
29 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The Zero Regrets Algorithm: Optimizing over Pure Nash Equilibria via Integer Programming / Dragotto, G.;
Scatamacchia, R.. - In: INFORMS JOURNAL ON COMPUTING. - ISSN 1091-9856. - 35:5(2023), pp. 1143-1160.
[10.1287/ijoc.2022.0282]

Original

The Zero Regrets Algorithm: Optimizing over Pure Nash Equilibria via Integer Programming

GENERICO -- per es. Nature : semplice rinvio dal preprint/submitted, o postprint/AAM   [ex default]

Publisher:

Published
DOI:10.1287/ijoc.2022.0282

Terms of use:

Publisher copyright

The original publication is available at https://pubsonline.informs.org/doi/epdf/10.1287/ijoc.2022.0282 /
http://dx.doi.org/10.1287/ijoc.2022.0282.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989902 since: 2024-06-26T12:50:44Z

INFORMS



ar
X

iv
:2

11
1.

06
38

2v
4 

 [
m

at
h.

O
C

] 
 1

5 
Se

p 
20

22

The ZERO Regrets Algorithm: Optimizing over Pure Nash

Equilibria via Integer Programming

Gabriele Dragotto and Rosario Scatamacchia

ID gdragotto@princeton.edu

ID rosario.scatamacchia@polito.it

Abstract. Designing efficient algorithms to compute Nash equilibria poses considerable chal-

lenges in Algorithmic Game Theory and Optimization. In this work, we employ integer pro-

gramming techniques to compute Nash equilibria in Integer Programming Games, a class of

simultaneous and non-cooperative games where each player solves a parametrized integer pro-

gram. We introduce ZERO Regrets, a general and efficient cutting plane algorithm to compute,

enumerate, and select Nash equilibria. Our framework leverages the concept of equilibrium in-

equality, an inequality valid for any Nash equilibrium, and the associated equilibrium separation

oracle. We evaluate our algorithmic framework on a wide range of practical and methodological

problems from the literature, providing a solid benchmark against the existing approaches.

1 Introduction

Several real-world problems often involve a series of selfish agents optimizing their benefits while
mutually affecting their decisions. The concept of Nash equilibrium [38, 39] revolutionized the un-
derstanding of the agents’ strategic behavior by proposing a flexible and interpretable solution, with
consequences and applications in many different contexts. The Nash equilibrium constitutes a stable
solution, meaning that no single agent has an incentive to defect from it profitably. Nash equilibria,
however, may intrinsically differ in their features, for instance, in terms of a given welfare function
measuring the common good for the collectivity of the agents. Above all, the quality of equilibria often
does not match the quality of the social optimum, i.e., the best possible solution for the collectivity.
In general, the social optimum is not a stable solution and, therefore, does not emerge naturally from
the agents’ interactions. Nevertheless, in numerous contexts, a central authority may suggest solutions
to the agents, preferably ensuring that such solutions satisfy two foremost properties. First, the au-
thority should ensure that little to no incentives exist for the agents to refuse the proposed solution.
Second, the solution should be sufficiently close – in terms of quality – to the social optimum. The best
trade-off between these two properties is the best Nash equilibrium, i.e., a solution that optimizes a
welfare function among the equilibria. Often, the main focus is on selecting a Pure Nash Equilibrium
(PNE ), a stable solution where each agent selects one alternative with probability one (in contrast to
a Mixed-Strategy equilibrium, where agents randomize over the set of their alternatives). In this con-
text, the Algorithmic Game Theory (AGT ) community pioneered the study of the interplay between
Game Theory and algorithms with a focus on equilibria’s efficiency [40]. The discipline attracted
significant attention from the computer science and optimization communities, especially to study
games where agents solve optimization problems (e.g., Facchinei and Pang [25]). Several recent works
[14, 18, 24, 29, 31, 35, 45, 48] considered Integer Programming Games (IPGs), namely games where
the agents solve parametrized integer programs. In this work, we focus on a class of simultaneous
and non-cooperative IPGs among n players (agents), as described in Definition 1, where each player
controls m integer variables.

Definition 1 (IPG). Each player i = 1, 2, . . . , n solves (1), where ui(xi, x−i) – given x−i – is a
function in xi with integer coefficients, Ai ∈ Z

r×m, bi ∈ Z
r.

max
xi
{ui(xi, x−i) : xi ∈ X i}, X i := {Aixi ≤ bi, xi ∈ Z

m}. (1)
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As standard game-theory notation, let xi denote the vector of variables of player i, and let the
operator (·)−i

be (·) except i. The vector x−i = (x1, . . . , xi−1, xi+1, . . . xn) represents the variables
of i’s opponents (all players but i), and the set of linear constraints Aixi ≤ bi defines the feasible
region X i of player i. We assume all integer variables are lower and upper bounded, and thus that
X i is finite. In IPGs, the strategic interaction occurs in the players’ objective functions, and not
within their feasible regions. Specifically, players choose their strategy simultaneously, and each player
i’s utility (or payoff) ui(xi, x−i) is a function in xi parametrized in i’s opponents variables x−i.
Without loss of generality, we assume the entries of Ai and bi and the coefficients of ui(xi, x−i) are
integers. Further, considering the space of all players’ variables (x1, . . . , xn), we assume one can always
linearize the non-linear terms in each ui with a finite number of inequalities and auxiliary variables
(e.g., Sherali and Adams [49], Vielma [52]). We remark that this assumption is not restrictive; on
the contrary, it enables us to tackle several games where the players’ utilities are not linear (see
Section 5). Besides, we assume (i.) players have complete information about the structure of the
game, i.e., each player knows the other players’ optimization problems via their feasible regions and
objectives, (ii.) each player is rational, namely it always selects the best possible strategy given the
information available on its opponents, and (iii.) common knowledge of rationality, namely each player
knows its opponents are rational, and there is complete information. IPGs extend traditional resource-
allocation tasks and combinatorial optimization problems to a multi-agent setting, and their modeling
power lies precisely in the discrete variables and game dynamics they can model. Indeed, in several
real-world applications, requirements such as indivisible quantities and fixed production costs often
require the use of discrete variables (see, for instance, Bikhchandani and Mamer [8]). Several recent
works explored the application of IPGs in various contexts. To name a few, Gabriel et al. [27] modeled
energy production games, David Fuller and Çelebi [20] proposed discrete unit commitment problem
with fixed production costs, Anderson et al. [2] modeled a game where firms reserve discrete blocks of
capacities from their suppliers, Federgruen and Hu [26] proposed a price competition framework with
n competitors offering a discrete number of substitutable products, and Carvalho et al. [11] exploited
IPGs in the context of kidney exchange programs. Despite the high potential impact of IPGs in
many domains, practitioners and researchers often make restrictive assumptions about the game’s
structure to guarantee that solutions are unique or computationally tractable. This is mainly due to
the lack of a general, scalable and reliable methodology to select efficient solutions in IPGs, which
could potentially open new opportunities in terms of applications. This lack is the core motivation
behind our work: providing a general-purpose algorithmic framework to optimize over the solutions
of IPGs. Specifically, we focus on optimizing over the set of PNEs for the IPGs defined above and on
characterizing the polyhedral structure of the set containing the PNEs. The algorithmic framework
possesses a solid theoretical foundation, and it integrates with the existing tools from the theory and
practice of integer programming and combinatorial optimization. From a computational perspective,
it is highly flexible, and it generally outperforms the algorithms available in the present literature.
Our framework is problem-agnostic and general, yet, it can be customized to address problem-specific
needs.

Literature. Köppe et al. [35] pioneered IPGs by laying down their first formal definition. The authors
also provided an algorithmic framework to enumerate PNEs when the players’ utilities are differences
of piecewise linear convex payoff functions. Although their approach is theoretically well-grounded,
there is no computational evidence of its effectiveness. Indeed, even in some 2-player games (e.g.,
normal-form [6, 43] and bimatrix [5] games) there are considerable computational challenges involved
in the design of efficient algorithms for computing and selecting equilibria. Sagratella [45] proposed
a branching method to enumerate the PNEs in IPGs where each ui(xi, x−i) is convex in xi. More
recently, Schwarze and Stein [48] extended the work of Sagratella [45] by proposing an improved
branch-and-prune scheme that also drops the convexity assumption on the players’ utilities. Del Pia
et al. [21] focused on totally-unimodular congestion games, namely IPGs where players have totally-
unimodular constraint sets X i. They propose a strongly-polynomial time algorithm to find a PNE
and derive some computational complexity results. Their results have been extended by Kleer and
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Schäfer [34]. More recently, Carvalho et al. [13] proposed a general-purpose cutting plane algorithm
to compute a PNE in IPGs where each player utility is linear in their variables and bilinear with
respect to the other players’ variables. However, their approach does not handle equilibria selection,
and requires a specific structure on the players’ objectives to derive the Karush–Kuhn–Tucker con-
ditions associated with the linear relaxation of their optimization problems. An important family of
techniques for computing Mixed-Strategy equilibria is the one of support enumeration algorithms.
The core idea is to determine if an equilibrium with a given support for each player – e.g., a subset of
its strategies – exists in a normal-form game by solving a linear system of inequalities. Porter et al.
[42] and Sandholm et al. [46] exploited this idea in the context of n-players normal-form games. Since
equilibria in such games tend to have small supports, as proved theoretically by McLennan [37], sup-
port enumeration algorithms tend to be practically efficient in normal-form games. Inspired by the
approach of Porter et al. [42], Carvalho et al. [14] introduced the sample generation method (SGM)
to compute an equilibrium in separable IPGs (i.e., where each player’s payoff takes the form of a sum-
of-products) where players have bounded strategy sets. Their algorithm iteratively refines a sample of
players’ supports to compute an equilibrium or a correlated equilibrium (i.e., a generalization of the
Nash equilibrium). However, the SGM does not handle the enumeration or selection of equilibria, nor
can it prove that no equilibrium exists. Cronert and Minner [18] modified the SGM – extending the
work of Carvalho et al. [14] – by proposing an enumerative algorithm to compute all the equilibria
with the additional assumptions that all the players’ variables are integer. They further complemented
their approach with some considerations stemming from the theory of equilibria selection of Harsanyi
[30]. Nevertheless, identifying the correct samples leading to equilibria in IPGs could be computation-
ally cumbersome. While our approach shares a few elements with Cronert and Minner [18], it does
not require any sampling in order to compute and select equilibria. This fundamental aspect leads
to significant differences in terms of practical effectiveness and performance of the algorithms (see
Section 5).

Although the previous methodological works provide an insightful perspective on the computability
and the selection of equilibria in IPGs, there are other significant intrinsic questions concerning the
general nature of equilibria. Indeed, from the AGT standpoint, not all equilibria are created equal.
Three paradigmatic questions in AGT and Game Theory are often: (i.) Does at least one PNE
exist? (ii.) How good (or bad) is a PNE compared to the social optimum? (iii.) If more than one
equilibrium exists, can one select the best PNE according to a given measure of quality? Establishing
that a PNE does not exist may turn out to be a difficult task [19]. Nash proved that there always
exists a Mixed-Strategy equilibrium in finite games, i.e., games with a finite number of strategies and
players. In IPGs, where the set of players’ strategies is large, deciding if a PNE exists is generally
a Σp

2 -hard decision problem in the polynomial hierarchy [12]. To measure the efficiency of equilibria,
Koutsoupias and Papadimitriou [36] introduced the concept of Price of Anarchy (PoA), the ratio
between the welfare value of the worst-possible equilibrium and the welfare value of a social optimum.
Similarly, Anshelevich et al. [3], Schulz and Stier-Moses [47] introduced the Price of Stability (PoS ),
the ratio between the welfare value of the best-possible equilibrium and a social optimum’s one. In
the AGT literature, many works focus on providing theoretical bounds for the PoS and the PoA,
often by exploiting the game’s structural properties [3, 4, 15, 40, 44]. However, in practice, one may
be interested in establishing the exact values of such prices in order to characterize the efficiency of
equilibria in specific applications. This further highlights the need for general and effective algorithmic
frameworks to select equilibria.

Contributions. In this work, we shed new light on the intersection between AGT and integer program-
ming. We propose a new theoretical and algorithmic framework to efficiently and reliably compute,
enumerate, and select PNEs for the IPGs in Definition 1. We summarize our contributions as follows:

(i.) From a theoretical perspective, we provide a polyhedral characterization of the convex hull of the
PNEs. We adapt the concepts of valid inequality, closure, and separation oracle to the domain
of Nash equilibria. Specifically, we introduce the concept of equilibrium inequality to guide the
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exploration of the set of PNEs. With this respect, we provide a general class of equilibrium
inequalities and prove – through the concept of equilibrium closure – they are sufficient to define
the convex hull of the PNEs. From a game-theory standpoint, we explore the interplay between
the concept of rationality and cutting planes through the equilibrium inequalities. Since in any
game, a player i may never play some of its strategies due to their induced payoffs, it is reasonable
to think that player i would only pick its strategies from a rational subset of X i. In other words,
we provide an interpretable criterion – in the form of a cutting plane – for a player to play or
not some strategies. In this sense, what we propose constitutes an analytical and geometrical
characterization of the sets of equilibria providing a novel perspective on equilibria selection.

(ii.) From a practical perspective, we design a cutting plane algorithm – ZERO Regrets – that com-
putes the most efficient PNE for a given welfare function. This algorithm is flexible and scalable,
it can potentially enumerate all the PNEs and compute approximate PNEs. The algorithm ex-
ploits an equilibrium separation oracle, a procedure separating non-equilibrium strategies from
PNEs through general and problem-specific equilibrium inequalities. Furthermore, our framework
smoothly integrates with existing mathematical programming solvers, allowing practitioners to
exploit the capabilities of the available optimization technologies.

(iii.) We evaluate our algorithmic framework on a range of applications and problems from the relevant
works in the literature. We provide a solid benchmark against the existing approaches and show the
flexibility and effectiveness of ZERO Regrets. The classes of games we select derive from practical
applications (e.g., competitive facility locations, network design) and methodological studies and
the associated benchmark instances (e.g., games among quadratic programs). First, we consider the
Knapsack Game, an IPG where each player solves a binary knapsack problem. For this problem,
we also provide theoretical results on the computational complexity of establishing the existence of
PNEs and two problem-specific equilibrium inequalities. Second, we focus on a Network Formation
Game, a well-known and intensely investigated problem in AGT , where players build a network
over a graph via a cost-sharing mechanism. Third, we consider a Competitive Facility Location
and Design game, where several sellers strategically decide the location and design of their facilities
in order to maximize their revenues. Finally, we test our algorithm on a game where players solve
integer problems with convex and non-convex quadratic objectives. ZERO Regrets outperforms
any baseline, proving to be highly efficient in both enumerating and selecting PNEs.

We remark that our framework can be extended to the non-linear case, i.e., when ui is non-linearizable.
However, we focus on the linear case (i.) to provide geometrical, polyhedral, and combinatorial insights
on the structure of Nash equilibria in IPGs, and (ii.) to foster the interaction with existing streams
of research in Combinatorial Optimization.

We structure the paper as follows. In Section 2, we introduce the fundamental definitions and
terminology. In Section 3 we introduce the theoretical elements of our algorithmic framework. In
Section 4, we describe our cutting plane algorithm and its separation oracle and their extensions to
compute approximate equilibria. In Section 5 we present an extensive computational campaign on the
applications mentioned above, and, in Section 6, we provide some concluding remarks.

2 Definitions

We assume the reader is familiar with basic concepts of polyhedral theory and integer programming
[17]. We introduce the notation and definitions related to an IPG instance G, where we omit explicit
references to G when unnecessary. Let X i be the set of feasible strategies (or the feasible set) of player
i, and let any strategy x̄i ∈ X i be a (pure) strategy for i. Any x̄ = (x̄1, . . . , x̄n) – with x̄i ∈ X i

for any i – is a strategy profile. Let the vector x−i = (x1, . . . , xi−1, xi+1, . . . xn) denote the vector
of the i’s opponents (pure) strategies. The payoff for i under the profile x̄ is ui(x̄i, x̄−i). We define
S(x̄) =

∑n

i=1 u
i(x̄i, x̄−i) as the social welfare corresponding to a given strategy profile x̄.
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Equilibria and Prices. A strategy x̄i is a best-response strategy for player i given its opponents’
strategies x̄−i if ui(x̄i, x̄−i) ≥ ui(x̂i, x̄−i) for any x̂i ∈ X i; equivalently, we say i cannot profitably
deviate to any x̂i from x̄i. The difference ui(x̄i, x̄−i) − ui(x̂i, x̄−i) is called the regret of strategy x̂i

under x̄−i. Let BR(i, x̄−i) = {xi ∈ X i : ui(xi, x̄−i) ≥ ui(x̂i, x̄−i) ∀ x̂i ∈ X i} be the set of best-
responses for i under x̄−i. A strategy profile x̄ is a PNE if, for any player i and any strategy x̂i ∈ X i,
ui(x̄i, x̄−i) ≥ ui(x̂i, x̄−i), i.e. any x̄i is a best-response to x̄−i (all regrets are 0). Equivalently, in a
PNE , no player i can unilaterally improve its payoff by deviating from its strategy x̄i. We define the
optimal social welfare as OSW = maxx1,...,xn{S(x) : xi ∈ X i ∀i = 1, 2, . . . , n}. Given G, we denote as
N = {x = (x1, . . . , xn) : x is a PNE for G} the set of its PNEs. Also, let N i := {xi : (xi, x−i) ∈ N},
with N i ⊆ X i be the set of equilibrium strategies for i, namely the strategies of i appearing in at least
a PNE . If N is not empty, let: (i.) ẋ ∈ N be so that S(ẋ) ≤ S(x̄) for any x̄ ∈ N (i.e., the PNE with
the worst welfare), and (ii.) ẍ ∈ N be so that S(ẍ) ≥ S(x̄) for any x̄ ∈ N (i.e., the PNE with the best
welfare). Assuming w.l.o.g. OSW > 0 and S(ẍ) > 0, the PoA of G is OSW

S(ẋ) , and the PoS is OSW
S(ẍ) . The

definitions of PoA and PoS hold when agents maximize a welfare function. Otherwise, when agents
minimize their costs (e.g., the costs of routing packets in a network), we exchange numerator and
denominator in both the PoA and the PoS .

Polyhedral Theory. For a set S, let conv(S) be its convex hull. Let P be a polyhedron: bd(P ), ext(P ),
int(P ), are the boundary, the set of vertices (extreme points), and the interior of P , respectively. Let
P ⊆ R

p and x̃ /∈ P a point in R
p. A cut is a valid inequality π⊤x ≤ π0 for P violated by x̃, i.e.,

π⊤x̃ > π0 and π⊤x ≤ π0 for any x ∈ P . Given a point x̂ ∈ R
p and P , we define the separation

problem as the task of determining that either (i.) x̂ ∈ P , or (ii.) x̂ /∈ P and returning a cut π⊤x ≤ π0

for P and x̂. For each player i, the set conv(X i) is the perfect formulation of X i, namely an integral
polyhedron whose vertices are in X i.

3 Lifted Space and Equilibrium Inequalities

Cutting plane methods are attractive tools for integer programs, both from a theoretical and an
applied perspective. The essential idea is to iteratively refine a relaxation of the original problem by
cutting off fractional solutions via valid inequalities for the integer program’s perfect formulation.
Nevertheless, in an IPG where the solution paradigm is the Nash equilibrium, we argue there exist
stronger families of cuts, yet, not necessarily valid for each player’s perfect formulation conv(X i). In
fact, for any player i, some of its best-responses in bd(conv(X i)) may never appear in a PNE , since
no equilibrium strategies N−i of i’s opponents induce i to play such best-responses. In this work, we
introduce a general class of inequalities to characterize the nature of conv(N ). Such inequalities play
a pivotal role in the cutting plane algorithm of Section 4.

Dominance and Rationality. We ground our reasoning in the concepts of rationality and dominance
[7, 41]. Given two strategies x̄i ∈ X i and x̂i ∈ X i for player i, x̄i is strictly dominated by x̂ if, for any
choice of opponents strategies x−i, then ui(x̂, x−i) > ui(x̄, x−i). Then, a rational player will never play
dominated strategies. This also implies no player i would play any strategy in int(conv(X i)). Since
dominated strategies – by definition – are never best-responses, they will never be part of any PNE .
In Example 1, the set X 2 is made of 3 strategies (x2

1, x
2
2) = (0, 0), (1, 0), (0, 1). Yet, (x2

1, x
2
2) = (0, 0)

is dominated by (x2
1, x

2
2) = (0, 1), and the latter is dominated by (x2

1, x
2
2) = (1, 0). However, when

considering player 1, we need the assumption of common knowledge of rationality to conclude which
strategy the player will play. Player 1 needs to know that player 2 would never play x2

2 = 1 to declare
(x1

1, x
1
2) = (0, 1) being dominated by (x1

1, x
1
2) = (1, 0). When searching for a PNE in this example,

it follows that N 1 = {(x1
1, x

1
2) = (1, 0)} and N 2 = {(x2

1, x
2
2) = (1, 0)}. This inductive (and iterative)

process of removal of strictly dominated strategies is known as the iterated elimination of dominated
strategies (IEDS ). This process produces tighter sets of strategies and never excludes any PNE from
the game [50, Ch.4].
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Example 1. Consider the IPG where player 1 solves maxx1{6x1
1 + x1

2 − 4x1
1x

2
1 + 6x1

2x
2
2 : 3x1

1 + 2x1
2 ≤

4, x1 ∈ {0, 1}2}, and player 2 solves maxx2{4x2
1 + 2x2

2 − x2
1x

1
1 − x2

2x
1
2 : 3x2

1 + 2x2
2 ≤ 4, x2 ∈ {0, 1}2}.

The only PNE is (x̄1
1, x̄

1
2) = (1, 0), (x̄2

1, x̄
2
2) = (1, 0) with a welfare of S(x̄) = 5, u1(x̄1, x̄2) = 2, and

u2(x̄2, x̄1) = 3.

In the same fashion of IEDS , we propose a family of inequalities that cuts off – from each player’s
feasible set – the strategies that never appear in a PNE . Thus, from an IPG instance G, we aim to
derive an instance G′ where N i replaces each player’s feasible set X i. Note that, since all X i are finite
sets, all N i are finite as well as the number of PNEs.

3.1 A Lifted Space

Given the social welfare S(x), we aim to find the PNE maximizing it, namely, we aim to perform
equilibria selection. In this context, the first urgent question is what space should we work in. Since
mutually optimal strategies define PNEs, a natural choice is to consider a space of all players’ vari-
ables x. As mentioned in the introduction, we assume the existence of a higher-dimensional (lifted)
space where we linearize the non-linear terms in any ui(·) via auxiliary variables z and corresponding
constraints (e.g., Sherali and Adams [49], Vielma [52]). Although our scheme holds for an arbitrary
f(x) :

∏n

i=1 X
i → R we can linearize to f(x, z), we focus on S(x) and the corresponding higher-

dimensional S(x, z) defined in the lifted space. Let L be the set of (i.) linear constraints necessary to
linearize the non-linear terms, and (ii.) the integrality requirements and bounds on the z variables.
The lifted space is then

K = {(x1, . . . , xn, z) ∈ L, xi ∈ X i for any i = 1, . . . , n}. (2)

Any vector x1, . . . , xn, z in (2) corresponds to a unique strategy profile x = (x1, . . . , xn), since x induces
z. K is then a set defined by linear constraints and integer requirements, and thus it is reasonable to
deal with conv(K) and some of its projections. For brevity, let projx conv(K) = {x = (x1, . . . , xn) :
∃z s.t. (x1, . . . , xn, z) ∈ conv(K)}, and let ui(xi, x−i) include the z variables when working in the
space of conv(K).

3.2 Equilibrium Inequalities

The integer points in projx(conv(K)) encompass all the game’s strategy profiles. However, we need to
focus on E = {(x1, . . . , xn, z) ∈ conv(K) : (x1, . . . , xn) ∈ conv(N )}, since projecting out z yields the
convex hull of PNE profiles conv(N ). By definition E is a polyhedron, and projxi(E) = conv(N i). The
role of E is similar to the one of a perfect formulation for an integer program. As optimizing a linear
function over a perfect formulation results in an integer optimum, optimizing a linear function S(x, z)
over E results in a PNE . For this reason, we call E the perfect equilibrium formulation for G. Also,
the equivalent of the integrality gap in integer programming is the PoS , namely the ratio between the
optimal value of f(x, z) over conv(K) and E , respectively. All considered, we establish the concept of
equilibrium inequality, a valid inequality for E .

Definition 2 (Equilibrium Inequality). Consider an IPG instance G. An inequality is an equi-
librium inequality for G if it is a valid inequality for E.

A Class of Equilibrium Inequalities. We introduce a generic class of equilibrium inequalities that are
linear in the space of conv(K). Consider any strategy x̃i ∈ X i for i: for any i’s opponents’ strategy
x−i, ui(x̃i, x−i) provides a lower bound on i’s payoff since x̃i ∈ X i (i.e., x̃i is a feasible point). Then,
ui(x̃i, x−i) ≤ ui(xi, x−i) holds for every player i. We introduce such inequalities in Proposition 1.

Proposition 1. Consider an IPG instance G. For any player i and x̃i ∈ X i, the inequality ui(x̃i, x−i) ≤
ui(xi, x−i) is an equilibrium inequality.
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Proof. If a point (x̄, z̄) ∈ E , then x̄ ∈ conv(N ). First, consider the case where x̄ ∈ ext(conv(N )),
namely x̄ ∈ N by definition. Assume (x̄, z̄) violates the inequality associated with at least a player
i, then, ui(x̃i, x̄−i) > ui(x̄i, x̄−i). Therefore, i can profitably deviate from x̄i to x̃i under x̄−i, which
contradicts x̄ ∈ N and (x̄, z̄) ∈ E . Thus, no point (x̄, z̄) ∈ E with x̄ ∈ ext(conv(N )) violates the
inequality. Since we can represent any point (x̄, z̄) ∈ E as a convex combination of the extreme points
of conv(N ), the proposition holds by iterating the previous reasoning for each extreme point in the
support of (x̄, z̄).

A fundamental issue is whether the inequalities of Proposition 1 are sufficient to define the set E .
By modulating the concept of closure introduced by Chvátal [16], we prove this is indeed the case.
We define the equilibrium closure as the convex hull of the points in K satisfying the equilibrium
inequalities of Proposition 1.

Theorem 1. Consider an IPG instance G where |N | 6= 0. Let the equilibrium closure given by the
equilibrium inequalities of Proposition 1 be

P e := conv
(

{

(x, z) ∈ K :
ui(x̃i, x−i) ≤ ui(xi, x−i)
∀x̃ : x̃i ∈ BR(i, x̃−i), i = 1, . . . , n

}

)

,

where the equilibrium inequalities consider only the best-responses x̃i for any player i. Then, (i.) P e

is a rational polyhedron, (ii.) there exists no point (x, z) ∈ int(P e) such that x ∈ Z
nm, (iii.) P e = E.

Proof. Proof of (i.) The set K is finite since any X i is finite, the number of best-responses and,
correspondingly, of equilibrium inequalities, is finite. Both equilibrium inequalities and the inequalities
defining X i have integer coefficients. Therefore, P e is a rational polyhedron. Proof of (ii.) Assume
there exists a point (x̄, z̄) ∈ int(P e) such that x̄ ∈ Z

nm. By definition of Nash equilibrium, x̄ ∈ N
since (x̄, z̄) satisfies all the equilibrium inequalities in P e. However, since (x̄, z̄) ∈ int(P e), then no
equilibrium inequality can be tight, contradicting the fact x̄ is a PNE . Therefore, there cannot exist any
(x̄, z̄) ∈ int(P e) such that x̄ ∈ Z

nm. This also implies that all PNEs lie on the boundary of P e. Proof
of (iii.) Since P e contains all the equilibrium inequalities generated by the players’ best-responses,
then any (x̄, z̄) ∈ E belongs to P e as of Proposition 1, and E ⊆ P e. Let (x̂, ẑ) be a point in ext(P e).
By definition, (x̂, ẑ) is an integer point, and it corresponds to a PNE . Indeed, non-equilibria integer
points cannot belong to P e since they would violate at least one equilibrium inequality associated
with the players’ best-responses. Equivalently, for any (x̂, ẑ) ∈ ext(P e), its projection projx = x̂ is in
N . Since all PNEs are on the boundary of P e, P e = E necessarily.

Throughout the proof of Theorem 1, we show that P e yields indeed the perfect equilibrium formu-
lation E . Although the description of P e may contain an exponential number of possibly redundant
equilibrium inequalities, it precisely describes the set of PNEs in the lifted space. In Example 2, we
showcase the construction P e via Theorem 1 for a small IPG.

Example 2. Consider an IPG where player 1 solves maxx1{x1
1 + 3x1

2 + 7x1
3 − 6x1

1x
2
1 + 3x1

2x
2
2 + 2x1

3x
2
3 :

6x1
1 + 4x1

2 + 5x1
3 ≤ 7, x1 ∈ {0, 1}3}, and player 2 solves maxx2{9x2

1 + 9x2
2 + 2x2

3 − 6x2
1x

1
1 + 5x2

2x
1
2 +

7x2
3x

1
3 : 4x2

1 + 2x2
2 + 5x2

3 ≤ 5, x2 ∈ {0, 1}3}. There are 4 feasible strategies for each player i, namely,
(xi

1, x
i
2, x

i
3) = (0, 0, 0) ∨ (0, 0, 1) ∨ (0, 1, 0) ∨ (1, 0, 0). The 3 PNEs of this game are: (i.) x̄1 = (0, 0, 1)

and x̄2 = (0, 0, 1) with u1(x̄1, x̄2) = 9 and u2(x̄2, x̄1) = 9, (ii.) x̄1 = (0, 0, 1) and x̄2 = (0, 1, 0) with
u1(x̄1, x̄2) = 7 and u2(x̄2, x̄1) = 9, (iii.) x̄1 = (0, 0, 1) and x̄2 = (1, 0, 0) with u1(x̄1, x̄2) = 7 and
u2(x̄2, x̄1) = 9.

We linearize the game by introducing 3 variables zj ∈ {0, 1} for any player’s variable j ∈ {1, 2, 3}
such that zj = 1 if and only if x1

j = x2
j = 1. We model these implications through the constraints

zj ≤ xi
j and zj ≥ x1

j + x2
j − 1 for any player i and variable j. Hence,

K =

{

x1 ∈ {0, 1}3, x2 ∈ {0, 1}3, z ∈ {0, 1}3 :
6x1

1 + 4x1
2 + 5x1

3 ≤ 7, 4x2
1 + 2x2

2 + 5x2
3 ≤ 5

zj ≤ x1
j , zj ≤ x2

j , zj ≥ x1
j + x2

j − 1 ∀j ∈ {1, 2, 3}

}

.
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Correspondingly, the two players’ utility functions in the linearized space are given by the two linear
expressions u1(x1, x2) = x1

1+3x1
2+7x1

3−6z1+3z2+2z3 and u2(x2, x1) = 9x2
1+9x2

2+2x2
3−6z1+5z2+7z3,

respectively.

On the one hand, the best-response of player 1 to any of player 2’s feasible strategies is x̃1 =
(0, 0, 1), i.e., BR(1, x̃2) = {(0, 0, 1)} for any feasible strategy x̃2. The equilibrium inequality associ-
ated with x̃1 = (0, 0, 1) is 7 + 2x2

3 ≤ x1
1 + 3x1

2 + 7x1
3 − 6z1 + 3z2 + 2z3. The left-hand side of the

inequality represents u1(x̃1, x2), namely player 1’s utility function evaluated on x̃1. On the other
hand, player 2’s best-responses and the associated equilibrium inequalities are: (i.) x̃2 = (1, 0, 0)
with the inequality 9 − 6x1

1 ≤ 9x2
1 + 9x2

2 + 2x2
3 − 6z1 + 5z2 + 7z3, (ii.) x̃2 = (0, 1, 0) with the

inequality 9 + 5x1
2 ≤ 9x2

1 + 9x2
2 + 2x2

3 − 6z1 + 5z2 + 7z3, (iii.) x̃2 = (0, 0, 1) with the inequality
2 + 7x1

3 ≤ 9x2
1 + 9x2

2 + 2x2
3 − 6z1 + 5z2 + 7z3. Therefore,

P e = conv
(















(x, z) ∈ K :

7 + 2x2
3 ≤ x1

1 + 3x1
2 + 7x1

3 − 6z1 + 3z2 + 2z3
9− 6x1

1 ≤ 9x2
1 + 9x2

2 + 2x2
3 − 6z1 + 5z2 + 7z3

9 + 5x1
2 ≤ 9x2

1 + 9x2
2 + 2x2

3 − 6z1 + 5z2 + 7z3
2 + 7x1

3 ≤ 9x2
1 + 9x2

2 + 2x2
3 − 6z1 + 5z2 + 7z3















)

.

By explicitly computing the above convex hull, we obtain

P e =

{

(x, z) :
x2
1 ≥ 0, x2

2 ≥ 0, x2
3 ≥ 0, x1

1 = 0, x1
2 = 0, x1

3 = 1,
x2
1 + x2

2 + x2
3 = 1, z1 = 0, z2 = 0, x2

1 + x2
2 + z3 = 1

}

.

The projections onto the x space of the extreme points of P e correspond to the 3 PNEs, and thus
P e = E .

4 The Cutting Plane Algorithm and its Oracle

If an oracle gives us E in the form of a set of linear inequalities, then an optimal solution to
maxx1,...,xn,z{f(x, z) : (x, z) ∈ E} (i.e., a linear program) that is also an extreme point of E is a
PNE for G for any function f(x, z). However, there are two major issues. First, E ⊆ conv(K), and
conv(K) is a perfect formulation described by a possibly large number of inequalities. Second, retriev-
ing E through Theorem 1 may still require a large number of inequalities. In practice, we actually
do not need E nor conv(K): a more reasonable goal is to get a polyhedron containing conv(K) over
which we can optimize f(x, z) efficiently and obtain an integer solution (i.e., x ∈ K) that is also a
PNE . The first step is to obtain an integer solution. We could deploy branching schemes and known
families of integer programming cutting planes, which are also equilibrium inequalities since they
are valid for E . Equivalently, we can exploit a Mixed-Integer Programming (MIP) solver to solve
maxx1,...,xn,z{f(x, z) : (x, z) ∈ K}. If the maximizer is a PNE , the algorithm terminates. Otherwise,
the second step is to cut off such maximizer, since it is not a PNE , by separating at least an equilibrium
inequality of Proposition 1.

Equilibrium Separation Oracle. Given a point (x̃, z̃), for instance, the point returned by a MIP solver,
the central question is to decide if x̃ ∈ N , and, if not, to derive an equilibrium inequality to cut off
(x̃, z̃). If we use the equilibrium inequalities of Proposition 1, the process terminates in a finite number
of iterations, since Theorem 1. In the spirit of Grötschel et al. [28], Karp and Papadimitriou [32], we
define a separation oracle for the equilibrium inequalities and E . The equilibrium separation oracle
solves the equilibrium separation problem of Definition 3.

Definition 3 (Equilibrium Separation Problem). Consider an IPG instance G. Given a point
(x̄, z̄), the equilibrium separation problem is the task of determining that either: (i.) (x̄, z̄) ∈ E,
or (ii.) (x̄, z̄) /∈ E and return an equilibrium inequality violated by (x̄, z̄).
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Algorithm 1 presents our separation oracle for the inequalities of Proposition 1. Given (x̄, z̄) and an
empty set of linear inequalities φ, the algorithm outputs either (i.) yes if (x̄, z̄) ∈ E , or (ii.) no and a
set of violated equilibrium inequalities φ if (x̄, z̄) /∈ E . The algorithm separates at most one inequality
for any player i. By definition, x̄i should be a best-response to be in a PNE . Therefore, for any player
i, the algorithm solves maxxi{ui(xi, x̄−i) : Aixi ≤ bi, xi ∈ Z

m}, where x̂i is one of its maximizers. If
ui(x̄i, x̄−i) = ui(x̂i, x̄−i), x̄i is also a best-response. However, if ui(x̂i, x̄−i) > ui(x̄i, x̄−i), the algorithm
adds to φ an equilibrium inequality ui(x̂i, x−i) ≤ ui(xi, x−i) violated by (x̄, z̄). After considering all
players, if |φ| = 0, then x̄ is a PNE and the answer is yes. Otherwise, the algorithm returns no and
φ 6= ∅, i.e., at least an equilibrium inequality cutting off (x̄, z̄).

Algorithm 1: Equilibrium Separation Oracle

Data: An IPG instance G, a point (x̄, z̄), and a set of cuts φ = ∅.
Result: Either: (i.) yes if (x̄, z̄) ∈ E , or (ii.) no and φ.

1 for i← 1 to n do
2 x̂i ← maxxi{ui(xi, x̄−i) : Aixi ≤ bi, xi ∈ Z

m} ;
3 if ui(x̂i, x̄−i) > ui(x̄i, x̄−i) then
4 Add ui(x̂i, x−i) ≤ ui(xi, x−i) to φ;

5 if |φ| = 0 then return yes ;
6 else return no and φ ;

ZERO Regrets. We present our cutting plane algorithm ZERO Regrets in Algorithm 2. The inputs are
an instance G, and a function f(x), while the output is either the PNE ẍ maximizing f(x), or a cer-
tificate that no PNE exists. Let Φ be a set of equilibrium inequalities, and Q = maxx1,...,xn,z{f(x, z) :
(x, z) ∈ K, (x, z) s.t. Φ}. We assume Q is feasible and bounded. Otherwise, there would be no ratio-
nale behind getting a PNE with an arbitrarily bad welfare. At each iteration, we compute an optimal
solution (x̄, z̄) of Q. Afterwards, the equilibrium separation oracle (Algorithm 1) evaluates (x̄, z̄). If
the oracle returns yes, then ẍ = x̄ is the PNE maximizing f(x) in G. Otherwise, the oracle returns
a set φ of equilibrium inequalities cutting off (x̄, z̄), and the algorithm adds φ to Φ. Therefore, the
process restarts by solving Q with the additional set of constraints. If at any iteration Q becomes
infeasible, then G has no PNE . We remark that Theorem 1 implies both correctness and finite termi-
nation of Algorithm 2. Although it is sufficient to add just one equilibrium inequality in φ cutting off

Algorithm 2: ZERO Regrets

Data: An IPG instance G, and a function f(x).
Result: Either: (i.) the PNE ẍ maximizing f(x), or (ii.) no PNE

1 Φ = {0 ≤ 1}, and Q = maxx1,...,xn,z{f(x, z) : (x, z) ∈ K, (x, z) s.t. Φ};
2 while true do
3 if Q is infeasible then return no PNE ;
4 (x̄, z̄) = argmaxQ; φ = ∅ ;
5 if EquilibriumSeparationOracle(G, (x̄, z̄), φ) is yes then
6 return ẍ = x̄;

7 else add φ to Φ ;

the incumbent solution (x̄, z̄), we expect that a good trade-off between |φ| = 1 and |φ| = n may speed
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up the convergence of the algorithm. This includes, for instance, also adding non-violated equilibrium
inequalities. In Example 3, we provide a toy example of ZERO Regrets.

Example 3. Consider the game in Example 1 where player 1 solves maxx1{6x1
1 + x1

2− 4x1
1x

2
1 +6x1

2x
2
2 :

3x1
1 +2x1

2 ≤ 4, x1 ∈ {0, 1}2}, and player 2 solves maxx2{4x2
1+2x2

2− x2
1x

1
1−x2

2x
1
2 : 3x2

1 +2x2
2 ≤ 4, x2 ∈

{0, 1}2}. As in Example 2, to linearize the players’ utility functions, we introduce two binary variables
z1 and z2 equal to 1 if both players select items 1 and 2, respectively. The linearization constraints
are z1 ≤ x1

1, z1 ≤ x2
1, z1 ≥ x1

1 + x2
1 − 1, z2 ≤ x1

2, z2 ≤ x2
2, z2 ≥ x1

2 + x2
2 − 1. Thus, player 1’s utility

function is 6x1
1 +x1

2− 4z1+6z2 and player 2’s utility function is 4x2
1+2x2

2− z1− z2. Correspondingly,
problem Q maximizing the social welfare is

max
(x1, x2, z)

6x1
1 + x1

2 + 4x2
1 + 2x2

2 − 5z1 + 5z2

s.t. 3x1
1 + 2x1

2 ≤ 4, 3x2
1 + 2x2

2 ≤ 4

zj ≤ x1
j , zj ≤ x2

j , zj ≥ x1
j + x2

j − 1 j = 1, 2.

x1
j , x

2
j , zj ∈ {0, 1} j = 1, 2.

An optimal solution of the problem is (x̄1
1, x̄

1
2) = (1, 0), (x̄2

1, x̄
2
2) = (0, 1), z̄1 = z̄2 = 0. The social

welfare is 8, and the players’ utility values are 6 and 2, respectively. However, this solution is not
a PNE . In fact, while a best-response to x̄2 for player 1 is x̄1, the best-response to x̄1 for player
2 is (x̂2

1, x̂
2
2) = (1, 0) with an utility value of 3. Therefore, from player 2, we derive the equilibrium

inequality 4− x1
1 ≤ 4x2

1 + 2x2
2 − z1 − z2 cutting off (x̄, z̄). By adding the equilibrium inequality to Q,

the optimal solution is then (x̄1
1, x̄

1
2) = (1, 0), (x̄2

1, x̄
2
2) = (1, 0), z̄1 = 1, z̄2 = 0, with utility values 2

and 3 and a welfare of 5. Since x̄ is a PNE , the algorithm terminates by finding a PNE with a PoS
of 8/5.

Game-theoretical Interpretation. We provide a straightforward game-theoretical interpretation of
ZERO Regrets. The algorithm acts as a central authority (e.g., a central planner) when optimizing
f(x, z) over K, producing a solution that optimizes the welfare. Afterward, it proposes the solution to
each player, who evaluates it through the equilibrium separation oracle. The latter acts as a rationality
blackbox, in the sense that the oracle advises each player i whether the proposed strategy is acceptable
or not. In other words, the rationality blackbox tells the player i if it should selfishly (and rationally)
deviate to a better strategy, ignoring the central authority’s advice. On the one hand, if the rationality
blackbox says the solution is acceptable for player i, then the player knows through the oracle that it
should accept the proposed strategy. On the other hand, if at least one player i refuses the proposed
solution, the central authority should exclude such a solution and formulate a new proposal. Namely,
it should cut off the non-equilibrium strategy and compute a new solution maximizing the welfare.

4.1 Extensions

We showcase the flexibility of our algorithmic framework by proposing two extensions to ZERO Re-
grets. Specifically, to address broader practical needs, we propose two extensions for enumerating
PNEs and computing approximate PNEs.

Enumerating PNEs. We can easily tune ZERO Regrets to enumerate all the PNEs in N as follows.
In Line 6 of Algorithm 2, instead of terminating and returning ẍ, we memorize ẍ and add an (invalid)
inequality cutting off the PNE from E . Since all x variables are integer-constrained, such inequality can
be, for instance, an hamming distance from x̄. The algorithm will possibly compute a new PNE , cut it
off (e.g., through a hamming distance constraint), and move the search towards the next equilibrium.
Eventually, Q will become infeasible, thus certifying that the algorithm enumerated all the existing
PNEs.
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Approximating PNEs. An absolute ǫ-PNE is a PNE where each player can deviate at most by a
value ǫ for any best-response [40], namely, where the regret for each player is at most ǫ. Absolute
ǫ-PNEs may be a reasonable compromise whenever no PNE exists. Although any PNE is an absolute
ǫ-PNE with ǫ = 0, one may be interested in computing an absolute ǫ-PNE with an upper bound
on ǫ while maximizing f(x, z). We can adapt our algorithmic framework to compute an absolute ǫ-
PNE as follows. We introduce a bounded continuous variable ǫ in Q, and we let Algorithm 1 separate
equilibrium inequalities in the form of ui(x̂i, x−i) − ǫ ≤ ui(xi, x−i). Depending on the application of
interest, one may still optimize the function f(x, z) or minimize ǫ without affecting the correctness of
the algorithm. A similar modification enables the algorithm to handle relative ǫ-PNE , i.e., a profile of
strategies where the payoff of each player’s strategy is at least ǫ times the best-response payoff. Given
a constant ǫ, the corresponding equilibrium inequalities are ui(x̂i, x−i)ǫ ≤ ui(xi, x−i).

5 Applications

We evaluate ZERO Regrets on a wide range of problems from relevant works in the literature. We
aim to provide a solid benchmark against the existing solution approaches and show the effectiveness
of ZERO Regrets in selecting and enumerating equilibria. The games we select stem from practical
applications (e.g., competitive facility locations, network design) and methodological studies with the
associated benchmark instances (e.g., games among quadratic programs). Specifically, we consider the
following games:

(i.) The Knapsack Game (KPG) [10, 13, 14], where each player solves a binary knapsack problem.
We select the equilibrium maximizing the social welfare, and we provide theoretical results on the
complexity of deciding whether a PNE exists. We also introduce two problem-specific equilibrium
inequalities.

(ii.) The Network Formation Game (NFG) [4, 15] – a paradigmatic game in AGT with plenty of
applications in network design – where players seek to build a network through a cost-sharing
mechanism. We select the equilibrium maximizing the social welfare.

(iii.) The Competitive Facility Location and Design game (CFLD) [1, 18], where each player decides
both the location of its facilities and their “design” (i.e., the facilities’ features) while competing
for customer demand. As in the KPG and the NFG, we focus on finding the PNE maximizing
the social welfare.

(iv.) The Quadratic IPGs (qIPGs) introduced by Sagratella [45] and recently considered in Schwarze
and Stein [48], where each player optimizes a (non-convex) quadratic function over box constraints
and integrality requirements. As in the original papers, we focus on enumerating all the existing
PNEs, or determine that none exists.

In what follows, we briefly describe the previous games and present the associated computational
results1.

5.1 The Knapsack Game

The KPG is an IPG among n players, where each player i solves a binary knapsack problem with m
items in the form of

max
xi

{

m
∑

j=1

pijx
i
j +

n
∑

k=1,k 6=i

m
∑

j=1

Ci
k,jx

i
jx

k
j :

m
∑

j=1

wi
jx

i
j ≤ bi, xi ∈ {0, 1}m

}

. (3)

As in the classical knapsack problem [33], we assume that the profits pij , weights wi
j and capacities

bi are in Z
+
0 . The selection of an item j by a player k 6= i impacts either negatively or positively the

1 We performed our tests on an Intel Xeon Gold 6142 equipped with 128GB of RAM and 8 threads, employing

Gurobi 9.5 as MIP solver for Algorithm 2.
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profit pij for player i through integer coefficients Ci
k,j . Clearly, given the strategies of the other players

x−i, computing a corresponding best-response for player i is NP-hard. We can apply our algorithmic
framework by linearizing the bilinear products xi

jx
k
j (for any i, k, j) with O(mn2) auxiliary variables

and additional constraints (see Example 2). Carvalho [10] introduced the game with n = 2 and pij = 0

∀j = 1, . . . ,m, i = 1, 2. Carvalho et al. [13, 14] consider a more general game variant allowing pij and

wi
j to take negative integer values. However, their algorithms focus on Mixed-Strategy equilibria and

cannot perform exact equilibria selection.
In Theorem 2, we formally prove that deciding if a KPG instance has a PNE – even with two

players – is Σp
2 -complete in the polynomial hierarchy, matching the result of Carvalho et al. [14] for

general IPGs.

Theorem 2. Deciding if a KPG instance has a PNE is a Σp
2 -complete problem.

The proof, where we perform a reduction from the Σp
2 -complete DeNegre Bilevel Knapsack Problem

[9, 22, 23], is in the appendix. Furthermore, we show that when at least one PNE exists, the PoS and
PoA can be arbitrarily bad.

Proposition 2. The PoA and the PoS in KPG can be arbitrarily bad.

Proof. Consider the following KPG instance with n = 2: player 1 solves the problem maxx1{Mx1
1 +

x1
2 − (M − 2)x1

1x
2
1 − x1

2x
2
2 : 3x1

1 + 2x1
2 ≤ 4, x1 ∈ {0, 1}2} where M is an arbitrarily large value;

player 2 solves maxx2{4x2
1 + x2

2 − x2
1x

1
1 − x2

2x
1
2 : 3x2

1 + 2x2
2 ≤ 4, x2 ∈ {0, 1}2}. The only PNE is

(x̄1
1, x̄

1
2, x̄

2
1, x̄

2
2) = (1, 0, 1, 0), with u1(x̄1, x̄2) = 2, u2(x̄2, x̄1) = 3, S(x̄) = 5. The maximum welfare

OSW = M +1 is given by (x̂1
1, x̂

1
2, x̂

2
1, x̂

2
2) = (1, 0, 0, 1), i.e., OSW is arbitrarily large and there are no

bounds on both the PoA and the PoS .

Strategic Inequalities. We further strengthen our cutting plane algorithm by introducing two
classes of problem-specific equilibrium inequalities for the KPG.

Strategic Dominance Inequalities. In the binary knapsack problem, a well-known hierarchy of domi-
nance relationships exists among items, as we formalize in Definition 4.

Definition 4 (Dominance Rule). Given two items j and j′ with profits p̄j p̄j′ and weights wj, wj′ ,
if wj ≤ wj′ and p̄j > p̄j′ , then we say item j dominates item j′.

The above concept of dominance implies that, in any optimal knapsack solution, if one packs a
dominated item j′, then it should also pack item j. Otherwise, one would be able to improve the
solution by selecting j instead of j′. This reasoning translates to the inequality xj′ ≤ xj , which is
always valid for any optimal knapsack solution. We aim to extend this concept of dominance to the
KPG by incorporating the strategic interactions among players. In order to derive such inequalities,
we reason about how, for any player i, the decisions of x−i affect the profits of i’s items. More formally,
for any player i and item j, let pmin

j , and pmax
j be the minimum and maximum profit the strategies

of the other players can induce, respectively. We claim the dominance rule of Definition 4 extends to
the one of Proposition 3 in the KPG.

Proposition 3. For each player i, if the dominance rule applies for two items j and j′ with p̄j = pmin
j

and p̄j′ = pmax
j′ , then the inequality xi

j′ ≤ xi
j is an equilibrium inequality.

Proof. Since all best-responses of player i cannot select the dominated item j′ without selecting item
j for any x−i, the claim holds.

We denote the inequalities of Proposition 3 as Strategic Dominance Inequalities. We further extend
the previous reasoning to derive other forms of dominance inequalities by evaluating how the strategic
interaction (i.e., the items that the other players select) affects the items’ profits for each player i. In
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other words, we derive equilibrium inequalities that incorporate the strategic interaction by including
the variables of multiple players. For instance, consider the case with two players. If the profits of two
items j and j′ for player 1 fulfill the dominance rule when player 2 selects item j and does not select
item j′, then

x1
j′ ≤ x1

j + (1− x2
j ) + x2

j′

is an equilibrium inequality. Namely, if there exists a PNE with x2
j = 1 and x2

j′ = 0, the dominance
rule between item j and j′ applies for player 1, otherwise the inequality is not binding.

Strategic Payoff Inequalities. We introduce a second class of strategic inequalities by exploiting two
observations on the knapsack problem. For any player i, the strategy of all-zeros xi = (0, . . . , 0) is
always feasible under the packing constraint, and yields a payoff of 0. Therefore, for any player i and
item j, if pij +

∑n

k=1,k 6=i C
i
k,j < 0, player i may not select j depending on its opponent choices x−i.

More generally, let Sij be the interaction set of i’s opponents inducing a negative profit for item j,
namely, a set so that

pij +
∑

k∈Si
j

Ci
k,j < 0. (4)

The interaction is minimal if, for any proper subset S̄ij of S
i
j , then pij+

∑

k∈S̄i
j
Ci

k,j > 0. The inequality

(4) implies that if xk
j = 1 for any k ∈ Sij , then xi

j = 0. In general, this implies that for any interaction
set, the inequality

xi
j +

∑

k∈Si
j

xk
j ≤ |S

i
j |

is an equilibrium inequality. We define the latter inequality as Strategic Payoff Inequality. In practice,
the inequalities generated by minimal interaction sets are stronger than those generated by non-
minimal interaction sets since they generally involve more variables. Clearly, the effort to separate
and include all the previous strategic inequalities may not be negligible when n and m increase. In
practice, at each iteration of Algorithm 2, we separate and add to Q only the inequalities violated by
the incumbent solution (x̄, z̄).

Computational Results. We generate KPG instances with n = 2, 3 and m = 25, 50, 75, 100, and with
pij and wi

j being random integers uniformly distributed in [1, 100] for any i. The knapsack capacities bi

are equal to 0.2
∑m

j=1 w
i
j , 0.5

∑m

j=1 w
i
j , or 0.8

∑m

j=1 w
i
j , respectively. For what concerns the strategic

interaction, we focus on three different distributions for the integer interaction coefficients Ci
k,j . For

any player i, they can be: A) equal and uniformly distributed in [1, 100], or B) random and uniformly
distributed in [1, 100], or C) random and uniformly distributed in [−100, 100]. In Table 1, we present
the results for the 72 resulting instances. For any given number of players n, items m and distribution
of coefficients Ci

k,j ((n,m, d)), we report the performance over the 3 instances with different capacities,
in terms of: (i.) the average number of Equilibrium Inequalities of Proposition 1 added (#EI ), (ii.) the
average number of Strategic Payoff Inequalities (#EI P) (which we only compute for the instances
with distribution C ), (iii.) the average number of Strategic Dominance Inequalities (#EI D), (iv.) the
average computational time (Time), (v.) the average computational time (Time-1st) to find the first
PNE (if any), (vi.) the average PoS (PoS ) for the best PNE (if any), and (vii.) the number of
time limit hits (Tl). The average values in #EI, #EI P, #EI D, Time and Time-1st also consider
the instances where we hit the time limit2, which we set to 1800 seconds. ZERO Regrets solves
almost all instances with n = 2, regardless of the type of strategic interaction. Both running times
and the number of equilibrium inequalities are significantly modest for a Σp

2 -hard game. The PoS is
generally low and increases with distribution C due to the nature of the complex strategic interactions

2 We remark that the same observation holds on all our experiments.
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stemming from both negative and positive Ci
k,j coefficients. We remind that a PoS close to 1 does

not mean the instance is computationally “easy”. On the contrary, a PoS ≈ 1 highlights the existence
of a high-quality PNE (i.e., with a welfare close to the one of the OSW ) and also provides further
evidence concerning the urgency of selecting efficient PNEs. ZERO Regrets performs robustly even
in large instances, establishing a significant computational advantage over the previously developed
approaches in the literature. Carvalho et al. [13, 14] consider up to m = 40 items with n = 3 by
just computing an equilibrium, while Cronert and Minner [18] only perform equilibria selection with
m < 5.

(n, m, d) #EI #EI P #EI D Time Time-1st PoS Tl

(2, 25, A) 14.67 0.00 3.00 0.06 0.05 1.07 0/3
(2, 25, B) 17.33 0.00 3.67 0.12 0.09 1.02 0/3
(2, 25, C) 29.33 9.67 7.67 0.39 0.04 1.06 0/3
(2, 50, A) 20.00 0.00 2.67 0.21 0.21 1.02 0/3
(2, 50, B) 26.67 0.00 19.67 0.51 0.39 1.01 0/3
(2, 50, C) 72.67 27.00 11.33 6.34 0.92 1.08 0/3
(2, 75, A) 38.00 0.00 31.00 0.60 0.44 1.00 0/3
(2, 75, B) 100.67 0.00 34.00 8.35 5.71 1.02 0/3
(2, 75, C) 112.67 38.33 67.00 47.75 3.96 1.08 0/3
(2, 100, A) 25.33 0.00 14.67 0.76 0.58 1.01 0/3
(2, 100, B) 205.33 0.00 79.67 220.42 143.45 1.01 0/3
(2, 100, C) 697.33 55.33 119.67 1205.29 11.33 1.05 2/3
(3, 25, A) 31.00 0.00 9.33 0.21 0.21 1.01 0/3
(3, 25, B) 44.00 0.00 14.67 0.33 0.33 1.02 0/3
(3, 25, C) 91.00 29.67 33.67 29.78 5.64 1.26 0/3
(3, 50, A) 95.00 0.00 24.33 18.39 11.68 1.03 0/3
(3, 50, B) 206.00 0.00 44.33 626.45 167.01 1.01 1/3
(3, 50, C) 148.00 63.00 224.67 382.24 - - 0/3
(3, 75, A) 64.00 0.00 119.00 4.65 2.07 1.02 0/3
(3, 75, B) 278.00 0.00 92.67 982.97 272.69 1.01 1/3
(3, 75, C) 173.00 87.33 319.67 658.77 - - 1/3
(3, 100, A) 261.00 0.00 144.67 1200.65 666.13 1.00 2/3
(3, 100, B) 479.00 0.00 168.33 tl - - 3/3
(3, 100, C) 184.00 171.00 1019.67 1200.31 - - 2/3

Table 1: Results overview for the KPG. The complete tables of results are in the Appendix (Table 6
and Table 7).

5.2 The Network Formation Game

Network design games are paradigmatic problems in Algorithmic Game Theory [4, 15, 40]. Their
natural application domain is often the one of computer networks and the Internet itself, where several
selfish agents opportunistically decide how to share a scarce resource, for instance, the bandwidth.
Tardos [51] accurately claims that the impact and future of the complex technology we develop through
the Internet critically depend on the ability to balance the diverse needs of the selfish agents in the
network. We consider a (weighted) NFG– similar to the one of Chen and Roughgarden [15] – where n
players are interested in building a computer network. Let G(V,E) be a directed graph representing a
network layout, where V , E are the sets of vertices and edges, respectively. Each edge (h, l) ∈ E has a
construction cost chl ∈ Z

+, and each player i wants to connect an origin si with a destination ti while
minimizing its construction costs. A cost-sharing mechanism determines the cost of each edge (h, l)
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for a player as a function of the number of players crossing (h, l). Arguably, the most common and
widely-adopted mechanism is the Shapley cost-sharing mechanism, where players using (h, l) equally
share its cost chl. The goal is to find a PNE minimizing the sum of construction costs for each player
or determine that no PNE exists. We model the NFG as an IPG as follows. For any player i and edge
(h, l), let the binary variables xi

hl be 1 if i uses the edge. We employ standard flow constraints to model
a path between si and ti. For conciseness, we represent these constraints and binary requirements with
a set F i for each i. Thus, each player i solves:

min
xi
{

∑

(h,l)∈E

chlx
i
hl

∑n

k=1 x
k
hl

: xi ∈ F i}. (5)

For any player i, the cost contribution of each edge (h, l) to the objective is not linear in x and may
not be defined for some choices of x (i.e.,

∑n

k=1 x
k
hl = 0). However, we can linearize the fractional

terms and eliminate the indefiniteness. For instance, consider a game with n = 3 and the objective
of player 1. Let the binary variable zj,...,khl be 1 if only players j, . . . , k select the edge (h, l). Then,
x1
hl = z1hl + z12hl + z13hl + z123hl , x2

hl = z2hl + z12hl + z23hl + z123hl , x3
hl = z3hl + z13hl + z23hl + z123hl along with a

clique constraint z1hl+ z2hl+ z3hl+ z12hl + z13hl + z23hl + z123hl ≤ 1. The term for edge (h, l) in the objective of
player 1 is then chlz

1
hl +

chl

2 (z12hl + z13hl ) +
chl

3 z123hl . In our tests, we consider the general weighted NFG
[15], where each player i has a weight wi, and the cost share of each selected (h, l) is wichl divided
by the weights of all players using (h, l). Specifically, we consider the 3-player weighted NFG, where
a PNE may not exist, and selecting one if multiple equilibria exist is generally an NP-hard problem
[4, 15].

Computational Results. In order to tackle challenging instances, we consider the NFG with n = 3 on
grid-based directed graphs G(V,E), where each i has to cross the grid from left to right to reach its
destination. Compared to a standard grid graph, we randomly add some edges between adjacent layers
to increase the number of paths, and to facilitate the interaction among players. The instances are so
that |V | ∈ [50, 500], and the costs chl for each edge (h, l) are random integers uniformly distributed
in [20, 100]. We consider three distributions of player’s weights: (i.) the Shapely-mechanism with
w1 = w2 = w3 = 1, where a PNE always exists, yet selecting the most efficient PNE is NP-hard,
or (ii.) w1 = 0.6, w2 = 0.2, and w3 = 0.2, or (iii.) w1 = 0.45, w2 = 0.45, and w3 = 0.1. Table 2 reports
the results, where we average over the distributions of the players’ weights. For each graph, the table
reports the graph size (|V |, |E|), whereas the other columns have the same meaning of the ones of
Table 1. Our algorithm effectively solves all the instances but 3 within a time limit of 1800 seconds and
consistently selects high-efficiency PNEs. Further, our algorithm finds the first PNE in considerably
limited computing times. Generally, the previous literature does not consider this problem from a
computational perspective, but only provides theoretical and possibly pessimistic bounds on the PoS
and PoA. Nevertheless, we can compute efficient PNEs even in large-size graphs (i.e., PoS ≈ 1),
with a limited number of equilibrium inequalities and modest running times, showing the practical
effectiveness of our algorithm in a paradigmatic AGT problem.

(|V |, |E|) #EI Time Time-1st PoS Tl (|V |, |E|)) #EI Time Time-1st PoS Tl

(50, 99) 6.00 0.04 0.04 1.12 0/3 (300, 626) 21.00 12.11 2.64 1.04 0/3
(100, 206) 2.33 0.05 0.04 1.00 0/3 (350, 730) 19.00 13.92 7.42 1.01 0/3
(150, 308) 6.00 0.64 0.25 1.01 0/3 (400, 822) 248.67 694.95 228.69 1.08 1/3
(200, 416) 11.67 3.28 1.11 1.06 0/3 (450, 934) 394.67 1199.98 2.61 1.11 2/3
(250, 517) 64.67 63.50 16.07 1.02 0/3 (500, 1060) 35.67 87.07 7.25 1.00 0/3

Table 2: Results overview for the NFG. The complete table of results is in the Appendix (Table 8).
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5.3 The Competitive Facility Location and Design Game

The CFLD [1] is a game where sellers (players) compete for the demand of customers located in a
given geographical area. Each seller makes two fundamental choices: where to open its selling facilities
and the product assortment of such facilities, i.e., their “design”. Symmetrically, the customers select
their favorite facilities depending on the relative distance from a facility and its attractiveness in terms
of design. We consider a variant recently presented by Cronert and Minner [18], where n competitors
simultaneously choose the location and design of their facilities. Let L be the set of potential facility
locations, J be the set of customers, and let Rl denote the set of design alternatives for each location
l ∈ L. Each player i has an available budget Bi and incurs in a fixed cost f i

lr when opening a facility
at location l ∈ L and with the design r ∈ Rl. Each player i acquires a share of the demand wj of a
customer j ∈ J according to a utility ui

ljr , whose value depends upon the distance of customer j from
a facility in location l and the design choice of such facility (see Cronert and Minner [18] for more
details). The CFLD formulates as an IPG where each player i solves

max
xi

∑

j∈J

wj

∑

l∈L

∑

r∈Rl
ui
ljrx

i
lr

∑n

k=1

∑

l∈L

∑

r∈Rl
uk
ljrx

k
lr

(6a)

s.t.
∑

l∈L

∑

r∈Rl

f i
lrx

i
lr ≤ Bi, (6b)

∑

r∈Rl

xi
lr ≤ 1 ∀l ∈ L, (6c)

xi
lr ∈ {0, 1} ∀l ∈ L, ∀r ∈ Rl. (6d)

The binary variable xi
lr is 1 if player i opens a facility in the location l ∈ L with a design r ∈ Rl. The

objective function (6a) represents the share of customer demands player i maximizes, the constraint
(6b) is the budget constraint for player i, and the constraints (6c) enforce that player i can open only
one facility in a location l. As in the NFG, the objective is not linear in x, and the denominator can
be zero; however, we can linearize it with tailored fractional programming techniques.

Computational Results. We test ZERO Regrets on a representative set of instances from Cronert and
Minner [18] to which we refer for the details concerning the distributions of locations and customers,
and the entries wj , uljr , flr. The resulting 64 instances with n = 2, 3 have 50 locations and 50
customers, with budgets B1 ∈ [10, 40] and B2 = B1, B1 + 10, . . . , 100, B3 = 10. Table 3 summarizes
the results, where we aggregate and average over the values of B1. We benchmark our results against
the performance of eSGM-WM from Cronert and Minner [18, Table 2], which ran on a machine
with similar hardware characteristics. Although the authors compute both pure and mixed welfare-
maximizing equilibria, we focus on computing only the welfare-maximizing PNE . Generally, ZERO
Regrets outperforms algorithm eSGM-WM even in instances where only PNEs exist. Our algorithm
solves 62 instances over 64 within a time limit of 3600 seconds. The running times of ZERO Regrets
are sensibly limited compared to those of eSGM-WM, and never hit the time limit on the instances
with n = 2. Occasionally, the running times are dramatically smaller, e.g., the instance with n = 2,
B1 = 40, B2 = 80 where only one PNE exists: our algorithm finds the most efficient PNE in about
1636 seconds, while eSGM-WM requires 163315 seconds.

5.4 The Quadratic Game

The qIPG is a simultaneous non-cooperative IPG introduced by Sagratella [45], where each player i
solves the problem

min
xi
{
1

2
(xi)⊤Qixi + (Cix−i)⊤xi + (ci)⊤xi : LB ≤ xi ≤ UB, xi ∈ Z

m}. (7)
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(n, B1) #EI Time Time-1st PoS Tl (n, B1) #EI Time Time-1st PoS Tl

(2, 10) 4.00 1.76 1.76 1.01 0/10 (3, 10) 6.30 3.56 2.11 1.02 0/10
(2, 20) 5.11 7.39 3.03 1.01 0/9 (3, 20) 9.00 27.72 7.29 1.03 0/9
(2, 30) 9.25 339.35 59.39 1.03 0/8 (3, 30) 18.38 754.84 555.78 1.05 1/8
(2, 40) 16.40 682.00 294.92 1.07 0/5 (3, 40) 25.20 1863.92 739.63 1.06 1/5

Table 3: Results overview for the CFLD from the instances of Cronert and Minner [18, Table 2]. The
complete table of results is in the Appendix (Table 9).

Specifically, each player i controls m integer variables bounded by the vectors LB and UB. The strate-
gic interaction involves the term (Cix−i)⊤xi, while the linear and quadratic terms solely depend on
each player’s choices. While Sagratella [45] considers only instances with positive-definite Qi matrices
(i.e., the problem is convex in xi for any i), Schwarze and Stein [48] consider arbitrary matrices Qi

(i.e., non-convex objectives). In particular, the latter generalizes the former by dropping the convexity
requirement w.r.t. xi on the payoffs ui(xi, x−i). In contrast with the aforementioned applications, we
let the MIP solver manage the linearization of the quadratic terms in each player’s payoff in order
to fully integrate ZERO Regrets with the features of the existing MIP technology. As in Sagratella
[45], Schwarze and Stein [48], we setup ZERO Regrets to enumerate all PNEs or to certify that no
PNE exists.

Computational Results. We test our algorithm on both convex and non-convex benchmarks of the
qIPG. First, we consider the qIPG from Schwarze and Stein [48], and test our algorithm on the same
instance set. We refer to the original paper for the details on instance generation. Besides the bounds
on the xi variables, these instances also include m non-redundant linear inequalities Aixi ≤ bi for each
player i. Table 4 reports an overview of the results with a similar notation to the one of the previous
tables. In the first column, we report the tuple (n,m, t), where t is either C when each player’s problem
is convex or NC otherwise. We additionally report the average number of PNEs in the column #EQs.
We solve all the 56 instances in less than 416 seconds globally, with the most computationally-difficult
instance requiring 56 seconds. Similar to the previous tests, our algorithm strongly outperforms the
one of Schwarze and Stein [48]. Specifically, their algorithm runs out of time in 25 instances (time
limit of 3600 seconds) and solves the remaining 31 instances with non-negligible computational times
(i.e., about 1302 seconds on average).

(n,m, t) #EI #EQs Time Time-1st PoS PoA Tl

(2, 2, C) 14.00 1.67 0.35 0.18 1.17 1.43 0/4
(2, 3, C) 26.75 1.60 1.13 0.42 5.56 6.10 0/8
(2, 4, C) 35.00 1.00 3.40 1.19 1.32 1.32 0/4
(2, 5, C) 56.00 1.50 35.88 7.72 2.19 4.74 0/4
(3, 2, C) 42.00 2.00 1.21 0.65 1.83 2.40 0/4
(3, 3, C) 108.75 1.00 35.62 7.09 3.79 3.79 0/4
(2, 2, NC) 16.00 1.33 0.43 0.30 2.20 2.20 0/4
(2, 3, NC) 20.25 1.75 1.07 0.40 1.33 1.68 0/8
(2, 4, NC) 19.50 1.00 1.51 0.82 1.02 1.02 0/4
(2, 5, NC) 28.50 1.67 14.03 2.38 1.31 1.53 0/4
(3, 2, NC) 30.00 2.67 1.03 0.37 1.03 1.60 0/4
(3, 3, NC) 46.50 1.33 6.11 2.43 1.44 1.45 0/4

Table 4: Results overview for the qIPG from the instances of Schwarze and Stein [48]. The complete
table of results is in the Appendix (Table 10).
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To get a broader perspective, we also consider the convex instances of the game generated according
to the scheme proposed in Sagratella [45]. The matrices Qi and Ci are a random positive-definite and
a random matrix, respectively, with rational entries in the range [−25, 25], while the entries of ci

are integer numbers in the range [−5, 5]. We generate our instances with n ∈ [1, 6], m ∈ [1, 10],
LB ∈ [−1000, 0], and UB ∈ [5, 1000] similarly to Sagratella [45]. We report the average results
in Table 5, where we aggregate for n. ZERO Regrets finds the first PNE in less than a second on
average, and manages to solve any instance in less than 12 seconds, even when more than 10 PNEs
exist (see Table 11). Although we note that the algorithm of Sagratella [45] ran on a less performing
machine, the results in Table 5 highlight the remarkable effectiveness of ZERO Regrets. The speedup
in the performance seems to be considerably larger than the improvement associated with different
hardware and software specifications (i.e., our algorithm is 100 times faster in terms of computing
times).

n #EI #EQs Time Time-1st Tl

2 81.33 3.67 2.21 0.58 0/12
3 115.13 4.00 2.44 0.60 0/8
4 119.00 10.25 3.90 0.97 0/4
6 79.50 3.50 0.96 0.38 0/4

Table 5: Results for the qIPG from the instances of Sagratella [45]. The complete table of results is
in the Appendix (Table 11).

6 Concluding Remarks

This paper presents a general framework to compute, enumerate and select equilibria for a class of
IPGs. These games are a fairly natural multi-agent extension of traditional problems in Operations
Research, such as resource allocation, pricing, and combinatorial problems, and are powerful modeling
tools for various applications. We provide a theoretical characterization of our framework through the
concepts of equilibrium inequality and equilibrium closure. We explore the interplay between rational-
ity and cutting planes by introducing a series of general and special-purpose classes of equilibrium
inequalities and provide an interpretable criterion to frame the strategic interaction among players.
The algorithm we introduce is general and it smoothly integrates with the existing optimization tech-
nology. Practically, we apply our framework to various problems from the relevant literature and
significant application domains. We perform an extensive computational campaign and demonstrate
the high efficiency and scalability of ZERO Regrets. Our computational results also provide evidence
of the existence of efficient PNEs, further motivating the need for suitable algorithms to select or
enumerate them. We also remark that our algorithm could practically work – up to a numerical tol-
erance – even when some of the players’ variables are bounded and continuous, e.g., by dropping the
integrality requirement on some variables. We are prudently optimistic about the impact our frame-
work may have in applied domains and the future methodological research directions it may open. We
envision the potential for a series of theoretical contributions regarding the structure of new classes of
general and problem-specific equilibrium inequalities and computational methods to further improve
the algorithm’s performance. Above all, we hope our framework will foster future academic research
and clear the way for novel and impactful applications of IPGs.

Acknowledgements We would like to thank Ulrich Pferschy for the valuable discussions concerning
our work.
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Appendix

KPG Complexity Proof

We perform a reduction from the DeNegre Bilevel Knapsack Problem (BKP ) below, which is Σp
2 -

complete [9].

Definition 5 (BKP). Given two m-dimensional non-negative integer vectors a and b and two non-
negative integers A and B, the BKP asks whether there exists a binary vector x – with

∑m

j=1 ajxj ≤ A

– satisfying
∑m

j=1 bjyj(1− xj) ≤ B − 1 for any binary vector y such that
∑m

j=1 bjyj ≤ B.

Without loss of generality, we assume aj ≤ A for any j. If this is not the case, we can always modify the
original BKP instance as follows: (i.) we replace A with 2A+1, any aj ≤ A with 2aj, and any aj > A
with (2A+1), and (ii.) we add a new element m+1 (i.e., new item), with am+1 = 1 and bm+1 = B. In

any solution of this modified instance, we must have xm+1 = 1, otherwise
∑m+1

j=1 bjyj(1− xj) ≤ B− 1

would never hold since
∑m+1

j=1 bjyj(1 − xj) = B when xm+1 = 0 and ym+1 = 1. Setting xm+1 = 1
gives a residual capacity 2A for the packing constraint of x. Indeed, every subset of x variables with
original aj ≤ A that was satisfying

∑m

j=1 ajxj ≤ A now satisfies
∑m

j=1 2ajxj ≤ 2A. On the contrary,
we cannot select any xj variable with original aj > A. Thus, a solution (if any) to the original instance
corresponds to a solution to the modified instance, and vice versa.

Proof. First note that deciding if KPG admits a PNE is in Σp
2 , as we ask whether there exists a

strategy profile where every player cannot improve its payoff with any of its strategies, and we can
compute the payoff of such strategies in polynomial time. Given a BKP instance, we construct a KPG
instance with 2 players as follows. We consider m + 1 items and associate the elements of vectors x
and y with the first m elements of vectors x1 and x2, respectively. Then, player 1 solves the problem
in (8), whereas player 2 solves the problem in (9).

max
x1

{
m
∑

j=1

bjx
1
jx

2
j + x1

m+1x
2
m+1 :

m
∑

j=1

ajx
1
j ≤ A, x1 ∈ {0, 1}m+1}. (8)

max
x2

{(B − 1)x2
m+1 +

m
∑

j=1

bjx
2
j −

m
∑

j=1

bjx
2
jx

1
j :

m
∑

j=1

bjx
2
j +Bx2

m+1 ≤ B, x2 ∈ {0, 1}m+1}. (9)

In order to prove the theorem, we show that the KPG instance has a PNE if and only if the corre-
sponding BKP instance admits a solution.

BKP admits a solution. We assume the BKP instance has a solution x. We prove that x̂1 = (x, 1),
x̂2 = (0, 1) (with 0 being an m-dimensional vector of zeros) is a PNE . First, both the strategies x̂1

and x̂2 are feasible by construction. Given x̂2, player 1 attains the maximum payoff of 1 by playing
strategy x̂1. The strategy x̂2 yields a payoff of B − 1 for player 2 when player 1 plays x̂1. Player 2
cannot profitably deviate by setting x2

m+1 = 0. This follows from the fact that the BKP instance has
a solution x and, given that x̂1

j = xj for j = 1, . . . ,m, the following inequality must hold.

m
∑

j=1

bjx
2
j −

m
∑

j=1

bjx
2
j x̂

1
j ≤ B − 1.

Thus, the pair of strategies (x̂1, x̂2) is also a PNE for the KPG instance.
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BKP has no solution. If the BKP instance has no solution, player 2 never plays x2
m+1 = 1 in a

best-response, as it can always obtain a payoff of B with variables x2
1, . . . , x

2
m for any player 1’s feasible

strategy. Consider any player 2’s best-response x̂2, with x̂2
m+1 = 0, and assume the KPG instance has

a PNE (x̂1, x̂2). Then, in the player 1’s best-response x̂1, there exists at least one x̂1
j = 1 when x̂2

j = 1

and bj > 0 (since aj ≤ A for any j). However, in this case, player 2 would deviate from x̂2, since x̂2

gives a payoff < B under x̂1. Thus, no PNE exists in the KPG instance.

Extended Computational Results

In the following sections, we report the full results for the our computational tests. The columns
are similar to the ones reported in the previous tables, possibly with the following additions (i.) #It
indicating the number of iterations of ZERO Regrets, and (ii.) PNE * reporting the social welfare
of the most efficient PNE , (iii.) PNE ° reporting the social welfare of the less efficient PNE (if
computed), (iv.) OSW reporting the optimal social welfare in the game, and (v.) Bound reporting
the last proven bound on Q before the latter becomes infeasible (or the algorithm hits the time limit),
irrespective on whether the algorithm enumerated PNEs or not.
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Full KPG Results

We report the two tables with the full KPG results. In the first column of Tables 6 and 7 we add
the field I to specify the instance type. Specifically, the knapsack capacity of player i is given by
∑

j=1(w
i
j)I/10.
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(n, m, d, I) PoS #EI #EI P #EI D #It Time Time-1st PNE * OSW Bound

(2, 25, A, 2) 1.106 12 0 8 3 0.036 0.035 1884 2084 1884

(2, 25, A, 5) 1.025 20 0 0 3 0.095 0.093 3086 3163 3086

(2, 25, A, 8) 1.000 12 0 1 2 0.035 0.032 4883 4883 4883

(2, 25, B, 2) 1.021 14 0 0 3 0.067 0.065 1609 1643 1609

(2, 25, B, 5) 1.025 28 0 4 4 0.250 0.182 3456 3542 3459

(2, 25, B, 8) - 10 0 7 2 0.038 0.035 4624 4624 4624

(2, 25, C, 2) - 16 7 5 4 0.153 - - 1480 1329

(2, 25, C, 5) - 62 12 17 11 0.967 - - 2083 1863

(2, 25, C, 8) 1.064 10 10 1 4 0.037 0.036 2739 2914 2739

(2, 50, A, 2) 1.024 24 0 3 4 0.213 0.208 3824 3914 3824

(2, 50, A, 5) 1.035 16 0 2 3 0.214 0.212 6404 6626 6404

(2, 50, A, 8) 1.016 20 0 3 4 0.205 0.204 6703 6809 6703

(2, 50, B, 2) 1.004 10 0 0 2 0.043 0.040 3930 3946 3930

(2, 50, B, 5) 1.004 42 0 34 5 0.853 0.620 6931 6962 6936

(2, 50, B, 8) 1.008 28 0 25 6 0.620 0.501 9294 9372 9294

(2, 50, C, 2) 1.018 8 25 0 3 0.087 0.086 3173 3230 3173

(2, 50, C, 5) - 112 25 22 17 17.190 - - 5654 4923

(2, 50, C, 8) 1.134 98 31 12 18 1.749 1.747 5358 6074 5358

(2, 75, A, 2) 1.008 36 0 19 4 0.407 0.401 5784 5831 5784

(2, 75, A, 5) 1.004 40 0 49 4 1.025 0.572 12701 12757 12702

(2, 75, A, 8) 1.001 38 0 25 3 0.359 0.342 16319 16337 16319

(2, 75, B, 2) 1.033 122 0 41 12 12.483 9.045 5690 5880 5694

(2, 75, B, 5) 1.015 72 0 35 8 5.865 1.420 10293 10449 10297

(2, 75, B, 8) 1.010 108 0 26 12 6.691 6.664 13769 13910 13769

(2, 75, C, 2) 1.061 94 43 57 9 3.072 3.064 4356 4623 4356

(2, 75, C, 5) - 136 35 87 18 134.899 - - 7908 6934

(2, 75, C, 8) 1.089 108 37 57 18 5.289 4.865 8455 9207 8467

(2, 100, A, 2) 1.007 38 0 29 5 1.409 1.153 8302 8357 8313

(2, 100, A, 5) 1.002 20 0 4 2 0.355 0.188 18271 18301 18274

(2, 100, A, 8) 1.011 18 0 11 3 0.521 0.398 18516 18723 18519

(2, 100, B, 2) 1.018 78 0 11 8 4.294 4.281 8156 8303 8156

(2, 100, B, 5) 1.010 500 0 203 42 655.957 425.088 14246 14390 14248

(2, 100, B, 8) 1.002 38 0 25 5 0.997 0.988 19054 19084 19054

(2, 100, C, 2) 1.048 116 49 33 13 15.873 11.332 5808 6084 5817

(2, 100, C, 5) - 464 53 260 30 tl - - 9611 8958

(2, 100, C, 8) - 1512 64 66 110 tl - - 9791 9007

Table 6: Full results for the KPG with n = 2.
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(n, m, d, I) PoS #EI #EI P #EI D #It Time Time-1st PNE * OSW Bound

(3, 25, A, 2) 1.010 21 0 0 3 0.166 0.164 3738 3777 3738

(3, 25, A, 5) 1.004 30 0 0 2 0.151 0.144 5480 5500 5480

(3, 25, A, 8) 1.011 42 0 28 3 0.323 0.316 9592 9693 9592

(3, 25, B, 2) 1.034 27 0 3 3 0.223 0.219 4535 4691 4535

(3, 25, B, 5) 1.005 45 0 18 3 0.394 0.388 7293 7329 7293

(3, 25, B, 8) 1.008 60 0 23 4 0.387 0.378 10346 10433 10346

(3, 25, C, 2) 1.259 78 6 5 8 6.765 5.643 2152 2710 2165

(3, 25, C, 5) - 159 24 64 13 82.115 - - 4980 3935

(3, 25, C, 8) - 36 59 32 4 0.449 - - 5735 4414

(3, 50, A, 2) 1.033 99 0 17 5 3.739 3.727 6769 6995 6769

(3, 50, A, 5) 1.037 69 0 6 5 2.413 2.043 11345 11764 11346

(3, 50, A, 8) 1.007 117 0 50 8 49.004 29.269 17283 17406 17283

(3, 50, B, 2) 1.011 36 0 1 4 1.976 1.971 7549 7634 7549

(3, 50, B, 5) 1.015 468 0 99 29 tl 483.842 13571 13781 13573

(3, 50, B, 8) 1.011 114 0 33 9 77.373 15.220 19680 19896 19697

(3, 50, C, 2) - 231 37 108 15 934.599 - - 5215 3764

(3, 50, C, 5) - 159 64 397 10 211.139 - - 9148 7564

(3, 50, C, 8) - 54 88 169 5 0.977 - - 11002 9194

(3, 75, A, 2) 1.003 60 0 70 4 9.057 1.342 14664 14711 14672

(3, 75, A, 5) 1.041 45 0 1 3 0.842 0.827 13869 14434 13869

(3, 75, A, 8) 1.002 87 0 286 5 4.056 4.032 26468 26519 26468

(3, 75, B, 2) - 444 0 130 18 tl - - 11508 11229

(3, 75, B, 5) 1.002 81 0 97 4 5.206 5.180 23139 23194 23139

(3, 75, B, 8) 1.011 309 0 51 18 1143.710 540.207 30118 30438 30118

(3, 75, C, 2) - 357 36 177 15 tl - - 7242 6568

(3, 75, C, 5) - 141 152 654 7 175.807 - - 13553 11175

(3, 75, C, 8) - 21 74 128 3 0.517 - - 16736 14235

(3, 100, A, 2) - 333 0 15 15 tl - - 15164 14825

(3, 100, A, 5) 1.003 408 0 28 21 tl 1330.340 32673 32766 32677

(3, 100, A, 8) 1.006 42 0 391 3 1.959 1.915 37607 37826 37607

(3, 100, B, 2) - 516 0 297 21 tl - - 15946 15679

(3, 100, B, 5) - 291 0 81 12 tl - - 29393 29119

(3, 100, B, 8) - 630 0 127 29 tl - - 40282 40082

(3, 100, C, 2) - 288 45 285 12 tl - - 11222 10045

(3, 100, C, 5) - 234 226 2059 10 tl - - 18272 15941

(3, 100, C, 8) - 30 242 715 3 0.932 - - 20653 16855

Table 7: Full results for the KPG with n = 3.
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Full NFG Results

In Table 8, we report the full results for the NFG. In the second and third columns, we report the
weights of player 1 and 2 as w1 and w2, respectively. We remark that w3 = 1− w1 − w2.

(|V |, |E|) w
1

w
2 PoS #EI #It Time Time-1st PNE * OSW Bound

(50, 99) 0.33 0.33 1.061 5 3 0.037 0.036 980 924 980
(50, 99) 0.6 0.2 1.245 8 3 0.040 0.039 1150 924 1150
(50, 99) 0.45 0.45 1.061 5 3 0.034 0.034 980 924 980

(100, 206) 0.33 0.33 1.000 3 2 0.047 0.041 1320 1320 1320
(100, 206) 0.6 0.2 1.000 2 2 0.046 0.040 1320 1320 1320
(100, 206) 0.45 0.45 1.000 2 2 0.047 0.040 1320 1320 1320
(150, 308) 0.33 0.33 1.015 8 4 0.996 0.222 2049 2019 2042
(150, 308) 0.6 0.2 1.015 5 4 0.354 0.353 2049 2019 2049
(150, 308) 0.45 0.45 1.015 5 3 0.565 0.190 2049 2019 2041
(200, 416) 0.33 0.33 1.000 1 2 0.109 0.096 2336 2336 2336
(200, 416) 0.6 0.2 1.007 12 5 2.828 1.696 2352 2336 2346
(200, 416) 0.45 0.45 1.187 22 10 6.908 1.529 2352 2336 2349
(250, 517) 0.33 0.33 1.027 137 37 144.392 33.653 2730 2672 2729
(250, 517) 0.6 0.2 1.027 47 17 43.991 13.430 2730 2672 2729
(250, 517) 0.45 0.45 1.012 10 5 2.111 1.122 2703 2672 2693
(300, 626) 0.33 0.33 1.060 36 10 14.877 2.068 3587 3567 3587
(300, 626) 0.6 0.2 1.053 26 11 21.300 5.701 3587 3567 3585
(300, 626) 0.45 0.45 1.000 1 2 0.161 0.140 3567 3567 3567
(350, 730) 0.33 0.33 1.003 15 5 9.664 3.100 3678 3669 3677
(350, 730) 0.6 0.2 1.014 41 11 31.889 18.997 3687 3669 3687
(350, 730) 0.45 0.45 1.000 1 2 0.197 0.173 3669 3669 3669
(400, 822) 0.33 0.33 1.207 100 29 163.047 0.228 4348 4319 4347
(400, 822) 0.6 0.2 1.016 543 116 tl 584.854 4387 4319 4373
(400, 822) 0.45 0.45 1.007 103 26 121.910 100.997 4348 4319 4346
(450, 934) 0.33 0.33 1.159 0 2 0.304 0.250 4827 4827 4827
(450, 934) 0.6 0.2 1.021 575 119 tl 7.284 4925 4827 4866
(450, 934) 0.45 0.45 1.159 609 115 tl 0.281 4934 4827 4864
(500, 1060) 0.33 0.33 1.004 66 29 198.440 5.191 5535 5512 5534
(500, 1060) 0.6 0.2 1.004 20 8 20.951 11.231 5535 5512 5535
(500, 1060) 0.45 0.45 1.005 21 12 41.808 5.321 5535 5512 5534

Table 8: Full results for the NFG.
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Full CFLD Results

We report the results for a set of instances from Cronert and Minner [18, Table 2] (i.e., β = 0.5 and
dmax = 20). We report the full set of our results in Table 9, where, in the second and third columns,
we report the budget of player 1 and 2 as B1 and B2. When n = 3, B3 = 10.

n B
1

B
2 #EQs PoS #EI #It Time Time-1st PNE * OSW Bound

2 10 10 1 1.000 2 2 0.038 0.036 69 69 69

2 10 20 1 1.000 2 2 0.259 0.256 109 109 109

2 10 30 1 1.000 2 2 0.871 0.869 153 153 153

2 10 40 1 1.000 2 2 1.026 1.025 186 186 186

2 10 50 1 1.000 2 2 0.545 0.544 212 212 212

2 10 60 1 1.000 2 2 0.627 0.626 232 232 232

2 10 70 1 1.013 4 3 2.081 2.079 236 239 236

2 10 80 1 1.047 8 4 4.908 4.905 236 247 236

2 10 90 1 1.029 8 4 3.532 3.529 245 252 245

2 10 100 1 1.028 8 4 3.706 3.701 247 254 247

2 20 20 1 1.000 2 2 0.426 0.424 136 136 136

2 20 30 1 1.000 2 2 1.153 1.151 180 180 180

2 20 40 1 1.000 2 2 0.867 0.865 210 210 210

2 20 50 1 1.000 4 3 1.760 1.758 232 232 232

2 20 60 1 1.013 10 5 11.852 6.770 236 239 238

2 20 70 1 1.038 6 3 7.494 7.194 234 243 234

2 20 80 0 - 6 4 9.530 - - 252 243

2 20 90 0 - 8 4 14.304 - - 254 247

2 20 100 0 - 6 3 19.163 - - 254 252

2 30 30 1 1.000 2 2 2.583 2.580 202 202 202

2 30 40 1 1.000 2 2 1.852 1.849 232 232 232

2 30 50 1 1.030 14 5 13.268 6.067 236 243 238

2 30 60 1 1.065 14 7 37.077 37.067 232 247 232

2 30 70 1 1.050 8 4 38.741 38.384 240 252 240

2 30 80 1 1.058 16 5 515.179 270.395 240 254 241

2 30 90 0 - 10 6 1327.610 - - 254 240

2 30 100 0 - 8 5 778.459 - - 254 247

2 40 40 1 1.138 24 9 491.695 154.949 210 239 216

2 40 50 1 1.038 16 6 128.764 23.469 238 247 240

2 40 60 2 1.050 18 9 344.539 98.475 240 252 240

2 40 70 1 1.058 14 6 808.094 418.576 240 254 245

2 40 80 1 1.058 10 5 1636.910 779.146 240 254 243

3 10 10 1 1.072 6 3 0.360 0.358 69 74 69

3 10 20 1 1.000 3 2 0.180 0.178 136 136 136

3 10 30 1 1.000 3 2 0.522 0.518 180 180 180

3 10 40 1 1.000 3 2 0.494 0.492 210 210 210

3 10 50 1 1.000 3 2 0.631 0.628 232 232 232

3 10 60 1 1.022 9 3 2.037 1.978 232 237 232

3 10 70 1 1.030 9 4 4.772 4.769 236 243 236

3 10 80 1 1.029 9 4 3.437 3.433 245 252 245

3 10 90 1 1.037 9 4 6.679 6.676 245 254 245

3 10 100 0 - 9 4 16.522 - - 254 249

3 20 20 1 1.000 3 2 1.520 1.517 158 158 158

3 20 30 2 1.037 18 4 6.161 5.795 187 194 187

3 20 40 1 1.032 9 3 3.088 3.018 217 224 217

3 20 50 1 1.000 3 2 1.931 1.929 239 239 239

3 20 60 1 1.030 15 5 19.666 19.662 236 243 236

3 20 70 1 1.068 6 3 5.114 5.111 236 252 236

3 20 80 1 1.058 9 4 14.024 14.021 240 254 240
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3 20 90 0 - 9 3 35.657 - - 254 252

3 20 100 0 - 9 4 162.306 - - 254 252

3 30 30 1 1.000 18 4 11.841 11.838 216 216 216

3 30 40 2 1.102 27 8 54.111 35.612 216 238 218

3 30 50 1 1.038 24 8 51.141 51.135 238 247 238

3 30 60 1 1.050 18 6 109.115 109.110 240 252 240

3 30 70 1 1.058 24 8 226.185 226.180 240 254 240

3 30 80 1 1.058 15 5 833.079 434.912 240 254 247

3 30 90 0 - 9 3 1153.500 - - 254 254

3 30 100 1 1.058 12 5 tl 3021.700 240 254 243

3 40 40 1 1.038 36 8 222.003 221.639 238 247 238

3 40 50 1 1.050 27 8 207.155 206.729 240 252 240

3 40 60 1 1.076 24 9 2848.410 1696.300 236 254 244

3 40 70 2 1.058 24 8 2441.450 833.853 240 254 240

3 40 80 0 - 15 6 tl - - 254 252

Table 9: Full results for the CFLD from the instances of Cronert and Minner [18, Table 2].

Full qIPGs Results

We report the full results for the instances of Schwarze and Stein [48] in Table 10, and the ones
generated following the scheme of Sagratella [45] in Table 11. In the latter table, we refer to Sagratella
[45] for an overview on the instances acronyms.

Instance #EQs PoS PoA #EI #It Time Time-1st PNE * PNE ° OSW Bound

C22 3 2 1.0815 1.1238 14 4 0.3692 0.2835 -22.7030 -21.8475 -24.5524 -22.7030
C22 2 1 1.0000 1.0000 2 2 0.0949 0.0811 -0.3146 -0.3146 -0.3146 -0.3146
C22 1 2 1.4233 2.1559 24 6 0.6366 0.1852 -13.5053 -8.9158 -19.2216 0.0196
C22 4 0 - - 16 3 0.3097 - - - -15.1462 -6.8359
C23 1 2 1.0353 1.6333 28 5 0.7040 0.2652 -10.7928 -6.8413 -11.1737 0.0000
C23 3 2 1.4506 3.0534 24 7 1.0306 0.5635 -22.3566 -10.6215 -32.4315 -10.6215
C23 2 0 - - 26 6 1.0065 - - - -22.3275 -0.3407
C23 6 1 23.2815 23.2815 16 4 0.7469 0.6326 -0.3396 -0.3396 -7.9063 -0.3572
C23 7 1 1.0101 1.0101 6 3 0.4038 0.2817 -4.5242 -4.5242 -4.5698 -4.5242
C23 5 0 - - 20 6 1.0198 - - - -8.2644 -0.2266
C23 4 0 - - 26 6 0.9098 - - - -44.4346 -4.6428
C23 8 2 1.0153 1.5113 68 13 3.2209 0.3646 -74.4543 -50.0193 -75.5936 -3.5526
C24 4 0 - - 32 5 4.6024 - - - -46.2197 -1.3690
C24 3 0 - - 48 7 4.2759 - - - -49.3061 -2.2944
C24 2 0 - - 40 5 2.8302 - - - -50.0571 -1.5728
C24 1 1 1.3206 1.3206 20 3 1.8845 1.1885 -6.4656 -6.4656 -8.5384 -6.4825
C25 4 1 1.4166 1.4166 34 7 34.4549 4.6820 -50.3544 -50.3544 -71.3315 -5.5704
C25 1 3 1.2068 11.3913 64 10 32.8601 3.6125 -22.4829 -2.3818 -27.1321 -2.3818
C25 3 1 2.0289 2.0289 60 10 26.9686 4.6411 -45.6431 -45.6431 -92.6057 -8.0414
C25 2 1 4.1130 4.1130 66 12 49.2170 17.9271 -10.2162 -10.2162 -42.0192 -2.1366
C32 1 2 3.1976 6.0787 30 4 0.7915 0.6078 -21.6314 -11.3788 -69.1684 -21.6314
C32 2 1 1.1101 1.1101 15 5 1.1502 0.4799 -28.0541 -28.0541 -31.1421 -9.9981
C32 3 3 1.1778 - 63 9 2.2256 0.8736 -45.5016 0.0000 -53.5937 -14.9792
C32 4 0 - - 60 4 0.6875 - - - -30.6557 -8.8992
C33 2 1 8.3676 8.3676 117 12 23.1855 15.4598 -9.2113 -9.2113 -77.0768 -3.7804
C33 3 1 1.7099 1.7099 102 10 25.2901 1.6631 -57.6349 -57.6349 -98.5491 -1.3043
C33 1 1 1.2914 1.2914 129 17 55.9786 4.1433 -138.1190 -138.1190 -178.3720 -6.0334
C33 4 0 - - 87 9 38.0066 - - - -118.7970 -6.0558

NC22 1 2 2.2947 2.2947 18 4 0.4126 0.1822 -8.7456 -8.7456 -20.0687 -8.7456
NC22 2 1 1.9081 1.9081 14 4 0.4483 0.3664 -12.2614 -12.2614 -23.3957 -12.2614
NC22 3 1 2.3939 2.3939 16 5 0.4243 0.3463 -22.1224 -22.1224 -52.9584 -22.1224
NC22 4 0 - - 16 4 0.4330 - - - -34.0944 -22.9080
NC23 8 0 - - 18 5 0.8855 - - - -57.4117 -31.8276
NC23 2 1 1.4346 1.4346 10 4 1.0951 0.2406 -29.1437 -29.1437 -41.8083 -15.2740
NC23 3 0 - - 20 4 0.7570 - - - -79.2272 -28.3022
NC23 1 1 1.6194 1.6194 36 8 1.5463 0.6476 -61.1489 -61.1489 -99.0215 -2.1164
NC23 4 3 1.1508 1.9143 32 9 1.4491 0.3539 -74.7629 -44.9448 -86.0367 -35.2390
NC23 5 2 1.0962 1.7415 10 4 0.9394 0.3543 -86.4907 -54.4442 -94.8133 -54.4442
NC23 7 0 - - 24 4 1.0328 - - - -46.1839 -14.7437
NC23 6 0 - - 12 3 0.8541 - - - -39.4816 -29.1236
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NC24 4 0 - - 34 5 2.0809 - - - -71.6710 -62.7970
NC24 1 1 1.0190 1.0190 16 4 1.4601 0.8236 -128.9180 -128.9180 -131.3660 -98.6356
NC24 2 0 - - 10 3 1.0317 - - - -59.2505 -50.3392
NC24 3 0 - - 18 4 1.4827 - - - -81.1047 -62.3756
NC25 4 1 1.4370 1.4370 14 6 3.9086 2.9218 -116.9060 -116.9060 -167.9990 -116.9060
NC25 2 2 1.0487 1.1744 30 8 7.1719 0.9324 -183.7380 -164.0840 -192.6940 -72.1818
NC25 3 2 1.4358 1.9921 32 8 25.6082 3.2763 -121.5220 -87.5895 -174.4870 -87.5895
NC25 1 0 - - 38 6 19.4117 - - - -163.5600 -62.2675
NC32 3 2 1.0000 1.4850 24 5 1.2589 0.4827 -101.4570 -68.3218 -101.4570 2.6985
NC32 2 2 1.0652 1.4657 15 4 0.5213 0.2782 -43.2125 -31.4043 -46.0281 -31.4043
NC32 1 0 - - 36 4 0.7526 - - - -66.5208 -21.4082
NC32 4 4 1.0145 1.8493 45 9 1.5802 0.3484 -77.9484 -42.7617 -79.0771 -20.4243
NC33 1 2 1.0042 1.0451 33 6 6.7043 1.3057 -184.7260 -177.4950 -185.4930 -99.5192
NC33 3 0 - - 42 7 4.3455 - - - -104.1130 -21.0555
NC33 2 1 1.3586 1.3586 54 6 6.8289 3.3613 -90.6533 -90.6533 -123.1600 -71.4323
NC33 4 1 1.9431 1.9431 57 8 6.5654 2.6089 -120.5760 -120.5760 -234.2880 -41.7204

Table 10: Full results for the qIPG from the instances of Schwarze and Stein [48].

Instance #EQs #EI #It Time Time-1st PNE * PNE ° OSW

2-1-A-H 3 110 24 0.889 0.057 -74.0 0.0 -2128000.0
2-1-B-H 2 102 16 0.581 0.158 -8.5 0.0 -8500000.0
2-1-A-L 5 188 30 2.171 0.175 -74.0 0.0 -4376000.0
2-1-B-L 2 136 23 0.743 0.100 -27.5 -0.5 -6477570.0
2-2-A-H 7 50 12 1.769 0.148 -425.5 0.0 -1438.0
2-2-B-H 8 166 23 11.707 4.969 -924.5 -0.5 -2712.0
2-2-A-L 1 16 3 0.327 0.247 0.0 0.0 -124.0
2-2-B-L 7 112 19 6.500 0.205 -7289.5 0.0 -8560.0
2-3-A-H 4 20 6 0.458 0.140 -283.0 0.0 -1118.0
2-3-B-H 3 54 8 0.989 0.475 -25.5 0.0 -3138.0
2-3-A-L 1 8 3 0.179 0.137 0.0 0.0 -270.0
2-3-B-L 1 14 3 0.250 0.188 0.0 0.0 -750.5
3-1-A-H 6 228 25 5.137 0.964 -4776.0 0.0 -76091.5
3-1-B-H 8 246 31 4.465 0.647 -957.0 0.0 -234695.0
3-1-A-L 3 159 18 3.220 1.273 -618.5 0.0 -93872.0
3-1-B-L 1 105 12 1.204 0.392 0.0 0.0 -71595.0
3-2-A-H 1 33 5 0.760 0.395 0.0 0.0 -1962.5
3-2-B-H 1 15 3 0.078 0.069 0.0 0.0 -1080.0
3-2-A-L 8 84 11 3.390 0.629 -1558.0 0.0 -3032.5
3-2-B-L 4 51 8 1.269 0.447 -125.0 0.0 -2044.0
4-1-A-H 4 76 7 2.140 1.077 -249.0 0.0 -552.5
4-1-B-H 13 152 16 4.654 1.689 -3603.0 0.0 -6115.5
4-1-A-L 13 116 10 5.927 0.869 -1462.0 0.0 -1804.0
4-1-B-L 11 132 12 2.863 0.238 -1677.5 0.0 -5817.5
6-1-A-H 3 66 5 0.595 0.425 -36.5 0.0 -1437.5
6-1-B-H 2 54 6 0.457 0.302 -17.0 0.0 -1715.0
6-1-A-L 3 60 5 0.711 0.192 -440.0 0.0 -2795.0
6-1-B-L 6 138 8 2.059 0.602 -363.5 0.0 -10510.0

Table 11: Full results for the qIPG from the instances of Sagratella [45].
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