
11 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Improving Data Quality of Low-Cost Light-Scattering PM Sensors: Towards Automatic Air Quality Monitoring in Urban
Environments / Ramirez-Espinosa, Gustavo; Chiavassa, Pietro; Giusto, Edoardo; Quer, Stefano; Montrucchio,
Bartolomeo; Rebaudengo, Maurizio. - In: IEEE INTERNET OF THINGS JOURNAL. - ISSN 2327-4662. - (In corso di
stampa), pp. 1-1. [10.1109/jiot.2024.3405623]

Original

Improving Data Quality of Low-Cost Light-Scattering PM Sensors: Towards Automatic Air Quality
Monitoring in Urban Environments

Publisher:

Published
DOI:10.1109/jiot.2024.3405623

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989807 since: 2024-06-24T10:02:52Z

IEEE



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Improving data quality of low-cost light-scattering
PM sensors: Towards automatic air quality

monitoring in urban environments
Gustavo Ramirez-Espinosa, Pietro Chiavassa, Edoardo Giusto, Stefano Quer, Bartolomeo Montrucchio, Maurizio

Rebaudengo

Abstract—Low-cost light-scattering particulate matter sensors
are often advocated for dense monitoring networks. Recent liter-
ature has focused on evaluating their performance. Nonetheless,
low-cost sensors are also considered unreliable and imprecise.
Consequently, exploring techniques for anomaly detection, re-
silient calibration, and improvement of data quality should be
more discussed. In this study, we analyze a year-long acquisition
campaign by positioning 56 low-cost light-scattering sensors near
the inlet of an official particulate matter monitoring station.
We use the collected measurements to design and test a data
processing pipeline composed of different stages, including fault
detection, filtering, outlier removal, and calibration. These can
be used in large-scale deployment scenarios where the quantity
of sensors’ data can be too high to be analyzed manually. Our
framework also exploits sensor redundancy to improve reliability
and accuracy. Our results show that the proposed data processing
framework produces more reliable measurements, reduces errors,
and increases the correlation with the official reference.

Index Terms—Light-scattering sensor, sensor calibration, par-
ticulate matter, air quality, air monitoring.

I. INTRODUCTION

PARTICULATE matter (PM) is a relevant air pollutant
with substantial negative impacts on human health. PM

comprises solid particles and liquid droplets suspended in
the air and can be easily inhaled. PM mass concentrations
are usually measured for different particle sizes. Common
size classifications are PM10, considering all particles with
a diameter smaller than 10 µm, and PM2.5, with a maximum
diameter of 2.5 µm.

Conventional approaches to tracking air quality and PM
particles are based on sparse networks of static reference-
grade detectors, as specified by the European regulations
50/2008/EC. The spatial coverage of these networks has been
limited by the high cost of instrumentation.

Consequently, there has recently been a significant increase
in the development and application of low-cost PM light-
scattering sensors (LCPM). Due to their low price, up to
a few hundred dollars [1], and small sizes, they can be
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used as the building block for creating denser monitoring
networks. These sensing nodes can be adopted in city-wide
applications [2], [3], on bike sharing fleets [4], in location-
aware places [5], inside moving vehicles [6], [7], to monitor
the conservation state of historic buildings [8], [9], and to
detect fire in forests [10] using novel networking solution for
sparsely populated areas [11]. Furthermore, mobile monitoring
enables participatory sensing approaches.

However, the accuracy and precision of LCPM sensors are
limited due to the miniaturization of the light-scattering tech-
nology. This characteristic is reflected in a reduced percentage
of detected particles and smaller size ranges. In addition, the
measurement of PM concentrations is affected by multiple
approximations and assumptions, such as the Refractive In-
dex (RI) and particle density, which are unknown a priori.
LCPM sensors are also negatively influenced by environmental
factors, such as high humidity levels, which cause hygro-
scopic growth of PM particles. Consequently, the evaluation
of their performance is one of the main priorities in current
research [12], [13], [14], [15], [16], [17]. However, most of
the studies limit their scope to the evaluation of the sensors
without proposing techniques to detect anomalies, perform
resilient calibration, and improve the quality of the measured
data. Therefore, this work presents a novel data processing
pipeline to improve the accuracy of PM2.5 measurement of
LCPM, eliminating the requirement for substantial human
intervention.

The experiment setup includes 14 monitoring stations con-
taining four LCPM sensors. We positioned these stations near
the inlet of an official beta attenuation monitor; we used this
official station as a reference. The experiment lasted more
than a year, with hourly PM2.5 measurements performed by
the reference instrument and our LCPM sensors collecting
estimates every second.

We used the data collected to evaluate the different steps
of the data processing pipeline. In the first step, we tuned
a simple algorithm to detect the most recurring permanent
sensor failures. Then, we tested different filters to mitigate the
effects of point anomalies in the sensor readings. After that,
we performed an enhanced sensor calibration method using
a Multivariate Linear Regression model, considering both PM
and relative humidity as independent variables. In this method,
we excluded outliers before training the calibration models
by modeling the sensor data and the official reference using
a Multivariate Gaussian Model. Finally, we computed the
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median of each station’s sensors to increase each monitoring
node’s reliability.

Results show that the proposed data processing framework
improves the performance of the LCPM with respect to the
official reference on multiple metrics, i.e., RMSE, MAE,
R2, and correlation. This improvement holds the potential
for implementing appropriate security strategies that ensure
data immutability and privacy in accordance with energy
constraints [18].

The paper is organized as follows. Section II illustrates
previous related works. Section III reports some background
information on low-cost light-scattering technology and the
area under consideration. Section IV describes our experimen-
tal setting and analyzes the collected data. Section V describes
the different steps in the proposed data processing framework.
In Section VI each step of the pipeline is separately evaluated,
whereas in Section VII the global framework performance is
discussed. Finally, Section VIII draws the main findings of the
study.

II. RELATED WORKS

Key experts in the area mainly perform anomaly detection
in sensor networks. A comprehensive review of anomaly
detection techniques applied to IoT data is provided by Cook
et al. [19]. This article encompasses a broad spectrum of
strategies and summarizes the prevailing challenges in the
domain. Similarly, Chen et al. [20] introduce an anomaly
detection framework engineered for large, real-world sensor
networks. They initially identify spatiotemporal anomalies
and regional emission sources, then proceed to rank sensing
devices and subsequently discern malfunctioning devices. The
authors show an outstanding capability of their framework to
detect outliers and infer anomalous events.

Various studies have contributed to advancing our under-
standing and methodologies in sensor calibration. Brattich
et al. [16] characterize the performances and reproducibility
of different types of inexpensive sensors and compare them
to reference instruments. Moreover, the authors assess the
variability of the different sensors and perform a comparative
analysis of the various optical particle counters under different
meteorological conditions. Hasenfratz et al. [21] introduce
a unique approach to leverage mobile sensor platforms on
public transportation in Zurich, Switzerland. In their work,
the authors collected ultrafine particle measurements over two
years. This endeavor led to the creation of pollution maps and
a reduction in spatial errors. Liu et al. [22] conduct calibration
on several LCPM sensors, demonstrating the importance of a
steady particle mass concentration during the calibration pro-
cess. Further, Maag et al. [23] provide a comprehensive review
of state-of-the-art low-cost air pollution sensors, identifying
primary error sources, exploring suitable calibration models,
and analyzing network recalibration strategies. On a related
note, Rumburg et al. [24] delve into regulatory statistics to
determine the magnitude of the error when sensors do not
perform daily samplings.

The calibration presented in [23] is particularly relevant
when researchers adopt LCPM techniques to monitor air

quality. Budde et al. [25] juxtapose the performance of a high-
accuracy measure device with a cheap off-the-shelf sensor
combined with a mobile phone. They show the potentiality
of inexpensive devices through accurate calibration and a pro-
cessing procedure adopting multi-sensor data fusion. Further-
more, Montrucchio et al. [26] presented an outdoor calibration
model based on multivariable linear regressions and evaluated
its performance in different urban scenarios. Similarly, Concas
et al. [27] outline how rapidly low-cost sensor technologies
are expanding and emphasize the role of machine learning
techniques in sensor calibration. Their work also sheds light
on open research challenges and future directions. In a focused
case study, Crilley et al. [12] appraise the Alphasense OPC-
N2, a low-cost optical particle counter, for monitoring ambient
airborne particles in typical urban background sites in the
UK. Their study investigates inter-unit precision, variation in
measured particle mass concentration, and comparison with
standard commercial optical particle counters, thus offering
valuable insights into the performance and reliability of low-
cost sensors. Several studies investigated the performance of
LCPM sensors using Honeywell PM sensors. Giusto et al. [28]
analyzed a particular type of sensor and its coherence under
the design of an IoT device. Subsequently, related with or
energy usage and efficient data acquisition authors such as
Chiavassa et al. [29] and Ramirez et al. [30] explored various
techniques on the same type of device, examining their impact
on accuracy and data reduction. Additionally, Bomin et al. [31]
have introduced a computational offload policy optimization
specifically tailored for IoT.

However, most cited studies only perform sensor calibration
and simple data processing to evaluate sensor performance
and their dependence on external factors. On the contrary,
in our work, we try to tackle the problems of an actual
deployment scenario, where manual inspection of all sensor
data is impossible. We present a data processing pipeline
that helps detect device faults, filter noise, point anomalies,
and calibrate the sensor without extensive human supervision.
All of these aspects are often not discussed together in the
current literature. In addition, for fault and anomaly detection,
our work explicitly targets LCPM sensors, exploiting their
characteristics and the properties of the measured quantity,
while traditional approaches discuss these issues in general
terms.

III. BACKGROUND

This section provides background information on PM mon-
itoring technologies, focusing on LCPM. The section also
discusses PM sources and the official monitoring network in
the considered region.

A. Official monitoring

In Italy, the legislative decree 155/2010, an actuation of
the European Directive 2008/50/EC, regulates air pollution.
The decree defines the minimum size and structure of the
Italian territory’s monitoring network, indicating the placement
of stations. In addition, it specifies reference methods for
sampling and measurement of air pollutants.
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Official measurement techniques for PM adopt well-known
physical principles such as gravimetry and β-attenuation. The
European standard EN12341:2014 regulates the former, while
the Commission only approves the latter if a valid demonstra-
tion of equivalence is provided.

Gravimetric instruments use a filter to capture PM dispersed
in the air sample, which is drawn in via a vacuum pump. The
filter is periodically replaced and weighted to determine the
PM mass concentrations. The air inlet, inertial impactors, and
filter perform the size selection. On the contrary, β-attenuation
devices evaluate the mass of the PM deposit by measuring the
attenuation of the radiation of a small radioactive source when
shined on the filter.

Other high-precision monitoring instruments, such as
TEOM (Tapered Element Oscillating Microbalance) and high-
precision light-scattering devices, adopt different approaches.
Nicklin et al. [32] report an overview of PM monitoring
technologies.

B. Low-cost light-scattering PM sensors
LCPM sensors have been introduced in the market in

the past few years. These devices are cheaper, lighter, and
more compact than high-precision instruments, making them
suitable for IoT applications. They can be used as standalone
sensors, integrated into handheld apparatus, or inserted in more
complex IoT solutions.

LCPM sensors draw air inside the device via a small fan.
A laser beam is shined on the air sample, and a photo-
diode, positioned at a specific angle on the opposite side,
measures the intensity of the scattered light. Two different
sensor technologies are available: Nephelometers and optical
particle counters (OPC). Manufacturers often do not disclose
the technology adopted by the sensors.

Nephelometers correlate the intensity of the scattered light
of the whole air sample to the PM mass concentration accord-
ing to a predefined calibration curve. On the contrary, optical
particle counters can detect single particles and measure their
diameter. Particles are classified according to their diameter in
different size bins, whose number and size intervals depend
on the specific implementation. The total PM mass can be
computed by assuming spherical particles and computing the
particle density and the size distribution inside each interval.
Density and distribution are normalized for the air sample
volume to obtain the concentration of the PM mass.

These measurement procedures introduce multiple assump-
tions and approximations. The optical properties of particles
are strictly related to their Refractive Index (RI), which is
unknown a priori and depends on the aerosol under analysis.
OPCs use Mie Theory, which models light scattered by a
perfect sphere, to measure particle diameters. However, the
theory assumes spherical particles and a known RI; this
conjecture may be invalid for real-world scenarios. In addition,
converting from PM volume to mass requires knowledge of
PM density.

Consequently, calibration curves of both nephelometers
and OPCs strictly depend on the particulate type adopted
during the calibration procedure. Factory calibration is of-
ten performed using artificial PM composed of Polystyrene

Spherical Latex Particles (PSLs) of a known diameter and
RI. Alternatively, researchers can use more realistic but less
comprehensive PM compositions, such as those from cigarette
smoke.

Low-cost devices may not detect the whole number of
particles in the sampling volume; thus, they rely on statistics
and extrapolation to compute their actual number. Accuracy
becomes worse for increased particle sizes since their number
decreases dramatically. For this reason, significant concentra-
tions of larger particles, such as PM10 and PM4, are often
estimated from PM1 and PM2.5. A minimum size threshold
also limits particle detection.

High levels of relative humidity significantly affect low-
cost particulate matter sensors. Hygroscopic growth increases
the size of the particles, leading to an overestimation of
PM mass and influencing their optical properties. Full-size
particle counters solve this problem by heating the air before
performing the measurement.

C. Area under consideration

Turin, shown in Figure 1, is situated in the northwest of
Italy and is the capital city of the Piedmont Region. This area
is surrounded by the Alps on the West and North sides and
by a big hill on the East side, which favors air stagnation.

Fig. 1: The metropolitan city of Turin and ARPA monitoring
stations (in red).

Air quality monitoring is performed by the governmental
agency ARPA1 Piemonte, using a network of fixed stations.
Each station’s position is classified according to two param-
eters: the level of urbanization and the sources of pollution.
The level of urbanization includes urban, suburban, and rural
areas. Regarding the sources of pollution, the station can
be a traffic station or a background station. The European
Directive 2008/50/EC regulates ARPA’s monitoring stations
and instruments, ensuring the highest measurement quality and
reliability.

According to some analysis of ARPA [33], [34], [35],
the primary sources of PM10 in Turin are vehicular traffic

1Agenzia Regionale per la Protezione Ambientale
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and domestic heating. Regarding domestic heating, PM is
generated by the incineration of wood and pellet fuel. This
fuel is mainly used outside the city, where district heating
is less common. An essential part of PM from vehicular
traffic is caused by NOx, which acts as a precursor for its
formation. Direct exhaust emission, tire wear, and particulate
re-suspension from traffic also contribute to the high PM levels
in the city.
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Fig. 2: Daily PM2.5, and precipitations, measured by the
Torino-Rubino station.

The official measurements of PM2.5 at the Torino-Rubino
station, a suburban background station, at the time of the
experimental campaign, can be seen in Figure 2). The trend
shows an increase in background PM2.5 concentrations in
winter, starting mid-October. This phenomenon is worsened by
thermal inversion, which causes air stagnation and is mainly
present in winter. PM2.5 levels decrease until they reach a
minimum during the summer period from late winter to early
spring. Most drops in PM2.5 during winter coincide with fast
winds and heavy precipitations. The latter’s effect is also
shown in Figure 2.

IV. EXPERIMENT CAMPAIGN

A. Experiment setup

The research presented in this paper utilizes the air moni-
toring stations developed by Montrucchio et al. [26]. These
stations use Raspberry as the main computing component,
running on a Linux operating system for ARM. The system
collects data from different six different sensors. Four Honey-
well HPMA115S0-XXX sensor measure the concentration of
PM2.5 and PM10 particles using light scattering. We consider
only PM2.5 in this work, because the sensor does not measure
PM10 directly but estimates it from PM2.5. The DHT22
sensor measures temperature and relative humidity, while the
BME280 sensor captures the atmospheric pressure (see Fig-
ure 3). The air monitoring stations perform measurements of
PM2.5 every second, temperature and relative humidity every
two seconds, and atmospheric pressure every five seconds.

To conduct the study, we placed fourteen monitoring sta-
tions on the rooftop of the Rubino ARPA station, as shown
in Figure 3. These stationary sensors remained at the ARPA
reference station location from October 10, 2020, to November

Fig. 3: Our air monitoring station hardware and experiment
deployment over ARPA reference station.

1, 2021. They were positioned 1.5 ∼ 2 m away from the air
inlets of the reference grade devices on the premises.

We considered measurements recorded from the β-
attenuation monitoring device taken every hour for the refer-
ence instrument. These measurements are recorded and vali-
dated by ARPA. The reference instrument employed by ARPA
does not provide reliable measurements below 4 µg/m3. For
this reason, we exclude from our analysis reference values
equal to or less than 4 µg/m3.

The data collected during the measurement campaign data is
published on Zenodo in Open Access mode [36]. We provide
our data collection as a long-term database for validation and
to facilitate comparisons with our approach.

B. Sensor failures

After the measurement campaign, we manually inspected
the 56 low-cost PM sensors in the 14 air monitoring boards
to determine their functionality. We identified the sensors
that worked adequately (without significant issues of long-
term erroneous data, noisy measurements, or values fixed in
the lower range of the sensor scale) and those that stopped
working due to random and uncorrelated measures.

The inspection showed that thirteen PM sensors (23.21%)
functioned adequately throughout the experiment. In contrast,
ten sensors (17.86%) failed at the beginning of the experiment,
and 33 sensors (58.93%) started to fail during the experiment.
We did not notice any electronic issues during data logging
or transmission to the central processor, and we attributed
malfunctions to errors in the optical part of the sensor. The
statistic confirms the need for more reliability of low-cost PM
sensors when exposed to long periods of outdoor operation.

Figure 4 (left-hand side) shows an overview of the faults
encountered. In most cases, the pattern of failure starts with
measurements fixed at the lowest values (0 or 1) and remains
stable for a variable time. The sensors sometimes show non-
deterministic behavior, producing high readings uncorrelated
with the reference. Once we removed extensive failures, sen-
sors were still affected occasionally by point anomalies, as
shown in Figure 4 (right-hand side).
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Fig. 4: Faults of sensors 14 compared to beta reference on day
averages (left). Scatter plot of sensor 14 with faults removed
and beta reference on hour average, showing point anomalies
(right).

C. Calibration issues

Previous work [26] showed that multivariate linear re-
gression, using PM2.5 and relative humidity as independent
variables, can efficiently calibrate this type of sensor and
platform. Once we removed extensive failures, sensors were
still affected occasionally by point anomalies, as shown in
Figure 4 (right-hand side). Introducing humidity correction
to the model can help solve this problem, but a more robust
system is required, which will be discussed in this work.

Another essential aspect to take into account is seasonal
variability. During summer, when PM2.5 concentrations are
lower, the precision of the sensors is comparable to the
measured value, resulting in low correlation. For this reason,
calibration during this period produces poor results. This work
fixed the sensor calibration period in the first three weeks of
the experiment, from October 10 to October 31, 2020.

D. Data distribution

According to the literature [24], [21], PM measurements are
often lognormally distributed. We also observed this property
in the data collected during the experiment. This property is
exploited by the data processing pipeline presented in this
work to improve data quality and calibration performance.
Figure 5 shows the data distribution of a sensor (left) and
the reference instrument (right) for the calibration period.
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Fig. 5: Distribution of hour averages of PM2.5 during the cal-
ibration period: sensor 14 (left) and reference beta instrument
(right-hand side).

V. PROPOSED FRAMEWORK

Fault detection and sensor calibration are critical tasks that
can affect the reliability and performance of PM measure-
ments [37]. As described in the previous section, the failures

significantly impact the calibration process. We proposed the
novel framework presented in Figure 6 to address these issues.
This framework leverages multiple algorithms to detect the
most common sensor failures, eliminate outliers, and calibrate
the sensors. The overall goal of the pipelined system is to
provide more accurate measurements, even in the presence of
outliers and sensor failures, without extensive human supervi-
sion. Indeed, in large-scale deployment scenarios, the quantity
of sensors’ data can be too high to be analyzed manually.

This work does not adopt complex Machine Learning (ML)
and Artificial Intelligence (AI) methodologies, such as Deep
Learning Neural Networks. The proposed approach is based on
simple ML algorithms which do not require extensive training.
These algorithms tend to be more general and explainable,

which helps avoid unpredictable and undesirable behaviors.
This feature is important because air quality measurements
are critical since they define urban policies and development
plans. In addition, due to the low computational cost, the pro-
posed models could be trained and deployed directly on the
sensors without the necessity of dedicated hardware or specific
power requirements. AI methodologies can be more powerful,
but they require complex training phases, which may not be
feasible in the considered scenario.

Fig. 6: Framework Overview: Improving the accuracy and
reliability of our pipeline data flow.

The proposed framework operates as follows. The raw PM
data is processed using a fault detection algorithm to remove
the failing sensors, followed by a filtering step to eliminate
data outliers and reduce sensor noise. The preprocessed data,
in conjunction with the ground-truth PM data and humidity
measures, is used with a newly proposed calibration algorithm
that identifies and removes outliers to improve the precision
and accuracy of the PM sensors. Lastly, we computed the me-
dian PM2.5 values from the sensors within each air pollution
monitoring station.

To provide a more comprehensive exposition of the method-
ology, we describe all data processing stages in the following
sections, highlighting their contributions to generating precise
and reliable PM measurements.

A. Failure detection

During this step, we analyzed the raw readings obtained
from the sensors to identify sensor failures. The primary
cause of these sensors’ malfunction is faults in the embed-
ded photosensor, which remains obscure due to the sensor’s
uninterrupted data production, without any warning signal.

Considering the difficulty posed by determining errors with
non-deterministic or random patterns, especially in the absence
of failure signs, detecting the fault becomes challenging. To
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address this issue, we designed the proposed algorithm to
detect the most prevalent pattern: stationary in the lowest
values over a specific time (please, refer to Section IV-B).
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Fig. 7: Fault detection process: Plot of the particulate matter
density (µg/m3) as a function of the time. The algorithm uses
a sliding window approach through the data to identify periods
with abnormal values, subsequently marking the failure point.

As depicted in Figure 7, the algorithm implements a rolling
window technique to identify when the values remained at
their lowest (0 or 1 µg/m3). If the sensor’s data remained
at these values for the entire window length, the sensor was
flagged as damaged. Any data obtained after the flag was
disregarded for subsequent steps. This procedure is applied
to raw sensor data without any aggregation.

We tested multiple time windows to optimize this process,
ranging from 1 to 12 hours. The aim was to determine the ideal
window that would offer the highest accuracy in detecting
actual events while minimizing false positives.

B. Data Filtering

Once the data has been analyzed for failures, the next
step in our pipeline requires filtering out point anomalies.
In this phase, the goal is to remove all readings affected by
noise or external factors. Those events produce high-frequency
changes, often impulsive, increasing errors and leading to data
outliers. They can also lead to rapid and sustained changes
in PM values for several minutes. Consequently, our filter
must be designed to effectively reduce the number of outliers
and minimize errors with respect to the ground truth values.
We performed several tests to identify the optimal filter for
removing the noise and maintaining accuracy while selecting
filter parameters that reduce the data error and increase the
correlation of the measured values. Filters were applied on the
per-second data produced by the sensors, while the evaluation
was performed on hour aggregations to match the sampling
time of the ARPA instrumentation.

During these tests, several factors are taken into consider-
ation. First, some errors may be random, resulting in high-
frequency noise, whereas others may be impulse noise. We
proposed two filters to reduce the noise in the measurement:
A low-pass filter and a non-linear filter (a median filter) to
detect and mitigate the effect of a particle stuck inside the
sensor. To ensure that the signal remained unchanged in the
bandpass and to avoid a stringent cut-off band that would alter

the signal shape, we selected an eighth-order Butterworth IIR
filter implemented as a low-pass filter. We chose this filter to
achieve a slower roll-off, which helps to preserve the signal’s
shape. The cut-off frequencies and kernel sizes for both filters
were selected according to the values described by Espinosa
et al. [38].

Through an initial manual examination, it has been observed
that specific erroneous measurements occur within time inter-
vals of a few minutes. This phenomenon is attributed to the
non-deterministic nature, where an element may remain or get
stuck within the sensor for a random period. Consequently,
determining a general parameter to correct these measurements
becomes challenging because a specific frequency or kernel
cannot be selected. Moreover, the filters cannot remove these
measurements using the previously established predefined set-
ting values.

Despite the effectiveness of these filters, we acknowledged
that their determination of an outlier could have been more
effective. To address this limitation, we employed a Z-score
filter to remove signal outliers.

The Z-score filter is a statistical filter used to remove outliers
in a data set based on the standard deviation and mean of
the set. However, the application of the Z-score requires data
with a normal distribution. As discussed in Section IV-B,
the PM data follows a log-normal distribution. Hence, to
implement this filter, the data is first transformed to a normal
distribution, the filter is applied, and then inverse transformed
to preserve its physical interpretation. The normal-to-log-
normal transformation is performed by computing the natural
logarithm of the data.

The Z-score is calculated using the formula:

z = x−µ
σ

where µ represents the mean value and σ the standard de-
viation of the data set. The resulting Z-score z represents a
scalar number of how many standard deviations a data point
is away from the mean. Positive values indicate points above,
and negative values points below the mean.

Based on a threshold value, every point with an absolute
value of the Z-score above the threshold is considered an
outlier and is either removed or replaced. However, defining
static mean and standard deviation values is inappropriate for
PM data, which may exhibit significant variations over time.
Therefore, a time-dependent windowing of the database is
proposed to prevent false positives in the Z-score filter. A one-
week length window is chosen based on the repeatability of
the weekly events. In contrast, other window lengths, such as
one day, were tested but exhibited inferior performance due
to potential variations in dynamics, especially on weekends.
For this study, the overlap between windows is not considered.
Specifically, z is computed based on the period containing the
evaluated data point.

This approach can accurately remove outliers and preserve
data integrity. Thus, to select and apply the most appropriate
filter, we had to consider the unique characteristics of the noise
and the outlier patterns.
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C. Calibration Model

The final step in the deployment process is sensor cal-
ibration. This work presents and evaluates a ”push-button”
calibration phase that does not require any human intervention.
Indeed, in large-scale deployment scenarios, the quantity of
sensors’ data can be too high to be analyzed manually.
Multivariate linear regression is an efficient method to calibrate
this type of sensor and platform; in this regression, we selected
as independent variables [26] PM2.5 and relative humidity.

The measurements collected during the first three weeks of
the experiment, from October 10th to October 31st, 2020, are
used for training the model. Then, the trained model calibrates
the sensor data acquired during the remaining part of the data
acquisition campaign to simulate a real deployment scenario.
The performance of the calibrated sensors is evaluated against
the reference instrument. Since the finest data granularity
available from the reference station are hour measurements,
we performed the calibration process by hourly aggregating
the sensors’ readings.

We observed that the model over-compensated the correc-
tions by selecting excessively small PM2.5 coefficients; this
behavior could be attributed to the presence of outliers. In
addition, removing remaining outliers can provide a more gen-
eral calibration model without being influenced by occasional
sensor faults occurring during the calibration period.

For this reason, an automatic outlier-detection method based
on a Multivariate Gaussian Model (GM) was introduced. The
final objective of this phase is to select the data points to
remove from the training set of the calibration model. The
points were only excluded for the training procedure but not
from the original dataset.

The proposed method fits a multivariate Gaussian distribu-
tion to the 2-dimensional data points composed of the PM2.5

measurements of the sensors and the corresponding values
from the reference station, the latter being available when
training the model. This association requires the measurement
to have the same time granularity, so hour averages were
considered.

The next step is to set a threshold probability. A cumulative
probability function for the 2-dimensional Gaussian distribu-
tion can be defined as a function of the Mahalanobis distance
from the sample mean:

dist(xi) =
√
(xi − xmean)V −1(xi − xmean)T

Intuitively, the farther the points are from the sample mean, the
lower the probability of being measured. Given a data point,
if the probability of measuring values at a distance greater or
equal to one of the data points is lower than the threshold,
the data point should be removed. This probability can be
computed following [39]:

p(x|dist(x) ≥ dist(xi)) = e−(dist(xi)
2)/2

Instead of removing a fixed percentage of the less probable
data, a probability threshold is used to better adapt our model
to the changes in behavior between the sensors.

However, according to what is discussed in Section IV-D,
measurements coming from both the sensors and the refer-

TABLE I: Summary of framework’s performance

Metric Framework Step

Failure
Detection

Outlier
Detection

Calibration
Model

Global
Performance

RMSE ✓ ✓ ✓

MAE ✓ ✓ ✓

r2 ✓ ✓ ✓

R2 ✓ ✓ ✓

Confusion
Matrix

✓

ence station are better represented by a log-normal distribu-
tion rather than a Gaussian. For this reason, before apply-
ing the outlier detection model, the hourly readings of the
reference station for every single sensor are fitted with a
log-normal distribution using the scypi software package
(scipy.stats.lognorm.fit). The fitting allows us to
estimate the shift parameter of the log-normal distribution and
to apply a transformation to the data so that it follows a normal
distribution:

normal = ln(lognormal − shift)

Once the data is transformed, the Multivariate Gaussian Model
is applied to remove outliers. Finally, the remaining data is
transformed back and used to train the calibration model. The
double transformation does not alter the measurements in any
way; it just improves the filtering capability of the Gaussian
model. A normality test can be performed on the transformed
data to ensure correct outlier removal.

For the analysis presented in this work, we set the threshold
probability to 5%. In addition, we even removed the sensors,
which showed a correlation with the reference lower than 0.65
during the calibration period. The reason is that a sensor is not
functioning correctly during the calibration period should be
identified and discarded before deployment.

D. Experiment Methodology

We classified sensors into three categories: i) those that
functioned adequately, ii) those that failed from the beginning,
and iii) those that failed during the measurement period. This
classification was then used to evaluate the failure detection
performance of the framework for both processes.

After classifying the sensors, we compared each board’s
readings and the ARPA’s ground truth reference. However, it
should be noted that ARPA provides new measures hourly,
whereas our sensor network produces new measures every
second. We aggregated the per-second data to obtain equivalent
hourly averages to achieve comparability. The resulting values
are then compared with ARPA’s reference values to assess the
precision of our system. This comparison is conducted for both
the raw input data and the framework output data, allowing
us to evaluate the level of precision enhancement provided by
the proposed framework.

To assess the contribution of each process within the
framework, we evaluated each step under different parameters
to identify the optimal set. Subsequently, we conducted a
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TABLE II: Confusion Matrices: Result Summary.

True
Positives

False
Positive

False
Negatives

True
Negatives

W
in

do
w

Si
ze

(h
ou

rs
) 1 21 23 7 5

2 28 13 7 8

3 31 7 9 9

4 32 5 9 10

8 32 3 10 11

12 32 0 11 13

collective evaluation to determine the level of data accuracy
improvement in comparison to reference values.

A confusion matrix is analyzed for the fault detection
process to identify the window type with the highest preci-
sion in detecting sensor faults. In the anomaly detection and
calibration processes, we assessed the performance through
the analysis of error metrics (RMSE and MAE), correlation
(r2), and coefficient of determination (R2). Table I provides
a summary of the performance metrics that the framework
evaluates.

VI. FRAMEWORK PERFORMANCE

This section evaluates each stage of our pipeline framework
to determine its contribution to the final performance. We
follow the description flow introduced in Section V.

A. Failure detection

The noisy behavior exhibited by the PM sensors poses a
challenge when defining a time window that accurately detects
sensor failures. On the one hand, a window with an overly
short period might generate many false detections, especially
during the summer when PM levels are typically relatively
low. On the other hand, very long windows can omit erroneous
behavior of the sensors (as explained in Section IV-B), leading
to a loss of sensitivity and generating false negatives. Based
on empirical observations, we experimented with six different
time windows, including 1, 2, 4, 8, and 12 hours. To ascertain
false positives and negatives in the detection process, we define
an erroneous detection as the one in which the algorithm
identifies a failure after two weeks with respect to the failure
time determined by manual inspection.

Table II presents the fault detection results for the 56 sensors
and each time window. Table III shows the metrics used to
evaluate the algorithm’s performance. These results emphasize
the inherent trade-off between accuracy and sensitivity. Indeed,
short windows may be prone to false positives when the
particulate matter level is low, whereas long time windows
reduce the probability of detection. Notably, the windows
lasting 8 and 12 hours demonstrate superior performance in
the fault detection task. Moreover, adopting a time window
longer than twelve hours leads to an increase in false negative
detections. Table III also shows that the 12-hour window,
albeit less sensitive, yields fewer errors in fault detection,
as indicated by the higher F1-Score value. The faults not
detected within this window pertain to sensors that exhibited

TABLE III: Confusion Matrices: Metric Comparisons.

Accuracy Precision Recall F1-Score

W
in

do
w

Si
ze

(h
ou

rs
) 1 0,464 0,477 0,750 0,583

2 0,643 0,683 0,800 0,737

3 0,714 0,816 0,438 0,570

4 0,750 0,865 0,780 0,821

8 0,768 0,914 0,762 0,831

12 0,804 1,000 0,744 0,853

highly noisy data before stabilizing at their lowest values or
sensors that consistently measured noisy values throughout
the measurement period. Detecting such faults is challenging
and necessitates additional analysis to accurately determine the
underlying cause.

Figure 8 deepens our analysis by plotting, for each sensor,
the percentage of invalid readings with respect to the total
number of values, as detected by the filter. Positive values on
the y-axis denote the percentage of valid information removed
due to false positives, leading to the exclusion of genuine
PM data. On the contrary, values under zero represent false
negatives, which results in the incorporation of erroneous
information into the framework.

An optimal detection scenario is indicated by a value equal
to zero. We also compute the root mean square of the valid
data lost percentage for all the sensors to assess the relative
effectiveness of the different time windows. Notably, the 12-
hour window demonstrates the closest approximation to the
ideal scenario.
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Fig. 8: Valid data loss for each sensor ID in different time
windows. Negative values indicate erroneous data that was not
removed after a failure. A root mean square (RMS) value close
to zero represents the ideal scenario.

B. Data Filtering

Following the failure detection phase, we checked various
filters to detect and eliminate the abnormal values that impair
the measurements. Filters were applied on the per-second data
produced by the sensors. After applying the proposed filters,
we analyzed the reduction in error and its impact on the
correlation index compared to reference values. The evaluation
is computed on hour aggregations to match the sampling time
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of the ARPA instrumentation. Additionally, we compare the
percentage of summarized hourly data points that show a
significant change in value, showing either a decreasing (%
Points Corrected) or increasing error (% Points Worsened).
Table IV summarizes the evaluation of these parameters for
each filter. Each value represents the mean of the metrics
applied to each sensor over the entire experimental period.
Based on these values, the Z-score filter demonstrates better
performance in terms of error reduction, an improvement in
Pearson’s coefficient (r2) value, and a more significant impact
on the percentage of corrected summarized data points. The
median filter demonstrates the second most favorable perfor-
mance and, to further evaluate this, we assess the sequential
application of the most effective filters (Median + Z-Score).
However, this last strategy exhibits worse performance than
applying one filter individually. Given these findings, we
selected the Z-score filter for our pipeline framework to detect
and remove abnormal values before applying the calibration
process. The peculiarity of this filter is that it does not alter
the second measurement but discards the ones it identifies
as not compliant. Nonetheless, even with a z-score threshold
set to two, the removed data was minimal, and all the hour
aggregations could still be computed.

TABLE IV: Outlier Detection: Filters performance compari-
son.

RMSE
µg/m3

MAE
µg/m3 r2

% Points
Corrected

% Points
Worsened

Raw
Data 18,642 13,226 0,810 - -

Low Pass
Filter 18,724 13,268 0,808 1,160 0,553

Median
Filter 18,558 13,162 0,812 0,592 0,178

Z-Score 18,042 13,176 0,822 2,161 2,151

Median +
Z-Score 18,443 13,169 0,815 1,873 2,320

C. Calibration Model

To conduct an in-depth evaluation of each calibration model,
the sensors that exhibited failures but were not detected
(false negatives) during the fault detection phase were inten-
tionally excluded from the calibration performance analysis.
We decided to streamline the metrics and provide a more
accurate depiction of the overall performance, eliminating the
interference these failed sensors might have introduced.

Figures 9 and 10 display the distribution of two error met-
rics, i.e., the RMSE and R2 (the coefficient of determination).
Each violin represents the distribution of the metric by sensors,
the black dots represent each sensor metric average during the
experiment, and the white line shows the mean value of all
dots. This framework aims to reduce sensor variance (broader
and shorter violins are preferred) and obtain mean values close
to the ideal values (0 for RMSE and 1 for r2). We can observe
that the calibration models incorporating a filtering process
for outlier detection exhibited superior performance metrics
compared to the reference model (PM + Humidity)[26]. This

result highlights the efficacy of outlier detection in enhancing
model calibration.

PM + Hum PM + Hum + GM Filtered PM + Hum Filtered PM + Hum + GM
Calibration Model
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Fig. 9: RMSE distribution for each calibration model. Black
dots indicate the RMSE of each sensor. The white lines
represent the average error of each sensor.
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Fig. 10: Pearson’s correlation index (r2) distribution for each
calibration model. Black dots indicate the correlation of each
sensor. The white lines represent the average r2 of each sensor.

Additionally, we explicitly designed the Gaussian Model
for outlier detection to minimize the impact of abnormal or
highly variable values (see graphics for “PM + Hum + GM”
and “Filtered PM + Hum + GM”). The implementation of
this algorithm, in tandem with the other methods, led to a
calibration model that was more robust and resilient to errors.

Table V presents the performance metrics for each cali-
bration model, providing a global view of their performance.
This table shows the median values of each calibration process
results applied to the selected sensors throughout the experi-
mental period. The implemented filtering process substantially
improved the correlation between variables, whereas the GM
algorithm successfully decreased the error value. This also
shows the efficacy of the data transformations.

Ultimately, the filtered model “PM + Hum + GM” demon-
strated the highest efficacy in calibration, with notable im-
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provements in error reduction (RMSE and MAE by 6.6%)
and an increase in the correlation index (R2) by 4.5%. These
improvements highlight the value of using outlier detection
and the Gaussian Model in optimizing calibration methods.

TABLE V: A comparison of the performance metrics for each
calibration model.

RMSE
µg/m3

MAE
µg/m3 r2 R2

PM + Hum 9,608 7,149 0,857 0,670
PM + Hum + GM 9,125 6,744 0,857 0,692

Filtered
PM + Hum 9,185 6,960 0,865 0,677

Filtered
PM + Hum + GM 8,976 6,681 0,866 0,700

VII. GLOBAL PERFORMANCE

In our comprehensive evaluation of the proposed frame-
work, each component of the process chain has been consid-
ered in unison, encompassing the four PM sensors integrated
within each of the 14 distinct monitoring stations. We com-
puted the hourly average for each of these stations for each PM
sensor. We obtained the median values from these averages,
i.e., an aggregate measure of the performance of all PM
sensors operating at each station within the given period. This
approach captures the most reliable and representative PM
measures per monitoring station, thus increasing the robustness
of the analysis. Subsequently, these resulting measures are
utilized as the foundation upon which performance metrics
are calculated and compared against the reference calibration
model. Table VI summarizes each station’s metrics’ average,
providing a holistic overview of our system’s performance.

Our findings show the efficacy of our system in controlling
the impact of possible undetected failures. Thanks to the
inbuilt redundancy of sensors within each monitoring station,
in most cases, the system demonstrates either equivalent or
superior performance when compared with the values pre-
sented in Table V. This behavior is a clear indicator of our
framework’s robustness and its ability to enhance the system’s
precision despite the challenges posed by the high failure rate
of our sensors observed throughout the year-long deployment
period.

TABLE VI: Global framework performance metrics vs refer-
ence model

RMSE
µg/m3

MAE
µg/m3 r2 R2

PM + Hum 9,006 6,757 0,858 0,654
Filtered

PM + Hum + GM 8,462 6,241 0,868 0,725

Analyzing the distributions portrayed by the box plots in
Figures 11 and 12, we observe that the dispersion in our
measures remains remarkably stable. This result highlights the
high coherence and consistency of our measurement process,
further bolstering the reliability of our framework.

However, notice that our framework has its limitations.
Notably, the presence of more than two faulty sensors within
a single station can pose challenges to the system’s reliability.
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Fig. 11: The RMSE distribution for all monitoring stations:
Comparison between the proposed framework and the refer-
ence calibration model.
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Fig. 12: The coefficient of determination (R2) distribution
for all monitoring stations: Comparison between the proposed
framework and the reference calibration model.

While relatively rare, this occurrence can result in outlier
points in terms of error and the R2 as demonstrated in
Figure 12). These anomalous points, although infrequent, un-
derscore the importance of sensor redundancy and robust error-
handling mechanisms in ensuring the overall performance and
reliability of the system.

VIII. CONCLUSIONS

This work proposes a data processing pipeline for improving
the data quality of LCPM sensors. The overall framework
leverages several algorithms to detect the most common failure
in the sensors, remove outliers, and perform sensor calibration
without the need for extensive human supervision.

We conducted a year-long experiment by positioning 56
LCPM sensors, divided into 14 low-cost monitoring stations,
near the inlet of an official monitoring device. The collected
data is used to design and test the proposed data process-
ing pipeline. The first step uses a simple failure detection
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algorithm to identify the most common pattern sensor failure,
i.e., the sensors remaining stuck to low values. In the second
phase, we tested different filters to remove high-frequency
and impulse noise, with the z-score filter being the most
effective. Due to the data’s log-normality, we computed the
measurements’ natural logarithm before applying the filter.
In the following step, sensor calibration is carried out via
a Multivariate Liner Regression model, considering both PM
and relative humidity as independent variables, on the first
three weeks of the experiment. In order to remove outliers that
affect the linear regression, we applied a Multivariate Gaussian
Model to the measurements and their reference. Like before,
in this case, it was necessary to transform the data to follow a
normal distribution. Finally, the redundancy of the four sensors
installed in each low-cost monitoring station is exploited by
computing their median.

Results show that the proposed system provides accurate
measurements, even when sensors encounter anomalies due
to partial or complete failure. Filtering and failure detection
processes are critical to ensure that the sensor readings are
reliable and reflect pollution conditions. Additionally, our
pipeline minimizes measurement variations, improving con-
sistency compared to other calibration systems. Moreover,
the measurement median of each station surpasses the error
levels specified by the manufacturer. Our achievements offer
an optimistic perspective for using these sensors to measure
particulate matter in smart city settings. The capability to de-
tect faults also facilitates timely maintenance or replacements,
ensuring the sensors’ durability for prolonged measurement
periods.

Future works should further test the generality and effective-
ness of the model and the selected parameters by calibrating
different periods and analyzing separately different environ-
mental conditions. Sensors should also undergo testing in
various scenarios, including high-traffic areas where PM levels
change more frequently, and evaluate their performance in a
completely unsupervised deployment. Finally, more advanced
and complex ML models, such as Deep Learning Neural
Networks, should also be tested for anomaly detection and
calibration.
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