiver
VM

Signal Region

waiting_recv_ptr
waiting_send_ptr

Sender VM

waiting_recv_ptr
waiting_send_ptr

send() recv()

wake_up()

signal_poll

IRQ service routine

waiting()

8

Inter-VM IRQ

9

10

thread

NetIO Libs

descriptor
ring

waiting_recv
waiting_send

thread

NetIO Libs2Call

Call

Connection contexts

Write
desc.

signal
ring

Thread contexts Thread contexts

Read
desc.

signaling
flow

descriptor
flow

1
4

3

5

11

Signal handler
6

Signal
handler

7

Fig. 4.4 Descriptor exchange and event-driven signaling mechanism between a pair of SURE
VMs (sender and receiver). The flow depicts the blocking receive in SURE.

Back-pressure

Fig. 4.5 (a) shows the blocking phase of the back-pressure mechanism in SURE:
1 The sender thread invokes the send() API to send the message to the target
receiver. However, because the receiver thread is not consuming the descriptors in
the descriptor ring in a timely manner, the descriptor ring can become full. The
sender thread will not be able to write the descriptor into the descriptor ring. 2

The sender thread then invokes the waiting() API, registers its pointer in the
waiting_send field of the connection, and blocks. The back-pressure mechanism
ensures the descriptor ring never overflows, thus avoiding data loss. Fig. 4.5 (b)
shows the processing flow of how the receiver wakes up the sender to suspend
the back-pressure mechanism: 1 After the receiver thread consumes a descriptor
from the descriptor ring, it checks the waiting_send field for a registered pointer
indicating that the sender thread is blocked. 2 The receiver thread retrieves the
pointer, and 3 writes it to the sender VM’s signal ring. Optionally, if the signal ring
was previously empty, 4 the receiver thread sends an inter-VM IRQ to the sender
VM. 5 The sender VM’s Interrupt Service Routine wakes the signal_poll thread
which in trun 6 unblocks the sender thread. 7 The sender thread returns to the
send() and 8 writes the descriptor to the descriptor ring of the receiver thread.

84 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

Receiver
VM

Signal handler

Signal Region

waiting_recv_ptr
waiting_send_ptr

Sender VM

waiting_recv_ptr
waiting_send_ptr

send()

waiting()

thread

NetIO Libs waiting_recv
waiting_send

thread

NetIO Libs

Call

Connection contexts

Write
desc.

Thread contexts Thread contexts

1

2

Signal handler

(a) Backpressure: block the sender

(b) Receiver wakes up the sender

Receiver
is busy

Ring is
full!

Receiver
VM

Signal handler

Signal Region

waiting_recv_ptr
waiting_send_ptr

Sender VM

waiting_recv_ptr
waiting_send_ptr

send() recv()

waiting() wake_up()

Inter-VM IRQ

thread

NetIO Libs waiting_recv
waiting_send

thread

NetIO Libs2

return Call

Connection contexts

Write
desc.

Thread contexts Thread contexts

7

8

Signal handler

1

signal_poll

ISR 4

3

5

6

descriptor
ring

signal
ring

signaling
flow

descriptor
flow

Fig. 4.5 Processing flow of the back-pressure mechanism in SURE; (a) the sender block on a
full ring, (b) the receiver wakes up the sender.

4.4.2 Inter-node communication in SURE

Consolidated protocol processing. The single per-node SURE gateway provides
consolidated protocol processing that is performed once for all incoming/outgoing
traffic, with the processed payload residing in the shared memory pool. The SURE
gateway is integrated with our Z-stack that offers zero-copy TCP/IP protocol pro-
cessing. Combined with the zero-copy intra-node data plane, SURE achieves true
zero-copy communication in and out of the node, unlike previous efforts such as
SPRIGHT [3].

Z-stack: Zero-copy userspace TCP/IP stack. Like previous efforts, we also seek
to bypass the kernel in Z-stack. But, going a further step, we work with DPDK’s
Poll Mode Driver (PMD [136]) to DMA the packet between the NIC and shared

4.4 Data plane design in SURE 85

SURE Gateway

Z-stack Lib FreeBSD TCP/IP

DPDK
PMD

NIC
R

T

z_recv()

L7
payload

desc.

EthernetTCP/IP

DMA to/from
shared memory

pool

desc.
z_send()

desc.

desc.

SURE
VM

TCP/IP/ETH
headers

L7
headers

L7
payload

L7
headers

mmap
(no copy)

SURE
VM

…

data pointer data pointer

move
pointer

Fig. 4.6 Protocol Processing Pipeline within the Z-stack.

memory in userspace, while also avoiding context switches and interrupts incurred
by the kernel protocol stack [99, 137]. In addition, most protocol stack designs rely
on the POSIX-style socket interface (e.g., send() [138], recv() [139]) to interact
with user-space applications. This introduces an additional copy when moving the
data between the application’s send/receive buffer and the socket buffer (accessed
by the TCP/IP protocol stack), and can consume more than 50% of the total CPU
cycles [99]. Such a design is influenced by the conventional notion of kernel and
userspace isolation, i.e., using a copy to ensure data isolation between the user and
kernel space. However, it is unnecessary in SURE as our data plane operates entirely
in userspace.

Fig. 4.6 shows the design of Z-stack. We introduce two new zero-copy APIs
(z_recv() and z_send()) in Z-stack to interface between the application layer and
underlying TCP/IP protocol layers by exchanging pointers to the original packet
payload. We further add or remove protocol headers by manipulating the data
pointer contained in the descriptor, which points to the location where the data
begins. Passing the buffer between different layers involves modifications to protocol
headers. To avoid recreating buffers, we pre-allocate headroom in buffers that can
be filled with headers across the different layers. We base our implementation of
Z-stack on top of the existing DPDK F-stack [18], which offers a fully-functional
TCP/IP stack ported from FreeBSD integrated with the DPDK PMD. However,
F-stack introduces data copies during protocol processing, which we eliminate in
Z-stack.

86 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

4.4.3 Library-based sidecars

We utilize the fact that in LibOS, internal interactions are essentially function calls.
This allows us to extend the application in LibOS with a corresponding lightweight
sidecar functionality. Instead of having a separate sidecar process running, SURE’s
LibOS exposes event-based execution hooks for running additional sidecar functions,
which has proven successful in eBPF-based service meshes with improved resource
efficiency [4, 3]. With this extensible event-driven functionality, SURE offers typical
sidecar capabilities in its unikernel, including monitoring and traffic management.

Event-driven execution hooks: In order to maintain the transparent operation of
the sidecar relative to the serverless function, we predefine two hook points each
on the Receive (RX) path and Transmit (TX) path, located in send() and recv()
in SURE’s network I/O libs (Fig. 4.7) to invoke sidecar functions. SURE allows
cloud providers to customize the sidecar by adding/removing sidecar functions
to/from hooks based on events they are interested in. Required sidecar functions are
organized in an execution sequence, driven by I/O events occurring on the RX/TX
paths.

Implementation of library-based sidecar: We adopt the implementation methodol-
ogy from the popular service mesh solution, Istio [1], which encapsulates a sidecar
functionality into a handler function and organizes the sidecar functions into a call
sequence, as shown in Fig. 4.7. We have implemented a set of commonly used side-
car functions in SURE (such as request logging, metrics collection, rate controllers,
and access control) to enable critical service mesh capabilities, such as monitoring
and traffic management.

Unikernel
runtime

User code

RX TX

Request
Log

Handler

Rate
Controller

Request
Metrics
Handler

Traffic
Filtering

Sidecar

Fig. 4.7 Library-based sidecar in SURE. The sidecar contains a sequence of handlers that
perform certain sidecar functionalities on both RX and TX data path of the user function.

4.5 Memory-level isolation in SURE 87

4.5 Memory-level isolation in SURE

In this section, we describe how we use MPK to enable memory-level isolation to
protect the shared memory data plane and the single-address-space unikernel.

A Primer on MPK: MPK is a hardware-level memory isolation feature introduced
in Intel’s server CPUs starting from the Skylake microarchitecture. MPK allows
tagging a memory page with a key by modifying the corresponding Page Table Entry
(PTE). MPK allows for a total of 16 distinct keys to be defined. The access privilege
of MPK keys is defined by a per-core CPU register, PKRU (Protection Key Register
User), where each key is described by 2 bits [133]: (i) “Access Disable” (AD) that
defines whether access to tagged pages (both read and write) is disabled (bit set to
1); and (ii) “Write Disable” (WD), that specifies whether write to tagged pages is
disabled (bit set to 1). Pages tagged with the same MPK key can hence be subject to
three different access policies: Read/Write (0, 0), Read-Only (0, 1), or No-Access
(1, x) [133]. MPK offers a unique x86 instruction, WRPKRU, to write the contents of
the PKRU register, hence switching the access permission for memory pages. While
assigning a key to a memory page requires modifying the corresponding Page Table
Entry (PTE) and flushing it from the TLB, an expensive operation even without the
syscall cost enabled by a unikernel environment, WRPKRU allows changing the access
privilege to a large set of pages with a single, lightweight instruction.

4.5.1 Secure APIs based on SURE call gates

In SURE, we use 2 distinct keys out of 16: one associated to unprotected memory
(UK) and one to protected memory (PK). The value of the PKRU is always configured
to allow access to memory pages tagged with UK, while access to pages tagged with
PK is disabled when executing user code and enabled when executing the privileged
code. To execute a privileged function, the user code must go through a call gate,
which updates the PKRU to enable/disable access to PK pages and switches execution
of the function onto a stack in protected memory. All other updates to access
privilege (i.e., writes to PKRU) are illegal, prohibited via the binary inspection of
§4.5.2. While most of the memory related to protected components is statically
tagged with the PK, shared memory buffers are dynamically tagged by changing the
key. API functions receiving a message in a buffer or allocating a new buffer update
the corresponding key to UK to allow unprotected access from user code. When

88 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

User
code

User
data

Net I/O lib code

Data
page
0x7ffc3

call gate

NetI/O
lib
memory

User
code

User
data

Net I/O lib code

Data
page
0x7ffc3

NetI/O
lib
memory

(1) request access 0x7ffc3

User
code

User
data

Net I/O lib code

Data
page
0x7ffc3

NetI/O
lib
memory

(2) update
privilege

(3) return
to call gate

(4) reset
privilege

(5) ack. request

data
access

currently
inaccessible

currently
accessible

change MPK
in the PTE

call gate call gate

Fig. 4.8 SURE uses call gates to secure function calls by user code. SURE can dynamically
change the access privilege of memory pages.

functions send a message or free a buffer we perform the inverse operation, setting
the key to PK.

Fig. 4.8 shows how the network API recv() function is invoked by untrusted
user code via the MPK-based call gate. Other protected API functions are guarded
by the MPK-based call gate in the same way. When running user code, the set
of protected memory pages (i.e., local data in a SURE VM or shared memory) is
configured to be inaccessible. 1 the user code invokes functions in NetI/O lib via the
call gate. 2 the call gate adjusts permissions, making protected memory accessible,
and invokes the recv() function; the NetI/O function receives a buffer descriptor
and updates the corresponding MPK key to allow unprivileged user access to the
buffer. 3 Upon return to user code, 4 the call gate disables access to protected
memory, while the received buffer remains accessible.

4.5.2 Preventing privilege escalation of MPK

On its own, MPK is not designed to provide strong security guarantees, being the
instruction used to modify the access privilege of keys, WRPKRU, an unprivileged
user-level instruction. [129] describes how to build a security primitive on top of
MPK for a user-space process, by coupling MPK with binary inspection of the code
to prevent unwanted modifications of the PKRU register. Running its functions in
unikernels, SURE has to secure three additional systems that in a traditional OS

4.5 Memory-level isolation in SURE 89

would be protected by the user/supervisor privilege separation: the paging API; the
scheduler; and interrupts. These components operate on the page table or on CPU
registers (including PKRU), hence they are part of the TCB and their integrity must
be guaranteed to prevent unwanted MPK privilege escalation. This is in line with the
considerations made by previous works leveraging MPK to provide intra-unikernel
isolation [122, 130]. Following are the key components needed to transform MPK
into a security primitive in a unikernel environment2.

(1) Binary inspection. To guarantee that only safe occurrences of MPK-related
instructions (WRPKRU and XRSTOR) are present and untrusted code cannot manipulate
PKRU without passing through our call gate, we couple MPK with binary inspection
of the executable, as in [129]. We also enforce a strict write-xor-execute memory
policy [142] in SURE. This guarantees that executable pages are not modified at run
time with instructions changing memory access permissions.

(2) Paging API protection. SURE protects memory pages by writing an MPK
key in their corresponding PTEs. However, PTEs are not protected in the single-
address-space unikernel, which means untrusted code may manipulate these PTEs to
gain unauthorized access to protected memory pages. This may be done either by
changing the MPK key in the PTE or by remapping the (guest) physical address of
a protected page to a different, unprotected PTE. To prevent these exploits, SURE
stores the (guest) physical address of all protected pages in a blacklist. All pages
containing a page table are also tagged with the protected key, hence preventing
untrusted code from directly modifying the PTEs. To interact with the page table, a
trusted API protected with call gates is provided. Whenever a PTE is modified, the
API functions check whether the physical address in the PTE being modified belongs
to the blacklist (i.e., the physical page is protected) and crash the unikernel in case of
a match. This allows untrusted components to modify PTEs describing unprotected
memory, guaranteeing that no operations that would compromise protected pages
are performed.

(3) Scheduler protection. The scheduler is in charge of core operations of the
lifecycle of a thread in the unikernel, including context switching that involves
storing/loading the thread context into/from memory. The thread context in the
SURE VM contains the PKRU register, directly related to SURE’s guarantee of

2Note that SURE does not offer control flow integrity of MPK, nor protection against side-channel
and microarchitectural attacks, which are beyond the scope of our threat model. These issues can be
addressed by existing approaches [129, 140, 141].

90 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

memory protection. Thus, the thread context must be stored in protected memory
throughout its lifecycle (Fig. 4.2). Hence, we run the whole scheduler as privileged
code and allow its access from untrusted code only through call gates for safe
operation of thread context.

(4) Interrupt validation. When an interrupt service routine (ISR) is executed on a
CPU, the value of the PKRU remains the same as the one associated with the code
being interrupted, meaning that interrupting privileged code will cause the ISR to be
executed with access to protected memory. To prevent the exploitation of this feature,
we extend the entry code common to all ISRs to set the PKRU to the unprivileged value
upon interrupt entry and restore it to the privileged value upon exit if a privileged
function was interrupted. Moreover, when an interrupt is triggered, the CPU stores
the instruction pointer (IP) and stack pointer (SP) of the interrupted task on the
unprotected interrupt stack, and restores them upon exit to resume its execution. An
untrusted interrupt routine could corrupt these values and, in case of interruption
of privileged code, cause the return to unprivileged code with access to protected
memory. To prevent this exploit, we further extend the common ISR entry code to
store the (IP, SP) pair in a per-CPU protected-memory area when privileged code is
interrupted, and to check that the values have not been modified on the stack before
returning from the interrupt. As SURE only protects the entry/exit points of the ISR,
we retain the flexibility for other unikernel libraries (e.g., virtio-blk drivers for
disk access) to register custom interrupt handlers, without the need to move them
inside the TCB and avoiding unintended memory access caused by buggy code in
the ISR.

4.6 Performance Evaluation of SURE

We quantitatively evaluate the performance improvement and resource efficiency
with SURE’s data plane. We start with a microbenchmark analysis, to quantify the
benefit of each design choice in SURE’s data plane. We also evaluate SURE with
the realistic online boutique workload [143] from Google.

Testbed Configuration: We built our testbed on NSF Cloudlab using three nodes,
equipped with a 32-core Intel Xeon Silver 4314 CPU running at 2.4 GHz, 128GB of
memory, and a 100Gb NIC for network connectivity. The CPU has MPK support.
Throughout the experiments, we use Ubuntu 22.04, kernel version 5.15 as the OS.

4.6 Performance Evaluation of SURE 91

4.6.1 Microbenchmark Analysis

Improvement from shared memory processing

We evaluate the round-trip latency and throughput between a client and server
pair on the same node, to reflect the typical basic interactions between functions.
We choose three representative message sizes: 64B, 4KB, and 8KB, since there
is very little variation for SURE as the packet size goes from 64B to 1KB. We
consider the following alternatives that are widely used in commercial and open-
source serverless platforms to compare with SURE’s intra-node shared memory data
plane: (1) Container (denoted CT); (2) Unikraft unikernel [84] (denoted UK); (3) OSv
unikernel [82] (denoted OSv). For the alternatives, we use the kernel Linux bridge for
L2 connectivity. We additionally consider the userspace Open vSwitch (OVS [35])
for UK and OSv. To match SURE’s reliable data transfer, we use TCP for reliable data
transfer with the compared alternatives. Note that container uses the host’s TCP/IP
stack, Unikraft uses lwip [144], and OSv’s TCP/IP stack is ported from FreeBSD.
For throughput measurements, we add sufficient clients to saturate the server and
metrics are collected on the server. To accurately assess the improvements from
shared memory processing, we disable SURE’s sidecar for this experiment.

SURE achieves low-latency. We measure the latency for a single client-server
connection in Fig. 4.9 (left). SURE has the lowest latency (14-16us) across all
evaluated message sizes. Unlike the other alternatives, SURE’s shared memory zero-
copy data transfer causes latency to be flat with the increase in message size. We note
that lwip (used in the Unikraft setup) incurs higher latency as it is under-optimized
to work with virtio devices (no checksum offload3 and extra copy4).

SURE is more scalable and efficient. We evaluate throughput (requests per second
(RPS)) as the number of concurrent connections increase. Fig. 4.9 (right) shows the
RPS for a message size of 64B. Our observations are consistent across other message
sizes (4KB, 8KB). Compared to other alternatives, SURE is also more efficient:
with more than 16 connections, all alternatives have their server’s one assigned CPU
core saturated. But SURE has much higher RPS (and still increases with increasing
number of concurrent connections).

3https://savannah.nongnu.org/patch/?10111
4https://github.com/unikraft/lib-lwip/blob/staging/uknetdev.c#L166-L167

https://savannah.nongnu.org/patch/?10111
https://github.com/unikraft/lib-lwip/blob/staging/uknetdev.c#L166-L167

92 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

64B 4KB 8KB
Message size

0

40

80

120

160

La
te

nc
y

(u
s)

14 15 1615 17 1814
24

3934 39 44
65
73

SURE
CT
OSV_u
OSV_k
UK_u
UK_k

2 4 8 16 32 64 128
of connections

0

300

600

900

1200

R
PS

 (X
 1K

) SURE
CT
OSV_u
OSV_k
UK_u
UK_k

Fig. 4.9 Intra-node data plane performance. CT: container with Linux bridge; OSv_u: OSv
with userspace OVS; OSv_k: OSv with Linux bridge; UK_u: Unikraft with userspace OVS;
UK_k: Unikraft with Linux bridge; (average of 30 repetitions)

Cost of Memory Isolation with SURE

SURE has MPK enabled by default. To see the performance impact of MPK, we
consider a variant of SURE with MPK disabled (baseline). We use the same
functions, varying the message sizes.

MPK in SURE has limited penalty. Fig. 4.10 shows the normalized latency and
throughput. With a single connection, SURE shows 1.2-1.3× increased delay
compared to the baseline. As we increase the number of concurrent connections,
SURE’s RPS decreases (e.g., 1.8× reduction at 64 connections). We believe this
overhead is relatively small for the reward of robust memory-level isolation in our
shared memory data plane and the unikernel TCB. mprotect() is a system call
that can change the access privilege of specified memory pages, similar to MPK.
However, as reported in [133], switching the access privilege with MPK incurs only
∼20 CPU cycles. Using mprotect() on the other hand requires more than 1000
CPU cycles to complete, resulting in much poorer performance.

Improvement with library-based sidecar

We consider the widespread individual container sidecar as the baseline to compare
with. Each sidecar connects to the user function container over the kernel loopback
interface [2]. We use the NGINX proxy as the implementation of the sidecar, as
demonstrated in production [145]. For the NGINX setup, we assign one CPU core
to the NGINX sidecar and another core to the user function. In the SURE setup,

4.6 Performance Evaluation of SURE 93

64B 4KB 8KB
Message size

0.0

0.5

1.0

1.5

no
rm

. l
at

en
cy

1.20 1.26 1.30

1.00 1.00 1.00

SURE
baseline

2 8 32 64
connections

0.0

0.5

1.0

1.5

2.0

no
rm

. R
PS

baseline
SURE

Fig. 4.10 The impact of MPK on SURE’s performance. We show the normalized latency
and RPS.

Msg
size

CPU cycles
(× 1K) Added delay (us) Throughput

(MBytes per second)
SR NGINX SR NGINX SR (no SC) SR NGINX

256B 0.50 60.4 0.21 25.2 342 309 12.3
4KB 0.55 59.5 0.23 24.8 3697 3533 185
8KB 0.55 58.2 0.23 24.2 5525 5369 337

Table 4.1 Library-based sidecar (SR) vs. Individual sidecar (NGINX)

the library-based sidecar shares a CPU core with the user function code. Note that
we measure the CPU cycle consumption and the added delay of the sidecar for a
single connection. When measuring the throughput, we use concurrent connections
to saturate the user function and sidecar. We show the throughput results with 64
connections in Table 4.1. However, the observations are consistent for other values
(e.g., 32, 128 connections).

Library-based sidecar shows negligible overhead. Table 4.1 compares the CPU
cycles spent on the sidecar for different alternatives. The CPU cycles consumed by
our library-based sidecar are negligible compared to those of an NGINX sidecar
(only 0.9%). The higher CPU cycle consumption by the NGINX sidecar is due to
the loose coupling between the sidecar and the function, which results in additional
overhead from the kernel’s loopback interface. This extra CPU cycle consumption
is also reflected in increased network delay and decreased throughput: the library-
based sidecar adds only 0.21-0.23 µs to the data path, while the NGINX sidecar adds

94 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

more than 24µs of delay, potentially severely impacting data plane performance.
The throughput of SURE with library-based sidecar is also close to SURE with
sidecar disabled (“SR (no SC)” in Table 4.1). This shows the advantage of our
library-based sidecar - maintain low latency and high throughput with negligible
CPU consumption.

Library-based sidecar has lower memory footprint. The individual sidecar serves as
a reverse proxy between the user function and the external client, inevitably requiring
additional dependencies and having a larger memory footprint. Our library-based
sidecar avoids this overhead almost entirely. Our analysis shows that SURE’s library-
based sidecar (125KB) reduces the memory footprint by 165×, compared to the
NGINX sidecar (20.2MB). This brings many benefits, such as increased function
density on every single node.

Benefit of the zero-copy TCP/IP stack

We compare Z-stack (denoted ZS) with F-stack [18] (denoted FS) for protocol
processing in the SURE gateway. The F-stack gateway incurs data copy when
exchanging payloads with the function. We also compare Z-stack with Linux’s
kernel protocol stack (denoted KS) to evaluate the performance improvement and
costs of using the DPDK PMD. In the KS setup, we let the function directly access
kernel stack without involving the gateway. We use a TCP echo server/client pair
(integrated with different alternatives) for this experiment. The server and the client
are deployed on different nodes. ZS achieves a ∼1.2× RPS improvement and
latency reduction under high traffic load (more than 100 connections) compared to
FS (Fig. 4.11). This clearly showcases the advantage of having zero-copy protocol
processing. On the other hand, FS inevitably introduces data copies between the
server function and the F-stack gateway, resulting in lower performance. SURE also
shows significant RPS improvement compared to the kernel protocol stack. SURE
not only avoids data copies, it also eliminates other kernel-related overheads. Note
that SURE shows slightly higher latency than KS under very light load with small
packets (e.g., 64B, single connection in Fig. 4.11 (left)) as SURE uses the SURE
gateway to relay between the function and Z-stack, resulting in some additional
delay. But SURE is significantly better than KS for larger message sizes.

Assessing the polling “tax” of Z-stack. SURE chooses to use DPDK’s busy-polling
PMD to move packets between the SURE gateway (with the Z-stack) and the NIC.

4.6 Performance Evaluation of SURE 95

64B 4KB 8KB
Message size (Bytes)

0

10

20

30

40

La
te

nc
y

(u
s)

SURE FS KS

50 75 100
Concurrency

0
100
200
300
400
500

R
PS

 (X
 1K

)

SURE64
SURE4K
SURE8K

FS64
FS4K
FS8K

KS64
KS4K
KS8K

Fig. 4.11 Performance of inter-node data plane: (left) latency with 1 connection; (right) RPS
under different concurrency levels. FS: F-stack; KS: kernel stack.

Tested Load
(X 1K RPS)

Kernel stack CPU (%) Z-stack CPU (%)
Interrupt Others Total

30 10 14 24 100
60 36 33 69 100
90 54 58 112 100

120 75 78 153 100
240 108 94 202 100

Table 4.2 Polling tax of Z-stack.

SURE dedicates a CPU core to the SURE gateway for protocol processing. This
CPU cost is spent independent of traffic load, unlike an interrupt-driven kernel,
and is the “polling tax” of Z-stack. The interrupt-driven kernel stack (KS) achieves
better CPU efficiency at light load due to on-demand execution (at 30K, 60K RPS
in Table 4.2). But, KS is inefficient for higher loads (≥90K), because of interrupt
handling [137] and other kernel overheads. In comparison, SURE achieves the
same RPS consistently using a single CPU core with its kernel-bypass, eliminating
interrupts. Busy-polling on a single CPU core has better overload behavior and is
more efficient under heavy traffic load than an interrupt-based kernel stack. The
increased function density on a single node (e.g., with bin-packing-based function
placement) can facilitate sharing of the SURE gateway and amortize the cost of busy
polling.

96 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

4.6.2 Realistic Workload Evaluation

Online Boutique [143] is a microservices-based online store application from Google
containing 10 functions and up to 6 different function chains in a serverful setup, by
default using gRPC to interconnect functions (called “SF”). We use Knative as the
baseline serverless platform to compare against (termed “SL”). We use Locust [146]
as the load generator using the boutique’s default workload [143]. Note, we disable
the user wait time of the default workload to generate a heavier workload. We ported
the boutique’s microservices to SURE. We compare three alternatives: SF, SL, and
SURE, with two distinct deployment settings: (1) All functions are deployed on the
same node (intra-node), and (2) Frontend, Checkout, and Recommendation functions
(3 intermediate functions that could become hotspots) are deployed on one node, the
remaining (leaf) functions are deployed on a second node (inter-node).

RPS and Tail Latency. As shown in Fig. 4.12 (for intra-node setup), the RPS of
SURE is up to 17× and 79× higher than the SF and SL. Both SF and SL are CPU
resource limited (RPS doesn’t increase) for concurrency above 16. In addition, the
95%ile latency of SURE (at a concurrency of 16) is below a millisecond (0.39ms),
making SURE highly desirable for loosely-coupled, interactive microservices. This
shows the compelling performance improvement from shared memory processing
and library-based sidecar used by SURE.

With the inter-node setup (Fig. 4.13), SURE still maintains its superior per-
formance compared to SF and SL: SURE achieves up to 6× and 19× higher RPS
than SF and SL (concurrency of 8). SURE’s inter-node RPS is lower due to the
protocol processing in the network gateway at the 2 nodes supporting the boutique
functions (2.6× reduction). However, the zero-copy protocol processing in Z-stack
still maintains a sub-millisecond latency, even at the 95%ile for SURE (CDF shown
in Fig. 4.13 middle). SL’s tail latency is 15× higher, and SF’s tail latency is also
4.8× higher than SURE’s.

CPU Consumption. As concurrency goes up, the higher efficiency of SURE is
clearly reflected in the dramatic scaling up of the RPS. This is despite the total CPU
usage being much lower with higher concurrency levels. Even at a low concurrency
where SURE’s CPU usage is higher (comes from polling and the use of a CPU for
each function), SURE delivers a much higher RPS. In Fig. 4.12 (intra-node), as the
concurrency level goes up, CPU usage of the other alternatives rapidly increases,

4.6 Performance Evaluation of SURE 97

1 2 4 8 16 32 64
(a) Concurrency

0
20
40
60
80

100

R
PS

 (X
 1K

)

3.4 6.8
13
.9

27
.4

49
.6

75
.6

97
.5

0.
5 0.

9 1.7 2.7 3.8 4.8 5.70.
1

0.
2

0.
4 0.

7 1.0 1.2 1.2

SURE SF SL

0 10 20 30 40 50
(b) Response time CDF (ms)

0
20
40
60
80

100

%
 o

f r
eq

ue
st

s

Concurrency=16

SF
SL

SURE

1 2 4 8 16 32 64
(c) Concurrency

0

500

1000

1500

CP
U

 (%
)

SURE-GW
SURE-FN
SF-FN

SL-GW
SL-FN
SL-SC

Fig. 4.12 Online boutique results (intra-node): (a) RPS, (b) Response Time, (c) CPU usage.

1 2 4 8
(a) Concurrency

0
3
6
9

12

R
PS

 (X
 1K

)

2.7

5.3 5.4

13
.0

0.
5 0.

9 1.6
2.6

0.
2 0.

3 0.
5 0.

8

SURE SF SL

0 10 20 30 40 50
(b) Response time CDF (ms)

0
20
40
60
80

100

%
 o

f r
eq

ue
st

s

Concurrency=8

SF
SL

SURE

1 2 4 8
(c) Concurrency

0

300

600

900

CP
U

 (%
)

SURE-GW
SURE-FN
SF-FN

SL-GW
SL-FN
SL-SC

Fig. 4.13 Online boutique results (inter-node): (a) RPS, (b) Response Time, (c) CPU usage.

using up 15 CPU cores, compared to SURE using only up to 10 CPU cores at the
maximum concurrency level. In Fig. 4.13 (inter-node), at the maximum concurrency
level, all alternatives use 9 CPU cores (SURE’s RPS is much higher). The CPU usage
of SURE gateway (SURE-GW) also does not grow, unlike SL (SL-GW). Moreover, SL’s
sidecar uses up a very large amount of CPU (SL-SC), even more than the function
itself at higher concurrency levels. All of this is also reflected in the response time
behavior and RPS: SL is always worse than SF due to the heavyweight serverless
components (individual sidecar and gateway). Note that our current implementation
only supports allocating one CPU core to the SURE gateway, limiting its service

98 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient

capacity (maximum concurrency level of 10). Our future work will vertically scale
the SURE gateway to allocate more CPU cores to support higher concurrency.

4.7 Conclusions

SURE is a unikernel-based, lightweight serverless framework that offers high-
performance inter-function networking and lightweight library-based sidecars for
service mesh. It utilizes MPK and associated call gates and an enhanced unikernel
TCB to mitigate the vulnerabilities of shared memory processing and single-address-
space unikernels while retaining high performance and being efficient. Benchmarked
against a serverful gRPC-based alternative in a multi-node deployment for a complex
web workload, SURE’s data plane delivers up to 6× increase in throughput and a
4.8× reduction in tail latency while being more secure. The popular containerized
serverless platform (Knative [147]) achieves only 5.3% of SURE’s throughput and
has up to a 15× increase in tail latency.

Part IV

Improving the management of
network services through eBPF

Chapter 5

Creating Disaggregated Network
Services with eBPF: the Kubernetes
Network Provider Use Case

5.1 Introduction

The extended Berkeley Packet Filter (eBPF) allows executing arbitrary code in dif-
ferent kernel hooks, which are triggered upon multiple events, such as a syscall or a
packet received. This enables to extend the processing done by the kernel without
changing its source code or loading kernel modules. eBPF code is sandboxed in
order to guarantee that a user provided program can not compromise the functioning
of the kernel. Several projects leverage eBPF to bring new functionality to the
kernel in the fields of security, monitoring and networking. However, most of the
networking-related projects implement new features as monolithic eBPF programs,
making the code hard to maintain, to extend, and difficult to reuse in other use
cases. In this respect, the Polycube software framework [32] addresses some of the
well-known eBPF limitations when creating complex virtual network functions [40],
and introduces the capability to split eBPF software in multiple, independent network
functions, which can be arbitrarily connected in order to create a more complex
service graph. This enables the creation of complex networking services by com-
positing elementary basic blocks (e.g., bridge, router, firewall, NAT, load balancer,
and more), with an high degree of reusability.

5.2 Background 101

Container networking is a perfect example of such scenario, and has gained key
importance with the diffusion of the microservices architecture and the decompo-
sition of applications in a collection of small, loosely-coupled services running in
containers. Container orchestrators such as Kubernetes (K8s) must provide a flexible
and efficient network infrastructure, since containers can be created and destroyed at
high frequency, must exchange a lot of data and must be easily accessible from the
Internet. However, K8s defines only a functional networking model and it relies on
3rd party plugins for the actual implementation of network services.

This chapter shows how a K8s network provider can be created using solely eBPF
primitives according to the disaggregated services model, i.e., defining a modular
architecture based on traditional network components such as routers, load balancers
and NATs, and without giving up on performance.

This chapter is structured as follows. Section 5.2 provides an overview of the K8s
networking model and how Polycube achieves service disaggregation. Section 5.3
describes the overall node architecture of our solution while section 5.4 shows
a preliminary performance comparison compared to existing solutions. Finally,
section 5.5 describes the relevant related work and section 5.6 draws our conclusions,
highlighting the potential future work.

5.2 Background

5.2.1 Kubernetes networking

Kubernetes is an open-source orchestrator for containerized applications and defines
a functional network architecture organized in three levels. (i) Pods, the basic
scheduling concept, execute containerized applications that are connected to a default
virtual network, whose outreach is limited to a single server (node, in the Kubernetes
terminology). Pods are ephemeral entities that can be destroyed and re-spawned if
needed, even on another node. Each server can host a maximum number of pods,
usually organized in a contiguous and private address space (e.g., consecutive /24
networks on different nodes). (ii) Physical nodes, which inherit their addressing
space from the physical datacenter network; for scalability reasons, this usually
includes switched and routed portions. (iii) Services, a higher-level concept that
enables the reachability of one or more (homogeneous) pods by means of the same

102
Creating Disaggregated Network Services with eBPF: the Kubernetes Network

Provider Use Case

network identifier (e.g., IP address). This primitive guarantees the decoupling
between the service IP endpoint, which remains stable, from the actual pod(s) that
provides the service, whose IP can change (e.g., in case the pod is restarted in another
location) or it may be present in multiple replicas (hence, multiple IPs could be
used). Services leverage a third addressing space, disjoint from pod and datacenter
addresses.

Kubernetes foresees three types of services. A ClusterIP identifies a service
that is reachable only from pods within the cluster, or by an application that runs
on the cluster nodes. A NodePort service, instead, is reachable from outside the
datacenter: a TCP/UDP port <nport> is allocated to the service itself, and all packets
directed to any <node_ip_address:nport> will be redirected to one of the pods
associated to the given service. NodePorts are not widely used because they require
(i) nodes with reachable (e.g., public) IP addresses; (ii) external users to know the IP
addresses of the nodes and (even worse) (iii) the port that has been allocated. Finally,
a LoadBalancer service allocates a public IP address associated to the given service,
which is achieved by interacting with an external entity in charge of the above public
addresses; all packets directed to the LoadBalancer IP address will be delivered to
one of the corresponding pods.

Basic connectivity between pods is provided through the cooperation of data-
center networking and plugins implementing the CNI (Container Network Inter-
face) [148], a specification that enables changeable modules that configure network
interfaces in Linux containers. The CNI specification is very simple, dealing only
with network connectivity of containers and removing allocated resources when the
container is deleted. Instead, packets to services are by default handled by a dedi-
cated Kubernetes component, kube-proxy, which configures iptables with the
proper rules to translate service IP addresses into pod IP addresses, and to implement
load-balancing policies.

Most of the so-called CNI providers (e.g., Cilium, Calico, Flannel, etc) implement
more than just the base CNI specification and include (i) data-center wide networking
(either using an overlay model, e.g., through vxlan interfaces, or direct routing,
hence interacting with the datacenter physical infrastructure to push the proper routes
that satisfy K8s reachability rules) and (ii) IP address management (IPAM module).
Instead, most of the CNI providers rely on kube-proxy for services: a packet
coming from a pod and directed to a service is delivered by the CNI to kube-proxy,

5.2 Background 103

which operates the proper transformation on IP addresses and ports and returns it
again to the network plug-in, which takes care of delivering it to the target pod,
possibly traversing the datacenter network.

K8s adopts a functional model for networking, defining a set of behavioral rules
for network connectivity1 but without specifying how those must be implemented by
the specific network provider. In addition to rules already mentioned for services, it
adds the following ones for basic connectivity: (i) all pods can communicate with
all other pods without NAT; (ii) agents on a node can communicate with all pods on
that node; (iii) pods in the host network of a node can communicate with all pods
on all nodes without NAT. It turns out that network providers have full freedom to
choose their own implementation strategy, hence privileging e.g., the easiness of use,
performance, scalability, and more.

However, this freedom is widely recognized as a nightmare, being very difficult
to understand how each network provider works under the hood, hence severely
impairing the capability of a network engineer to debug a problem. This is exac-
erbated by the complexity of the Kubernetes networking, which overall includes
functions such as bridging and routing (for pod-to-pod connectivity), load balancing
and NAT (for pod-to-service and Internet-to-service), and masquerading NAT (for
pod-to-Internet), not to mention the necessity of security policies (hence, firewalls)
to protect both pod-to-everything and external-to-everything communications.

Finally, all the above networking components must be integrated with a control
plane, which interact with K8s and detect any change in the status of the cluster
(e.g., a node/pod/service is added/removed, a service is scaled up/down, etc.), hence
propagating the required configurations in all involved components (e.g., adding a
new node requires configuring a new route toward that node in the routing table of
all existing nodes).

Given this complexity, it becomes evident that the capability to rely on well-
known (disaggregated) functions (e.g., bridging, routing, load balancers), each
one running with their configurations and state, would greatly simplify day-by-
day monitoring and debugging operations compared to network providers created
according to the monolithic model.

1https://kubernetes.io/docs/concepts/services-networking/.

https://kubernetes.io/docs/concepts/services-networking/

104
Creating Disaggregated Network Services with eBPF: the Kubernetes Network

Provider Use Case

5.2.2 Service disaggregation with Polycube

Polycube [32] is an open-source software framework based on eBPF that enables
the creation of arbitrary network function chains, adopting the same model (boxes
connected through wires) currently used in the physical world. Polycube network
functions, called cubes, are composed by an eBPF-based data plane running in kernel
(actually one or more eBPF programs) and a control/management plane running in
user space. A user space daemon (polycubed) provides a centralized point of control,
allowing to access the configuration and state of cubes through a RESTful API.
Cubes can be seamlessly connected to each other or to network interfaces through
virtual ports, an abstraction that is implemented through an eBPF wrapping program
that performs some pre- and post- processing in order to receive/send packets from
the previous/to the next component in the chain. To implement this redirection
mechanism, each port is identified by a unique ID inside the cube, and each cube
maintains a forward chain map containing information about the peer associated
to each port. This information is used by the post-processor to apply the correct
action to forward the packet, that could be either a tail call to the eBPF data plane
of the next cube or a bpf_redirect() to a destination interface. Figure 5.1 shows
an example of this mechanism for a simple topology composed of one router and
one bridge. Chaining capabilities of Polycube represent a suitable way to create
disaggregated services; however, this solution has never been validated in a complex
scenario such as K8s networking.

Router

Bridge

port1

port2

eth1

Polycube Wrapper

port1

Pre-processor

Post-processor

Bridge
data plane

Port ID Peer Info

1 ---

2 ---

Forward chain

eth1

Router

Bridge
data plane

Bridge
data plane

Fig. 5.1 Chaining and ports in Polycube.

5.3 Architecture 105

5.3 Architecture

Our proposed architecture targets the entire K8s networking, including also services
and, potentially, network policies, hence replacing also kube-proxy, i.e., the com-
ponent that provides cluster-wide service-to-pod translation and load balancing. Our
network provider supports ClusterIP and NodePort services and relies on a VxLAN
overlay network to support inter-node communication. The current version of the
prototype does not support security policies but, thanks to the modular approach,
this and other functionalities can easily be added without any change in the other
components. The architecture (shown in fig. 5.2) leverages four Polycube-based
independent network services, while it relies on the kernel to handle the lifecycle of
VxLAN tunnels.

Datacenter physical network

Node 1

Pod1 PodN
192.168.1.2/32

Physical node IP: 10.1.1.1/24

Node 2

VxLAN overlay
network

Linux
networking

stack
(host traffic)

eB
P

F

vxlan0
10.18.0.1/16Router

(pcn-router)

K8s vs Linux Stack
Discriminator and NAT

(pcn-k8sdisp)

Internal Load Balancer
(pcn-k8slbrp)

192.168.1.3/32

External Load Balancer
(pcn-k8slbrp)

Node 3

eth0

Pod CIDR:
192.168.1.x/24

Pod CIDR:
192.168.2.x/24

Pod CIDR:
192.168.3.x/24

P
o

ly
cu

b
ed

PolyKube
Operator

192.168.1.254/24

Kubernetes
master
node

to_host

Fig. 5.2 Overall architecture of the eBPF K8s network provider.

106
Creating Disaggregated Network Services with eBPF: the Kubernetes Network

Provider Use Case

5.3.1 Main components

K8s vs Linux Stack Discriminator and NAT (DISC-NAT). This service performs
source NATting for the pod-to-Internet traffic, replacing the address of the pod with
the address of the node. For incoming packets, it distinguishes among traffic directed
to the host (either directly or because it needs VxLAN processing) and traffic directed
to pods (an external host trying to contact a NodePort service or the return traffic
of a pod). This is done by checking that the packet (i) does not belong to a NATted
session (i.e., a lookup in the NAT session table of the service), and (ii) that is not
directed to a NodePort service (i.e., a check against the TCP/UDP destination port of
the packet). In case both lookups fail, the packet is sent to the Linux network stack.
Vice versa, in the first case we apply the reverse NAT rule and the packet continues
its journey towards the pods. In the second case, different actions can be applied
according to the ExternalTrafficPolicy of the rule. If the policy is local, the traffic is
allowed to reach only backend pods located on the current node, hence the packet
can proceed towards the pod without modifications. In case the policy is cluster,
the packet can also reach backend pods located on other nodes. Since later in the
chain the packet will be processed by a load balancer and we must guarantee that
the return packet will transit through the same load balancer, we apply source NAT
replacing the source IP address with the address of a fictitious pod belonging to the
PodCIDR of the current node (currently the first address of the range is used).

External Load Balancer (ELB). This element maps new sessions coming from the
Internet and directed to a NodePort service to a corresponding backend based on
the 5-tuple of the first packet. This load balancing decision is stored in a session
table, implemented as a Least Recently Used (LRU) eBPF map, and reused for
all subsequent packets. Old sessions are automatically purged by the LRU map.
Incoming packets are updated with destination/port of the backend, while source
fields are restored to service values for outgoing traffic.

Router. Since K8s requires that (i) all the pods in the cluster can communicate with
all pods without NAT and (ii) different network addresses (PodCIDR) are allocated
to pods on each node, a routing component is required. To facilitate the operations of
the Internal Load Balancer (see later), we do not use a bridge between pods, hence
forcing all pod traffic to be always delivered to the router. In fact, our network plugin
assigns a /32 network to each pod and adds an ARP static entry for the gateway;
hence all the packets are sent directly to the gateway, with pods never issuing any

5.3 Architecture 107

ARP request. The router is configured with four ports: (1) towards the physical
interface of the node; (2) towards local pods, configured with the proper PodCIDR
(e.g., /24); (3) to enable the reachability of K8s processes and pods running in the
host network (e.g., kubelet); (4) connected to a kernel VxLAN interface, which is
used for inter-node pod-to-pod communication.

Internal Load Balancer (ILB). This load balancer operates on traffic coming from
local pods and directed to ClusterIP services; all the other traffic is forwarded as
is. This module has two types of ports; ‘edge’ ports are connected to entities that
generate new sessions (hence, pods), while the ‘server’ port is the one used to reach
the final servers, hence is connected to the router. Edge ports are configured with the
IP address of the pod in order to be able to forward packets coming from the router
to the correct destination. The load balancing logic is the same of the ELB, with a
service-specific InternalTrafficPolicy attribute determining which backends (local or
cluster-wide) are configured in the load balancer.

K8s Control Logic. A K8s operator is in charge of reacting to the cluster events and
reconfigure the required network parameters in the controlled cluster. The operator
has to react to events related to the following three Kubernetes resources.

(1) Nodes: when a node joins/leaves the cluster, a route is added/removed in the
Router to update the reachability of the given PodCIDR through the VxLAN overlay
network, and the node address is added to the VxLAN configuration.

(2) Services: the operator watches events regarding ClusterIP and NodePort services.
ClusterIP services trigger an update of the ILB, while a NodePort triggers an update
of the ELB and DISC-NAT module for the obvious reasons, as well as the ILB
because of the creation of the ClusterIP address that is associated with the NodePort
service.

(3) Endpoints: the operator watches any event that refers to Endpoints associated
to Services. For each pair (address, port) extracted from the endpoints object, the
corresponding service backend is updated on the proper Load Balancer: the ILB for
ClusterIP services and both for NodePort services.

This component is deployed as a K8s DaemonSet, which ensures it runs on any
node; K8s adopts a distributed configuration, in which each node has its own agent
in charge of the node network configuration. This DaemonSet runs as privileged
pod, and it includes the polykube-operator container (running the actual K8s

108
Creating Disaggregated Network Services with eBPF: the Kubernetes Network

Provider Use Case

control plane) and the polycubed container (running the Polycube daemon). The
two communicate through the node loopback interface.

5.3.2 Communication scenarios

The main communication scenarios of a typical K8s cluster, as shown in fig. 5.3, are
implemented as follows.

Pod-to-pod. The originating pod sends its packets to the ILB, which transparently
forwards them to the Router. If the destination is on the same node, the traffic is sent
back immediately and the ILB forwards it to the destination. If the destination pod is
on another node, the router redirects the packets to the VxLAN interface, where they
are encapsulated by the kernel and forwarded to the destination node. On the remote
node, the DISC-NAT passes the traffic to the kernel, which decapsulates it and sends
it to the router and then to destination pod.

Pod-to-Internet. The traffic traverses the ILB, then the router forwards it towards
the physical interface of the node, hence transparently crossing also the ELB. The
NAT, instead, applies a source NATting rule, hence replacing the address of the pod
with the one of the node, as well as the source port with a new available one. This
allows the return traffic to reach the correct node without the necessity to advertise
the PodCIDR on the external network. On the return path, the NAT checks if the
packet belongs to a translated session; if so, it replaces the destination address and
port of incoming packets with the ones of the original pod.

Pod-to-service. The pod traffic toward a ClusterIP service is first processed by the
ILB, which selects a proper backend pod and updates the destination address and
port of packets. Traffic is then handled by the router in the same way as with the
pod-to-pod communication. For return traffic, the ILB checks if the packet belongs
to a translated session; if so, it restores the original source service address and port.

Internet-to-service. When a remote host wants to contact a NodePort service, the
packet is first processed by the DISC-NAT, that identifies it as targeting a NodePort
service (based on the destination port). If the ExternalTrafficPolicy of the service
is cluster, the DISC-NAT updates the source address of the packet with the one of
the fictitious pod, to guarantee that the return packet will come to the same node.
The packet is then forwarded to the ELB, which (i) selects a proper backend pod,
(ii) updates the destination address and port with the ones of the backend, and (iii)

5.4 Evaluation 109

Datacenter physical network

Pod1 PodN

eB
P

F

Router

DISC-NAT

ILB

ELB

Pod1

Network
stack

eB
P

F

Router

DISC-NAT

ILB

ELB

PodN

Network
stack

eB
P

F

Router

DISC-NAT

ILB

ELB

a. Single node b. Multiple nodes

Pod-to-pod
Pod-to-Internet

Pod-to-Service
Internet-to-Service

VxLAN tunnel

Fig. 5.3 Modules involved in single (a) and multi-node (b) communications.

forwards the packet to the router, that can handle it such as in normal pod-to-pod
communications.

5.4 Evaluation

This section presents an assessment of the performance provided by our network
provider under different circumstances, to determine whether the disaggregated
approach would introduce any noticeable performance penalty. We run the tests
using the iperf3 tool, configured with the default parameters; the server was
always running in a pod, while the client was either in a physical machine or in
another pod depending on the test. Tests were carried out on a cluster of 2 nodes,
each one featuring a CPU Intel® Xeon® CPU E3-1245v5@3.50GHz (4 cores plus
HyperThreading), 64GB RAM, and a dualport 40 GbE Ethernet XL710 QSFP+ card,
all running Linux kernel v5.4.0 and K8s v1.23.5. Tests involve other two eBPF-based
solutions (namely, Cilium and Calico) and a widely used ‘traditional’ approach such
as Flannel [149]. All providers were deployed using the VxLAN overlay model;
Cilium and Calico were configured with their eBPF kube-proxy replacement, hence
enabling a complete eBPF data plane such as in our solution.

110
Creating Disaggregated Network Services with eBPF: the Kubernetes Network

Provider Use Case

Polycube Cilium Calico Flannel

pod
2pod

pod
2svc

internet
2svc

0

20

40

60

80

T
hr

ou
gh

pu
t

(G
bp

s)

Single node

pod
2pod

pod
2svc

internet
2svc

0

10

20

30

Multiple nodes

Fig. 5.4 Throughput comparison (TCP).

We considered the following communication scenarios: pod-to-pod: a pod client
connects to the actual IP address of a pod server, showing the performance of the base
networking without load balancing; pod-to-service: a pod client connects to a pod
server using its ClusterIP service, to evaluate the performance of the load balancer as
well as the L3 routing; internet-to-service: the client is executed in an external host
and the pod server is accessed through its NodePort service. Tests were performed
with pods running both on a single node and on multiple nodes, with the latter adding
the overhead of the VxLAN encapsulation and the limitation of the physical network
(link speed, PCI bus) and requiring to cross the physical network twice ((i) client to
receiving node; (ii) receiving node to backend node) for the internet-to-service tests.
Results are depicted in fig. 5.4, with the red dashed lines representing the baseline
achieved running bare metal iperf3 on localhost (in case of single node) or between
two nodes. As expected, the throughput decreases when the traffic traverses a larger
number of network components. However, despite the disaggregated architecture,
our solution provides always better performance compared to other solutions, with
even higher margins when considering multiple nodes. While this result may be
impacted by other providers supporting more features than our PoC code, such as
network policies, these have not been used in the tests, hence providing the ground
for a fair comparison. Overall, this suggests how disaggregation does not introduce
performance penalties compared to a traditional monolithic approach.

5.5 Related work 111

scale-up

scale-down

Kubernetes Operator CNI plugin

Time since operation issued (s)

0.41 1.91 2.01
0.01

0.06

0.01

variable (pod termination) 1.56

Fig. 5.5 Reaction time in case of scale up/down events.

Figure 5.5 shows the reaction time of our operator and CNI plugin when requiring
to scale up/down the pods of a service, compared with time required by other
Kubernetes components until connectivity to the target pod is available/disabled.
Results show that the time taken by our components is negligible compared to the
overall time required by K8s to react.

5.5 Related work

Among the many eBPF-based network services, we cite here only the ones that are
most representative in this space.

Katran [23] represents a software solution to offer scalable network load bal-
ancing to layer 4 that leverages eBPF/XDP to provide fast packet processing. While
being very sophisticated, it has been engineered to be the sole (monolithic) net-
work function active on the network path, hence preventing the deployment of other
functions operating on the same traffic.

Cilium [110] provides networking, security and observability for cloud-native
environments such as Kubernetes clusters. Cilium is based on eBPF, which allows for
the dynamic insertion of powerful network security, visibility and control logic into
the Linux kernel. In Cilium, eBPF is used to provide high-performance networking,
multi-cluster and multi-cloud capabilities, advanced load balancing, transparent
encryption, extended network security features, and much more. While providing
observability primitives through its Hubble module, its internals are rather complex
and made with a monolithic approach. Cilium defines a set of six logical objects

112
Creating Disaggregated Network Services with eBPF: the Kubernetes Network

Provider Use Case

(Prefilter, Endpoint Policy, Service, etc.), based on six different features offered by
the provider (DoS mitigation, network policies, load balancing, etc.). However, these
objects are not mapped into clearly separated modules, neither for the data plane
(their logic is scattered among different intertwined eBPF programs), nor from a
topological point of view (cannot track the path of a packet or capture the traffic
flowing from one object to another), nor from a control plane perspective (cannot
configure and inspect these objects independently). Similar characteristics can be
found in Calico [150], which recently adopted the eBPF/XDP technology as well.

5.6 Conclusions

We presented a network provider for Kubernetes based on disaggregated eBPF
services, which improves monitoring and debugging as well as how code can be
maintained, extended and reused. Our open-source solution2 demonstrates the
feasibility of the disaggregated approach in eBPF and our preliminary evaluation
shows no particular overhead introduced by our model with respect to another state-
of-the art monolithic solution. As a future work we plan to introduce support for (i)
direct routing and (ii) network policies.

2Code and docs available at https://github.com/polycube-network/polykube.

https://github.com/polycube-network/polykube

Chapter 6

Enabling Scalable SFCs in
Kubernetes with eBPF-based
Cross-Connections

6.1 Introduction

With the ongoing softwarization of the network and the advent of Network Function
Virtualization (NFV), Network Functions (NFs) have been increasingly deployed as
software rather than hardware appliances. The recent trend towards the increasing
use of microservices instead of huge, monolithic functions, led to the necessity to
define a way to create chains of NFs, forming Service Function Chains (SFCs),
which are characterized by an ordered set of NFs traversed by the traffic in a pre-
cise sequence. Since the amount of traffic traversing the chain is highly variable,
SFCs must be able to dynamically adapt to the current network traffic load, hence
optimizing the use of resources and improving the quality of the offered service.
With the advent of cloud-native NFs [151], new possibilities have opened up for
the implementation of more flexible SFCs that can benefit from cloud-native en-
vironments. In particular, cloud-native infrastructures such as Kubernetes include
the logic to provide automatic scalability of the running services within their core
functionalities. However, although Kubernetes is currently the de facto standard
orchestrator for general-purpose applications, it lacks some functionalities required
by NF workloads, such as the possibility of defining service chains with precise

114 Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections

network topologies and configurations, and the possibility to have pods with multiple
network interfaces. Furthermore, the Service abstraction provided by Kubernetes,
which leverages horizontal scaling and provides load balancing for applications, is
not suitable for NFs since typically they are not the final recipient of the network
traffic.

To address the aforementioned limitations of Kubernetes while bringing several
of its advanced features also to the world of SFC services, we propose a model that
integrates SFCs in Kubernetes, with the explicit goal of maximizing the reuse of
existing Kubernetes features (in particular, horizontal pod autoscaling), while current
SFC technologies tend to propose dedicated mechanisms for SFCs. This simplifies
the creation of cloud-native SFCs and, with respect to automated scaling, it leads to
a higher efficiency thanks to the capability to dynamically adapt to the actual traffic
load. In fact, the proposed solution enables each NF to be independently scaled in an
arbitrary number of replicas, hence providing flexible cross-connections between
adjacent NFs instances in the chain.

This chapter is structured as follows. Section 6.2 presents the current state-
of-the-art. Section 6.3 details our model for a scalable cloud-native SFC, while
Section 6.4 provides a brief insight of a proof-of-concept implementation. Finally,
the experimental evaluation is presented in Section 6.5, while Section 6.6 concludes
the chapter.

6.2 Related Work

Several approaches for the provisioning of SFCs based on Software Defined Net-
working (SDN) and NFV technologies can be found in the literature, which has been
comprehensively analyzed in [152]. Recently, the growth of cloud-native technolo-
gies for NFs and the success of Kubernetes as orchestration platform paved the way
towards new techniques for SFCs provisioning, such as in [153] and [154].

A solution based on the Network Service Mesh (NSM) framework [155] was
proposed in [153]. NSM allows individual workloads to securely connect to Network
Services, independently of where they are running. A Network Service can be
composed of a chain of Endpoints, which actually implement the NFs. NSM provides
and manages all the necessary interconnections mechanism to let the traffic pass

6.3 System design 115

from the client workloads to the endpoints of the requested Network Services.
When a client workload requests a particular Network Service, NSM creates the
necessary interfaces on the client and on the endpoints, and configures the underneath
forwarding mechanisms in order to steer the traffic across the chain. However, NSM
does not enable any efficient load balancing among NF Endpoint replicas. For this
reason, the authors included a network-aware load balancing system in order to
leverage all the instances of a particular Endpoint.

A framework based on Contiv/VPP [156] that integrates SFCs in Kubernetes
was proposed in [154]. It consists in a Kubernetes Container Network Interface
(CNI) plugin that uses FD.io VPP to provide network connectivity between pods.
Contiv-VPP supports pods with multiple custom interfaces and enables chaining
between pods. Since Contiv-VPP enables only SFCs that are composed of single
NFs instances, scaling requires the replication of the whole chain, with a further load
balancer that distributes the traffic among the different paths.

Unlike these two solutions that require either (i) the creation of new interfaces
and links for each client session or (ii) the replication of the whole SFC, our solution
allows to define NF cross-connections only once, when the chain is initialized, and
leverages the native Kubernetes autoscaling at the NF-level granularity, improving
the efficiency and simplicity the solution. This was achieved introducing the new
concept of flexible-cross connections, which connect replicas of adjacent NF and are
dynamically adapted in case of scaling events.

6.3 System design

6.3.1 Goals

Since Kubernetes does not provide any abstraction to support SFCs, our solution (i)
introduces a proper model for SFCs, and (ii) defines the logic required to support
multiple and independent NFs replicas in the chains, while leveraging existing
Kubernetes features to the maximum extent. In details, our work addresses the
following four goals.

Declarative definition of SFCs. SFCs must be created with a simple declarative
description that includes only (logical) NFs and their interconnecting links, without

116 Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections

NAT-1
FW-1

FW-2

FW-3

GW-1

NAT-2 GW-2

Cross
Connection

Cross
Connection

Fig. 6.1 An example of a scalable SFC composed of a NAT, a Firewall and a Gateway.

any further low-level detail, such as the number of NF replicas in each stage of the
chain, or how the traffic is distributed among existing replicas.

Automatic support for multiple replicas of a NF. Each NF in the chain may be
executed with an arbitrary number of replicas (e.g., Figure 6.1). This enables the
creation of multiple paths across NFs of the chain for optimal workload distribution,
which demands for a clever traffic distribution mechanism that is implemented
transparently by our solution.

Automatic adaptation of the chain to the variation of replicas. Each NF in the
chain must be able to scale (e.g., in/out) automatically, mostly leveraging existing
Kubernetes mechanisms (e.g., horizontal autoscaling). This requires our solution
to dynamically adapt the cross-connections between consecutive NFs to keep them
aligned with the number of instances present at any given moment. This ensures that
new replicas are used and no traffic is forwarded to deleted replicas, which can be
achieved through consistent hash mechanisms to keep established sessions to the
existing replicas.

Support for L2/L3 NFs. The solution must support both Layer 3 NFs, which
have a MAC/IP address on their interfaces (e.g., a router), and NFs operating as
bump-in-the-wire transparent middleboxes, processing all traffic flowing through
them regardless of L2 addressing (e.g., a transparent firewall).

This work leverages existing Kubernetes mechanisms to decide when and how to
scale NF replicas; hence, how to allocate resources and where to schedule each pod.
However, pure standard Kubernetes algorithms might not always take the optimal
decision for SFC workloads; as illustrative examples, the default autoscaling criteria
is based on CPU load, which is not appropriate for NFs running according to the
busy-polling model; the default scheduling policy may not recognize the necessity to
run two consecutive NFs on the same server to minimize I/O traffic, and more. The
solution consists in creating additional Kubernetes components that, for example,
export new metrics to drive the autoscaling mechanisms (e.g., based on the amount

6.3 System design 117

of traffic instead of the CPU used), or additional policies (e.g., affinities) to influence
the decisions of the scheduler. Nevertheless, our approach enables reusing a large
amount of tested code already present in Kubernetes, which greatly reduces the
number of problems that need to be considered when running a SFC.

6.3.2 Modeling SFCs

We modeled a SFC as a list of nodes, each one specifying a NF, and a logical
connection for each data plane interface of the NF (Figure 6.2a) that defines the next
NF that can be reached through the interface. Each NF (Figure 6.2b) is characterized
by one or more data plane interfaces, each one with its own network configuration
(e.g., MAC/IP addresses, etc.; Figure 6.2c). One additional interface could be
natively handled by Kubernetes and attached to the main CNI plug-in, which can
be used for management purposes. Since a running NF can include one or more
replicas, interfaces of each replica have exactly the same network configuration
(including IP/MAC address, if present), hence making each replica just a new pool
of computing resources that is (from the data plane point of view) indistinguishable
from other ones.

This high-level connection model enables also the support for asymmetric NFs,
e.g., a NAT, which apply a different processing to traffic according to its direction.

Modeling flexible cross-connections

To enable the connectivity between multiple replicas of adjacent NFs, we need a
flexible cross-connection that connects adjacent groups of NF replicas according to
the corresponding logical connections specified in the SFC models. Each instance of
the cross-connection is two-sided and bidirectional, i.e., it can only manage traffic
between two consecutive NFs, with packets that can flow in both directions. The
number of handled replicas may be asymmetrical on the two sides and also variable
over time.

Flexible cross-connections, compared to simple point-to-point links, have to
manage a higher level of complexity deriving from the larger number of possible
connections between NF groups. Furthermore, they provide traffic forwarding
capabilities and all the necessary logic to distribute the traffic among all the NF

118 Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections

kind: ServiceFunctionChain
metadata:

name: transparent-firewall
spec:

networkFunctions:
- name: nat

links:
firewall: eth1

- name: firewall
links:

nat: eth1
gw: eth2

- name: gw
links:

firewall: eth1

a. Service Function Chain

kind: Deployment
metadata:

name: gw-deployment
spec:

selector:
sfc.polito.it/networkFunction: gw

template:
metadata:

labels:
sfc.polito.it/networkFunction: gw

annotations:
k8s.v1.cni.cncf.io/networks: sfc-gw-if@eth1

b. Network Functions

kind: NetworkAttachmentDefinition
metadata:

name: sfc-if-gw
spec:

config: '{
"cniVersion": "0.3.1",
"name": "sfc-cni",
"type": "sfc-cni",
"macGenerationString": "gw",
"ipam": {

"type": "static",
"addresses": [{"address": "10.240.0.2/24"}]

}
}'

c. Data plane interfaces config

Each link specifies the neighboring NF and the
interface through which it can be reached

Name of the interface

The lack or presence of this
field defines whether the NF
is L2 (lack) or L3 (presence)

Identifier of the
interface configuration

Fig. 6.2 Description of a simple SFC, referred to the chain of Figure 6.1.

replicas. The logic that determines how the traffic is distributed is based on network
sessions (e.g., TCP/UDP 5-tuple), coupled with consistent hashing mechanisms to
ensure that all the packets belonging to the same sessions are always forwarded to
the same NF instances. This association between session flows and NF replicas
occurs for each step of the SFC. As a result, the traffic of each session traverses a
path composed of exactly one replica for each NF. All the above characteristics are
transparent to NFs, which are not aware of the presence of any intermediate cross-
connection, nor have any knowledge about the preceding/following NF replicas.

6.4 Implementation Overview 119

6.4 Implementation Overview

This section presents an open-source1 PoC implementation of our model. Since
the system was conceived to be integrated with Kubernetes, some of the proto-
type components have been designed to leverage the extensibility features of the
aforementioned platform. This is the case of the SFC CNI plugin, which allows to
configure the data plane interfaces of NF pods, and of the SFC Operator which acts
as a manager for SFCs resources in the cluster, allowing to instantiate chains given
their logical model. The other fundamental component is the eBPF Load Balancer,
which implements the flexible cross-connections between NFs.

6.4.1 SFC CNI Plugin

The SFC CNI plugin allows to configure the L2/L3 data plane interfaces on NF pods,
and has been designed to operate in conjunction with Multus CNI [157]. Multus is a
meta-plugin that allows the use of multiple CNI plugins, to support multiple NICs
in Kubernetes. By default, Kubernetes allows to have only one NIC for each pod,
which is connected to the main cluster network. However, one NIC is usually not
enough for NFs, since they typically need at least two additional interfaces (ingress
and egress).

The SFC CNI plugin configures veth pairs that connect the pods with the network
namespace of the host on which they are scheduled. For what concerns IP addressing,
the system requires the use of the static IPAM plugin in order to assign the same
addresses to all the replicas of a NF. Similarly, also the MAC address assigned by
this plugin is required to be the same for groups of replicas. In addition, the SFC
CNI plugin stores the details about interfaces configuration on the corresponding
Kubernetes pod resource, in order to make this information available to the SFC
Operator when it has to connect the pod to the eBPF-based load balancers.

6.4.2 eBPF Load Balancer

Our flexible cross-connections are based on eBPF [19], which has been chosen for
its proven capability to create efficient network functions [40]; in fact, it can process

1https://github.com/fmonaco96/sfc-k8s

https://github.com/fmonaco96/sfc-k8s

120 Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections

the traffic on its natural path inside the Linux network stack, with clear benefits
in terms of performance and transparency. The eBPF load balancer handles the
traffic between two NFs, irrespective of the actual number of replicas. Hence, it can
implement an N-to-M cross-connection between all veth interfaces associated to
two consecutive NFs in the SFC, which terminate in the host network namespace.

The eBPF load balancer operates at the Traffic Control (TC) level in the Linux
networking stack, leveraging the hook points of the veth on the host side. This
allows the packets coming from the pods to be immediately processed as soon as
they arrive at the ingress interface of the host, hence without touching in any way
the container where the NF is running. We rely on some internal eBPF maps to
keep all the information about connected NFs and handled sessions. In particular,
they leverage two array maps containing the indexes of the NF interfaces connected
on each side. The session table, which is a hash table, associates each handled
TCP/UDP 5-tuple with two interface indexes: one is the index of the interface from
which the first packet of the session was received and the other one is the index of
the egress interface selected by the load balancing logic for that session.

This selection is made in two phases: (i) an hash function is applied to the session
5-tuple and (ii) the obtained value is used as an index to select an entry from the array
map of the egress interface indexes. A more elaborate consistent hashing mechanism
could be used to limit the shuffling of sessions that can not be stored in the session
table when the latter is full, but this optimization is left as a future work. Furthermore,
an additional hash map is used as a small ARP cache to facilitate the management of
the ARP protocol across the chain. In fact, since the IP/MAC addressing is the same
for each group of replicas, the ARP request/replies are always identical. Responses
can therefore be cached so that, after the first reply, load balancers are able to respond
immediately with the cached reply, without having to propagate the request across
the chain.

6.4.3 SFC Operator

The SFC Operator acts as a manager for the system implementing the Operator
Pattern of Kubernetes. It operates as a controller for ServiceFunctionChain
and LoadBalancer custom resources, which represent the SFCs and eBPF Load
Balancers instances in a cluster and are stored in etcd. This operator runs as

6.4 Implementation Overview 121

privileged DaemonSet in the hosts’ network namespace, due to the necessity to
manipulate the network stack and attach the eBPF Load Balancers to veth interfaces.
Moreover, it watches the Kubernetes resource representing the NF pods in order to
immediately detect if there is a new replica or an existing one is going to be deleted.

The SFC Operator has been implemented using Kopf [158], a framework that
allows to write Kubernetes Operators in Python. This allowed us to leverage the
BCC toolkit [159] to handle the eBPF Load Balancer instances. In this way, it was
possible to create a single program that could deal with the management of events
concerning SFC cluster resources, but also with the practical aspects concerning the
configuration of the data plane of eBPF Load Balancers. When the SFC Operator
notices that there is a new SFC resource in the cluster, it creates the load balancers
across the chain, compiling and injecting the corresponding eBPF code in the Linux
kernel. It then configures the TC hook of the NFs interfaces so that all the generated
traffic is handled by the load balancing logic, providing a logical link between NFs
and load balancers. During the operation of the chain, when it detects an event on
NF replicas, it updates the configuration of adjacent eBPF Load Balancers so that
they are always aligned to work with the instances present at the moment.

6.4.4 SFC Lifecycle

The lifecycle of a SFC is determined by its corresponding ServiceFunctionChain
resource. These resources allow users to create SFCs in a fully declarative way
without the need of any other further detail, leaving the practical operations to the
SFC Operator. Figure 6.3 shows the main actions performed by the SFC Operator
when it has to manage the creation of a new chain. As soon as a user applies a
manifest of a SFC to the Kubernetes API Server, (1) the SFC operator watches the
related event and (2) parses the provided description in order to obtain the chain
structure. During this phase, for each couple of adjacent NFs, it creates and pushes
to the API server a LoadBalancer manifest and, at the same time, through another
controller, it proceeds with the actual instantiation of the load balancers injecting
their eBPF code in the kernel (3). After their successful creation, the SFC Operator
proceeds with the creation of the links between NF pods veth interfaces and adjacent
load balancers (4), configuring the TC hook of the pods veth interfaces so that all
incoming packets are processed by the load balancing logic. Moreover, it pushes the

122 Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections

(2)

(1)

worker

veth-nfa-1 veth-nfb1-1 veth-nfb1-2 veth-nfc-1

veth-nfb2-1 veth-nfb2-2
Host

SFC Operator
(3)

(4)

NF-A

eth1

NF-B1

eth1 eth2

NF-C

eth1

eth1 eth2

NF-B2

Load Balancer Load Balancer

Fig. 6.3 Chain creation process

interfaces indexes in the load balancer data structures so that they know to which
NFs they are linked.

As concerns the deletion, when a user deletes the ServiceFunctionChain
resource from the cluster, the SFC operator reacts removing the eBPF Load Balancers
injected in the kernel and cleaning up all the TC hooks of veth interfaces attached
to the NF pods.

6.4.5 NF scaling

In order to properly handle scaling and more generally the creation and the deletion
of NF pods, the system reacts to two specific events during the lifecycle of the pod.
The first one is the beginning of pod execution and the second one is the start of
the pod deletion procedure. When the SFC Operator notices that a new NF pod has
entered the running phase, it immediately proceeds with the operations needed to
include it in the chain. First, it searches for all the eBPF Load Balancers it must be
linked to, then it proceeds with the actual connection of the NF pod interfaces as
described previously. On the other hand, as soon as the SFC Operator notices that a
NF pod is going to be deleted, it removes from load balancers all the information
related to that replica so that it will not be selected by the load balancing logic

6.5 Evaluation 123

anymore. It is important to highlight that the above clean-up operations must occur
before actually shutting down the pod in order to avoid dropping packets. This can
be achieved by postponing the actual NF pod termination so that the SFC Operator
has enough time to complete the cleanup, which can be done by leveraging the
PreStop hook in the containers lifecycle, that allows the execution of a command
before starting the termination phase.

6.5 Evaluation

This section presents a preliminary evaluation of the proposed architecture in terms
of performance and reaction times. First, we compare our SFC scaling approach that
operates on individual NFs against the alternative approach based on the scaling of
the whole chain. Second, we evaluate the performance of the eBPF Load Balancers
in terms of their throughput. Third, we measure the reaction time of the overall
system at the occurrence of scaling events.

6.5.1 NF scaling efficiency

In our solution, the scaling of NFs is based on the autoscaling features of Kubernetes,
whose logic operates on each single NF deployment. This enables SFCs that can
scale only the component that is stressed or underused, allowing better resource
usage compared to other approaches that scale the whole chain. To highlight this
aspect, we measured the amount of resources requested by an SFC when it scales
out only a stressed NF as opposed to when it scales out the entire chain. The tested
SFC was composed of three NFs: a firewall, a simple pass-through traffic policer,
and a gateway. In terms of computational resources they requested2 200, 150, 100
milliCPU respectively for each instance. The firewall is the NF that is assumed to
scale.

Figure 6.4 shows the results of the test in terms of milliCPU requested by the
entire chain for the two approaches as the number of replicated instances increase.
In case of interrupt-based NFs, the requested CPU does not imply it is actually
consumed, hence it could be re-assigned to other services demanding more CPU

2In Kubernetes, requests determine the amount of resources reserved for a pod, which may be
different from the consumed resource, which is usually smaller than the value above.

124 Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections

1 2 3
0

500

1,000

#replicas

R
es

er
ve

d
re

so
ur

ce
s

(m
ill

iC
PU

)
SFC with scaling FW Entire SFC scaling

Fig. 6.4 Requested milliCPU as the number of scaled instance increase.

power. However, this is possible only in case the over-allocation policy is allowed,
which is usually discouraged in case of strong service guarantees. Vice versa, with
NFs based on a busy-polling model (e.g., in case of DPDK-based NFs), the amount
of CPU actually consumed is equal to the reserved value, independently of the
amount of traffic to be processed, hence leading to an unnecessary waste of resources.
Hence, this result confirms that the scaling performed on individual NFs allows to
greatly decrease the resource utilization, avoiding unnecessary over-allocations or
resources wasted by busy-polling NFs.

6.5.2 eBPF Load Balancer performance

In the traditional approach in which the whole chain is scaled, NFs can be directly
connected through a point-to-point link (e.g., veth). Instead, in our architecture
the fan-in/fan-out of each NF can be potentially greater than one, hence requiring
the presence of a load balancer between NFs, which may introduce additional
performance penalties. This section evaluates this additional cost of the eBPF load
balancer, compared to other two interconnection mechanisms provided by Linux
kernel: Virtual Ethernet (veth) and the standard Linux bridge software. In this test,
physical connections between NF pods are created as follows:

6.5 Evaluation 125

Client-Server Client-Firewall-Server
0

20

40

G
bi

ts
/s

ec
Linux Veth eBPF Load Balancer Linux Bridge

Fig. 6.5 Performance comparison between scenarios’ sub-cases.

• Virtual ethernet: the veth is used as a direct link between the NFs. One end
of the veth is placed in the network namespace of the first NF and the other
end is placed in the network namespace of the second NF.

• eBPF Load Balancer: each NF is connected to the host network namespace
through a veth and the load balancer cross-connects the veth ends on the host
side.

• Linux bridge: similar to the previous case, but in this case the veth head
ending in the host network namespace are connected through a Linux bridge.

Tests address two different scenarios: (i) a chain composed of two pods, a client
and a server; (ii) a chain composed of three pods, a client, a transparent firewall
and a server. In these tests, each NF is deployed with a single replica. In both
scenarios all the pods of the chain are executed on the same Kubernetes node, with
the physical interconnections implemented through the above technologies. The
throughput of each chain has been measured with iperf3, using TCP traffic with
standard parameters.

Results in Figure 6.5 show that the additional overhead introduced by the eBPF
load balancer is very limited compared to the optimal case (veth), and much better
than any alternative technologies, such as Linux bridge. This is due to the efficiency
provided by the eBPF technology, which operates directly in-kernel, thus avoiding
expensive context switching. Hence, despite the proof-of-concept (session-based)
load-balancing logic, our implementation proved to be definitely faster than the
standard Linux bridge.

126 Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections

6.5.3 Reaction Time

In order to evaluate the reaction time of the system, we measured the time required
from a change of state of a replica to be noticed by the operator, and also how
long it takes to the operator to configure/clean-up the interfaces and update the
load balancing rules affected by the event. For the tests, a generic NF with two
network interfaces has been used. For this reason, the add or remove operations on
the interfaces are performed twice for each event. The time taken to update the load
balancers eBPF maps is not shown in the results because its contribution is so low
that can be considered negligible.

The first test evaluates the time elapsed from starting a pod (representing a new
replica) until it is fully included in the chain by the operator. Results in Figure 6.6
show that most of the delay is due to the propagation of the event related to the status
of the running pod in the cluster, which falls under the responsibility of the standard
Kubernetes logic, while the time required by our operator is much smaller. More in
depth, the graph shows that, within the operator, the most time-consuming operations
are the configuration of the two TC hook filters (before/after the NF) that connect
the current NF to the rest of the chain through the eBPF load balancing logic.

The reverse case is the scale-in operation, which corresponds to the removal of
one replica. In this case, the operator reacts as soon as it detects that a pod is going
to be deleted. In this test we measured the time taken by the SFC to converge to the
new state, starting from the instant in which the pod begins its graceful termination
to when it is successfully removed from the chain and all the cross-connections are
properly updated. The pod used in the tests was forced to delay the beginning of the
termination procedure by 0.5 seconds.

Milliseconds
0 50 100 150 200 250 300 350 400 450 500

Delay from start of Pod execution

Operator activity

Configure TC hook filter (1)

Configure TC hook filter (2)

Fig. 6.6 Reaction time composition for a new replica event.

6.6 Conclusions 127

0 50 100 150 200 250 300 350 400 450 500

Pod Termination

Delay from start of Pod Termination

Operator activity

Remove TC hook filter (1)

Remove TC hook filter (2)

Milliseconds

Fig. 6.7 Reaction time composition for a terminating replica event.

Figure 6.7 shows that the time spent by the operator is similar to the previous
test. In this case the main contribution is given by the removal of TC hook filter
from the veth interfaces. Even in this case the operator reacts after a slight delay as
evidenced by the grey bar in the picture, due also in this case to the time to propagate
the deletion event in the cluster. The dashed line highlights the moment in which the
replica is no longer part of the chain, showing that the SFC converges much faster
than the time required by Kubernetes to terminate the pod. This is a desired result,
as the operator must complete his operations before the pod terminates in order to
prevent traffic from being forwarded to a replica that no longer exists.

Finally, additional tests (not shown here for the sake of brevity) confirm that no
packets are lost in the reconvergence process, hence making this operation loss-free.
However, some traffic sessions are handled by a different replica than before, with
possible problems in case of stateful NFs. A clever mechanism that avoids session
redirections, which requires a smarter load balancer and a more sophisticated pod
termination logic, is left to our future work.

6.6 Conclusions

This chapter presented a possible approach for highly scalable SFCs in a cloud-native
environment such as Kubernetes. In particular, we proposed a model to represent
the concept of scalable SFCs and a PoC implementation to integrate them into the
aforementioned platform. This work demonstrates the possibility to support SFCs
with an arbitrary number of NF replicas that can change continuously over time, thus

128 Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections

enabling the creation of chains that can dynamically adapt to the traffic load, with
support for different L2/L3 network models.

Our experimental evaluation has shown that our solution achieves better results
in terms of overall resource consumption compared to other approaches based
on the scaling of whole SFCs. The performance evaluation of our eBPF-based
cross-connections have shown that the maximum throughput is comparable with
simpler direct links, emphasizing the low overhead deriving from the additional load
balancing logic.

As part of our future work, we foresee the possibility to extend the load balancing
implementation with a more advanced weighted logic based on the effective load on
NFs, which could further optimize the use of NFs resources and improve the average
quality of services offered by SFCs.

Part V

Concluding Remarks

Chapter 7

Concluding Remarks

In this dissertation, we explored the challenges faced by edge computing deploy-
ments in supporting the increasing volume of network traffic and cloud applications
that seek the latency, throughput, and security advantages promised by moving com-
putation to the network edge. We addressed the problem of resource optimization
from different directions, in order to provide optimal support for the heterogeneous
kinds of traffic and types of applications that rely on edge data centers. We first
made the case for sharing the same physical nodes to run both cloud-native appli-
cations and telco provider network functions, underlining how a rigid partitioning
of servers between the two kinds of workloads is not feasible due to the limited
amount of resources available. In this respect, by designing a proof-of-concept 5G
UPF we showed how running eBPF-based telco-grade network functions in-kernel
is possible and allows a higher degree of integration and easier resource sharing
with cloud-native applications relying on the kernel TCP/IP stack, unlike other
widespread kernel-bypass frameworks. We then explored the capabilities of the
XDP/AF_XDP systems of the Linux kernel to flexibly steer traffic in user space
or process it in kernel space, showing how a hybrid approach can be used to max-
imize the throughput according to the kind of traffic being processed. To allow
multiple customers to leverage the advantages of edge computing in an efficient way
we addressed the problem of multi-tenancy and designed SURE, a fast and secure
serverless framework for microservices. Leveraging a light and secure virtualization
environment based on Unikernels, and enhancing it with a fast zero-copy data plane
based on shared memory and a low-overhead library-based sidecar, both hardened
with hardware-based memory protection mechanisms, SURE guarantees the isola-

131

tions required by customers when running their workloads in public environments,
without compromising on performance. At last, we addressed the problem of service
orchestration with a focus on their interconnection. We showed how the use of
eBPF to interconnect application modules can be simplified without reduction of
performance, by designing a Kubernetes network provider composed of reusable
eBPF modules coming from the traditional networking world, and we extended the
automatic scaling capabilities of Kubernete to network function chains, by designing
a chaining mechanism based on scalable cross-connections.

While this dissertation mainly focused on different aspects of resource optimiza-
tion in isolation we plan, as a future work, to design a holistic system for resource
orchestration at the edge that, by combining the insight and innovations presented
in this work, can orchestrate the heterogeneous set of application and patterns of
traffic present at the edge achieving, at the same time, efficiency and optimaility with
respect to the selected objective function.

References

[1] https://istio.io/, 2024. [ONLINE].

[2] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang,
Xuan Kelvin Zou, Xiongchun Duan, Peng He, Arvind Krishnamurthy,
Matthew Lentz, Danyang Zhuo, and Ratul Mahajan. Dissecting service
mesh overheads, 2022.

[3] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and K. K. Ramakr-
ishnan. Spright: Extracting the server from serverless computing! high-
performance ebpf-based event-driven, shared-memory processing. In Pro-
ceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM ’22, page
780–794, New York, NY, USA, 2022. Association for Computing Machinery.

[4] Thomas Graf. How eBPF will solve Service Mesh – Goodbye Sidecars. https:
//isovalent.com/blog/post/2021-12-08-ebpf-servicemesh/, 2024. [ONLINE].

[5] Mansoor Shafi, Andreas F. Molisch, Peter J. Smith, Thomas Haustein, Peiying
Zhu, Prasan De Silva, Fredrik Tufvesson, Anass Benjebbour, and Gerhard
Wunder. 5g: A tutorial overview of standards, trials, challenges, deployment,
and practice. IEEE Journal on Selected Areas in Communications, 35(6):1201–
1221, 2017.

[6] Lalit Chettri and Rabindranath Bera. A comprehensive survey on internet
of things (iot) toward 5g wireless systems. IEEE Internet of Things Journal,
7(1):16–32, 2020.

[7] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta,
and Dario Sabella. On multi-access edge computing: A survey of the emerging
5g network edge cloud architecture and orchestration. IEEE Communications
Surveys & Tutorials, 19(3):1657–1681, 2017.

[8] Pasika Ranaweera, Anca Delia Jurcut, and Madhusanka Liyanage. Survey on
multi-access edge computing security and privacy. IEEE Communications
Surveys & Tutorials, 23(2):1078–1124, 2021.

[9] Luigi Rizzo. netmap: a novel framework for fast packet i/o. In 21st USENIX
Security Symposium (USENIX Security 12), pages 101–112, 2012.

https://istio.io/
https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh/
https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh/

References 133

[10] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and
Dejan Kostić. Packetmill: toward per-core 100-gbps networking. In Proceed-
ings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’21, page 1–17,
New York, NY, USA, 2021. Association for Computing Machinery.

[11] Dpdk. https://www.dpdk.org/, 2024. [ONLINE].

[12] Pf_ring zc (zero copy). https://www.ntop.org/products/packet-capture/pf_
ring/pf_ring-zc-zero-copy/. Accessed: 2024-02-21.

[13] Danielle E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao
Shang, and Jinnah Dylan Hosein. Maglev: A fast and reliable software
network load balancer. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages 523–535, Santa Clara, CA,
2016.

[14] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy,
and Scott Shenker. NetBricks: Taking the v out of NFV. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16),
pages 203–216, Savannah, GA, November 2016. USENIX Association.

[15] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire
Todeschi, K.K. Ramakrishnan, and Timothy Wood. Opennetvm: A platform
for high performance network service chains. In Proceedings of the 2016
Workshop on Hot Topics in Middleboxes and Network Function Virtualization,
HotMIddlebox ’16, page 26–31, New York, NY, USA, 2016. Association for
Computing Machinery.

[16] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace packet
processing. In 2015 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), pages 5–16, 2015.

[17] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sungh-
wan Ihm, Dongsu Han, and KyoungSoo Park. mTCP: a highly scalable
user-level TCP stack for multicore systems. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14), pages 489–502,
Seattle, WA, April 2014. USENIX Association.

[18] F-Stack. https://www.f-stack.org/, 2024. [ONLINE].

[19] Matt Fleming. A thorough introduction to ebpf, 2017.

[20] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. The express data
path: Fast programmable packet processing in the operating system kernel. In
Proceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies, CoNEXT ’18, pages 54–66, New York, NY,
USA, 2018. Association for Computing Machinery.

https://www.dpdk.org/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.f-stack.org/

134 References

[21] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Mauricio Bernal, Yun-
song Lu, and Jianwen Pi. Securing linux with a faster and scalable iptables.
SIGCOMM Comput. Commun. Rev., 2019.

[22] Gilberto Bertin. Xdp in practice: integrating xdp into our ddos mitigation
pipeline. In Technical Conference on Linux Networking, Netdev, volume 2,
pages 1–5. The NetDev Society, 2017.

[23] Katran. https://github.com/facebookincubator/katran. (Accessed on: Feb. 8,
2022).

[24] Daniel J Walsh. Are docker containers really secure? https://opensource.com/
business/14/7/docker-security-selinux, 2014. [ONLINE].

[25] Federico Parola, Fulvio Risso, and Sebastiano Miano. Providing telco-oriented
network services with ebpf: the case for a 5g mobile gateway. In 2021 IEEE
7th International Conference on Network Softwarization (NetSoft), pages
221–225, 2021.

[26] Federico Parola, Roberto Procopio, Roberto Querio, and Fulvio Risso. Com-
paring user space and in-kernel packet processing for edge data centers. SIG-
COMM Comput. Commun. Rev., 53(1):14–29, apr 2023.

[27] Federico Parola, Leonardo Di Giovanna, Giuseppe Ognibene, and Fulvio
Risso. Creating disaggregated network services with ebpf: the kubernetes
network provider use case. In 2022 IEEE 8th International Conference on
Network Softwarization (NetSoft), pages 254–258, 2022.

[28] Francesco Monaco, Giuseppe Ognibene, Federico Parola, and Fulvio Risso.
Enabling scalable sfcs in kubernetes with ebpf-based cross-connections. In
2022 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), pages 33–38, 2022.

[29] Tamás Lévai, Gergely Pongrácz, Péter Megyesi, Péter Vörös, Sándor Laki,
Felicián Németh, and Gábor Rétvári. The price for programmability in the
software data plane: The vendor perspective. IEEE Journal on Selected Areas
in Communications, 36(12):2621–2630, 2018.

[30] Suneet Kumar Singh, Christian Esteve Rothenberg, Gyanesh Patra, and
Gergely Pongracz. Offloading virtual evolved packet gateway user plane
functions to a programmable asic. In Proceedings of the 1st ACM CoNEXT
Workshop on Emerging in-Network Computing Paradigms, pages 9–14, 2019.

[31] DongJin Lee, JongHan Park, Chetan Hiremath, John Mangan, and Michael
Lynch. Towards achieving high performance in 5g mobile packet core’s user
plane function. Technical report, Intel Corporation, SK Telecom, 2018.

[32] Sebastiano Miano, Fulvio Risso, Mauricio Vásquez Bernal, Matteo Bertrone,
and Yunsong Lu. A framework for ebpf-based network functions in an era
of microservices. IEEE Transactions on Network and Service Management,
18(1):133–151, 2021.

https://github.com/facebookincubator/katran
https://opensource.com/business/14/7/docker-security-selinux
https://opensource.com/business/14/7/docker-security-selinux

References 135

[33] Quentin Monnet. Stateful packet processing: two-color token-bucket poc in
bpf, 2017.

[34] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and
Sylvia Ratnasamy. Softnic: A software nic to augment hardware. Technical
Report UCB/EECS-2015-155, EECS Department, University of California,
Berkeley, May 2015.

[35] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Ami-
don, and Martin Casado. The design and implementation of open vSwitch. In
12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), pages 117–130, Oakland, CA, May 2015. USENIX Association.

[36] TIPSY Authors. Tipsy: Telco pipeline benchmarking system, 2018.

[37] Nguyen Van Tu, Jae-Hyoung Yoo, and James Won-Ki Hong. Accelerating
virtual network functions with fast-slow path architecture using express data
path. IEEE Transactions on Network and Service Management, 17(3):1474–
1486, 2020.

[38] Thiago A. Navarro do Amaral, Raphael V. Rosa, David F. Cruz Moura, and
Christian E. Rothenberg. An in-kernel solution based on xdp for 5g upf:
Design, prototype and performance evaluation. In 2021 17th International
Conference on Network and Service Management (CNSM), pages 146–152,
New York, NY, USA, 2021. IEEE.

[39] Federico Parola, Fulvio Risso, and Sebastiano Miano. Providing telco-oriented
network services with ebpf: the case for a 5g mobile gateway. In 2021 IEEE
7th International Conference on Network Softwarization (NetSoft), pages
221–225, New York, NY, USA, 2021. IEEE.

[40] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo, and
Mauricio Vásquez Bernal. Creating complex network services with ebpf:
Experience and lessons learned. In 2018 IEEE 19th International Conference
on High Performance Switching and Routing (HPSR), pages 1–8, New York,
NY, USA, 2018. IEEE, IEEE.

[41] Jonathan Corbet. Af_xdp, 2018.

[42] Björn Töpel. Af_xdp, zero-copy support, 2018.

[43] Björn Töpel. Introduce preferred busy-polling, 2020.

[44] Linux kernel documentation. Scaling in the linux networking stack, 2022.

[45] Jonathan Corbet. Receive packet steering, 2009.

[46] Jake Edge. Receive flow steering, 2010.

136 References

[47] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris.
Improving network connection locality on multicore systems. In Proceedings
of the 7th ACM European Conference on Computer Systems, EuroSys ’12,
pages 337–350, New York, NY, USA, 2012. Association for Computing
Machinery.

[48] Clayne B Robison. How to set up intel® ethernet flow director, 2017.

[49] Magnus Karlsson and Björn Töpel. The path to dpdk speeds for af xdp. In
Linux Plumbers Conference, San Francisco, California, 2018. Linux founda-
tion.

[50] Magnus Karlsson. add need_wakeup flag to the af_xdp rings, 2019.

[51] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić.
Reexamining direct cache access to optimize I/O intensive applications for
multi-hundred-gigabit networks. In 2020 USENIX Annual Technical Confer-
ence (USENIX ATC 20), pages 673–689, Berkeley, CA, USA, 2020. USENIX
Association.

[52] Brad Fitzpatrick. Distributed caching with memcached. Linux J., 2004(124):5,
aug 2004.

[53] Peng Zheng, Wendi Feng, Arvind Narayanan, and Zhi-Li Zhang. Nfv perfor-
mance profiling on multi-core servers. In 2020 IFIP Networking Conference
(Networking), pages 91–99, New York, NY, USA, 2020. IEEE, IEEE.

[54] Paul McKenney. What is rcu, fundamentally?, 2007.

[55] William Tu. Af_xdp support for veth, 2018.

[56] Jeffrey T Kirsher. i40e/i40evf: Use build_skb to build frames, 2017.

[57] Jesper Dangaard Brouer. bpf-examples - af_xdp-interaction, 2022.

[58] Oliver Hohlfeld, Johannes Krude, Jens Helge Reelfs, Jan Rüth, and Klaus
Wehrle. Demystifying the performance of xdp bpf. In 2019 IEEE Conference
on Network Softwarization (NetSoft), pages 208–212, New York, NY, USA,
2019. IEEE.

[59] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. Revisiting the
open vswitch dataplane ten years later. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, pages 245–257, New York,
NY, USA, 2021. Association for Computing Machinery.

[60] Marcelo Abranches and Eric Keller. A userspace transport stack doesn’t
have to mean losing linux processing. In 2020 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), pages
84–90, New York, NY, USA, 2020. IEEE, IEEE.

References 137

[61] Farbod Shahinfar, Sebastiano Miano, Alireza Sanaee, Giuseppe Siracusano,
Roberto Bifulco, and Gianni Antichi. The case for network functions decom-
position. In Proceedings of the 17th International Conference on Emerging
Networking EXperiments and Technologies, CoNEXT ’21, pages 475–476,
New York, NY, USA, 2021. Association for Computing Machinery.

[62] Jesper Dangaard Brouer. Xdp-hints: Xdp gaining access to hw offload hints
via btf, 2022.

[63] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping
Zhang, Yu Ding, Jian He, and Chengzhong Xu. Characterizing microservice
dependency and performance: Alibaba trace analysis. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC ’21, page 412–426, New York,
NY, USA, 2021. Association for Computing Machinery.

[64] Darby Huye, Yuri Shkuro, and Raja R. Sambasivan. Lifting the veil on Meta’s
microservice architecture: Analyses of topology and request workflows. In
2023 USENIX Annual Technical Conference (USENIX ATC 23), pages 419–
432, Boston, MA, July 2023. USENIX Association.

[65] What is FaaS? https://www.ibm.com/topics/faas, 2024. [ONLINE].

[66] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and scalable serverless
computing for latency-sensitive, interactive microservices. In Proceedings
of the 26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’21, page 152–166,
New York, NY, USA, 2021. Association for Computing Machinery.

[67] Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vin-
cent Liu. Executing microservice applications on serverless, correctly. Proc.
ACM Program. Lang., 7(POPL), jan 2023.

[68] Implementing Microservices on AWS. https://docs.aws.amazon.com/
whitepapers/latest/microservices-on-aws/microservices-on-aws.html, 2024.
[ONLINE].

[69] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. Cloud programming simplified: A berkeley view on serverless
computing, 2019.

[70] Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol, Haoran Zhang, Abhigna
Nagaraja, Neeraj Pathak, Girish Joshi, Carla Souza, Bo Huang, Wyatt Cook,
Andrii Golovei, Pradeep Venkat, Andrew Mcfague, Dimitrios Skarlatos, Vipul
Patel, Ravinder Thind, Ernesto Gonzalez, Yun Jin, and Chunqiang Tang.
Xfaas: Hyperscale and low cost serverless functions at meta. In Proceedings
of the 29th Symposium on Operating Systems Principles, SOSP ’23, page
231–246, New York, NY, USA, 2023. Association for Computing Machinery.

https://www.ibm.com/topics/faas
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html

138 References

[71] Chao Jin, Zili Zhang, Xingyu Xiang, Songyun Zou, Gang Huang, Xuanzhe
Liu, and Xin Jin. Ditto: Efficient serverless analytics with elastic parallelism.
In Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM
’23, page 406–419, New York, NY, USA, 2023. Association for Computing
Machinery.

[72] Jingrong Chen, Yongji Wu, Shihan Lin, Yechen Xu, Xinhao Kong, Thomas
Anderson, Matthew Lentz, Xiaowei Yang, and Danyang Zhuo. Remote
procedure call as a managed system service. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23), pages 141–159,
Boston, MA, April 2023. USENIX Association.

[73] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. Following the data,
not the function: Rethinking function orchestration in serverless computing. In
20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 1489–1504, Boston, MA, April 2023. USENIX Association.

[74] Ethan G. Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. The true cost of containing: A
gVisor case study. In 11th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 19), Renton, WA, July 2019. USENIX Association.

[75] gvisor: The Container Security Platform. https://gvisor.dev/, 2024. [ONLINE].

[76] Alessandro Randazzo and Ilenia Tinnirello. Kata containers: An emerging
architecture for enabling mec services in fast and secure way. In 2019 Sixth
International Conference on Internet of Things: Systems, Management and
Security (IOTSMS), pages 209–214, 2019.

[77] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker: Lightweight
virtualization for serverless applications. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pages 419–434,
Santa Clara, CA, February 2020. USENIX Association.

[78] Bo Tan, Haikun Liu, Jia Rao, Xiaofei Liao, Hai Jin, and Yu Zhang. To-
wards lightweight serverless computing via unikernel as a function. In 2020
IEEE/ACM 28th International Symposium on Quality of Service (IWQoS),
pages 1–10, 2020.

[79] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. Seuss: Skip redundant paths to make serverless fast. In
Proceedings of the Fifteenth European Conference on Computer Systems, Eu-
roSys ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[80] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and
Galen C. Hunt. Rethinking the library os from the top down. SIGPLAN Not.,
39(1):291–304, mar 2011.

https://gvisor.dev/

References 139

[81] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: Library operating systems for the cloud. In Proceedings of the
Eighteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’13, page 461–472, New
York, NY, USA, 2013. Association for Computing Machinery.

[82] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don
Marti, and Vlad Zolotarov. OSv—Optimizing the operating system for virtual
machines. In 2014 USENIX Annual Technical Conference (USENIX ATC 14),
pages 61–72, Philadelphia, PA, June 2014. USENIX Association.

[83] Anil Madhavapeddy and David J. Scott. Unikernels: Rise of the virtual library
operating system: What if all the software layers in a virtual appliance were
compiled within the same safe, high-level language framework? Queue,
11(11):30–44, dec 2013.

[84] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan Santhanam,
Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu, Ştefan Teodor-
escu, Costi Răducanu, Cristian Banu, Laurent Mathy, Răzvan Deaconescu,
Costin Raiciu, and Felipe Huici. Unikraft: Fast, specialized unikernels the
easy way. In Proceedings of the Sixteenth European Conference on Computer
Systems, EuroSys ’21, page 376–394, New York, NY, USA, 2021. Association
for Computing Machinery.

[85] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer,
Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My vm is
lighter (and safer) than your container. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, page 218–233, New York, NY,
USA, 2017. Association for Computing Machinery.

[86] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba Li,
Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. KylinX: A
dynamic library operating system for simplified and efficient cloud virtual-
ization. In 2018 USENIX Annual Technical Conference (USENIX ATC 18),
pages 173–186, Boston, MA, July 2018. USENIX Association.

[87] Compatibility of Unikraft. https://unikraft.org/docs/concepts/compatibility,
2024. [ONLINE].

[88] Kubernetes. https://kubernetes.io/, 2024. [ONLINE].

[89] runu OCI runtime. https://unikraft.org/docs/getting-started/integrations/
container-runtimes, 2024. [ONLINE].

[90] NanoVMs. https://nanovms.com/, 2024. [ONLINE].

[91] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
Attack of the killer microseconds. Commun. ACM, 60(4):48–54, mar 2017.

https://unikraft.org/docs/concepts/compatibility
https://kubernetes.io/
https://unikraft.org/docs/getting-started/integrations/container-runtimes
https://unikraft.org/docs/getting-started/integrations/container-runtimes
https://nanovms.com/

140 References

[92] Memory protection keys. https://lwn.net/Articles/643797/, 2024. [ONLINE].

[93] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art
of virtualization. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, page 164–177, New York, NY,
USA, 2003. Association for Computing Machinery.

[94] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX
annual technical conference, FREENIX Track, volume 41, page 46. Califor-
nia, USA, 2005.

[95] Jesse Hertz. Abusing privileged and unprivileged linux containers. Whitepaper,
NCC Group, 48, 2016.

[96] Aaron Grattafiori. Understanding and hardening linux containers. Whitepaper,
NCC Group, 2016.

[97] Anjali, Tyler Caraza-Harter, and Michael M. Swift. Blending containers
and virtual machines: A study of firecracker and gvisor. In Proceedings
of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’20, page 101–113, New York, NY, USA, 2020.
Association for Computing Machinery.

[98] Shixiong Qi, Ziteng Zeng, Leslie Monis, and K. K. Ramakrishnan. Middlenet:
A unified, high-performance nfv and middlebox framework with ebpf and
dpdk. IEEE Transactions on Network and Service Management, pages 1–1,
2023.

[99] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang, and
Rachit Agarwal. Understanding host network stack overheads. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 65–77,
New York, NY, USA, 2021. Association for Computing Machinery.

[100] Lianjie Cao and Puneet Sharma. Co-locating containerized workload using
service mesh telemetry. In Proceedings of the 17th International Conference
on Emerging Networking EXperiments and Technologies, CoNEXT ’21, page
168–174, New York, NY, USA, 2021. Association for Computing Machinery.

[101] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution, low
noise, l3 cache Side-Channel attack. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 719–732, San Diego, CA, August 2014. USENIX
Association.

[102] Drew Dean and Alan J Hu. Fixing races for fun and profit: how to use access
(2). In USENIX security symposium, pages 195–206, 2004.

[103] Jason Zhijingcheng Yu, Shweta Shinde, Trevor E. Carlson, and Prateek Saxena.
Elasticlave: An efficient memory model for enclaves. In 31st USENIX Security
Symposium (USENIX Security 22), pages 4111–4128, Boston, MA, August
2022. USENIX Association.

https://lwn.net/Articles/643797/

References 141

[104] Sachin Ashok, P. Brighten Godfrey, and Radhika Mittal. Leveraging service
meshes as a new network layer. In Proceedings of the Twentieth ACM Work-
shop on Hot Topics in Networks, HotNets ’21, page 229–236, New York, NY,
USA, 2021. Association for Computing Machinery.

[105] Michael Hofmann. Service mesh vs. framework: resilience in distributed sys-
tems with isio or hystrix. https://devm.io/microservices/resilience-isio-hystrix,
2024. [ONLINE].

[106] Service mesh and service discovery. https://www.nginx.com/learn/
service-mesh/, 2024. [ONLINE].

[107] Mohammad Reza Saleh Sedghpour, Cristian Klein, and Johan Tordsson. An
empirical study of service mesh traffic management policies for microservices.
In Proceedings of the 2022 ACM/SPEC on International Conference on Per-
formance Engineering, ICPE ’22, page 17–27, New York, NY, USA, 2022.
Association for Computing Machinery.

[108] Joshua Levin and Theophilus A. Benson. Viperprobe: Rethinking microser-
vice observability with ebpf. In 2020 IEEE 9th International Conference on
Cloud Networking (CloudNet), pages 1–8, 2020.

[109] Unix domain socket. https://en.wikipedia.org/wiki/Unix_domain_socket,
2024. [ONLINE].

[110] Cilium. https://cilium.io/, 2024. [ONLINE].

[111] Linux Programmer’s Manual. tc-bpf(8). https://man7.org/linux/man-pages/
man8/tc-bpf.8.html, 2024. [ONLINE].

[112] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu. Elec-
trode: Accelerating distributed protocols with eBPF. In 20th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 23), pages
1391–1407, Boston, MA, April 2023. USENIX Association.

[113] Henrique Fingler, Amogh Akshintala, and Christopher J. Rossbach. Usetl:
Unikernels for serverless extract transform and load why should you settle
for less? In Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop on
Systems, APSys ’19, page 23–30, New York, NY, USA, 2019. Association for
Computing Machinery.

[114] Stefan Lankes, Simon Pickartz, and Jens Breitbart. Hermitcore: A unikernel
for extreme scale computing. In Proceedings of the 6th International Work-
shop on Runtime and Operating Systems for Supercomputers, ROSS ’16, New
York, NY, USA, 2016. Association for Computing Machinery.

[115] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William
Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira,
and Donald E. Porter. Cooperation and security isolation of library oses for
multi-process applications. In Proceedings of the Ninth European Conference

https://devm.io/microservices/resilience-isio-hystrix
https://www.nginx.com/learn/service-mesh/
https://www.nginx.com/learn/service-mesh/
https://en.wikipedia.org/ wiki/Unix_domain_socket
https://cilium.io/
https://ma n7.org/linux/man-pages/man8/tc-bpf.8.html
https://ma n7.org/linux/man-pages/man8/tc-bpf.8.html

142 References

on Computer Systems, EuroSys ’14, New York, NY, USA, 2014. Association
for Computing Machinery.

[116] Costin Lupu, Andrei Albiundefinedoru, Radu Nichita, Doru-Florin Blânzeanu,
Mihai Pogonaru, Răzvan Deaconescu, and Costin Raiciu. Nephele: Extending
virtualization environments for cloning unikernel-based vms. In Proceed-
ings of the Eighteenth European Conference on Computer Systems, EuroSys
’23, page 574–589, New York, NY, USA, 2023. Association for Computing
Machinery.

[117] Guanyu Li, Dong Du, and Yubin Xia. Iso-unik: lightweight multi-process
unikernel through memory protection keys. Cybersecurity, 3:1–14, 2020.

[118] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazag-
naire, David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj
Singh, Jon Ludlam, Jon Crowcroft, and Ian Leslie. Jitsu: Just-In-Time sum-
moning of unikernels. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 559–573, Oakland, CA, May
2015. USENIX Association.

[119] Dan Williams and Ricardo Koller. Unikernel monitors: Extending minimal-
ism outside of the box. In 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), Denver, CO, June 2016. USENIX Association.

[120] Giuseppe Siracusano, Roberto Bifulco, Simon Kuenzer, Stefano Salsano,
Nicola Blefari Melazzi, and Felipe Huici. On the fly tcp acceleration with
miniproxy. In Proceedings of the 2016 Workshop on Hot Topics in Middle-
boxes and Network Function Virtualization, HotMIddlebox ’16, page 44–49,
New York, NY, USA, 2016. Association for Computing Machinery.

[121] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch. Cubicleos: A library
os with software componentisation for practical isolation. In Proceedings
of the 26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’21, page 546–558,
New York, NY, USA, 2021. Association for Computing Machinery.

[122] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Alexander Jung, Stefan Lucian Teodor-
escu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre Olivier. Flexos:
Towards flexible os isolation. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’22, page 467–482, New York, NY, USA, 2022.
Association for Computing Machinery.

[123] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. NetVM: High
performance and flexible networking using virtualization on commodity plat-
forms. In 11th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 14), pages 445–458, Seattle, WA, April 2014. USENIX
Association.

References 143

[124] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao Zhang. Socksdirect:
Datacenter sockets can be fast and compatible. In Proceedings of the ACM Spe-
cial Interest Group on Data Communication, SIGCOMM ’19, page 90–103,
New York, NY, USA, 2019. Association for Computing Machinery.

[125] Hao Li, Yihan Dang, Guangda Sun, Guyue Liu, Danfeng Shan, and Peng
Zhang. LemonNFV: Consolidating heterogeneous network functions at line
speed. In 20th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pages 1451–1468, Boston, MA, April 2023. USENIX
Association.

[126] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson,
Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson,
Sujay Jayakar, Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and
Anirudh Badam. The demikernel datapath os architecture for microsecond-
scale datacenter systems. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21, page 195–211, New York, NY,
USA, 2021. Association for Computing Machinery.

[127] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operating system
for high throughput and low latency. In 11th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 14), pages 49–65, Broomfield,
CO, October 2014. USENIX Association.

[128] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, and Mike Marty. Hodor: Intra-Process isolation
for High-Throughput data plane libraries. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 489–504, Renton, WA, July 2019.
USENIX Association.

[129] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Samm-
ler, Peter Druschel, and Deepak Garg. ERIM: Secure, efficient in-process
isolation with protection keys (MPK). In 28th USENIX Security Symposium
(USENIX Security 19), pages 1221–1238, Santa Clara, CA, August 2019.
USENIX Association.

[130] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. Intra-
unikernel isolation with intel memory protection keys. In Proceedings of
the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Exe-
cution Environments, VEE ’20, page 143–156, New York, NY, USA, 2020.
Association for Computing Machinery.

[131] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl,
Michael Schwarz, Stefan Mangard, and Daniel Gruss. Donky: Domain keys –
efficient In-Process isolation for RISC-V and x86. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1677–1694. USENIX Association,
August 2020.

144 References

[132] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard.
Jenny: Securing syscalls for PKU-based memory isolation systems. In 31st
USENIX Security Symposium (USENIX Security 22), pages 936–952, Boston,
MA, August 2022. USENIX Association.

[133] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim. libmpk:
Software abstraction for intel memory protection keys (intel MPK). In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 241–254,
Renton, WA, July 2019. USENIX Association.

[134] C. Cowan, F. Wagle, Calton Pu, S. Beattie, and J. Walpole. Buffer overflows:
attacks and defenses for the vulnerability of the decade. In Proceedings
DARPA Information Survivability Conference and Exposition. DISCEX’00,
volume 2, pages 119–129 vol.2, Jan 2000.

[135] Donald Ray and Jay Ligatti. Defining code-injection attacks. In Proceedings
of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’12, page 179–190, New York, NY, USA,
2012. Association for Computing Machinery.

[136] DPDK Poll Mode Driver. https://doc.dpdk.org/guides/prog_guide/poll_mode_
drv.html, 2024. [ONLINE].

[137] Jeffrey C Mogul and Kadangode K Ramakrishnan. Eliminating receive live-
lock in an interrupt-driven kernel. ACM Transactions on Computer Systems,
15(3):217–252, 1997.

[138] send(2) — Linux manual page. https://man7.org/linux/man-pages/man2/send.
2.html, 2024. [ONLINE].

[139] recv(2) — Linux manual page. https://man7.org/linux/man-pages/man2/recv.
2.html, 2024. [ONLINE].

[140] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer overflows:
Attacks and defenses. arXiv preprint arXiv:1807.03757, 2018.

[141] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry
Ponomarev. Branchscope: A new side-channel attack on directional branch
predictor. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’18, page 693–707, New York, NY, USA, 2018. Association for
Computing Machinery.

[142] Write XOR eXecute. https://en.wikipedia.org/w/index.php?title=W%5EX&
oldid=1145060869, 2024. [ONLINE].

[143] Online Boutique. https://github.com/GoogleCloudPlatform/
microservices-demo, 2024. [ONLINE].

[144] lwIP - A Lightweight TCP/IP stack. https://savannah.nongnu.org/projects/
lwip/, 2024. [ONLINE].

https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://man7.org/linux/man-pages/man2/send.2.html
https://man7.org/linux/man-pages/man2/send.2.html
https://man7.org/linux/man-pages/man2/recv.2.html
https://man7.org/linux/man-pages/man2/recv.2.html
https://en.wikipedia.org/w/index.php?title=W%5EX&oldid=1145060869
https://en.wikipedia.org/w/index.php?title=W%5EX&oldid=1145060869
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/

References 145

[145] NGINX Service Mesh. https://www.nginx.com/products/nginx-service-mesh/,
2024. [ONLINE].

[146] Locust: A Modern Load Testing Framework. https://locust.io/, 2024. [ON-
LINE].

[147] Knative. https://knative.dev/docs/, 2024. [ONLINE].

[148] Cni – the container network interface. https://github.com/containernetworking/
cni. (Accessed on: Jan. 30, 2022).

[149] Flannel. https://github.com/flannel-io/flannel. (Accessed on: Apr. 12, 2022).

[150] Calico. https://github.com/projectcalico/calico. (Accessed on: Feb. 8, 2022).

[151] Telecom User Group. Cloud native thinking for telecommunications, 2020.

[152] Karamjeet Kaur, Veenu Mangat, and Krishan Kumar. A comprehensive survey
of service function chain provisioning approaches in sdn and nfv architecture.
Computer Science Review, 38:100298, 2020.

[153] Boutheina Dab, Ilhem Fajjari, Mathieu Rohon, Cyril Auboin, and Arnaud
Diquélou. Cloud-native service function chaining for 5g based on network
service mesh. In ICC 2020 - 2020 IEEE International Conference on Commu-
nications (ICC), pages 1–7, 2020.

[154] Adel Bouridah, Ilhem Fajjari, Nadjib Aitsaadi, and Hacene Belhadef. Opti-
mized scalable sfc traffic steering scheme for cloud native based applications.
In 2021 IEEE 18th Annual Consumer Communications & Networking Confer-
ence (CCNC), pages 1–6, 2021.

[155] The Network Service Mesh Authors. Network service mesh.

[156] The Contiv-VPP Authors. Contiv-vpp.

[157] The Multus Authors. Multus.

[158] Kopf Authors. Kubernetes operator pythonic framework (kopf).

[159] The BCC Authors. Bpf compiler collection (bcc).

https://www.nginx.com/products/nginx-service-mesh/
https://locust.io/
https://knative.dev/docs/
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/flannel-io/flannel
https://github.com/projectcalico/calico

Appendix A

List of Publications

• Federico Parola, Roberto Procopio, Roberto Querio, and Fulvio Risso. “Com-
paring User Space and In-Kernel Packet Processing for Edge Data Centers.”
ACM SIGCOMM Computer Communication Review 53, no. 1 (2023): 14-29.

• Federico Parola, Leonardo Di Giovanna, Giuseppe Ognibene, and Fulvio
Risso. “Creating Disaggregated Network Services with eBPF: the Kubernetes
Network Provider Use Case.” In 2022 IEEE 8th International Conference on
Network Softwarization (NetSoft), pp. 254-258. IEEE, 2022.

• Francesco Monaco, Giuseppe Ognibene, Federico Parola, and Fulvio Risso.
“Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections.”
In 2022 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), pp. 33-38. IEEE, 2022.

• Federico Parola, Roberto Procopio, and Fulvio Risso. “Assessing the perfor-
mance of XDP and AF_XDP based NFs in edge data center scenarios.” In
Proceedings of the 17th International Conference on Emerging Networking
EXperiments and Technologies, pp. 481-482. 2021.

• Federico Parola, Fulvio Risso, and Sebastiano Miano. “Providing telco-
oriented network services with eBPF: the case for a 5G mobile gateway.” In
2021 IEEE 7th International Conference on Network Softwarization (NetSoft),
pp. 221-225. IEEE, 2021.

• Federico Parola, Sebastiano Miano, and Fulvio Risso. “A proof-of-concept
5g mobile gateway with ebpf.” In Proceedings of the SIGCOMM’20 Poster
and Demo Sessions, pp. 68-69. 2020.

	Contents
	List of Figures
	List of Tables
	I Introduction
	1 Introduction
	1.1 Summary of contributions
	1.1.1 Enabling efficient coexistence of cloud and network workloads on the same physical server
	1.1.2 Enabling secure and efficient execution of serverless workloads on multi-tenant servers
	1.1.3 Improving the management of services through eBPF
	1.1.4 Previously published work

	II Enabling efficient coexistence of cloud and network workloads on the same physical server
	2 Providing Telco-oriented Network Services with eBPF: the Case for a 5G Mobile Gateway
	2.1 Introduction
	2.2 Design
	2.2.1 Overall Architecture
	2.2.2 GTP Handler
	2.2.3 QoS Management
	2.2.4 Traffic Classifier
	2.2.5 Router

	2.3 Evaluation
	2.3.1 Rate limiting algorithms
	2.3.2 Scalability with multiple users
	2.3.3 Multicore scalability
	2.3.4 Modules overhead

	2.4 Conclusions

	3 Comparing User Space and In-Kernel Packet Processing for Edge Data Centers
	3.1 Introduction
	3.2 Background
	3.2.1 eBPF/XDP
	3.2.2 AF_XDP sockets
	3.2.3 Packet steering mechanisms

	3.3 Benchmarking methodology
	3.3.1 Objectives
	3.3.2 Benchmarked technologies
	3.3.3 Testbed

	3.4 Dropping traffic
	3.4.1 Pure I/O performance
	3.4.2 Impact of memory demand
	3.4.3 Impact of CPU demand
	3.4.4 Traditional NF performance

	3.5 Pass-through traffic
	3.5.1 Pure I/O performance
	3.5.2 Impact of memory demand
	3.5.3 Impact of CPU demand
	3.5.4 Traditional NF Performance

	3.6 Local traffic
	3.6.1 Pure I/O performance
	3.6.2 Traditional NF performance

	3.7 Discussion and suggested best practices
	3.7.1 Mixing pass-through and dropped traffic
	3.7.2 Mixing pass-through and local traffic

	3.8 Related work
	3.8.1 DPDK user space drivers

	3.9 Conclusions

	III Enabling secure and efficient execution of serverless workloads on multi-tenant servers
	4 SURE: Secure Unikernels Make Serverless Computing Rapid and Efficient
	4.1 Introduction
	4.2 Background and motivation
	4.2.1 Isolating Serverless Functions
	4.2.2 Inter-function networking and service mesh in serverless computing
	4.2.3 Related work

	4.3 Overview of SURE
	4.3.1 System architecture of SURE
	4.3.2 SURE's trust model
	4.3.3 SURE's threat model
	4.3.4 Isolation in SURE

	4.4 Data plane design in SURE
	4.4.1 Intra-node shared memory processing
	4.4.2 Inter-node communication in SURE
	4.4.3 Library-based sidecars

	4.5 Memory-level isolation in SURE
	4.5.1 Secure APIs based on SURE call gates
	4.5.2 Preventing privilege escalation of MPK

	4.6 Performance Evaluation of SURE
	4.6.1 Microbenchmark Analysis
	4.6.2 Realistic Workload Evaluation

	4.7 Conclusions

	IV Improving the management of network services through eBPF
	5 Creating Disaggregated Network Services with eBPF: the Kubernetes Network Provider Use Case
	5.1 Introduction
	5.2 Background
	5.2.1 Kubernetes networking
	5.2.2 Service disaggregation with Polycube

	5.3 Architecture
	5.3.1 Main components
	5.3.2 Communication scenarios

	5.4 Evaluation
	5.5 Related work
	5.6 Conclusions

	6 Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections
	6.1 Introduction
	6.2 Related Work
	6.3 System design
	6.3.1 Goals
	6.3.2 Modeling SFCs

	6.4 Implementation Overview
	6.4.1 SFC CNI Plugin
	6.4.2 eBPF Load Balancer
	6.4.3 SFC Operator
	6.4.4 SFC Lifecycle
	6.4.5 NF scaling

	6.5 Evaluation
	6.5.1 NF scaling efficiency
	6.5.2 eBPF Load Balancer performance
	6.5.3 Reaction Time

	6.6 Conclusions

	V Concluding Remarks
	7 Concluding Remarks
	References
	Appendix A List of Publications

