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ABSTRACT The rise of foundation models is pushing Computer Vision research towards a paradigm shift,
in the wake of what already happened in the Natural Language Processing field. These models, trained
at scale on huge data collections, provide high-quality representations that generalize well enough to be
applied directly to downstream tasks, often outperforming task-specific models. The Out Of Distribution
(OOD) detection problem, which involves the ability to recognize when test samples come from a previously
unseen semantic category, represents one of the research fields in which this paradigm shift could have
the greatest impact. However, existing testbeds are limited in scale and scope and get easily saturated
when adopting foundation-based pretrainings. With this work, we introduce a new benchmark covering
realistic yet harder OOD detection tasks to properly assess the performance of large pretrained models.
We design an experimental framework to analyze specific choices in the model learning and use (which
dataset, pretraining objective, OOD scoring function) and extensively evaluate the comparison to standard
approaches that leverage a training phase on the available In Distribution (ID) data. The results highlight
the actual performance benefits of leveraging foundation models in this context without any further learning
effort, and identify situations where task-specific fine-tuning remains the best choice.

INDEX TERMS Fine-tuning-free, semantic novelty detection, open set recognition, out of distribution
detection.

An autonomous agent navigating the word would
inevitably encounter objects belonging to semantic classes
it doesn’t know about. Rather than assigning them to one
out of a closed set of pre-defined labels, it should identify
those samples as unknowns and potentially ask for external
supervision. This behavior would avoid wrong decisions that
may significantly impact safety, especially in autonomous
driving or assistive robotics scenarios. The challenging task
of managing unknown inputs is commonly named Out Of
Distribution (OOD) detection and has largely attracted the
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attention of the computer vision community aiming for the
development of dependable systems.

Most of the existing algorithmic solutions propose new
approaches to learn from In Distribution (ID) support data
and design training-time regularization or post-hoc scoring
mechanisms to enhance OOD detection capabilities [1],
[2], [3], [4]. Of course, growing the amount of ID data
as well as model capacity would naturally mitigate the
OOD detection problem, but covering everything a priori
remains an unsustainable solution. Still, the rise of foundation
models is starting to open new avenues for OOD research.
They are large pretrained models whose internal embedding
space captures extensive knowledge useful for a variety
of downstream tasks [5], [6]. By exploiting their learned
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representation, OOD detection becomes training-free and
reduces to a simple similarity comparison between the test
data and the support ID data. In this novel scenario, there
are some major open research questions: how do the learning
objective and dataset at the basis of the pretrained model
affect the following OOD detection task? How should we
compare two instances in the learned embedding space to get
the best OOD detection performance? Is it useful to adapt the
representation to the specific ID data via fine-tuning, and how
to do that without losing relevant information?

With our work, we touch on all these questions to build a
comprehensive picture of the state-of-the-art in training-free
OOD detection. Our key contributions are:

• we design a novel testbed for OOD detection on
high-resolution images, focusing on both intra-domain
and cross-domain scenarios, to analyze models’ per-
formance in realistic deployment conditions. The
intra-domain is composed of five settings with support
and test samples drawn from the same database but
covering partially overlapping label sets (semantic shift)
for a wide variety of categorization tasks: from texture
and aerial patterns to scenes, as well as coarse object
classes and fine-grained car models. Instead, in the
cross-domain scenario support and test data differ both
in terms of label set (semantic shift) and visual style
(covariate shift) (see Tab. 1);

• we present the first extensive analysis of training-free
OOD detection approaches, considering both recently
proposed algorithms and large-scale pretrained models.
We analyze in depth the design choices that can
significantly influence their effectiveness and show that
foundation models enable a performance leap in OOD
detection without any need for fine-tuning.

• we compare training-free approaches with traditional
training-based ones, highlighting their advantages and
disadvantages in relation to the application scenarios.
We also discuss a possible combination to get the best
out of both worlds.

We name our testbed OODDB1 and publicly release it
together with the whole code suite2 used for the experiments
to encourage further research.

I. RELATED WORKS
The independent and identically distributed (iid) assumption
for training and testing data does not hold in many real-
world applications, thus machine learning models require
the capability of detecting and handling inputs from novel
distributions. There are mainly two kinds of distribution
shifts: in case of a semantic shift, in addition to seen classes,
samples from unseen classes appear at test time and should
be identified as unknown; in case of a covariate shift,
the samples experienced at test time exhibit corruptions
or style changes but semantically belong to one of the

1https://ooddb.github.io
2https://github.com/FrancescoCappio/OODDetectionBench

TABLE 1. Setting definition with exemplar images for our OODDB
dataset. In all the sub-cases, ID and OOD samples in the test belong to
separate classes, thus we focus on semantic novelty detection. In the
intra-domain track, support and test samples are drawn from the same
dataset. In the cross-domain track, the support set belongs to a different
visual domain from that of the test (covariate shift). This is obtained by
always choosing the test as one of the DomainNet domains (single target
ST), while the training support can either be one of the other domains
(single source SS), or the combination of all the domains excluding that
used for the test (multi-source MS). As a reference we also present the
dataset benchmark from [7] where the OOD samples are drawn from a
different dataset than the ID samples (semantic and covariate shift), thus
defining a far OOD scenario.

training categories and should be identified as such. TheOOD
detection literature mainly focuses on the former case, while
the latter is a domain generalization problem [8], but the
two shifts may occur together in realistic cross-domain OOD
scenarios.

The first deep OOD detection baseline was proposed
by Hendrycks et al. [1], who noticed that the prediction

79402 VOLUME 12, 2024



F. C. Borlino et al.: Foundation Models and Fine-Tuning: A Benchmark for OOD Detection

confidence of a model trained for classification on ID support
data should be generally lower for OOD samples than for
ID ones and could thus be used to separate the two groups.
However, the overconfidence issue of deep classifiers [9],
[10], has then pushed towards improving the known-unknown
data separability, for example by temperature scaling [2],
by activations rectification [11] and sparsification [4], or by
introducing different scoring functions based on energy
measures [3] and gradients [12]. All these are post-hoc
OOD detection strategies that build on ID data classifiers
and can also provide classification prediction for new ID
samples, thus solving the so-called Open Set Recognition
(OSR) task. Other OOD detection approaches are based
on generative and reconstruction-capable models [13], [14].
In particular, the method proposed by Zhang et al. [15]
combines a flow-based density estimation head with a
classification one and is also suitable for OSR. Some works,
rather than classification, exploit self-supervision to avoid the
reliance on shortcuts often developed by supervised learning
strategies. contrastive-based methods [16], [17] and masked
image modeling are largely used for this scope. The latter can
be naturally applied on tranformers-based architectures and
provides a strong prior for OOD detection [18] by effectively
applying reconstruction in a modern-fashion. Another family
of OOD approaches learns distance metrics on ID support
samples to then estimate the similarity of test samples to the
training ID set [19], [20].
Most of the OOD detection methods have been evaluated

on testbeds composed of a limited amount of low-resolution
images (e.g. MNIST [21], CIFAR [22]) for which the cost
of training on the ID support data is generally reduced. Only
in the last years the OOD literature has started to consider
large high-resolution computer vision databases, after Huang
and Li [7] showed that the results on smaller datasets were
not transferring to more realistic settings. In this context,
the training effort can be partially alleviated by exploiting a
pretrained model which is then fine-tuned on the ID support
data. Still, as the pretrained model already contains a wealth
of valuable information, it is reasonable to question the role
of the fine-tuning process and wonder whether it may reduce
the ability to recognize novelty rather than increasing it [23].
Recent research efforts have been directed towards designing
OOD detection methods for high-resolution images that do
not require fine-tuning on the ID support data. In particular,
Cappio Borlino et al. [24] introduced a tailored pretraining
strategy based on relational-reasoning representation learning
that provides semantic similarity predictions on pairs of
images. Lu et al. [25] later proposed an analysis of different
relational-reasoning learning objectives designed to improve
the model’s transferability to the downstream OOD detection
task. In the same work, it was also shown that some
distance-based OOD detection methods originally proposed
with a fine-tuning phase on ID support data, can be
successfully applied without it [19] and [20]. This logic
has been also extended to vision-language pretrained models
defining the zero-shot OOD detection paradigm for which the

access to ID samples is not even needed and the name of
the ID classes is sufficient to identify the unknown data at
deployment time [26], [27], [28].

The adoption of training-free OOD detection approaches
can entail several advantages, which however are effectively
unlocked only when using robust pretrained models able to
generalize. In this respect some main ingredients deserve
attention as the choice of the pretraining dataset, the network
backbone, and the learning objective. The general trend of
increasing the data cardinality (e.g. passing from ImageNet1k
to ImageNet21k [29]) and the architecture capacity (e.g.
passing from convolutional to transformer networks [30])
has been showing good performance [31]. At the same
time, the improvements in terms of contrastive-learning
and scalability of deep networks training, have enabled
novel vision-language pretraining solutions as CLIP [6] and
ALIGN [32], but also of purely vision-based self-supervised
pretrainings as DINO [33] and DINOv2 [5]. In the following,
we dive into these aspects to assess their effect on OOD
detection.

II. DEFINITIONS AND PROBLEM STATEMENT
An OOD detection task is defined through two sets: the
support set S = {xs, ys} contains labeled samples, and the
test set T = {xt } unlabeled ones. Support and test data
are drawn from two different distributions with the main
difference being a semantic shift: the set of support classes
YS does not match the set of classes to which test samples
belong to, YT . In particular we are interested in the case
YS ⊂ YT . We call ID the classes appearing in the support
set and OOD the test classes not matching them: YT \S . The
support set defines the normality, hence the purpose of an
OOD detector is to detect test samples that deviate from this
normality, by marking them as unknown. This means that the
detector provides for each test sample a normality score, i.e.
a scalar value that allows to discriminate known test samples
from unknown ones by imposing a threshold on it.

We indicate as training-based OOD detection approaches
all those strategies based on training or at least fine-tuning a
deep network on the support data. This naturally provides a
model aware of the reference data distribution (ID) which is
then used to assess the ID likelihood of a test sample given
the learned weights, gradients, or prediction output.

The training-free OOD detection methods bypass this
learning step and offer some benefits. In particular, starting
from a large and universally applicable pretrained model
we expect it to generalize better than one fine-tuned on
specific samples. Indeed, if the model is already proficient
in differentiating and recognizing the ID classes, a further
training stage may induce some bias that would hinder the
semantic OOD detection process at deployment time rather
than assisting it. Moreover, using a pretrained model would
lead to a reduction in computational costs: it could be directly
employed for any novel OOD detection task, provided that
a method for comparing the features extracted from the
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FIGURE 1. An OOD detection algorithm is composed of a feature extractor and an OOD evaluator. The former is obtained by choosing a
backbone which is usually pretrained on a dataset with a specific objective and can be further fine-tuned on the ID support data. The latter
defines how to compute a normality score using the learned representation. The right part of the figure illustrates the choices made for each
component of the model in our experimental analysis.

reference ID support set data with those of the test data is
established. This comparison technique is one of the essential
components of a training-free OOD detection approach that
we identify as OOD evaluator. In other words, its role is
that of defining how a normality score should be computed
for each test sample. The other component is the feature
extractor which is simply tasked to process input data and
provide representations. The feature extractor is usually a
neural network backbone trained with a specific objective on
a dataset. Fig. 1 shows a schematic representation of the OOD
detection algorithms’ components.

III. A COMPREHENSIVE OOD DETECTION BENCHMARK
The most straightforward method of selecting OOD samples
to establish an evaluation testbed consists in choosing them
out of a separate database from the one utilized for the ID
set. However, this naïve approach disregards the semantic
content of the images and may give rise to two issues. If the
databases were gathered using comparable criteria in terms
of acquisition devices, conditions, and covered classes, the
distinction between ID and OOD may become too subtle or
potentially non-existent, leading to an ill-posed problem [34].
On the other hand, if the databases are very different in terms
of semantic content and visual domain, their distinction may
be too easy (far OOD). On such an unrealistic benchmark
(see the bottom part of Tab. 1) most of the methods provide
exceptionally good results [26]. Only some minor changes
have been introduced for the full-spectrum setting in [35]
and [36]: the ID part of the test set is augmented with
synthetically corrupted or style-changed images, while the
OOD part remains drawn from a different dataset.

Given these considerations, we designed a novel large and
comprehensive evaluation bed, for which we make sure to
have ID and OOD samples in the test set drawn from the
same dataset, but differing in semantic content (near OOD).
The support ID data available for reference or for a potential
training phase, may instead originate from the same or a

different dataset than what was used for the test, thus defining
an intra-domain and a cross-domain track.

A. INTRA-DOMAIN TRACK
In this track, the data of the support and test sets are
drawn from the same visual distribution and the only shift
considered is a semantic one. We selected five different
datasets, chosen to represent a wide variety of categorization
tasks (see the top part of Tab. 1). The available samples in
every class of each dataset are divided into a train and a test
split. Each OOD detection task is then built by randomly
dividing the classes of the considered dataset into two groups:
the train samples of ID classes compose the support set, while
the test samples for both ID and OOD classes represent the
test set. To improve the statistical significance of our analysis
we repeat three times the random split of each datasets’
classes into ID and OOD groups and report average results.
We introduce the used datasets below.

Textures [37] is a dataset containing 5640 images of tex-
tural patterns belonging to 47 different classes. We randomly
selected 23 of them as ID classes, and kept the remaining as
OOD ones. We defined train and test splits by following the
first fold provided by the original paper’s authors for their
cross-validation strategy, merging train and validation data.
This dataset has already been used in the OOD detection
literature, as part of the standard benchmark by Huang and
Li [7] and to evaluate ReSeND in [24].
PatternNet [38] is a dataset of aerial high-resolution

images which contains 38 classes with 800 images each.
We selected 19 classes as ID, and kept the others as OOD.
We used the train-test split provided by the original authors.
To the best of our knowledge, this is the first time that this
dataset has been used as part of anOODdetection benchmark.
We chose this dataset as remote sensing categorization is
an important task for many real-world applications and
because its images differ significantly from the standard
object-centric ones that are mostly used for research on visual
categorization.
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SUN [39] is a scene database containing 397 classes and
130k images in total. We selected 198 classes as ID, and
kept the rest as OOD. We used the train-test split provided
by the original authors. This dataset has already been used
in the OOD detection literature [7], but this is the first
time it is exploited with a class split in ID and OOD
groups.

Stanford Cars [40] is a dataset designed for fine-grained
cars classification. It includes more than 16k images divided
into 196 classes. We adopted the train-test split provided by
the original authors. We selected 98 classes as ID, and used
the remaining 98 as OOD. This dataset has already been used
as part of an OOD detection benchmark [26], but only as a
whole to define ID classes.

DomainNet [41] is a large-scale dataset of common
objects from 6 different visual domains. Our use of this
database aligns with what was proposed in ReSeND [24], but
we considered all 6 domains and 100 classes, selected through
the Natural Language Toolkit [42] as the classes having
the smallest semantic overlap with ImageNet1k’s label set.
We randomly chose 50 classes as ID, and the other 50 were
kept asOOD.We used the same splits provided by the original
authors. In the intra-domain track, both the support and test
data come from the same visual domain. There are therefore
6 different intra-domain tasks for which we directly report the
average results.

B. CROSS-DOMAIN TRACK
A covariate shift between training and test data may cause
a drop in performance as the models tend to assimilate the
training dataset’s visual bias during the learning process.
We deem robustness to this shift to be as important as
the ability to detect a semantic novelty. For this reason,
alongside the intra-domain track we consider a cross-domain
one in which support and test sets come from different visual
domains. It is composed of two settings both built on top
of the DomainNet [41] dataset, for which we use the same
ID-OOD and train-test splits of the Intra-domain case.

1) SINGLE-SOURCE → SINGLE-TARGET (SS → ST)
We adopted a single visual domain’s ID train data as
support set, while using another domain as test set. Overall
DomainNet contains 6 domains, thus we create 30 different
settings and report the average in our experimental analysis.

2) MULTI-SOURCE → SINGLE-TARGET (MS → ST)
Weused 5 domains’ ID train data together to build the support
set, and left the remaining domain as test. We collected the
results over all the 6 different settings that can be defined in
this way and report the average

IV. EXPERIMENTAL SETTING
With our experimental analysis we want to investigate the
effectiveness of OOD detection methods, mainly studying the
role of each of the algorithms’ components and evaluating if
and when the fine-tuning process on the ID support data is

needed. We provide here an overview of the choices operated
on the different components.

A. OOD EVALUATOR
The OOD evaluator specifies how to compare the features
extracted from the reference ID support data with those
of the test data. A simple training-free way to do it is by
exploiting sample distances and searching for the K nearest
support neighbors (KNN) of each test sample for defining a
normality score. This non-parametric approach has a variant
proposed in [19], where the authors suggested to normalize
the feature vectors before computing Euclidean distances
(KNN_norm). Of course, these techniques require storing the
feature representations of all support set samples, which can
have a large memory and computational footprint in the case
of very high support cardinality. A strategy that mitigates
this issue and makes the predictions less sensitive to the
presence of outliers, consists of calculating a prototype for
each ID class by simple feature averaging. The test sample’s
normality is later estimated by computing their distance
from the prototypes. Besides the Euclidean, the Mahalanobis
distance [20] could be used after modeling the support data
through class-conditional Gaussian distributions. It should
be noticed that both the KNN_norm and the Mahalanobis
strategies were originally proposed as fine-tuning-based
approaches. Still, considering that they both exploit feature
representations and do not need a classifier tailored for
the downstream task, they can also be directly applied to
representations extracted through a pretrained model.

Some OOD evaluators are also more tailored to the
pretrained model learning process. In ReSeND [24] a
dedicated relational module learns to compare pairs of
samples and passes the information to a semantic similarity
head. At deployment time the relational module is fed with
the test sample and ID class prototypes to infer a normality
score.

If the pretraining ran on data with combined vision and
language cues, another training-free OOD detection strategy
becomes possible via Maximum Concept Matching (MCM).
Specifically, by using the CLIP’s [6] text encoder the names
of the ID classes identify the prototypes. In the inference
phase, visual test samples are encoded through the CLIP’s
image encoder, and their distance from the known prototypes
is estimated through cosine similarity, selecting themaximum
value as zero-shot normality score.

Traditional training-based OOD methods perform a fine-
tuning phase on support data. In that case, the most widely
adopted evaluator is Maximum Softmax Prediction (MSP,
[1]) which uses classification predictions to output normality
scores. Alternative strategies such as ReACT [11] and
ASH [4] exploit the energy score obtained by mapping the
logit outputs to a scalar which is relatively lower for ID data.

B. FEATURE EXTRACTOR
For our analysis, we consider two macro-groups of OOD
detection algorithms depending on the pretraining datasets:
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one based on the standard ImageNet1k and the other
exploiting modern representation learning paradigms from
larger-scale data collections (ImageNet21k, WebImageText
with 400M image-text pairs, and LVD-142M).

In terms of pretraining objective, adopting the supervised
cross-entropy loss (CE) defines an essential reference base-
line. We also investigate self-supervised contrastive learning
with SimCLR [43], and SupCon [44] which merges the
advantages of contrastive and supervised learning. Moreover,
we include the contrasting shifted instances pretraining (CSI)
which is a SimCLR variant with specific data augmentations
tailored for novelty detection, as well as its supervised version
(SupCSI) [16]. Among the most recent self-supervised
approaches, we consider the knowledge self-distillation with
no labels objective of DINO [33], and its variant DINOv2
[5] that exploits traditional contrastive learning jointly with
masked image modeling. The latter provides a model with an
intrinsic reconstruction ability which is well suited for OOD
detection, as pointed out in [18].

Finally, in the case of large vision and language datasets,
the CLIP contrastive objective consists of mapping the
image embedding close to its corresponding text embedding.
This happens by increasing the cosine similarity score of
images and text that are associated, while minimizing the
similarity between images and texts that do not occur
together.

Regarding the backbones, we consider both convolu-
tional and transformer architectures. Specifically, we use
ResNet101 [45] (44M param.) and BiT [46] (380M param.)
which is a Wide ResNet network with all the Batch
Normalization (BN) layers replaced by a combination of
Group Normalization (GN) [47] and Weight Standardization
(WS) [48] ones, as the latter have been shown to provide
better performance in a transfer scenario. From the Vision
Transformer models [30], we adopt the base version ViT-B
(86M param.) and the large one ViT-L (307M param.).

Overall, we examine various combinations of these
components, ensuring coverage of both supervised and self-
supervised objectives, and employing both convolutional and
transformer-based architectures for small and large databases.
To choose the combinations we take into account the most
recent literature results and publicly available checkpoints
of pretrained models: for instance, DINOv2 identifies not
only a training objective but a whole model built with the
ViT-L architecture on the LVD-142M dataset. Concerning
the OOD evaluators, we adopt KNN and prototypes for all
the considered algorithms. Indeed they allow us to assess the
representation capabilities of various pretrainings as a
foothold for OOD detection. When dealing with supervised
CE-based approaches we also consider KNN_norm and test
the Mahalanobis distance.

We remark that ReSeND stands apart as it was orig-
inally designed for training-free OOD detection with
a tailored backbone, objective, and OOD evaluator. Its
transformer-based architecture (40M param.) was trained on
ImageNet1k to recognize if a pair of samples represents the

same semantic class or not by estimating a binary score via
the L2 loss. The variant ReSeND-H [25] exploits a hinge
loss that allows for better controlling same-vs-different class
separability.

We also treat CLIP as an exception with respect to all the
other approaches as it is the only one trained both with vision
and languagemodalities on the privateWebImageText dataset
and is evaluated in zero-shot fashion via MCM.

V. METRICS
We evaluate the OOD detection performance with two
commonly used metrics based on the concepts of True
Positive (TP, known samples detected as known), False
Positive (FP, unknown samples detected as known), True
Negative (TN, unknown samples detected as unknown) and
False Negative (FN, known samples detected as unknown).
The Area Under the Receiver Operating Characteristic Curve
(AUROC, the higher the better, values in [0, 1]) is the area
under the curve obtained by plotting the TP rate against the FP
rate when varying the normality score threshold. It represents
the probability that a known test sample receives a normality
score higher than an unknown test sample. The FPR95 (the
lower the better, values in [0,1]) is the FP rate when the TP
rate is 95% (it is sometimes referred to as FPR@TPR95): it
counts the ratio of unknown samples marked as known when
the normality score threshold is set to mark 95% of known
samples as known.

For what concerns the ability to correctly classify known
samples, we simply use the classification accuracy (ACC)
computed on all the known test samples.

VI. TRAINING-FREE OOD DETECTION RESULTS
Tab. 2 reports the results obtained by the described
training-free methods on our benchmark.

A. INTRA-DOMAIN TRACK
The top left portion of the table presents the Imagenet1k-
based pretraining. We can draw some general conclusions
by looking at the AVG column. The ReSeND-H method
(AUROC 0.660) outperforms the contrastive approaches
(best AUROC SimCLR 0.533, SupCon 0.592, CSI 0.643,
SupCSI 0.642) and it is competitive with CE (AUROC
ResNet101 KNN 0.678, ViT-B KNN 0.632), except when
CE exploits the KNN_norm evaluation (AUROC ResNet101
0.720, ViT-B 0.705). Indeed, normalizing the features to
project all the data onto the unit hypersphere is particularly
effective when the representation is obtained with a CE loss-
based classifier. This loss is not zero in case of correct
prediction and can be further minimized by increasing the
norm of the feature vectors. In other words, the norm
of the features extracted by models trained with this
learning objective should be discarded as it brings misleading
information. This explains the advantage of passing from
KNN to KNN_norm. The described behavior does not occur
in the case of contrastive self-supervised pretraining as these
methods do not involve an unwanted maximization of the
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TABLE 2. Training-free OOD detection results on the OODDB benchmark. We consider the experiments on ImageNet1k and those on larger datasets as
separate settings, displayed in the two horizontal subparts of the table (top and bottom). For each of them, we use the bold font to highlight the best
result per column. Moreover, the table presents in two vertical parts (left and right) the intra-domain and cross-domain track results.

feature norms. This claim is confirmed by Fig. 2 which shows
a comprehensive comparison of the KNN_norm results with
the corresponding KNN ones (an extended version of this
bar plot for all the experimental settings is provided in the
appendix Sec. B-A).

Finally, the top results obtained with DINO (AUROC
KNN 0.730) indicate that the most recent self-supervised
approaches provide a significant leap over both supervised
and standard self-supervised contrastive pretraining methods.
It suggests that other potential improvements in the semantic
novelty detection literature could be obtained by scaling
up self-supervised strategies, even introducing new tailored
objectives.

The comparison between KNN and prototypes deserves a
last remark. In general, the first evaluation method provides
better results than the second. However, the inference cost
in the two cases is significantly different: with prototypes
it is enough to calculate the distances of the test sample to
each class centroid, while with KNN the whole support set
is considered as reference. So for KNN it is necessary to
evaluate the distance of the test sample to all the support data
which may be problematic when their cardinality is so large
to not fit into the system memory.

The bottom left part of the table contains the results
produced with large-scale pretraining. The first rows of this
group shows that applying traditional supervised CE-based
learning on top of ImageNet21k does not provide an aver-
age performance improvement (AUROC ViT-L KNN_norm
0.707) over the best ImageNet1k case (AUROC ViT-B DINO
KNN 0.730). A visible advantage can instead be obtained
with a pretraining designed explicitly for transfer learning,
which is the case of BiT (AUROC CE KNN_norm 0.767).

Interestingly, the vision and language CLIP pretraining
with the MCM evaluation strategy, which exploits the class
names as support prototypes, does not produce top results.
Indeed the textual encoder works well for DomainNet and its
object names, but struggles when dealing with Texture’s or
PatterNet’s labels and fine-grained classes in Stanford Cars.

The best average performance is obtained with DINOv2,
highlighting again the robustness of self-supervised repre-
sentation learning approaches, especially when applied at
scale. It is also remarkable that this pretraining obtains
extremely similar results when testedwithKNNor prototypes
(AUROC 0.798 and 0.790), showing that it is possible to build
compact known class clusters for which the centroids are not
far away from the cluster boundaries. Thus, by exploiting
the prototypes it is possible to significantly reduce the
computational cost at deployment time without sacrificing
performance. This also suggests that overclustering may
provide further benefits. To verify this hypothesis we ran
k-means on the support set features to select 10 centroids per
class which are then leveraged instead of the whole feature
set to represent the ID data. In this way, the average results of
DINOv2 pass from AUROC 0.798 to 0.815 and from FPR95
0.667 to 0.626 (see Sec. B-B in the appendix for the complete
set of results with k-means clustering centroids).

B. CROSS-DOMAIN TRACK
The right part of the table contains the cross-domain track
results. At first glance, it is evident from the low AUROC
values that the OOD detection task is now much more
challenging than in the intra-domain case.

The top right table section contains the ImageNet1k-
based results with the best performances obtained by
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FIGURE 2. Training-free OOD detection results on the OODDB benchmark.
KNN vs KNN_norm intra-domain performance for ImageNet1k-based
pretrainings. Note that KNN_norm has a clear advantage over KNN when
the pretraining objective is CE.

TABLE 3. Training-free OOD detection results on the OODDB benchmark.
Analysis of the CLIP visual encoder when using KNN and prototypes
evaluators vs the CLIP text encoder exploited by the MCM evaluator.
We also report the same DINOv2 results presented in Tab. 2 as reference.

ResNet101 CE KNN_norm and ViT-B DINO KNN (e.g. in
MS → ST respectively AUROC 0.617 and 0.616).

The bottom right section of the table presents the results
with large-scale pretraining: we can observe how ViT-L with
DINOv2 shows a gain over the small-scale pretraining (in
MS→ ST prototypes DINOv2 has AUROC 0.722, higher
than the top AUROC 0.617 at small-scale just mentioned
above.)

Overall, the best results are those of CLIP with MCM
(AUROC 0.817). Such an outcome could be expected in
this particular setting as the zero-shot MCM evaluator
completely avoids the use of the support data (confirmed
by the fact that the SS→ST and MS→ST results are
identical). Its normality score depends only on the distance
of each test sample to the support class names, projected into
the embedding space via the CLIP text encoder. Thus the
language modality disregards the visual shift between the two
domains.

Before concluding this section, it is worthwhile to delve
deeper into the capabilities of the CLIP pretraining objective
to disentangle the visual and textual representation when
performing OOD detection. Specifically, we wonder what
would be the results when using the support visual data and
adopting KNN or prototypes as evaluation techniques. The
results in Tab. 3 highlight that this strategy is much more
effective than MCM in the intra-domain track, although it
provides lower results (even below those of DINOv2) in the
cross-domain track. Overall, this confirms the importance of
exploiting language in case of visual domain shift but also
indicates that blindly relying on it in every setting may be
deleterious.

VII. COMPARISON WITH FINE-TUNING-BASED
STATE-OF-THE-ART
As previously discussed, the OOD detection literature
considers fine-tuning on the support set as a standard
strategy. To assess the potential of the training-free methods
we compare the top performing methods from Tab. 2
with representative fine-tuning-based state-of-the-art OOD
detection methods. Specifically, we start from pretrained
models on ImageNet1k, ImageNet21k, and LVD-142M.
In terms of backbone architectures, we consider ViT-B,
ViT-L, and BiT with the related CE and DINO/DINOv2
objectives. Once fine-tuned, we test the post-hoc methods
MSP [1], ReAct [11], KNN_norm in its original fine-tuning-
based version [19], ASH [4], and Flow which exploits for
OOD detection the flow-based density estimator of the OSR
method OpenHybrid [15].

In Tab. 4 we report the obtained results that overall
show how fine-tuning provides a clear advantage in
the intra-domain track (left part of the table). In the
cross-domain track (right part of the table), the fine-
tuning produces mixed results. For instance, the AUROC
of the fine-tuned DINOv2 KNN_norm is 0.748 for MS→ST,
with a clear improvement over the corresponding not-fine-
tuned result of KNN 0.713. However, the trend inverts
if we consider FPR95 (the lower the better), which is
0.832 for the fine-tuned KNN_norm and 0.808 for the not-
fine-tuned KNN. A similar behavior holds for the SS→ST
case. This inconsistency between AUROC and FPR95 is
a direct consequence of having a biased feature extractor:
OOD samples are represented with features that have been
tailored for ID samples. In the fine-tuned embedding space
the novel classes appear close to the known ones and in
particular closer than they would have been when using
the original not-fine-tuned representation. As a result, the
ranges of normality scores provided for ID and OOD
test samples become similar, as shown by Fig. 3 (see
the black/blue colorful bars over the horizontal axis), this
makes ID and OOD data less distinguishable despite the
increased distance between the peaks and correspondingly
increased AUROC. Indeed, a lower threshold has to be
chosen to have a TPR of 95%, which leads to a worse
FPR95 score.

Regardless of these details, the best performance remains
that of the not-fine-tuned MCM that exploits language.

Overall, it is worth noticing that with fine-tuning the
effect of the size of the pretraining datasets is less evident
than in the training-free case. Specifically, the difference
between the best AUROC when using ImageNet1k or
ImageNet21k/LVD142M can get up to 0.1 in the training-free
case and it is instead below 0.06 in the fine-tuned case.
We also highlight that the very recent ASH approach
is proficient only with convolutional architectures (BiT),
while it performs poorly with transformer-based back-
bones. This holds for both the intra-domain and cross-
domain tracks and confirms a behavior already noted
in [35].
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TABLE 4. Traning-free (top) vs Training-based (bottom) OOD detection results on the OODDB benchmark. For each setting we use the bold font to
highlight the best result per column. Moreover, the table presents in two vertical parts (left and right) the intra-domain and cross-domain track results.

FIGURE 3. Distribution of normality scores for ID and OOD test samples
on the All (MS) → Clipart (ST) set of the cross-domain track, using the
pretrained DINOv2 model (top) and the corresponding fine-tuned one
(bottom). Note how the range of score values, represented by the blue-ID
and black-OOD horizontal bars over the x-axis, become similar in the
bottom figure. Despite the peaks of the two distributions move apart, the
separating threshold for TPR95 gets lower, causing a worse FPR95 score.

As mentioned in Sec III, a standard testbed for OOD
detection is that presented in [7], covering only far OOD

settings. We extended our analysis to it and collected
the results in Tab. 5. Here the support set covers all the
1000 classes of ImageNet1k, but it is preferable to avoid fine-
tuning, as already observed in [26].

If we compare what happens when the model pretraining
is on ImageNet21k we can see that the training-based method
Flow gets a higher AVG AUROC (0.886) than the not-fine-
tuned BiT CE prototypes (0.873), while the corresponding
FPR95 values show the opposite trend (BiT CE prototypes
0.484 < Flow 0.497). When the pretraining dataset is LVD-
142M with objective DINOV2, the best fine-tuned results
(Flow AUROC 0.904, ReAct FPR95 0.416) are worse than
those of the training-free prototypes (AVG AUROC 0.925,
and FPR95 0.316).

Interestingly, in this setting MCM produces top results
when the OOD samples are from SUN and Places, but
present much lower performance on iNaturalist and Texture.
We claim that this behavior is connected to the use of
language: it is relatively easy to position scene instances in
a multimodal embedding created for object classes, while
it is much more complicated to position real and synthetic
patterns for which the language does not provide relevant
hints. Indeed when we discard the language contribution by
considering CLIP-KNN and CLIP-prototypes the results on
SUN and Places decrease significantly, showing a larger drop
than on iNaturalist and Texture for which the language was
of minimal support.

When looking at these results it is also important to keep
in mind that the computational cost of the training-based
methods is significantly higher than that of training-free ones.
Indeed, fine-tuning is a full-network training phase which
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TABLE 5. Traning-free (top) vs Training-based (bottom) OOD detection results on the benchmark from [7]. ID dataset: ImageNet1k. The column titles
indicate the OOD dataset. We use the bold font to highlight the best result per column and training setting.

may require a significant amount of time and has to be
repeated for each OOD detection problem. This means that
to obtain the numbers of a single row in Tab 4, fine-tuning-
based methods perform 48 training sessions (considering the
three random data orders for each experiment), while fine-
tuning-free methods use the same fixed pretrained model for
all the experiments.

VIII. A WISE WAY TO USE FINE-TUNING
As previously mentioned, the fine-tuning process may lead
to forgetting some of the general knowledge acquired in the
original model in favor of the new information collected from
the fine-tuning data. This can be particularly problematic in
case of domain shift between the distribution of the support
data used for the fine-tuning process and the test one.

Recently, the authors of WiSE-FT [49] suggested to
linearly combine the pretrained model with the fine-tuned
one, showing that this greatly increases the robustness to dis-
tribution shifts of the latter while retaining its performance on
the fine-tuning data distribution. Furthermore, the proposed
approach eases the burden of the hyperparameters’ choice
(e.g. early stopping for fine-tuning), which is tricky andmight
heavily influence the final model’s performance and robust-
ness. Indeed, by simply tweaking the combination factor, it’s
possible to vary the contribution of the fine-tuning process to
the final model without having to perform a new expensive
training procedure. In light of these advantageous properties,
we decided to test such a technique in our benchmark, both in
the intra-domain and cross-domain tracks. While the original
analysis of WiSE-FT specifically focused on CLIP-based
models [6], and their zero-shot classification by leveraging
the text encoder, we instead consider the vision-only based
models that produced the best results in Tab. 4. Specifically,
we choose the KNN_norm evaluator for our comparison.

Regarding the models’ combination, we adopt equal weights
(0.5), following the authors’ recommendation [49].
The obtained results are presented in Tab. 6. from which

we can observe two different trends: on smaller pretraining
datasets and models (i.e. ImagNet1k ViT-B CE and DINO)
WiSE-FT obtains considerably worse performance compared
to the sole fine-tuned networks, both in the intra-domain
and in the cross-domain settings. Meanwhile, more complex
models trained on larger datasets seem to benefit from the
interpolation, with both ImageNet21k BiT-CE and LVD-
142M ViT-L-DINOv2 showing a significant advantage in
the cross-domain scenario (e.g. for MS→ST the WiSE-FT
AUROC of LVD-142M ViT-L-DINOv2 is 0.786, while the
fine-tuning result is 0.748), with also a slight performance
improvement in the intra-domain one (WiSE-FT AUROC
0.891, fine-tuning AUROC 0.886). Thus, we can state that
these models have enough capacity to benefit from such a
simple ensemble, without canceling out either the general
knowledge from the pretraining or the detailed one acquired
during fine-tuning. At a higher level, a general conclusion is
that vision-only basedmethods show unexpressed generaliza-
tion potentialities that deserve dedicated investigations even
without the integration with language.

IX. CLOSED SET RESULTS
Recently Vaze et al. [50] pointed out that the ability to detect
OOD data is directly linked to a model’s accuracy on ID
samples. More precisely, for a model that can be used
to perform both classification and detection of unknown
classes, the performance on the two tasks will be roughly
proportional. We are thus interested to understand whether
this phenomenon also occurs with training-free methods.
We assess the closed set accuracy (ACC) of the samemethods
included in Tab. 4 and report the average results in the
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TABLE 6. Comparison between full fine-tuning, zero-shot models and WiSE-FT, using the KNN_OOD evaluator on the OODDB benchmark. The table
presents in two vertical parts (left and right) the intra-domain and cross-domain track results. We use the bold font to highlight the best result per column.

TABLE 7. OOD detection (AUROC) and closed-set results (ACC) on our
OODDB benchmark. The table is composed of three horizontal portions
presenting the training-free, training-based, and WiSE-FT results. It is also
divided vertically to show the results for the intra-domain (left) and
cross-domain (right) tracks. We use the bold font to highlight the best
result per column in each sub-part.

intra-domain and cross-domain settings, together with the
corresponding AUROC, in the top part of Tab. 7. The results
show that the proportionality between the ACC and AUROC
is generally respected: the state-of-the-art OOD detection
methods also show very good classification performances.
Still, the cross-domain track appears particularly challenging
also in terms of closed set. The table offers also a global
overview of the results of the training-based methods (middle
part of the table) as well as the WiSE-FT approach (bottom
part of the table). In particular, the advantage of the latter over
the former is evident even in closed set accuracy. Relying
on the vision-language embedding of CLIP confirms itself as
the best strategy across domains, but not in the intra-domain
setting.

X. CONCLUSION
In this paper we analyzed the performance of training-free
OOD detection approaches to draw a comprehensive picture

of the state-of-the-art, in the wake of the appearance of
foundation models in the computer vision field. We started
by introducing OODDB, a novel large-scale benchmark
designed to perform a fair and exhaustive evaluation
of the OOD detection algorithms on a series of realis-
tic deployment conditions. On this testbed, we analyzed
training-free approaches considering both their application
on traditional ImageNet-based pretrainings as well as the
recently proposed foundation models CLIP [6] and DINOv2
[5]. We showed how the latter can be used to obtain
state-of-the-art results on intra-domain scenarios, while the
former’s use of language information enables it to cir-
cumvent visual domain-shift problems and obtain excellent
performance in the cross-domain setting. We then compared
training-free methods with training-based ones, observing
that fine-tuning enables the best intra-domain performance,
even if training-free methods are rapidly catching up
and already outperform training-based approaches in all
other settings. Moreover, we discussed how to perform
a simple combination of training-free and training-based
methods with promising results. Overall, our analysis reveals
the real performances unlocked by exploiting foundation
models for OOD detection, and the newly proposed
testbed puts under the spotlight some challenging settings
that need more investigation, paving the way for future
research.

APPENDIX A
IMPLEMENTATION DETAILS
We provide here some implementation details about the
methods included in our analysis. Additional details can be
found in our Github3 page where we also release the code
and the instructions to replicate all the results.

A. TRAINING-FREE METHODS
Where possible, we exploited the pretrained models provided
by the original authors of each paper, or checkpoints provided
by deep learning frameworks like PyTorch and HuggingFace.
For CSI and supCSI [16] we performed the training of a
ResNet101 on ImageNet1k using the code provided by the
authors. For ReSeND [24] and Mahalanobis [20] we adapted

3https://github.com/FrancescoCappio/OODDetectionBench
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the original inference code to integrate it into our benchmark.
For KNN_norm [19] and MCM [26] we reimplemented
the code from scratch, replicating the original results.
The distance-based KNN and prototype methods were not
presented as contributions of any specific publication, but
are easy to implement: for the former, similarly to what
was done for KNN_norm, we used faiss [51] for efficient
similarity search. For the latter, we computed prototypes by
per class support features averaging. This allows for reducing
the number of comparisons significantly, which makes faiss
unnecessary. For distance-based approaches, we generally
rely on the Euclidean distance measure, the only exception
being distances computed on the output of contrastive heads,
for which the cosine distance is used for consistency with the
contrastive learning objective.

We highlight that it is standard practice to discard the
so-called projector before using self-supervised contrastive
models for transfer learning [5], [33], [43]. The projector
is also known as contrastive head and is usually an MLP
appended at the end of the backbone, on top of which the
learning objective is applied. Recently, Bordes et al. [52]
pointed out that scraping the projector can be seen as a
regularization technique, which they call Guillotine Regu-
larization (GR), and is thus responsible for the improved
generalization on downstream tasks. In our fine-tuning-free
evaluation scenario, in which no training on downstream
tasks is involved, the advantage of GR, over maintaining
the contrastive projector head was not discussed in previous
works so we ran a preliminary analysis that confirmed its
advantage over keeping the projector. All the presented
results were obtained with GR.

B. TRAINING-BASED METHODS
Testing fine-tuning-based methods require performing trans-
fer learning, i.e. adopting pretrainedmodels as a starting point
for a whole network training on the support set of the task at
hand. To perform fair comparisons, we adopted the vision-
based pretrainings, which in the fine-tuning-free analysis
obtained the top results, as a starting point for the fine-tuning:
BiT [46] and DINOv2 [5]. We also included ViT-B-based CE
and DINO [33] pretrainings, as we want to understand if the
fine-tuning allows overcoming the performance gap among
different pretrainings. As a general protocol, we performed
25 training epochs with a base learning rate of 10−4, batch
size 64, Adam optimizer with weight decay 10−5.We adopted
a learning rate scheduling protocol composed of 5 warmup
epochs, and 20 cosine annealing ones. For large trainings (e.g.
those on ImageNet1k) we reduced the base learning rate to
10−5 and we performed distributed training, linearly scaling
the batch size and the learning rate.

For what concerns ReAct [11], which requires comput-
ing an activation threshold necessary to increase known-
unknown separability, we adopt the original authors’
proposed approach of keeping 90% of ID activations, but we
apply this split on training activations, as most benchmarks

FIGURE 4. Training-free OOD detection results on the OODDB benchmark,
intra-domain setting. KNN vs KNN_norm performance for
ImageNet1k-based pretrainings (left) and larger ones (right).

FIGURE 5. Training-free OOD detection results on the OODDB benchmark,
cross-domain setting. KNN vs KNN_norm performance for
ImageNet1k-based pretrainings (left) and larger ones (right).

do not include an ID validation set. For ASH [4] we apply the
original author’s code for activations shaping.

As for the flow-based approach, we used the same
architecture proposed in [53], stacking 8 coupling blocks
on top of the feature extractor of the base network. During
the training procedure, we jointly updated the backbone and
the classification head following a cross-entropy loss, while
separately optimizing the flow module by maximizing the
log-likelihood. When training on ImageNet1k, we reduced
the learning rate for the flowmodule by a factor of 10 to avoid
instabilities.

APPENDIX B
ADDITIONAL ANALYSES
A. KNN AND KNN_NORM
As already discussed in the main paper, it might be
beneficial to normalize the features provided by a model
pretrained with the CE classification objective. We provide
here empirical evidence for this claim over all the settings
of our OODDB benchmark. Specifically, Fig. 4 shows
results for the intra-domain track, and Fig. 5 for the
cross-domain track. In the first case, KNN_norm has a
visible advantage over KNN only for CE pretraining. In the
second case, the normalization provides a slight general
advantage but when using CE pretraining the gain is more
evident.

We also highlight that for all our experiments we set
K = 1. In a preliminary phase we evaluated higher values of
K by computing the normality score based on the distance
from the K -th nearest support neighbor. However, the results
were always lower than those obtained with K = 1.
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TABLE 8. Training-free (top) vs Training-based (bottom) OOD detection results on the OODDB benchmark when using k-means clustering to summarize
the support set, followed by KNN_norm. We create k = 10 clusters per class and use only the respective centroids to represent the class. The left and right
parts of the table present the intra-domain and cross-domain results. We do not use bold font here are the goal is not to highlight the top overall results
but rather to compare the results when using k-means or not (-).

B. K-MEANS
Despite the good results it can achieve, the greatest limitation
of the KNN evaluator remains its computational cost, as it
requires to perform for each test instance sample as many
comparisons as the number of support samples |S| which is
generally much higher than the number of support classes C.
To overcome it, we tried running the k-means algorithm

on the support set features for each known class, leveraging
the obtained centroids rather than the whole feature set to
represent the normal data. In this way, the complexity of the
evaluation goes from O(|S|) to O(C), in line with most of the
other methods.

We used k = 10 and the results in Tab. 8 show how k-
means doesn’t affect the models’ performance on average,
with results being slightly better or worse depending on the
considered scenario. Thus, we argue that multiple centroids
can effectively summarize the support set information
without introducing a significant performance drop, unlike
the prototypes-based evaluation which leverages a single
vector for each known category (see Tab. 2). The only
notable exception is DINOv2, which experiences a small but
consistent performance boost across all the test settings, again
confirming that the compact class clusters obtained with this
representation are highly beneficial for OOD detection.
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