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Abstract. Stratiform rain and the overlying ice play crucial
roles in Earth’s climate system. From a microphysics stand-
point, water mass flux primarily depends on two variables:
particles’ concentration and their mass. The Dual-frequency
Precipitation Radar (DPR) on the Global Precipitation Mea-
surement mission core satellite is a spaceborne instrument
capable of estimating these two quantities through dual-
wavelength measurements. In this study, we evaluate bulk
statistics on the ice particle properties derived from dual-
wavelength radar data in relation to the properties of rain un-
derneath. Specifically, we focus on DPR observations over
stratiform precipitation, characterized by columns exhibiting
a prominent bright band, where the melting layer can be eas-
ily detected.

Our analysis reveals a large increase in the retrieved mass
flux as we transition from the ice to the rain phase in the of-
ficial DPR product. This observation is in disagreement with
our expectation that mass flux should remain relatively sta-
ble across the bright band in cold-rain conditions. To address
these discrepancies, we propose an alternative retrieval algo-
rithm that ensures a gradual transition of Dm (mean mass-
weighted particle melted-equivalent diameter) and the pre-
cipitation rate across the melting zone. This approach also
helps in estimating bulk ice density above the melting level.
These findings demonstrate that DPR observations can not
only quantify ice particle content and their size above strat-
iform rain regions but also estimate bulk density, provided
uniform conditions that minimize uncertainties related to
partial beam filling.

1 Introduction

As part of the Global Precipitation Measurement (GPM; Hou
et al., 2014) mission, in February 2014, US and Japanese
national agencies jointly launched the spaceborne Dual-
frequency Precipitation Radar (DPR). The DPR measures
at the Ku- (13.6 GHz) and Ka-bands (35.5 GHz), improving
on the single-frequency Ku-band (13.8 GHz) radar that was
launched in 1997 with the Tropical Rainfall Measuring Mis-
sion (TRMM; Kummerow et al., 1998). Not only does GPM
have an extended latitude range of 65° S–65° N, compared to
TRMM’s 36° S–36° N, but it has also improved the system
sensitivity. In fact, the Ku-band precipitation radar is now
able to detect a minimum radar reflectivity of 15.5 dBZ (Liao
and Meneghini, 2022), whereas during the TRMM era, it was
18 dBZ (Heymsfield et al., 2000). Thanks to extended latitu-
dinal coverage, the DPR has shown that the world’s largest
storms occur primarily over mid- and high-latitude oceans in
both hemispheres (Liu and Zipser, 2015) and that the areal
coverage of storms overshooting the tropopause over central
North America and Argentina rivals that over the tropics (Liu
and Liu, 2016).

Here we investigate use of DPR data for the retrieval of
the size and the precipitation rate of ice crystals overlying
cold rain. Widespread precipitation associated with convec-
tion is a primary source of stratiform rain, especially in the
tropics. Observational and modeling studies have focused on
this topic for decades (e.g., Webster and Stephens, 1980;
Chen and Cotton, 1988). However, the climatological sig-
nificance of fundamentally differing diabatic heating profiles
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corresponding to regions of convective and stratiform rain
was fully realized only about 20 years ago (Houze, 1997).
Since then, TRMM measurements have enabled us to as-
sess the frequency and extent of stratiform rain in tropical
and subtropical regions. This classification has unveiled the
existence of more extensive stratiform rain regions over the
ocean, even though the embedded convection is notably more
intense over land (Houze et al., 2015; Schumacher and Funk,
2023). Today, identification of the precipitation type as con-
vective, stratiform, or neither is a leading element of DPR
retrievals (Awaka et al., 2021).

The microphysical properties of ice particles overlying
stratiform rain have a strong impact on the local rain rate
and the size and duration of stratiform regions (e.g., Jensen
et al., 2018). However, the physical processes governing the
size and evolution of ice particles are still poorly understood
(Ackerman et al., 2015; Barnes and Houze, 2016; de Laat
et al., 2017; Fridlind et al., 2017; Ladino et al., 2017; Law-
son et al., 2017), highlighting the need for improved ob-
servational data sources to constrain model physics. While
ice physics within convective columns is challenging to ob-
serve, stratiform rain decks are widespread and long-lived
features that can be robustly observed and evaluated in simu-
lations (e.g., via aircraft in situ measurements, Fridlind et al.,
2017). The question is to what extent can satellite remote-
sensing platforms be used to retrieve physically robust ice
properties within these features. Single-wavelength radar re-
flectivity cannot reliably constrain ice size and concentration
due to non-unique signatures from each variable (Drigeard
et al., 2015). The CloudSat radar and Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO)
introduced two-frequency (two-instrument) retrievals above
the lidar extinction level (Delanoë and Hogan, 2010; Deng
et al., 2010), providing an effective technique for character-
izing cirrus clouds and the tops of thicker clouds. Thanks to
its weaker attenuation the GPM radar offers an opportunity to
characterize the microphysical properties of precipitable-size
ice particles based on well-colocated dual-frequency mea-
surements. The possibility of characterizing ice properties
globally over stratiform rain regions from a spaceborne sen-
sor provides a unique opportunity for advancing understand-
ing of fundamental weather processes and offers a valuable
constraint for improving climate model physics.

In the following sections, we first provide an example
of DPR data obtained from a deep-stratiform rain volume
and compile 5 years of global statistics on the DPR observ-
ables and the retrieved microphysical parameters in proxim-
ity to the melting layer (Sect. 3.2). Based on these statistics,
some physically inconsistent properties of the precipitation
columns are highlighted. Then, we demonstrate an alterna-
tive retrieval scheme for ice crystal properties that differs
from the official DPR algorithm in the ice crystal density as-
sumptions (Sect. 4). It should be noted that this algorithm
is only applicable to homogenous precipitation columns and
where both frequency measurements exceed the radar sensi-

Figure 1. DPR Ku- and Ka-band radar reflectivity measurements of
a storm over Missouri on 30 April 2017 (orbit 18010). Panels (a)
and (c) depict the horizontal cross-section at the constant altitude of
4.5 km a.s.l., whereas panels (b) and (d) show the vertical crosscut
along the satellite track (29th ray).

tivity threshold. The new retrieval is validated with the po-
larimetric radar product in Sect. 6. Results and conclusions
are summarized in Sect. 7.

2 DPR measurements

To showcase the measurement capabilities of the DPR sys-
tem, we present an example of its observations and follow
it with statistics on precipitation properties in the vicinity of
the melting layer.

2.1 Example scene

Figure 1 provides an example of DPR Level-2 Ku- and Ka-
band measurements from a deep-stratiform outflow region
over Missouri in April 2017. The stratiform rain is associated
with widespread Ku-band reflectivity values peaking around
∼ 40 dBZ below the melting level. For the Ka-band chan-
nel, much weaker echoes are observed as a result of the cu-
mulative attenuation effects, mainly caused by raindrops and
melting snowflakes, and non-Rayleigh scattering signatures.
In this example, the stratiform rain is likely associated with
the outflow from the squall line system that can be seen at
the southern east end of the scene.

The vertical cross-section at the Ku-band along the satel-
lite track shows a pronounced bright band (BB) at 3–4 km
above sea level (a.s.l.), which is characteristic of stratiform
rain observed by low-frequency radars. Corresponding Ka-
band vertical cross-sections do not show a bright band but
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exhibit a sharp increase in radar reflectivity due to the water
phase transition and the resulting change in dielectric con-
stant. It is evident that the Ku-band system is more sensitive
than the Ka-band radar, with a sensitivity of 15.5 dBZ com-
pared to 19.2 dBZ (Liao and Meneghini, 2022). Therefore,
it is capable of detecting ice particles above 12 km in eleva-
tion for the presented weather system. In addition to distinct
sensitivity levels, the measured reflectivity at the two bands
above the melting zone exhibits a large difference. The mea-
sured reflectivity is a combination of the effective reflectiv-
ity Ze of the distributed hydrometeors at range r and the two-
way path-integrated attenuation (PIA):

Zm(r)= Ze(r)− 2PIA(r)= Ze(r)− 2

r∫
0

k(s)ds, (1)

where k is the one-way specific attenuation along the path.
Therefore, the difference in measured reflectivity, the so-
called dual-frequency wavelength ratio (DFR),

DFR(r)= ZKu
m (r)[dBZ] −ZKa

m (r)[dBZ] (2)

= ZKu
e (r)−ZKa

e (r)+ (non-Rayleigh)

2
[
PIAKa(r)−PIAKu(r)

]
(differential attenuation),

is a result of differences in Ze (non-Rayleigh effects) and/or
differences in specific attenuation at different channels (dif-
ferential attenuation). The non-Rayleigh effects are most ev-
ident just above the melting layer where particles tend to ag-
gregate and form large ice particles, while attenuation effects
are not as strong (see, e.g., Kuo et al., 2016). For the scene
shown in Fig. 1, the DFR reaches 7 dB in the ice phase. Be-
low the melting zone, the DFR typically increases towards
the surface due to the dominant effects of differential attenu-
ation caused by rain.

2.2 Measurement and retrieval statistics

The statistics presented in this section are based on an anal-
ysis of DPR data collected between 2015 and 2020. We se-
lected only stratiform rain columns for analysis, based on the
following criteria. First, precipitation was detected by both
GPM radars (flagPrecip=11 in the DPR Level-2 data
files; for more details see the documentation file prepared
by JAXA/EORC Team, 2017). Second, a bright band was
detected at the Ku-band (flagBB=1) with a high-quality
detection (qualityBB=1). Third, the stratiform rain type
was identified (the first bit of typePrecip equal to 1) with
high certainty (qualityTypePrecip=1). And fourth, to
avoid any contamination with melting particles introduced
by the slanted geometry of the scan, only five central scans
along the satellite track that correspond to almost nadir mea-
surements are selected. Note that the DPR beam has an ap-
proximate width of 5 km. As a result, the discrepancy in the

altitude of the bottom boundary of the radar bin can reach
approximately 1500 m (for Ku-band) or 700 m (for Ka-band)
at the edge of the swath where the local zenith angle is equal
to 17 or 8°, respectively. Moreover, before the swatch struc-
ture change in May 2018 (Liao and Meneghini, 2022), Ku-
and Ka-band radar data were not matched in the outer swath
and, consequently, dual-frequency retrieval was not available
in that region.

The aim of this study is to establish a statistical relation-
ship between DPR observables below and above the melting
zone within stratiform rain, and we focus here exclusively on
observables in these two regimes. The altitude and extent of
the melting zone are determined using the DPR version 06
(V06) bright-band detection product (Le and Chandrasekar,
2013). In order to reduce the impact of signal fluctuations
caused by instrument noise, we fit the measurements from
the DPR system with a first-order polynomial over a 0.5 km
layer above and below the bright band and then evaluate these
polynomials at the melting-layer boundaries.

Figure 2 illustrates a joint histogram of DPR observables
below and above the melting zone, corresponding to the en-
tire dataset of ∼ 9 million columns. In general, liquid-phase
hydrometeors are more reflective than ice particles at both
DPR channels. The difference in Ku-band reflectivity be-
tween the ice and rain phases is typically less than 15 dB. A
wide range of reflectivity values for solid particles producing
the same radar signal in rain highlights the diverse range of
ice properties. While interpreting this signal is not straight-
forward, some factors that contribute to the magnitude of the
reflectivity change through the melting zone can be quanti-
fied. Drummond et al. (1996) have shown (their Eq. 5) that
under an assumption of constant mass flux and a Rayleigh
scattering regime the reflectivity in ice is directly related to
the reflectivity in rain via the following formula:

Zi
[dBZ] = Zr

[dBZ] + 10log10

(
V r
D/V

i
D

)
− 6.4, (3)

where superscripts r and i denote “rain” and “ice”, respec-
tively, while VD is the backscattering-weighted mean sedi-
mentation velocity of particles in the radar volume. The fac-
tor of−6.4 dB corresponds to changes in the dielectric factor
when water transitions from the solid to liquid phase (Fabry
and Zawadzki, 1995). The second factor accounts for the
change in particle concentration required to sustain the mass
flux. Depending on the ice aerodynamics, this can compen-
sate the scattering efficiency factor by up to 6 dB, with dense
and thus fast-falling particles characterized by a small reduc-
tion. The contribution from other phenomena like the ori-
entation, shape, and density of ice particles is very difficult
to quantify, and it requires certain assumptions on particles’
morphology. Additional complexity originates from micro-
physical processes that occur within the melting zone. The
melting process cools down the air around particles, which
induces condensation of the saturated air and an increase in
the mass of particles. Furthermore, the presence of a wet
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Figure 2. The joint probability distribution functions (PDFs) of the
DPR observables measured above and below the melting zone. The
green line represents a linear fit passing through the most commonly
observed values for a given argument x. The grey-shaded area repre-
sents measurements below the signal-to-noise ratio of 1. The white
contour lines indicate a boundary of the regions that contain 1 %
and 5 % of the least commonly observed values.

coating on falling snowflakes makes them prone to aggre-
gation within the bright band (Mitra et al., 1990). On the
other hand, for strongly asymmetric particles, fragmentation
can also occur. The regression line that passes through the
most frequently observed pairs of Ku-band measurements
suggests that the reflectivity difference between different wa-
ter phases increases with rainfall intensity. This phenomenon
can be attributed to greater ice density at higher precipitation

rates, which reduces the second term in formula (3). Alterna-
tively, non-Rayleigh scattering effects in the ice portion can
lead to Zi values that are lower than predicted by Drummond
et al. (1996). Additionally, continuous particle growth within
the melting zone can favor reflectivities higher than antici-
pated below the melting zone.

Due to non-Rayleigh scattering, the Ka-band histogram
is more compact than for the lower-frequency channel. The
range of observed Ka-band reflectivity in the ice and liquid
phase are smaller by 10 dB. Moreover, the number of pairs
above the 1–1 line is also higher than at 13 GHz. The charac-
teristic hook present for strong echoes may result from non-
Rayleigh scattering in rain or strong attenuation induced by
ice and melting particles, which greatly reduces measured
echoes below the BB. Because of that, a wide range of radar
reflectivity values in ice are observed for the same reflectivity
in rain; e.g., for ZKa

m = 30 dBZ in rain the reflectivity in ice
spans from 15 to 33 dBZ. Note that the lower end of the mea-
sured reflectivity (ZKa

m < 18 dBZ) must be interpreted with
caution because the signal-to-noise ratio is small there.

DFRs below the BB exhibit a range between −2 and
15 dB, with most of the variability (from −1 to 10 dB) at-
tributed to Mie scattering at the Ka-band (Seto et al., 2013),
which is associated with drops larger than approximately
0.8 mm. The extreme observed DFR values arise primarily
from the effects of differential attenuation, with a minor con-
tribution stemming from random instrument noise at the Ku-
and Ka-bands. It is worth noting that, on average, the DFR
of ice tends to increase with the DFR of rain. This aligns
with the intuition that larger snowflakes aloft generate big-
ger drops. Having said that, the same degree of variability
in the DFR is observed within ice across all DFR values in
rain. This suggests that droplet size is not solely dependent
on the size of ice particles. Other factors, such as ice density,
should be considered for accurate modeling of the measured
reflectivity above the 0° isotherm.

3 DPR retrieval: current status

For liquid-phase particles, the DPR retrieval adopts the
gamma distribution model, i.e.,

N(D)=Nw
6(µ+ 4)µ+4

440(µ+ 4)

(
D

Dm

)µ
exp

[
−(µ+ 4)D

Dm

]
, (4)

and µ is assumed to be constant and equal to 3. Mixed-
and solid-phase particles are described in terms of melted
hydrometeors with the same gamma function (Iguchi et al.,
2018) model. By imposing the analytic form, the descrip-
tion of the complex shape of the particle size distribution
is reduced to two parameters only: the mean mass-weighted
melted-equivalent diameterDm (mm) and the generalized in-
tercept parameter Nw (mm−1 m−3). The parameter Nw func-
tions as the scaling factor for particle concentration, while
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Dm serves as the descriptor for the overall size of particles
present within the radar volume.

The definition of ice particle size remains a subject of on-
going debate within the remote sensing community (von Ler-
ber et al., 2017). Depending on specific application require-
ments, various definitions are employed to characterize the
size of individual ice particles. Even within the realm of in
situ measurements, there is no universal consensus on a sin-
gle definition. To illustrate this diversity, consider the exam-
ple of a black-and-white image of a snowflake. In such cases,
the size can be described using multiple criteria, including
but not limited to the following.

– Distance between the furthest pixels. This measures the
greatest separation between any two points on the parti-
cle’s perimeter.

– Diameter of a circumscribed circle. This refers to the
diameter of the smallest circle that fully encloses the
snowflake.

– Maximum extent along x or y axis. It represents the
greatest length along either the horizontal (x) or vertical
(y) axis of the particle.

– Area-equivalent circle diameter. This method involves
determining the diameter of a circle with the same area
as the particle.

– Diameters of a circumscribed ellipse. The diameter of
the smallest ellipse that fully encloses the snowflake.

The choice of which definition to use often depends on the
specific goals and constraints of a given research or measure-
ment task, highlighting the multifaceted nature of ice particle
size characterization in remote sensing and in situ observa-
tions.

In our current study, we choose to define the size of snow
particles based on the diameter of a spherical raindrop with
equivalent mass. Consequently, Dm is expressed in terms of
the melted-equivalent size. Throughout the paper, we will
refer to Dm as the “characteristic size” or simply “size”
for brevity. This choice aligns with the one-to-one corre-
spondence implied by the melting process, which is a cen-
tral hypothesis in our investigation. Given that the dataset
of snowflake scattering properties used in this study (avail-
able at https://doi.org/10.5281/zenodo.7510186, Mroz and
Leinonen, 2023) also includes information on particle extent
(i.e., the distance between the furthest points), it allows for
a straightforward conversion from melted-equivalent size to
physical size. The DPR algorithm utilizes a different snow
morphology assumption. Snow is modeled as spherical par-
ticles consisting of an ice and air mixture with a density of
0.1 g cm−3, irrespective of the snowflake size.

The DPR retrieval algorithm utilizes measured radar re-
flectivity, total path-integrated attenuation estimates cor-
rected for non-precipitating particles, the relationship be-

tween the precipitation rate and mean mass-weighted melted-
equivalent diameter (PR–Dm), and phase information based
on the melting-layer detection. It generates profiles of pre-
cipitation rate and drop size distribution parameters (Dm,
Nw). Additionally, profiles of effective reflectivity and spe-
cific attenuation coefficients are provided. The algorithm em-
ploys the PR–Dm relationship with an adjustment parame-
ter ε, aiming to reconcile discrepancies between the surface
reference technique (SRT) and the one simulated from hy-
drometeor profiles. Version 06 had a single ε value along the
profile, while version 07 introduces varying ε values in the
column.

The PR–Dm relation replaces the traditionally used re-
lation involving specific attenuation (k) and effective radar
reflectivity factor (Ze). While using the k–Ze relation
with the Hitschfeld–Bordan attenuation correction method
(Hitschfeld and Bordan, 1954) enables the derivation of a Ze
profile from the Zm profile without the need for scattering ta-
bles, this relation is not applicable at the Ka-band due to the
weaker correlation between involved parameters. This limi-
tation arises from rain extinction being strongly affected by
absorption rather than being dominated by scattering. Con-
sequently, the Hitschfeld–Bordan method leads to inconsis-
tencies in attenuation correction at two frequencies.

The algorithm follows a logical sequence: assuming a
gamma drop size distribution (DSD) with a fixed shape pa-
rameter, a relationship between PR andDm imposes a unique
solution for a given effective reflectivity. Consequently, the
corresponding values for Nw are found, and by using the
scattering tables the specific attenuation coefficient k is ob-
tained. The process begins at the top, where the measured
reflectivity is assumed to be unaffected by attenuation and
is iteratively corrected using the estimated k. This procedure
is applied throughout the column, resulting in the attenua-
tion profile. The process is iterated with different values of ε
to minimize the difference between the simulated PIA at the
surface reference technique estimate.

For more details about the changes introduced in ver-
sion 06 of the GPM DPR algorithm, refer to the GP-
M/DPR Level-2 Algorithm Theoretical Basis Document
(Iguchi et al., 2018) or to the algorithm description provided
by Seto et al. (2021). Additionally, the study conducted by
Chase et al. (2020) provides a thorough evaluation of the PR–
Dm relation in both rain and snow using disdrometer mea-
surements. They conclude that the PR–Dm retrieval may not
be optimal in snow due to the variability in snowflake mass,
suggesting the exploration of alternative techniques.

3.1 Example scene

Figure 3 illustrates the DPR retrieval of the particle size dis-
tribution (PSD) parameters for the storm depicted in Fig. 1.
In this study we use the DPR Level-2 version 06 (V06A)
algorithm (2A.GPM.DPR files). In the solid-phase region,
the retrieved parameters generally show a decrease in Dm

https://doi.org/10.5194/amt-17-1577-2024 Atmos. Meas. Tech., 17, 1577–1597, 2024
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Figure 3. The generalized intercept parameter (Nw), mean mass-
weighted melted-equivalent diameter (Dm), and precipitation rate
as retrieved in the DPR V06 product for the storm depicted in Fig. 1.

and Nw as the height above the bright band increases. No-
tably, sharp horizontal discontinuities in the values of the
retrieved intercept parameter indicate that the retrieval algo-
rithm is run for each ray separately. Additionally, the retrieval
results reveal that there is a higher concentration of particles
when their characteristic size is small, and vice versa. This
was already observed by Chase et al. (2021) in their Fig. 15.
The relationship between Dm and Nw varies from column to
column, resulting in horizontal inconsistencies in the micro-
physical properties. This inconsistency is particularly evident
at the detectable cloud top, where a range of sizes and parti-
cle concentrations is observed for the same radar reflectivity
value.

By assuming the falling velocity of particles is a func-
tion of diameter and density, as do Seto et al. (2013), the

retrieved PSD parameters can be converted into the snowfall
and rainfall rate. The rainfall product (Fig. 3, bottom left)
clearly indicates different characteristic features of the squall
line system (Biggerstaff and Houze, 1991): the leading con-
vective part at the southern edge of the system characterized
by heavy rain, the trailing stratiform region with moderate
rain intensities (< 10 mm h−1) in the northern part of the sys-
tem, and the transition zone between them characterized by
small diameters (center left) and low rainfall rates. Unfortu-
nately, the rainfall structure is not preserved above the freez-
ing level. A sharp discontinuity of precipitation rates through
the melting zone is particularly evident for high intensities,
where approximately a 4-fold increase is observed. Such re-
sults are at odds with melting models, where constant mass
flux is usually assumed (e.g., Szyrmer and Zawadzki, 1999;
Zawadzki et al., 2005; Matrosov, 2008) or the precipitation
rate from snow to rain changes gradually (e.g., Heymsfield
et al., 2018a; Mróz et al., 2021c).

3.2 Statistical relationship between ice and rain
parameters

In order to have a better insight into the relation between PSD
parameter within ice and rain, a histogram of the retrieved
values of Dm and Nw below and above the BB is shown
in Fig. 4. To mitigate biases arising from errors in detecting
the melting-layer extent, we define the data at 500 m above
the detected bright-band top as the region “above the melt-
ing layer”. This approach assists in screening cases where
the bright-band top altitude is uncertain and the top of the
melting layer coincides with a region of sharp reflectivity in-
crease.

The sensitivity of the DPR system combined with the as-
sumptions of the algorithm limits the lowest detectable size
at 0.5 mm (Fig. 4a). Because of the ambiguity in the inversion
process for small DFRs (Seto et al., 2013), the PSDs with a
Dm smaller than 1 mm are extremely rare. On the other hand,
there is a hard limit of 3 mm for a maximal characteristic size
as was already observed by Gatlin et al. (2020). The retrieval
suggests an increase of approximately 18 % in the Dm while
particles are falling through the melting zone. The growth
can be partially caused by the vapor deposition, which con-
tributes to the increment of ∼ 6 % in mass (Fabry and Za-
wadzki, 1995), i.e., only 2 % in terms of the size. The re-
maining 16 % of the “observed” growth should be attributed
to aggregation, or it may result from the algorithm underes-
timation of the assumed ice density/size or overestimation of
rain diameters as has been reported by Petersen et al. (2018)
and D’Adderio et al. (2018). Surprisingly, the statistical re-
lation between retrieved characteristic sizes above and below
the BB contradicts the findings of Mitra et al. (1990), who
observed that snowflake breakup during melting is not un-
common, especially for strongly asymmetric particles. The
recent melting simulations by Leinonen and Lerber (2018)
confirm that unrimed particles are prone to breakup, indi-
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Figure 4. As in Fig. 2 but for the retrieved PSD parameters in the
DPR Level-2 V06 product.

cating larger particles (in terms of melted-equivalent diam-
eter) should be expected above the BB, not below. However,
these aforementioned studies did not consider the possibility
of particle collision and coalescence within the melting zone.

The retrieved intercept parameter values are closely clus-
tered around 103.5 mm−1 m−3, with negligible variations
among different water phases (refer to Fig. 4b). This obser-
vation elucidates the rapid changes in mass flux during melt-
ing in the DPR product. In order to maintain the precipita-
tion rate, the concentration of slowly falling snowflakes must
be considerably higher than that of rapidly falling raindrops,
as posited by the mass flux conservation principle underly-
ing formula (3). The potential underestimation of ice con-

Figure 5. A PDF of the measured and the corrected for attenua-
tion Ka-band reflectivity above the melting region in the DPR V06
precipitation product.

centration aligns with recent findings by Chase et al. (2021),
who assessed DPR retrieval using airborne radar data and
collocated in situ probes, as well as the study by Mroz et al.
(2021b), who demonstrated a large underestimation of snow-
fall rates over the continental US in comparison with ground-
based radar products. A similar problem with the snowfall
deficiency in the 2A.GPM.DPR product was also reported by
Skofronick-Jackson et al. (2019) and Casella et al. (2017).
The underestimation of ice particle concentration implies a
severe discontinuity of the water mass flux through the melt-
ing zone. Figure 4c shows that the snowfall rate above the
BB is roughly one-third of the rain rate below the BB.

In-depth analysis of the modeled Ka-band reflectivity
above the bright band (BB) revealed that the radar signal cor-
rected for attenuation is, on average, smaller than the actually
measured reflectivity, as shown in Fig. 5. While some dif-
ferences between the two are expected due to random noise
in the measured reflectivity, systematic underestimation indi-
cates non-physical negative attenuation or issues in the radar
simulator’s ability to fit the measurements. These discrepan-
cies can have several consequences for the retrieval process
with the overestimation of the characteristic size of ice parti-
cles being the most obvious.

We conducted a similar analysis with another official GPM
product, specifically the 2B.GPM.DPRGMI.CORRA. This
algorithm integrates DPR data with passive measurements
from the GPM Microwave Imager (GMI). We evaluated the
same version of this product over a consistent time span
of 5 years. The findings indicated that this product is also
subject to the same issue – specifically, the precipitation
rate above the melting layer is only one-third of the rain-
fall rate below the melting zone. The regression line of
PR(ice)= 0.29PR(rain)+ 0.89 best describes the mass flux
change between the phases. Similar to the radar-only prod-
uct, the melted-equivalent size of precipitation is well pre-
served through the melting zone (Dm(ice)= 0.83Dm(rain)+
0.14).
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The striking similarities between the two official DPR
products were already observed by Mroz et al. (2021b), who
noted that both products are affected by a similar underesti-
mation of snowfall rates over the continental US. For brevity
and given the similarities to the corresponding figures for the
DPR product, the histograms illustrating these results are not
included in this paper.

4 Optimal-estimation (OE) retrieval development

The retrieval method proposed here aims to loosely enforce
the continuity of the melted-equivalent diameter and the
precipitation rate as particles transition through the melting
zone. It follows the DPR approach with the use of a gamma
PSD (Eq. 4); however no assumption on the shape parameter
µ is made. Following Delanoë et al. (2005) we parameterize
the PSD using a concept of moment normalization, i.e.,

Mp =

Dmax∫
0

DpN(D)dD, (5)

where p is the moment,D is the liquid-sphere-equivalent di-
ameter and Dmax is the diameter of the largest particle. With
this approach, three parameters of the gamma model (Nw,
Dm, µ) have an equivalent representation in terms of the
physical quantities (PR, Dm, σm) defined as

PR=

Dmax∫
0

N(D)v(D)m(D)dD, (6)

Dm =M
−1
3 M4, (7)

σ 2
m =M

−1
3

Dmax∫
0

D3(D−Dm)
2N(D)dD, (8)

where m and v denote the mass and velocity of particles,
respectively.Dm represents the mean mass-weighted melted-
equivalent diameter of the PSD, while σm indicates the mass-
weighted standard deviation of the melted-equivalent diame-
ter, often referred to as the width of the PSD. PR denotes the
precipitation rate, which serves as the scaling parameter for
particle concentration:

N(D;PR,Dm,σm)= PR× f (D;Dm,σm). (9)

The function f (D;Dm,σm) describes the shape of the PSD
at a unit precipitation rate for a given characteristic size and
width of the PSD. The aim of the DPR OE retrieval algo-
rithm is to retrieve all three mentioned descriptors of the
PSD; therefore, the vector of the retrieved parameters has the

following form:

xph
=

[
log10PR1, log10PR2, . . . log10PRN ,

log10D
1
m, log10D

2
m, . . . log10D

N
m ,

log10σ
1
m, log10σ

2
m, . . . log10σ

N
m

]T
, (10)

where N is the total number of DPR range gates above the
Ku-band radar sensitivity threshold, while the superscript
“ph” emphasizes that these are physical quantities.

4.1 A priori assumptions

Our a priori assumptions are specifically designed to align
with the specifications of the DPR system, encompassing
factors such as radar volume size and system sensitivity. To
achieve this, we employ a “scale-up” approach, where we de-
rive statistics on precipitation properties from ground-based
polarimetric radars and average them to match the resolu-
tion of the DPR through collocated matchup volumes (Gatlin
et al., 2020). This involves utilizing a network of S- and C-
band radars that are part of the GPM ground validation (GV)
program. It is important to note that ground-based radars of-
fer finer horizontal resolution compared to the spaceborne
system, thanks to their shorter distance to the meteorologi-
cal targets. This enhanced resolution contributes to more de-
tailed observations and reduces the problem of precipitation
heterogeneity within the radar volume.

The collocated matchups of radar volumes facilitate ef-
fective cross-calibration between spaceborne and ground-
based systems. Additionally, state-of-the-art polarimetric mi-
crophysical retrieval techniques are employed to estimate the
characteristic rain size (Tokay et al., 2020) and precipita-
tion rate (Cifelli et al., 2011) at fine scales, which are sub-
sequently averaged to match the footprint size of the DPR.
The polarimetric retrieval methods rely on radar simula-
tions of disdrometer measurements and are validated with
the ground-based rain gauges. This allows the GV dataset
to bridge the gap between very distinct observation scales of
disdrometers and the DPR.

Figure 6 illustrates the difference between the measured
DSD characteristics at different scales. The black contour
line represents the joint PDF of Dm and PR, as observed by
two-dimensional video disdrometers (2DVD) deployed for
the GPM ground validation program (Dolan et al., 2018).
The color shading represents the data at the DPR resolution
from the GV program data. Notably, the large-scale measure-
ments cover a broader domain compared to the in situ data,
despite the expected smearing-out effect in larger volumes.
Additionally, the bull’s-eye of the distribution is shifted to
the left by 5 dB (equivalent to a difference of a factor of 3),
indicating that at the DPR resolution, smaller precipitation
rates are recorded for the same Dm.

In our analysis, we explore the statistical relations between
the microphysical properties of rain derived from the polari-
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Figure 6. Joint PDF of Dm and PR at GPM DPR resolution ob-
tained through polarimetric radar retrieval. The retrieval is based on
radar simulations of in situ DSD observations. In situ disdrometer
data shown as a black contour line for comparison. Both PDFs in-
clude only samples where radar reflectivity at the S-band exceeds
15 dBZ.

metric radar retrieval. These relationships are expressed in
terms of the covariance matrix Sph

b and the corresponding
sample mean x

ph

b of the parameters under consideration:

Sph
b =

 22.441 2.307 3.229
2.307 0.717 1.067
3.229 1.067 2.094

 , (11)

x
ph

b =
[

2.493, 1.262, −3.044
]T
. (12)

It is important to note that x
ph

b and Sph
b represent a priori

assumptions made independently for each altitude level. To
determine the contribution of the divergence of xph from
the statistical mean to the cost function, as introduced in
Eq. (19), we aggregate the components across all altitude lev-
els.

To mitigate the influence of outliers in the dataset, a ro-
bust methodology known as the minimum covariance deter-
minant (Butler et al., 1993) was employed for the analysis. It
is important to note that 10log10σm is not directly retrieved
by the polarimetric product, and therefore disdrometer mea-
surements were utilized to derive statistical information re-
garding this parameter. To improve the convergence rate of
the OE algorithm, the dataset underwent principal compo-
nent analysis (PCA) to diagonalize the matrix Sph

b . Prior to
PCA, data normalization was performed using the formula
x 7−→ (x−mean(x))/SD(x). The resulting principal com-

ponents are as follows:

PC1 =
[

0.497, 0.625, 0.602
]T
, (13)

PC2 =
[

0.858, −0.252, −0.447
]T
, (14)

PC3 =
[

0.128, −0.739, 0.662
]T
. (15)

Each principal component explains 76 %, 20 %, and 4 % of
the variability in the dataset, with corresponding explained
variances of 2.29, 0.59, and 0.12, respectively. These prin-
cipal components represent orthogonal directions within the
microphysical properties space. The first principal compo-
nent signifies the most probable direction of change when
only one measurement is available, while the second princi-
pal component captures the correction introduced by an ad-
ditional measurement.

4.2 The forward model and the measurements vector

To estimate microphysical properties of precipitation, it is
crucial to understand their relationship with radar measure-
ments. This requires a radar simulator that maps the physical
characteristics of precipitation to radar observables. In our
specific case, the forward model is responsible for mapping
the microphysical parameters (PR, Dm, σm) to radar reflec-
tivity at both the Ka- and Ku-band frequencies.

The equivalent reflectivity factor for a radar operating at
wavelength λ (m) is given by

Zλe (PR,Dm,σm)=
λ4

π5|Kλ
w|

2

∞∫
0

σb(D,λ)N(D) dD

=
λ4 PR
π5|Kλ

w|
2

∞∫
0

σb(D,λ)f (D;Dm,σm) dD, (16)

where σb is the backscattering cross-section of a particle (m2)
and Kλ

w is the dielectric factor of liquid water at a reference
temperature and frequency and is assumed to be equal to
0.9255 and 0.8989 for the Ku- and Ka-bands, respectively,
as these values are used in the DPR Level-2 processing chain
(Liao and Meneghini, 2022). The reflectivity is usually ex-
pressed in mm6 m−3 or, due to its high variability, in the
logarithmic units of dBZ. Similarly, specific attenuation k
(dB km−1) can be computed as

kλ(PR,Dm,σm)=
10

ln10

∞∫
0

σe(D)N(D)dD

=
10 PR
ln10

∞∫
0

σe(D)f (D;Dm,σm)dD, (17)

and the measured reflectivity at distance r is given by Eq. (1).
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The path-integrated attenuation (PIA), represented by the
integral

∫ r
0 k(s) ds provides valuable information about pre-

cipitation properties. However, estimating this quantity is
challenging, particularly over land, due to surface variabil-
ity. Nonetheless, a study by Meneghini et al. (2015) demon-
strated that the difference in path-integrated attenuation be-
tween the Ka- and Ku-bands, denoted as δPIA, is less af-
fected by surface variability and thus exhibits smaller esti-
mation errors. Based on this finding, we have made the deci-
sion to include δPIA in the measurement vector, rather than
individual PIA estimates.

The backscattering and extinction cross-sections of ice
particles are modeled with the database of rimed snowflakes
of Mroz and Leinonen (2023). The scattering characteristics
of the simulated particles were calculated using the discrete
dipole approximation (DDA), which is known to provide
more realistic radar measurements compared to commonly
used soft spheroids (e.g., Kneifel et al., 2015; Kulie et al.,
2014; Leinonen et al., 2012). The database encompasses a
wide range of ice densities and sizes, making it well-suited
for our study. The bulk density of ice particles within the
radar volume is characterized by the degree of riming, which
is parameterized by a prefactor term (α) in the mass–size
relationship of the form m(kg)= α(D(m))2. The database
covers ice hydrometeors ranging from unrimed aggregates
(α = 0.01) to graupel-like particles (α = 0.5). For a more de-
tailed description of this conceptual model, please refer to
Mroz et al. (2021a).

The scattering properties of liquid particles are computed
with the T-matrix approximation, assuming the axial-ratio
formula of Brandes et al. (2005). We do not explicitly model
radar echoes within the melting region due to the complex
scattering signatures and associated uncertainties involved.
However, we account for the impact of the bright band on
the measurements within the liquid phase below by simu-
lating its extinction. Drawing from the findings of Matrosov
(2008), we approximate the attenuation of the melting layer
using a power-law formula based on the precipitation rate:

AML [dB] = γML

(
PR [mmh−1

]

)δML
. (18)

Here, γML and δML are wavelength-specific parameters. For
the Ka-band, their values are 0.66 and 1.1, respectively. In
the case of Ku-band simulations, we adopt the values ob-
tained from X-band simulations, specifically 0.048 for γML
and 1.05 for δML. Although we acknowledge that X-band at-
tenuation is likely to be smaller than that of the Ku-band,
we use it solely as a soft constraint or a priori value. The fi-
nal attenuation estimate is subsequently refined during the
OE iterations. In the study of Li and Moisseev (2019), it
was suggested that synthetic simulations by Matrosov (2008)
tend to overestimate attenuation for snowfall rates exceeding
2.5 mm h−1. However, their study was limited to radar mea-
surements exhibiting clear signatures of supercooled clouds
above the freezing level. This limitation implies that the

study was restricted to rimed particles only. To accommo-
date potential variations in the melting-layer attenuation esti-
mates, we operate under the assumption that they are subject
to an uncertainty of a factor of 2 (see the next section). It is
important to note that this approach focuses solely on simu-
lating the extinction of the bright band and its influence on
the measurements underneath.

4.3 Optimal-estimation concept

The inversion method presented here is based on the optimal-
estimation framework (Rodgers, 2000), which aims at mini-
mizing the cost function:

CF(x)= (F (x)− y)T S−1
m (F (x)− y)

+ (x− xb)
T S−1

b (x− xb) . (19)

In our case, vector x consists of the PSD parameters, namely
PR, Dm, and σm (as shown in Eq. 10), for both the ice and
rain phases. Additionally, within the solid phase, parame-
ter α, which quantifies ice density, is also retrieved. Notably,
all microphysical parameters are estimated in the logarithmic
space by employing the x 7−→ 10log10x transformation of
the physical quantities. This approach serves two purposes:
preventing unphysical retrievals and promoting linearity in
the forward model. It is assumed that 10log10α changes lin-
early from the cloud top, where it is equal to −20, to the
melting layer. Furthermore, the vector of unknowns includes
an additional parameter, denoted as BBext, which character-
izes the correction of the attenuation formula (18) within the
BB region. This parameter accounts for uncertainties in the
parameterization by multiplying the attenuation estimates at
both the DPR frequencies. In summary,

x =

[
xph
; 10log10α, 10log10BBKu

ext,

10log10
(
BBKa

ext−BBKu
ext
)]
.

The covariance matrix terms corresponding to the physi-
cal quantities are provided by Eq. (11). Similarly, the a priori
value at a given altitude level is given by Eq. (12). The a pri-
ori estimate for 10log10α is determined based on the radar
measurements. We obtain the expected values of the precip-
itation rate, size, and shape parameters by aligning the Ku-
band reflectivity measurements below the melting level with
the reflectivity simulations along the direction given by the
first principal component (Eq. 13). The other two principal
components are set to 0. Once this one-dimensional search
yields the best match, we calculate radar reflectivity in ice for
different values of α, assuming that microphysical parame-
ters remain constant within the melting zone. The value of α
that provides the best fit to the measurements, weighted by
their corresponding uncertainties, is selected as the a priori
estimate. We assume that the standard deviation of this esti-
mate is equal to 3 dB. The uncertainties in 10log10BBKu

ext and
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10log10(BBKa
ext−BBKu

ext) are assumed to be 3 dB and 4 dB,
respectively. A priori estimates of BBKu

ext and BBKu
ext are pro-

vided by Eq. (18).
The function F is the aforementioned forward model that

transforms physical quantities into attenuated reflectivity at
both bands and the differential PIA. The vector y consists of
the measured values of Z and the differential PIA that are
corrected for attenuation by non-precipitating particles and
atmospheric gases (Kubota et al., 2020). The matrix S−1

m is
an inverse of the measurement error covariance matrix, and
it is used as a weighting factor for individual observables.
We assume that Sm is diagonal and the uncertainty in the
DPR reflectivity at both channels is estimated by the formula
given by Hogan et al. (2005), which gives 0.5 dB uncertainty
for data with a high signal-to-noise ratio. The uncertainty in
the estimated differential PIA is assumed to be 5 times the
uncertainty in the PIA at the Ku-band in the DPR Level-2
product, following the assumption that PIAKa

= 6PIAKu.
To fully utilize the potential of principal component anal-

ysis (PCA), we transform the estimation problem of physical
quantities into the space of principal components. This linear
transformation ensures that both approaches are equivalent.
The transformation can be expressed by the following equa-
tion:

xph
= (P× a)�

√
diag

(
Sph

b

)
+ x

ph

b , (20)

where P is a matrix whose columns are the principal compo-
nents, i.e., P= (PC1; PC2; PC3); a is a vector in the princi-
pal component basis;� denotes element-wise multiplication;
and × represents matrix multiplication.

An example of the OE retrieval is presented in Fig. 7. The
rain component aligns with the overall structure observed in
the DPR product, featuring distinct elements of a squall line
system – a convective core, a transition zone, and stratiform
precipitation – viewed from east to west. However, the range
of retrieved parameters is smaller compared to the DPR algo-
rithm, even within stratiform rain profiles. This discrepancy
is mainly caused by differences in the differential attenua-
tion fitting between the two algorithms. The DPR product
tends to overestimate this parameter as it tries to compensate
for the non-uniform beam-filling effect, while our product
does not incorporate this correction. It must acknowledged
that the reliability of the OE product is questionable in con-
vective precipitation, given its design for stratiform precipita-
tion. Consequently, the presence of artifacts at approximately
5 km altitude (a peak in Dm and PR) within the convective
core should not come as a surprise.

In the ice phase, the OE algorithm tends to yield a larger
precipitation rate than the DPR product. Both PR and Dm
reach their peaks above the melting zone and remain rela-
tively constant in rain; that is, the majority of the growth oc-
curs within the ice phase. Moreover, compared to the DPR
product, the precipitation structure in the ice phase is not
affected by strong discontinuities during the transition from

Figure 7. Mean mass-weighted melted-equivalent diameter (Dm)
and precipitation rate (PR) as estimated by the optimal-estimation
algorithm for the storm depicted in Fig. 1.

one profile to the other, although no constraints on horizontal
variability were imposed.

4.4 Similarities and differences with the DPR product

In spite of the distinct mechanics employed by our algorithm,
specifically our reliance on the optimal-estimation frame-
work, and the iterative nature of the DPR product, which pri-
marily aims at fitting the measurements, there exist notable
similarities between these two approaches. For instance, the
utilization of principal components in our method shares an
underlying idea with the PR–Dm relationship. The princi-
pal components determine orthogonal directions within the
space of microphysical parameters while providing insights
into which component is most likely to change. The first prin-
cipal component, for instance, represents the direction that
undergoes the most significant changes as it is characterized
by the largest variance, by definition. Variations along this
principal component can be likened to imposing the PR–
Dm relationship, a step analogous to the approach adopted
in the DPR product. A noteworthy similarity arises when al-
tering the second principal component; this modification in-
fluences the PR–Dm relationship, akin to the ε adjustment
implemented in the DPR product. Despite these similarities,
our approach offers a distinct advantage – a priori knowl-
edge regarding the natural variability in these relationships,
quantified by their respective standard deviations. This in-
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sight allows for a more nuanced understanding of how these
relationships may vary in real-world scenarios.

Another notable similarity between our algorithm and the
DPR product lies in the approach to assimilating the mea-
sured reflectivity. Traditionally, the measured reflectivity is
corrected for attenuation prior to microphysical retrievals
(e.g., Vulpiani et al., 2006). Both our and the DPR algo-
rithm adopt this step solely to obtain the initial guess. Subse-
quently, an iterative procedure is initiated, and the distribu-
tion of microphysical parameters within the column is mod-
ified to align with the measured reflectivity. Both algorithms
employ a top-down approach, estimating attenuation caused
by various hydrometeors from scattering tables. The atten-
uation accumulates along the propagation path until reach-
ing the surface. The total PIA estimate serves as a crucial
constraint for both algorithms, ensuring the stability of the
iterative process. The difference lies in the modeling of the
melting layer. In our approach, we solely estimate the atten-
uation caused by melting particles using the parameteriza-
tion of Matrosov (2008). In contrast, the DPR product sim-
ulates the melting particles and their associated scattering
properties within the melting zone. This simulation yields re-
flectivity and hydrometeor property profiles within the melt-
ing zone. In our case, hydrometeor properties are obtained
solely through continuity, and no measurements are simu-
lated within the melting zone.

It is essential to highlight a nuanced difference in our
algorithm compared to the DPR product. Our algorithm is
designed to simultaneously fit the measured reflectivity at
the Ku- and Ka-bands, alongside the differential PIA esti-
mate. Conversely, the DPR product appears to prioritize fit-
ting the Ku-band reflectivity. This prioritization is justified
due to challenges in simultaneously fitting both channels un-
der non-uniform conditions (Mroz et al., 2018). Notably, our
algorithm is tailored for stratiform rain scenarios, where such
conditions are minimized, while the official DPR product is
designed to be a versatile one-for-all approach.

The primary distinction between the two algorithms cen-
ters on how ice is modeled. Our approach employs the sim-
ulation of realistic ice hydrometeors, complemented by dis-
crete dipole simulations of scattering properties. In contrast,
the DPR product adopts “soft-sphere” simulations, represent-
ing ice particles as a uniform mixture of air and ice. In this
case, scattering simulations can be approximated using Mie
theory. However, it is essential to emphasize that the primary
difference in our approaches is not the shape of the parti-
cles or the scattering simulation methodology. What sets our
algorithm apart is the capacity of the OE algorithm to ac-
commodate changes in the density of ice particles, while the
DPR product maintains a fixed density of spherical air–ice
mixtures at 0.1 g cm−3. This unique flexibility allows the OE
algorithm to search for solutions that ensure continuity in the
water mass flux through the melting zone. Importantly, this
coherence in the fluxes is achieved without sacrificing the
continuity of the melted-equivalent size, and it is obtained

with the radar measurements matching. The ability to adjust
ice particle density provides a crucial advantage, enabling
our algorithm to navigate to a physically consistent solution
more effectively.

5 Demonstrating criteria compliance: algorithm
evaluation

The optimal-estimation algorithm underwent testing to see
if it achieves its core retrieval objectives, which include en-
suring continuity in precipitation properties and evaluating
the accuracy of simulated reflectivity against actual measure-
ments. A summary of this testing is presented in Fig. 8. No-
tably, our algorithm yields a narrower range of retrieved rain-
drop sizes compared to the DPR product, and when examin-
ing the regression line, it suggests a more substantial increase
in precipitation size during the melting phase. It is worth not-
ing, however, that the observed increase consistently remains
below 30 %, whereas the DPR product showed an approxi-
mate 15 % increase.

Notably, our product improves the coherence between pre-
cipitation rates above and below the melting zone. Similar
to the DPR product, there is an increase in the water mass
flux during the transition from ice to rain, but in our case,
this increase is more subdued. Upon examining the regres-
sion lines, the expected snowfall rate above the melting zone,
with 10 mm h−1 of rainfall underneath, equals 6 mm h−1 for
our product and 3 mm h−1 for the DPR product.

Overall, the mean fractional bias (MFB), defined as

MFB= exp

[
1
N

N∑
i=1

(
lnPRi

rain− lnPRi
ice

)]
− 1, (21)

is equal to 4 % and 106 % for the OE and the DPR algo-
rithms, respectively. Using DPR precipitation rates in rain as
the reference for our product, the snowfall rate is on average
30 % smaller than the rainfall rate underneath.

In the validation study conducted by Chase et al. (2022),
it was demonstrated that the neural network snowfall algo-
rithm (Chase et al., 2021), designed specifically for the DPR,
exhibits improved agreement between snow- and ice-phase
precipitation rates compared to the DPR product. Their al-
gorithm almost perfectly aligns with the mass flux between
the phases, showing only a 2 % difference. This underscores
the remarkable success achievable with artificial intelligence
algorithms when trained using the right database. However,
it is crucial to note that its accuracy is contingent on the
precision of the attenuation correction, particularly at the
Ka-band, which is more susceptible, especially in heavy-
precipitation conditions.

While our algorithm does not achieve a perfect precipi-
tation rate match between different water phases, it brings
about noticeable improvement compared to the DPR prod-
uct. The algorithm’s development is still in its early stages,
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Figure 8. Panels (a) and (b) display joint PDFs for OE retrieval
results both above and below the melting zone. A green line signi-
fies a linear fit through the most frequently observed values for the
variable x. Panel (a) depictsDm, panel (b) shows PR, and panel (c)
illustrates PDFs for measured and simulated Ka-band reflectivity
values, differentiating between regions above and below the melt-
ing zone.

and ongoing adjustments in the code are expected to reduce
this discrepancy. Preliminary tests have been conducted, re-
vealing that the continuity of the mass flux through the melt-
ing zone can be enhanced at the expense of the continuity
of the melted-equivalent size. However, it remains debatable
which of these two properties exhibits less variability within
the melting zone, and this should be a topic for future stud-

ies. Furthermore, it is important to acknowledge that some
changes in the precipitation rate may still occur within the
melting zone, resulting in an anticipated growth in the pre-
cipitation rate. The extent of this change depends on environ-
mental conditions such as relative humidity and temperature
profiles (Heymsfield et al., 2018b).

Upon evaluating the Ka-band reflectivity simulations in
the ice-phase region, we observe that our algorithm demon-
strates improved accuracy when compared to the official
product (as shown in Fig. 5). Our simulations exhibit an
absence of bias. In fact, the majority of our simulated val-
ues closely align with the measured values, typically falling
within a range of just 1 dB. Having said that, it is important
to note that the reflectivity values below the 20 dBZ thresh-
old exhibit higher uncertainties. In the current version of our
algorithm, we consider these measurements as marginally re-
liable, and accordingly, we do not expect the algorithm to fit
them well.

6 Performance assessment in rain

The validation of the OE algorithm was exclusively con-
ducted within the rainy portion of the radar profiles. This
might appear surprising, given the anticipated improvement
in algorithm quality compared to the DPR product above the
freezing level. However, this approach is expedient due to the
limited availability of DPR underflights within snow during
stratiform precipitation events. To the best of our knowledge,
only one flight was conducted throughout the entire OLYM-
PEX campaign, and this singular event was utilized in the
study by Chase et al. (2021). In their study, only a quali-
tative assessment of the product was conducted, refraining
from direct comparisons due to disparities in sampling time
during in situ flights and significant differences in sampling
volume. The discrepancy in sampling time arises from the
high ground track speed of the satellite (7 km s−1) compared
to approximately 600 km h−1 of an in situ aircraft. Conse-
quently, within a 10 min window, only 20 validation points
are collected. This raises a critical question about the rep-
resentativeness of the sample and the robustness of poten-
tial statistical comparisons. Moreover, in situ sampling may
be inadequate to sufficiently represent the entire radar vol-
ume, given its proximity to a one-dimensional cut through
a 5× 5× 0.25 km3 volume. The impact of this difference in
sampling volume could potentially be mitigated with the col-
lection of large statistics, as discrepancies in the sampling
volumes would result in random noise only. However, as
pointed out earlier, collecting these statistics is impractical
due to the limited number of validation points per flight,
making such an effort very expensive. Chase et al. (2021)
overcame this issue by utilizing airborne radar data at finer
horizontal and vertical resolutions for more robust statistics.
While we acknowledge their efforts, it is crucial to note that
airborne data differ significantly from spaceborne measure-
ments. Airborne data exhibit superior sensitivity, resolution,
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and reduced signal fluctuations. Additionally, they are less
affected by non-uniform beam-filling effects compared to
satellite measurements. The validation presented here served
as a sanity check, aiming to assess whether a physically con-
sistent retrieval could be achieved without compromising the
integrity of the DPR rainfall product.

We employed the state-of-the-art polarimetric retrieval
method, relying on ground-based radar measurements as our
reference dataset. Our choice of this validation strategy is
driven by the fact that a single radar network covers a much
larger area compared to the collective measurement coverage
of all rain gauges worldwide. Furthermore, due to the short
correlation lengths of precipitation patterns, rain gauges can-
not accurately represent instantaneous precipitation rates.

For our validation, we chose a dataset from Gatlin
et al. (2020) specifically designed for GPM validation. This
dataset offers quality-controlled dual-polarimetric radar mo-
ments and corresponding polarimetric estimates of DSD pa-
rameters, such as Dm and PR, obtained from approximately
100 radar systems worldwide. The dataset is based on the
concept of matching spaceborne and ground-based radar vol-
umes that was originally introduced by Schwaller and Morris
(2011). High-horizontal-resolution DSD moment data (with
a resolution of 250 m and 1° in range and azimuth, re-
spectively) are averaged to generate GPM DPR footprint
matches. Similarly, an averaging of the DPR data, known
for its high vertical resolution, is applied to align with the
ground-based radar volumes. The validation is performed
with all the collocated radar volumes that are not contami-
nated by the ground clutter or melting-layer signatures.

A comparison between the horizontal resolution of the
DPR system and that of a US ground-based radar is illus-
trated in Fig. 9. The correlation between the two radar fields
is noteworthy. Nevertheless, owing to its higher horizontal
resolution, the ground-based data reveal much finer struc-
tures, particularly noticeable in the convective cells situated
in the southeastern part of the precipitation area. It is impor-
tant to highlight that the ground-based radar exhibits greater
sensitivity, enabling the validation of DPR precipitation re-
trieval across the full range of detectable signals. Addition-
ally, at short ranges, where the radar beam volumes are close
to the ground, the issue of precipitation overshooting is min-
imized.

The left column in Fig. 10 illustrates rain rate retrievals
within a 100 km radius from the ground-based station, fo-
cusing on the radar-matched volumes at the lowest avail-
able altitude. The dual-polarization rainfall product is de-
rived using the methodology presented in Cifelli et al. (2011).
A visual examination of the DPR precipitation product for
this event indicates an overestimation of high rainfall rates.
However, this overestimation is less pronounced within the
matched-scan (MS) swatch, where Ku- and Ka-band radars
closely collocate in both space and time. This observation
highlights the superior performance of the dual-frequency al-
gorithm compared to the Ku-band-only product. The OE al-

Figure 9. (a) Ku-band radar reflectivity at an altitude of 3 km a.s.l.,
as observed by the DPR. (b) S-band reflectivity obtained from the
lowest elevation scan (0.5°) conducted by the ground-based radar
situated in Dallas, US (KFWS). These measurements are associated
with DPR orbit number 11525, which passed over the storm being
observed at around 10:10 UTC on 23 July 2018. The continuous
black lines indicate the edges of the DPR swath, while the dashed
line shows a 100 km radius from the ground-based station.

gorithm was exclusively applied to columns within the MS
swath, where the bright band was distinctly detected by the
DPR algorithm. This results in gaps in the image compared
to the DPR product. Nonetheless, despite these challenges,
the storm structure closely resembles that of the polarimetric
product. It is important to note that we cannot assess its per-
formance within the strongest echoes, as they were classified
as convective profiles and, consequently, were not processed
by our algorithm.

A similar case study analysis was conducted for the re-
trieval of the characteristic size. The polarimetric Dm algo-
rithm is based on the methodology introduced by Tokay et al.
(2020). Much like the situation encountered with rainfall rate
(RR), the DPR retrieval of Dm often leads to an overestima-
tion of larger drop sizes. This phenomenon can be attributed
to the assumption made about the shape of the drop size dis-
tribution (DSD). The algorithm operates under the assump-
tion of a constant value for the shape parameter µ, which is
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Figure 10. Microphysical precipitation retrievals within the matched radar volumes at the lowest available altitude. The data are confined
within a 100 km radius from the ground-based station to preserve high vertical resolution. The dash-dotted line indicates the edge of the inner
swath where the Ku- and Ka-band radar perform collocated measurements. The continuous line shows the edge of Ku-band swath. Panels (a),
(c), and (e) show the precipitation rate, while panels (b), (d), and (f) show the precipitation size Dm. (a, b) Dual-polarization retrieval from
the ground-based station; (c, d) DPR rain rate product; (e, f) OE-derived precipitation rate. NEXRAD: Next Generation Weather Radar.

fixed at 3. However, recent studies by Williams et al. (2014)
and Protat et al. (2019) have demonstrated that, statistically,
the shape parameter decreases as the characteristic size in-
creases. Consequently, relying on a constant value for µmay
not be suitable and can result in inaccurate representations
of the DSD, ultimately leading to biases in reflectivity simu-
lations. It is important to note that, once again, the OE algo-
rithm was not applied to columns with the largest sizes. How-
ever, it is evident that the range of retrieved sizes is smaller
compared to the DPR product, and it aligns better with the
ground-based algorithm.

To conduct a more comprehensive assessment of the re-
trievals, we analyzed data spanning an entire year, specif-
ically from 2016. In this analysis, we exclusively focused
on DPR columns within the MS swath. Furthermore, all the
profiles selected for this study exhibited the presence of the
bright band. These criteria were established to ensure that
both algorithms were applied to the same set of profiles, en-
abling a fair and direct comparison between the OE and DPR
methodologies. We utilized data from the GPM ground vali-
dation program in version 2.4 for this exercise. This dataset
is independent of the one that was used to derive a priori
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Figure 11. Statistics for 1 year of the DPR and OE algorithms compared to the collocated polarimetric radar product. Panels (a) and (c)
represent the precipitation rate product, while panels (b) and (d) display the characteristic size estimate. Panels (a) and (b) represent the
DPR V06 product, while panels (c) and (d) correspond to the OE algorithm. Statistical quantities are computed for radar volumes where
the precipitation rate falls within the range of 1 to 10 mm h−1. ME: mean error, MAE: mean absolute error, RMSE: root mean square error,
CC: correlation coefficient, MFAE: mean fractional absolute error.

statistics on Dm, PR, and σm, as they were derived using the
data from 2015. This statistical assessment of the spaceborne
algorithms with the ground-based product as a reference is
presented in Fig. 11.

The performance of both the DPR and OE rainfall rate re-
trieval methods exhibits clear similarities. In direct compari-
son with the polarimetric rainfall products, both approaches
tend to exhibit certain systematic biases. They both have a
tendency to overestimate small rainfall rates, while simulta-
neously underestimating high rainfall rates. However, within
the range of precipitation rates specified by mission require-
ments, i.e., between 1 and 10 mm h−1, some differences be-
tween the algorithms emerge.

Within this range of precipitation rates, our retrieval
method demonstrates somewhat improved statistical perfor-
mance. This superiority is characterized by a smaller mean
error, which arises from the counterbalancing effect of un-
derestimation for larger precipitation rates and overestima-
tion for smaller ones. In essence, our product achieves a more
balanced representation within this precipitation rate range,
leading to an improvement in overall accuracy of the rainfall
accumulation estimates.

In terms of statistical metrics, our product exhibits slightly
improved performance with a smaller mean absolute error
and lower root mean square error, measuring at 0.3 and
0.52 mm h−1, respectively. While these improvements are

notable, it is important to emphasize that they do not repre-
sent an impactful deviation from previous methods. More-
over, our product overestimates low rain rates more than
the official algorithm. One of the key indicators demonstrat-
ing our product’s improved performance is the mean frac-
tional absolute error, which has seen a decrease from 0.48
to 0.36. This reduction corresponds to a 12-percentage-point
improvement in the fractional error. These results highlight
the effectiveness of our approach in providing rainfall rate
estimates that match or even exceed the performance of the
official GPM product.

The retrieval of the characteristic size exhibits patterns
akin to those observed in precipitation rate retrievals. In both
the DPR and OE products, there is a tendency to overesti-
mate smaller sizes, while underestimating larger ones. This
phenomenon is likely a consequence of maintaining a con-
stant shape parameter assumption within the drop size dis-
tribution parameterization. Given that the shape parameter
typically decreases as size increases (Williams et al., 2014),
the persistence of a constant value may introduce biases into
the retrieval process. In the case of the OE algorithm, this
behavior can be attributed to the inherent nature of Bayesian
algorithms. Firstly, they narrow the range of retrieved param-
eters by penalizing large deviations from the statistical mean.
Secondly, this penalty is more pronounced for smaller sizes,
which correspond to lower reflectivity values characterized
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by higher uncertainties. Consequently, these smaller reflec-
tivity values contribute less to the final estimate, reinforcing
the observed overestimation of smaller characteristic sizes.

When we narrow our statistical analysis of theDm retrieval
to radar volumes falling within the predetermined mission re-
quirements for precipitation rates, we notice a marginal en-
hancement in error metrics when compared to the DPR prod-
uct. Specifically, the mean error, mean absolute error, and
root mean square error all exhibit a reduction of 0.03 mm,
suggesting a slight improvement in accuracy. Additionally,
the mean fractional absolute error sees a modest decrease
of 1 percentage point, although it is important to note that
the correlation coefficient experiences a marginal decline
of 0.07. These observations underscore the fact that the pro-
posed methodology effectively matches the performance of
the DPR retrieval, demonstrating its reliability within the
specified mission requirements.

7 Conclusions

This paper introduces a novel algorithm designed for the
retrieval of microphysics information within cold-rain pre-
cipitation regions. Several findings and insights are unveiled
throughout the course of this study.

Firstly, the algorithm effectively transfers microphysics
data from the rain phase to the snow phase situated above
the melting layer. This approach ensures a physically consis-
tent retrieval of precipitation properties, which is a critical
advancement in comparison with the Dual-frequency Precip-
itation Radar (DPR) operational product. Furthermore, the
incorporation of variable ice density within the algorithm
emerges as a crucial factor in improving the agreement be-
tween radar simulations and observations from the DPR, es-
pecially in regions adjacent to the melting zone. This as-
pect of the algorithm increases the likelihood that the derived
physical properties align more closely with real-world con-
ditions, further ensuring its accuracy.

The study reveals a tendency of the OE method to overes-
timate rain size for small raindrops, shedding light on a limi-
tation in the retrieval of rain characteristics that warrants fur-
ther investigation and refinement. It is expected that this issue
is related to the way the Bayesian statistics work. Small rain-
drops occur for low-reflectivity measurements that are char-
acterized by higher uncertainty. This increases relative im-
portance of the a priori assumptions, and the algorithm drifts
toward the statistical mean of the precipitation characteristics
rather than fitting the measurements. Moreover, due to sensi-
tivity of the Ka-band system, in the low-reflectivity regions,
our retrieval is often limited to single-frequency data, which
may result in poorer quality of the product. The algorithm
is still in the development stage, and this paper serves as a
proof of concept only. The influence of a universal a priori
assumption on the accuracy of rain rate estimations, particu-
larly in low-reflectivity conditions, is still being investigated,

and intensity-dependent approaches as in Tridon et al. (2019)
and Battaglia et al. (2015) are under consideration.

While recognizing the significance of matching the per-
formance of the DPR product in rain regions, the primary
emphasis of this study is directed towards the retrieval of
ice-phase characteristics above the melting zone, which re-
mains a limiting uncertainty in simulations of weather and
climate (Sullivan and Voigt, 2021). This novel algorithm not
only achieves similar performance compared to existing ap-
proaches in retrieving rain properties but also offers a more
physically consistent retrieval of the continually evolving
characteristics of precipitation within the melting zone. This
advancement opens new possibilities for quantifying ice den-
sity, particularly in the proximity of the freezing level, which
holds important implications for our understanding and pre-
diction of mixed-phase precipitation phenomena.

In this study, we deliberately omitted the consideration of
multiple scattering in the radar observations at the Ka-band
for two primary reasons. Firstly, this simplification was im-
plemented to enhance the algorithm’s computational speed,
making it more efficient for practical use. Secondly, it is
worth noting that multiple scattering events occur in highly
unusual circumstances, particularly in convective precipita-
tion, as documented in previous research (Battaglia et al.,
2014). These events occur when the attenuation coefficient
exceeds the reciprocal of the radar beam width and the scat-
tering albedo is notably high (Battaglia et al., 2010). For the
DPR system, such conditions typically arise within the ice
phase when precipitation rates surpass 12 mm h−1 for grau-
pel and 40 mm h−1 for aggregates of dendrites. As these con-
ditions are rare in cold rain, we deemed them unlikely to im-
pact the majority of precipitation scenarios. However, it is
essential to acknowledge that should the need arise, these ef-
fects can be accounted for by incorporating the methodology
developed by Hogan and Battaglia (2008).

In order to enhance radar performance analysis, the au-
thors employ ground-based data to develop a non-uniform
beam-filling (NUBF) radar simulator. Present efforts primar-
ily concentrate on simulating radar reflectivity and attenu-
ation at both the Ku- and Ka-bands, matching the resolu-
tion of the ground-based radar stations. These simulations, in
conjunction with microphysical rain properties, are averaged
over the DPR footprint size, resulting in a comprehensive
radar simulator tailored to target heterogeneous scenes. It is
important to acknowledge that this approach does not con-
sider the potential shadowing effect in the attenuation field,
as described in Short and Iguchi (2011), and is equivalent
to a complete decorrelation of precipitation fields at various
levels. Nevertheless, it represents an initial step in addressing
the NUBF problem.

In the future development of our algorithm, we are con-
templating the strategic utilization of the synergy between
spaceborne and ground-based measurements to enhance both
spatial and vertical resolution. Rather than pursuing an ap-
proach focused on upscaling the resolution of radar volumes,
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our vision centers on refining the retrieval process by har-
nessing the distinct advantages offered by these two com-
plementary systems. While one system excels in delivering
precise vertical resolution, the other boasts exceptional hor-
izontal resolution. Our objective is to leverage this harmo-
nious pairing to elevate our retrieval capabilities, ultimately
enabling us to derive precipitation quantities at a finer scale.
This forward-looking strategy holds the potential to improve
the accuracy and precision of our precipitation retrievals,
pushing the boundaries of what is achievable in the fields of
remote sensing and meteorology.

The realization of this enhancement necessitates a precise
collocation of measurements in both space and time. While
spatial collocation poses minimal challenges, temporal align-
ment remains a considerable concern. Ground-based radar
volume scans typically span approximately 5 min, introduc-
ing temporal discrepancies. Until rapid scans from phased-
array radars become available, our precipitation model em-
ployed in the retrieval must accommodate factors like ad-
vection. This entails assimilating data from multiple radar
volumes into the algorithm or implementing corrections for
system movements, such as utilizing optical-flow techniques
(Pulkkinen et al., 2019). By integrating these advancements
into the optimal-estimation process, we can establish pseudo-
triple-frequency retrievals, offering exceptional potential as
validation datasets. Moreover, these retrievals can serve as
valuable training data for upcoming radar missions, such as
Tomorrow.io, that rely on data-driven machine learning ap-
proaches. This collaborative approach holds the promise of
advancing the accuracy and effectiveness of our precipitation
retrieval methods, marking a pivotal step in meteorological
research and remote sensing technology.
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