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Abstract: This paper evaluates the performance of the Rubin reduction methods, enhanced with
static modal derivatives, for vibration analysis of geometrically nonlinear structures with friction
contact. Static modal derivatives are computed numerically based on Rubin reduction, which
includes free interface normal modes and residual flexibility attachment modes, by introducing a
finite displacement around these modes. Then, the most relevant static modal derivatives are selected
using an improved strategy that incorporates weighting factors derived from both a nonlinear static
analysis and a geometrically linear transient run. This enhanced Rubin method is also compared
with the previously used enhanced Craig–Bampton method, which is based on fixed normal modes,
constraint modes, and their static derivatives. The effectiveness of these methods is demonstrated
through vibration analysis of a geometrically nonlinear beam in different contact configurations.
Both methods proved their robustness, achieving accurate results with a relatively small number of
modes in the reduced space, thus ensuring low online computation times. Furthermore, the analyses
show the significant impact of using a geometrically nonlinear model on the accurate prediction of a
contact state.

Keywords: geometric nonlinearity; friction contact; model order reduction; vibration analysis

1. Introduction

The dynamic behavior of slender bodies as aero-engine blades can be characterized
simultaneously by large deformation and rubbing phenomena. A typical example is the
fan blade of engines with ultra-high by-pass ratios [1]. On one side, large deformation
activates distributed geometric nonlinearities [2,3], while rubbing phenomena introduce
localized nonlinearity to the system [4]. These nonlinearities can give rise to complex
dynamic behavior, which must be accurately captured during the design process. The
Finite Element (FE) method is typically used as an accurate and robust tool for simulating
the structural response. However, the nonlinear dynamic analysis of a high-fidelity FE
model with a large number of degrees of freedom can be prohibitively expensive. Model
Order Reduction (MOR) techniques are employed to reduce this computing cost. In the
literature, numerous reduction techniques have been developed to address either geometric
or contact nonlinearity separately. Given the distinct nature of these two nonlinearities,
the developed reduction techniques are essentially different. This paper focuses on a
reduced model capable of capturing the nonlinear dynamics of a structure with both types
of nonlinearity.

Two categories of reduction method can be considered: linear methods and nonlinear
methods, in the sense that in nonlinear reduction methods, new variables are nonlinearly
related to the initial ones, while the linear methods are based on a linear change of basis [5].
Using linear methods, the Reduced Order Models (ROMs) are constructed by the Galerkin
projection of the equation of motion on a low-dimensional basis. These techniques are
widely used in the literature due to their ease of implementation and the fact that the
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linear projection preserves the general expression of the equation of motion, allowing the
application of the same solution strategies as those used for the full-order model.

The linear techniques face two challenges. The first is finding the best reduction basis
and the second is computing the generalized nonlinear forces, which are the projection of
the nonlinear forces onto the reduction basis. This work aims to address the first problem by
providing the best basis in terms of the computing cost and its ability to present the nonlin-
ear dynamics accurately. The approaches to address the second challenge in geometrically
nonlinear structures and structures with friction contact are completely different.

Geometric nonlinearity is distributed, which means that the degrees of freedom
(DoFs) of a significant portion (or potentially the entirety) of the structure are subjected
to nonlinear elastic forces and nonlinearly coupled [5]. As a result, the full displacement
field is required to compute the elastic forces and a projection of the elastic forces has to be
performed during the online stage at each iteration of the governing equations solution.
This intrusive computation of nonlinear elastic forces, which involves nonlinear Finite
Element formulation, is particularly time-consuming for a large system and results in a
significant rise in the online computing cost. Several strategies are addressed to solve this
issue [6–8]. However, these remedies will be successful if the reduced space basis is selected
properly. This study uses the intrusive method of computing reduced nonlinear elastic
forces and focuses on finding the best reduction basis.

Due to the local nature of contact nonlinearity, a widely used method for their order
reduction involves partitioning the structure into linear and nonlinear parts [9–12], where
the nonlinear part includes the DoFs of the contact region (contact DoFs). The resulting
reduced model keeps the contact DoFs in reduced coordinates. It eliminates the need to
project the nonlinear contact forces during the online stage.

The Component Mode Synthesis (CMS) method [13], first developed for the sub-
structuring of a linear system formed by multiple substructures, is widely used for model
order reduction of structures with friction contact [9–12]. The CMS technique involves
three steps: decomposition of the structure into non-overlapping components, reducing
the size of each component by projective reduction, and finally, coupling the individual
components’ ROMs through their interfaces. This allows the retention of the contact DoFs
in the reduced model while replacing the other DoFs with generalized coordinates. In this
way, the resulting ROM can correctly simulate the different contact states such as full-stick,
gross slip, microslip, and liftoff. Generally, the DoFs kept in the reduced coordinate vector
and the DoFs projected on the reduced basis are called master and slave DoFs, respectively.

CMS methods can be classified depending on the underlying reduction basis. Gener-
ally, two groups of modes are considered in CMS subspace: (i) component linear normal
modes obtained by imposing specific boundary conditions at master DoFs; and (ii) static
deflections due to applying either unit forces or unit displacements at master DoFs. The nor-
mal modes account for inherent component dynamics, while static deflections describe the
interface behavior and are necessary for coupling the substructures. The Craig–Bampton
method, as a fixed-interface-based CMS method [13], is the most widely used technique in
which the static deformed shapes due to imposing unit displacement on a master DoF (con-
straint mode) and the normal modes of the body with fixed master DoFs are considered as
reduction bases. Rubin, as a free-interface-based CMS method [14–17], is the other widely
used technique. The static deformed shapes due to a unit force applied at a master DoF
(attachment modes) and the normal modes of the body with free master DoFs comprise its
reduction basis.

Component mode synthesis techniques have also been used for the substructuring of
the systems with geometrically nonlinear substructures [18,19]. Kuether et al. employed
the Craig–Bampton method [18] and the accuracy of the assembled reduced models can
be proved by comparing their nonlinear normal modes with those computed from the
full-scale assembly.

To better model the physical behavior induced by geometric nonlinearity, Tiso and his
colleagues extended CMS methods with the addition of static modal derivatives (SMDs)
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to the reduction basis. The formulation was first introduced in [20,21], then the extended
Craig–Bampton method was more thoroughly studied in [22], in which SMDs of the
constraint modes and fixed interface normal modes for each component were considered
and modified as fixed-interface modes for the convenience of interface compatibility during
the assembly procedure. The extension of Rubin was also studied in [23] and developed for
a 3D flexible multibody system in [24], in which a nonlinear coupling between attachment
modes and free-interface modes was considered. These studies concluded that extended
CMS techniques can accurately predict the response, while the Rubin substructuring basis
enhanced with SMDs provides a better representation of the geometric nonlinearities in the
interfaces, since it comprises normal modes and SMDs featuring free motion of the interface.

Some researchers have also considered model order reduction techniques of structures
with both contact and geometric nonlinearities [1,4,25,26]. In [1,4,25], Craig-Bampton is
employed to keep the contact DoFs in generalized coordinates. Balmaseda et al. use only
the linear modes [1] while Delhez et al. augmented reduction basis with SMDs [4,25]. The
comparison of linear Craig–Bampton and augmented Craig-Bapton in [4] shows slightly
better results of the latter while it requires a larger reduction basis to get accurate results.

To the authors’ knowledge, Rubin ROM enhanced by SMDs has not yet been stud-
ied for structures with both types of nonlinearity. Given its superior performance in the
substructuring of geometrically nonlinear structures, especially in capturing the effects
of geometric nonlinearity at the interface [24], this model has been explored and com-
pared to the previously used Craig–Bampton ROM augmented with SMDs. Since the
number of SMDs grows quadratically with the number of modes used, an existing selection
strategy [27] has been modified here to provide a more effective reduction basis.

A cantilever beam model with friction contact at its tip is considered as a case study.
In this model, the accurate prediction of the coupling between transverse and axial dis-
placements occuring in the geometrically nonlinear regime plays a critical role in correctly
predicting the contact state. The Enhanced Rubin ROM is assessed to determine its ability
to simulate the full-order beam behavior when both nonlinearities are active.

The formulation is outlined in Section 2, where the system of reduced-order equations
required to handle a geometrically nonlinear structure with friction contact is described,
along with the methods for computing the reduction basis and the projection matrix. In
Section 3, the dynamics of the considered model are described and the accuracy of the
aforementioned reduction methods is illustrated in different contact states. Finally, the
conclusion is provided in Section 4.

2. Methodology

Finite Element discretization of a structure with linear elastic material undergoing large
displacement/rotation and frictional contact leads to a second-order ordinary differential
equation (see, e.g., Refs. [22,28–31] for more details):

Mü(t) + Cu̇(t) + fint(u(t)) = fe(t) + fc(u̇, u, t) (1)

in which M ∈ RN×N and C ∈ RN×N represent the mass and viscous damping matrices
of the structure and u(t) ∈ RN is the vector of nodal displacement. The force vectors are
the elastic internal forces fint : RN 7→ RN , the linear excitation fe ∈ RN , and the nonlinear
contact forces fc : RN 7→ RN . The vector of internal elastic force fint accounts for both the
linear and the nonlinear components. In the case of a geometrically linear structure, it is a
linear function of the nodal displacement vector fint(t) = Ku(t), where K is the stiffness
matrix. This study considers the mass proportional damping as C = αM.

The solution of Equation (1) for a full-order model provides accurate results, but
its computing cost is significant if the size of the system N is large. A model order re-
duction technique is employed to mitigate this cost by reducing the equation size. The
linear projection of Equation (1) on a reduced space is performed by introducing the
coordinate transformation:

u(t) = Rq(t) (2)
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where R ∈ RN×n, the so-called projection matrix is constructed by a set of orthogonal
vectors that represent the reduced space basis. Time-dependent vector q ∈ Rn(n ≪ N)
consists of the reduced order coordinates. Upon substitution of Equation (2) in Equation (1)
and premultiplying RT in the resulting equation, the following reduced-order equation
is obtained using Galerkin projection, which requires the residual to be orthogonal to the
subspace span:

M̃q̈(t) + C̃q̇(t) + f̃int(q(t)) = f̃e(t) + f̃c(q̇, q, t) (3)

in which the matrices M̃ ∈ Rn×n and C̃ ∈ Rn×n represent the reduced mass and damping
matrices of the structure, respectively, where Ã = RTAR. The generalized force vectors, f̃,
are also computed as f̃ = RTf.

The linear structural matrices (M, C) and the reduced contact force fc are projected
before the solution of the equations in the offline stage when the reduction basis is also
computed. On the contrary, the projection of the elastic forces fint has to be performed in
the online stage at each iteration of the solution of Equation (3) based on the predicted full
displacement field.

2.1. Projection Matrix

The CMS methods start by splitting the nodal displacement vector u(t) into entries
related to master DoFs um ∈ RNm and slave DoFs us ∈ RNs , where Nm + Ns = N.
The master DoFs, denoted by subscript m, correspond to Nm physical DoFs retained in
the generalized coordinates. Other DoFs are considered slave DoFs and are denoted by
subscript s. Here the master DoFs include the DoFs that the contact forces are applied to.
The equation of motion Equation (1) and coordinate transformation matrix Equation (2) are
then partitioned accordingly. Thus, Equation (2) is written as follows:[

um
us

]
= R

[
um
η

]
,where R =

[
I 0

Rsm Rss

]
(4)

where I ∈ RNm×Nm is an identity matrix. η ∈ Rng is the time-dependent vector of the
amplitude of normal modes (n = Nm + ng). Accordingly, the projection matrices of Rubin
(RRubin) and Craig–Bampton (RCB) model order reduction techniques are computed based
on the considered normal modes and static deflections ([13–15,32]):

RRubin =

[
I 0

Ψr
s(Ψ

r
m)−1 −Ψr

s(Ψ
r
m)−1Φf

m + Φf
s

]
(5)

RCB =

[
I 0

Ψc Φc

]
(6)

Matrices Ψr ∈ RN×Nm and Φf ∈ RN×ng , in Rubin projection matrix RRubin, are,
respectively, the matrices of the residual flexibility attachment modes and the selected
normal modes with free boundary condition at master DoFs. Here, for the sake of simplicity,
it is assumed that the structures are constrained and have no rigid body motion, so the rigid
body modes are not considered in the Rubin basis. Ψc ∈ RNs×Nm and Φc ∈ RNs×ng matrices
in Craig–Bampton projection matrix RCB include constraint modes and the selected normal
modes with fixed boundary condition at master DoFs, respectively.

To compute these static deflections and normal modes, first, the tangential stiffness
matrix of the structure in static equilibrium (t = 0) is computed:

K̄ =
∂fint(u(0))

∂u
(7)

here, fint(u(0)) = 0 and K̄ comprise the undeformed linear stiffness matrix. Then, to obtain
the free interface modes of the Rubin model, the nonlinear normal modes are computed
as Equation (8). The attachment modes Gm are the static displacements of the structure
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due to unit force applied at master DoFs. The residual flexibility attachment modes Ψr, are
computed by enforcing the spectral orthogonality between the attachment modes and the
normal modes as Equation (9):

(M − ω2
i K̄)ϕf

i = 0 (8)

Ψr = Gr −
ng

∑
p=1

ϕf
pϕ

f
p

T

ω2
p

, Gr = K̄−1
[

I
0

]
(9)

where ωp is the natural frequency of pth free interface normal mode ϕf
p.

The fixed interface normal modes and constraint modes of the Craig–Bampton method
are computed from the partitions of the tangential stiffness matrix as Equations (10) and (11).
The constraint modes Ψc are the static displacements of the structure due to unit displace-
ment applied at master DoFs.

(Mss − ω2
i K̄ss)ϕ

c
i = 0 (10)

Ψc = K̄−1
ss K̄sm (11)

In this context, the residual flexibility attachment modes and constraint modes employed
in the Rubin and Craig–Bampton bases are referred to as static modes.

To account for the dependency of normal modes of a geometrically nonlinear structure
on its state, the linear basis could be enhanced by adding Static Modal Derivatives (SMDs).
This yields enhanced projection matrices [21,22]:

RRubin-MD =

[
I 0 0

Ψr
s(Ψ

r
m)−1 −Ψr

s(Ψ
r
m)−1Φf

m + Φf
s −Ψr

s(Ψ
r
m)−1Θf

m + Θf
s

]
(12)

RCB-MD =

[
I 0 0

Ψc Φc Θc

]
(13)

where Θf and Θc are matrices of the selected SMDs obtained by introducing a finite dis-
placement around the free interface and fixed interface modes, respectively. The reduction
methods are characterized by the projection matrices of Equations (12) and (13) referred
to as Enhanced Rubin and Enhanced Craig–Bampton methods, respectively. In the next
section, the computation of SMDs is discussed.

2.2. Static Modal Derivatives

To compute SMDs, the generalized eigenvalue problem in which the nonlinear elastic
force is linearized and is cast in the form fint = Ku, is differentiated with respect to the am-
plitude of jth mode and evaluated around the system-static equilibrium position. Ignoring
the inertia terms leads to the SMDs that can also be obtained through the differentiation of
the nonlinear static equation [21,22,24] as follows:

θf
ij = −K̄−1K′Xf

i ; Xf = [Φf, Ψr] (14)

θc
ij = −K̄−1

ss (K′
smXc

m,i + K′
ssXc

s,i) ; Xc
m = [Φc, Ψc] , Xc

s = [I, 0] (15)

where θf
ij and θc

ij are, respectively, SMDs of Rubin and Craig–Bampton bases vectors. K′

is the derivative of the tangent stiffness matrix (K) with respect to a displacement in the
direction of Xj. It is prominently approximated nonintrusively via finite differences. The
central finite difference yields the following formulation [33]:

K′ =
∂K
∂ηj

∣∣∣
eq

=
∂2fint

∂(q)2

∣∣∣
eq

Xj =
K(u = Xjh)− K(u = −Xjh)

2h
(16)
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The SMDs do not feature orthogonality to linear modes, so a Gram–Schmidt process is
employed to provide a linearly independent basis. The size of a complete set of SMDs (Θ)
that can be computed from n modes is quadratic to n. However, due to their symmetry,
Nd = n(n + 1)/2 unique SMDs can be computed.

Θ = [θ11, θ12, . . . , θNd Nd ] (17)

The number of SMDs grows quadratically with the number of linear modes. So, it is
important to initially find the modes with higher participation in the structure response and
calculate their corresponding SMDs. Subsequently, the most relevant SMDs are selected.
To achieve this, the following steps are considered as shown in Figure 1.

Figure 1. Selection of modes to obtain projection basis.

The suggested steps have an offline computational cost, but this procedure leads to a
high accuracy through the proper selection of the SMDs and to a faster convergence.

2.2.1. Dominant Mode Selection

The dominant modes have a high participation factor during the system dynamics. A
frequency-based approach is generally used, selecting those normal modes whose natural
frequencies are close to the excitation frequency (ϕ = [ϕ(1), . . . ,ϕ(m)]). This provides the
normal modes of the linear system excited by external forces. However, the internally
resonant, geometrically coupled modes, and static modes describing the local flexibility of
the contact region, can contribute considerably to the behavior of a structure, particularly
in strongly or even moderately nonlinear cases. Their contribution can be significant
enough that the modes’ derivatives are necessary in reduction bases to obtain accurate
responses. The approach proposed here enables the selection of these modes. It yields a
more robust reduced model that remains valid under higher levels of geometric nonlinearity.
Furthermore, in terms of the convergence analysis needed to ensure the proper reduction
basis, faster convergence is achieved, resulting in a shorter computing time.

To achieve this, a geometrically linear transient analysis with frictional contact (GLF
analysis) along with a series of geometrically nonlinear static analyses (GNLS analyses) are
conducted. The GLF analysis identifies potentially internally resonant modes excited by
higher harmonic components of friction forces, while the GNLS analyses reveal geometri-
cally coupled modes that participate significantly in the structure response.

First, the geometrically linear model with friction contact is analyzed, and the beam
deflections during the steady state are maintained at different times Ut = [u1

t , u2
t , . . . , un

t ].
Then, the static force necessary to obtain a deflection equivalent to the linear dynamic
response amplitude is computed as follows:

f = KXsin(β) (18)

when X and β are, respectively, the amplitude and the phase of the forced response of
the linear system. Then, a set of nonlinear static analyses is performed at different force
levels in the range [0 f] to activate different levels of geometric nonlinearity, collecting
the resulting beam deflections Ust = [u1

st, u2
st, . . . , un

st]. The two sets of displacements are
assembled in a matrix U = [Ust, Ut].
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Here, the dominant modes are defined as those with considerable participation in
basis U. In other words, when U is projected onto these modes, they exhibit the highest
participation factors. So, the participation of a set of modes (Υ) in displacement vectors
of matrix U is computed by least square approximation U ≈ ΥQ. Then, the modes with
the highest values in matrix Q will be selected as the dominant modes. This set of modes
includes the free interface normal modes and residual flexibility attachment modes for
the Rubin method and the fixed interface normal modes and constraint modes for the
Craig–Bampton method,

As shown in Figure 1, when the dominant modes ΥD are selected, the SMDs of these
modes (Θ) are computed. In the next section, the selection of the most relevant SMDs
is described.

2.2.2. Static Modal Derivative Selection

After the computation of SMDs, the next important step is the selection of the most
relevant ones. The selection criterion is based on the Maximum Modal Interaction (MMI)
criterion proposed by Tiso [27] for reduced-order models of geometrically nonlinear struc-
tures. This selection criterion is modified to provide higher accuracy and is adopted for
structures with geometric and friction nonlinearities. The modified strategy allows the
selection of the static derivatives of the static modes in case they are excited because of
higher harmonics of the nonlinear forces or geometric coupling (the modes that are excited
due to nonlinearity).

In its original formulation, the MMI criterion requires that a linear run under external
loading over time [0, T] is first performed, and then the weighting of each SMD is computed
as [20]:

Wij = max|ηi(t)| · max|ηj(t)| (19)

where ηi(t) represents the time-varying amplitude of the ith mode. The SMDs with the
highest value of Wij will be selected. In such a manner, only the derivatives of linearly ex-
cited modes are selected, and nonlinearity is treated as a second-order effect [20] neglecting
higher orders.

Here, the matrix Q, which was previously used for the selection of the dominant
modes, is employed. Matrix Q is a matrix of generalized coordinates Q = [q1, q2, . . . , qnv ]

where qjT = [η
j
1, η

j
2, . . . , η

j
m], nv is the number of vectors in U, and m is the total number

of selected dominant modes. The weighting factor of SMDs θij will be computed using a
similar formulation to Equation (19), as follows.

Wij =
n

∑
k=1

|ηk
i ηk

j | (20)

A modal derivative (θij) whose weighting factor Wij exceeds a certain threshold is selected
and added to the reduced space. Here, the weighting factors are all normalized to the largest
weighting factor (W = [W11, W12, . . . ]/max(W)), and a threshold of 0.0001 is considered.

Unlike the original MMI approach, in this manner, the participation factors of the
modes excited by nonlinear forces, such as internally resonant modes or geometrically
coupled modes, are non-zero, allowing their derivatives to be selected. This results in
considering the higher-order effects of nonlinearity. As a higher level of geometric nonlin-
earity is activated, the superior accuracy of this approach over the original MMI becomes
increasingly evident.

2.3. Time Domain Analysis

The implicit Newmark method (average acceleration method) [34] with adaptive time
stepping [35] is employed to obtain the time history of the transient response. In each
time step, the second-order nonlinear Equation (3) is solved by the Newton–Raphson
algorithm. This procedure is shown in Figure 2 for a geometrically nonlinear structure with
friction contact.
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Figure 2. Newmark time integration algorithm.

In the Newton–Raphson solver of n-th time step, as shown in Figure 2, the Newmark
Beta formulation is used to obtain the first and second time-derivatives of generalized
coordinate (q̇(k)

n+1, q̈(k)
n+1) at k-th iteration. Then, the contact forces are computed using a 2D

contact model [36]. To obtain the reduced nonlinear elastic forces f̃int(q
(k)
n+1), the physical

DoFs are computed from the generalized coordinates (u = Rq), then the full-scale nonlinear
elastic forces are obtained using the total Lagrangian Finite Element formulation [37].
Through the projection of full-scale vector f̃ = RTf, the reduced nonlinear elastic forces are
calculated and replaced in the Newton–Raphson equation of residuals. When the residual
is smaller than a defined tolerance, the Newton–Raphson solver is converged at this time
step and the Newmark formulation is used to proceed in time.

3. Numerical Analysis

To investigate the performance of the aforementioned methods, the dynamic response
of a geometrically nonlinear cantilever beam under a periodic excitation is studied. As
shown in Figure 3, a friction contact is considered at its tip. The beam motion is described in
plane (ex, ey) which are the axial and transverse coordinates, respectively. Axis ex is along
beam neutral axis in undeformed configuration while ey is perpendicular to it. Notably,
this model can be assumed as a simplified model of blade–casing rubbing interaction in
gas turbines with an assumed rigid casing and disk.

Figure 3. Model of a planar cantilever beam with friction contact at its end.

The beam length is L = 2.54 m and internal structural damping is introduced as mass-
proportional viscous damping, where α = 5. The beam material properties are Young’s
modulus E = 207 GPa, density ρ = 7801 kg/m3, and Poisson’s ratio of ν = 0.28. The beam
cross section is square with area A = 0.6451 m2. A harmonic force with the amplitude of
Fe = 111.29 N in a constant direction (y coordinate) is applied on the beam. A FE beam
model based on a total Lagrangian nonlinear formulation and a Timoshenko kinematics [37]
is considered. This model is consist of 20 elements while each node has 3 DoFs.

Besides the dynamic load applied on the contact, the contact state is defined by
the static normal load N0 and contact parameters, including contact stiffness and the
friction coefficient. The effects of these parameters have been studied extensively in
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the literature [38]. Here, the friction coefficient and contact stiffness are considered
as µ = 0.5 and kt = kn = 10 N/mm.

To provide a better understanding of the dynamics of the structure under study,
initially, the forced response analysis of its full order model is studied. The frequency
response functions of the beam at four values of the static normal preload (N0 = 0, 40, 60,
and 250 N) are shown in Figure 4. In the case of blade–casing rubbing interaction, the
normal preload N0 is due to the centrifugal force acting on a rotating blade. The reference
system is the so-called open contact (N0 = 0 N) corresponding to the cantilever beam with
no friction contact.

Figure 4. Frequency response function of the beam tip with four values of contact normal preload.

It can be seen in Figure 4 that by increasing the value of the normal preload, initially
(N0 = 40 and 60 N) only the resonance amplitude decreases, while the resonance frequency
remains constant. With the higher value of normal preload (N0 = 250 N), the resonance
frequency also increases due to the stiffening effect of the contact.

To better assess the performance of the enhanced reduction methods, two completely
distinct system configurations are analyzed, corresponding to different contact states,
which are representative of possible configurations of a vibrating beam potentially rubbing
against a rigid casing. The name of the configuration corresponds to the contact states that
dominate the nonlinear dynamics during vibration. In detail: - Slip–liftoff configuration
with N0 = 40 N and excitation frequency Freq = 3.2 Hz; - Stick–slip configuration with
N0 = 250 N and excitation frequency Freq = 8.1 Hz.

3.1. Slip–Liftoff Configuration

The dynamic behavior of the beam at the steady state when excited at the frequency
of 3.2 Hz under a normal preload of 40 N is depicted in Figure 5. Figure 5a shows the beam
deflections at different time instants, Figure 5b,c show the contact normal and tangential
displacements, respectively, that are indeed the axial and transverse displacements of
the beam tip. Figure 5b highlights that the frequency of the axial vibration is twice the
frequency of excitation.
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Figure 5. (a) Beam deformations, (b) contact normal displacement, and (c) the beam tip displacement
in slip–liftoff configuration.

In this configuration, the amplitude of vibration is 21% smaller than the maximum
amplitude of the reference system (open contact). The reason for this smaller amplitude
can be seen in Figure 6. The contact node state is shown in Figure 6a, where slip, stick, and
liftoff are depicted by 0, 1, and −1, respectively. It shows that the contact nodes alternate
liftoff and slip. As shown in Figure 6b,c, the contact tangential and normal forces are zero
during liftoff. The energy dissipated by friction during slip has led to an increase in the
damping ratio and a decrease in the vibration amplitude.

Figure 6. (a) Contact node states, (b) contact tangential, and (c) contact normal forces in slip-liftoff
configuration (N0 = 40 N, Freq = 3.2 Hz).

A comparison is also made between the beam responses obtained by geometrically
linear (GL) and nonlinear (GNL) models under the same preload and excitation frequency.
The beam tip vibration amplitudes in transverse (Uy) and axial (Ux) directions are presented
in Table 1, clearly demonstrating the inaccuracy of the GL model.

Table 1. Vibration amplitude obtained by GL and GNL models in slip–liftoff configuration
(N0 = 40 N, Freq = 3.2 Hz).

Slip–Liftoff Open Contact
Uy (mm) Ux(mm) Uy (mm) Ux (mm)

Geometrically
linear model 123.5 0.00039 200.8 0.0

Geometrically
nonlinear model 157.6 2.835 200.5 4.6

As shown in Figure 7, the GL model is not capable of predicting the contact liftoff state
under the current load and frequency. Consequently, a longer slip state (a higher damping)
and a longer stick state (a higher stiffness) are predicted, leading to a smaller amplitude
of vibration. This is due to the lack of axial–bending coupling in the GL model that
underestimates the axial vibration, which plays a critical role in defining the contact state.
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Figure 7. (a) Contact node states, (b) contact tangential, and (c) contact normal forces with a
geometrically linear model (N0 = 40 N, Freq = 3.2 Hz).

Finally, the performance of the reduction methods is evaluated in this beam config-
uration. First, the SMDs selection approaches, described in Section 2.2, are investigated.
Both the original MMI criterion, based on linear transient analysis, and the modified MMI
criterion (MMI-NLS), based on nonlinear static analysis and geometrically linear run with
friction contact, are used for the sake of comparison.

The steady-state beam response is computed by the enhanced Rubin method. Due to
the importance of accurate prediction of the blade tip displacements, the error is considered
to be the percentage error in the blade tip transverse vibration amplitude. This error (left
axis) and the size of the reduced model (right axis) are shown in Figure 8 (left), versus the
number of the normal modes used to determine the dominant modes and the SMDs. The
reduced model size refers to the total number of static modes, the dominant normal modes,
and the selected SMDs. Since the beam tip transverse and axial displacements (contact
DoFs) are only kept as master DoFs in the reduced coordinates, there are two static modes.

The analysis is also performed with another load case (N0 = 200 N, Fe = 333.3 N, and
Freq = 3.2 Hz). In this case, assuming that the structure remains in the elastic region of
the stress–strain curve, the contact again undergoes only slip and liftoff states and the
maximum vibration amplitude is 418 mm. The geometric nonlinearity is activated to a
greater extent in this case, leading to a higher contribution of geometrically coupled modes
on the beam behavior. The results are shown in Figure 8 (right).

Figure 8. Response error and the size of reduction basis vs. the number of normal modes in slip–liftoff
configuration (two load cases).

The performances of Enhanced Rubin (Rubin-MD) and Enhanced Craig–Bampton (CB-
MD) methods are also compared to Rubin and Craig–Bampton approaches. In particular,
both SMD selection strategies are applied to the Enhanced Craig–Bampton ROM, as was
previously the case for the Enhanced Rubin ROM. The results are shown in Figure 9.
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Figure 9. Accuracy of reduced models in response prediction to the size of reduced space in slip–liftoff
configuration.

The 8th and 13th free interface normal modes and the 9th and 13th fixed interface
normal modes are axial modes that participate in the response due to their geometric
coupling with transverse modes. As seen in Figure 9 (left), adding them to the Rubin and
Craig–Bampton bases considerably improved these models’ accuracy. However, these
reduced models with a size of 16 still exhibit a 3% error.

When the SMDs are added to the Rubin basis, the predicted response’s accuracy
improves significantly. Even when only the first normal mode and the two static modes
(there are two contact DoFs) are considered and SMDs are computed, better accuracy is
achieved than when employing large ROMs without SMDs.

Figures 8 and 9 also showcase the superior performance of the MMI-NLS approach,
highlighting the relevant contribution of the selected SMDs. This is more obvious in the
case of higher load (Figure 8 (right)), where the response error of Enhance Rubin ROM
with three normal modes is about 0.25 % using the MMI-NLS approach and 36% using
the MMI approach. The SMD of the first attachment mode (an axial mode) is the mode in
which its addition to the reduction basis leads to the priority of MMI-NLS approach. This
SMD is not selected by the MMI selection criterion.

To better explain the reason for the effect of the modal derivative selection on the
accuracy, Table 2 shows the beam tip response error with different modes kept in the
reduced space. 1V refers to the first linear normal mode and 1S refers to the first static
mode. In the same way, the modal derivative 1V1S is the derivative of the 1st normal mode
to the first static mode.

Table 2. Selection modes’ effects on the response accuracy in slip–liftoff configuration.

Normal Modes Static Modal Derivatives Error % Fe = 111.29 N Error % Fe = 333.87 N

Rubin with SMD 1V 1V1V 4.03 42
Rubin with SMD 1V 1V1V, 1V1S, 1V2S 0.41 4.2
CB with SMD 1V 1V1V 7.18 49
CB with SMD 1V 1V1V, 1V1S, 1V2S 0.57 26.3

1S2S, 2S2S

This table again shows the importance of the selection criteria. The derivative of static
modes will not be selected by MMI, since these modes have no considerable participation
factors during a linear run. Indeed, the SMDs of the modes that are not excited in a linear
run will never be selected by MMI criterion. The resulting error cannot be ignored when
geometrically coupled modes or internally resonant modes have considerable participation
in the response (stronger nonlinearities).

The deformation of modal derivatives of the free interface vibration modes and resid-
ual flexibility attachment modes are shown in Figure 10, when the first free interface mode
(1V) is the first bending mode. To better exhibition of axial and transverse modes, the axial
displacement ux and transverse displacement uy of each node are depicted separately in
the right and left plots, respectively.
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Figure 10. The transverse displacement (left) and the axial displacement (right) of the selected SMDs
of free interface vibration modes and residual flexibility attachment modes.

Figure 10 shows that the first SMD, 1V1V, is an axial mode (uy is zero in left plot). This
SMD will be consistently selected via all criteria because 1V (the first transverse mode) is
linearly excited by the applied harmonic force and plays a significant role in the response
obtained by a linear run. Meanwhile, 2S is also a transverse mode and 1V2S is an axial
mode that could be selected by the MMI criterion considering a very small threshold. On
the contrary, 1S is an axial mode, which is geometrically coupled to the bending modes;
1V1S is a transverse mode (ux is zero in Figure 10 (left)) that will never be selected by the
MMI approach, since the contribution factor of 1S in a linear run is zero, leading to a zero
weighting factor W1V1S = 0. This modal derivative, which is orthogonal to the first bending
mode, plays a critical role in providing the best accuracy.

The deformation of modal derivatives of the fixed interface vibration modes and
constraint mode is shown in Figure 11, when the first fixed interface mode (1V) is the first
bending mode.

Figure 11. The transverse displacement (left) and the axial displacement (right) of the selected SMDs
of fixed interface vibration modes and constraint modes.

The first and second constrain modes are, respectively, axial and transverse modes.
They are the same as free interface modes, the static derivative of axial modes which
participate due to their coupling to transverse modes; these will not be selected by MMI
criterion, resulting in higher numbers of errors.

3.2. Stick–Slip Configuration

In this section, the performance of the reduction techniques is assessed in the stick–slip
configuration (N0 = 250 N and excitation frequency = 8.1 Hz). The beam deformation at
different time instants during the steady state is shown in the Figure 12a, while the contact
normal and tangential displacements are shown in Figure 12b,c.
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Figure 12. (a) Beam deformations, (b) contact normal displacement, and (c) the beam tip displacement
in stick–slip configuration.

In this configuration, the beam amplitude of vibration decreased by about 90% com-
pared to the reference system due to the higher normal load, leading to alternate stick
and slip states. This is depicted in Figure 13, which shows the contact states and the
contact forces with respect to the corresponding displacements. This contact configuration
determines a higher amount of dissipated energy (see the area of the hysteresis cycle) and
also an increase in the system stiffness. As a result, as illustrated in Figure 12a, not only are
the resonance frequency and amplitude dependent on the contact state, and in particular on
the contact stiffness, but the mode shapes of the contributing modes on structure behavior
are also influenced.

Figure 13. (a) Contact node states, (b) contact tangential, and (c) contact normal forces in stick-slip
configuration.

The beam tip vibration amplitudes obtained using the geometrical linear and nonlinear
models are listed in Table 3. In this case, the linear model provides more accuracy compared
to the results of the GL model in the slip–liftoff configuration, showing that the structure is
in a geometrically linear regime.

Table 3. Vibration amplitude obtained by geometrically linear and nonlinear models with N0 = 250 N
at Freq = 8.1 Hz.

Uy (mm) Uy (mm)

Geometrically linear model 19.73 0.00248
Geometrically nonlinear model 19.618 0.044

Although Table 3 shows that under this condition, geometric nonlinearity is not
activated and the structure behavior is only influenced by the nonlinear contact forces, the
accuracy of the reduction methods is compared in Figure 14.
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Figure 14. Accuracy of reduced models in response prediction to the number of normal modes
(N0 = 250 N and Excitation Frequency = 8.1 Hz).

Figure 14 shows that the performance of Rubin and Craig Bampton is acceptable
due to being in a geometrically linear regime. However, the enhanced Craig Bampton
model has the highest accuracy with its first normal mode, two constraint modes, and five
modal derivatives, which shows the effectiveness of the modal derivatives when it comes
to reducing structures with friction contacts.

4. Conclusions

The Rubin CMS technique, enhanced with the static modal derivatives, has demon-
strated its performance for the time domain analysis of a beam subjected to both local
and distributed nonlinearities. The Enhanced Craig–Bampton method has also exhibited a
comparable performance, particularly in a stick–slip configuration. These enhanced CMS
techniques owe their performance to the addition of the static modal derivatives that allow
ROMs to predict the geometrical nonlinear effects and to maintain contact DOFs that allow
the accurate prediction of contact forces. The proposed strategy for the selection of modal
derivatives based on the nonlinear static analysis and geometrically transient analysis with
friction contact demonstrates its accuracy. The higher accuracy is due to the selection of the
geometrically coupled modes and internally resonant modes as dominant modes that lead
to the computation and selection of their derivatives.

Geometric nonlinear models provide more accuracy even when dealing with low-
amplitude vibrations, particularly in cases when the coupling between modes could sig-
nificantly impact the contact state. In the beam model with friction contact at its tip, the
axial–bending coupling leads to liftoff states that cannot be predicted using a geometrically
linear model. This effect can be extended to 3D models in which the coupling between
the lower and higher modes is more complicated. The coupling by itself may cause small
differences in structural deformation, but in the presence of friction contact, these discrep-
ancies can result in different contact behaviors and ultimately lead to entirely different
structural responses.

The nonintrusive implementation of these approaches is of particular interest, since
it enables the accurate and efficient computation of the nonlinear elastic forces based
on the generalized coordinates, while the distinct contact states and contact forces are
anticipated accurately.
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Abbreviations
The following abbreviations are used in this manuscript:

DoF Degree of Freedom.
CMS Component Mode Synthesis.
ROM Reduced Order Model.
EQM Equations of Motion.
GL Geometrically Linear.
GNL Geometrically Nonlinear.
MAC Modal Assurance Criterion.
MMI Maximum Modal Interaction.
SMD Static Modal Derivative.
1V 1st normal mode.
1S 1st static mode.
Rubin-MD Rubin reduced model enhanced with modal derivatives.
CB-MD Craig–Bampton reduced model enhanced with modal derivatives.
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