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Abstract—Blockchains commonly employ tree data structures
(e.g., Merkle trees) to represent state. While tree structures
enable fast and compact state correctness checks, they introduce
constraints when it comes to parallelizing transaction execution.
In particular, concurrent transaction execution can lead to
multiple trees representing the same state, hindering consensus
among blockchain peers. We characterize this phenomenon as
the ambiguous state representation problem and propose an
optimistic algorithm that guarantees the creation of the same
state tree across multiple peers. We integrated our solution
into Cosmos SDK framework, a popular production blockchain
system, allowing applications to benefit from parallel transaction
execution without modifying their existing codebase. We report
on the performance of parallel transaction execution under a
variety of conditions in a network of up to 40 peers.

Index Terms—blockchain, deterministic execution, parallel
computing, Cosmos, ambiguous state representation problem

I. INTRODUCTION

In recent years, blockchain has emerged as a promising
technology due to its wide range of potential disruptive appli-
cations in various industries. In a blockchain network, all peers
execute identical operations in the same order, following the
state machine replication model [1], [2]. Through blockchain,
separate parties can collaboratively manage a shared and
distributed database, enhancing resilience, auditability, and
security of business processes. As a result, improving the trans-
action processing efficiency of blockchain becomes imperative
for widespread adoption by institutions and enterprises.

But blockchain operates differently than traditional
databases, which achieve high scalability by distributing work-
loads across different nodes. Many blockchains currently
process transactions sequentially to prevent cross-peer state
inconsistencies [3]. If on the one hand, sequential execution
ensures state consistency, on the other hand, it severely limits
performance [4]. Figure 1 demonstrates the results of process-
ing 105 payment transactions on a single-node Cosmos testnet.
As explained in more detail later in the paper, DeliverTx,
which includes transaction execution, accounts for approxi-
mately 75% of the processing time of a block of transactions
at the application layer. This observation motivates this work:
introducing parallel transaction execution in blockchain.

Although parallel execution has been extensively studied
in the context of state machine replication (e.g., [5], [6]),

Fig. 1: Time breakdown of Gaia, a Cosmos application, in the
various phases involved in processing transaction blocks.

traditional parallel execution strategies are not directly ap-
plicable to blockchain systems. Blockchains often employ
hierarchical data structures such as Merkle trees to represent
their state, as opposed to flat key-value stores [7]. Merkle
trees provide efficient verification of data integrity even when
retrieved from potentially untrusted peers [8]. Unfortunately,
the order-dependent nature of some Merkle trees calls for
stricter requirements for concurrency [9]. In parallel state
machine replication approaches, two transactions can execute
concurrently if they do not conflict, that is, they either access
different keys or they only read common keys [5]. Some
Merkle trees, however, introduce indirect dependencies, not
visible at the level of transactions. These dependencies can
lead to variations in state representation and inconsistencies in
blockchain systems. Consider, for example, executions of four
transactions that create keys 1..4, as depicted in Figure 2. Even
though these transactions access different keys and can execute
concurrently under parallel state machine replication, different
transaction schedules may lead to distinct trees. Specifically,
executing the four transactions in the order (1, 2, 3, 4) gen-
erates the left-side tree, while executing them in the order
(4, 3, 2, 1) generates the right-side tree. Both trees hold the
same values in the same order, but they are distinct, resulting
in different Merkle root hashes. We characterize this challenge
as the “ambiguous state representation problem”.

Besides characterizing the ambiguous state representation
problem, this paper introduces an optimistic algorithm for
parallel transaction execution in blockchain systems that



(a) Insert order: 1→2→3→4 (b) Insert order: 4→3→2→1

Fig. 2: Different insertion orders of the same set of values can
result in different state representations in (Merkle) AVL tree.

circumvents the generation of ambiguous state representa-
tions. Our approach is universally applicable, accommodating
blockchains utilizing any Merkle tree structure. To the best of
our knowledge, this study is the first to introduce parallelism
into blockchains using such generalized data structures. The
primary contributions of this paper are as follows:

• We identify and formalize the ambiguous state repre-
sentation problem in the context of blockchain parallel
transaction execution.

• We present a general approach to parallel transaction
execution in blockchain frameworks, irrespective of their
state representation.

• We have seamlessly integrated our approach into the
widely adopted Cosmos SDK framework, enabling exist-
ing applications to harness the benefits of parallel transac-
tion execution by updating a single package dependency.

• We conducted extensive performance testing under var-
ious network configurations, offering a comprehensive
analysis of the performance parallel transaction execu-
tion. We employed standard tests provided by the popular
YCSB benchmark.

The remainder of this paper is structured as follows: Section
II presents essential background information, introduces the
ambiguous state representation problem, and overviews the
Cosmos blockchain. Section III summarizes the state-of-the-
art. Section IV outlines our approach to optimistic and parallel
transaction execution in blockchain frameworks. Section V
delves into the integration of our approach into the Cosmos
SDK and presents our results under varying network configu-
rations. Section VI concludes the paper.

II. BACKGROUND

This section provides a summary of the concepts utilized
in this study, introduces the problem we aim to address, and
briefly presents the Cosmos blockchain, the environment we
used to experimentally assess our contributions.

A. Blockchain

Informally, a blockchain is a distributed and decentralized
database managed by a network of peers. Each peer controls
one copy of the database. Clients may attempt to alter the
database by submitting transactions. Peers agree on which
transactions to execute through a consensus algorithm to keep

their copies in sync. Since executing this process for each
transaction would be inefficient, transactions are grouped into
blocks. Each block contains the hash of the previous one to
prevent modifications to the block sequence [10], [11].

However, relying solely on the block sequence is impractical
as it would require a full scan through the blocks to retrieve
updated information. To address this, blockchains utilize key-
value stores to hold the updated state of the database at a
specific block height [12]. This approach enables efficient
data retrieval but lacks the ability to verify the integrity of
the retrieved data, specifically the coherence between the
state database and the block sequence. To ensure verifiability,
blockchains employ authenticated data structures instead of
flat key-value stores [13]. The most prominent example of
such structures is Merkle trees, where data is stored in the
leaves, and each node contains the hash of its children. Due
to the properties of hash functions, any modification to the
data, order, or structure of the tree would result in a root hash
mismatch. Additionally, finding two different trees with the
same root hash is highly improbable. Thus, by storing the
root hash of the tree in a block, data integrity can be easily
verified.

B. Problem statement

We define a blockchain B[h] with last committed block h
for a set of peers P = {0, 1, . . . , (n− 1)} as:

B[h] := {σ[h],0, σ[h],1, . . . , σ[h],n−1}, (1)

where σ[h],i belongs to set S of all the Merkle trees with values
in the leaves representing a key-value store with keys in K.
MRoot : S → {0, 1}κ is the function returning the Merkle
root of a Merkele tree with security parameter κ.

We define f : S ×Γ→ S as a state transition function that
produces a new state tree σ[h+1] ∈ S by taking as input the
current state σ[h] ∈ S and a schedule (i.e., a total order) Γ of
transactions T[h+1] = {t0, t1, . . . , tm−1} committed in block
h+1. Each transaction consists of one or more read, insert, or
delete operations on the state tree. Each operation is atomic
and targets a single key/leaf in the state tree. Only insert and
delete operations may modify the tree.

Function Keys : T → K returns the set of keys targeted
by a transaction. In Section IV, we will also use functions
WriteSet : T → K and ReadSet : T → K, which return
the mutative and read operations of a transaction, respectively.
Notice that the keys in K identify only the leaves of a tree.
Thus, in this study, transactions have the same read/write sets
if they operate on the same leaves, independently of inner
nodes.

Concurrent transaction execution may result in different
peers executing different schedules. For this reason, we in-
troduce the following definitions.

Definition II.1. Let tree σ ∈ S. Two schedules Γi and Γj of
T are σ-equivalent, with notation Γi =σ Γj , iff:

MRoot(f(σ,Γi)) = MRoot(f(σ,Γj)). (2)



Definition II.2. B[h] is in a consistent state σ[h] iff:

∀i, j ∈ P : MRoot(σ[h],i) = MRoot(σ[h],j) (3)

Theorem II.1. Let B[h] be in a consistent state σ[h]. B[h+1]

is in consistent state σ[h+1] iff ∀i, j ∈ P : Γi =σ[h]
Γj .

Proof. By the state transition function definition, ∀i ∈ P :
σ[h+1],i = f(σ[h],i,Γi). If we apply the MRoot func-
tion to both sides of the equation, we obtain: ∀i ∈ P :
MRoot(σ[h+1],i) = MRoot(f(σ[h],i,Γi)). However, ∀i ∈ P :
σ[h],i = σ[h], as σ[h] is consistent and finding hash collisions
is unlikely. Thus:

∀i ∈ P : MRoot(σ[h+1],i) = MRoot(f(σ[h],Γi)). (4)

Sufficiency. If ∀i, j ∈ P : Γi =σ[h]
Γj , then, by definition,

∀i, j ∈ P : MRoot(f(σ[h],Γi)) = MRoot(f(σ[h],Γj)).
We can now use Eq. 4 on both sides to obtain that ∀i, j ∈
P : MRoot(σ[h+1],i) = MRoot(σ[h+1],j). Thus, σ[h+1] is
consistent.

Necessity. If ∃i, j ∈ P : Γi ̸=σ[h]
Γj , then, by definition,

∃i, j ∈ P : MRoot(f(σ[h],Γi)) ̸= MRoot(f(σ[h],Γj)). We
can now use Eq. 4 on both sides to obtain that ∃i, j ∈ P :
MRoot(σ[h+1],i) ̸= MRoot(σ[h+1],j). Thus, σ[h+1] is not
consistent.

In flat key-value stores, transactions targeting different keys
may be executed in any order and still produce the same
state in the end. Merkle prefix trees behave similarly, since
different orders of the same non-conflicting operations produce
the same prefix tree in the end. This result, however, is not
extensible to other tree structures as well, as evinced in Fig.
2. To better capture this idea, we formally introduce the
ambiguous state representation problem.

Definition II.3. A tree σ is affected by the ambiguous state
representation problem iff:

there are schedules Γi,Γj of T such that (5)

∀tx, ty ∈ T, tx ̸= ty : Keys(tx) ∩Keys(ty) = ∅ and (5a)

Γi ̸=σ Γj (5b)

Informally, the problem states that, depending on the un-
derlying tree structure, transactions may have read/write de-
pendencies even if they target unrelated objects. For example,
inserting a node in a tree may cause rebalancing operations af-
fecting multiple nodes, not only the inserted one. Additionally,
which nodes are affected cannot be predicted by analyzing the
transactions only, but also depends on the contingent state of
the tree and how the transactions are scheduled.

In our tests, we utilized the Cosmos SDK, a framework
that facilitates the construction of cryptocurrency-oriented
blockchains. However, in such chains, it is customary for
transaction fees to be paid to the block proposer and, con-
sequently, to the same blockchain address. This practice can
introduce write conflicts among all transactions within a block.
Therefore, in addition to addressing the ambiguous state

representation problem, we also propose a workaround for this
issue in our algorithm.

C. Cosmos

Cosmos [14] is a network of interconnected blockchains that
leverage the Inter-Blockchain Communication protocol to fa-
cilitate cross-chain data transfer. The Cosmos ecosystem offers
various tools to streamline the creation of new blockchains
and expand the network. The typical software stack of a
Cosmos blockchain is illustrated in Fig. 3. At the core of
the architecture is Tendermint Core (now rebranded as Comet
BFT), responsible for managing state machine replication.
Tendermint Core interacts with external applications imple-
menting the state machine logic through the ABCI interface.
The following methods are invoked in order of appearance:

• BeginBlock: signals the start of a new block to the
application.

• DeliverTx: delivers a single transaction to the application,
with this method being invoked once per transaction.

• EndBlock: indicates the end of the block.
• Commit: instructs the application to produce the Merkle

Root and return it to the Tendermint Core.
In the ABCI 2.0 specification, there is a change to the

transaction processing methods. Instead of separate methods
like BeginBlock, DeliverTx, and EndBlock, a single method,
called FinalizeBlock, is introduced. This new method delivers
all the transactions to the application in a single operation.

Fig. 3: Software stack of a Cosmos SDK application.

Given the shared characteristics among blockchains, devel-
opers can utilize the Cosmos SDK to further expedite the
process of creating blockchains. The Cosmos SDK supports
the development of multi-asset public Proof-of-Stake (PoS)
blockchains, as well as permissioned Proof-of-Authority (PoA)
blockchains. Functionality such as account management, gas
measurement, fee payment, and staking is provided out-of-the-
box to developers by the Cosmos SDK.

In this study, we showcase our approach enhancing the
default transaction execution efficiency of the Cosmos SDK.

III. RELATED WORK

Parallel execution in state machine replication has been
largely explored in the literature (e.g., [6], [15]–[21]). Most



proposals are based on an early observation that non-
conflicting commands can be executed concurrently [1]. The
strategy is justified by the fact that many workloads are
dominated by non-conflicting commands (e.g., [21]–[23]). As
we have argued, the order-dependent nature of some Merkle
trees requires for stricter concurrency requirements.

Given the importance of transaction throughput, permis-
sioned blockchain frameworks have considered various tech-
niques to explore parallel execution. An example is Hyper-
ledger Fabric [24], which departs from the traditional order-
execute approach and adopts the execute-order-validate model,
where transactions are optimistically executed. In the valida-
tion phase, multiversion concurrency control is employed to
ensure the aborting of conflicting transactions. Performance
heavily depends on the number of conflicting transactions in a
block [7]. Our proposal, which also relies on optimistic trans-
action execution, suffers from the same limitation. Possible
ways of mitigating this issue include re-ordering transactions
[25] and re-executing conflicting transactions [26], which is
the strategy we decided to adopt. In particular, the write set of
an aborted transaction can be used to efficiently detect depen-
dencies that can be exploited during re-executions. Block-STM
[27], used by Aptos, leverages this idea.

Hyperledger Sawtooth [28] adopts a distinct approach by
providing a parallel scheduler that takes into account transac-
tion dependencies. This scheduler enables the execution of
non-conflicting transactions in parallel, leading to potential
performance improvements in blockchain systems [29]. The
effectiveness of this approach has also been explored in other
studies, where it has been applied to different blockchain
frameworks [30], [31]. However, it is important to note that
the parallel scheduler in Hyperledger Sawtooth requires clients
to declare the read/write sets of each transaction. This task
can pose challenges, as clients may need to pre-execute the
transaction locally while other clients concurrently modify the
state of the blockchain, which can invalidate the pre-execution
[31]. Additionally, application developers must carefully al-
locate the key space of the state database to minimize the
likelihood of transaction conflicts. We avoid these problems
by dynamically discovering the read/write sets of transactions
instead of burdening clients with declaring them.

Other approaches have explored static analysis [32] or
semantic analysis [33] of transactions to partition them into
shards for concurrent execution. Such approaches are well-
suited when the state database is represented by a prefix tree
structure, but they may not be easily generalized to other tree
structures due to the challenges posed by the ambiguous state
representation problem.

PEEP [9] introduces a mechanism for parallel execution of
transactions after a sequential locking phase, where transac-
tions acquire the required locks. The authors highlight the
requirement of using tree structures that remain unaffected
by the order of insertions (i.e., prefix tree). In contrast, our
approach generalizes to any tree structure.

Neuchain [34] executes transactions in parallel without
relying on an explicit ordering phase. Incremental identifiers

associated to transactions are used to deterministically resolve
conflicts, but this solution may introduce centralization and
scalability issues, which are avoided by our proposal.

We note that numerous blockchains, including Ethereum
[35], continue to process transactions in a sequential man-
ner. Consequently, while parallel execution can potentially
be enhanced through hardware and software co-design [36],
we anticipate that the industry will adopt an incremental
approach to minimize disruptive changes. Our approach goes
in this direction by not requiring modifications to existing
applications using the Cosmos SDK. We execute transactions
optimistically and in parallel to discover their read/write sets to
then re-execute only conflicting ones. Such a strategy is not
new in the literature [37], but our algorithm also addresses
the ambiguous state representation problem. To the best of
our knowledge, no other approach proposed in the literature
addresses such a problem.

IV. ALGORITHM DESCRIPTION

Our definition for the ambiguous state representation prob-
lem highlights that out-of-order write-operation execution may
result in different tree representations even if such write
operations target different tree leaves. Nonetheless, such tree
representations only differ by one or more rotation operations,
which means that they associate the same values to the same
keys. Thus, such representations cannot be used for computing
the Merkle root hash, but are still useful for reading/writing
values. More generally, peers may exploit flat key-value stores
for reading/writing values provided that they have a way to
compute the same Merkle root hash in the end.

The pseudocode of our solution is provided in Algorithm
1. In short, transactions are executed independently from one
another, and each transaction writes to its own copy of the
state database, represented by a flat key-value store. Then,
sequentially, the writes of each transaction are persisted to the
state tree if no conflicts arise. Otherwise, the transaction is
re-executed. The algorithm leverages the following functions.

• Iterator (txs): creates an iterator over the provided array
of objects.

• Next (i): moves iterator i to the next value.
• HasNext (i): checks if the iterator reached the end of the

array.
• GetValue (i): returns the value currently pointed by the

iterator.
• AnteHandleSync (tx, store): synchronously executes the

ante handler for transacton tx by reading and writing
values from/to store. It returns the updated store.

• CreateArray (): creates an empty array.
• WrapStore (store): creates a hashmap acting as a write-

back cache for store. A dirty bit identifies modified data,
allowing to separate read and write sets.

• ExecuteAsync (tx, store): asynchronously executes tx by
reading and writing values from/to store.

• ExecuteSync (tx, store): synchronously executes tx by
reading and writing values from/to store.



Algorithm 1 ProcessBlock executes the transactions in a block
and coherently updates the state tree

1: function PROCESSBLOCK(store, txs)
2: i← ITERATOR(txs) ▷
3: repeat
4: i← NEXT(i) ▷
5: tx← GETVALUE(i) ▷
6: store← ANTEHANDLESYNC(tx, store) ▷
7: until HASNEXT(i) ▷
8: fwss← CREATEARRAY() ▷
9: accum← WRAPSTORE(store) ▷ Wrapped stores

are hashmaps acting as write-back caches
10: i← ITERATOR(txs) ▷
11: repeat
12: i← NEXT(i) ▷
13: tx← GETVALUE(i) ▷
14: ws← WRAPSTORE(store) ▷
15: fws← EXECUTEASYNC(tx, ws) ▷ fws is a

future-like object
16: fwss← APPEND(fwss, fws) ▷
17: until HASNEXT(i) ▷
18: i← ITERATOR(txs) ▷
19: repeat
20: i← NEXT(i) ▷
21: tx← GETVALUE(i) ▷
22: fws← POPFRONT(fwss) ▷
23: ws← WAIT(fws) ▷ Wait for future to be ready
24: if ISRWCONFLICT(accum,ws) then ▷ we need

to re-execute only if read-write conflicts arise
25: accum← EXECUTESYNC(tx, accum) ▷
26: else
27: accum← WRITESETUPSERT(accum,ws) ▷

accum is upserted with the values in ws
28: end if
29: until HASNEXT(i) ▷
30: WRITEBACK(accum, store) ▷ Writes are

propagated to the underlying store sequentially, avoiding
the ambiguous state representation problem

31: return
32: end function

• Append (array, elm): adds elm to the end of array. It
returns the newly created array.

• PopFront (array): removes the first value of the array and
returns it.

• Wait (future): waits for future to complete.
• IsRWConflict (firstCache, secondCache): checks if the

read set of secondCache contains at least one value that
is also present in the write set of firstCache.

• WriteSetUpsert (firstCache, secondCache): merges first-
Cache and secondCache. The values in secondCache
overwrite the ones in firstCache.

• WriteBack (cache, store): the values in cache are written
back to store.

We break down our implementation into three steps to better
clarify how the algorithm operates.

A. Sequential step: reordering

Blockchains should not execute invalid transactions. For
this reason, a piece of code called ante handler is executed
before each transaction to perform stateless and stateful va-
lidity checks. Such checks may include signature verifica-
tion, block expiration, and more. Often, in cryptocurrency-
oriented blockchains, ante handlers manage the payment of
the transaction fees to the block proposer, which implies that
ante handlers must be executed sequentially because they all
write to the same location. Thus, interleaving ante handlers
and transactions prevents parallel transaction execution. We
propose to process transactions in parallel after a sequential
stage where all ante handlers are executed, as shown in Figure
4.

Fig. 4: Blockchain transaction execution: default (left) vs our
proposal (right).

B. Parallel step: optimistic execution

After the sequential execution of all the ante handlers, trans-
actions are executed in parallel. Each transaction is associated
with a write-back cache and reads from/writes to it. Thus,
each transactions is unaware of the updates performed by the
others and its read and write sets can be determined based on
the contents of the associated write-back cache. Consequently,
peers can execute transactions in any order.

C. Sequential step: conflict resolution

To avoid the ambiguous state representation problem, we
propagate the writes of the various transaction to the under-
lying state tree in the sequential order of how transactions
appear in the block. This guarantees that the tree is updated
deterministically. However, before applying updates, we need
to avoid computational anomalies and may need to re-execute
conflicting transactions. We decide if a transaction ti must be
re-executed based on the following observations.

• ReadSet({t0, . . . , ti−1}) ∩ ReadSet({ti}) ̸= ∅: no re-
execution is needed as the state is not modified.

• ReadSet({t0, . . . , ti−1})∩WriteSet({ti}) ̸= ∅: as each
transaction is unaware of the modifications performed
by the others, the values read by {t0, . . . , ti−1} are
guaranteed to be unaffected by ti’s writes. Thus, no re-
execution is needed.



• WriteSet({t0, . . . , ti−1})∩ReadSet({ti}) ̸= ∅: ti must
be re-executed as it did not observe the modifications
performed by its predecessors.

• WriteSet({t0, . . . , ti−1}) ∩ WriteSet({ti}) ̸= ∅: we
differentiate two cases. If ti performs updates, then there
must also be a conflict between the read set of ti and the
write set of its predecessors. Thus, we are back to the
previous case. If ti performs blind writes, then we can
propagate its writes to the underlying state tree without
re-executing.

In short, re-execution is needed iff WriteSet({t0, . . . ,
ti−1}) ∩ ReadSet({ti}) ̸= ∅. In any other case, we can
propagate the writes of ti to the underlying state tree.

V. EXPERIMENTAL EVALUATION

We integrated our algorithm within the Cosmos SDK to
prove the feasibility of our solution and assess the potential
performance gains. To this extent, we implemented a key-value
store application on top of the Cosmos SDK and compared
the average number of committed Transactions Per Second
(TPS) when using the official release and our parallel imple-
mentation. The key-value store application is the same in both
cases since our version of the SDK is fully compatible with
the official release, allowing also other existing applications
to switch between the two by only updating dependencies.
We did not observe consensus disruptions in any of our tests,
which hints at the determinism of our solution.

A. Environment, workload, and setup

We instantiated a network of 40 Virtual Machines (VMs) on
AWS. Each VM belonged to the c6a.2xlarge instance family
and was provided with 120 GB of gp3 SSD. We instantiated
a Docker container in host network mode on top of each
VM. Our tests are based on version 0.45.13-ics of the Cosmos
SDK. Using workloads based on real data is non-trivial due to
the level of cryptography involved. In particular, transactions
are state-dependent, digitally signed, and associated with a
nonce to prevent replay attacks, making them likely to fail
if used in workloads. Thus, we used a Go porting1 of the
popular Yahoo! Cloud Serving Benchmark (YCSB) to generate
the workloads for our tests. More specifically, we used the
following workloads:

• update-heavy (or workload A for short);
• read-mostly (or workload B for short);
• read-latest (or workload D for short);
• Read-modify-write (or workload F for short).

Each workload’s transaction generation follows a specific dis-
tribution, resulting in workloads containing conflicting transac-
tions with varying patterns. We measured the performance of
the system from an external client that uses multiple accounts
to submit transactions in parallel. In each of the tests, the client
submits 105 transactions, one to each peer in a round-robin
fashion. We varied the number of peers in the network, the

1https://github.com/pingcap/go-ycsb

number of threads used by each peer, and the number of pre-
existing records in the key-value store. When not differently
stated, the network consists of 40 consensus nodes, and the
number of pre-existing records amounts to 2·105. Additionally,
when the number of threads is equal to one, the official release
of the Cosmos SDK is used. When the number of threads is
n > 1, our implementation is used with one main thread and
n− 1 workers.

B. Performance vs number of threads

The performance obtained by varying the number of threads
is reported in Figure 5. As expected, increasing the number
of threads produces better results overall. In our experiments,
we noticed that increasing the block size while reducing the
block production rate could increase the positive impact of
transaction parallelization. Nonetheless, we decided to use
the default configuration in this study. Parallel transaction
execution provides better throughput independently of the
workload. Even though the throughput gain is limited to a few
percentage points, we note that this is achieved with workloads
that perform simple computation with few operations, which
is not the most favorable case for parallelism.

Fig. 5: Throughput while varying numbers of threads.

We report in Figure 6 the latency cumulative distribution
with one (official release) and 8 threads. In all workloads,
the parallel approach consistently provides better results than
the single-threaded system. For example, in workload A,
multithreaded execution reduces the median latency from 10.3
seconds to 7.9 seconds.

C. Performance vs system size

The performance obtained by varying the number of peers is
reported in Figure 7. Parallel transaction execution consistently
provides higher throughput except for the 4-node network
with workload B. We did not observe a clear anticorrelation
between the performance gains and the size of the network,
which may become apparent on larger and more broadly
distributed networks. Nonetheless, the number of blockchains
having that kind of distribution is limited, thus we believe
that our tests on 40 consensus nodes are significant for many
real-word deployments.



(a) Workload A (b) Workload B

(c) Workload D (d) Workload F

Fig. 6: Comparison of the latency cumulative distributions.

(a) Workload A (b) Workload B

(c) Workload D (d) Workload F

Fig. 7: Performance of different network sizes.

D. Performance vs database size

The performance obtained by varying the number of pre-
existing records is reported in Figure 8. As for the previ-
ous cases, parallel transaction execution consistently provides
higher throughput with similar gains. Nonetheless, such gains
seem to increase with the number of pre-existing records,
which is reasonable considering that more records imply a
larger state tree that is slower to traverse. Thus, future research
may explore the impact of parallel transaction execution on
larger state trees.

E. Summary

In short, we can summarize our findings as follows:

• Parallel transaction execution is beneficial in terms of
throughput and latency across all workloads.

(a) Workload A (b) Workload B

(c) Workload D (d) Workload F

Fig. 8: Performance while varying numbers of pre-existing
records in the blockchain state.

• The ambiguous state representation problem poses sig-
nificant constraints on parallel transaction execution, re-
sulting in reduced throughput and latency gains.

VI. CONCLUSION

The ambiguous state representation problem may cause
cross-peer state inconsistencies when transactions are executed
in parallel. In this study, we proposed an algorithm that
prevents the problem by guaranteeing that write operations
are performed in order without completely sacrificing concur-
rency. We then integrated our algorithm within the popular
Cosmos SDK to prove its feasibility and assess the potential
performance gains. In particular, we conducted an extensive
performance evaluation where our implementation consistently
outperformed the sequential one by 5%-10% in terms of TPS
under all conditions. However, this improvement alone is not
sufficient to solve blockchain’s scalability issues. Nonetheless,
our measures have been taken from an external client, which
means that our optimization produces tangible benefits for end
users even with networks of tens of peers.

Future work will be aimed at parallelizing the execution
of ante handlers and at better understanding the performance
interdependencies between consensus, transaction schedul-
ing, network connectivity, and the other modules composing
blockchain.
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