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Abstract—To achieve an optimal balance between accuracy and
latency in Deep Neural Networks (DNNs), precision-scalability
has become a paramount feature for hardware specialized for
Machine Learning (ML) workloads. Recently, many precision-
scalable (PS) multipliers and multiply-and-accumulate (MAC)
units have been proposed. They are mainly divided in two
categories, Sum-Apart (SA) and Sum-Together (ST), and have
been always presented as alternative implementations. Instead,
in this paper, we introduce for the first time a new class of PS
Sum-Together/Apart Reconfigurable multipliers, which we call
STAR, designed to support both SA and ST modes with a single
reconfigurable architecture. STAR multipliers could be useful
in MAC units of CPU or hardware accelerators, for example,
enabling them to handle both 2D Convolution (in ST mode)
and Depth-wise Convolution (in SA mode) with a unique PS
hardware design, thus saving hardware resources. We derive four
distinct STAR multiplier architectures, including two derived
from the well-known Divide-and-Conquer and Sub-word Parallel
SA and ST families, which support 16, 8 and 4-bit precision. We
perform an extensive exploration of these architectures in terms
of power, performance, and area, across a wide range of clock
frequency constraints, from 0.4 to 2.0 GHz, targeting a 28-nm
CMOS technology. We identify the Pareto-optimal solutions with
the lowest area and power in the low-frequency, mid-frequency,
and high-frequency ranges. Our findings allow designers to select
the best STAR solution depending on their design target, either
low-power and low-area, high performance, or balanced.

Index Terms—Machine Learning, Mixed Precision, Reconfig-
urable Circuits, Precision Scalable Multipliers

I. INTRODUCTION

To strike an optimal balance between accuracy and latency
in a Deep Neural Network (DNN), its various layers might
need to be quantized with different precision [1]. For this
reason, a variety of precision-scalable (PS) multipliers [2],
[3] and multiply-and-accumulate (MAC) units [4] have been
recently proposed to be used in hardware specialized for
Machine-Learning (ML) workloads.

Considering PS multiplier architectures [4], there are two
main categories: Sum-Apart (SA) (also known as Sum-

Separate [5]) and Sum-Together (ST). Both of them divide
the two full-precision input operands into low-precision sub-
words, and then perform low-precision multiplications be-
tween couples of sub-words in parallel. The ST multipliers
sum internally the results of the low-precision multiplications,
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without requiring an external adder. Instead, the SA ones
keep these results separate, i.e., apart [5]. Since these mul-
tipliers work with multiple sub-words at low precision, they
have a higher throughput compared to standard full-precision
multipliers, resulting in a faster DNN inference when used
in PS MAC units [4]. For example, a MAC unit based on
the ST multiplier saves N�1 MAC additions, thus reducing
the overall latency up to 1/N , where N is the number of
low-precision multiplications performed in parallel. For this
reason, PS multipliers already started to be used in hardware
accelerators [3], [5], [6], [7], [8] and microprocessors [9], [10]
to speedup DNN inference tasks.

Until now SA multipliers and ST multipliers have been
proposed as alternative implementations. However, we believe
that there is a case for PS multipliers that support both
SA and ST modes in a single design, which we call Sum-

Together/Apart Reconfigurable (STAR) multipliers.
These have potential applications in various scenarios, such

as within the MAC units of RISC-V cores or in PS hardware
accelerators. In fact, the possibility to reconfigure application-
specific accelerators enables a more efficient utilization of
hardware resources, as they can be dynamically shared to
perform different tasks. For instance, in Fig. 1, we show how
a STAR-based MAC unit can be used in a single hardware
accelerator to enable the support for both 2D and Depth-wise
(DW) Convolutions. For 2D Convolution, the STAR multiplier
is configured in ST mode to multiply and accumulate pairs of
low-precision feature maps (light blue) and weights (orange)
by reading them channel-wise (Fig. 1(a)) [3], [8]. An external
accumulator further sums up the partial results of the STAR
unit until the entire input tensors are scanned and the spe-
cific element of the output tensor (green) is computed. For
DW Convolution, instead, the STAR multiplier is configured
in SA mode to perform multiple low-precision products in
parallel (without internal accumulation) between features and
weights belonging to different channels, according to the DW
Convolution algorithm, Fig. 1(b). In this case the external
accumulator is reconfigured, depending on the precision, to
keep the accumulated results of the multiplications in N = 2
or 4 separate elements. STAR could also be used in ST mode
for Fully-Connected layers, as described in [3], [5].

With this paper, we make these main contributions to the
state of the art (SoA) of PS multipliers:

• We propose for the first time STAR, a new class of PS
multipliers that can be reconfigured to operate either in
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Fig. 1. STAR-enabled reconfigurable MAC for 2D/DW Convolution.

SA mode or ST mode.
• We derive four STAR multiplier architectures, which

support N = 1 full-precision multiplication, N = 2, 4 par-
allel multiplications in SA mode, and N = 2, 4 parallel
multiplications with accumulation (i.e. dot-products) in
ST mode, with operands at 16/N bits. Two of these
architectures are based on the well-known Divide-and-

Conquer (D&C) and Sub-word Parallel (SWP) families
[4]. In particular, for the latter we consider a Baugh-
Wooley (BW) approach, for which we provide a detailed
explanation. The third solution is a 3-way approach in-
spired from [9] and consisting of three mutually exclusive
datapaths with one 16-bit, two 8-bit, and four 4-bit
multipliers each. The fourth one consists of two separate
multipliers, one SA and one ST, with multiplexed outputs.

• We perform an exploration to determine the best solutions
in terms of Power, Performance and Area (PPA) targeting
a 28-nm technology. We vary the clock frequency target
in a large range so as to determine the best low-power and
low-area solution, the best high-performance one, and the
best solution for mid-range PPA.

II. RELATED WORK

Recently, all the SoA ST multipliers and PS MAC units
were reviewed and benchmarked in [2], [3], [4], including
SWP [5], [9] and D&C architectures [11], [12]. Regarding
hardware acceleration, in [6] a BW SA was integrated in a
convolutional neural network processor. In [7] and [8] two ac-
celerators for DW Convolution and 2D Convolution, leverag-
ing ST-based PS MAC units, were proposed, and their speedup
was demonstrated against accelerators relying on standard non-
ST MAC units. In [5] the benefits of SA and ST approaches,
applied to a BW architecture, were analyzed by comparing two
fully-connected (FC) engines in terms of energy consumption,
speed, and area utilization. The results highlighted pros and
cons of both approaches without declaring a single winner for
a given objective. Even RISC-V processors make use of sub-
word parallel multipliers and low-precision dot-product units

TABLE I
OPERATING MODES OF STAR.

CONFIG STAR output

16⇥16 O[31:0] = A[15:0]⇥B[15:0]

16⇥8 O[31:0] = A[15:0]⇥B[7:0]

4⇥4 ST O[21:12] = A[3:0]⇥B[15:12] + A[7:4]⇥B[11:8] +
+ A[11:8]⇥B[7:4] + A[15:12]⇥B[3:0]

8⇥8 ST O[24:8] = A[7:0]⇥B[15:8] + A[15:8]⇥B[7:0]

8⇥4 ST O[24:8] = A[7:0]⇥B[11:8] + A[15:8]⇥B[3:0]

4⇥4 SA O[31:24] = A[15:12]⇥B[15:12] O[15:8] = A[7:4]⇥B[7:4]
O[23:16] = A[11:8]⇥B[11:8] O[7:0] = A[3:0]⇥B[3:0]

8⇥8 SA O[31:16] = A[15:8]⇥B[15:8] O[15:0] = A[7:0]⇥B[7:0]

8⇥4 SA O[31:16] = A[15:8]⇥B[11:8] O[15:0] = A[7:0]⇥B[3:0]

to accelerate quantized neural networks [9], [10]. Building
on the well-established effectiveness and benefits of SA and
ST multipliers demonstrated in previous research, this paper
focuses on the description of STAR architectures and their
comparison in terms of PPA. While many SA and ST multi-
pliers appeared in the literature, we are the first to introduce
the concept of a STAR multiplier.

A non-recent paper [13] proposed a fixed-point SWP DSP
unit capable of operating in SA and ST mode, although at that
time these two terms had not been introduced yet. Moreover,
it includes extra logic unnecessary for both STAR multipliers
and ML workloads (i.e. configurable adders, output saturation
logic). For these reasons we exclude it from our analysis.

III. STAR ARCHITECTURES

The four proposed STAR multiplier architectures are shown
in Fig. 2, while the supported configuration modes are reported
in Tab. I. A and B are the 16-bit input operands, O is the 32-
bit output, and CONFIG is the control signal used to select
the operating mode (not shown in Fig. 2 for better readability).

In addition to symmetric configurations (i.e., 16⇥16, 8⇥8,
and 4⇥4), we also support asymmetric ones (i.e. 16⇥8 and
8⇥4), because they help reduce the memory footprint by
allowing an efficient packing of the lowest-precision operands
(e.g., DNN weights) without the need to sacrifice precision in
the other operands (e.g., DNN activations). For this reason they
are present in SoA ML accelerators [4] and microprocessors
[9], [10], and are used in commercial ML software tools, like
TFLite Micro1. Asymmetric configurations are implemented
by properly sign-extending operand B, as shown in Fig. 2
in the dashed-line blocks. Should the support for asymmetric
configurations be unnecessary, its removal is immediate.

Before delving into the details of STAR architectures, it is
worth recalling the taxonomy of [4], which further divides
the SA and ST multipliers into SWP and D&C classes. The
first class comprises multipliers that can work in full- or

1An example of TFLite Micro kernel for a 2D-convolution with asymmetric
configurations can be found at https://github.com/tensorflow/tflite-micro/blob/
main/tensorflow/lite/micro/kernels/conv.cc
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Fig. 2. The proposed STAR architectures: (a) naive, (b) 3-way, (c) D&C, (d) SWP (BW).

reduced-precision mode by selectively gating their arithmetic
logic cells, like BW multipliers [5], [6] and Booth-based ones
[2]. Instead, the elements of the second class are composed
by many low-precision multipliers (e.g. 4-bit) that can be
combined by means of shift-add logic to form higher precision
multipliers (e.g. 16-bit), like [11] and [12].

The STAR architecture in Fig. 2(a) is based on a naive
approach, which consists of multiplexing the outputs of two
multiplier components, one SA and one ST, using CONFIG

as control signal. We created two RTL implementations using
this architecture: one called ST+SA SWP (BW), where the two
components are SWP multipliers inspired from the ST and SA
BW schemes introduced in [5]; the other one called ST+SA

D&C, where the two components are two D&C multipliers
inspired from [11], a variant of [12] that fixes the bitwidth
of the two input registers to avoid the explosion of the input
memory bandwidth [4]. In particular, we re-implemented [11]
with 4-bit multipliers as basic building blocks.

The STAR architecture in Fig. 2(b) is called 3-way and is
inspired by the dot-product unit of the RISC-V core of [9]. It
consists of three datapaths activated by signal CONFIG in a
mutually exclusive way: one 16-bit multiplier for configura-
tions 16⇥16 and 16⇥8, two 8-bit multipliers and one adder
for configurations 8⇥8 and 8⇥4, and four 4-bit multipliers
and three adders for configuration 4⇥4. The blocks named ext,
located after the last adders of the 8-bit and 4-bit datapaths,
sign-extend the low-precision outputs to 32 bits in case of
ST operations, while the “&” blocks concatenate them in
case of SA operations. We created only one instance of
this architecture, letting the logic synthesizer choose the best
implementation of the various multipliers.

The third and fourth STAR architectures in Fig. 2(c)-(d) are
based on the D&C and SWP PS architectures [4], respectively.
The first one, named STAR D&C, is derived from [11],
while the second one is named STAR SWP (BW) because we
employed a BW approach. The blocks named shift & ext are
used to align the output of ST operations to the least significant
position [5] and to extend its sign until 32 bits.

In Sec. IV we provide a detailed explanation of the design
of STAR SWP (BW), while for the other STAR architectures
the diagrams in Fig. 2 are already self-explanatory.
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IV. STAR SWP (BW) DESIGN

To support all the previously defined operations, STAR SWP
(BW) operates in five different modes, which are illustrated in
Figs. 3(a)-(e). The upper square in each subfigure represents
the BW partial products matrix (PPM), while the lower part
shows the 32-bit output. According to the selected operating
mode, some partial products (PPs) become active (yellow
squares) and contribute to generate the valid output bits
(yellow), whereas other PPs are inactive (grey squares) and
do not contribute to the final 32-bit result.

The PPM of STAR SWP (BW) is detailed in Fig.4(a). Like
any standard BW, each block computes the partial product
(PP) between a different pair of bits of the two 16-bit input
operands using an AND gate. Then, through a Full Adder
(FA), it compresses the output of the AND gate together
with the input sum Si and carry Ci bits coming from the
previous row of PPs, and it provides the output sum So and
carry Co bits to the blocks of the next row of the PPM. The
sixteen So bits exiting from the right-most column of the PPM
represent the least significant part of the multiplier’s output.
The most significant part is instead obtained by compressing,
through a 16-bit Ripple-Carry Adder (RCA), the So and Co

output bits exiting from the last row of the PPM. To deal with
signed numbers, a standard BW inverts the PPs of the left-
most column and of the last row [14]. This is accomplished
by substituting the AND gate with a NAND gate, in each of
these blocks. Moreover, to perform the BW algorithm as in
[14], the addition of logic 1s is required: this is done via Si
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inputs of the first row and the left-most column.
To derive STAR SWP (BW) from a standard BW multiplier,

we added few logic gates to each block of the PPM, resulting
in the five different versions shown in Figs. 4(b)-(f). The
reconfiguration of these blocks is achieved through the binary
control signals P and I , which are generated from a decoding
logic acting on CONFIG , the signal controlling the operating
mode as in Tab. I. Each block of the PPM receives specific
binary values for P and I , according to the letters reported in
the block itself (see Fig. 4(a)): when a block contains a single
letter, it receives only logic values for P (in fact, white and
grey blocks do not have input I); when a block contains two

letters, it receives logic values for I and P , respectively (e.g.,
c/d means I = c, P = d).

As shown in Fig. 3, depending on the selected operating
mode, the output of each block requires potentially to be
turned off in order not to contribute to the final result. For
this reason, we added an AND gate in all blocks to control the
propagation of PPs towards the internal FAs, gating it (P = 0)
or letting it pass (P = 1). The white and grey blocks shown in
Figs. 4(b)-(c), are almost identical to those of a standard BW,
with the exception of this AND gate.

When dealing with signed operations at reduced precision,
we need to guarantee the PP inversion in the left-most and
bottom blocks of all the 8-bit and 4-bit sub-precision multi-
pliers inside the PPM array, as well. These blocks are the red
ones in Fig. 4(a), with details of the internal logic in Fig. 4(d):
we added an XOR gate to invert the internal PP (I = 1), or
leave it unchanged (I = 0).

In red blocks we can also force the input of their internal
FAs to be logic 1, regardless the actual value of the PP, using
a proper control signal configuration (i.e. P = 0 and I = 1).
This feature can be exploited to add the 1s required by the
BW algorithm in place of the Si inputs of the PPM blocks
in the top row and left-most column, thus saving resources
and reducing the propagation path of these inputs. However,
the red blocks do not cover all the positions that would be
required by the insertion of the logic 1s. For this reason we
have blue blocks (details in Fig. 4(e)), and green blocks (see
Fig. 4(f)), in which an OR gate can force the input of the FA
to be a logic 1 (when I = 1).

In case of SA operations, the carry chains connecting the
MSB bit of a sub-word result to the LSB of the next one
need to be interrupted. For this reason, we added a few AND
gates in selected positions to stop the propagation with control
signal M = 0, as shown in Fig. 4(g). These AND gates also
affect the carry chain of the 16-bit RCA, which is halved in
two independent 8-bit RCAs when needed. The “X” symbols
in Fig. 4(a) mark the positions of these AND gates. Notice
the letter associated to each diagonal of “X” symbols, which
corresponds to the signal associated to the M inputs of the
AND gates of that diagonal. Like P and I , M is derived from
CONFIG by the decoding logic and the letters m and d in
Fig. 4(a) correspond to the logic values associated to the green
and violet “X” symbols, respectively.

In the following we explain in detail how P , I and M

enable the reconfiguration of STAR SWP (BW):
1) 16-bit multiplications: For 16x16 and 16x8 multiplica-

tions, the PPM is configured to work as in a standard full-
precision BW multiplier [14]. In particular, all the blocks are
configured with P = 1 ({a, b, c, d}= 1), and all but the red
blocks in the left-most column and the last row are configured
with I = 0 ({e, f, g, h, i, j}= 0). These red blocks instead have
to invert the PPs, having I = 1 ({c, k}= 1). Finally, the addition
of logic 1s, required by signed operations [14], is introduced
through the carry-in signal of the right 8-bit RCA (k = 1) and
through the most significant FA of the left 8-bit RCA (a= 1),
as clear in Fig. 4(a).



2) SA multiplications: In SA mode, the STAR SWP (BW)
multiplier is configured to operate as two or four sub-word
parallel BW multipliers.

In the 4⇥4 configuration, the yellow squares of the PPM in
Fig.3(c) correspond to the four groups of 4 x 4 = 16 blocks (64
blocks in total) in the right-to-left diagonal of the PPM array
in Fig. 4(a). These four diagonal squares can be seen as four
independent 4-bit BW multipliers. The 16 blocks inside each
of these 4-bit multipliers are configured with P = 1 (a= 1) and
I = 0 (j = 0), except for the red blocks in the left-most column
and in the last row, having I = 1 ({g, h}= 1). The other blocks
in the grey squares in Fig. 3(c) are gated, thus have P = 0
({b, c, d}= 0), and become inactive. To perform the addition
of 1s required by the BW algorithm [14], we use some of
these inactive blocks, since they do not need to propagate the
internal PPs when in SA mode. In particular, we used the red,
blue and green blocks with magenta borders in Fig. 4(a), which
can add a 1 in the FAs chain with I = 1 ({g, h}= 1, i= 0). All
the other inactive blocks have I = 0 ({c, e, f, i, j, k}= 0) thus
they do not add any 1. In positions where no inactive blocks
are available, we exploit the Si inputs of the blocks in the left-
most column of the PPM and the input of the most significant
FA of the left-most 8-bit RCA ({a, g}= 1, i= 0). Finally, to
keep the four 8-bit multiplication results separated in the final
32-bit result, we have to interrupt the propagation of the carry-
out bits in all the positions marked by the green and violet “X”
symbols in Fig.4(a) ({d,m}= 0), as explained before.

In the 8⇥8 and 8⇥4 cases, the two yellow squares of the
PPM in Fig.3(b) correspond to the two groups of 8 x 8 = 64
blocks (128 blocks in total) in the right-to-left diagonal of
the array in Fig.4(a). Also in this case, these two squares can
be seen as independent 8-bit BW multipliers. The 64 blocks
inside each 8-bit BW are configured with P = 1 ({a, b}= 1)
and I = 0 ({g, j}= 0), while the red blocks in the left-most
column and the last row receive I = 1 ({h, i}= 1). Inactive
blocks require P = 0 ({c, d}= 0). To add logic 1s, we use again
the blue and green blocks present in inactive positions, with
magenta border in Fig. 4(a), by setting I = 1 ({i, h}= 1, g = 0),
while other blocks have I = 0 ({c, e, f, i, j, k}= 0). When no
inactive blocks are available, we use the Si inputs of the blocks
in the left-most column and of the most significant FA of the
left 8-bit RCA ({a, i}= 1, g = 0).

Finally, to maintain the two independent 16-bit multipli-
cation results, we gate the carry-out bits in all the positions
marked by the violet “X” symbols in Fig.4(a) (d= 0, m= 1).

3) ST multiplications: In ST mode, STAR SWP (BW) al-
ways operates in sub-word parallel mode, but the active yellow
squares of the PPM are mirrored with respect to SA mode, as
shown in Figs.3(d)-(e). This implies that the output sum bits
So of one yellow square, propagating diagonally from left to
right, can be used as inputs for the next yellow square, hence
allowing the addition of the low-precision multiplications and
ultimately achieving a dot-product operation.

Like in SA mode, blocks belonging to the yellow squares
can be seen as independent BW multipliers. These blocks are
configured with P = 1 and I = 0, except for the red blocks in

the left-most column and in the last row, having I = 1 (precise
signal assignment is now trivial and left to the reader). The
blocks belonging to the grey squares are gated, thus have P = 0
to make them inactive. As in SA mode, we used some of
these inactive blocks to accomplish the 1s addition required for
signed operations. In this case, we used blue and green blocks
with orange borders, as visible in Fig. 4(a), which propagate,
given I = 1, a logic 1 to the internal FAs. The remaining
inactive blocks receive I = 0.

As explained in Sec. III, ST operations need to align the
final result to the LSB position [4]. Indeed, the shift & ext

block in Fig. 2(d) is used to right-shift the result by 8 bits for
8x8 and 8x4 operations (Figs. 3(d)), and by 12 bits for 4x4
operation (Figs. 3(e)).

V. EXPERIMENTAL RESULTS

To rank the STAR solutions and establish the best PPA
trade-off, we synthesized their RTL description after adding
I/O registers using Synopsys Design Compiler and targeting
a 28-nm CMOS technology. Figs. 5(a)-(b) report the results
of area and power vs clock period, respectively, obtained
by varying the target clock frequency from 0.4 to 2 GHz.
The clock period also takes the reconfiguration time into
account, allowing to change configuration at every cycle.
Pareto-optimal points represent the solutions with lowest area
or power for a given target clock period. The reported power
is an average of eight values obtained when the multipliers are
configured in 16-bit mode (16⇥16 and 16⇥8), ST mode (8⇥8,
8⇥4, and 4⇥4 ST) and SA mode (8⇥8, 8⇥4, and 4⇥4 SA).
For simplicity, the power was determined by applying random
input bits evenly distributed between zero and one. While this
may not be representative of realistic ML workloads, it still
allows for a correct relative comparison. In the future, we plan
to use distributions derived from quantized DNNs to provide
more accurate estimates of absolute power consumption.

In Fig. 5(a) we observe that STAR SWP is Pareto-optimal in
the low frequency range up to 800 MHz (1.25 ns) with runners-
up STAR D&C and STAR 3-way. This is because in this range
the BW implementation manages to effectively share the logic
gates among all the operating modes in the best possible way,
while the other solutions have redundant gates that result in
larger area. The lower area, and so also lower capacitance,
results in lower power for a given clock period, making STAR
SWP Pareto-optimal also in power vs clock period up to 900
MHz (1.11 ns), as clear in Fig. 5(b).

In the range 0.9-1.1 GHz both STAR D&C and STAR 3-
way become Pareto-optimal in terms of area vs clock period,
with STAR SWP third-best. This is because the BW imple-
mentation has longer critical paths, which is well known for
BW multipliers in general [14] and results in larger gates to
satisfy tighter frequency constraints.

In the same middle range, more precisely between 1.0 and
1.2 GHz, the STAR D&C solution manages to obtain the best
trade-off in power vs clock period.

In the upper frequency range, STAR 3-way emerges without
any contenders and achieves the best area and power. This is
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Fig. 5. PPA comparison of STAR architectures.

because the synthesizer freely selects the best implementation
for the three types of multipliers, recovering area in the
smallest 4x4 ones with shorter paths and using effectively gate
sizing for the larger 16⇥16 one.

As expected, naively combining ST and SA solutions
(ST+SA) is not effective and results in Pareto-dominated
solutions both in area and power vs clock period. For a fair
comparison, we did not analyze ST-only or SA-only designs
because they do not support all the STAR configurations.

To summarize, the results of this exploration allow designers
to choose the best implementation according to the design
target. For low-power and low-area, a STAR SWP solution
is the most appropriate implementation. At the other end of
the spectrum, for high-performance designs, the best choice
is STAR 3-way. In the middle, also STAR D&C can become
competitive with STAR 3-way, especially in terms of power.

VI. CONCLUSION

In this paper we proposed STAR, a new PS multiplier that
fuses the SA and ST approaches in a single architecture. We
explored different STAR implementations based on the so-
called SWP and D&C approaches, showing that SWP obtains
least area and power at low frequency targets, while D&C is
appropriate for middle range frequency targets. In the high-
performance range, instead, a solution that we called STAR
3-way and that combines three architectures dedicated to
different precision, emerges as the best. Our results allow
designers to select the best STAR solution for their target.

We are now developing STAR-based accelerators for DNN
layers, and have already successfully tested a RISC-V core
with a PS MAC unit based on a STAR SWP multiplier [15].
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