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A B S T R A C T   

Electrification of transport is deemed by many countries worldwide as one of the key strategies to 
mitigate CO2 emissions, yet the availability of reliable public charging infrastructure systems 
represents a potential serious bottleneck to such endeavours. Existing studies exploring battery 
electric vehicle (BEV) charging behaviour are typically based on either non-representative sam
ples or stated choices experiments. This paper analyses observational data from a representative 
sample of German BEV owners who provided information on mileage and charging activities over 
a timeframe of eight weeks. BEV charging patterns, related vehicles kilometres travelled (VKT) 
and battery charging behaviour are assessed via a multifaceted empirical framework that pairs a 
hazard survival-based model with a log linear regression approach. A latent class method is also 
employed to segment BEV owners into different charging segments. The model suggests two types 
of charging behaviour exist, consisting of regular and irregular chargers. Charging frequencies 
and patterns are found to be radically different between the two groups under study, with regular 
chargers estimated to charge their vehicles 1.5 times more than irregular chargers. Lastly, the 
framework proposed is used to explore how charging behaviour will mutate due to both tech
nology advancements (BEV driving range improvements) and user-centric factors (VKT varia
tions). Neither technological or user factors are predicted to substantially affect the inter-charging 
duration of irregular chargers, whereas both increasing BEV driving ranges and reducing VKT 
results in a longer elapsed time between two consecutive charges for regular chargers.   

1. Introduction 

Given that the transport industry is responsible for approximately one third of global CO2 emissions (International Energy Agency 
(IEA), 2022), electrification of the transportation sector represents a key strategy for combating climate change (IEA, 2016). Un
derstanding the charging behaviour of electric vehicle (EV) owners is therefore crucial for both transport planners as well as those 
working in the energy sector. To date, numerous decarbonization strategies have been introduced worldwide to increase the uptake of 
EVs, including policies that restrict the ability of owners to drive or purchasing conventional vehicles (Chi et al., 2021; Liu et al., 2021; 
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Ma et al., 2020; Zheng et al., 2022; Pellegrini et al., 2023a), or incentivise the acquisition of more fuel-efficient vehicles (Hardman 
et al., 2017; Pellegrini et al., 2023b; Pellegrini and Rose, 2023), such as allowing EVs access to high-occupancy vehicle (HOV) lanes 
(Jenn et al., 2018) or the deployment of dedicated parking spots for electric automobiles (Gong et al., 2020), among others. Other 
policies have focused on reducing charging costs through subsidising electricity costs (e.g., Greaker, 2021; Kim et al., 2022), improving 
public charging infrastructure (e.g., (Li and Ouyang, 2011; Yang et al., 2020), or via the introduction of national vehicle standards (e. 
g., Das et al., 2020). 

Although various structural reforms adopted by national governments have contributed to accelerating the transition to cleaner 
transport alternatives, there remains a significant segment of the public who are hesitant to purchase EVs, in part due to the (perceived) 
unreliable nature of the public charging infrastructure networks (McNutt and Rodgers, 2004; Graham-Rowe et al., 2012; Kim et al., 
2017; Wollbertus et al., 2018; Greene et al., 2020). The lack of sufficient public charging infrastructure can in a large part be attributed 
to the reluctance of various stakeholders to invest in the development of a robust public charging network due to perceptions about the 
unprofitability of the EV market (Gnann and Plötz, 2015; Melaina et al., 2017). 

Despite much of the public discourse relating to public charging of EVs, it is worth noting that most of charging activities are 
currently undertaken at home. Indeed, evidence suggests that approximately nine out of ten charging events occur at private dwellings 
in continental Europe (Franke and Krems, 2013a; IEA, 2020), with 70 percent of charging in the UK, United States and Canada 
(Neaimeh et al., 2017; Funke et al., 2019). Unfortunately, the ability to charge an EV at a person’s place of residence is not uniform 
across the population, with accessibility of EV private charging infrastructure (e.g., Level 1 or Level 21) subject to the availability of off- 
street parking, as well as dependent on the type of dwelling the EV is housed at (e.g., individual houses vs condominiums) (LaMonaca 
and Ryan, 2022; Alexander, 2022; Zhongying, 2023). Recently, Pellegrini et al. (2023b) evaluated the intention of Australian 
households to install EV home chargers by analysing data extracted from a discrete choice experiment (DCE) administrated to residents 
of either separate private dwellings or town houses/apartments belonging to building complex. The authors conclude that both 
sampled populations are keen to upgrade the infrastructure to permit the home charging of EVs, with apartment residents holding 
strong positive preferences towards chargers located at privately allocated parking spaces relative to communal bays. A promising 
alternative to the scarcity of EV charging infrastructure may lie with the development of EVs with photovoltaic solar panels that will 
allow for improvements in the driving range capacity of such vehicles (Masuda et al., 2017; Girard et al., 2019). For example, Ghasri 
et al. (2021) quantify that Australian consumers are on average inclined to pay a premium of approximately AU$18.13 for every added 
driving range kilometre originated from solar photovoltaic technology. 

The aim of this study is to contribute to the literature on charging behaviour of EV owners by analysing the real-world data of 2,898 
charging events associated with 154 EVs obtained from the German Mobility Panel (MOP) (https://mobilitaetspanel.ifv.kit.edu). The 
MOP is one of the most comprehensive observational data sets currently available, as well as being based on a nationally representative 
sample, with the latest wave being collected in Spring 2022 at the time of this study (see section 3 for additional details). We propose 
the use of a latent based methodological framework that couples a heterogeneous hazard-based (henceforth, H-HD) model (Bhat et al., 
2004; Bhat et al., 2005) with an heterogenous vehicle kilometres travelled (henceforth, H-VKT) regression model (Yamamoto et al., 
2018; Hasan and Simsekoglu, 2020). Whilst the H-HD is used to assess what determinants influence the frequency of EV charging, the 
H-VKT is employed to capture nuances pertaining to EV usage between consecutive charging episodes. The two proposed models are 
analytically linked via the inclusion of the battery usage (BU) before charging, calculated as the predicted VKT divided by the vehicle 
driving range according to the car maker, into the H-HD. By doing so, we are able to directly measure how the battery usage impacts on 
the inter-charging duration (see, for example, Daina and Polak, 2016) without incurring any potential endogeneity issues that might 
arise with the incorporation of the VKT into the list of explanatory variables for the H-HD model. Further, EV owners are profiled into 
different segments, these being either irregular or regular chargers depending on their charging regularity, since the two groups are 
likely to exhibit radically different behaviour. The assignment of individuals to the two identified groups is undertaken in a proba
bilistic manner, as there is no prior information as to what typology of user the EV driver is (see Kim et al., 2017). 

The next section reviews the relevant literature in this research field, followed by Section 3 that outlines the econometric 
framework that stands at the core of this study. Section 4 describes the data that we employ for the empirical analysis whilst Section 5 
presents the estimated findings obtained from the joint estimation of the H-HD and H-VKT models, alongside a discussion of the results 
that derive from two simulated exercises. Section 6 draws some police implications and provides concluding remarks. 

2. Literature review 

Whilst numerous studies have examined the impact of charging infrastructure changes on the shift to electromobility (e.g., Dong 
et al., 2014; Ghamami et al., 2016; Hardman et al., 2018; Funke et al., 2019; Globisch et al., 2019; Illmann and Kluge, 2020; Zhang 
et al., 2020; Schulz and Rode, 2022), the existing knowledge about charging habits of EV owners remains limited (Kim et al., 2017). At 
present, one of the major challenges faced by researchers relates to an insufficient amount of real-world data on EV charging patterns, 
often resulting in policy recommendations grounded on strong assumptions (e.g., driving behaviour of EVs is similar to that of 
traditional passenger vehicles), or empirical investigations involving relatively small sample sizes (Khan and Kockelman, 2012; Tamor 
et al., 2015; Jakobsson et al., 2016; Yang et al., 2016). For example, Zoepf et al. (2013) examine the charging events related to 125 
plug-in hybrid electric vehicles (PHEVs) and found that electric cars are typically recharged after the final trip of the day when the 

1 The charging power of Level 1 is approximately between 1.4kW and 2.4kW, with a full recharge of the vehicle occurring anywhere from 8 to 40 
h. Level 2 EV chargers, on the other hand, have a charging power of up to 7.2kW with a driving distance of about 29 km per hour of charge. 
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vehicle is located at home, and when there exists a gap of more than three hours from the next trip, although significant heterogeneity 
was found to exist within the sample. Franke and Krems (2013b) conclude from a six-month EV field study involving 79 EV owners that 
on average drivers travel 38 km per day and recharge their vehicles three times per week. Speidel and Bräunl (2013) analyse data from 
11 EVs and 23 charging stations collected during the Western Australian Electric Vehicle Trail conducted between 2010 and 2012, 
finding that 83 percent of charging events occur when the battery of vehicles are at more than half charge. Khoo et al. (2014) make use 
of various statistical modelling techniques to examine charging occurrences of 33 EVs employed in the Victorian (Australia) EV Trail, 
reporting that sampled households recharge their EVs 0.54 times per day with negligible differences in charging frequencies being 
captured between weekdays and weekends. 

Sun et al. (2015) evaluate normal charging (Level 1 and Level 2) episodes after the last trip of the day involving 483 EVs belonging 
to an EV usage trail conducted in Japan between February 2011 and January 2013. Their results suggest that the state of charge (SOC), 
charging intervals (in days) and vehicle-kilometres to be travelled on the next trip are three key predictors for the analysis of 
recharging choices. This research involved by far the largest empirical sample among those here reviewed, although experimental data 
were gathered over one decade ago. Daina and Polak (2016) examine the inter-charging duration of 20 EVs drawn from the Low 
Carbon London project and assert that the frequency of charging decreases by approximately six percent as the SOC before charging 
increases. From an Irish study on charge and trip making behaviour involving 72 EV users, Weldon et al. (2016) reveal that EVs are 
regularly charged independent of both the battery’s state of charge before charging, and the distance travelled between consecutive 
charging activities. Finally, Kim et al. (2017) examine four-years of charging transactions data of public EV points in the Netherlands, 
finding that extreme weather conditions have the effect of delaying the next charge at public stations based on 449,844 charging 
events. 

Other studies have examined charging behaviour patterns by analysing data obtained from DCEs. Whilst DCEs are immune to the 
typical limitations of observational studies, including the difficulty of collecting sufficiently large and representative samples, they 
tend to provide limited opportunities to develop behavioural models based on real-world scenarios. Examples of such studies include 
Wen et al. (2016), who design a DCE to elicit EV drivers’ preferences towards different charging opportunities, noting that respondents 
are on average willing to pay an extra US$2.35/hr for Level 2 charging and US$7.85/hr for fast charging above the premium paid for 
Level 1 charging. Daina et al. (2017) utilize a random utility-based model to assess the interrelated stated decisions of activity-travel 
scheduling and charging choices, estimating significant heterogeneity across the 88 surveyed respondents with regards to charging 
cost, the battery charge state after charging, and the duration of the charging event. Latinopoulos et al. (2017) implement a risky- 
choice framework to study out-of- home stated charging preferences of 118 respondents under the assumption of parking and 
charging prices changing dynamically and articulate that interviewees might procrastinate with respect to undertaking charging 
activities in the expectation of obtaining a cheaper charging bundle. 

The contribution of the current paper to the literature on charging behaviour is twofold. First, we jointly analyse vehicle usage and 
charging patterns of a representative sample of German BEV owners, as opposed to most observational studies being based on non- 
representative and outdated samples. Indeed, some of the abovementioned articles were published more than a decade ago when 
the technology was still in its infancy with EVs being primarily used by early adopters. Second, the present study represents one of the 
first attempts (if not, the first one) to assess charging behaviour of EV users via the formulation of an econometric framework that 
simultaneously captures the determinants influencing vehicle usage patterns and their impact on charging time intervals. 

3. Methodology 

This section illustrates the methodological approach that we utilize to investigate charging behaviour of EV owners. As mentioned 
above, the proposed approach pairs a H-HD model with a H-VKT regression model, with the former examining inter-charging duration 
(days) patterns whilst the latter evaluates the determinants affecting EV usage between successive charging instances. Given that the 
researcher cannot identify the type of EV user a priori, individuals are classified as either irregular or regular chargers through a latent- 
based segmentation method, which allows for accounting for the underlying heterogeneity in charging routines. In what follows we 
first describe the H-VKT model, after which we cover the main features of the H-HD model employed to analyse inter-charging duration 
as well as explain how the two frameworks are econometrically jointed. 

3.1. The H-VKT model 

Consider an individual n (n = 1, …, N) who is observed to undertake (tn = 1, …, Tn) charging events with inter-charging duration of 
snt between charging episodes, and who travels a distance VKTsnt, then 

ln(VKTsnt) = βʹxsnt + ηn + ξsnt, (1)  

ξsnt ∼ N(0, σ).

In Eq. (1), xsnt is a vector of explanatory variables that describes the EV usage since the previous charging event, β is the corresponding 
vector of parameters to be estimated, ηn is a normally distributed individual-specific factor with a mean of zero and a standard de
viation δ, which is assumed to be independent of ξsnt . The role of ηn is to account for unobserved heterogeneity across EV users in 
vehicle usage preferences. In the above equation, the dependent variable, VKTsnt, is expressed in a logarithm form. Doing so enables to 
accurately accommodate the asymmetric nature of the kilometres (km) travelled (i.e., VKTsnt) under examination. Given that ξsnt 
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follows a normal distribution, the probability density function that the travel distance between charging events is VKTsnt can be written 
as 

ProbH− VKTsnt

[
VKTsnt|β, δ,σ2] =

1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ exp
(

−
1

2σ2(VKTsnt − (βʹxsnt + δ) )2
)

, (2)  

where β, σ2 and the standard deviation δ associated with the error term ηn are parameters to be estimated. 
Then, the unconditional likelihood function for an individual n who is observed within the interval charging period snt to travel 

VKTsnt is integrated over the probability density function of the random term ηn 

LH− VKTsnt |β, δ,σ2 =

∫ ηn=+∞

ηn=− ∞

{
∏T

t=1
ProbH− VKTsnt

(
VKTsnt|β, δ,σ2)

}

∂(ηn). (3)  

3.2. The H-HD model 

Over the past few decades, models of duration have been widely adopted for the analysis of inter-episode time duration in transport 
(e.g., Schönfelder and Axhausen, 2001; Axhausen, et al., 2002; Bhat et al., 2004; Bhat et al., 2005; Arentze and Timmermans, 2009; 
Rasouli and Timmermans, 2014; Kim et al., 2017). Within this context of application, two distinct hazard-based duration models are 
used to examine the charging behaviour of irregular and regular chargers. These two latter groups are in turn identified via the class 
assignment probability method (Bhat, 1997). Here, irregular chargers are defined as EV drivers who charge their vehicle irrespective of 
the time elapsed since the last charging event, whilst regular chargers are assumed to charge their EVs at consistent intervals. First to be 
described is the model of duration for irregular chargers, after which attention is given to that for regular chargers. 

3.2.1. The H-HD model for irregular chargers 
Let the hazard on the tth day since the previous recorded charging event for an individual n and λ(snt), be defined as the conditional 

probability that individual n will charge the EV vehicle on the tth day under the assumption of not having charged it before then, such 
that 

λ(snt) = λ0exp( − γʹzn − κn − ρBUsnt), (4)  

where λ0 > 0,BUsnt = [ln(V̂KTsnt) − ln(VKTndr) ] and VKTndr the vehicle driving range of the vehicle owned by individual n as reported 
by the vehicle manufacturer. 

In the above equation, λ0 represents the constant hazard (i.e., the charging activity frequency is assumed not to vary across irregular 
chargers), zn is a vector of explanatory variables that characterizes owner n, γ is a vector of associated parameters to be estimated, κn is 
a normally distributed random term with mean zero and standard deviation α, the role of which is to capture unobserved heterogeneity 
across irregular chargers. BUsnt , the computed difference between ln(V̂KTsnt) and ln(VKTndr), corresponds to the battery usage prior to 
the occurrence of the successive charging event with V̂KTsnt being obtained from the estimation of the VKT regression model, and ρ is 
the corresponding parameter to be estimated. The exponential functional form that we impose in Eq. (4) implies that the impact of the 
unobserved and observed covariates is multiplicative on the baseline constant hazard λ0, as well as assures the positivity of the hazard 
function be retained during the optimization of the likelihood function. 

The proportional hazard function shown in Eq. (4) can be re-written as (see Bhat, 2000) 

ln
∫ T

t=0
λ0∂t = ln(λ0snt) = γʹzn + κn + ρBUsnt + ζn, (5)  

where ζn is an extreme value distributed error term with distribution function Prob(ζn < a) = G(a) = 1 − exp( − exp(a) ).
Assuming that snt is the inter-changing time duration prior to the next charging episode for the EV charger n, the probability 

distribution function, conditional on κn, is then given by 

ProbH− HDn|irregular[en = snt|κn] = Prob[ln(λ0(snt − 1) ) < ln(λ0tn) < ln(λ0snt) ]

= G[ln(λ0snt) − γ’zn − κn − ρBUsnt ] − G[ln(λ0(snt − 1) ) − γ’zn − κn − ρBUsnt ].
(6)  

Next, the likelihood function for the irregular charger n with Tn charging instances, conditional on κn can be formalized as 

LH− HDn|irregular|κn

=
∏T

t=1
{G[ln(λ0snt) − γzn − κn − ρBUsnt ] } − G[ln(λ0(snt − 1) ) − γ’zn − κn − ρBUsnt ].

(7)  

Finally, the unconditional likelihood function for the irregular EV charger n with Tn inter-charging instances, integrated over the 
probability density function of the random term κn can be written as 
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LH− HDn|irregular|κn

=

∫ κn=+∞

κn=− ∞

[
∏Tn

t=1
{G[ln(λ0snt) − γzn − κn − ρBUsnt ] − G[ln(λ0(snt − 1) ) − γ’zn − κn − ρBUsnt ] }

]

∂(κn).
(8)  

3.2.2. The H-HD model for regular chargers 
In order to model charging patterns for regular chargers, we opt for a Weibull hazard parametric distribution function that relaxes 

the restrictive assumption of constant hazard made for irregular chargers, by allowing for monotonically increasing or decreasing 
duration dependence (Bhat, 2000). In doing so, we explicitly recognize that there exists a degree of time dependence between 
consecutive recharges among regular chargers. The hazard duration function for the EV driver n can hence be written as 

ϕ(snt) = ϕ0τ[ϕ0Snt ]
(τ− 1)exp( − ϖʹcn − νn − ψBUsnt), (9)  

where ϕ0 > 0 and BUsnt = [ln(V̂KTsnt) − ln(VKTndr) ]. 
In the above equation, ϕ0 is the hazard rate, τ is the shape parameter that dictates the duration dependence. If τ > 1, the hazard is 

monotonically increasing in duration reflecting positive duration dependence whereas if 0 < τ < 1, the hazard is monotonically 
decreasing in duration reflecting negative duration dependence. Further, when τ = 1 the Weibull distribution becomes an exponential 
distribution, and the hazard rate remains constant as time increases. The distribution is Rayleigh distributed at τ = 1, and approximates 
a normal distribution for values of 3 ≤ τ ≤ 4, and for large values (e.g., greater than 10), approximates the smallest extreme value 
distribution (Nelson, 1982). If τ = 0, then there is no duration dependence (constant hazard across individuals). cn is a vector of 
covariates attached to the EV driver n, ϖ is the corresponding vector of parameters to be estimated, νn is a normally distributed error 
term with mean zero and standard deviation ϑ, which captures heterogeneity in charging behaviour of regular chargers. BUsnt cor
responds to the battery usage before charging (see, section 3.2.1 for further details), and ψ is the associated parameter to be estimated. 
Similar to Equation (4), we adopt a multiplicative exponential functional form for accommodating observed and unobserved cova
riates, thus avoiding imposing any restrictions on the parameter signs. 

Next, the integrated logarithm of Equation (9) is given by 

ln
∫ T

t=0
ϕ(snt)τ[ϕ0Snt ]

(τ− 1)∂t = ln(ϕ0Snt) =
1
τ (ϖ

ʹcn + νn + ψBUsnt), (10)  

The unconditional likelihood for the regular charger n with Tn charging activities can then be written as 

LH− HDn|regular|νn =

∫ νn=+∞

νn=− ∞

⎡

⎢
⎢
⎢
⎢
⎣

∏Tn

t=1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G
[

ln(ϕ0Snt) −
1
τ (ϖ

ʹcn + νn + ψBUsnt)

]

− G
[

ln(ϕ0(Snt − 1) ) −
1
τ (ϖ

ʹcn + νn + ψBUsnt)

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎤

⎥
⎥
⎥
⎥
⎦

∂(νn).
(11)  

3.3. Latent segmentation 

The class probability assignment method that we employ in this paper assumes that individuals are probabilistically assigned to the 
two user profiles under investigation (irregular chargers versus regular chargers). To do this, we make use of a binary logit structure 
and compute the probability of the individual n charging at regular intervals as 

Prn|regular =
1

1 + exp( − m0)
, (12)  

where m0 is a parameter to be estimated. 
The final unconditional likelihood function for the EV driver n may be specified as 

Ln = Prn|regular × LH− HDn|regular × LH− VKTsnt +
(
1 − Prn|regular

)
× LH− HDn|irregular × LH− VKTsnt . (13)  

Finally, the log-likelihood function is given by 

LL =
∑N

n=1
Ln. (14)  

The optimization routine of the log-likelihood function displayed in Equation (14) is programmed in Matlab release R2023a, with the 
Gaussian quadrature technique being used to evaluate the three single-dimension integrals involved in the estimation process. To 
summarize, the parameters that we estimate for the latent-based methodological approach developed in this paper are  

• H-VKT model: β, δ and σ2 
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• H-HD model for irregular chargers: λ0,γ,α and ρ  
• H-HD model for regular chargers: ϕ0,τ,ϖ,ϑ and ψ  
• Latent segmentation: m0. 

4. Data 

The data used for the empirical demonstration are extracted from the MOP, which is a longitudinal national travel survey annually 
administered to a representative sample of German speaking households since 1994 (https://mobilitaetspanel.ifv.kit.edu). The survey 
is officially commissioned and sponsored by the German Federal Ministry for Digital and Transport. The following control variables are 
employed to draw the sample of households: built environment in which the household is located (core areas with over 100,000 
inhabitants, peripheral areas with over 100,000 inhabitants, communities with 20,000 to 100,000 inhabitants, communities with 
5,000 to less than 20,000 inhabitants, communities with fewer than 5,000 inhabitants), household structure (size, number of children 
and professional activities) and car ownership levels. Sample frames consists of both land and mobile phone rosters. Approximately 
one third of the recruited participants rotates across the annual waves, such that each respondent is surveyed no more than three times 
in a row. Details on the sampling design and the survey implementation can be found in the report annually released by the firm 
overseeing the fieldwork (KANTAR, 2022). 

Each MOP wave encompasses two distinct data collection processes that are typically performed at two different moments of the 
year, namely autumn and spring. In autumn, each member of the sampled households (aged 10 and above) is required to fill out a one- 
week travel diary wherein every single trip made is recorded. The usual sociodemographic characteristics of both households and 
individuals are collected at this stage as well. Those households who indicate that they own at least one vehicle are then invited to 
participate in the successive spring survey, which is specifically designed to collect information with respect to VKT and refuelling/EV 
charging behaviour related to each vehicle of the household fleet over the course of eight weeks, i.e., from April to June. Specifically, 
households are asked to fill out a pencil-paper based vehicle usage logbook, one for each automobile of the household used for private 
and/or work activities. Specifically, households are asked to provide information on each charging event taking place during the 
survey period, including charging duration (available only from recent waves), charging location, date and odometer reading, as well 
as information on car characteristics (e.g. year of manufacture, make, model) and usage patterns (e.g. number of users, special cir
cumstances during the survey period). Interested readers are referred to Vallée et al. (2022) for more detailed information on the 
survey organisation, administration, methodology and results. 

In this study, attention is restricted to analysing the charging behaviour data associated with battery electric vehicle (BEV) owners 
collected between 2018 and 2022 (i.e., from autumn 2018 − spring 2019 until autumn 2021 − spring 2022). Data that are used in the 
present study are extracted from the spring survey, coupled with the sociodemographic information of the households collected during 
the autumn questionnaire administered within the same wave. Past waves are excluded from the investigation undertaken due in part 
to the low diffusion of BEVs during earlier periods as well as in part due to substantial changes being made to the structure of the survey 
body over time. 

The data preparation process resulted in 2,898 charging observed instances related to 154 households over the four waves. By 
construction, all German households owning a BEV at the time of the survey had a known and greater than zero probability of being 
sampled, so that the key condition for statistical inference, namely working with a sample that is representative of the targeted 
reference universe, is met. However, the 154 identified households cannot be considered as representative of car owning households, 
and hence results from our research can be referred to BEV owning households only. Table 1 displays that the number of sampled BEV 
owners in the survey has rapidly increased over time, growing from seven to 90 in the latest wave. Despite this increment, there still 
exists a notable disparity between BEV and traditional passenger vehicle owners, with the former on average making up only 2.05 
percent of the sample across four waves.2 

4.1. Household sample description 

Table 2 outlines the descriptive statistics pertaining to the sample of BEV users under study. Of the 154 households selected, only 28 
(18.2 percent) can be classified as single person households with families surveyed being predominantly childless (131 out of 154). 
Most of the family units reside in urban areas (72.7 percent), own two vehicles and have access to private EV home charging infra
structure (129 out of 154 households). The largest proportion of battery electric cars are new vehicles, with almost 85 percent of 
respondents having owned the vehicle for no more than three years. From the table we can also deduce that the most preferable vehicle 
body purchased is either mini or small car (see the German Federal Motor Transport Authority for the official vehicle body classifi
cation at https://www.kba.de/EN/Home/home_node.html), that are proportionally much more prevalent than within the average 
German household vehicle fleet. Besides, more than three quarters of BEVs are considered the primary vehicle of the household, thus 
playing a prominent role in satisfying mobility needs of the residents. Lastly, 86 percent of households were recruited to take part in the 
MOP during the Covid-19 pandemic, i.e., the latest two waves of the MOP data set analysed herein were administered in the middle of 
the Covid-19 pandemic. 

2 Despite the longitudinal nature of the MOP dataset, only a negligible percent of households owning a BEV (less than three percent) took part to 
at least two consecutive waves. This is due to the fact that BEV diffusion is very recent, as already noted. Therefore, for those households we assume 
that charging events across different waves are independent one another. 
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4.2. BEV charging patterns 

Fig. 1 depicts the distribution of the inter-charging duration (days) together with related descriptive statistics for the 2,898 
charging events that are contained in the dataset. The histogram shows a positively skewed distribution with a large mass (around 80 
percent of the distribution) located between one and three days, suggesting that the majority of charging instances occur within three 
days from the previous charging event at the most. The range of the inter-charging duration distribution is 42 days, and the average 
charging interval is 3.23 days (around 2.17 recharges per week) with a median value of two days and a standard deviation of 4.14 days. 
Note that charging instances undertaken within the same day were assigned to the timeframe of 1 day given that no information was 
available with respect to the time of the day the charge occurred (around less than ten charging activities were recorded to be per
formed within the same day of the week). 

As mentioned in the methodology section, we consider charging events in a survival analysis framework. Table 3 provides related 
information, considering charging intervals of 1, 3, 6, 9, 15, 20, 25 and 37 days, respectively. The column of the table labelled number 
at risk represents the number of charging events that can potentially end at time t, the third column Number of event refers to the 
charging events that terminate at time t, and the fourth column Survival Probability corresponds to the estimated survival probabilities 
calculated with the Kaplan-Meir (KM) nonparametric estimator (see Kiefer, 1988), with such probabilities being also displayed in the 
stairs graph shown in Fig. 2. 

The survival probability is reported to be more than 80 percent after nine days from the beginning of the survey, suggesting the 
underlying presence of positive inter-charging duration dependency. It further appears that 17 charging episodes are still potentially 

Table 1 
MOP sample sizes (overall and BEV owners).  

MOP wave #Sampled Households BEV owners % of BEV owners 

2018–19 1,845 7  0.38 % 
2019–20 1,853 15  0.81 % 
2020–21 1,963 42  2.14 % 
2021–22 1,840 90  4.89 %  

Table 2 
Descriptive statistics of BEV users.   

Number Frequency 

Single person household   
No 126  81.8 % 
Yes 28  18.2 % 
Presence of children   
No 131  85.1 % 
Yes 23  14.9 % 
Type of region   
Urban 112  72.7 % 
Rural 42  27.3 % 
Number of cars in the household   
1 52  33.8 % 
2 82  53.2 % 
>=3 20  13.0 % 
Availability of an EV charger at home   
No 25  16.2 % 
Yes 129  83.8 % 
BEV age   
0–3 years 130  84.4 % 
4–6 years 17  11.0 % 
>=7 years 7  4.5 % 
BEV body: Mini or small car   
No 91  59.1 % 
Yes 63  40.9 % 
BEV ordering number in the household   
First car 118  76.6 % 
Second car 34  22.1 % 
Third car 2  1.3 % 
Covid-19   
Yes 132  85.7 % 
No 22  14.3 %  
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subject to termination at the 25th day, reflecting perhaps a degree of charging regularity among BEV users. 
Fig. 3 shows the distribution of the battery’s state of charge prior to the successive charge. The battery usage (BU) results from 

dividing the VKT between consecutive charging episodes by the vehicle driving range stated by the manufacturer.3 As seen from the 
graph, the highest peak (around 20 percent of the distribution) is localized between 40 percent and 45 percent indicating that there is a 
clear tendency of EV users charging their electric cars in spite of the battery being less than half empty. Around 11 percent of charging 
events occur in what could be considered an emergency condition, i.e., when the state of charge of the battery is 10 percent or lower. 

5. Results 

Various model specifications were tested prior to identifying that reported in Table 4, associated with the model structure that 
returns the best goodness of fit. Table 4 is structured as follows. The first main block illustrates the empirical findings obtained from the 
estimation of the H-VKT model. The second main block of results displays the estimated parameters associated with the two H-HD 
models used to estimate charging patterns for regular and irregular chargers, whilst the third block of information describes the 
segment sizes of the two BEV charging groups. The fourth and final block within the table outlines goodness of fit measures, which 
demonstrate that the inclusion of household and vehicle characteristics assists in understanding the charging routine of BEV users 
better, as shown by the improvement of the likelihood function at convergence. 

With respect to the observed covariates used for estimation, four dummy variables are adopted for investigating BEV usage between 

Fig. 1. Distribution of charging intervals (days).  

Table 3 
Inter-charging duration.  

Charging Intervals (Days) Number at risk Number of events Survival Probability Std. error Lower 95 % CI Upper 95 % CI 

1 2,898 43  0.99  0.002  0.98  0.99 
3 1,048 29  0.96  0.005  0.95  0.97 
6 467 33  0.91  0.010  0.89  0.93 
9 219 24  0.83  0.018  0.80  0.87 
15 87 13  0.75  0.028  0.70  0.81 
20 44 7  0.66  0.041  0.59  0.75 
25 17 3  0.59  0.056  0.49  0.71 
37 4 2  0.41  0.128  0.22  0.75  

3 The BU serves as a proxy here for the SOC give that the latter was not captured as part of earlier waves within the survey. Further, we assume 
that discharge/charge cycle results in the vehicle being fully charged. 

A. Pellegrini et al.                                                                                                                                                                                                      



Transportation Research Part C 165 (2024) 104722

9

Fig. 2. Kaplan Meir Survival function.  

Descriptive statistics: Battery usage (BU) before charging 
Mean 0.40
Median 0.42
Mode 0.42
Standard deviation 0.23

Fig. 3. Distribution of BU before charging.  
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charging instances with these regressors being availability of an EV home charger (no is base), BEV age less or equal to three years 
(older than three years is base), whether the battery electric car is the main vehicle of the household (no is base), whether the type of 
region the household is located in is a rural area (urban area is chosen as base). The type of region and vehicle age dummy variables are 
also employed to assess inter-charging duration coupled with vehicle body (whether the vehicle is either a mini or a small, or not), 
single person household (no is set as base), households with kids (childness households is treated as base), size of the household vehicle 
fleet and BU before charging, with the latter two covariates being continuous in nature. The last variable included in the H-HD models 
is a dummy variable which takes the value of one if the data collection was performed during the Covid-19 pandemic, zero otherwise. 
Note that we rescale the VKT by ten in such a way as to prevent potential instability problems in the optimization of the likelihood 
function. In what follows, we first focus on the H-VKT model after which we discuss at length the empirical findings of the two H-HD 
models. 

5.1. H-VKT results 

Overall, the estimates of the H-VKT model have the expected signs and provide interesting insights into vehicle usage preferences 
between charging episodes. It is worth mentioning that the impact of the kth regressor can be measured as the percent change in the 
dependent variable, VKT, resulting from a one-unit variation in the kth regressor by applying the formula, [exp(βk) − 1 ] × 100. Spe
cifically, both the intercept and the scale are found to be statistically significant with the latter reflecting the existence of dispersion 
around the mean VKT. The individual specific error term is estimated to be highly statistically significant and hence we can conclude 
that there exists heterogeneity in vehicle usage behaviour across respondents. 

The estimated parameter associated with the EV home charging infrastructure variable is statistically significant and positive, 
suggesting that the ownership of an EV home charger increases the distance travelled between consecutive charging occurrences by 
approximately 11.4 percent ([exp(0.11) − 1 ] × 100 ), everything else being equal. In a similar vein, the production age of the vehicle 
seems to affect the distance travelled prior to the next charge. Specifically, the positive and statistically significant parameter for the 

Table 4 
Estimation results.   

H-VKT model  

Parameter (t-stat) 

Intercept 1.34 (19.48) 
Scale (σ) 0.74 (74.62) 
Individual specific error term (δ) 0.80 (38.83) 
Home charging station (No is base) 0.11 (2.37) 
Vehicle age (age > 3 years is base) 0.23 (4.59) 
Main car of the household (No is base) 0.18 (4.66) 
Type of region: Rural (Urban is base) 0.13 (2.34)  

H-HD model  

Irregular Chargers Regular Chargers  

Parameter (t-stat) Parameter (t-stat) 

Hazard rate (λ0) 1.13 (6.82) − −

Individual specific error term (α) 0.98 (22.87) − −

Hazard rate (ϕ0) − − 0.20 (5.78) 
Shape parameter (τ) − − 2.10 (14.18) 
Individual specific error term (ϑ) − − 1.57 (9.41) 
Mini or small car (No is base) 0.28 (2.69) − 0.70 (− 4.15) 
#Cars in the household 0.19 (5.37) − −

Single person household (No is base) 0.02 (0.20) − −

Presence of kids (No is base) − 0.61 (− 8.58) − 1.44 (− 3.79) 
Vehicle Age (>3 years is base) 0.58 (4.99) 0.79 (3.02) 
Type of region: Rural (Urban is base) − − − 1.08 (− 4.19) 
Covid-19 (No is base) 0.50 (3.99) 1.12 (4.11) 
BU (link with H-VKT) (ρ,ψ) − 0.28 (− 8.00) − 1.64 (− 10.10)  

Latent segmentation model  
Parameter (t-stat) 

m0 − 1.63 (− 5.74)  
Segmentation size 

Irregular chargers 83.56 % 
Regular chargers 16.44 % 
Number of BEV users 154 
Number of charging instances 2898 
Number of estimated parameters 26 
Initial log-likelihood − 16784.67 
Log-likelihood at convergence − 8112.24 
Akaike information criterion (AIC) 16276.52 
Bayesian information criterion (BIC) 16431.79  

A. Pellegrini et al.                                                                                                                                                                                                      



Transportation Research Part C 165 (2024) 104722

11

dummy variable BEV age (older than three years is base) indicates that owners of newer battery electric cars tend to drive more (+25.8 
percent) before charging occurs as opposed to owners of older BEVs who charge their vehicles more frequently. This result is pre
sumably due to the extended driving range that characterises more recently manufactured BEVs. The third explanatory variable listed 
in the first block of the table accounts for the primacy of the vehicle within a household’s vehicle fleet inventory. As the corresponding 
coefficient is positive and statistically significant, we can assert that the usage of a vehicle increases (+19.9 percent) with its 
importance within the household. The last observed covariate included in the model specification relates to the type of region re
spondents reside in (urban area is treated as base). As seen in the table, those households who reside in rural areas appear to drive more 
(about 14 percent more) prior to charging the vehicle relative to their urban counterparts. This might be due to the fact that rural 
residents have typically longer daily trip chains than those who reside in more urban areas. 

5.2. H-HD results 

Now we turn our attention to the model parameter estimates that stem from the implementation of the heterogenous hazard-based 
duration models for irregular and regular chargers. Given the functional form specified in Equations (4) and (7), a positive (negative) 
estimated coefficient implies that the corresponding covariate increases (decreases) the inter-charging duration, resulting in a lower 
(higher) frequency of charging, everything else being equal. Further, the impact of a covariate on the duration hazard for irregular 

chargers can be calculated as 
[
exp

(
γf

)
− 1

]
× 100 for a one unit change in the fth, whereas the percentage variation in the hazard 

duration due to a one unit change in fth variable in the regular charging group is given by 
[
exp

(
ϖf
τ

)
− 1

]
× 100, where τ accounts for 

underlying duration dependence across charging patterns. 
The hazard rate for irregular chargers is found to be statistically significant with a value of 1.13 whilst that for regular chargers it is 

0.20. The shape parameter of the Weibull parametric hazard model is reported to be statistically significant and larger than one 
(τ=2.10) suggesting that there is temporal regularity in the charging behaviour of regular chargers (i.e., regular chargers appear to 
recharge their vehicles at unvarying intervals). Individual random terms for both irregular and regular chargers are statistically sig

Fig. 4. Effects on hazard duration.  
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nificant, revealing the existence of unobserved factors that influence the time duration between successive charging activities. Of 
particular interest, however, is the computation of the contribution that unobserved factors have to the variation in the hazard 
duration (Bhat, 2004). This can be calculated for irregular chargers as Var(α)

Var(α)+Var(γʹzn+ρBUsnt)
and for regular chargers as 

Var(ϑ)

Var(ϑ)+Var

(

1
τ [ϖʹcn+ψBUsnt ]

). The fraction of variation of irregular chargers is estimated to be approximately 70.26 percent compared to 

22.83 percent for regular chargers. From this result, we can conclude that it is more difficult to investigate the charging behaviour of 
irregular chargers than it is to explore the behaviour of regular chargers (i.e., there is a larger degree of heterogeneity in the charging 
frequency behaviour amongst irregular chargers than is observed amongst regular chargers). Lastly, the class assignment probability 
used for the identification of the two charging groups (presented within the third block of the table) reveals that approximately 84 
percent of households are more likely to charge the automobile at irregular intervals, whilst 16 percent have regular charging routines. 

5.2.1. Impact of explanatory variables on hazard duration 
To better understand the magnitude effect of observed covariates, we plot in Fig. 4 the percentage change in the hazard duration for 

both irregular and regular chargers computed as described above. The first variable, vehicle body, is based on a dummy variable taking 
the value of one if the electric car is either small or mini, or zero otherwise. From the figure, it is clear that there exists two opposing 
charging practices occurring within the sample. Whilst regular chargers tend to frequently charge their vehicle, whether the vehicle is 
a mini or small BEV, irregular chargers appear to prolong the time before engaging in charging activities by up to 30 percent more than 
the overall average. Jointly considering the behaviour of the two groups, irregular charges who drive mini or small cars have a 
charging interval that is approximately 61 percent longer compared to regular charging mini or small car owners. 

The size of the household fleet seems to positively affect the hazard duration in the irregular charging segment, meaning that the 
inter-charging duration spell increases by approximately 22 percent for each additional vehicle available in the household fleet. 
Counter to this, the presence of children within a household negatively influences the hazard duration for both segments, suggesting 
that households with children have a higher charging frequency compared to childless households. Next, owners of newer BEVs, (i.e., 
vehicles owned by the households at the time of the survey for no more than three years) charge less often relative to owners of older 
vehicles, with irregular chargers showing a much lower charging interval period than regular chargers. 

With respect to the magnitude effect of the type of region on hazard duration, we find that the charging interval for regular chargers 
residing in rural areas reduces by around 40 percent compared to that of regular chargers living in urban areas. No such effect is 
observed for irregular charging households. Next to be considered is the Covid-19 dummy variable which captures how the Covid-19 
pandemic influenced the charging decision-making process of BEV users. The estimated findings suggest that the inter-charging 
duration increases during the Covid-19 pandemic, with similar patterns being detected between the two BEV groups under assess
ment. The BS before charging is found to negatively influence the hazard duration for both segments, with the duration between 
charging episodes decreasing by 24 percent for irregular chargers and by 80 percent for regular chargers respectively, based on a 10 
percent increment in the battery use (the magnitude of the estimated coefficients reflects the fact that the VKT is rescaled by ten). 
Further, the statistical significance of the two parameters related to BS confirms the underlying link between the two econometric 
models developed in this study. 

5.2.2. Charging behaviour of irregular and regular chargers 
As shown in Table 5, the average interval duration for irregular chargers amounts to around 4.1 days, almost 1.5 times larger than 

that for regular chargers. This suggests that regular chargers are inclined to recharge their electric cars more frequently than what 
irregular chargers do (almost twice a week). This finding is consistent with the inter-charging duration of 2.7 days reported in Kim 
et al. (2017), albeit the authors only investigated public transaction charging data. The weighted sample average for inter-charging 
duration is approximately four days (similar to the average charging interval of 3.23 days observed within the data), with weights 
being the estimated segmentation dimensions of the two identified charging groups. A further finding relates to driving behaviour of 
BEV users. From the table, regular chargers tend to drive more prior to charging their vehicle, with a daily VKT between charging 
instances of 33 kms, whereas irregular chargers tend to travel on average around 22.5 kms per day before charging the vehicle. Lastly, 
the proposed methodological framework allows for calculating the BU before charging for the sample of BEV users under assessment. 
This is done via the computation of the ratio between the predicted average of VKT for the entire sample and the average driving range 
declared by the automobile manufacturer, the value of which stands at 269 km. We find that the battery usage between charging 
episodes is around 35 percent meaning that, despite more than 65 percent charge remaining, drivers are presumably concerned with 
respect to the distance the electric car can further travel for (i.e., range anxiety). 

5.2.3. H-HD model application: Scenarios of future BEV charging behaviour 
In this section, we discuss the results obtained from two different simulated exercises. The first undertaken simulation (Fig. 5) 

investigates potential changes in charging intervals in response to upgrades in the driving range capacity of BEVs, whereas the second 
simulation shows how the charging routine of EV drivers will evolve due to variations in the VKT between charging episodes 
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(Table 5).4 

Simulation 1: Increase of BEV driving ranges 
Results from the first simulation are presented in Fig. 5. On the x-axis, we report the base scenario (from Table 5) alongside eight 

simulated increments of driving ranges that could potentially be claimed by manufactures, spanning from + 25 kms to + 400 kms (note 
that the base scenario, on the x-axis origin, assumes an average driving range of 269 kms). A potential increment of up to 400 kms is 
included so as to simulate a future vehicle market whereby BEVs have the same driving range as current ICE vehicles. The y-axis shows 
the average time (expressed in days) that elapses between consecutive charges, with the base scenarios for both regular and irregular 
chargers corresponding to the predicted inter-charging episodes obtained from the estimation of the modelling framework described in 
Section 2. 

From the simulation results, the inter-charging duration of irregular chargers shows a steady growth as the driving range of the 
vehicle increases. Specifically, a predicted driving range of 669 km (base scenario of 269 km + 400 km) is estimated to increase the 
elapsed time between charging instances for EV irregular charges by 7.6 percent (1.70 charging events per week). Turning the 
attention to EV regular chargers, the charging occurrence of this segment is predicted to be substantially influenced by potential 
improvements in the driving range of BEVs, with the frequency of charging being predicted to drop from 2.5 to 1.75 charging events 

Table 5 
Predicted charging and driving patterns.   

Average inter-charging duration (days) Daily VKT between charging episodes BU before charging 

Irregular chargers  4.11  22.48 −

Regular chargers  2.77  33.44 −

Weighted sample  3.88  24.28 34.33 %  

Fig. 5. Variation in charging intervals due to augmented driving ranges.  

4 In this study, we also explored two further scenarios a) each household owns a private home EV charger, and b) all BEVs are assumed to be the 
main vehicle of the household. However, none of the simulated results showed significant variations in inter-charging behaviour for both regular 
and irregular chargers. 
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per week. From this, we can conclude that the differences in charging activities between the two investigated EV charging types are 
foreseen to decrease, should technological innovations contribute to the manufacture of batteries that enable longer travel distances. 

Simulation 2: Variation in VKT between charging events. 
The second simulated policy explores changes in the charging behaviour of the two groups (regular chargers and irregular chargers) 

under different amounts of kilometres travelled. This scenario reflects, for example, the impact on transport systems given possible 
changes in urban design. For instance, the concept of 15-minute cities where residents of an area are able to perform key activities in 
their life, such as working, shopping, education and recreation, all within a short walk, bike, or transit ride from their home, is designed 
to reduce the amount of travel necessary, and hence hopefully results in a reduction in VKT for trips taken with motorised private 
means too. Fig. 6 displays the simulated findings for regular and irregular chargers resulting from a variation of ± 5 km (up to ± 20 km) 
in the VKT travelled between charging episodes compared to the base scenario, with the latter being (again) the outcome of the models 
proposed as per the previous simulation (see Table 5). 

As shown in Fig. 6, the charging routine of irregular chargers (who are the vast majority of the sample) is found to be largely 
unaffected by changes in the VKT. Indeed, the inter-charging duration is predicted to increase by only 1.12 percent in response to a 
daily reduction of 20 km in the VKT. On the other hand, we observe that the elapsed time between charging episodes for regular 
chargers will increase by around 6.4 percent if VKT decreases by 20 kms per day. This suggests that for this segment of EV owners, 
moving services closer to where they live will have a relevant influence on their charging preferences. 

Increasing the amount of travel undertaken is also predicted to have only a limited impact on the charging behaviour of the 
irregular charging segment of the population, with a 20 km addition of travel per day decreasing the charging interval by only 0.92 
percent. On the contrary, increasing the distance travelled by those belonging to the regular charging segment of the population 
decreases the inter-charging interval by 5 percent. 

Interestingly, for both segments, the predicted impact on inter-charging duration is non-symmetrical around increases and de
creases in travel, with decreases in travel having a larger impact (as a percentage change) on charging duration than does increases in 
travel. With respect to the impact on energy grids and energy markets, this supports the concept of either moving essential as well as 
desirable services and activities closer to where individuals reside (thus increasing the land use mix) or improving accessibility to such 
activities in such a way as to minimise the distances needed to be travelled. 

Fig. 6. Variation in charging intervals due to VKT changes.  
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6. Conclusions 

This study has considered observational data from a representative sample of EV owners in Germany that reported on their mileage 
and EV charging behaviour over eight weeks. BEV charging patterns and related VKT and battery usage were studied through a 
survival analysis framework and modelled through a hazard-based model for charging intervals coupled with a regression model for 
predicting VKT. Furthermore, latent classes were considered to distinguish between regular and irregular charging behaviour dis
played by different EV owners. 

Almost half of the observed charging intervals are one day apart, with an average value of 3.23 days. In most of these cases, the 
battery is estimated to be at least half full, whereas the battery usage was found to be less than 10 percent in 11 percent of charging 
events. On the other hand, the models presented reveal that VKT between charging intervals is positively affected by the availability of 
an EV home charger, using a newer vehicle, considering the BEV as the main vehicle in the household, and whether the owner lives in a 
rural area. BEV vehicle ranges are dependent not only on the technology performances, but also on the actual conditions of use of such 
vehicles for which our models give the above interesting insights. 

Charging frequency and patterns were found to be radically different between regular and irregular chargers, who are about 17 
percent and 83 percent of the sample respectively. Regular chargers typically charge their vehicles 1.5 times more frequently, i.e., less 
than three days on average. Besides, a 10 percent decrement of the battery usage implies an increase of the frequency of charging of 80 
percent by regular chargers, but only of 24 percent by irregular chargers. 

Lastly, these models were applied to develop scenarios aimed at understanding how charging intervals will change due to both 
technology evolution (namely, an improvement of BEV driving ranges) and user-centric factors (VKT variations). The development of 
the charging infrastructure is one of the key issues to tackle in view of the massive diffusion of BEV. It is therefore paramount to set up 
quantitative methods to forecast charging frequencies and in turn plan for an adequate number of charging points, as BEV fleets 
performances and usages evolve over time. According to the estimated scenarios, neither technological nor user factors are predicted to 
substantially impact the inter-charging duration behaviour of irregular chargers. Unfortunately, these latter individuals reflect the 
largest segment of BEV owners under study, suggesting that little can be done to change how and when this segment is likely to charge 
their vehicles. On the other hand, relative to regular chargers, the irregular charging group tends to charge their vehicles at greater 
intervals, and as such, are likely to be of less interest to policy makers with respect to seeking to change their behaviour in order to face 
shortages in charging points. 

Regular chargers exhibit a clear distinct behaviour. For this charging group, increasing driving range of EVs, particularly above 100 
kms beyond existing vehicle ranges, will likely result in significant increases in the interval between charging instances. Likewise, 
efforts that result in the reduction of VKT, also are predicted to impact positively on this segment in terms of inter-charge duration 
spell. From a policy perspective, such increases in the elapsed time between charging events is important, as it can lead to a lower 
provision of needed public charging points, which represents one of the major foreseeable challenges with the widespread of BEVs . 

With the growth of the BEV market, it is plausible that the observed proportion of regular versus irregular users will change, with 
the latter segment becoming less predominant amongst BEV owners. As a result, charging habits will become more sensitive to both 
technology improvements and usage patterns in the future, compared to the current situation where demand on the charging infra
structure essentially depends on the number of BEVs on roads. As such, policymakers need to account for the effect of technological 
advancements as well as potential behaviour changes on user charging frequencies when designing policy actions to support the 
widespread adoption of EVs. This paper seeks to bridge this research gap, by formalizing a framework to accurately forecast charging 
patterns, and the subsequent demand for charging outlets. This is done by simultaneously considering BEV diffusion, technology and 
usage patterns through a latent-based segmentation approach. 

Whilst the study proposes a novel framework for assessing inter-charging duration spells, there are some limitations that warrant 
acknowledgment. Our observations encompass pandemic times, that might have altered the charging decision-making process of BEV 
users. To account for the effect of Covid-19 on charging behaviour, we only introduced a dummy variable which takes the value of one 
if the household was sampled during the Covid-19 pandemic, or zero otherwise. This means that the current model specification 
disregards the effect that Covid-19 related vehicle usage restrictions imposed by the Government of Germany had on mobility patterns. 
The inclusion of such variables would assist us in better capturing potential changes in charging behaviour within the Covid-19 
pandemic timeframe. Second, the state of battery charge (SOC) was not observed in earlier waves of data. While the inclusion of 
(modelled) battery usage (BU) into the modelling framework represents a contribution to this paper, future research should focus on 
this aspect of EV ownership. For BEV using current lithium-ion batteries, it is optimal to keep the charging level of the vehicle between 
20 and 80 percent, rather than allow it to be fully discharged or fully charged. This is because lithium-ion batteries work better when 
used and charged in partial cycles, with overuse as well as long periods of non-use with batteries at extremely high or low levels of 
charge can significantly decrease battery life. Further, many EVs now make use of regenerative breaking, and charging the battery to 
levels no higher than 80 percent allows capacity for energy generated from such a system to be properly stored. Hence, although 
beyond the scope of this paper, understanding how different segments of the population currently manage the BU of the EVs they own, 
and possibly developing strategies that enable them to optimally charge their vehicles (possibly through smart grids to optimise the 
overall temporal distribution of electricity demand as well) represents an important area of research, as doing so may prolong the 
vehicle battery life, and reduce the vehicle overall life cycle emissions produced. Of course, any attempt to influence the minimum and 
maximum SOC for BEV users may increase the impact of range anxiety on EV uptake, as doing so necessarily reduces the possible 
driving ranges of such vehicles. As such, there may exist, at least in the short term, a conflict between optimal charging behaviour 
designed to maximise the life of batteries in BEVs, and the perceived ability of drivers to use such vehicles as desired. 
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