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framework for simulating and 
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hardware spiking neural 
networks
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CNR–IMM, Unit of Agrate Brianza, Agrate Brianza, Italy

Investigations in the field of spiking neural networks (SNNs) encompass 
diverse, yet overlapping, scientific disciplines. Examples range from purely 
neuroscientific investigations, researches on computational aspects of 
neuroscience, or applicative-oriented studies aiming to improve SNNs 
performance or to develop artificial hardware counterparts. However, the 
simulation of SNNs is a complex task that can not be adequately addressed 
with a single platform applicable to all scenarios. The optimization of a 
simulation environment to meet specific metrics often entails compromises 
in other aspects. This computational challenge has led to an apparent 
dichotomy of approaches, with model-driven algorithms dedicated to 
the detailed simulation of biological networks, and data-driven algorithms 
designed for efficient processing of large input datasets. Nevertheless, 
material scientists, device physicists, and neuromorphic engineers who 
develop new technologies for spiking neuromorphic hardware solutions 
would find benefit in a simulation environment that borrows aspects 
from both approaches, thus facilitating modeling, analysis, and training 
of prospective SNN systems. This manuscript explores the numerical 
challenges deriving from the simulation of spiking neural networks, and 
introduces SHIP, Spiking (neural network) Hardware In PyTorch, a numerical 
tool that supports the investigation and/or validation of materials, devices, 
small circuit blocks within SNN architectures. SHIP facilitates the algorithmic 
definition of the models for the components of a network, the monitoring 
of states and output of the modeled systems, and the training of the 
synaptic weights of the network, by way of user-defined unsupervised 
learning rules or supervised training techniques derived from conventional 
machine learning. SHIP offers a valuable tool for researchers and developers 
in the field of hardware-based spiking neural networks, enabling efficient 
simulation and validation of novel technologies.
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1 Introduction

Spiking Neural Networks (SNNs) have seen a rapid surge in 
interest in recent years (Indiveri et  al., 2011; Bouvier et  al., 2019; 
Young et al., 2019; Brivio et al., 2022; Christensen et al., 2022; Hendy 
and Merkel, 2022; Yamazaki et  al., 2022), due to their potential 
reduction of the energy cost of conventional computing paradigms 
(Roy et al., 2019; Christensen et al., 2022). SNNs rely on the binary 
spike temporal encoding of the information transfer and processing, 
which can be ideally approximated as a cascade of information-dense 
events, sparsely taking place across the temporal coordinate. This 
indeed limits the energy flux into the SNN system. Additionally, in 
contrast to conventional (digital) processing units, SNN hardware 
realizations may carry out part of the computational tasks exploiting 
passively-evolving physical phenomena, which also lowers the need 
for a constant energy supply. For instance, neuronal or synaptic 
circuitry can use the discharge of capacitors (see e.g., Hwang et al., 
2022), or the dissolution of the conduction path in a memristor (see 
e.g., Covi et al., 2016; Brivio et al., 2022), to implement the required 
temporal dynamics. Both the fundamentally-efficient processing 
paradigm and the contextually-efficient analog neuromorphic 
hardware drive the research toward novel hardware solutions.

As in most cutting-edge studies, any costly fabrication step would 
likely follow a thorough simulation study, that estimates the SNN 
potential performance metrics (Vineyard et al., 2019). The simulation 
of SNN systems may exploit dedicated hardware processors or 
accelerators, such as SpiNNaker (Mayr et  al., 2019), Neurogrid 
(Benjamin et al., 2014), Truenorth (Akopyan et al., 2015), BrainScaleS 
(Pehle et al., 2022), Loihi (Davies et al., 2018), the DYNAPs family 
(Moradi et al., 2018), and Tianjic (Pei et al., 2019). However, these 
tools do not often provide the needed flexibility to include models of 
novel hardware technologies and functional blocks, possibly including 
beyond-CMOS concepts such as memristive elements. This limits the 
simulation methodology to algorithmic solutions.

FEM or SPICE-like simulations provide physically-realistic 
responses, but they are often applicable only to size-limited systems. 
Instead, assemblies of compact models can simulate complex 
systems and deliver relatively accurate simulation results, without 
necessarily implying a massive computational requirement. 
Nevertheless, the computational cost of simulating SNN systems 
remains a major challenge, as software tools can not take advantage 
of the continuous, parallel, event-driven processing that is exclusive 
to hardware systems.

In our initial review, we counted at least 37 actively maintained or 
stable platforms that support the simulation of SNN systems, each one 
dedicated to a narrow audience of neuroscience investigators or data-
scientists. This suggests that orienting oneself towards the most 
suitable choice can be a tedious task. Howerver, we note that few of 
them are intended for the study of novel technologies for hardware 
systems, explicitly combining (i) a naturally-understandable coding 
framework, (ii) tools to analyze the behavior of the simulated systems, 
and (iii) data-oriented routines to test the potential performance of 
the simulated systems. It is our opinion that a tool combining the 
mentioned features would be  of great benefit to neuromorphic 
engineers to rapidly prototype potential SNN systems, without 
incurring a steep learning curve.

For this reason, we devised a simulation platform, SHIP (Spiking 
(neural network) Hardware In PyTorch), developed to support the 

conception, design, investigation, and validation of novel technologies 
(as materials, devices, or circuits) in SNN architectures. The user of 
SHIP seeks a simple tool to rapidly simulate potential hardware SNN 
realizations, without mandating the prerequisite knowledge of the 
SNN simulation theoretical elements. To meet these objectives, SHIP 
helps towards (i) the definition of neuronal/synaptic circuitry models, 
(ii) the network simulation and behavioral analysis, and (iii) network 
performance assessment after rapid synaptic weight training. 
We anticipate that, as we develop SHIP in Python (a heavily object-
oriented language), we exploit bespoke classes to interface the user 
with the platform algorithms.

We underline that SHIP is instead not meant to simulate generic 
analog neuromorphic circuits, nor to employ highly accurate material/
circuit block models. Its reliance on compact models is specifically 
suited for simplified simulations and evaluation of novel technologies/
concepts at the system level, thus the rationale of SHIP does not 
overlap with existing physically-realistic emulators. A sketch of the 
main SHIP features is illustrated in Figure 1. In the central panel, 
we illustrate how an SNN is conceptualized as a collection of groups 
of circuit blocks. Each group uses easily-editable class models. Any of 
the SNN states and outputs, defined within the group models, can 
be  monitored during the simulation task. To exemplify this 
functionality, on the right panel we plot the time-resolved state/output 
calculated of one selected component of the first three groups. Namely, 
we detail the spike-encoded input (red), a refractory leaky-integrate 
and fire neuron (orange), and a 2nd order leaky synapse (yellow). 
SHIP also provides data-oriented features, precisely the functionality 
to train the synaptic weights of the simulated network, leveraging the 
surrogate gradient technique and conventional machine learning 
techniques. Here, a dedicated object incorporates the necessary 
algorithmic steps to apply PyTorch optimization routines onto the 
simulated SNN (see left panel).

This manuscript is structured into 3 main sections. Section 2 
provides the scientific background for this work, intended to guide 
the reader toward the understanding of the main aspects and 
challenges of the SNN simulation (by way of compact modeling 
approach). Section 3 illustrates in depth our developed platform, 
SHIP, detailing the various algorithmic choices that support the 
simulation of SNN systems. Section 4 reports on the use of SHIP for 
a few test cases, to demonstrate the use of this tool with plausible 
datasets. In Section 4 we  will also demonstrate the use of the 
seamless interface allowing to train the synaptic weights of a 
simulated SNN through PyTorch.

The source code of SHIP is available at https://github.com/
EmanueleGemo/SHIP.

2 SNN simulation: key concepts, 
algorithmic challenges, and available 
solutions

This section details the SNN simulation challenges and informs 
about the suitability of a given platform for any intended simulated 
task. Section 2.1 covers the main algorithmic elements and challenges 
that emerge from the SNN modeling task. Section 2.2 pictures an 
intuitive classification for the simulation platform philosophy and 
interfaces, and lists the numerical platform available to this date. A 
summary is provided in Section 2.3.

https://doi.org/10.3389/fnins.2023.1270090
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://github.com/EmanueleGemo/SHIP
https://github.com/EmanueleGemo/SHIP


Gemo et al. 10.3389/fnins.2023.1270090

Frontiers in Neuroscience 03 frontiersin.org

Before delving into such details, we provide a brief description of 
the physical elements and information processing in (hardware) 
SNNs, to set some of the definitions used throughout this work.

A minimal SNN can be described as a collection of neuron circuit 
blocks, interconnected along a set of synaptic circuit blocks. For sake 
of brevity, we refer to each of the constitutive circuit blocks of a SNN 
as component (which also includes additional functionalities not here 
listed, e.g., synaptic plasticity). For any component  in a SNN, 
we  identify component sources   and targets   (wherein the 
information propagates as S T→ → ). To provide a graphical 
explanation, the orange component in Figure 1 (center) sees a red 
source and a yellow target.

The propagation of the information relies on spikes, i.e., 
temporally-isolated variations of a physical attribute. Neurons collect 
and integrate spikes, and deliver output spikes according to the 
internal state (i.e., set of physical attributes strictly localized within the 
component) and spiking functionality. A graphical example of the 
main traits of a neuron is provided in Figure 1 (right panel, orange 
element). Synapses carry the spikes across neurons, imprinting 
amplitude and temporal transformations according to the synaptic 
functionality and/or internal state. An example of the synapse state 
and output is also shown in Figure 1 (right panel, yellow element). The 
input/output operations on SNNs are performed at the input port (red 
shade in Figure  1, center panel) and output port (violet shade in 
Figure 1, center panel).

The computation task of SNNs can be envisioned as a cascade of 
events (spikes, or temporal transformation thereof). These take place 
downstream of the SNN input port, along both the spatial and 
temporal coordinates. The output of a SNN collects the events at the 
output port. The processing power of SNNs arises from (i) the 
integration and spiking functionalities of the neuron components; (ii) 
the network topology, i.e., physical arrangement of the components 

within the network; and (iii), the amplitude and temporal modulation 
on the transferred spikes, imposed by the synapse components. 
Training of the synaptic weights in hardware systems is generally 
implemented by way of local rules, that mimic the functionalities of 
biological systems (Burr et al., 2017; Brivio et al., 2019; Tavanaei et al., 
2019; Wang et  al., 2020; Yamazaki et  al., 2022). Nevertheless, the 
transfer of conventional machine learning techniques onto SNNs is an 
active and ongoing avenue of research (see e.g., Lee et  al., 2016; 
Rueckauer et al., 2017; Tavanaei et al., 2019; Eshraghian et al., 2021, 
and Yamazaki et  al., 2022), though reasonably applicable only in 
simulated environments.

2.1 SNN simulation and critical algorithmic 
elements

We here picture how the simulation of a hypothetical SNN can 
be  established, underlining the critical factors that affect 
performance and numerical precision. We focus on the following 
key aspects: the implementation of the model of the components 
(Section 2.1.1), the temporal progress algorithm (Section 2.1.2), 
and the management of the data flow within the network 
(Section 2.1.3).

2.1.1 Models
We consider the model as the algorithmic description of a 

component (neuron, synapse, etc.). The model of a component ideally 
tracks the temporal evolution of both internal states  and outputs  
according to a set of mathematical equations and inputs  . Inputs, 
states, and outputs can be any physical attributes or representative 
properties calculated at any node of interest in the simulated 
circuit block.

FIGURE 1

Sketch of our simulation platform, SHIP. A hardware SNN is conceptualized as a set of interoperating groups of circuit blocks (neurons, synapses, etc.); 
bespoke classes are encoded to support the modeling of groups of circuit blocks, and a network class handles the network building and simulation 
operations. Any time-resolved state and output can be tracked, facilitating a model-oriented analysis of the behavior of the network (or individual 
component). A trainer class is also available to support data-oriented simulated experiments, in that it interfaces the simulated SNN with PyTorch-
based training algorithms.
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We use two examples to explore in a few more detail how a model 
can be algorithmically defined. Platforms such as NEURON (Hines 
et al., 2020), Brian 2 (Stimberg et al., 2019), or DynaSim (Sherfey et al., 
2018) use a differential equation system-based model. In these, the 
user states the variation of certain quantities in differential form. The 
equation system is then solved by way of consolidated numerical 
methods (see e.g., Gupta et al., 1985; Byrne and Hindmarsh, 1987; 
Higham, 2002; Butcher, 2006). The advantages of the use of ODE 
systems as a way to define a model are immediacy, and the potential 
access to highly accurate solutions (though one needs to mind the 
known issues of numerical instability and precision variability of 
numerical solvers (Higham, 2002)). While numerical ODE solvers 
find applicable solutions, they are not necessarily conducive to 
optimized algorithms; therefore, both result accuracy and algorithm 
performance can vary greatly.

In contrast, other platforms define models as systems of time-
discrete equations. Examples are NEST (Gewaltig and Diesmann, 
2007), Nengo (Bekolay et  al., 2014), and the many reliant on the 
PyTorch back-end (c.f. Supplementary Table S1). On one side, this 
strategy allows one to finely tune the algorithm towards enhanced 
performance or provision of specific features (e.g., pre-calculation of 
part of the numerical solutions, processing of conditional statements, 
integration with the platform, etc.). However, analytical solutions 
often do not exist for arbitrary problems; consequently, approximations 
may be needed, at the expense of an increased difficulty of the model 
statement and solution accuracy.

We note that, regardless of the modeling approach, look-up tables 
can be used in place of dynamic data generation (see e.g., Ros et al., 
2006). This method can significantly speed up the equation-solving 
stage, though at the cost of increased memory encumbrance and 
granularity of the yielded results (or decreased accuracy, where 
interpolation is used). We also add that computational strategies, such 
as vectorization, employ the model of one component to predict the 
behavior of sets of hierarchically-identical, though independent, 
components.

2.1.2 Temporal progress
The temporal progress algorithm drives the advancement through 

time of the models. Classically, it is possible to distinguish two families 
of approaches: clock-driven (or synchronous), and event-driven 
(asynchronous) algorithms (Tisato and DePaoli, 1995). Hybrid 
approaches can however be applied under particular conditions. A 
schematic of the two concepts is presented in Figure  2, in which 
we  track the temporal evolution of the membrane potential of a 
refractory leaky-integrate and fire (LIF) neuron model (Gautrais and 
Thorpe, 1998) subjected to a random set of input spikes (black vertical 
lines), delivered via a 1st order leaky synapse (Eckhorn et al., 1990).

The clock-driven (CD) algorithms quantize the temporal axis in 
time-steps, and carry out the temporal advancement by iterating 
through the set of time-steps until the completion of the temporal 
task, see Figure 2 (top). At each time-step, the CD algorithms call the 
functions updating the states and outputs of the models, for all the 
components of a network. We can further classify the CD approaches 
depending on the availability of mechanisms calculating the time-step 
size along the simulation. Variable (or adaptive) time-step CD 
algorithms bring the advantage of accelerating the temporal progress 
during time spans in which no event takes place, at the cost of 

additional computational requirements (though generally not as 
sizeable as in event-driven algorithms). In contrast, fixed time-step CD 
algorithms forego any computation of the time-step size, and the 
algorithm can be reduced to the bare minimum by way of a single 
for-loop.

CD algorithms can generally claim the advantage of simplicity. 
Additionally, CD methods (especially fixed time-step ones) are more 
suited for the pre-calculation of part of the solutions for the models, 
further simplifying the simulation routines. Lastly, CD methods are 
inherently suitable for parallel computing techniques, as data vectors 
of equal length (number of time-steps) are used to compute the states 
and outputs for each model. However, CD algorithms have intrinsic 
drawbacks. (i) The time-step size is cast to all models, thus leading to 
oversampling of the “slower” dynamics in order to resolve opportunely 
the faster ones. (ii) The time quantization imposes a lower boundary 
on the temporal resolution, which in turn lowers the accuracy and 
may source computational artifacts. For instance, CD algorithms 
impose a systematic shift of the spikes at the beginning or at the end 
of each time-step. In addition, there may be conditions demanding 
much higher temporal resolution than the one mandated by the 
dynamics of the components (e.g., lateral inhibition). (iii) Each 

FIGURE 2

Graphical representation of the clock-driven (CD – top) and event-
driven (ED – bottom) time progress approaches, applied to the 
calculation of a LIF neuron membrane potential. The LIF neuron is 
subjected to a regular pattern of spikes (vertical lines, solid black) 
delivered via leaky synapse (not shown). The red line represents the 
neuron membrane potential that the LIF model would calculate; the 
area beneath the red line is red-filled, to guide the eye. A green thick 
vertical bar represents the LIF model output spike. The exact solution 
is also shown as a dashed black line, for sake of comparison. The 
horizontal black dotted lines indicate the upper (threshold potential) 
and lower (rest potential) boundaries for the neuron’s membrane 
potential. The times at which the simulator updates the numerical 
solution are indicated with blue arrows. (Top) The CD algorithm 
mechanically updates the model state and output each time-step (a 
time-stepped grid is also shown), here generating a set of discrete 
values (one per time-step). (Bottom) The ED algorithm updates the 
solution, at each event, potentially reaching the model numerical 
solution at any point on the (pseudo) continuous time axis. The 
events at which the ED algorithm updates the solution are both pre-
inputted (black lines) or generated (green line). Traces of the partial 
state updates are also shown (blue dashed/dotted lines).
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time-step involves the processing of large vectors, which is resource-
burdening if poorly optimized.

We note that multi-clock approaches (seeing locally-defined time 
quantization for each model) can theoretically mitigate part of the 
(i–iii) issues. However, these require ad-hoc data handling and 
synchronization between models, introducing some of the drawbacks 
of the event-driven approach (see following paragraph), and may 
induce solution granularity. Therefore, multi-clock simulation 
platforms are uncommon. Due to their strengths and setbacks, CD 
algorithms remain the way forward for small-to-medium-sized 
networks in which the dynamic follows predictable patterns, or where 
the number of time-steps is constrained.

Event-driven (ED) algorithms, in contrast with CD algorithms, 
drive the temporal advancement forward only when triggered by the 
variation of any of the inputs/states/output. This methodology 
potentially curtails the number of iterations through time, and data 
communication between models (taking particular advantage of 
sparse vectors, which store only non-zero data and their unit 
coordinates), leading to the reduction of the average number of 
operations per point-model carried out by both central unit and 
memory controller. An initial list of events is constructed from the 
provided input and only then updated according to the generated 
states and outputs of the model of each unit. An example is present 
in Figure 2 (bottom); there, the algorithm updates the state of the 
model for any sequentially-delivered input, until the model generates 
a new event (green output spike), and triggers an additional state 
update. Since ED algorithms do not explicitly rely on the temporal 
axis quantization, they may find better numerical solutions when 
compared to CD algorithms reliant on the same model. However, 
this approach scales poorly with dense spiking patterns, as each 
event entails a sizeable computational effort, involving localized 
(hence inefficient) data transfer and time-step-dependent updates of 
states, outputs, and event list. This drawback stacks with the 
reduction of the manipulation efficiency of sparse vectors (where 
employed), as this decreases with their size much faster than in the 
case of dense vectors.

As ED algorithms are in principle strictly sequential, the use of 
parallel computing techniques is contingent on the synchronization 
between modeled components. This is a self-contained computational 
problem, finding no simple solution but being actively researched (see 
e.g., Plagge et al., 2018; Pimpini et al., 2022). In summary, event-
driven approaches carry out calculations only where the events take 
place, but each event adds to the model operations the overhead of a 
set of corollary functions. Therefore, ED algorithms are generally 
suitable for simulations of SNNs involving sparse spiking.

2.1.3 Data flow
With data flow, we refer to the data transfer across the components 

of a network. As the data exchange between the models is repeated 
across both unit and temporal coordinates, its management needs 
careful implementation to avoid wasting clock cycles for unnecessary 
data handling operations (memory read-write, function calls, etc.). 
We note that the data flow management also translates algorithmically 
the causal correlation between the components of a network. 
Therefore, the management of the data flow is entwined with the 
temporal progress algorithm (as the causal relation is of course 
embedded in the temporally-resolved spiking pattern). As such, the 

data flow management is often dependent on the temporal progress 
algorithm. Nevertheless, the simulated SNN input–output operations 
(across its constitutive models) require an ad-hoc algorithmic 
handling, that should support networks of arbitrary topology 
complexity and sizes.

The main challenge in managing the data exchange between 
components (or sets thereof) remains the algorithmic optimization. 
We also note the temporal variation of the network topology as an 
additional obstacle (Zenke and Gerstner, 2014), which may prevent 
one from encoding the topology as a static element (contributing to 
the algorithm complexity and computational burden). There are no 
classically distinct case scenarios that classify the data flow algorithms. 
However one may envision how the IO operations can be operated 
according to a “directed” strategy, in contrast to a “headless” strategy. 
The concepts are graphically illustrated in Figure 3, comparing the two 
strategies for the data flow handling in an example network consisting 
of three components A, B, and C.

A directed algorithm, see Figure 3A, delegates all the function 
calls and IO operations to an independently-developed handler, 
explicitly aware of the topology of the network. A directed algorithm 
assumes a standardized software-level interface of the models in a 
network. Consequently, the directed algorithm performs a repeated, 
predictable set of operations, with added benefit for the simulator 
platform modularity and simplicity of development. This strategy also 
facilitates the application of parallel calculation techniques (as it fits 
seamlessly within the CD techniques, performing the IO operations 
adjacently to the calculation of the outputs of each model). However, 
the handler should account for all of the unique cases, exceptions, and 
conditional operations that the data transfer may entail, and it loses 
efficiency if burdened by complex software interfaces.

A headless algorithm sees minimal management of the models, 
which would independently operate in an asynchronous cellular 
automata-like fashion, see Figure 3B. In this case, the handling of 
unique cases and exceptions is delegated to the models of the 
components. Thus, the burden of the optimization of the IO operations 
falls on the model development. This strategy is therefore more fitting 
to an ED algorithm, and it can be  advantageous as it potentially 
reduces the overhead contribution due to data-handling function 
calls. However, this approach is detrimental to the modularity of the 
simulator (as unique cases must be handled by the user), and may not 
fit with conventional parallel computation techniques.

2.2 Available simulation platforms

The elements listed above (and the algorithmic implementation 
thereof) have a key role in the deployment of the simulation strategy 
into a cohesive simulation platform. Each algorithmic strategy 
harbors both advantages and drawbacks concerning flexibility, 
scalability, abundance of features, performance, and simplicity of use. 
A highly-efficient and broadly-applicable simulation strategy is not 
attainable (Prieto et  al., 2016; Kulkarni et  al., 2021); thus, aimed 
compromises must always be put in place to balance the intended 
benefits and the unavoidable costs. As a consequence of the number 
of possible strategies, the scientific community finds a wide range of 
simulation platforms that can be readily used for or adapted to the 
simulation of hardware-based SNNs. However, the choice of a 
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simulation platform may only come after the understanding of the key 
aspects of each. An early survey of tools applicable to the simulation 
of SNNs is found in Brette et al. (2007), which directly compares the 
use and performance of 8 platforms. More recently, Prieto et al. (2016) 
compiled a more updated and extended list of tools, although not 
proposing any performance-wise comparison; this is understandably 
due to (i) the sheer number of takes on the SNN simulation problem, 
23 in Prieto et al. (2016); and (ii) the marginal overlap between the 
target audiences that the proposed platforms address. More recent 
comparisons between a reduced number of platforms are nonetheless 
available in literature (see e.g., Tikidji-Hamburyan et  al., 2017; 
Kulkarni et al., 2021). In Figure 4 we propose an up-to-date, though 
non-exhaustive, panoramic of the proposed numerical tools suitable 
for SNN simulations. We limit our choices to the numerical tools that 
are open-source, non-deprecated, offering a maintained or stable 
version. Supplementary Table S1 (Section 1) provides a detail-
enriched version of the data illustrated in Figure 4, which facilitates 
the in-depth comparison of the technical solutions of each platform 
to the readers seeking a deeper understanding of the landscape of the 
numerical tools for SNN simulations.

To rapidly capture the philosophy of each of the proposed 
simulation platforms, we attempted to classify these as ones following 
model-driven or data-driven paradigms (though we note that this can 
be a reductive interpretation; we refer to the provided references for a 
more comprehensive description of the characteristics of each tool).

The model-driven paradigms are intended to gather knowledge on 
how the simulated networks subtly operate. The interface of a model-
driven simulation platform is often supported by a naturally-readable 
code, and they allow one to easily monitor the temporal 
evolution of most of the algorithm variables, yet likely sacrificing 
computational efficiency or facilitated access to off-line training 
routines. Brian 2 is a representative example, natively oriented to 
neuro-science experimenters.

In contrast, data-driven paradigms seek to obtain the inference 
and training results with the least amount of computational 
requirements. Data-driven platforms generally rely on high-level 
language to rapidly define most of the network and algorithmic 
features, delegating the eventual access to finer features to a lower-
level language. The interface is often not immediately comprehensible 
to the non-trained user and may lack in flexibility necessary to define 

ad-hoc models. However, the efficiency of data-driven paradigms suits 
computer-science-oriented investigations. Examples can be found in 
the more recent proposals that integrate SNN handling functionalities 
into the PyTorch environment (Mozafari et al., 2019; Zimmer et al., 
2019; Büller, 2020; Fang et al., 2020; Lenz and Sheik, 2020; Eshraghian 
et al., 2021; Pehle and Pedersen, 2021).

Despite the rigid distinction between model-driven and data-
driven paradigms, it is common to find software solutions borrowing 
some characteristics from the two complementary philosophies. 
Nevertheless, the co-presence of elements of the two philosophies is 
often limited to a few characteristics, thus not constituting a key aspect 
of the overall platform. Some noteworthy examples manage to offer a 
much wider range of features taken from both worlds, see e.g., Lava 
(Richter et  al., 2021) and RockPool (Muir et  al., 2019). We  find 
however that, due to the richness of features of these two platforms, 
dedicated training is due before reaching the proficiency needed to 
prototype and test new technologies in a simulated network.

2.3 Summary

We have underlined the important technical elements that 
underpin any SNN simulation platform.

Starting from the assumption that the modeling follows a 
compartmentalized approach, with each model applicable to a 
component (or a set thereof), we  described in detail the main 
algorithmic elements that drive the functioning of any SNN simulator: 
the model framework, the temporal progress and the management of 
the data flow. The model framework may accept ODE systems or sets 
of time-discrete equations. The temporal progress takes place either 
via a clock-driven or an event-driven algorithm. The data flow follows 
a directed or a headless approach. Each of these algorithmic 
strategies has unique advantages and disadvantages, which 
determine the platform functionality, features, ease of use, and 
computational efficiency.

We listed the simulation platforms available to this date, focusing 
on the open-source ones offering a stable or maintained version. To 
facilitate the understanding of the features of each, we attempted to 
classify these based on the philosophy (reflected in features and user 
interface). Numerical tools can have model-driven features, that help 

FIGURE 3

Schematics illustrating two antipodal approaches to the data flow management, for the case of a simple network consisting of the components (A,B,C) 
and where the data flow follows the sequence input →  A →  B →  C →  output. (Top) Directed strategy, in which the interactions between components 
are managed by a dedicated handler. (Bottom) Headless strategy, where the components operate independently, and contain both a behavioral model 
and the IO algorithms.

https://doi.org/10.3389/fnins.2023.1270090
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gemo et al. 10.3389/fnins.2023.1270090

Frontiers in Neuroscience 07 frontiersin.org

in analyzing the behavior of the simulated network. In contrast, data-
driven features bring the focus to the network output, and where the 
network itself becomes instrumental to the data processing.

3 Method

A simple SNN simulation environment, merging data-driven 
efficiency and training functionalities with model-driven features can 
be  instrumental for the audience dedicated to hardware SNN 
prototyping and analysis. It is for this reason that we developed SHIP, 
which provides the user with the following functionalities: (i) an 
uncomplicated and easy-to-learn interface; (ii) rapidity of calculation; 
(iii) facilitated access to a wide range of time-dependent parameters 
and results; (iv) facilitated development and deployment of user-
defined models; (v) accessibility to methods enabling both off-line  
and on-line training; (vi) suitability to perform parameter-
dependent simulations.

This section illustrates the algorithmic strategies that support the 
functioning of SHIP, the consequential assets, and inevitable 
drawbacks. In Section 3.1 we provide a synthetic description of SHIP 
using the concepts illustrated in Section 2. In Section 3.2 we describe 
the modeling strategy, also including two examples of neuron and 

synapse models as implemented in SHIP. In Section 3.3 we show how 
SHIP translates the conceptual network architecture into a manageable 
sequence of groups of components. In Section 3.4 we further detail 
how SHIP carries out the SNN simulation, as a result of the integration 
of the data-flow algorithm, the temporal progress algorithm, and the 
devised modeling strategy. A summary is eventually provided in 
Section 3.5.

3.1 Base concepts

The main algorithm of SHIP has been developed in Python, due 
to its relatively simple syntax and widespread use. SHIP uses bespoke 
classes (datatype containing a template of properties, i.e., variables, and 
methods, i.e., functions) for both networks and their constitutive 
components (neurons, synapses, etc.). The classes for the components 
include the intended models, and provide their software interface. The 
class for the network essentially supports the user interface and 
handles the models of the components during the simulation 
operations. The numerical handling is instead carried out by a 
PyTorch backend, that enables SHIP to inherit PyTorch advantages 
and functionalities: (i) access to optimized libraries enabling fast 
matricial calculation, (ii) the network optimization algorithms and 

FIGURE 4

Panoramic of a selection of the available SNN simulation platforms, as of June 2023. Legend: MD – model-driven approach; DD – data-driven approach; 
TD – time-discrete equation system model; DIF. – differential equation system model; CD – clock-driven temporal handling; ED – event-driven temporal 
handling; DIS. – distributed computing available. PyTorch and Tensorflow support are also indicated with the symbol P and T respectively, in the 
environment language field. Half-markers indicate partial support (see Supplementary Table S1 for further information). The list of platform appears in 
order, from the earliest release to the most recent, and it encompasses the following: GENESIS (Bower and Beeman, 2007), XPPAUT (Bard, 1996), 
NEURON (Hines et al., 2020), NCS (Drewes, 2005; Hoang et al., 2013), EDLUT (Ros et al., 2006), NEST (Gewaltig and Diesmann, 2007), CARLSim 
(Niedermeier et al., 2022), NeMo (Fidjeland et al., 2009), CNS (Poggio et al., 2010), GeNN (Yavuz et al., 2016), N2D2 (Bichler et al., 2017), Nengo (Bekolay 
et al., 2014), Auryn (Zenke and Gerstner, 2014), Brian 2 (Stimberg et al., 2019), NEVESIM (Pecevski et al., 2014), ANNarchy (Vitay et al., 2015), MegaSim 
(Stromatias et al., 2017), BindsNET (Hazan et al., 2018), DynaSim (Sherfey et al., 2018), SPIKE (Ahmad et al., 2018), LSNN (Bellec et al., 2018), cuSNN 
(Paredes-Valles et al., 2020), Slayer (Shrestha and Orchard, 2018), RockPool (Muir et al., 2019), SpykeTorch (Mozafari et al., 2019), PySNN (Büller, 2020), 
s2net (Zimmer et al., 2019), sinabs (Lenz and Sheik, 2020), DECOLLE (Kaiser et al., 2020), Spice (Bautembach et al., 2020), Spiking Jelly (Fang et al., 2020), 
Sapicore (Moyal et al., 2021), Norse (Pehle and Pedersen, 2021), Lava (Richter et al., 2021), snnTorch (Eshraghian et al., 2021), EvtSNN (Mo and Tao, 2022), 
and Doryta (Cruz-Camacho et al., 2022).
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routines carrying out the network machine-learning-based training, 
and (iii) the availability of GPU-accelerated calculations.

To fast-track the reader onto the understanding of the inner 
mechanism of SHIP, we describe our platform using the concepts 
previously discussed in Section 2. SHIP (i) proposes a model-driven 
interface to a data-driven back-end; (ii) defines each model as a set of 
time-discrete equations; (iii) regulates the temporal advancement 
according to a CD algorithm; (iv) drives the data flow according to a 
directed algorithm, that has been structured to bear minimum 
computational overhead (i.e., a for-loop) and yet allows SHIP to 
simulate virtually any network topology.

3.2 Model development

SHIP simulates a network as a collection of interoperating 
groups, i.e., sets of components that (i) share the same model and 
(ii) are hierarchically equivalent within the network structure (i.e., 
share sources/targets belonging to the same source/target group). 
The definition of group is deliberately loose, so as to encompass sets 
of any components. To further clarify this aspect, a group of 
neurons matches the definition of layers in conventional machine 
learning. However, groups of synapses (sharing the same source and 
target neuron sets) or any other arbitrarily chosen component can 
be defined. The concept is illustrated in the chart of Figure 5A, 
which shows two examples, a feedforward (top) and a recurrent 
network (bottom). Two possible network schematics are proposed 
on the left column. The corresponding representation by groups is 
shown on the right column of the chart. Each network is represented 
as a collection of groups (boxes), concatenated as a directed graph 
(where the arrows symbolize the group IO operations); each group 
contains a set of components, taken from the network representation 
on the left.

A model in SHIP regulates the behavior of a group of components, 
and finds implementation in a dedicated class. A group class defines 
an arbitrary number of properties and methods, but the model is 
structured through the following template of methods:

 i. time_dep, which precalculates all the time-step-dependent 
parts of the solutions;

 ii. set_initial_state (that has a self-explanatory name);
 iii. advance_timestep, that for any time t  calculates the set of 

internal states t+1  and the output t, as dictated by i) a time-
discrete set of equations, ii) the set of internal states t  and iii) 
the input t.

We underline that, by design, a model in SHIP represents a set of 
components (of cardinality equal to or larger than 1). Therefore, its 
algorithm must rely on vectorization, which is supported 
through PyTorch.

As mentioned in Section 2.1.1, defining a model as a set of time-
discrete equations is less intuitive than the provision of an ODE or 
PDE system, since it requires the user to carry out the necessary 
mathematical analysis. However, we  deem this compromise 
acceptable, as in SHIP it is conducive to a much simpler algorithm, 
with immediate performance benefits. To mitigate this aspect, 
we provide the easy-to-amend scaffold of methods mentioned above, 
which (i) clearly explains to the user how to structure new models, and 

(ii) allows the main algorithm to carry out the simulation task in the 
most efficient way.

Furthermore, this approach fits particularly well with the 
intended use of SHIP. Analytically-solvable models (leaky 
integrate-fire (LIF) neuron, nth order leaky synapse with n ≥ 0) can 
be used to mimic artificial neuron and synapse components with 
good approximation (see e.g., Bartolozzi and Indiveri, 2007; Chicca 
et al., 2014; Brivio et al., 2019; Yang et al., 2020; Fang et al., 2022b). 
We  anticipate that we  will also explore an example using a 
non-solved ODE system, the Izhikevic model (Izhikevich, 2003), 
which is implemented by way of the Forward-Euler approach (see 
Section 3.2.3).

The behavior of the LIF neuron and the leaky synapse (LS) are 
summarized in Figures  5B,C respectively. These show the time-
discrete equation driving the behavior of the models: state (red) and 
output (green) variation, as a function of the input (grey). The 
following subsections further explore these models, as implemented 
in SHIP (Rotter and Diesmann (1999) contains additional information 
on the mathematical derivations here proposed). We note that further 
functionalities can be rapidly added to any SHIP model exploiting 
class inheritance. Indeed, we deploy the functionalities of delay and 
refractoriness by using superclasses, that interject the delivery of the 
output from the parent class and apply optimized post-
processing algorithms.

We underline that SHIP does not attribute physical units to 
variables and parameters (as NEURON or Brian 2 do). This choice 
delegates the interpretation of the numerical results (and any error-
checking of the equations in the model) to the user but provides one 
with a leaner algorithm execution.

3.2.1 Leaky synapse model
The LS generates a post-synaptic exponentially decaying current 

transient, upon reception of a pre-synaptic spike. During a time-step 
dt , a synapse connecting neurons i and j  sees the variable current Iij 
decreasing according to a phenomenological temporal constant τα ,ij 
and increasing according to the synaptic weight wij upon detection of 
a spike δi  from the source neuron i. The state variation for the 1st order 
model is calculated as follows:

 
I t dt I t dt w tij ij ij ij i+( ) = ( ) ⋅ −( ) + ⋅ ( )exp / ,ττ δδαα

For sake of convenience, the output  j  sums up all contributions 
of the group towards the neuron j  (which would more correctly be the 
role of the dendrites). The output  j  also considers the current 
temporal integration along the time-step duration:

 
 j j ij ij ijt I t dt( ) = ⋅ ( ) ⋅ − −( )( )ϕϕ ττ τταα ααΣΣ , ,exp /1

with ϕ being a group-wise, scalar scaling factor. The calculation 
of state variation and output are indeed collected within the 
advance_timestep method. The time_dep method instead can 
pre-calculate the parameters α1, ,exp /ij ijdt= −( )τα and 
α τα2 11, ,ij ij= −( )α , if none of the parameters τα ,ij varies along the 
simulated inference (otherwise, a multi-stepped inference method 
can be used). Trivial modification can be applied to the model to 
remove the temporal integration. A graphical example of the state 
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and output of this model can be viewed in the plot of Figure 5B, as 
a function of an arbitrarily chosen spiking input (gray lines). The 
example of Figure 5B also shows the effect of the delay, mentioned 
before, which shifts the model output by a time δ  along the temporal 
axis. It is important to note that the synaptic groups are always 
considered fully connected. The pruning of synaptic connections 
can be carried out by setting the corresponding weights to 0, as a 
zero-valued parameter wij  sets to 0 the effect of any incoming input 
δδ i  (see the equations above).

We add that a 2nd order model can be reasonably implemented 
separating and solving independently for the two exponential 
contributions. The equations above would need to be  amended 
as follows:

 

I t dt I t dt w t

I t dt I

ij ij ij ij i

ij ij

+ + +

−

+( ) = ( ) ⋅ −( ) + ⋅ ( )

+( ) =

exp / ,ττ δδαα

−− −( ) ⋅ −( ) − ⋅ ( )







 t dt w tij ij iexp / ,ττ δδαα
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/1 exp
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−exp dt ij/ ,τταα

where the +/−  suffixed variables track the positive/negative 
contributions to the synaptic current dynamics.

3.2.2 Leaky integrate-fire neuron model
The LIF neuron sees the internal variable action potential u  

decreasing according to the dynamics imposed by the temporal 

constant τβ , and increasing according to the pre-neuronal 
synaptic current (integrated during the time-step dt ), S ,  
as follows:

 
u t dt u t dt S ti i i i+( ) = ( ) ⋅ −( ) + ( )exp / ,ττββ

As done with the synapse model, the exponential term can 
be precalculated by the time_dep method. The model output  is 
instead determined as follows:

 
 i i i iif u t else tt 0 1( ) = ( ) < ( ) =ΘΘ , :

with Θi  being a threshold potential scalar value. In case of a 
spiking event, the model also resets the action potential ui to the rest 
potential ur i, :

 u t dt u ifi r i i+( ) = ( ) =,  t 1

A graphical example of the state (red line) and output (green bars) 
of this model are presented in Figure 5C, as a function of the synaptic 
current (gray line), previously calculated and shown in the plot in 
Figure 5C. The example also shows the effect of the refractoriness, 
which negates the integration along the time ρ  after a spike generation. 
In SHIP, this effect is implemented by way of a constant Πi , that is 
required to multiply the value of the action potential variation. The 
neuron model also sets Π  to 0, after a spike. The refractory superclass 
adds to the neuron model the algorithmic steps that maintain Π  to 
the value of 0, until the post-spike time ρ  elapses.

FIGURE 5

Modeling approach of the SHIP platform. (A) Examples of the representation by groups of two different networks: a feedforward one (top) and a 
recurrent one (bottom). On the left, the network schematics are proposed. Their corresponding representation by groups is shown on the right of the 
chart. Colors and symbols guide the eye to the identification of the groups and components in both representations. Legend is proposed at the 
bottom, outside the chart. (B) Essential details of the 1st order leaky synapse model, an applicable model for synaptic circuit blocks. The time-discrete 
equation is shown on the left. A plot on the right exemplifies the state (red) and output (green) variation as a function of an arbitrary input (grey vertical 
lines). (C) Essential details of the LIF neuron model, following the same schematics of the previous example, and whose sample plot is driven by the 
output of the synaptic model. The i j,( ) subscripts in the equations of (b,c) represent the individual components addressed by each group.
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3.2.3 Izhikevic neuron model
The Izhikevic model (Izhikevich, 2003) is a commonly found 

non-linear example, which we can use to demonstrate the applicability 
of SHIP to modeling non-linear components. It also finds hardware 
implementation examples (see e.g., Fang et al., 2022a). As the ODE 
solution is not trivial, we base our implementation on the Forward-
Euler method. To determine the state of the system, the model 
calculates the following:

 v t dt v t h v t v t u t S ti i i i i i+( ) = ( ) + + + ( )( ) ( ) − ( ) + ( )( )140 5 0 04.

 u t dt ha u t habv ti i i+( ) = −( ) ( ) + ( )1

We note that the parameter h is an adimensional parameter 
driving the numerical stability (in the Forward-Euler approach the 
above calculations are performed iteratively for k  times, until kh ≥ 1).

The output of the Izhikevic model is calculated like the one of the 
LIF model; the post-spike reset instead follows the equations below:

 
if

v t dt c
u t dt u t di

i

i i
 t 1( ) =

+( ) =
+( ) = ( ) +






:

The parameters a,b,c,d  determine the model dynamic behavior 
according to the original statement of the author. We  note that 
refractoriness is here embedded in the model dynamics, and can not 
be explicitly set with a single variable (in contrast to the LIF model).

3.3 Group ordering

The network building stage requires the user to define the groups 
composing a network (more details will be provided in Section 4.1). 
When adding the synaptic groups, the user is also tasked to state their 
respective source and target groups; consequently, the user gradually 
builds the hierarchical relationships among all groups, without the 
need to provide an explicit structure of the network prior to the 
simulation task. Borrowing the concept of node and edge from the 
mathematical notion of graph, the algorithm sees the user-defined 
network as an unsorted list of nodes (neuron groups) and edges 
(synapse groups). We  anticipate that SHIP would carry out the 
inference by the sequential calling of the advance_timestep method, 
for each group. Therefore, it is necessary to transfer the conceptual 
SNN graph, implicit in the unsorted list of groups, onto an explicit 
uni-dimensional representation as a sorted sequence of groups, hereby 
referred to as stack.

Here follows a description of the method used to calculate the 
stack (carried out once with negligible computational requirement, 
during the call of the network.init() method). For all possible sorting 
orders of the groups, SHIP generates a (group-wise) graph 
representation by way of a directed adjacency matrix (DAM), in which 
each row (and column) corresponds to a unique group. We note that 
non-zero values within the lower-triangular section of the DAM break 
the causal correlation, as they engender an input request that would 
only follow the respective output provision. Thus, one objective is the 
minimization of the lower triangular sum (LTS) of the DAM. We add 
that each connection between groups implies a certain temporal delay 

δt ≥ 0, which we need to take into account to find the best-fitting 
group sort order. To do so, the algorithm replaces the non-zero values 
of the DAM with the corresponding delay values. Any unvaried value 
is eventually set to a negative infinitesimal value, to correctly process 
zero-valued delays. The algorithm then calculates the LTS of the 
generated DAM configurations, eventually determining the earliest 
physically-realistic one having the lowest LTS value. Its corresponding 
sequence of groups is the intended stack. Figure  6 illustrates the 
concept with an example.

Figure 6A shows a 2-layer network consisting of an input layer (I) 
and an output layer (O). The connection between the two layers is 
bidirectional (with (x, y) synaptic groups), thus making this example 
the simplest, non-trivial network to represent as a unidimensional 
stack. Figure 6B highlights this, by way of the network representation 
by groups, that form a loop without clear indication of any extremal 
group of the stack. Figure 6B also reports arbitrarily chosen values for 
the delay time [a.u.], so to build the potential delay-substituted DAMs. 
Two significative examples are reported in Figure  6C, for the 
sequences IxOy (top), and OyIx(bottom). The LTS for the second case 
reports the lower value, thus indicating that this second stack sequence 
is more suitable than the counterintuitively logical sequence IxOy. The 
method described to calculate the stack is redundant for feedforward 
networks, but we find it useful for recurrent architectures (as shown 
in the example of Figure 6), as this strategy allows one to use the same 
models for both feedforward and recurrent architectures with no 
amendment required. Supplementary material (Section 2) provides 
more details on the rationale of the objective function of our 
sorting algorithm.

FIGURE 6

Graphical conceptualization of the process determining the optimal 
stack sequence. (A) Network structure, consisting of an input layer 
(I) and an output layer (O), connected bidirectionally by the synaptic 
sets (x,y). (B) Representation of the network by groups, reporting 
arbitrarily chosen delay time values for each connection between 
groups. (C) Possible delay-substituted Directed-Adjacency matrices 
(DAMs), for the sequences (IxOy) and (OyIx). The lower-triangular 
sums (LTS) are highlighted in red. The obtained values highlight 
(OyIx) as the most suitable stack.
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3.4 Network simulation: combining data 
flow and temporal progress

The temporal progress in SHIP follows a fixed time-step CD 
algorithm, according to the user-provided time-step size and number 
of time-steps. This approach allows us to carry out the temporal task 
by use of a single for-loop iterating through the sequence of time-steps. 
As mentioned in Section 2.1.2, this approach minimizes overhead and 
becomes extremely efficient for time-step-limited simulations. A multi-
time-step method is also available, which becomes convenient for the 
user who seeks to change the time-step across the simulation.

The data flow management relies on the definition of the stack. 
Before the simulation, the network undergoes an initialization process, 
in which (i) the stack is calculated; (ii) a temporary storage (TS) 
variable is pre-allocated; (iii) each group of the stack sees the 
assignment of a set of memory addresses on the TS, for both inputs and 
outputs. The algorithm overlaps the input address of each target group 
with the output address of each source group; consequently, the IO 
operations carried out during the simulation are limited to the query 
to the TS at the pre-defined memory addresses, reducing the read-write 
operations and data transfer to the bare essentials (at the cost of an 
increased memory footprint). We clarify that, unless retrieved and 
stored by the express choice of the user (via available methods), the 
data in TS is overwritten in each loop, limiting the generated data.

The simulation task is carried out by way of two iterations: (i) an 
outer for-loop goes through the user-determined set of time-steps; (ii) 
an inner for-loop traverses the stack sequence, performing the 
following for each of the groups: (a) retrieval of the input(s) from the 
TS, (b) call of the advance_timestep method, and (c) storage of the 
group output onto the TS. The concept is exemplified in Figure 7.

3.5 Summary

This section illustrated SHIP, a Python/PyTorch-based platform 
dedicated to the simulation of hardware SNNs by way of the compact 
modeling approach, and offering both model-driven and data-driven 
features. We have shown the key algorithmic strategies chosen to support 
the simulation task. Additional information on the use of SHIP is 
available in tutorial format, which is supplied along with the source code.

SHIP simulates a network as an interoperating set of groups. Each 
group is supported by a model defined as a Python class and is 
structured to provide an easily-editable set of methods. The model 
framework uses a set of time-discrete equations. Three widely-adopted 
models are reported in detail.

The time-resolved simulation of the network is supported by a 
clock-driven, algorithm, in conjugation with a directed data flow 
management that is coded to limit its computational burden. 
We reported how SHIP linearizes the network graph and we explained 
how this strategy allows one to simulate any arbitrarily-complex 
network topology, without requiring to encode bespoke models for 
each network topology.

4 Test cases

To demonstrate how SHIP can be instrumental to SNN design, 
simulation, and analysis, we here use a few simple test cases. In 

Section 4.1 we demonstrate how SHIP performs the essential tasks 
of network building and simulation. In Section 4.2 we show how 
SHIP can be employed in conjugation with PyTorch to carry out 
training tasks. In Section 4.3 we describe the use of SHIP applied to 
the investigation of the architectural-parameter dependency of a 
trained network accuracy. A brief summary is provided in 
Section 4.4.

4.1 Building a network, performing the 
simulation, and monitoring the calculated 
data

As illustrated in Figure 1, SHIP handles the network by use of a 
dedicated class, also called network. The methods of the network class 
allow the user to structure the groups of a network, interface a network 
with the input dataset, and retrieve the deriving results, using a few 
high-level instructions.

We here list the main methods available with the network class:

 • the constructor, that instantiates the network object in memory 
(i.e., mynetwork = network())

 • add, which enables one to add a group to the network object, by 
provision of (i) the model class, (ii) a unique identifier (id), (iii) 
and any other argument required to set the group parameters/
variables. Using the add method, the user can build the simulated 
network by sequentially adding neuronal and/or synaptic groups. 
We note that the addition of any neuron group requires the user 
to provide its number of components N, whereas the addition of 
synaptic groups requires the user to state the source group and 
target group ids. By doing so, the algorithm can dynamically 

FIGURE 7

Sketch of the inference algorithm as carried out in SHIP comprising 
of an outer loop (operation 1, blue box) traversing the temporal axis; 
an inner loop (operation 2a, green box) traversing the stack, and 
three main group-wise operations (operation 3i-iii) to be carried out 
for each group of the stack. After the inner loop, the output is stored 
if required by the user (operation 2b).
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generate both the number of components N for the synaptic 
group and the overall network topology.

 • set_param, which can be used subsequently to the add method 
to provide or amend any group argument.

 • init, which is used to consolidate the provided data and generate 
all the required internal variables as detailed in Section 3.4, 
generating the object supporting the intended simulation.

 • run, which launches the simulation, and can accept any optional 
argument as an external input to deliver to the network. 
We  underline that the conventional data structure should 
be presented in vectorial form, sized according to the [batch size, 
number of time-steps, number of components]. The eventual 
simulation output also follows the same convention.

 • set_monitor, which uses a wrapper function for the advance_
timestep method of the intended group class, that adds a routine 
to store the simulated results each time-step.

 • get_monitored_results, which retrieves the monitored data 
after simulation.

We remark that the algorithm of SHIP can handle any provided 
argument for the group objects as a generator function, based on 
arguments such as the batch size (i.e., number of parallel independent 
simulations carried out simultaneously) and the number of 
components. This feature endows the user with full flexibility in 
dynamically generating any arbitrary distribution of parameters. 
Further details on this functionality are illustrated in 
Supplementary material (Section 3).

As an example, we  show a selection of data that can 
be effortlessly harnessed during a simulated inference. A simple 
2-layer network is instated as shown in Figure 8A (3 input neurons, 
1 output neuron), with arbitrarily determined settings. The output 
neuron uses the LIF class, for which the temporal constant is varied 
across the parallel simulations from 10 ms to 100 ms with a step of 
10 ms. We monitor the synaptic currents, the sum of the currents 
towards the LIF neuron, and the LIF neuron membrane potential 
for all the simulated batches. Figure 8B shows the synaptic current 
values, unvaried for each of the parallel simulations (we report both 
the single synaptic contributions and their sum). Figures  8C–E 
show the different response of the LIF neuron as a function of the 
temporal constant, for three selected cases (10 ms, 50 ms, 100 ms). 
One can immediately notice the different behavior of the network 
as a function of the arbitrarily-imposed variation of one 
architectural parameter, determined using a simple function in the 
building stage. The code used to generate this data is proposed and 
further commented in Supplementary material (Section 3). This 
example, whilst being simplistic, pictures the potential of the 
application of SHIP for a wider range of analysis, dependent on 
explicit user-determined conditions.

4.2 SNN training via PyTorch-enabled 
routines

We here demonstrate the suitability of SHIP to carry out 
DNN-based training on SNNs, illustrating the data encoding process, 
the definition of the SNN architecture, the training technique, and the 
obtained results. The results reported in this section are also illustrated 
in Figure 9.

4.2.1 Liquid state machine
We initially demonstrate the feasibility of the training process by 

use of a Liquid State Machine (LSM) (Maass et al., 2002), which is a 
network relying on a recurrently connected layer (reservoir) to unpack 
the temporally-encoded input onto a unit coordinate (the neurons of 
the reservoir). The network consists of three layers (input – reservoir 
– output), with the training being conveniently carried out only on the 
reservoir-to-output set of synaptic weights.

The dataset of choice is the Free Spoken Digit Dataset (Jackson 
et al., 2018), containing analog recordings of 3,000 digit utterances 
from 10 English speakers. The analog-to-spike conversion follows 
consolidated numerical methods finding plausible physical 
implementation: Lyon’s cochlear model (Lyon, 1982), conjugated with 
a bespoke, thresholded (20% of the maximum dynamic range), linear 
intensity-to-rate conversion algorithm (from 0 to 500 Hz). 85% of the 
dataset is randomly chosen as a training dataset, whereas the 
remaining 15% is used as a test dataset.

The use of the LSM method is a widely-accepted SNN architecture 
for speech-recognition tasks (Verstraeten et al., 2005; Zhang et al., 
2015; Gorad et  al., 2019; Deckers et  al., 2022). The details of the 
network architecture follow the ones illustrated in Gorad et al. (2019). 
The resulting network is composed of 6 groups: 50-sized input 
neurons, 125-sized reservoir LIF neurons, and 10-sized LI neurons; a 
6,250-sized LS input-to-reservoir group (200 non-zero valued), a 
15,625-sized LS reservoir-to-reservoir group (~2,300 non-zero 
valued), and a 1,250-sized LS reservoir-to-output group. A schematic 
of the network is found in the inset of Figure  9A. Following the 

FIGURE 8

Demonstration of the potential data availability allowed by SHIP, by 
way of an inference simulation on a simple network (consisting of 3 
input neurons, 3 LS synapses, and a LIF output neuron, as shown in 
(A)). (B) Time-resolved plot of the single synapse current 
contributions and of their sum towards the LIF output neuron (data is 
normalized for sake of convenience). (C–E) plot of the membrane 
potential of the LIF neuron, for the temporal constant values of 
10  ms, 50  ms, and 100  ms respectively, here calculated in parallel and 
obtained simultaneously.
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specifics provided in the reference material, we  set the temporal 
constant of each neuron to 64 ms, and the ones of the synapses to 8 ms.

For this task, the determination of the excitatory and inhibitory 
neurons of the reservoir, and the deriving synaptic weights of both 
input-to-reservoir and reservoir-to-reservoir synaptic groups are 
predetermined by way of bespoke routines external to SHIP (which 
follows the original author’s indications), to then be passed as static 
arguments to the add method (c.f. Section 4.1).

We reiterate that, whilst being purely numeric, the modeled SNN 
is intended to support the simulation of practical devices. As 
previously stated in Section 3.2, we here use LIF and LS models, for 
which plenty of practical circuit designs are available in the literature. 
The scientific literature also offers solutions for both inhibitory and 
excitatory mechanisms, and for the necessary control of the neuronal 
and synaptic temporal dynamics. As an example, the authors of 
(Chicca et al., 2014) combine LIF and LS dynamics enabling both 
excitatory and inhibitory processes, using conventional 
CMOS technology.

SHIP provides a useful interface to the PyTorch routines. An 
ad-hoc trainer class has been deployed with the specific scope to 
enable off-line training. It contains the essential methods to (i) “pair” 
a trainer with an available network object (defining the trainable 
parameters, i.e., synaptic weights); (ii) retrieve and postprocess the 
simulated output; (iii) submit the inference result to the available 
PyTorch optimization models. In little more detail, the trainer object 
substitutes the backward method of the neuron groups with a 
differentiable surrogate gradient, which allows conventional 
backpropagation techniques to be carried out (here, we employ the 
method proposed in Neftci et al. (2019)). The trainer class has been 
developed bearing in mind modularity, simplicity of use, and an easy-
to-understand user interface. The available trainer, by default, 
performs credit assignment based on the peak of the membrane 
potential of the output neurons (Hu and Liao, 2022), hence our use of 
LI neurons in place of LIF neurons. This, in turn, is used along with a 
log-likelihood loss function (Pfister et al., 2006) as an argument for 
the PyTorch optimizer ADAM (Kingma and Ba, 2015).

The inference is carried out using a time-step size of 1 ms, more 
than sufficient to track the dynamics of the neurons (with a temporal 
constant of τβ  = 64 ms). Training is carried out for 300 epochs (the 
totality of the training dataset is presented each epoch), with a batch 
size of 16. The task has been carried out 10 times, upfront of a change 
of the randomization seed. The best-case scenario is here reported, 
with the training and test accuracy presented in Figure 9A, which 
demonstrates the effect of the training process. The confusion matrix, 
obtained after the last epoch with the test dataset, is shown in 
Figure 9B.

The achieved end-of-training accuracy peaks at 88.2%, with an 
average value of 86.9%. This result approaches the ~91% limit posited 
for the use of 1st order LS models (Saraswat et al., 2021). We deem this 
result to confirm the suitability of the proposed platform for seeking 
SNN training based on conventional machine learning techniques.

To further explore the feasibility of the deployment of such 
simulated architecture in hardware, we simulate the post-training 
quantization of the synaptic weights, according to experimentally-
determined conductivity distributions for memristor-based 
synaptic circuit blocks. The cumulative distribution functions 
provided by Pérez et al. (2021) point to a regular segmentation of 
the accessible weight levels, and reveals an approximatively normal 
statistical deviation of each level. We  mimic the features of the 
experimental data, quantizing the trained weights according to a set 
of equidistant levels (chosen as a symmetric, signed distribution), 
in which the overlap of the stochastic distribution between each 
neighboring level is set to 0.3% (i.e., level distributions cross at 3σ
). Data is reported in Figure 9C. As expected by other literature 
results (Nagel et al., 2021), our obtained results point to a rapid and 
progressive reduction of the network accuracy as the number of 
accessible weight levels decreases. The accuracy approaches the full-
precision weight results up to 4 bits (16 levels); at 3 bits, the 
accuracy already drops at roughly 60%, and at more drastic 
quantization levels (1 or 2 bits) the system fares barely above 
chance. Nevertheless, we underline that quantization-aware training 
techniques (Li et al., 2017) would certainly improve such results, 

FIGURE 9

Training results for the classification task of the Free Spoken Digit Dataset. (A) Classification accuracy obtained during a training task, with both training 
and test datasets. The inset shows the adopted network schematics. (B) Confusion matrix for the test dataset, calculated at the end of the training 
process. (C) Accuracy results calculated after applying post-training weight quantization, determined using plausible level boundaries and stochastic 
write error (taken from Pérez et al., 2021), as a function of the hypothetical number of accessible levels. Data averaged on 5 trials. Markers indicate the 
results average; bars show the min-max range.

https://doi.org/10.3389/fnins.2023.1270090
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gemo et al. 10.3389/fnins.2023.1270090

Frontiers in Neuroscience 14 frontiersin.org

eventually leading to a better performance characterization, and 
potentially co-design, of the hypothetical SNN.

4.2.2 Multi-layer, recurrent network
Here we carry out the training of a less trivial network, to further 

demonstrate the applicability of SHIP for a wider range of SNN 
training tasks, with a network employing non-linear models in place 
of the previously-illustrated ones. We  train an SNN for the 
classification of a Braille character reading from a linear arrangement 
of pressure sensors, traversing approximatively orthogonally a single 
braille character.

We use an image dataset (Braille Character Dataset, 2020), 
containing 60 grayscale, 28 × 28-sized pictures of each of the 27 Braille 
characters. Each picture is spline-interpolated to upscale the temporal 
resolution from 28 to 300 time-steps, and then converted to a time-
dependent spike map via delta-encoding (Corradi et al., 2019; Muller-
Cleve et al., 2022) using a delta value of 0.01. The converted dataset 
consists of the analog reading of the differential response of the 
linearly-arranged sensors. The number of classes is limited to the 
initial 10 for the sake of task simplification. 500 samples are randomly 
selected for the training dataset; the remaining 100 are used as the 
test dataset.

The network of choice consists of an input layer (I) of 56 input 
neurons; a recurrent layer (R) of 125 Izhikevic neurons; a hidden layer 
(H) of 128 Izhikevic neurons; and an output layer (O) of 10 LI 
neurons. A network schematic is proposed in the inset in 
Figure 10A. The synaptic connections use 2nd order leaky synapses. 
Like in Section 4.2.1, the training is based on the credit assignment 
proportional to the internal state value of the output neurons. The 
synaptic weight initialization of the I-to-R, and R-to-R, follow the 
procedure illustrated for the LSM in Section 4.2.1; the remaining 
synaptic groups are initialized with a uniform weight distribution 
from −0.4 to 0.6. The Izhikevic model sees the parameters a,b,c,d,  
andΘ as 0.02, 0.2, −65, 8, and 30 mV, respectively. The 2nd order leaky 
synapses instead follow dynamics imposed by a positive time constant 
τα+= 15 ms, and a negative time constant τα−= 5 ms. The hyperparameter 
optimization addressed the scaling factor of the synaptic groups, 

which are eventually set to the values of 1,000, 1,500, 800, and 100 for 
the I-to-R, R-to-R, R-to-H, and H-to-O groups, respectively.

For this task, training affects all synaptic groups, following the 
routine explained in Section 4.2.1. The batch size is set to 16, and the 
number of epochs to 300. The training and test accuracies during the 
training process are reported in Figure 10A. The confusion matrix 
obtained at the end of the training process is reported in 
Figure 10B. We measure a peak test accuracy of 63.5%, which may 
certainly be  improved, but demonstrates the effectiveness of our 
platform in supporting the DNN-based training of an arbitrary SNN 
network. The confusion matrix also shows a clear diagonalization of 
the non-zero values.

We here illustrate how the network accuracy may change, 
assuming the drift of a memristive memory device serving as the 
physical support of the synaptic weight. We use the circuit design and 
experimental data presented in Esmanhotto et al. (2022) to derive a 
drift compact model (more details on the drift model are found in 
Supplementary material (Section 4)). We updated the synaptic model 
introducing this mechanism, and we simulated the inference on the 
test dataset as a function varying the time elapsed from an assumed 
network parameter storage carried out in a write-verify schema (thus, 
not reliant on any weight quantization). We measured the network 
accuracy as a function of the elapsed time. The average and standard 
deviation (calculated out of 20 random iterations of this simulation) 
are reported in Figure 10C. Our results show that the network sees a 
rapid decay of its accuracy, evidencing that a potential hardware 
implementation of this simulated system would need to address this 
factor to serve any practical use.

4.3 Post-training network analysis

We here use a different case scenario to demonstrate how SHIP 
facilitates the analysis of the simulated SNN, as a function of the SNN 
architectural parameters and training results. This task combines SNN 
training and post-training monitoring of its inner states during 
inference. In particular, we  here train an LSM based on the one 

FIGURE 10

Process and results of the Braille dataset classification task. (A) Training and test dataset accuracy, measured during the training process. The inset 
shows the adopted network schematics. (B) Confusion matrix obtained at the end of the training process. (C) Network accuracy, as a function of the 
time elapsed from the parameter storage, due to the drift mechanism of the assumed memristive synaptic weight physical support (model derived 
from Esmanhotto et al., 2022).
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detailed in Section 4.2.1, for classification purposes as a function of (i) 
the temporal constant of the reservoir neurons τβ , and (ii) the 
reservoir-to-reservoir synaptic scaling factor ϕ (c.f. Section 3.2.1). The 
choice of the two parameters was determined via explorative 
simulations, as these have the largest impact on the 
classification accuracy.

We use the MIT-BIH Arrhythmia Database (Moody and Mark, 
1990), which presents a wide dynamic variation that is useful for our 
investigation of dependency on τβ  of the SNN performance. The 
dataset contains digitized analog traces, here split in single heart-
beats, each composed by 4 independent channels. We convert the 
analog signals to spiking signals using the delta-encoding technique 
proposed in hardware in Corradi et al. (2019), however here using a 
3-bit scheme in place of a single-bit scheme to further reduce the 
simulation computational requirement. Since (i) the data conversion 
determines 12-channel inputs, and (ii) the dataset contains 18 classes, 
we modify the previous SNN to adapt it to the expected inputs and 
outputs, imposing a 12-input neuron layer and an 18-LS neuron 
output layer. The τβ  value for the neurons of the reservoir group is 
initially set to 1 s. Training follows the technique detailed in 
Section 4.2.

An initial training (50 epochs) is carried out on all the classes 
(with a maximum of 500 samples per class), to test the capability of 
the SNN to classify the MIT-BIH data. The test is carried out with a 
separate set of samples (maximum of 50). We find a post-training 
accuracy value of 0.683 (the confusion matrix is presented in 
Figure 11). This is an appreciable result, considering the complexity of 
the classification task (with a large number of classes, the unbalanced 
number of samples per class, and the under-dimensioned training); 
and the rough task design (with no fine-tuning of the SNN design, 
input signal pre-processing or filtering, absence of credit balancing 
techniques). This task reveals that the devised system can extrapolate 
some of the temporal features of the proposed dataset, with potential 
for further amelioration.

Equipped with this knowledge, we  devise a task that directly 
explores the causal correlation between accuracy and network design. 
We simplify the dataset by reducing it to the R, A, V, and F classes, 
chosen as these count 500 samples, offer relatively high recognition 
rates, and potentially challenging out-of-diagonal non-zero values (c.f. 
Figure 11). We train the SNN with the reduced dataset, setting on the 
system a different combination of τβ  (spanning from 10 ms to 100 s) 
and ϕ (ranging from 0.1 to 0.9). The post-training data is shown in 
Figure 12.

This is a basic investigation in the framework of a relevant 
scientific topic, as the use of multiple timescales in SNN components 
proved fundamental for efficient data processing (relevant literature is 
available in Quax et al. (2020)) and, at the same time, difficult to 
implement in hardware SNNs (MeM-Scales, 2020; Christensen et al., 
2022; Jaeger and Catthoor, 2023). Recently, innovative circuit designs 
have been proposed to support an extension of the temporal dynamics 
for neurons and synapses (see e.g. Rubino et al., 2021). Additionally, 
the engineering of the dynamics of solid-state devices like volatile 
memristors or other technologies (Milo et al., 2020; Demirag et al., 
2021; Brivio et al., 2022), have been investigated as tools to implement 
tunable dynamical elements in SNNs (see e.g., MeM-Scales, 2020; 
Beilliard and Alibart, 2021; Sarwat et al., 2022). For this simulated 
task, it is possible to envision a standard CMOS-based hardware 
platform, which supports the seconds-long LIF neuron temporal 

dynamics here investigated by means of the solution proposed in 
Rubino et al. (2021).

Figure 12A reports the (averaged) accuracy values as a function 
of ϕ; each line represents the data obtained using a different temporal 
constant τβ . This plot evidences that for any given value τβ  it is 
possible to find an optimal value ϕ (excluding the 10 ms and 30 ms 
cases, for which we are allowed to infer that the explored ϕ range 
would need an extension). The results confirm that fine-tuning of the 
proposed hyperparameters is conducive to the best performance; and 
that, generalizing, one can compensate for the limitation imposed by 
an architectural parameter by adjusting the remaining ones. However, 
this plot does not evidence yet the causal correlation between the 
investigated parameters and classification accuracy.

In Figure  12B we  plot the same results as a function of the 
averaged number of spikes, per sample, counted within the reservoir 
neurons. Here, the results obtained for each temporal constant seem 
to align and position the peak accuracy values within a range of spikes 
between 3,000 and 6,000 counts. This result evidences that the 
highest accuracy can be here attained whenever the reservoir fire rate 
is adjusted towards an optimal range, below and above which 
the LSM decreases trainability or fails to extract meaningful higher-
dimensional features. Whilst this result does not quantify the optimal 
hyperparameter combination, it evidences the importance of 
maintaining a suitable reservoir spiking activity, which finds support 
in theoretical studies on the subject (Legenstein and Maass, 2007).

Nevertheless, we note that an increase in either the scaling factor ϕ 
or the number of pulses engenders a proportional energy cost, which is 
a technologically-detrimental element in hardware systems. In 
Figure 12C we plot the same accuracy values, here as a function of the 
averaged integral of the reservoir synaptic currents, per sample. Indeed, 
our results correlate higher accuracy and increased energy requirement. 
This analysis may be used to set an acceptable accuracy as a threshold 
value, to then determine the system parameters conducing to the best 
energy performance. For sake of argument, we determine the accuracy 
of 0.6 as the acceptability limit. Consequently, we find that low τβ  values 
reach such threshold at a generally higher current contribution (see 

FIGURE 11

Confusion matrix for the classification task of the MIT-BIH database, 
after 50 epochs and using a training dataset where each class is 
capped to a maximum of 500 samples, chosen randomly.
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inset in Figure 12C), deeming the “slower” neurons to be the better 
candidates to limit the energy requirement.

We reserve a last comment for the analysis of the maximal accuracy 
values (derived from the data shown in Figure 12A), for each of the 
investigated hyperparameters. We report those against the investigated 
hyperparameter ranges in Figures 12D,E. Concerning the dependency 
on the temporal constants τβ  we find that low values correlate with 
higher maximal accuracy (excluding the 10 ms one; it is however 
plausible to extrapolate the same trend). We notice two outliers, at the 
100 ms and 330 ms locations; it is not possible with the data at hand to 
attribute this feature to statistical variations or the dynamics of the 
analyzed datasets. However, accuracy reduction as τβ  increases seem 
to lessen at higher τβ  values, which implies that very long temporal 
constants would perform almost identically above the 10 s one (with an 
accuracy close to 0.67). As for the scaling factor ϕ, we determine an 
almost-monotonic increase in the accuracy, which slows just above the 
accuracy of 0.7 (at ϕ = 0.9), and that finds a larger drop below the value 
of ϕ = 0.375. This result reiterates the considerations extrapolated from 
the analysis of the data shown in Figures 12B,C: the plot shows that an 
arbitrary acceptable accuracy can be found only above a scaling factor 
lower boundary, and that very low power consumption (i.e., low scaling 
factor) benefits from the use of “slow” neurons.

4.4 Summary

We used SHIP to build, simulate, and train arbitrarily-generated 
SNNs in plausible test cases.

We initially demonstrated the practical use of the platform for a 
simple task, in which we detailed the construction of the network, its 
manipulation, and the result retrieval. The training of different 
networks has been successfully demonstrated, using the 
FreeSpokenDigit, the Braille, and the MIT-BIH arrhythmia dataset. For 
each case, we detailed the dataset encoding, the network definition, the 
training process, and the obtained results. SHIP derived these results 
by interfacing the user with the PyTorch routines, leveraging the 
surrogated gradient technique presented in Neftci et al. (2019).

In Section 4.2 we briefly analyzed the post-training behavior of 
the network, concerning the weight quantization and drift due to an 
assumed memristive storage technology. An in-depth analysis of the 
post-training network behavior has been carried out with the 
MIT-BIH dataset in Section 4.3. The network behavior has been 
measured after variation of a selection of network hyperparameters 
finding plausible physical homologues. We  have determined the 
correlation between the potential trained network performance and 
the network configuration, which exemplifies the use of SHIP as a 
useful tool for network prototyping.

5 Discussion and conclusion

With this manuscript, we summarized the various challenges that 
the simulation of SNN systems poses, which in turn urged the 
scientific community to create a wide range of numerical tools, each 
with its unique key characteristics and advantages, due to the 
theoretical and computational limitations barring one to access to a 

FIGURE 12

Accuracy results after a 50-epochs training on the recognition of the reduced MIT-BIH dataset, based on the variation of the SNN hyperparameters τβ  
(color legend on the left) and the scaling factor of the reservoir-to-reservoir synaptic connections, ϕres. (A) Accuracy vs. scaling factor ϕ; each line 
traces the results for a different τβ . (B) Accuracy vs. (average) number of reservoir spikes per inference per sample. (C) Accuracy vs. (average) integral of 
the reservoir synaptic current output, per inference per sample. (D) Maximum (average) accuracy, as determined from the data shown in (A), as a 
function of the temporal constant τβ . (E) Maximum (average) accuracy as a function of the scaling factor ϕ.
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one-fit-all solution. This, however, engenders a dichotomy in the 
numerical tool panorama, where most of the proposed solutions are 
oriented towards model-driven or data-driven approaches; even in the 
case of software interfaces intended to fulfill a wide-ranging set of 
requirements, it often becomes difficult to use one tool to prototype 
and simulate bespoke models with low effort, even more so if 
conventional machine-learning techniques are deemed necessary.

With SHIP, we targeted an audience not necessarily trained or 
familiar with the SNN simulation primitives, but requiring a simple 
tool to rapidly prototype potential SNN architectures or artificial 
neuronal/synaptic component functionalities, by way of compact 
models. We previously identified a few key characteristics that may 
be  beneficial to the end user, and we  delivered an environment 
specifically tailored to attain these.

An easy-to-learn interface. SHIP relies on a straightforwardly 
structured set of instructions, which one can rapidly understand and 
amend for any arbitrary scope. Network building, inference, and 
training are performed by way of an easily-interpretable language.

Low memory and computational requirement. In SHIP, many of the 
algorithmic adaptations and design choices shrink the calculation and 
memory requirement to the bare essential, e.g., the precalculation of the 
temporal dependencies within the model, the exploitation of PyTorch 
parallel calculation features, avoidance of repeated memory access, or the 
optimization of the algorithm handling the SNN data flow. However, 
we note that properly estimating the optimization reach of our algorithm 
is a difficult task. In Supplementary material (Section 5) we attempt to 
compare the performance of SHIP and alternative simulation platforms 
on the same simulated network. The results indicate that SHIP, as 
intended, does not add any significant computational burden in the 
simulation of small networks. We underline that SHIP grants so, yet 
retaining an essential flexibility of use (for any arbitrary SNN 
architecture) and modularity (as any model can be  developed and 
employed as-is with no further tailoring required).

Facilitated development and deployment of user-defined models. 
SHIP proposes the simulation of the SNN by use of models fitting the 
group definition. The underpinning equations fit a very clear and well-
structured set of classes’ methods, which one can rapidly understand 
and amend for their own scopes. Whilst this is certainly not a unique 
solution amongst the wide panoramic of available simulation platforms, 
we consistently find that the simplicity of the model development is 
limited to model-driven platforms, not allowing to rapidly interface 
with high-throughput-supervised learning routines. This instead 
remains a key feature of SHIP. Furthermore, to increase interoperability 
with the already available model frameworks, the development of a 
PyNN model compiler is under evaluation for future releases, which 
would also automate the determination of the time-step dependencies 
(a task now delegated to the user by way of the time_dep method).

Facilitated access to a wide range of time-dependent parameters and 
results. We find that rapid model-building (using natural language) is 
a considerably useful feature, especially in combination with the 
ability to monitor any of the states and outputs of the models during 
inference. This endows the user with an immediate view of the model 
behavior, helpful during both prototyping and model analysis.

Methods facilitating the network synaptic weights training. As shown 
in Sections 4.2 and 4.3, SHIP natively combines the functionality of 
SNN simulation with PyTorch training routines, by use of the surrogate 
gradient technique. Other methodologies, such as on-line training via 
ad-hoc learning rules, may indeed be coded-in whenever required by 
the end-user by way of bespoke component models.

Suitability to perform parameter-dependent simulations. SHIP can 
treat any of the arguments provided during the SNN building stage 
as functions. This allows one to rapidly generate arbitrary 
distributions spanning any spatial coordinate and/or vary along the 
number of parallel calculations, bestowing the user with a powerful 
syntax useful for both SNN building (e.g., generating weight 
distributions at a glance), and inference for an arbitrarily-determined 
range of SNNs, as shown in Section 4.1. This feature meets our 
requirement for a platform helping to perform parameter-
dependent simulations.

It is necessary to remark on the limitations and computational 
requirements of the current version of SHIP. As discussed in Section 2, 
a single tool can not efficiently address any arbitrary task, and the 
simulation algorithm needs fine-tuning for each scope. SHIP has been 
designed for the simulation of small networks of custom models and/
or arbitrary connectome, for a reduced number of time-steps, on 
general-purpose workstations. This task is best addressed with a clock-
driven algorithm that drives a set of time-discrete models, 
interoperating in a directed (though streamlined) fashion, to limit 
unessential operations. Our numerical evaluation demonstrates that, 
in fact, this framework is highly optimized for the intended objective 
(see Supplementary material, Section 5). Of course, as a drawback, 
SHIP is less than optimal for other case scenarios, with two in 
particular being least suitable: SHIP performs poorly as the number of 
time-steps, or the number of network parameters, increases. This is due 
to how SHIP mandates the calculation of the evolution equation on all 
units, at all time-steps (due to the fixed time-step CD algorithm). SHIP 
currently does not accelerate through time when and where the 
absence of spikes would in principle take advantage of a time-skipping 
technique, unlike platforms reliant on variable time-step or ED 
algorithms. Another correlated drawback is identified in the choice of 
the time-step size. It must resolve the fastest dynamics in the simulated 
system, or be tuned to fit issues arising from the numerical stability of 
the employed models. However, doing so may lead to oversampling of 
models that do not require comparatively high temporal resolution. 
Lastly, we need to mention how the model definition in SHIP (as in all 
platforms based on PyTorch) relies upon the competence of the user in 
writing a set of time-discrete equations. This is not a trivial task, 
especially for complex models (reason for which a PyNN model 
compiler is being planned).

We eventually refer to the simulation tasks shown in Section 4, 
which illustrate the use of SHIP in potential case scenarios. The 
illustrated cases progressively demonstrate how SHIP can be used to 
(i) prototype a potential SNN, (ii) monitor its internal variables, (iii) 
simulate inference (iv), train its parameters via surrogate-gradient-
enabled conventional machine learning techniques, and eventually 
(v) combine training and inference-based variable monitoring, to 
assess a candidate SNN structure or constitutive circuit blocks in 
terms of classification accuracy and other performance. We have 
shown how SHIP can indeed fulfill the intended requirement of a 
simple, flexible tool that experimenters dedicated to hardware-
oriented SNN simulations can use for a wide range of tasks 
and investigations.
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