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Abstract—This paper introduces an effective active learning
strategy to iteratively refine the training of Gaussian process
models with application to uncertainty quantification. Compared
to traditional deterministic approaches or naive random sam-
pling, the proposed approach uses a stochastic measure, i.e., the
predictive variance of the output mean, to drive the acquisition of
additional training points. The advocated algorithm is shown to
outperform alternative strategies in the uncertainty quantification
of the insertion loss of a microstrip transmission line with a
discontinuity in the ground plane.

Index Terms—Active learning, Bayesian estimation, crosstalk,
Gaussian processes, Kriging, machine learning, surrogate mod-
eling, training, uncertainty quantification.

I. INTRODUCTION

Machine learning is rapidly burgeoning in the field of
design, optimization, and uncertainty quantification (UQ) of
modern electronics. Among the plethora of available tech-
niques, kernel-based methods benefit from a relatively simple
and flexible structure, good scalability to higher dimensions,
and reasonable training cost. In particular, Gaussian process
(GP) models were successfully applied to the design explo-
ration and optimization of electronic devices [1]–[3]. Besides
their relative simplicity, an attractive feature of GPs is that they
leverage a Bayesian setting that allows associating confidence
levels to model predictions. This feature was extended from
standard deterministic predictions to UQ measures in [4].

One of the open issues with machine learning methods
is the appropriate selection of training data, which ideally
should be as limited as possible. In the context of Bayesian
optimization [1], [3] and surrogate modeling [5], the associated
prediction uncertainty is used to drive the iterative query of
additional training data. However, classical strategies usually
assume deterministic input parameters and may be therefore
non-optimal in stochastic settings.

In this paper, a more effective active learning strategy for
GPs applied to UQ tasks is proposed and investigated. The
algorithm leverages the prediction uncertainty of a stochastic
measure, i.e., the predictive variance of the output mean.

II. GP REGRESSION

This section introduces the basis notions about GP modeling
as needed for the development of the proposed active learning

method.
Let us consider a generic system that we shall denote with

y = M(x), (1)

where M : X → R, with X ⊆ Rd, is a (usually, implicit)
map between a set of input parameters x = (x1, . . . , xd) and
the corresponding output y. For the sake of simplicity, in this
paper paper we focus on a single (scalar) output quantity y.

A. Classical Deterministic Setting
GP regression starts by the assumption that the map (1)

is one particular realization of a prior GP with a given
mean or trend function µ(x) and kernel function k(x,x′) =
σ2r(x,x′|θ), where σ2 is the kernel variance and r(x,x′|θ)
is the correlation function, which depends on a set of hyper-
parameters θ [6].

Without loss of generality, we assume a constant mean
function, i.e., µ(x) = β0. Many correlation functions are
available for the kernel. The most popular are the squared-
exponential and the Matérn 5/2 functions, the latter reading:

r(x,x′|θ) =
(
1 +

√
5u+

5

3
u2

)
exp

(
−
√
5u

)
, (2)

with u =
√∑d

j=1(xj − x′
j)

2/θ2j . Again without loss of
generality, we shall use the above kernel in this paper. The
kernel is characterized by hyperparameters θ = (θ1, . . . , θd),
which are lengthscales dictating the GP smoothness along each
input dimension. These hyperparameters are optimized based
on the available training data.

B. Training
The GP model is trained using observations collected

from the actual system (1), which we shall denote with
{(xtr

l , y
tr
l )}Ll=1, where ytrl = M(xtr

l ). The training involves
the estimation of the trend coefficient β0 as well as of the
kernel variance σ2 and hyperparameters θ. This is a standard
routine that is implemented in dedicated toolboxes (e.g., [6],
[7]), therefore we omit the details in this paper.

Oftentimes, the training is performed once with a fixed
dataset. However, active learning strategies exist for the itera-
tive acquisition of additional training samples [2], [5], thereby
refining the model and improving its accuracy.
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C. Prediction

Once the prior parameters are known, the model predictions
are readily computed as [6]

m(x|xtr) = β0 + r(x)TR−1(ytr − β0), (3)

where ytr = (ytr1 , . . . , y
tr
L )

T is the vector of training ob-
servations, R, with entries Rlm = r(xtr

l ,x
tr
m|θ), is the

correlation matrix of the training samples, and r(x), with
entries rl = r(xtr

l ,x|θ), is the vector of correlations between
the training samples and the prediction point. The notation
m(x|xtr) is used to emphasize that the prediction is related
to the specific selection of training points.

An important feature of GP models is that the covariance

c(x,x′|xtr) = σ2
(
r(x,x′|θ)− rT(x)R−1r(x′)

)
(4)

can be associated to model predictions obtained via (3).
Specifically, the prediction at a given point is a Gaussian
random variable with mean (3) and variance

v(x|xtr) = c(x,x|xtr)

= σ2
(
r(x,x|θ)− rT(x)R−1r(x)

)
, (5)

for which confidence levels are readily obtained.

D. Application to UQ

In UQ settings, the GP model is used to surrogate the actual
system (1) and speed up a Monte Carlo analysis. Hence, a
(large) number of samples {xmc

i }Ni=1 is drawn and the corre-
sponding predictions are obtained using (3) in place of (1).
It is important to mention that expected values, variance,
and confidence levels are obtained for pertinent statistical
information, such as moments and distributions of the output y,
either in closed form or numerically [4].

For the subsequent developments, it is useful to report the
predictive variance of the Monte Carlo mean, which reads

vµ(x
tr) =

1

N2

N∑
i,j=1

c(xmc
i ,xmc

j |xtr). (6)

For a fixed choice of Monte Carlo samples xmc, vµ is a scalar
defining with how much uncertainty the mean of the Monte
Carlo samples is predicted via the GP model trained with xtr.

III. ACTIVE LEARNING STRATEGIES

This section introduces three alternative sampling strategies
for the iterative query of additional training samples.

1) Plain Random Sampling: In this naive scenario, an addi-
tional training point xtr

⋆ is generated randomly, e.g., according
to the distribution of the input parameters.

2) Standard Active Learning (Deterministic): In the clas-
sical active learning strategy [5], the predictive variance (5)
is used as a measure to identify locations of the input space
where the prediction is less accurate. Hence, the new train-
ing sample is selected as the point at which the prediction
uncertainty is maximum, i.e.,

xtr
⋆ = argmax

x∈X
v(x|xtr). (7)

The selection is therefore based exclusively on the currently
available training points. This approach is deterministic since
it disregards the distribution of the input parameters x, which
may be non-optimal. For example, if the selected point lies
in a corner of the input space X and the input distribution is
Gaussian, it may add little information in an UQ scenario.

3) Proposed Stochastic Active Learning: The proposed ap-
proach starts from the observation that the predictive variance
of the output mean (6) does not (directly) depend on the
observations ytr, but only on the training points xtr at which
they are evaluated. Therefore, it is possible to “virtually” add a
new training point and check how much (6) is reduced, without
the need to actually calculate the corresponding observation.
In more formal terms, the new training point is chosen as

xtr
⋆ = argmin

x∈X
vµ(x

tr ∪ x), (8)

where xtr ∪ x is a “loose” notation to indicate that (6) is
computed with the training set obtained by the union of the
currently available points xtr and the new candidate point x.
At this stage, the hyperparameters are not updated and the last
available estimate is used.

In practice, the predictive variance does depend on the
training observations through the kernel parameters σ2 and θ,
which appear in the correlation function r and are estimated
based on the available training data. Hence, the proposed
approach relies on the assumption that the hyperparameters are
not significantly affected by the additional point. It is important
to point out that the distribution of the input parameters is now
inherently accounted for in the calculation of the predictive
variance of the output mean.

Regardless of the adopted sampling method, once a new
training point is selected, the corresponding observation is
queried and included in the training dataset. At this point, the
model is re-trained and the hyperparameters are also updated.

IV. APPLICATION EXAMPLE AND NUMERICAL RESULTS

The three sampling techniques introduced in Section III are
applied to the UQ of the insertion loss of a microstrip line
with a discontinuity in the ground plane [8]. The stochastic
input parameters are the location and the length of the slot in
the ground plane, which are considered as two independent
Gaussian random variables, both with a nominal value of
15 mm and a relative standard deviation of 10%. In particular,
we focus the attention on the magnitude of S21 at 7.5 GHz,
a frequency at which the insertion loss exhibits a large
variability. The scattering parameters are computed by means
of CST Studio Suite® [9]. The Reader is referred to [8] for
additional details on this test case.

Without loss of generality, the outlined sampling techniques
are implemented based on a search over a finite set of 1000
candidate points, randomly generated using Latin hypercube
sampling. The corresponding outputs are pre-simulated to
serve also as a reference for assessing the accuracy (see
below). For the deterministic and stochastic active learning
strategies, the pertinent optimization, i.e., (7) or (8), is per-
formed over these candidate points. The best selected point
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Fig. 1. Box plots showing the behavior of ϵσ (top panels) and RMSE (bottom
panels) for the various sampling strategies. Left panels: proposed stochastic
active learning; central panels: standard deterministic active learning; right
panels: plain random sampling.

and the corresponding simulation output are added to the
training dataset and removed from the candidate set. For the
plain random sampling instead, the additional training point is
simply selected randomly from the search set.

The GP models are trained using the MATLAB® Statistics
and Machine Learning ToolboxTM toolbox [7]. The accuracy of
the GP models is assessed based on the following two figures
of merit: 1) the relative error on the variance, defined as

ϵσ =
|σ̂2

y − σ2
y|

σ2
y

, (9)

where σ2
y is the variance of the reference observations {yi}Ni=1

and σ̂2
y is the variance of the corresponding GP predic-

tions {ŷi}Ni=1, with N = 1000; 2) the root-mean-square error
(RMSE) between observations and predictions, defined as

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2. (10)

The box plots in Fig. 1 show the behavior of the above
error metrics for the three sampling strategies and for 50
independent runs. For each run, the same initial set of 10
training samples, randomly picked from the search set, is
considered for all strategies. Then, 10 additional training
samples are iteratively selected from the search set based on
the corresponding algorithm. From the box plots, it is observed
that that the proposed active learning method outperforms
both the standard deterministic strategy and the plain random
sampling in both metrics, as it provides lower error and lower
dispersion at each iteration.

For a clearer comparison, Fig. 2 shows the medians of the
achieved metrics over the 50 runs. It is observed that the
proposed algorithm (green curve) achieves a faster decreasing
trend of the median error compared to both the standard
deterministic method (yellow curve) and the plain random
sampling (red curve).
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Fig. 2. Behavior of the median over 50 runs of ϵσ (top panel) and RMSE
(bottom panel) as the iterations increase. Red curves: plain random sampling;
yellow curves: standard active learning; green curves: proposed method.

V. CONCLUSIONS

This paper introduced an active learning algorithm for the
iterative training of GP models with application to UQ. The
proposed strategy starts from a limited set of initial training
samples and uses the predictive uncertainty of the output mean
as the objective function to minimize in the selection of the
additional training points. Compared to the standard deter-
ministic active learning strategy and naive random sampling,
the advocated method achieves faster convergence and lower
error for the same number of training samples. The proposed
method was successfully applied to UQ of the insertion loss
of a microstrip line with ground plane discontinuity.
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