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Abstract In this study the dynamic response of a spur
gear pair is analyzed using a novel nonlinear approach.
The actual rolling motion and engagement of the sys-
tem is simulated using a set of reduced order mod-
els obtained in a pre-processing phase using the mini-
mal amount of master degrees of freedom without loss
of accuracy or generality. The flexibility of the gear
bodies is included by a refined finite element model,
and no geometry simplification is introduced while
also retaining all nonlinearity sources. To reduce the
computational cost the time-varying mesh stiffness is
also pre-computed and used depending on the instanta-
neous loading conditions. Contact loss is also taken into
account, and reconnection events are treated as vibro
impacts. The results are compared against high qual-
ity and demanding experimental results with a com-
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putational cost several orders of magnitude lower than
models with similar accuracy. Different loading condi-
tions are investigated during the sweep-up and down
maneuvers. Mainly, the dynamic transmission error
is analyzed, showing remarkable agreement with the
test campaign’s results. Different nonlinear phenomena
such as hysteretic jumps and sub- and super-harmonic
resonances are correctly predicted by the proposed
model in terms of both frequency and amplitude. This
method allows quick and accurate nonlinear analyses
overcoming current limitations and is open to further
complications to include other components and effects.

Keywords Gears · Contact loss · TVMS · DTE

1 Introduction

Theacceleration towards electric powertrains in response
to environmental concerns has catalyzed a concerted
effort within the automotive sector to confront the
intricate challenges associated with the characteris-
tics of noise, vibration, and harshness (NVH) of elec-
tric vehicles. A significant concern in this transition
is the conspicuous absence of internal combustion
engines, which, in turn, highlights the issue of pro-
nounced gear vibrations during the meshing process.
This phenomenon engenders the emergence of per-
vasive and often unwelcome gear whine noise. Evi-
dently, the influence of these gear whine harmonics
reaches beyond auditory discomfort, fundamentally
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shaping the perceived sound quality of electric pow-
ertrains, making it a pivotal focal point within the field.
In light of the pursuit to mitigate gear noise, con-
siderable attention has been directed towards strate-
gies that address the noise at its source, aiming for a
more economically sustainable solution. In addition,
the aviation industry is always seeking for increased
performance and fuel efficiency, and lightweight gears
are more and more employed to increase the power
density of gearboxes. However, reducing the weight
of those components leads to complex dynamic phe-
nomena that need to be studied in detail to ensure the
safety of the aircraft. Gear transmission systems have
been widely studied, and deep understanding has been
sought through a dual-pronged approach, encompass-
ing both theoretical scrutiny and empirical investiga-
tion [1,2]. Parker and Vijayakar [3] presented an inves-
tigation into the dynamic response of a spur gear pair
using a novel Finite Element (FE)/contact mechanics
model. The study analyzes the behavior of the gear
pair at various speeds and torques. One key feature of
the model is that dynamic mesh forces are calculated
using detailed contact analysis at each time step, elimi-
nating the need for external specifications of excitation
factors, although with a high computational cost. Con-
tact loss of meshing teeth, even at high torques and
with high-precision gears is investigated. The paper
also explores the sensitivity of different models to the
Fourier spectrumof changingmesh stiffness. The study
underscores the importance of accurate dynamic mod-
eling in understanding complex nonlinear behaviours
in gear systems. Parker et al. [4] used the same for-
mulation to analyze the dynamic response of a heli-
copter planetary gear system. The research uncovers
resonances and interesting dynamics related to plan-
etary configuration and mesh frequency harmonics.
The torque sensitivity of the dynamic response is com-
pared with static analyses, revealing different sensitiv-
ities between rotational and translational modes. Erit-
nel and Parker [5] presented an analytical solution for
the nonlinear vibration of gear pairs with tooth surface
modifications. The study introduces a force–deflection
function obtained from independent sources, allowing
the prediction of dynamic responseswithout predefined
excitation or non-linearity. AlsoBenatar et al. [6] inves-
tigated the impact of tooth modifications on Static and
Dynamic Transmission Error (STE, DTE) behaviour
in helical gear pairs. The study uses a comprehensive
experimental setup to quantify motion transmission

behaviour under varying torque and speed conditions,
highlighting the influence of tooth modifications on the
STE and DTE. Theodossiades and Natsiavas [7] inves-
tigated the nonlinear dynamics of a gear-pair system
involving backlash and time-dependent mesh stiffness.
The study identifies various types of periodic steady-
state responses and their stability properties under spe-
cific forcing frequency ranges using strongly nonlinear
equations of motion. The work sheds light on the com-
plex resonant behaviour that arises due to simultaneous
fundamental parametric resonance and external reso-
nance conditions also found in planetary systems [8].
Natsiavas and Giagopoulos [9] focused on the system-
atic investigation of the response and stability charac-
teristics of a gear pair systemwith strongnon-linearities
due to gear mesh backlash, static transmission error,
and bearing clearance. The research uncovers a range
of dynamic effects, including periodic, quasi-periodic,
and chaotic motions, using analytical and numerical
approaches. Natsiavas [10] surveys analytical model-
ing techniques for mechanical systems involving con-
tact, impact, and friction. The study focuses on sys-
temswith a finite number ofDegrees of Freedom (DoF)
and examines various modeling approaches, including
oscillators, deformable components, and techniques of
nonsmooth mechanics. The review provides insights
into modeling complex interactions in mechanical sys-
tems. Wang et al. [11] also explored chaos and bifur-
cation phenomena in a gear pair system with wear
fault. A nonlinear time-varying dynamic model is used
to analyze sub-harmonic and chaotic motions. How-
ever the cited works are not applicable in every sce-
nario due to either their high computational cost or
to simplifications in the geometry of the gear pair.
Shweiki et al. [12] presented a hybrid FE-Analytical
approach analyzing transmission error and strain in
lightweight gear pairs. The method accurately captures
gear deformation and strain distribution using a multi-
body solver. The approach is validated using experi-
mental data from a gear test rig but is limited to static
and quasi-static conditions. Palermo et al. [13] found
a way to include the instantaneous contact conditions
in a dynamic multibody model. Precomputed look-up
tables are used to avoid cumbersome contact calcula-
tions at each time step with good results, but consider-
ing the gear bodies as rigid, limiting the applicability
of their solution. Dai et al. [14] introduced a hybrid
analytical-computational method to study the nonlin-
ear dynamic response in spur gear pairs. The method

123



Dynamic reduction technique for nonlinear analysis

combines finite element static analysis with analytical
vibration models, providing accurate predictions with
significantly reduced computational time. The model
captures complex behaviours, including partial con-
tact loss and tooth modifications. The hybrid method
developed exhibits high accuracy and efficiency com-
pared to traditional finite element approaches. Its accu-
racy is, however, limited to cases in which the gear
blank is stiff since the model assumes negligible gear
blank vibrations. Pipitone et al. [15] focused instead on
modeling the dynamics of thin-walled gears with time-
varying coupling due to gear meshing. A nonlinear
Method of Multiple-Time-Scales (MMTS) is utilized
to analyze the coupled system. The MMTS approach
demonstrates its capability to capture gear coupling
effects and system dynamics, even in the presence
of parametric variations such as mesh stiffness, with-
out however introducing the possibility of contact loss
and other non-linearities. Guilbert et al. [16] instead
addressed the influence of centrifugal effects on thin-
rim andwebbed gears. An original hybrid gearmodel is
introduced, incorporating lumped parameter elements
to simulate gear behaviour. The model allows for the
examination of gear whine simulation and highlights
the impact of centrifugal effects on gear dynamics, but
the starting gear model is simplified by removing the
teeth, and no contact loss is possible.

The aim of this paper is to present a model capa-
ble of overcoming the limitations mentioned earlier.
A novel approach to simulate the rolling motion and
engagement of a gear pair using a Nonlinear Reduced
Order Model (NL ROM) will be detailed. The sim-
ulation of the actual rotation and motion of the con-
tact point using a ROM is not recorded in the litera-
ture to the knowledge of the authors. Implicit in the
rolling motion is a nonlinear variation of the point of
contact on the engaging teeth, which is further ampli-
fied by the Time-VaryingMesh Stiffness (TVMS). The
TVMS will be precomputed using static analyses at
different torque levels and will be used as a linear stiff-
ness depending on the instantaneous dynamic loading
conditions. Although in each time instant the model
is linearised, the load dependency of the TVMS adds
another degree of non-linearity to the system. Partial
or total nonlinear contact loss will be introduced when
traction forces are detected on the contact stiffness ele-
ments.After contact loss, the reconnection eventwill be
treated as a Vibro Impact (VI) imposing a discontinuity
of the velocities on the impacting flanks. Therefore, the

Fig. 1 Gear pair model with reduction nodes highlighted

proposed method globally takes into account several
degrees of non-linearity. Another important aspect is
that no geometrical simplification is needed for axially
symmetrical gear bodies and their flexibility is taken
in full account in dynamic conditions by the underly-
ing FEmodel even though a minimal amount of master
DoFs is selected. The resulting substantial reduction of
the matrices’ sizes opens the possibility for the simu-
lation of long maneuvers in the time domain with an
extremely limited computational cost without losing
accuracy. Themodel has also a wide applicability since
the reduction DoFs are independent on the number of
teeth. The results of this model are compared with a
high-quality campaign of experiments. The test gear
pair exhibits distinct and repeatable nonlinear jump
phenomena and parametric instabilities as well as sub-
and super-harmonic resonances. Such complex nonlin-
ear behaviour provides a highly demandingbenchmark.
The available DTE data exhibit remarkable agreement
with the results of the model object of this study. Since
both tooth and gear body geometry are fully repre-
sented, more complex analyses will be possible in the
future using this approach for example on lightweight
thin-webbed gear pairs.

2 Methodology

In this section the iterative algorithm to obtain the time
domain response of a gear pair will be detailed. In
order to achieve the desired result a pre-processing
phase is needed. As stated in the introduction, the pro-
posed method will employ a ROM to decrease the size
of the matrices involved and hence reduce the other-
wise impossibly long computational times. The mesh-
ing interaction of a gear pair is periodic in nature,
and this can be exploited to obtain a ROM contain-
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ing the minimum necessary DoFs to simulate the non-
linear interaction and excitation typical of gears. If
the body of the gears is axisymmetric, the geometri-
cal properties of a gear are also cyclically symmet-
ric. The period angle is θ = 360/Z p where Z p is
the number of pinion teeth. Therefore, the properties
of the FE model can also be considered periodic and
in the proposed approach this cyclic repetition will
enable selecting only a few nodes that fully represent
one fundamental period of the dynamics of engage-
ment. Gears rotate during engagement, and to simulate
this motion a set of matrices, each rotated by an angle
�θp = θ/N , �θg = −τ�θp, is first obtained for the
pinion and gear, respectively, where N is the chosen
number of subdivisions of the mesh cycle and τ is the
transmission ratio. The FE stiffness and mass matri-
ces (K p,z, M p,z, K g,z, Mg,z) of the pinion (p) and
gear (g) respectively are obtainedusing selective under-
integration and an Enhanced Assumed Strain (EAS)
field as described in [17] to avoid shear and volumetric
locking as well as spurious modes in the 8 nodes hex-
ahedral elements which comprise the entirety of the
parametrically generated FE mesh. At the zth angular
position (z = 1, 2, . . . , N ) the Craig-Bampton Com-
ponent Mode Synthesis (CB-CMS) [18] is performed
on each matrix to obtain the ROMmatrices through the
transformation matrices T p,z and T g,z . The CB-CMS
mass matrix of the assembled system at the zth angular
position is obtained as

Mr
z = [

T T
p,z T

T
g,z

] [
M p,z 0
0 Mg,z

] [
T p,z

T g,z

]
(1)

and similarly for the system stiffness matrix

K r
z = [

T T
p,z T

T
g,z

] [
K p,z 0
0 K g,z

] [
T p,z

T g,z

]
(2)

where 0 is a zero matrix of suitable dimensions and
the superscript r indicates that the matrix is reduced.
The reduction basis is made of master nodes, where the
forces will be exchanged and displacements recorded,
and of auxiliary observed nodes, which help in increas-
ing the accuracy of the ROM with respect to the full
model mode shapes of interest for the frequency range
chosen. Referring to Figs. 1 and 2, the different sets of
nodes of the pinion and gear can be distinguished as
follows:

• Contact mesh stiffness nodes uKc, p, uKc,g (blue
dots): The source of excitation of the whole system
will be the periodic TVMS and the variation of the
location of the contact stiffness connection points.
This will be the main source of nonlinearities in the
model.

• Auxiliary observed nodes uaux, p, uaux,g (green
dots): Those nodes are selected using a Modal-
Geometrical Selection Criterion (MoGeSeC) [19]
in order to select the nodes where the highest modal
content is located to improve the accuracy of the
ROM. These are not strictly master nodes, but they
are only observed [17].

• Central virtual nodes ut, p, ut,g (red dots): These
nodes are master nodes of rigid joint connections
linking the nodes on the inner radii of the pinion and
the gear. The experimental test bench against which
the results of the present model will be compared
is designed to isolate the impact of tooth mesh. The
configuration is such that the bearings and shafts are
nearly rigid and the response is purely gear rotation.
Hence, all DoFs of ut, p, ut,g will be constrained,
except for the rotational DoF around the axis of
rotation for both pinion and driven gear which will
be left unconstrained andhere a constant torquewill
be applied on the pinion and an equal and oppos-
ing torque on the driven gear simulates the actual
configuration of the test bench. Since both the pin-
ion and gear hence have a free rigid body motion,
their angular displacement of the centre node will
be taken as the output DTE from the time domain
response as

DT E(t) = θp(t)rb,p − θg(t)rb,g (3)

where θp(t), θg(t) are the instantaneous angular
displacements of said nodes for the pinion and gear
respectively.

Extensive modal analyses have been performed to
ensure the accuracy of the ROM. The pinion and gear
have been analysed separately as well as coupled. Even
though the CB-CMS is a fixed interface method, the
auxiliary observed nodes provide an increment in accu-
racy and all simulations provided exceptional agree-
ment between the full FE and ROM results. The fre-
quencies of the first ten flexiblemodes of the uncoupled
pinion, excluding the remaining rigid body mode, are
listed in Table 1 and show amaximum percentage error
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Fig. 2 Detail of the gear pair FEmesh and contactmesh stiffness
nodes highlighted

Table 1 The first ten flexible modes of the pinion frequencies
and percentage error between the full FE and ROM modal anal-
ysis

Mode N◦ Frequency (Hz) % error

1 7999.3 −1 · 10−5

2 7999.3 −0.02

3 8213.0 −0.01

4 8614.9 −4 · 10−4

5 8614.9 −0.03

6 11319.5 −0.01

7 11899.2 −0.02

8 11899.2 −0.05

9 17003.6 −0.01

10 17003.6 −0.01

of −0.05% with respect to the full FE results. Also the
eigenvectors are coherent between each other as shown
by the Modal Assurance Criterion (MAC [20]) visible
in Fig. 3 which displays a minimum value of 88.9%.

The final vector of all considered DoFs in the anal-
yses for the pinion and gear respectively are then

Fig. 3 MAC between the full FE and ROM modal analysis of
the pinion

um, p = {uTt, puTKc, pu
T
aux, p}T

um,g = {uTt,guTKc,gu
T
aux,g}T (4)

which is assembled as the system DoFs as

um = {uTm, pu
T
m,g}T (5)

The coupling between the pinion and the driven gear
is realized by the time-varying, load dependent and
moving mesh contact stiffness matrix Kc(z, L). The
individual elements of this matrix are linear springs
connecting the relevant DoFs uKc, p of the pinion to
the corresponding uKc,g . The individual nodal matrix
for a generic node n is

Kc,n(z, L) = w(z, L)n · kc(z, L)

·
⎡

⎣
cosα 0 0
0 sin α · cosβ 0
0 0 cosα · sin β

⎤

⎦ (6)

wherew(z, L)n is a weight factor for the nth node used
to spread the stiffness across the facewidth of the gears
andα andβ are the pressure and helix angles of the gear
pair. The individual nodal matrices are then assembled
in the system contact stiffness matrix Kc(z, L) with
standard FE procedures [17]. At each time instant dif-
ferent DoFs will be connected simulating the motion
of the contact across the height of the teeth. The value
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of the TVMS kc(z, L) is obtained using the approach
detailed in [21–23]. Since in the present model the flex-
ibility of the tooth is included in the reduced FE matri-
ces, only the contribution to the STE due to the contact
stiffness ST Ec is considered in its calculation as

kc(z, L) = T (L)

rb · ST Ec(z)
(7)

where rb is the base radius of the pinion and T (L) is the
torque applied at the Lth load level. In the direct time
integration that will follow at each time step a different
system matrix will be used, thus simulating the actual
rotation of the gears involved. This implies that in the
time integration the rotation covered between each time
stepwill be�θp and hence the interval�t between two
successive time instants will vary with speed. With the
present approach any manoeuvre can be simulated but
for the purpose of this article only constant variation
will be detailed. Given a starting rotational velocity�s

and a final one � f , the constant angular acceleration
is simply obtained by

�̇ = � f − �s

ttot
(8)

where ttot is the total time in which the speed sweep
will be simulated. The instantaneous rotational velocity
�i at a generic i th time instant ti is obtained by

�i = �i−1 + �̇ · (ti − ti−1) (9)

where

ti = ti−1 +
−�i−1 +

√
�2

i−1 + 2�θp�̇

�̇
(10)

The dynamic response of the assembled system is
obtained using a Newmark direct time integration
scheme [24]. The constants used are

αNM = 1

4
, δNM = 1

2
(11)

to enforce unconditional stability without introducing
numerical damping. Regrouping the terms of the equa-
tion of motion to be solved the following equation is
obtained for the i th timestep which corresponds to the
zth angular position

üi = S−1
i δr i (12)

where

Si = Mr
z,i + �tiCr

z,i + �t2i αNM (K r
z,i + K r

c(z, L))

(13)

and the Rayleigh reduced damping matrix is obtained
as

Cr
z = [

T T
p,z T

T
g,z

]

·
(

μ

[
K p,z 0
0 K g,z

]
+ η

[
M p,z 0
0 Mg,z

])[
T p,z

T g,z

]

(14)

The residual vector δr i is obtained from the follow-
ing matrices

Di = −(K r
z,i + K r

c(z, L))

V i = −Cr
z,i − �ti (K r

z,i + K r
c(z, L))

Ai = −Cr
z,i (1 − δNM )�ti

− (K r
z,i + K r

c(z, L))

(
1

2
− αNM

)
�t2i (15)

which are then assembled as

δr i = f + Diui−1 + V i u̇i−1 + Ai üi−1 (16)

where ui−1, u̇i−1, üi−1 are respectively the displace-
ments, velocities and accelerations of the system at
the previous timestep. For the purpose of this article
the external force vector f is constant throughout the
entirety of the simulation and its only non null value
will be the torque T applied to the freeDoF at the center
of the pinion. The acceleration at the current timestep
is then computed as

ü∗
i = S−1

i δr i (17)

and the velocities and displacements are obtained by

u̇∗
i = u̇i−1 + (1 − δNM )üi−1 + δNM ü∗

i �ti

u∗
i = ui−1 + �ti u̇i−1

+ �t2i

(
1

2
− αNM

)
üi−1 + αNM u̇∗

i �t2i (18)
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The displacements, velocities and accelerations u∗
i , u̇

∗
i ,

ü∗
i thus obtained are marked by the apex ∗ since they

have been obtained using the zth set of matrices along
the mesh cycle at timestep i , but for timestep i + 1
the (z + 1)th must be used. For this purpose a suitable
rotation matrix R�θ of angles �θp and �θg is built
using standard FE procedures [25] and applied to the
current set of results to obtain a suitable set of inputs
for the next timestep by

ui = R�θu
∗
i

u̇i = R�θ u̇
∗
i

üi = R�θ ü
∗
i (19)

This iterative time advancement simulates the actual
rotation of the gears in mesh and can continue until the
end of the mesh cycle when z = N . Reaching that time
condition, special measures have to be taken to reset
the cycle to the initial geometrical conditions, while
keeping the travelling wave of excitation continuous.
Firstly the ROM results are expanded to obtain the full
FE results using the transformation matrix Tcb,N at the
Nth angular position by

ui,F = Tcb,Nui

u̇i,F = Tcb,N u̇i

üi,F = Tcb,N üi (20)

where the subscript F indicates that they represent the
full FE model of the assembled system and Tcb,N =[
T p,N

T g,N

]
. Pinion and gear displacement, velocities and

accelerations are then separated and for a generic gear
j ( j = p, g) a sorting order can be found to group all
the DoFs belonging to one tooth such that

u j ,F =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1
u2
...

uZ j

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(21)

A new sorting order advancing the generic gear of one
tooth to start the new mesh cycle can then be imposed
as

u j ,F′ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uZ j

u1
u2
...

uZ j−1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(22)

Selecting the same master DoFs described in Eq. 4 the
new quantities for the next mesh cycle can finally be
obtained as

ui = T r,1R�θui ′

u̇i = T r,1R�θ u̇i ′

üi = T r,1R�θ üi ′ (23)

where T r,1 =
(
T T
cb,1Tcb,1

)
T T
cb,1 is the system reduc-

tion matrix for z = 1 and ui,F′ , u̇i,F′ , üi,F′ are the dis-
placements, velocities and accelerations in the newly
sorted order.

A further non-linearity is introduced by considering
the possibility of partial or total contact loss during the
engagement dynamics. At each time instant the nor-
mal force exchanged by each contact stiffness element
FKc,n is monitored. If any traction force (FKc,n < 0) is
detected the individual weight factor w(z, L)n for that
element is set equal to 0 and the timestep is recomputed
using the updated configuration up until an equilibrium
is reached and all contact stiffness elements transmit
null or compressive forces. The process is visualized
in Fig. 4.

The normal separation δKc,mn of a disconnected
contact stiffness element connecting node m on the
pinion (uKc, p,m) and n on gear (uKc,g,n) respectively
is then monitored for the successive time instants. If
δKc,mn > 0 the element is kept disconnected, while if
δKc,mn ≤ 0 the reconnection of the contact stiffness
element is treated as a Vibro Impact (VI) [26]. Indi-
cating with the superscripts (−) and (+) the velocities
before and after the VI respectively a continuity of dis-
placements and a discontinuity of velocities is imposed
as

u̇+
Kc,g,n = u̇−

Kc,g,n(1 − ε · e) + εu̇−
Kc, p,n(e + 1)

1 + ε

u̇+
Kc, p,n = u̇−

Kc,g,n(1 + e) + εu̇−
Kc, p,n(ε − e)

1 + ε
(24)
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Fig. 4 Algorithm of the NL ROM

where e is the coefficient of restitution and ε is the
ratio of the equivalent masses of the pinion and the

gear ε = Ig/r2b,g
Ip/r2b,p

in which I j and rb, j ( j = p, g) are

the moment of inertia and base radii of the respective
gears.

3 Results

In order to validate the proposed model experimental
data available in literature [27–29] are used for compar-
ison. Themain parameters of the steel precision ground
spur gear pair are listed in Table 2. The TVMS map
kc(z, L) computed using the semi-analytical approach
detailed in [21–23] is visible in Fig. 5 for the range
10−500 Nm and the Fourier spectrum for the first four
harmonics is visible in Fig. 6 for a limited number of
torque levels. The theoretical contact ratio of the gear
pair is 1.75 but it evidently appears to be strongly influ-

Table 2 Pinion and gear geometrical and material data

Parameter Value Unit

Number of teeth, Z 50 –

Module, m 3 mm

Pressure angle, α 20 ◦

Facewidth, F 20 mm

Base radius, rb 70.475 mm

Total backlash, 2B 0.125 mm

Contact ratio 1.75 –

Modulus of elasticity, E 207 GPa

Density, ρ 7600 kg/m3

Poisson ratio, ν 0.3 –

Coefficient of restitution, e 0.56 –

Full FE number of DoFs 270000 –

Pinion ROM number of DoFs 229 –

Gear ROM number of DoFs 229 –

Fig. 5 TVMS map for torques from 10 to 500 Nm

enced by the applied load. Indeed, the single and dou-
ble tooth contact zones greatly differ between low and
high torque. This variation of the contact ratio with the
applied load is also implicitly modeled in the proposed
approach. In [27] it is stated that the torsional natural
frequency of the gear pair system is around ωn = 2700
Hz. To estimate the torsional natural frequency of the
model, impact tests were simulated numerically. The
gear pair is kept in different fixed positions along the
mesh cycle under constant torque except for a single
time step in which the torque is increased of 40% on
each side, simulating an impulse. The transient DTE
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Fig. 6 TVMS Fourier spectrum for T = 100 Nm (blue), T =
200 Nm (black), T = 300 Nm (red)

response after the impulse is then used to determine
the natural torsional frequency. Results are shown in
Fig. 7-a and the obtained frequency is around 2650 Hz
which is in excellent agreement with the experimental
findings. The natural frequency appears to be a weak

function of the applied torque but is strongly affected
by the contact state (single or double tooth contact).

The same numerical impact tests were used to set the
coefficients μ and η of the structural damping model
of Eq.14. The logarithmic decrement [30] of the tran-
sient response was measured and the coefficients were
adjusted to achieve a damping ratio close to 8% [31]
as visible in Fig. 7b. Once set, the values have been
kept constant for all the simulations. The main focus
of this work is to study the dynamic response of the
modeled system under different torques and at differ-
ent rotational velocities. The nonlinear experimental
DTE results for a torque T = 150 Nm are shown in
Fig. 8 from [27]. The NL ROM results proposed in this
paper are also compared in the same figure. The time
domain simulations have been performed separately,
slowly increasing and decreasing the rotational speed
of the driving pinion in the 900–4100 RPM range cor-
responding to meshing frequencies in the range fm =
750–3410Hz. Both up and down sweeps simulated 25s
maneuvers with a calculation time of under 20h in total
without parallelization on a common desktop computer
(Intel Core i7-11700K, 32 Gb RAM), excluding the
preprocessing work, which can be done only once for
a given gear pair. Each simulation comprises around 6

Fig. 7 Variation of the
natural frequency (a) and
damping ratio (b) of the
system along the mesh cycle
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Fig. 8 Experimental and
NL ROM results of the
RMS of the oscillating DTE
component at T = 150 Nm

Fig. 9 Experimental and NL ROM results of the RMS of the
oscillating DTE component at different torque levels: a T = 300
Nm, b T = 200 Nm, c T = 100 Nm

million timesteps. Considering that the solution time
for each timestep is proportional to the square of the
size of the matrices involved. Hence, several orders of
magnitude of computational performance are gained
with this approach as evident from Table 2 without any
loss of accuracy with respect to full FE models.

A primary softening non-linearity peak is evident
for mesh frequency fm ≈ ωn ≈ 2700 Hz with multiple
steady state solutions visible within the hysteretic jump
region. Furthermore a second and third resonances are
present. The second harmonic of the mesh frequency
excites the resonance at fm ≈ ωn/2 ≈ 1350 Hz while
the third harmonics drives the one at fm ≈ ωn/3.
The coexistence of multiple solutions, jump phenom-
ena and branch softening are evident for the second
harmonic but less pronounced for the third one.

All the distinctive features apparent from the experi-
mental tests are accurately reproduced by the NLROM
model proposed in this work. The accuracy is evi-
dent both in terms of frequency but also in terms of
amplitude of oscillation across the range of rotational
velocity. Only the third super-harmonic appears to be
underestimated by the numerical calculations, but the
decreasing amplitude trend between the different res-
onances is respected. Figure9 shows the experimental
results for the torque levels T = 100, 200 and 300 Nm.
Distinct multiple resonances and nonlinear phenomena
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Fig. 10 DTE time histories
and Fourier amplitudes for
the a, b upper branch and c,
d lower branch of the
primary harmonic under
T = 150 Nm at fm = 2400
Hz

Fig. 11 DTE time histories
and Fourier amplitudes for
the a, b upper branch and c,
d lower branch of the
secondary harmonic under
T = 150 Nm at
fm = ωn/2 = 1350 Hz

highlighted before are also evident in those results at
both higher and lower torques. The corresponding sim-
ulation results of the NL ROMmodel are shown in the
same graphs. Also in this case the responses show an
excellent agreement against the experimental counter-
parts. The jump down frequency of the experimental
results however shows a stronger variation with the

applied torque which is less pronounced in the sim-
ulations. This is due to the fixed damping in the sys-
tem which is kept constant for all torque levels and the
absence of lubrication damping in the mesh process
which will be included in future studies. However, the
region of coexistence of multiple steady state solutions
has a broader frequency overlap in the simulations with
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Fig. 12 Tooth forces for the
a upper branch and b lower
branch of the primary
harmonic under T = 150
Nm at fm = 2400 Hz. Each
line represents a different
engaging tooth

respect to the experimental findings. Figure10 shows
time domain results of the DTE and its spectral content
in the region of primary resonance (multiple responses)
for T = 150 Nm. The upper (Fig. 10a, b) and lower
(Fig. 10c, d) branch results exhibit almost purely har-
monic motion with limited contributions of the higher
harmonics however with distinct vibration amplitudes
between the two branches. For the second resonance
condition similar results are visible in Fig. 11. Two
oscillations are visible for each mesh cycle indicating
that the response is almost harmonic at the mesh fre-
quency which is in this case fm = ωn/2. The upper

branch also shows traces of multiple harmonics also
non integers of the mesh frequency due to the inclu-
sion in the model of the flexible modes of the gear
bodies while the lower branch shows harmonic content
of themesh frequency up to the fourth harmonic, still in
excellent agreement with the results published in [27].

The softening behaviour of the system is explained
by sustained total contact loss during meshing. In
Fig. 12 the net tooth mesh force is visible for the upper
and lower branches of the multiple solution region
around fm = 2400 Hz for T = 150 Nm. In the lower
branch (b) of the primary resonance tooth loads are
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Fig. 13 Tooth forces for the
a upper branch and b lower
branch of the primary
harmonic under T = 150
Nm at fm = ωn/2 = 1350
Hz. Each line represents a
different engaging tooth

carried smoothly throughout the different mesh cycles,
although a sharp force peak is evident in these con-
ditions when the next available tooth comes into con-
tact. This kind of event is not treated as a VI hence
the force peak. In the upper resonance branch (a) how-
ever the forces vanish for almost half of the mesh cycle
indicating total contact loss which is the clear source
of the nonlinear multiple solution regime. Net forces
are overall higher during the contact part of the mesh
cycle and the impact when a tooth comes into contact is
evenmore pronounced.Consistently, for fm = ωn/2 =
1350 Hz two contact loss events are noticeable for each

mesh cycle as visible in Fig. 13a on the upper branch.
Peak impact tooth loads are even higher in this scenario
while on the lower branch load carrying is smooth and
the force peaks are less pronounced.

4 Conclusions

This paper presents a novel methodology for fast and
complex gear dynamic analyses. Using a reduced order
approach all key nonlinear features of gear engage-
ment are simulated. The cyclical variation of stiff-
ness is simulated by the motion along the contacting
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flanks of linearised stiffnesses. Those are precomputed
and included in a TVMS map to avoid cumbersome
contact calculations without any loss of accuracy or
without introducing forced external excitation. In the
present approach only the external forces are specified
and are constant throughout each analysis presented
but any load and speed variation can be simulated in
the time domain. The nonlinear increase in the ampli-
tude of vibration is indeed caused by the self excitation
mechanism typical of gears and by contact loss in cer-
tain regimes of rotation and load. The rolling motion
of the gears is completely included in the simulation
using a very limited number of nodes. The transition
from one mesh cycle to the next is smoothly carried
out using an expansion, sorting and reduction strat-
egy of the system’s DoFs. This strategy minimizes the
size of the matrices for the dynamic analyses allowing
short calculations. Indeed several orders of magnitude
of computational performance are gained by the pro-
posedmethodologymaking it competitivewith analyti-
cal or semi-analytical methods. However, the geometry
of the studied gears is precisely accounted for by the
underlying FE model, without introducing any simpli-
fication. More complex geometries could be studied
effortlessly, including thin rim designs. The results of
this study are limited to the DTE in order to establish
a solid foundation for future work and the excellent
agreement with the experimental data available from
literature demonstrates its ability to correctly capture
complicated nonlinear phenomena but more compre-
hensive analyses can be carried out. The jump-up and
jump-downphenomenawere correctly captured aswell
as the amplitudes of oscillation and the occurrence of
total contact loss. Computational times are fast and use-
ful engineering insights can be obtained using the pro-
posed approach when applied to industrial cases. Since
it is based on FE, additional features can be easily intro-
duced. The gear bodies can be naturally coupled with
flexible shafts, and linear or nonlinear bearing models
can be used to connect those to the gearbox housing
if needed. Microgeometrical profile modifications can
be easily included changing only the TVMSmap with-
out having to go through the preprocessing phase each
time. Indeed, for the order ofmagnitude of those kind of
modifications only the local contact stiffness changes,
while the gear teeth are unaffected. Geometrical errors
and tooth-to-tooth variability can also be accounted for
in the sameway. Since at all times the relative velocities
of the contacting points are known, dynamic lubrica-

tion as well as surface roughness effects can also be
included.
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