
27 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Pruning as a Binarization Technique / Frickenstein, Lukas; Mori, Pierpaolo; Balamuthu Sampath, Shambhavi; Thoma,
Moritz; Fasfous, Nael; Rohit Vemparala, Manoj; Frickenstein, Alexander; Unger, Christian; Passerone, Claudio;
Stechele, Walter. - ELETTRONICO. - (2024), pp. 2131-2140. (Intervento presentato al convegno Conference on
Computer Vision and Pattern Recognition (CVPR)).

Original

Pruning as a Binarization Technique

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989943 since: 2024-06-27T14:00:25Z

IEEE

Pruning as a Binarization Technique

Lukas Frickenstein1, Pierpaolo Mori1,3, Shambhavi Balamuthu Sampath1, Moritz Thoma1,
Nael Fasfous1, Manoj Rohit Vemparala1, Alexander Frickenstein1, Christian Unger1,

Claudio Passerone3, Walter Stechele2
1BMW Group, Munich, Germany; 2Technical University of Munich, Munich, Germany; 3Politecnico Di Torino, Turin, Italy

{<firstname>.<lastname>}1@bmw.de,2@tum.de,3@polito.it,

Abstract

Convolutional neural networks (CNNs) can be quan-
tized to reduce the bit-width of their weights and activa-
tions. Pruning is another compression technique, where
entire structures are removed from a CNN’s computation
graph. Multi-bit networks (MBNs) encode the operands
(weights and activations) of the convolution into multiple
binary bases, where the bit-width of the particular operand
is equal to its number of binary bases. Therefore, this work
views pruning an individual binary base in an MBN as a
reduction in the bit-width of its operands, i.e. quantization.
Although many binarization methods have improved the ac-
curacy of binary neural networks (BNNs) by e.g. minimizing
quantization error, improving training strategies or propos-
ing different network architecture designs, we reveal a new
viewpoint to achieve high-accuracy BNNs, which leverages
pruning as a binarization technique (PaBT). We exploit
gradient information that exposes the importance of each
binary convolution and its contribution to the loss. We
prune entire binary convolutions, reducing the effective bit-
widths of the MBN during the training. This ultimately re-
sults in a smooth convergence to accurate BNNs. PaBT
achieves 2.9 p.p., 1.6 p.p. and 0.9 p.p. better accuracy
than SotA BNNs IR-Net, LNS and SiMaN on the ImageNet
dataset, respectively. Further, PaBT scales to the more com-
plex task of semantic segmentation, outperforming ABC-Net
on the CityScapes dataset. This positions PaBT as a novel
high-accuracy binarization scheme, and makes it the first to
expose the potential of latent-weight-free training for com-
pression techniques.

1. Introduction
Convolutional neural networks (CNNs) are the de facto
standard in many computer-vision applications, such as im-
age classification [11] and semantic segmentation [3]. The
major advancements in the prediction quality were brought
about by employing deeper and more complex CNN archi-

tectures. This made it difficult to meet hardware (HW) exe-
cution budgets of energy, latency, and memory, particularly
in embedded scenarios. As a consequence, an increased
interest in neural network compression led to the develop-
ment of quantization [5, 15, 17, 19, 22, 26, 32] and prun-
ing [12, 25, 30, 31, 37] techniques. To reduce the size and
complexity of the CNN, quantization reduces the bit-width
of the network operands, whereas pruning removes entire
structures like channels, kernels or filters. While quanti-
zation circumvents the need for complex float arithmetic
operations on HW, pruning reduces the number of compu-
tations. An extreme form of quantization are binary neu-
ral networks (BNNs), where parameters are restricted to
1-bit [2, 9, 15, 17, 18, 21, 22, 24, 26]. Early works of
BNNs [7, 8, 26] have shown compelling efficiency bene-
fits, albeit with a sizeable accuracy gap compared to their
full-precision counterparts on complex datasets.

Multi-bit networks (MBNs), also referred to as multi-
ple binary base networks, address this gap by decomposing
standard convolution operations into multiple binary convo-
lutions, where each binary convolution of a binary weight
tensor and a binary activation tensor represents a single bit-
pair interaction of an overall convolution [19, 25, 37]. Thus,
MBNs encode the network parameters as a weighted sum of
binary bases, where the bit-width of the particular network
parameter is equal to its number of binary bases. There-
fore, this paper views pruning an individual binary base in
an MBN as a reduction in the bit-width of its operands,
i.e. quantization. Although many binarization methods
have improved the accuracy of BNNs by e.g., minimizing
quantization error, improving training strategies or propos-
ing different network architecture designs, we reveal a new
viewpoint to achieve high-accuracy BNNs, which leverages
pruning as a binarization technique (PaBT). More specif-
ically, PaBT is a binarization technique exploiting MBNs
and gradient information to prune binary convolutions. Re-
moving all binary convolutions of a single base (weights
and/or activations) corresponds to a reduction of the effec-
tive bit-width. This enables the layer-wise, adaptive quanti-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2131

zation of the network from its over-parameterized, original
architecture during the training process. This progressive
in-train quantization through pruning ultimately results in
high-accuracy BNNs. Furthermore, PaBT unlocks the po-
tential of latent-weight-free training (BOP [13]) to be used
for pruning MBNs. This makes PaBT the first in-train com-
pression technique using BOP. The key contributions are
summarized as follows:
1. We view pruning an individual binary base in an MBN

as a reduction in the bit-width of its operands. Con-
sequently, pruning all binary convolutions of a partic-
ular base collapses into quantization, i.e. a bit-width re-
duction. To the best of our knowledge, we are the first
to capitalize on this viewpoint to achieve high-accuracy
BNNs.

2. We present a novel binarization scheme, namely prun-
ing as a binarization technique (PaBT), which jointly
learns the model parameters and the importance of sin-
gle binary convolutions, thereby allowing to prune entire
binary convolutions in the network. This enables layer-
wise, adaptive quantization of the network from its over-
parameterized architecture during the training smoothly
converging down to an accurate BNN.

3. PaBT is the first to use a latent-weight-free opti-
mizer [13] to preserve information of pruned binary con-
volutions, thereby enabling the flow of information to the
remaining ones throughout the compression.

Combining the contibutions, PaBT achieves better accuracy
than state-of-the-art (SotA) BNNs [2, 10, 15, 17, 18, 20, 21,
23, 24, 29, 33–36] on the ImageNet dataset. Furthermore,
PaBT scales to the more complex task of semantic segmen-
tation, outperforming ABC-Net [19] on the CityScapes [6]
dataset.

2. Related Work
Binary Neural Networks. Many methods on network bi-
narization explore multiple remedies to improve the predic-
tion capabilities, which can be classified as (1) gradient ap-
proximation techniques, (2) scaling factor formulations, (3)
BNN architecture design. Gradient approximation tech-
niques solve the problem of restricted gradient flows caused
by discrete operations in BNNs when training with standard
optimizers like stochastic gradient descent (SGD). Some
works [2, 15, 17, 19, 21, 24, 26, 34] use variants of straight-
through-estimator (STE) [1] to train latent weights, while
others completely move away from latent representations
and directly use gradients’ moving average [13]. Popular
works introduced scaling factors [2, 17, 18, 26] to mini-
mize the reconstruction error between real-valued parame-
ters and their binary counterparts. This improves the rep-
resentational power of BNNs at the cost of increasing the
number of floating-point operations (see Tab. 1). Other re-
cent studies [4, 21, 22] investigate different network archi-

tectures to ease the binarization process. Bi-Real Net [21]
shows increased representational capability by connecting
real-valued activations to binary activations of the consec-
utive binary convolution, i.e. a double residual connection
compared to a normal residual block [11]. ReactNet [22]
proposes structural changes on MobileNetV1 [14], adding
parameter-free shortcuts and replacing the group convolu-
tion by regular convolution. Although many binarization
methods have improved the accuracy of BNNs by explor-
ing multiple remedies as explained above, we reveal a new
viewpoint to achieve high-accuracy BNNs, which leverages
pruning as a binarization technique (PaBT). The presented
work differs in the three categories as follows. (1) We do
not approximate gradients, as we use the gradients’ mov-
ing average [13] for updating weights and gradient infor-
mation to decide the compression strategy, i.e. determine
which binary convolution can be pruned (see Tab. 2). (2)
We remove the need for additional scaling factors com-
pared SotA BNN/MBNs (see Tab. 1). (3) We do not in-
troduce any new network architecture complexities or ad-
ditional floating-point operations. However, such network
architectures can be orthogonally combined with PaBT if
desired (see Tab. 3).
Multi-Bit Quantization. MBQ compresses CNNs through
quantizing weights and activations into multiple binary
bases [19, 25, 37]. ABC-Net [19] introduces scaling fac-
tors per binary bases for weights and activations, α and
β respectively (see Tab. 1). ALQ [25] quantizes weights
in an exhaustive manner through many iterations of a
nested optimization problem, while activations simply fol-
low the fixed-point quantization approach from [5]. With
DMBQ [37], the authors propose to consider the distribu-
tion prior of weights to optimize the quantization aspect
through a look-up table, to mitigate the computational load
and sub-optimal quantization schemes of prior works. In
contrast, our work differentiates in the following aspects:
(1) PaBT employs a one-shot prune-and-train scheme, re-
moving the need for nested iterations and fine-tuning steps
or the look-up table approaches. (2) Although other works
on MBQ explore compression of CNNs through decom-
posing network parameters into multiple binary bases [19],
and gradually reduce the bit-width to a fixed average bit-
width [25, 37], PaBT compresses weights and activations
simultaneously down to 1-bit, thus positioning it as a novel
training scheme in the domain of BNNs.

3. Pruning as a Binarization Technique
In the following, we introduce the core concept of pruning
as a binarization technique (PaBT). In Sec. 3.1, we present
our viewpoint on quantized numerical representations. We
make analogies between standard quantization-aware and
multi-bit training techniques to link the concept of prun-
ing binary bases with bit-width reduction. In Sec. 3.2, we

2132

further push the flexibility of the trainable scaling factors
of MBNs by switching from base-oriented scaling factors
to operation-oriented scaling factors. Additionally, we re-
move the need to maintain latent full-precision weights for
MBNs, as discussed in Sec. 3.3. Finally, in Sec. 3.4 we
bring the previously presented concepts together by deriv-
ing the importance scores of all binary convolutions and
pruning the least contributing ones. This allows PaBT to
progressively reduce the effective bit-width of an initial
over-parameterized network down to a BNN.

3.1. Revisiting Quantized Representations

Multi-Bit and Integer Quantization Domains. We re-
introduce two CNN quantization domains, namely multi-
bit and integer quantization. An L-layer CNN architecture
consists of convolutional layers l ∈ {1, ..., L}. Generally,
the output activation Al ∈ RXo×Yo×Co of a convolution
operation is computed from the input activation Al−1 ∈
RXi×Yi×Ci and the weight W l ∈ RKx×Ky×Ci×Co . Here,
Xi, Yi, Ci and Co represent the dimensions of the width,
height, number of input and output channels of activations
respectively, while Kx and Ky represent the kernel dimen-
sions of the weights. An MBN convolution operation in-
volves a binary activation tensorAl−1

bin,n ∈ BXi×Yi×Ci and a
binary weight tensor W l

bin,m ∈ BKx×Ky×Ci×Co with B =
{0, 1}, followed by a multiplication of base scaling factors
αm for weights and βn for activations. n ∈ {1, ..., N} and
m ∈ {1, ...,M} denote the individual binary bases of ac-
tivations and weights of a layer respectively, in an M×N
MBN. Eq. 1 captures the approximation of a full-precision
convolution as an MBN convolution, where a convolution
of every binary base n is performed against every binary
base m, and accumulated at a later stage.

M∑
m=1

N∑
n=1

αmβnBinaryConv(W
l
bin,m, A

l−1
bin,n)

≈ Conv(W l, Al−1) = Al (1)

Switching to the quantized convolution domain
QuantConv, the scaling factor sint maps the results
of the convolution onto the true range of values, see Eq. 2.

sintQuantConv(W
l
int, A

l−1
int) ≈ Conv(W

l, Al−1) = Al

(2)
W l

int and Al−1
int are integer weight and activation tensors,

composed of elements xint. In standard quantization-
aware training (QAT) [5, 38], the integer value xint in
a CNN is represented by a high-precision floating-point
value xf to maintain smooth training and fine updates dur-
ing backpropagation. The mapping between xint and xf
takes place between standard round and clip operations as
xint = round(clip(xf ,−c,+c)/sint), where c is the clip-
ping threshold. Note that an integer value xint represented

in bits also has bit-positional scaling factors spos applied to
each bit position bpos. Eq. 3 shows an example of an inte-
ger with N = 3 (i.e. 3-bits) broken down to binary bits and
position scaling factors bpos and spos.

5 = 101 = 22×1+21×0+20×1 =

N−1∑
i=0

sposi×bposi (3)

Linking Multi-Bit and Integer Quantization. We for-
mulate an analogy between the two presented quantization
domains by linking Eq. 1 and Eq. 2. The scaling factors
αm and βn in Eq. 1 are bit-wise specific scaling factors of
the binary convolutions involving bit-m and bit-n. All the
M×N binary convolutions constitute the overall Conv in
an MBN. In an integer quantized convolution (Eq. 2), sint
is a restricted form of αm, βn, where the whole quantized
convolution must have one quantization scaling factor sint
in addition to their bit-positional scaling factor spos of its
integer operands in the tensors W l

int and Al−1
int .

sint × spos m × spos n → αm × βn (4)

The left side of Eq. 4 shows the scaling factors involved at
the bit-level in a quantized integer arithmetic operation be-
tween a bit at position spos m in an element of the tensor
W l

int and a bit at position spos n in an element of the tensor
Al−1

int . Note that sint is trainable in fixed-point QAT meth-
ods. However, spos m and spos n are dictated by the position
of the weight bit and the activation bit involved in the com-
putation, and cannot be chosen freely or learned directly.
This restricts the choice of scaling factors at the bit-level in
standard integer quantized convolution. However, αm and
βn, are both trainable and can be unique for each bit-m and
bit-n. In Eq. 4, we can conclude that scaling factors of in-
teger quantized convolution can be represented by MBNs,
but not the other way around. This is the result of αm and
βn having bit-level flexibility to hold any value necessary
to learn the neural network task at hand, making multi-bit
quantization a more general case of standard integer quan-
tization techniques. This fundamental understanding links
MBNs [19, 25, 37] that train α and β with QAT works [5]
that train sint, and allows us in the next sections to view
pruning binary bases as bit-width reductions.

3.2. Operation-Oriented Scaling Factors

Consider a layer l in an MBN with M=3 and N=3. The
combinations of all possible scaling factors per MBN layer
is shown in Eq. 5, where α and β are learned for each base
[19, 25, 37]. Although this is much more flexible than sint
as explained in Sec. 3.1, we still see that α and β combi-
nations are fixed. In Eq. 5, the learned α1 has to be com-
patible with β1, β2, β3. Therefore, the network must tweak

2133

each base scaling factor such that it is compatible with every
other scaling factor it interacts with in a binary convolution
(every n against every m).

{α1β1, α1β2, α1β3, α2β1, ..., α3β3}
→ {γ11, γ12, γ13, γ21, ..., γ33} (5)

To further improve the flexibility associated with base-
oriented scaling factors αm and βn, we replace them
by operation-oriented scaling factors γmn for MBNs, as
shown in Eq. 5, offering the following two benefits. (1)
As the name implies, each operation-oriented scaling fac-
tor is dedicated to one specific binary convolution between
a binary activation base n and a binary weight base m. The
MBN can now independently learn optimal γmn for every
binary convolution. (2) Using γmn grants frictionless ac-
cess to the underlying binary convolution operations dur-
ing the training. This helps PaBT derive the importance
scores of binary convolutions with respect to the final loss
term from gradient information. After binarization with
PaBT only one γ remains for the entire convolutional layer.
Sec. 3.4 further details on operation-level pruning.

Finally, we compare the number of introduced scaling
factors of different BNNs. In Tab. 1, we note that XNOR-
Net [26] and XNOR-Net++ [2] introduce scaling factors for
convolution layers according to their dimensions. ABC-
Net [19] introduces per base scaling factors along the N
activation bases and M weight bases. Although PaBT uses
operation-oriented scaling factors during training to enable
a layer-wise, adaptive quantization of the network, PaBT
ultimately results in a BNN, with only one remaining scal-
ing factor per layer. In summary, PaBT requires the least
amount of scaling factors compared to the discussed
BNNs, while having a better accuracy (see Tab. 3).

Table 1. Comparison of scaling factor formulations and number
(#) of scaling factors per layer with other BNN/MBNs.

Model Scaling Factor # of Scaling Factors
Formulation per Layer

XNOR-Net [26] α ∈ RCo , β ∈ RCo 2 · Co

XNOR-Net++ [2] α ∈ RCo , β ∈ RXo , γ ∈ RYo Co +Xo + Yo
ABC-Net [19] α ∈ RM , β ∈ RN M +N
PaBT (Ours) γ ∈ R 1

3.3. Latent-Free Training of Multi-Bit Networks

For PaBT, we apply the binary optimizer (BOP) [13] con-
cept to MBNs for the first time. This enables training binary
weight bases of the MBN without maintaining latent full-
precision weights and gradient approximation [1]. To flip
binary weights, BOP considers the consistency and strength
of gradient signals. The consistency captures past gradient
information by maintaining the exponential moving average

of weight gradients µt at training step t, see Eq. 6.

µt = (1− φ)µt−1 + φgw,t (6)

µt considers the exponential moving average of weight gra-
dients µt−1 of the training step t − 1, the weight gradients
gw,t of the training step t and an adaptivity rate φ. If the
strength of gradient signals |µi

t|, surpasses the threshold τ ,
the binary weight wi is flipped, see Eq. 7.

wi
t =

{
−wi

t−1 if |µi
t| ≥ τ and sign(µi

t) = sign(wi
t−1),

wi
t−1 otherwise.

(7)
Using BOP, we push the accuracy improvement of MBNs
(see Tab. 2). We provide an ablation study on the training
hyperparameters, adaptivity rate and threshold, for MBN
training with BOP in the supplementary Sec. S1. Utilizing
the concept of consistency and strength of gradient signals,
i.e. the gradients’ history, to update binary weight bases not
only helps improve the prediction capability of MBNs, but
also allows information flow from pruned binary convolu-
tions to remaining ones in PaBT. The information flow is
an essential stepping stone for PaBT to smoothly prune bits
down to high-accuracy BNNs, see Sec. 5.1.

3.4. Operation-Level Pruning

In the following, we detail the flow of PaBT as visualized
in Fig. 1. Starting from (i) importance scores, we explain
the three fundamental functions of derive(), sort() and im-
pose(). Using the importance scores [25], we elaborate (ii)
the binary convolution pruning process. Finally, by (iii)
pruning binary bases we achieve a reduction in the effective
bit-width of the MBN, which enables smooth convergence
down to the final BNN.
(i) Importance Scores. For an operation-oriented scaling
factor γmn, PaBT derives the importance score fγmn

for
the respective binary convolution operation. This enables
the technique to assess the contribution of each binary con-
volution operation to the loss during the training. In detail,
all operation-oriented scaling factors γmn are trained with
AMSGrad [27] providing the first and second order momen-
tum u and v, respectively. In the context of PaBT, reusing
the long-term momentum information allows for computing
the importance score fγmn

, see Eq. 8.

fγmn
= −κuγmn

γmn +
1

2
vγmn(γmn)

2 (8)

Here, κ represents a weighting factor, while umn and vmn

represent the first and second order momentum of the re-
spective scaling factor γmn. Sorting the importance scores
of all binary convolutions in the MBN reveals the least
contributing ones. The derived importance scores steer
the pruning of binary convolutions imposed via pruning

2134

Ci

Xi

Yi

Kx

Ky

Co

m ϵ {1, ..., M}

N x Activation-Bases

Abin,n B

M x Weight-Bases

Wbin,m B

Ci

(i) Importance Scores
(1) Derive ()
(2) Sort ()
(3) Impose ()

n ϵ {
1, ...

, N
}

(ii) Binary Convolution
 Pruning

(iii) Pruning Binary Base

pmn

γ mn

BinaryConv()

l [Kx x Ky x Ci x Co]

l-1 [Xi x Yi x Ci]

Figure 1. Visual representation of PaBT for one layer: Starting
from (i) importance scores, the functions derive(), sort() and im-
pose() are performed. Using the importance scores, (ii) a binary
convolution pruning decision can be made. By (iii) pruning bi-
nary bases we achieve a reduction in the effective bit-width of the
MBN, progressively resulting in a BNN.

masks. To prove the effectiveness of the proposed impor-
tance score-based pruning approach of PaBT, we compare
it to a variant of PaBT with randomly chosen pruning deci-
sions in Sec. 5.2.
(ii) Binary Convolution Pruning. A binary pruning mask
Pl ∈ {0, 1}M×N of layer l, as shown in Eq. 9, is applied to
the binary convolution operation grid visualized in Fig. 1.

Pl =

 p11 . . . p1N
...

. . .
...

pM1 . . . pMN

 (9)

When the element pmn ∈ Pl is set to zero, the out-
put of the corresponding binary convolution is blocked, i.e.
pruned. Eq. 10 shows the MBN convolution of PaBT in
the training phase, with its pruning mask element pmn, the
operation-oriented scaling factor γmn and the binary con-
volution BinaryConv(), between the binary weight tensor
W l

bin,m and binary activation tensor Al−1
bin,n of layer l.

M∑
m=1

N∑
n=1

pmn ⊙ γmnBinaryConv(W
l
bin,m, A

l−1
bin,n)

≈ Conv(W l, Al−1) = Al (10)

In-train pruning introduces sudden changes in loss. How-
ever, due to BOP keeping information of previous gradient
updates through the momentum, the change introduced by
the pruning does not suddenly disrupt the weight updates.
Instead, PaBT gradually adapts to the compressed structure
of the MBN through this momentum information, allowing

it to compensate for lost bit interactions and preserve pre-
diction capabilities. This highlights the advantage of PaBT
combining the concept of BOP and MBNs for the first time
as our experiments have shown that using other standard op-
timizers did not succeed in learning high accuracy BNNs.
(iii) Pruning Binary Bases. At every pruning step, the
least contributing binary convolution is pruned. This re-
duces the total number of binary convolution operations in
the MBN, but does not yet result in lowering the effective
bit-width. This is due to the fact, that the bases of the pruned
binary convolution may still be used in the remaining ones,
as shown in the top right of Fig. 1. After several pruning
steps, all binary convolutions in which a particular base is
used are removed. At this point, the pruning method col-
lapses into quantization by resulting in a bit-width reduc-
tion due to the entire base removal (yellow tensor in Fig. 1).
After several iterations of progressive quantization during
the training, one final binary convolution remains per layer.

4. Algorithm

The PaBT method is detailed in Alg. 1. Given an L-layer
MBN with bases M and N for all layers, we summarize all
its parameters in θ = {θw, θBN, θSF}, where θw contains all
its weights, θBN all its batch norm parameters and θSF all
its scaling factors γmn for all layers. We choose tstart and
tend as the train steps at which the pruning process starts
and ends respectively. We provide further details on the hy-
perparameters tstart and tend in the supplementary Sec. S2.
ψ determines the pruning ratio over all binary convolutions
of the MBN, thus defining the pruning duty for PaBT down
to BNN configurations from the previously defined over-
parameterized MBN. We initialize the weight parameters
θw from a pre-trained full-precision model. All elements of
the pruning mask PM×N

l are initialized to 1, to start with
an unpruned, over-parameterized model. The optimizers
BOP and AMSGrad are initialized with their parameters,
as introduced in previous sections. We start by comput-
ing the total number of binary convolutions to be pruned
as prunetotal, equally distributing the pruning duty ψ across
available training steps. Then, we compute the number of
training steps between two consecutive pruning decisions,
tprune. At line 4 of Alg. 1, the PaBT training starts. From
lines 5-12 training updates are performed, as described in
Sec. 3.3. At line 13, we check if the training step t is
within the pruning phase tstart and tend. If we are within
the pruning phase, in line 14, we check if sufficient steps
have passed since the last pruning decision by accounting
for tprune. From line 15-21, the main pruning decision steps
of (1) derive, (2) sort and (3) impose are applied as previ-
ously shown in Fig. 1 and discussed in Sec. 3.4. After a
pruning decision has been made, we assign the correspond-
ing element plmn of the respective pruning mask P l to zero.

2135

Algorithm 1: Pruning as a binarization technique.
Input: Train data (x, y), L-layer MBN(·) with

parameters θ = {θw, θBN, θSF} and M , N
bases, tstart, tend, ψ.

Init : θw ← sign(θw) ∈ {−1, 1}, PM×N
l ← 1,

AMSGrad (η, u, v, β1, β2),
BOP (τ , φ, µ).

1: Compute total number of convolutions to be pruned:
2: prunetotal = L×M ×N × ψ
3: Compute tprune step size: tprune =

tend−tstart
prunetotal

4: for Train step t = 1 to T do
5: Compute gradient:
6: gt ← ∇L(MBN(xt; θt), yt)
7: Update momentum:
8: ut, vt, v̂t, V̂t following AMSGrad.
9: µt following BOP.

10: Update parameter:
11: θSF,t+1 and θBN,t+1 with AMSGrad.
12: θw,t+1 with BOP.
13: if tstart ≤ t ≤ tend then
14: if t mod tprune == 0 then
15: Derive(): Compute importance scores fθSF
16: with Eq. 8
17: Sort(): Sort and select Top-1 fθSF in
18: ascending order:
19: [l,m, n]← fθSF .index(min())
20: Impose(): Impose pruning decision:
21: plmn ← 0
22: end if
23: end if
24: end for

5. Experiments
This section presents the results of applying PaBT on
ResNet-20, ResNet-18 and DeepLabv3+ [3] evaluated on
CIFAR-10 [16], ImageNet [28] and CityScapes [6] respec-
tively. If not otherwise mentioned, the hyper-parameters are
adopted from the base implementations. Note that, we fol-
low the conventional approach of not quantizing first and
last layers of the CNN [19, 21, 26]. More details about
bringing PaBT to the task of semantic segmentation are
provided in the supplementary Sec. S3. The bit-width of
weights and activations is denoted as IW and IA respec-
tively.

5.1. Exploring Scaling Factors, Optimizer and
Pruning Capabilities

We present the investigation of base-oriented (α, β) and
operation-oriented (γ) scaling factors (θSF) proposed for
PaBT. Different optimizer settings and PaBT-based bina-
rization of MBNs for different network architectures and

Table 2. Influence of the scaling factors θSF, the used optimizer
and operation level pruning, in terms of number of bit-operations
(Bit-OPs) and Top-1 accuracy. Note that solutions with α and β
represent the implementation from [19].

Model/
θSF

Optimizer Operation Bit-Width Top-1
Dataset (Parameter Scope) Pruning IW IA [%]

R
es

N
et

-2
0

C
IF

A
R

-1
0

- ADAM (θ) ✗ 8 8 92.4

α, β ADAM (θ) ✗

3 3

89.61
γ ADAM (θ) ✗ 89.63

γ
ADAM (θBN,SF),

✗ 90.00BOP (θW)

α, β ADAM (θ) ✗

1 1

83.85
γ ADAM (θ) ✗ 83.93

γ
ADAM (θBN,SF),

✗ 84.27BOP (θW)

γ
AMSGrad (θBN,SF),

✓ 1 1 86.59BOP (θW)

R
es

N
et

-1
8

Im
ag

eN
et

- ADAM (θ) ✗ 8 8 69.3

α, β AMSGrad (θ) ✗

3 3

61.99
γ AMSGrad (θ) ✗ 62.69

γ
AMSGrad (θBN,SF),

✗ 62.86BOP (θW)

α, β AMSGrad (θ) ✗

1 1

55.44
γ AMSGrad (θ) ✗ 55.55

γ
AMSGrad (θBN,SF),

✗ 56.02BOP (θW)

γ
AMSGrad (θBN,SF),

✓ 1 1 57.51BOP (θW)

datasets, with respect bit-width and Top-1 accuracy are pre-
sented in Tab. 2. The effectiveness of adopting BOP in
PaBT is shown by comparing to experiments where the
network parameters are optimized by ADAM or AMS-
Grad. Further experiments using BOP for weight parame-
ters (θW) optimization in combination with ADAM or AMS-
Grad for batch norm parameters (θBN) and scaling factors
(θSF) optimization are carried out. (1) Results with γ show
improvements from our proposed operation-oriented
scaling factors. (2) Results combining AMSGrad and
BOP show our improvements of introducing the latent-
weight-free training approach. (3) Results with opera-
tion pruning activated (✓) show improvements of our
overall PaBT method.

Interestingly, switching from one global optimizer for θ
to two optimizer scopes and updating θW with BOP results
in only slight improvements throughout all experiments,
demonstrated by an increase of 0.47 p.p. in Top-1 for the
1-bit solution on ImageNet. Consistently, PaBT produces
dominating solutions (Top-1) through pruning of an over-
parameterized MBN down to 1-bit, compared to directly
training a 1-bit network with latent-weight-free optimiza-
tion and operation-oriented scaling factors, on all experi-
ments. This manifests in a boost of 1.49 p.p. in Top-1
for ResNet-18 on ImageNet. The experiments shown in
this section demonstrate the superiority of PaBT in learning
from its over-parameterized, original network architecture
and smooth flow of information onto remaining binary con-

2136

volutions after a pruning step (as indicated by experiments
highlighted by (✓) for operation pruning). It is interest-
ing to note, that replacing latent-weight-free training with
latent-weight representation during pruning did not succeed
in maintaining accuracy of the resulting network.

5.2. Does Pruning the Right Operations Matter?

In Fig. 2, we demonstrate the effectiveness and training be-
haviour of PaBT on ImageNet. We highlight the relevance
of the importance scores, as proposed in Sec. 3.4, by vi-
sualizing the training behaviour of two experiments which
vary in the pruning criterion (PaBT-I and PaBT-R), com-
pared to the baseline, all averaged over three runs. The dot-
ted lines indicate the pruning start (tstart) and end (tend)
for the PaBT experiments. PaBT-R prunes binary convolu-
tion operations randomly, while PaBT-I prunes them based
on importance scores. The baseline ResNet-18 MBN with
M=N=1 is trained in a latent-weight-free manner using
BOP [13] and achieves a Top-1 accuracy of 56.02%, in-
dicated in green. Improving on that result, PaBT-R is used
to train and prune an over-parameterized ResNet-18 with
M=N=3 down to a ResNet-18 with M=N=1, where the
pruned binary convolution operations are selected randomly
across all layers and operations (indicated in red), resulting
in a Top-1 accuracy of 57.04%. Lastly, PaBT-I utilizes the
importance scores as the pruning criterion, where the train-
ing behavior is indicated in blue and produces a Top-1 of
57.51%. This shows the benefit of the importance scores
over the random pruning criterion. In summary, the above
empirically supports two claims: (1) PaBT network bina-
rization from an over-parameterized model down to BNNs
outperforms training models directly from BNN architec-
tures (both red/blue outperform green) and (2) using gra-
dient information to assess the importance of binary con-
volutions in PaBT (i.e. making good pruning decisions) is
better than randomly removing binary convolutions (blue
outperforms red). Note that all three configurations involve
contributions proposed by this work in Sec. 3.

5.3. Comparison to State-of-the-Art

We compare PaBT with various binarization techniques [2,
10, 15, 17–21, 23, 24, 26, 29, 33–36], all aiming to produce
highly accurate BNNs. Tab. 3 compares our PaBT with
SotA BNNs in terms of Top-1/mIoU, where PaBT prunes
binary convolutions of an over-parameterized MBN with
M=N=3 down to the BNN configuration. PaBT outper-
forms all other BNN techniques on ResNet-20 architecture,
and achieves on-par results with RBNN [17]. To showcase
the versatility of PaBT to be combined with orthogonal net-
work architecture complexities (recall related work, e.g. Bi-
Real Net [21], ReactNet [22]), we take the Bi-Real structure
as an example along with the normal ResNet [11] structure
for the ImageNet dataset, indicated by 2 and 1 respectively.

0.92 0.94 0.96 0.98

56.02 [-]
57.04 [+1.02]
57.51[+0.47]

To
p-

1[
%

]

0 0.2 0.4 0.6 0.8 1
0.48

0.5

0.52

0.54

0.56

tstart tend

Train Steps [106]

Strategy: Baseline [56.02%]

PaBT-R [57.04%] PaBT-I [57.51%]

Figure 2. Comparison of the training behavior of PaBT relying on
random selection (red) and importance score (blue) as a pruning
criterion to determine the pruned binary convolution of an over-
parameterized ResNet-18 MBN with M=N=3 down to a BNN.
This achieves the same computational complexity (Bit-OPs) as a
ResNet-18 MBN with M=N=1 (green) directly learned with latent-
weight-free training.

On the more complex ImageNet-trained ResNet-18, PaBT
results are again outperforming all other techniques. This
manifests in 3.3 p.p. and 0.4 p.p. better accuracy than
UAD [15] and XNOR++ [2] using normal ResNet structure.
The trend holds for works with Bi-Real structure, where
PaBT achieves 2.9 p.p., 1.6 p.p. and 0.9 p.p. better accuracy
than SotA BNNs IR-Net [24], LNS [10] and SiMaN [18]
on ImageNet, respectively. Semantic segmentation is noto-
riously difficult for BNNs, nonetheless the PaBT BNN vari-
ant of DeepLabv3+ still achieves a 3.72 p.p. mIoU improve-
ment over an equivalent ABC-Net MBN with M=N=1.
This showcased the scalability to larger models, as we quan-
tized the ResNet-18 backbone as well as the decoder layers
as they hold the majority of computational complexity us-
ing PaBT. It is important to note that the results presented,
not only outperform SotA but also (1) do not rely on gradi-
ent approximations, (2) do not introduce additional scaling
factors and (3) are orthogonal to network architecture com-
plexities (proven on normal [1] and Bi-Real [2] structure).
Discussion. Last, we want to compare achievable re-
sults of SotA BNN works, categorized by the underlying
SotA BNN baseline architectures. Tab. 4 highlights the
range of achievable results of SotA BNN methods build-
ing on top of the SotA BNN baseline architectures, namely
standard ResNet [11]/XNOR-Net [26] (51.2− 57.5), Bi-
Real Net [21] (56.4− 61.0) and ReactNet [22] (65.5+).
Fig. 3 visualizes the major differences of the BNN base-
line architectures in the downsampling layers. Note the
full precision convolution (Conv) used in both Bi-Real
Net and ReactNet (highlighted in red) and additional mod-
ules (e.g. BiRealSign, ReactSign) surrounding the

2137

Table 3. Comparision of PaBT with SotA model compression ap-
proaches. [1] and [2] indicate results using ResNet with normal
structure [11] and with Bi-Real structure [21].

Model/ Method IW /IA
Top-1/mIoU

Dataset [%]

R
es

N
et

-2
0

C
IF

A
R

-1
0

ResNet-20 [11] 8/8 92.48

ABC-Net [19] 1/1 83.85
XNOR-Net [26] 1/1 83.98

MBN-Net + BOP (Ours) 1/1 84.27
IR-Net [24] 1/1 85.50*
LNS [10] 1/1 85.70*
LCR [29] 1/1 86.00*

FDA-BNN [35] 1/1 86.20*
XNOR-Net [26] + BOP [13] 1/1 86.30

RBNN [17] 1/1 86.51*

PaBT (Ours) 1/1 86.59

R
es

N
et

-1
8

Im
ag

eN
et

ResNet-18 [11] 8/8 69.01

XNOR-Net1 [26] 1/1 51.20
MAD1 [23] 1/1 52.00*

ABC-Net1 [19] 1/1 52.23
BNN-UAD1 [15] 1/1 54.20*

XNOR-Net1 [26] + BOP [13] 1/1 55.08
MBN-Net1 + BOP (Ours) 1/1 55.86

Bi-Real Net2 [21] 1/1 56.40*
XNOR++1 [2] 1/1 57.10*

BNN-UAD2 [15] 1/1 57.20*
IR-Net2 [24] 1/1 58.10*
BONN2 [36] 1/1 59.30*
LNS2 [10] 1/1 59.40*

RBCN2[20] 1/1 59.50*
LCR2 [29] 1/1 59.60*

Si-BNN2[33] 1/1 59.70*
RBNN2 [17] 1/1 59.90*
SiMaN2 [18] 1/1 60.10*

FDA-BNN2 [35] 1/1 60.20*
ReSTE2 [34] 1/1 60.88*

PaBT1 (Ours) 1/1 57.51
PaBT2 (Ours) 1/1 61.02

D
ee

pL
ab

v3
+

C
ity

Sc
ap

es DeepLabv3+ [3] 8/8 68.53

ABC-Net [19] 1/1 50.95
MBN-Net + BOP (Ours) 1/1 51.1

PaBT (Ours) 1/1 54.67

binary convolutions (bConv) (highlighted in green). PaBT
outperforms SotA BNN works on compared architectures,
XNOR-Net and Bi-Real Net. Notably, all BNN works
building on top of ReactNet [22] generally have higher
baselines, due to structural changes surrounding the binary
convolution block. Differently, PaBT contributes inside the
binary convolution block in Fig. 3 making it orthogonal to
other techniques as proven on Bi-Real/XNOR-Net struc-
tures.

Sign

Sign

Sign

[3x3]-
bConv

BN

[3x3]-
bConv

BN

[1x1]-
bConv

BN

Legend:
Binary Conv.
Full-Precision Conv.
Contribution of PaBT

P
a
B

T
P

a
B

T

P
a
B

T

(a) XNOR-Net [26].

ReactSignBiRealSign AvgPool

[3x3]-
bConv

BN

[3x3]-
bConv

BN

[1x1]-
Conv

BN

BiRealSign

P
a
B

T
P

a
B

T

(b) Bi-Real Net [21].

AvgPoolReactSign

[3x3]-
bConv

BN

[3x3]-
bConv

BN

[1x1]-
Conv

BN

ReactPrelu

ReactSign

ReactPrelu

P
a
B

T
P

a
B

T

(c) ReactNet [22].

Figure 3. Structure of downsampling layers in BNN baseline ar-
chitectures.

Table 4. Comparison of SotA BNN works, categorized by used
BNN baseline architectures, namely standard XNOR-Net [26],
Bi-Real Net [21] and ReactNet [22]. Benchmark for ResNet-18
trained on ImageNet. [-] no result is reported.

Method Published XNOR-Net Bi-Real Net ReactNet
[51.20] [56.40] [65.50]

RBCN [20] IJCAI19 - 59.50 -
XNOR++ [2] BMVC19 57.10 - -
IR-Net [24] CVPR20 56.90 58.10 66.50
LNS [10] PMLR20 - 59.40 -

RBNN [17] NeurIPS20 - 59.90 -
MAD [23] BMVC21 52.00 57.90 66.50

BNN-UAD [15] CVPR21 54.20 57.20 -
FDA-BNN [35] NeurIPS21 - 60.20 66.00

SiMaN [18] TPAMI22 - 60.10 66.10
BONN [36] IJCV22 - 59.30 -
ReSTE [34] ICCV23 - 60.88 -

PaBT (Ours) 57.51 61.02 -

6. Conclusion

We presented a viewpoint on pruning in the domain of
multi-bit networks to effectively achieve in-train binariza-
tion. With this viewpoint, we proposed a novel compression
method which leverages pruning as a binarization technique
(PaBT) by exploiting gradient information and revealing the
importance of each binary convolutions and its contribution
to the loss. Additionally, we applied the concept of BOP to
MBNs for the first time, which allowed us to improve their
baseline accuracies and further facilitate the flow of infor-
mation in our in-train pruning technique. By pruning all
binary convolutions of a particular base, we reduced the ef-
fective bit-width of the MBN being trained, at which point
pruning collapsed into quantization during the training, ul-
timately resulting in the gradual convergence down to the
final BNN. PaBT outperforms SotA BNNs on the ImageNet
dataset and scales to the more complex task of semantic seg-
mentation. This positions PaBT as a novel high-accuracy,
binarization technique, and makes it the first to expose the
potential of latent-weight-free training for compression.

2138

References
[1] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville.

Estimating or Propagating Gradients Through Stochas-
tic Neurons for Conditional Computation. ArXiv,
abs/1308.3432, 2013. 2, 4

[2] Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Im-
proved binary neural networks. In Proceedings of the British
Machine Vision Conference (BMVC). BMVA Press, 2019. 1,
2, 4, 7, 8

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2018. 1, 6, 8

[4] Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu,
Zhiqiang Shen, and Zhangyang Wang. "bnn - bn = ?":
Training binary neural networks without batch normaliza-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
pages 4619–4629, 2021. 2

[5] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I.-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. PACT: Parameterized Clipping Activation
for Quantized Neural Networks. ArXiv, abs/1805.06085,
2018. 1, 2, 3

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 2, 6

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Advances in Neu-
ral Information Processing Systems (NeurIPS). Curran As-
sociates, Inc., 2015. 1

[8] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural networks:
Training deep neural networks with weights and activations
constrained to + 1 or -1. arXiv preprint arXiv:1602.02830,
2016. 1

[9] Sieger Falkena, Hadi Jamali-Rad, and Jan van Gemert. Lab:
Learnable activation binarizer for binary neural networks.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), pages 6425–6434,
2023. 1

[10] Kai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, En-
hua Wu, and Chang Xu. Training binary neural networks
through learning with noisy supervision. In Proceedings
of the 37th International Conference on Machine Learning
(ICML), pages 4017–4026. PMLR, 2020. 2, 7, 8

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 1, 2, 7, 8

[12] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and accel-

eration on mobile devices. In Proceedings of the European
Conference on Computer Vision (ECCV), 2018. 1

[13] Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun
Liu, Kwang-Ting Cheng, and Roeland Nusselder. Latent
weights do not exist: Rethinking binarized neural network
optimization. In Advances in Neural Information Processing
Systems (NeurIPS). Curran Associates, Inc., 2019. 2, 4, 7, 8

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 2

[15] Hyungjun Kim, Jihoon Park, Changhun Lee, and Jae-Joon
Kim. Improving accuracy of binary neural networks us-
ing unbalanced activation distribution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7862–7871, 2021. 1, 2, 7, 8

[16] Alex Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. University of Toronto, 2012. 6

[17] Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Yan
Wang, Yongjian Wu, Feiyue Huang, and Chia-Wen Lin. Ro-
tated binary neural network. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), pages 7474–7485. Cur-
ran Associates, Inc., 2020. 1, 2, 7, 8

[18] Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang,
Fei Chao, Chia-Wen Lin, and Ling Shao. Siman: Sign-to-
magnitude network binarization. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2022. 1, 2, 7, 8

[19] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards Accurate
Binary Convolutional Neural Network. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2017. 1, 2,
3, 4, 6, 8

[20] Chunlei Liu, Wenrui Ding, Xin Xia, Yuan Hu, Baochang
Zhang, Jianzhuang Liu, Bohan Zhuang, and Guodong Guo.
Rectified binary convolutional networks for enhancing the
performance of 1-bit dcnns. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
pages 854–860. International Joint Conferences on Artificial
Intelligence Organization, 2019. 2, 8

[21] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-real net: Enhancing the per-
formance of 1-bit cnns with improved representational ca-
pability and advanced training algorithm. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 722–737, 2018. 1, 2, 6, 7, 8

[22] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-
Ting Cheng. Reactnet: Towards precise binary neural net-
work with generalized activation functions. In European
Conference on Computer Vision (ECCV), 2020. 1, 2, 7, 8

[23] Ying Nie, Kai Han, and Yunhe Wang. Multi-bit adaptive dis-
tillation for binary neural networks. In 32nd British Machine
Vision Conference 2021, BMVC 2021, Online, November 22-
25, 2021, page 61. BMVA Press, 2021. 2, 7, 8

[24] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen,
Ziran Wei, Fengwei Yu, and Jingkuan Song. Forward and
backward information retention for accurate binary neural
networks. In Proceedings of the IEEE/CVF Conference on

2139

Computer Vision and Pattern Recognition (CVPR), 2020. 1,
2, 7, 8

[25] Zhongnan Qu, Zimu Zhou, Yun Cheng, and Lothar Thiele.
Adaptive loss-aware quantization for multi-bit networks.
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 7985–7994, 2020. 1, 2, 3,
4

[26] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. XNOR-Net: ImageNet Classification Us-
ing Binary Convolutional Neural Networks. In Proceedings
of the European Conference on Computer Vision (ECCV),
2016. 1, 2, 4, 6, 7, 8

[27] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the
convergence of adam and beyond. In International Confer-
ence on Learning Representations (ICLR), 2018. 4

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. 6

[29] Yuzhang Shang, Dan Xu, Bin Duan, Ziliang Zong, Liqiang
Nie, and Yan Yan. Lipschitz continuity retained binary neu-
ral network. In Computer Vision – ECCV 2022, pages 603–
619, Cham, 2022. Springer Nature Switzerland. 2, 7, 8

[30] Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frick-
enstein, Mhd Ali Moraly, Aquib Jamal, Lukas Fricken-
stein, Christian Unger, Naveen-Shankar Nagaraja, and Wal-
ter Stechele. L2pf-learning to prune faster. In Interna-
tional Conference on Computer Vision and Image Process-
ing, pages 249–261. Springer, 2020. 1

[31] Manoj-Rohit Vemparala, Nael Fasfous, Alexander Fricken-
stein, Sreetama Sarkar, Qi Zhao, Sabine Kuhn, Lukas Frick-
enstein, Anmol Singh, Christian Unger, Naveen-Shankar Na-
garaja, Christian Wressnegger, and Walter Stechele. Adver-
sarial robust model compression using in-train pruning. In
2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 66–75, 2021.
1

[32] Manoj Rohit Vemparala, Nael Fasfous, Lukas Frickenstein,
Alexander Frickenstein, Anmol Singh, Driton Salihu, Chris-
tian Unger, Naveen Shankar Nagaraja, and Walter Stechele.
Hardware-aware mixed-precision neural networks using in-
train quantization. In BMVC, page 60, 2021. 1

[33] Peisong Wang, Xiangyu He, Gang Li, Tianli Zhao, and Jian
Cheng. Sparsity-inducing binarized neural networks. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
34(07):12192–12199, 2020. 2, 7, 8

[34] X. Wu, D. Zheng, Z. Liu, and W. Zheng. Estimator meets
equilibrium perspective: A rectified straight through estima-
tor for binary neural networks training. In 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
17009–17018, Los Alamitos, CA, USA, 2023. IEEE Com-
puter Society. 2, 8

[35] Yixing Xu, Kai Han, Chang Xu, Yehui Tang, Chunjing Xu,
and Yunhe Wang. Learning frequency domain approxima-
tion for binary neural networks. In Neural Information Pro-
cessing Systems (NeurIPS), 2021. 8

[36] Junhe Zhao, Sheng Xu, Baochang Zhang, Jiaxin Gu, David
Doermann, and Guodong Guo. Towards compact 1-bit cnns
via bayesian learning. International Journal of Computer
Vision, 130, 2022. 2, 7, 8

[37] Sijie Zhao, Tao Yue, and Xuemei Hu. Distribution-aware
adaptive multi-bit quantization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9281–9290, 2021. 1, 2, 3

[38] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016. 3

2140

