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ABSTRACT
Very-High Resolution (VHR) remote sensing imagery is in-
creasingly accessible, but often lacks annotations for effec-
tive machine learning applications. Recent foundation models
like GroundingDINO [1] and Segment Anything (SAM) [2]
provide opportunities to automatically generate annotations.
This study introduces FMARS (Foundation Model Annota-
tions in Remote Sensing), a methodology leveraging VHR
imagery and foundation models for fast and robust annotation.
We focus on disaster management and provide a large-scale
dataset with labels obtained from pre-event imagery over 19
disaster events, derived from the Maxar Open Data initiative.
We train segmentation models on the generated labels, us-
ing Unsupervised Domain Adaptation (UDA) techniques to
increase transferability to real-world scenarios. Our results
demonstrate the effectiveness of leveraging foundation mod-
els to automatically annotate remote sensing data at scale,
enabling robust downstream models for critical applications.
Code and dataset are available at https://github.com/
links-ads/igarss-fmars.

Index Terms— Remote sensing, computer vision, ma-
chine learning, semantic segmentation.

1. INTRODUCTION

Remote Sensing (RS), and especially Very-High Resolution
(VHR) images, represent a crucial resource for many real-
world scenarios, including land use and land cover monitor-
ing, urban planning, and disaster management. Recent ad-
vances in satellite technologies have allowed for increasingly
accessible remote sensing data, also thanks to public and pri-
vate programs such as the European Union’s Copernicus pro-
gram [3] or the Maxar Open Data program [4], which helps
to democratize the access to medium and high-resolution data
for research purposes on a global scale. However, using such
data with supervised machine learning mighe be challenging
due to the limited availability of high-quality annotations.

This work was carried out in the context of the H2020 project SAFERS
(GA n.869353), HEU project OVERWATCH (GA n.101082320) and Project
NODES through the MUR—M4C2 1.5 of PNRR under Grant ECS00000036.

Fig. 1: Annotation workflow adopted for the three selected classes.
Each class is treated separately, with its own prompt construction
pipeline, while the segmentation masks are extracted from the same
image embeddings, and merged together in a single output.

In parallel, the machine learning landscape is witness-
ing the emergence of foundation models, which are large,
general-purpose models that can adapt to different down-
stream tasks with minimal to no effort. This also involves
computer vision, with models such as CLIP [5], Ground-
ingDINO [1], and Segment Anything [2], which are able
to provide robust image classification, object detection and
segmentation capabilities in a wide range of contexts without
further finetuning. Nevertheless, despite their remarkable
performance, these solutions have often been employed in
the context of natural images, with only a few attempts at
applying them extensively on RS data at scale [6].

In this work, we aim to bridge this gap between the grow-
ing availability of VHR remote sensing images and the po-
tential of Vision Foundation Models (VFM) as robust annota-
tors by designing an automated pipeline that combines open
data sources with foundation models to generate either in-
stance or semantic segmentation labels, starting from robust
box prompts. Using this pipeline, named FMARS (i.e., Foun-
dation Model Annotations in Remote Sensing), we automate
the construction of a dataset designed for semantic labelling
in damage assessment and disaster scenarios. The FMARS
dataset includes 19 crisis events covered by Maxar Open Data
imagery [4], and comprises more than 25M annotations over
a surface of over 125.000 km2. On this data, we provide



instance-wise annotations subdivided into three example cat-
egories: buildings, roads, and high vegetation. To validate
the effectiveness of the annotation approach, we train state-
of-the-art models on the generated labels, employing Unsu-
pervised Domain Adaptation (UDA) techniques [7, 8] for im-
proved stability. Our results demonstrate the effectiveness of
leveraging VFMs to automatically annotate remote sensing
data at scale, enabling the development of smaller specific
models for downstream applications.

2. RELATED WORK

Despite the recent advances in the computer vision field and
the large data availability, remote sensing datasets remain lim-
ited in scope and scale compared to their natural images coun-
terparts [9], as shown in Table 1. For instance, in downstream
applications such as disaster management, the xBD dataset
[10] focuses solely on building damage assessment, limit-
ing its reuse in other contexts. On the other hand, general-
purpose datasets such as DOTA [11] may not be easy to adapt
to particular downstream tasks, due to the limitations of the
available annotations. Considering models, Vision Founda-
tion Models (VFM) have been successfully applied in sev-
eral contexts, especially considering natural images [12, 2, 1],
and downstream tasks in medical imagery [13, 14]. Previ-
ous works have already assessed the applicability of VFMs
to remote sensing images, including SAM [15], applied to
several semantic and instance segmentation tasks. Other at-
tempts assessed the feasibility of using foundation models
such as GroundingDINO [1] for annotation purposes [16],
or the combination of SAM with text prompts, encoded via
CLIP [5], to automatically generate segmentation masks for
specific outputs [17]. However, to the best of our knowledge,
despite the large availability of remote sensing imagery, only
a few attempts have been made to provide automated annota-
tions at scale. SAMRS is the prime example [6], providing an
extended set of annotations over well-known datasets such as
DOTA [11] and DIOR [18].

3. MATERIALS AND METHODS

3.1. Foundation Models

We adopt a combination of two large vision models for the
annotation process, namely Segment Anything (SAM) [2], in
its resource efficient variant [19], and GroundingDINO [1].
At its core, SAM and its derivatives are standard transformer-
based segmentation networks that have been trained using
promptable segmentation. In contrast with other segmenta-
tion objectives, this task receives two inputs: an image and
a prompt. While the former is processed using a large and
robust image encoder, the latter is embedded into the de-
coder using a prompt encoder, and exploited as query by a
lightweight mask decoder that produces segmentation masks.

To resolve ambiguities, SAM can predict multiple outputs
with its associated confidence for the same inputs. The
prompts can be extremely flexible, ranging from sparse in-
puts such as a single point, a bounding box, or text, to dense
arrays such as a binary mask. While points and boxes are
encoded as simple positional embeddings, text is processed
using off-the-shelf models such as CLIP [5], and masks are
combined with the encoded image using a series of convo-
lutions and element-wise sums. Following previous works
[14], we adopt box prompts in our mask generation process,
given its robustness and flexibility. This also combines nat-
urally with the inputs at our disposal, comprising open data
sources for buildings and roads (see Section 3.2), and box
object detections derived from GroundingDINO. This model
introduces cross-modal fusion between a text prompt and
an image to provide open-set object detection capabilities,
using BERT as text processor [20] and a Swin Transformer
[21] as image encoder. While outputs may be approximate
compared to human annotations, GroundingDINO provides
a huge flexibility to generate bounding boxes for potentially
any known object, given a text prompt. This allows us to ob-
tain first estimates for objects not having a ground truth, such
as vegetation, and thus exploit GroundingDINO as a prompt
generator for the subsequent SAM masking phase [17].

3.2. Data Sources

Considering fine-grained segmentation in disaster manage-
ment contexts, VHR imagery becomes necessary since lower-
resolution satellite sources such as Copernicus Sentinel-2 do
not provide enough image content to characterize objects of
interest, such as buildings, or roads. To this date, the largest
source of disaster-related VHR imagery is represented by the
Maxar Open Data Program [4]. This initiative provides pre-
and post-event RGB images from more than 100 major crisis
events since 2017 worldwide, with a total surface coverage
of more than 2.6M km2. We select a subset of resources
containing RGB imagery, obtaining 19 events, spanning from
2022 to 2023, as displayed in Table 2, and summing up to
an area of 127, 134 km2. Inspired by current state-of-the-
art disaster management datasets [10], we focus our dataset
construction process on infrastructures, namely buildings and
roads, which are often the focus in post-event damage assess-
ment, and high vegetation, which usually occludes the under-
lying surface. Among open resources providing infrastructure
information, we select the Microsoft’s Building Footprints
and Road Detection datasets 1, which contain building foot-
prints polygons and road graphs on a global scale generated
by applying deep learning models on VHR satellite imagery,
respectively. For buildings, we do not directly adopt them as
ground truth labels, but rather we exploit them as trustworthy
yet approximate prompts for the SAM model. Lacking a re-
liable source to derive high vegetation prompt from, for such

1https://github.com/microsoft/GlobalMLBuildingFootprints



Dataset # Images Image size Resolution (cm) Bands # Instances # Categories Area (km2)
Vaihingen 33 2, 500× 2, 500 9 IRRG None 6 1.33
Potsdam 38 6, 000× 6, 000 5 RGBIR None 6 11.08
iSAID 2,806 4000× 4000 ≥ 50 RGB 655, 451 15 11,224
xBD 9,168 1024× 1024 ≥ 50 RGB > 700, 000 4 45,000

SAMRS 105,090 Mixed ≥ 50 RGB > 1.6M Mixed Unknown
FMARS 6,896 17, 408× 17, 408 ≥ 30 RGB > 25M 3 > 125, 000

Table 1: Brief comparison between FMARS and similar VHR datasets available in literature.

Event name Year Area (km2) Event name Year Area (km2)
Cyclone Mocha 2023 3,446.4 Morocco earthquake 2023 49,901.9
Italy (Emilia) flooding 2023 1,519.1 Canada (NWT) wildfires 2023 468.6
Gambia flooding 2022 391.2 Sudan flooding 2022 249.3
Hurricane Fiona 2022 1,341.8 Afghanistan earthquake 2022 4,180.6
Hurricane Ian 2022 30,743.2 Cyclone Emnati 2022 8,506.0
Hurricane Idalia 2023 12,156.4 Kentucky flooding 2022 1,641.6
India floods 2023 496.3 Pakistan flooding 2022 7,528.7
Indonesia earthquake 2022 1,011.3 Georgia landslide 2023 157.4
Turkey earthquake 2023 2,745.7 South Africa flooding 2022 559.7
Kalehe flooding 2022 89.9

Table 2: List of events included in the FMARS dataset, including its
year and total surface coverage derived from VHR imagery.

category we adopt GroundingDINO as our bounding box gen-
erator.

3.3. Annotation Workflow

We aim to generate segmentation labels for three classes:
buildings, roads, and high vegetation. While disaster risk
management mainly focuses on damage assessment by com-
paring pre- and post-event images, we first concentrate our
efforts on delineating infrastructures on pre-event acquisi-
tions only. In fact, damage assessment frameworks typically
delineate relevant entities in pre-event images, using the post-
event image to determine the sustained damage [10, 22].
We argue that the first phase (i.e., identifying the exposed ele-
ments before the event) is crucial for any subsequent analysis,
while the damage assessment could be carried out consider-
ing the output of the first phase and the post-event image
using an ad-hoc model. Considering buildings, we gener-
ate box prompts by simply extracting axis-aligned bounding
boxes (AABB) from each footprint polygon. On the other
hand, road graphs represent a challenge for prompt-based
segmentation because their sparse lattice does not allow for
fine contour generation. In this case, the point-based prompts
did not yield satisfactory results, therefore we opted to simply
rasterize the available vector lines with a predefined buffer
radius of 5m. For vegetation, we derive boxes using Ground-
ingDINO with simple text queries like green trees or bushes,
observing better performance on trees with the latter, likely
due to the aerial viewpoint occluding the tree trunk, which
is uncommon in natural images. In order to ensure a cer-
tain degree of confidence for the generated outputs, we use a
minimum box threshold of 0.12 and a text threshold of 0.3.
We further filter out noisy outputs by applying non-maxima
suppression (NMS) at 0.5, removing boxes with aspect ratio

lower than 1:2, and maximum area over 7000 m2. Similar
to buildings, we then use the generated boxes as prompts
for SAM to extract segmentation labels. Last, we store the
resulting delineation and its class as a single vector polygon
to allow for both instance or semantic segmentation tasks.

3.4. Experiments

Method Background Roads High Veg. Buildings mAcc. mIoUAcc. IoU Acc. IoU Acc. IoU Acc. IoU
SegFormer (base) 72.91 61.41 0.11 0.10 7.60 1.33 0.00 0.00 20.15 15.71
MIC 44.79 42.47 55.94 29.89 64.45 10.56 82.47 21.33 61.91 26.06
DAFormer 53.06 50.14 55.44 31.79 64.61 16.80 79.91 17.29 63.26 33.07

Table 3: Performance comparison of DAFormer and MIC on the
FMARS dataset across different classes.

Method Background Roads High Veg. Buildings mAcc. mIoUAcc. IoU Acc. IoU Acc. IoU Acc. IoU
FMARS labels 71.34 41.16 68,72 47.03 69.37 58.54 59.47 54.14 67.23 50.22
SegFormer (base) 97.40 27.90 0.06 0.06 8.24 7.68 0.00 0.00 26.44 8.91
MIC 76.59 36.21 44.84 40.15 51.78 48.52 63.54 56.41 59.19 45.32
DAFormer 70.56 38.02 65.97 54.77 56.57 52.64 69.10 60.20 65.55 51.41

Table 4: Performance comparison of DAFormer and MIC on a man-
ually labelled Maxar partition across different classes.

Using the dataset annotated with our FMARS approach,
we can train standard semantic segmentation models to eval-
uate the knowledge transfer ability to smaller and more de-
ployable models. In our experiments, we adopt state-of-the
art solutions based on Segformer [23]. To counteract the in-
herent inaccuracies in fully automated labeling and the con-
sequently lower recall for categories such as high vegetation,
we apply UDA techniques for improved stability during train-
ing. Specifically, we adopt DAFormer ([7] and Masked Im-
age Consistency (MIC) [8], both based on self-training in a
teacher-student framework paradigm. We select a separate
full-size image from each event as our test set based on the
average information content, for a total of 19 images, and
we conduct a full training using pretrained ImageNet weights
for the backbone components. To address the high precision
and lower recall of the generated labels, as well as missing
categories, we train the models in an open set context, ig-
noring the background class [24]. As simple baseline, we
apply a confidence threshold to the Softmax outputs, empiri-
cally evaluating the optimal cutoff threshold τ = 0.9 for both



Fig. 2: Qualitative results obtained over two example areas, namely USA (top) and Gambia (bottom). from left to right: RGB image,
DAFormer, MIC, and FMARS ground truth. Best viewed zoomed in.

models. We conduct every experiment using a tile size of
512 × 512 and random sampling, weighted by the entropy
(i.e., information content) of the available label, for 30, 000
iterations using AdamW as optimizer. For the UDA compo-
nents, we maintain their original configuration, except for the
removal of the ImageNet feature distance.

Given the automated pipeline and the low reliability of the
obtained labels for performance measurement, we validate re-
sults against the FMARS labels, as well as a small sample of
45 manually labelled tiles, derived from crops of each im-
age in the test set. Tables 3 and 4 present the numerical re-
sults in terms of accuracy and Intersection over Union (IoU),
evaluated against the FMARS test set and manual labels, re-
spectively. The scores highlight the challenge of the prob-
lem at hand, where the baseline solution, without any pre-
cautions, collapses during training. Both UDA solutions ap-
pear very effective, with DAFormer even surpassing the orig-
inal FMARS labels on the manually produced ground truth.
This is evident in the qualitative results shown in Fig. 2 that
demonstrate a high fidelity between the model predictions and
the ground truth, with DAFormer exhibiting more robustness
to the challenging high vegetation class. These findings high-
light the effectiveness of FMARS as an automated technique
to leverage foundation models for annotation tasks in remote
sensing. With the necessary precautionary measures such as
UDA techniques, the proposed pipeline allows the genera-
tion of accurate labels on a large scale, and even the knowl-
edge transfer to smaller yet accurate downstream segmenta-
tion models in the absence of manually labeled datasets.

4. CONCLUSIONS

In this work, we propose FMARS, a pipeline for automated
large-scale annotation of VHR imagery leveraging VFM.
FMARS exploits the increasing availability of open-source
images and the flexibility of promptable large models to
automatically generate high-quality instance and semantic
segmentation labels. As an example, we focus on the critical
domain of disaster management and construct the FMARS
dataset, providing over 25 million annotations across 19
disaster events around the globe, derived from pre-event im-
agery from the Maxar Open Data initiative. As representative
downstream application, we train state-of-the-art segmenta-
tion frameworks on the generated labels. Due to the potential
inaccuracies in the automated labels, we employ UDA tech-
niques to increase the robustness of the learned features to
real-world scenarios. While the proposed approach demon-
strates promising results, it has certain limitations. First, the
dataset currently focuses only on pre-event images. Second,
we limited the taxonomy to three classes in these tests. Fi-
nally, achieving high recall requires significant computational
effort, especially in downstream training. Future work may
address these limitations by developing a more robust auto-
mated annotation pipeline, or by exploring zero-shot learning
approaches for open-set or panoptic segmentation tasks, with
a potentially boundless taxonomy.
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