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Abstract: Environmental problems are among the most pressing issues in the modern world, includ-
ing the shortage of clean drinking water partially caused by contamination from various industries
and the excessive emission of CO2 primarily from the massive use of fossil fuels. Consequently, it
is crucial to develop inexpensive, effective, and environmentally friendly methods for wastewater
treatment and CO2 reduction, turning them into useful feedstocks. This study explores a unique
method that addresses both challenges by utilizing ZnO, which is recognized as one of the most active
semiconductors for photocatalysis, as well as a cost-effective electrocatalyst for the CO2 reduction
reaction (CO2RR). Specifically, we investigate the influence of the morphology of various ZnO nanos-
tructures synthesized via different low-cost routes on their photocatalytic properties for degrading
the rhodamine-B dye (RhB) and on their electrocatalytic performance for the CO2RR. Our results
show that the ZnO lamella morphology achieves the best performance compared to the nanorod and
nanoparticle structures. This outcome is likely attributed to the lamella’s higher aspect ratio, which
plays a critical role in determining the structural, optical, and electrical properties of ZnO.

Keywords: chemical precipitation; calcination; microwave-assisted route; zinc oxide; electrocatalyst;
photocatalyst; CO2 reduction reaction; rhodamine-B

1. Introduction

The rapid development of industries is one of the main causes of water pollution.
Dyes from the textile, food, and printing industries are among the main pollutants released
into reservoirs [1]. More than 800,000 tons of dyes are produced annually, and wastes
are dumped into water bodies by industrial enterprises [2]. Generally, dyes are highly
toxic and non-biodegradable due to their complex nature, which poses a serious threat
to human health and to the environment [3,4]. Various traditional methods are used
for wastewater treatment, such as coagulation, adsorption, ultrafiltration, ozonation, etc.
Most of these methods have significant disadvantages such as the formation of toxic by-
products, high cost, limited recovery, or high energy consumption [5]. In recent years,
photocatalysis has been actively studied as an alternative method for the decomposition
of organic contaminants. The advantages of this method include low cost, no need to
create special conditions, and complete mineralization [6]. The decomposition of organic
dyes using a semiconductor photocatalyst is an environmentally friendly and efficient
method for wastewater treatment because appropriately designed photocatalysis allows
one to obtain harmless final products, such as CO2, H2O, and inorganic salts, as a result
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of pollutant decomposition [7–9]. In recent decades, oxide semiconductors have attracted
considerable attention as photocatalysts for the photodegradation of organic pollutants due
to their high availability, low toxicity, and good thermal and chemical stability [10–13]. Zinc
oxide (ZnO) is widely used as an efficient and inexpensive semiconductor photocatalyst
for the decomposition of most organic chemicals and energy applications [14–18]. The high
efficiency is due to the fact that ZnO has a high exciton binding energy at room temperature,
equal to 60 meV and high electrical conductivity (~102 Ω−1 cm−1) [19]. The size of the
crystallites has a major influence on the photocatalytic activity of ZnO, which is typically
understood and explained in terms of the specific surface area. Nano-sized materials have
a highly specific surface, which provides a large number of active centers that favor organic
molecule degradation [20,21].

Another major environmental issue is the excessive emission of CO2 due to the world-
wide dependence on fossil fuel utilization. The transformation of CO2 into valuable
chemicals and fuels attracts particular interest in both academic and industrial sectors.
However, CO2 stability makes it difficult to reach a sufficiently good efficiency for the
CO2RR, which, for the moment, remains far from practical industrial applications. The
selectivity of the reaction toward a specific target product is another challenge because
of the large variety of chemicals resulting from CO2RR (e.g., CO, formic acid, methane,
ethylene, ethanol, acetic acid, and n-propanol). Hence, this reaction calls for efficient, stable,
and cost-effective catalysts in order to improve the activity, selectivity, and efficiency of the
process. Some bulk metals have been studied and demonstrated to catalyze the CO2RR,
but their performance is still not sufficiently high [22]. For this reason, nanostructured
metallic materials, with peculiar structural features with respect to bulk metals, have gained
attention and show enhanced performance for CO2RR [23]. In particular, during the last
few years, Au, Ag, and Cu nanostructured electrocatalysts have been investigated and have
shown a faradaic efficiency of over 90% for CO production [24–27]. It was discovered that
the improved activity of the catalyst is related to the grain boundaries of the oxide-derived
Au or Cu nanoparticles [25,28,29]. Many studies also demonstrated that high-index facets
and edge sites play key roles in CO2RR [30–32]. However, noble metals like Au and Ag
are not cost-effective, and less expensive alternatives are highly desirable. Among the
candidates, Zn is one of the most abundant and non-toxic materials, showing promising
selectivity for CO production [33]. Lourenço et al. [33] studied ZnO of a three-dimensional
flower-like architecture consisting of interleaving thin plates between 11 and 16 nm of
thickness, showing good selectivity for CO2RR to CO. Urbain et al. [34] reported a nano-
sized Zn flake catalyst for solar-driven CO2RR to syngas with a CO/H2 ratio of 2. In
particular, high efficiency and product selectivity in electrochemically reducing CO2 to
CO have been achieved by changing the structural characteristics of Zn electrocatalysts.
Won et al. [32] studied an electrodeposited hexagonal shape of Zn pieces catalyst and found
via X-ray diffraction (XRD) analysis that the observed good selectivity for CO2RR to CO
was positively influenced by the Zn (101) facet in the bulk phase. Rosen et al. [35] studied a
nanostructured Zn dendrite catalyst, which can electrochemically reduce CO2 to CO via
greatly enhanced catalytic activity and CO faradaic efficiency with respect to the bulk Zn
counterparts. Though many different Zn/ZnO structures have been reported for CO2RR,
there are no specific studies on the comparison of the morphology of ZnO catalysts, which
could greatly influence the catalytic performance of CO2RR.

The present study aims at developing ZnO nanostructures for both electrocatalytic
CO2RR and photocatalytic degradation of rhodamine-B dye (RhB). Traditionally, ZnO
nanostructures are synthesized via various physicochemical methods, but many of them
have disadvantages such as high cost, the need for high pressure, specialized equipment,
and the use of toxic and environmentally hazardous chemicals, which leads to high en-
ergy consumption and the formation of a large amount of waste that is dangerous to the
environment [36]. The present innovative research employs effective, one-step, environ-
mentally friendly, and inexpensive synthesis routes to obtain different ZnO nanostructures.
Moreover, these routes make it possible to control the size and shape of the particles,
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which is useful to tailor and improve their chemical, physical, electro-, and photo-catalytic
properties. Lamellar, nanorod, and spherical morphologies were obtained via chemical
precipitation, annealing, and a green microwave-assisted route, respectively.

For both CO2RR and RhB degradation, lamellar ZnO shows higher performance with
respect to the other two types due to a much higher aspect ratio compared to the other two,
thereby providing a larger amount of reaction sites.

2. Experimental Part
2.1. Materials

Zinc acetate dihydrate (Zn(CH3COO)2·2H2O, 99.9%), sodium hydroxide (NaOH, 98%),
ethylene glycol (EG, 99.8%), potassium bicarbonate (KHCO3, 99.7%), Nafion® 117 solution
(5 wt.%), and isopropanol were purchased from Sigma-Aldrich (St. Louis, MO, USA) and
used as received.

2.2. Synthesis of ZnO Powders

In this study, ZnO powders featuring three different morphologies, including rods,
lamellar, and round-shaped nanoparticles (NPs), were synthesized via three environmen-
tally friendly methods.

ZnO rods were prepared using the direct thermal decomposition method [37,38].
Cheap zinc acetate dihydrate was directly calcinated in a muffle furnace in the air at high
temperatures for different durations. During calcination, the zinc acetate dihydrate was
placed in a ceramic crucible with a lid. The mass of the synthesized ZnO nanorod samples
(ZNP 1, ZNP 2, and ZNP 3) was approximately 1/3 of the zinc acetate salt mass. The ZNP
1, ZNP 2, and ZNP 3 samples were obtained by annealing at 700 ◦C for 10 h, 400 ◦C for
10 h, and 700 ◦C for 6 h, respectively.

ZnO lamellae were prepared via low-temperature chemical precipitation [39] starting
from aqueous solutions of zinc acetate dihydrate 0.1 M and NaOH. The NaOH concen-
tration varied for the different samples. Before the synthesis, zinc acetate and sodium
hydroxide were separately dissolved in distilled water for 30 min. Then, the NaOH
solution was added dropwise into a beaker containing the zinc salt solution at room
temperature, followed by stirring the entire growth solution for 15 min. The resulting
ZnO was thoroughly washed with distilled water via centrifugation and then dried for
12 h at 100 ◦C. Finally, the dried powders were calcined for one hour in the air at 450 ◦C,
and the ZnO samples were obtained. The NaOH concentration was 0.4 M and 0.7 M for the
ZNP 4 and ZNP 5 samples, respectively.

A green microwave-assisted route was used to synthesize ZnO nanoparticles (NP) [40,41].
Typically, 914 mg of NaOH was dissolved in 17 mL of EG and 3 mL of H2O to form solution 1,
and 1100 g of Zn(CH3COO)2·2H2O was dissolved in 35 mL of EG and 5 mL of H2O to form
solution 2. Then, solution 1 was added to solution 2 drop by drop. After 10 min of vigorous
agitation, the mixture was transferred to a microwave oven (Milestone STARTSynth, Milestone
Inc., Shelton, CT, USA) and irradiated for 6 min at 900 W (Tmax. = 220 ◦C). After cooling to
ambient temperature, the precipitate was separated via centrifugation and washed twice with
H2O and once with ethanol. The powder sample was finally obtained by vacuum drying at
60 ◦C overnight and was denoted as ZNP 6.

2.3. Physical-Chemical Characterizations

The microstructure and chemical compositions of the as-prepared ZnO catalysts were
studied using field emission scanning electron microscopy (FESEM, Supra40 from Carl
Zeiss, Jena, Germany) coupled an Oxford Instruments X-Max 10 mm2 silicon drift detector
for energy-dispersive X-ray spectroscopy (EDX). Transmission Electron Microscopy (TEM)
was carried out on an FEI Tecnai G2 F20 S-twin microscope, operated at 200 kV. The ZnO
catalyst was dispersed in ethanol and subsequently drop-casted onto lacey carbon Cu
grids prior to the TEM investigation. The photoluminescence (PL) spectra were measured
at room temperature under 300 nm excitation using a Cary Eclipse spectrofluorimeter
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(Agilent, Santa Clara, CA, USA) in the range of 300–800 nm. X-ray diffraction analysis
(XRD) was performed on the as-synthesized ZnO powder samples to investigate the crystal
structure and on the tested ZnO electrodes in order to investigate the structural changes
after the CO2RR. A Panalytical X’Pert Pro diffractometer equipped with Cu Kα radiation
(λ = 1.54059 Å) was used as the X-ray source. Optical absorption spectra were studied
using the PerkinElmer Lambda 35 UV-Vis spectrophotometer.

2.4. Electrochemical Analysis
2.4.1. Electrode Preparation

Electrodes were prepared using a drop-casting method, which is demonstrated to be
easy and efficient [42,43]. First, 15 mg of ZnO powder was mixed with 1 mg of carbon
black S50, 67.5 µL of Nafion solution (5% wt), and 400 µL of Isopropanol by sonication
for 30 min. Then, the uniform slurry was drop-casted onto a carbon paper substrate (gas
diffusion layer, GDL28BC, Sigracet, Bonn, Germany). The electrodes were ready for use
after drying at 40 ◦C overnight. The loading of ZnO was approximately 3.0 mg cm−2.

2.4.2. CO2 Reduction Reaction Measurements

The electrochemical measurements were performed in a batch cell with two compart-
ments separated by a proton exchange membrane (Nafion™ Membrane N117, Ion Power,
New Castle, DE, USA). Both chambers were filled with 12 mL aqueous 0.1 M KHCO3
electrolyte during the test of all the samples. The solution was saturated by CO2 purging at
a flux of 30 sccm for about 30 min before starting the CO2RR. During the tests, the CO2 flow
was maintained at 15 sccm at the cathode and 10 sccm at the anode. An Ag/AgCl (1 mm,
leak-free LF-1) electrode was used as a reference and, together with the tested working
electrode, was positioned in the catholyte compartment. A Pt sheet was used as the counter
electrode and was inserted into the anolyte. A potentiostat (CHI760D) was used to apply
constant potential during the measurements. The gas products were analyzed using micro
gas chromatography (µGC, Fusion®, INFICON, Bad Ragaz, Switzerland). The µGC was
equipped with two modules, one with a 10 m Rt-Molsieve 5A column and Ar as the carrier
gas, and the other with an 8 m Rt-Q-Bond column and He as the carrier gas. Each module
was equipped with a microthermal conductivity detector (micro-TCD).

The faradaic efficiency (FE) values of the products were calculated as follows:

FEH2 or CO =
nFNH2 or CO

Q
, (1)

where n is the number of electrons required to obtain 1 molecule of this product (n = 2 for
H2 and CO); N is the amount of an identified product (number of moles, mol); Q is the
total charge passed through the system during electrolysis (coulombs, C); F is the Faraday
constant (96,485 C mol−1).

2.5. Photocatalytic Analysis

To study the photocatalytic activity of ZnO samples, an aqueous solution of rhodamine-
B was used, prepared by dissolving 0.16 mg of RhB per 1 L of distilled water. In 112.5 mL
of the dye solution, 9 mg of the synthesized ZnO sample was added with thorough stirring,
followed by treatment in an ultrasonic bath for half an hour. A mercury arc lamp (LIH ULQ
14W, Herrsching am Ammersee, Germany) as a source of UV-Vis irradiation was placed
in a flask containing the solution of RhB and ZnO. During UV illumination, the prepared
solution was mixed with a magnetic stirrer.

3. Results and Discussion
3.1. Morphological and Structural Characterizations of ZnO Nanostructures

Figure 1 shows the morphology of the ZnO powders synthesized via the three low-cost
methods, whereas Table 1 provides the relevant morphological parameters measured using
FESEM, as presented in Figure S1. Via calcination of zinc acetate at high temperatures, ZnO
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grows in the form of rods (Figure 1a–c). As the annealing time is reduced from 10 to 6 h at a
synthesis temperature of 700 ◦C, the diameter of the rods is slightly decreased, similar to the
length of the rods. When the annealing temperature is lowered from 700 ◦C to 400 ◦C with the
same annealing time (10 h), the diameter of the ZnO rods is significantly reduced, whereas the
length of the rods is slightly changed. In comparison, the annealing temperature has a primary
influence on the growth of the rods with respect to time. Using the chemical precipitation
method, it is possible to obtain ZnO in the form of lamella (Figure 1d,e). An increase in the
NaOH concentration leads to a slight increase in the thickness of the flakes without significant
effects on the morphology. ZnO NPs prepared with a green microwave-assisted route show
a spherical form (Figure 1f) with an average diameter of approximately 40–60 nm. Table S1
summarizes the chemical compositions of all the ZnO samples obtained via EDX analysis. Zn
and O are the main elements and have an atomic ratio of nearly 1. A small amount of C is
associated with surface contaminations.
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Figure 1. Field emission scanning electron microscope images of the ZnO samples: (a) ZNP 1
(annealing, 700 ◦C, 10 h), (b) ZNP 2 (annealing, 400 ◦C, 10 h), (c) ZNP 3 (annealing, 700 ◦C, 6 h),
(d) ZNP 4 (precipitation, [NaOH] = 0.4 M), (e) ZNP 5 (precipitation, [NaOH] = 0.7 M), and (f) ZNP 6
(microwave-assisted synthesis).
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Table 1. Average dimension, aspect ratio, and cell parameters for all ZnO samples.

Sample
Name

Diameter *
(nm)

Length
(nm)

Ratio
(Length/Diameter)

Cell Parameters (Å)

a c

ZNP 1 184 559 3.0 3.2502 5.2071
ZNP 2 60 550 9.2 3.2512 5.2088
ZNP 3 163 430 2.6 3.2514 5.2089
ZNP 4 23 879 38.2 3.2509 5.2079
ZNP 5 29 700 24.1 3.2513 5.2082
ZNP 6 40–60 40–60 1 (spherical shape) 3.2524 5.2109

* For the lamellar morphology, the diameter is considered as thickness.

Table 1 shows the morphological characteristics of the ZnO samples, including the
diameter, length, and ratio obtained from FESEM (Figure S1), indicating that the sam-
ples obtained via the precipitation method exhibit the highest aspect ratio. Further
morphological study with TEM (Figure S2) confirms that ZNP 4 has high aspect ratio
lamellar nanostructures.

XRD measurements have been performed to better understand the crystalline struc-
tures of all the ZnO samples. As shown in Figure 2, all peaks in the XRD patterns are
associated with ZnO (reference code: JCPDS 01-075-0576) without additional peaks related
to impurities.
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Figure 2. XRD patterns of the ZnO samples: ZNP 1 (annealing, 700 ◦C, 10 h), ZNP 2 (annealing,
400 ◦C, 10 h), ZNP 3 (annealing, 700 ◦C, 6 h), ZNP 4 (precipitation, [NaOH] = 0.4 M), ZNP 5
(precipitation, [NaOH] = 0.7 M), and ZNP 6 (microwave-assisted synthesis).

XRD analysis reveals that all the samples present a hexagonal structure (wurtzite),
and the cell parameter obtained values by fitting are consistent with the theoretical
values (Table 1). For sample ZNP 4, it must be stressed that the XRD results are also
in accordance with the structural information obtained via electron diffraction (see
Supplementary Information).

3.2. Photocatalytic Activity of ZnO Nanostructures for Dye Degradation

First, we discuss the optical properties of the synthesized ZnO nanostructures. As
shown in Figure 3, all ZnO nanostructures absorb light in the UV-Vis range with a maximum
wavelength of 380 nm, and they are transparent in the visible region of the spectrum.
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The width of the optical band gap can be estimated from the edge of the absorption
band using the Tauc method [44]. The Tauc relation is shown in Equation (2),

(αhν) = C
(
hν − Eg

)n, (2)

where α is the absorption coefficient; C is the coefficient of proportionality; n = 1
2 since

ZnO is a direct-band gap semiconductor material [44], hν is the photon energy, and Eg is
the band gap width. The coefficient of proportionality C can be expressed in Equation (3),

C = αd = ln
(

I0

I

)
, (3)

where d is the film thickness, I is the intensity of the monochromatic light that passes
through the substance, and I0 is the intensity of the light incident on the absorbing layer.
For the synthesized ZnO samples, the estimated optical band gap is about 3.2 eV with a
relative error of 6%, which is in agreement with the literature [14,15].

The photocatalytic activity of ZnO materials for RhB decomposition was then eval-
uated under UV-Vis light illumination. The optical density spectra obtained during the
decomposition of RhB in solutions with different ZnO samples are shown in Figure S3.
The RhB solution with each ZnO material was placed under UV-Vis light illumination
and sampled and analyzed every 30 min for a total duration of 150 min. The maximum
absorption intensity of the initial RhB solution was about 556 nm. With an increase in the
duration of the UV-Vis illumination, the absorption intensity of the RhB solution decreased,
indicating that the concentration of RhB in the solution decreased accordingly. It was
also noted that the absorption intensity of the RhB solution remarkably decreased during
the first 30 min of exposure. Then, the decrease rate significantly dropped and reached
almost zero after 150 min of illumination. This phenomenon was observed for all ZnO
materials, implying that all ZnO materials can promote the degradation of RhB under
UV-Vis irradiation. It is worth noting that the absorption intensity of the solutions with
ZNP 4 and ZNP 5 was much lower after 60 min of exposure than that of the solutions with
other ZnO materials, indicating that the former two had higher photocatalytic activity for
RhB degradation. Figure S4 demonstrates the change in the color of the RhB solution with
the ZNP 4 sample after 150 min under UV-Vis illumination. Due to the presence of RhB,
the initial solution showed an intense fuchsia color. Under UV-Vis irradiation, the solution
underwent quick color fading during the first 30 min and became almost transparent after
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an exposure time of 150 min. This observation is consistent with the above-mentioned
optical analysis in Figure S3.

The rate of photocatalytic degradation of the RhB dye in the presence of ZnO samples,
k, was calculated based on the kinetic model proposed by Langmuir–Hinshelwood [45,46]
in Equation (4),

k =
lnR
−t

=
ln (C0/C)

t
, (4)

where C0 is the initial concentration of RhB and C is the concentration of RhB after UV-Vis
irradiation for time t. The percentage of dye that decomposed under UV-Vis light can be
determined by Equation (5),

R∗ = 100(1 − R), (5)

where R = C/C0. The values obtained for this coefficient and the rate of photocatalytic
degradation of the dye are shown in Table S2. A high rate of RhB decomposition under
UV-Vis irradiation was observed in the presence of all the synthesized ZnO samples. The
rate of photocatalytic dye degradation varies from 1.23 h−1 (for the ZNP 6 sample) to
1.73 h−1 (for the ZNP 4 sample). Calculations showed that after 150 min of UV-Vis illu-
mination of the RhB aqueous solution, 94–97% of its initial concentration decomposed.
The C/C0 values of RhB and the ln(1/R) as a function of radiation time are shown in
Figure 4a,b, respectively. The blank experiment showed that RhB hardly degraded after
exposure to UV-Vis irradiation for 150 min, which indicates that RhB could not be decom-
posed without the photocatalyst. It is worth noting that ZNP 4 had the highest activity,
followed by ZNP 2 and ZNP 5, while ZNP 1, ZNP 3, and ZNP 6 possessed relatively lower
photoactivity. The trend of the activity of the samples corresponds well with that of the
aspect ratio of the ZnO nanostructures shown in Table 1, indicating that this morphological
indicator has a primary effect on the photocatalytic performance of the ZnO samples.

To explain the effect of morphology on the photocatalytic activity of the ZnO samples
with respect to the RhB dye, the photoluminescence spectra of the synthesized ZnO samples
were studied. As shown in Figure S5, the PL intensity of the radiative recombination
through deep defect states in samples ZNP 2 and ZNP 4 reached a minimum value,
indicating a reduced concentration of defects in the volume and surface of these ZnO
samples. Accordingly, the lifetime of the photogenerated free carriers was longer in such
samples, which could be the main reason for their higher photocatalytic activity [47,48]. It
is worth noting that the ZNP 2 and ZNP 4 were in line with the best ZnO photocatalysts
for similar functions, as shown in Table S3.

One of the advantages of photocatalysis is the reusability of the catalyst [49]. In this
study, experiments were carried out to verify the possibility of multiple using ZnO as
photocatalysts. To check ZnO reusability, the photocatalytic activity of the ZNP 4 sample
was tested five times. The irradiation time for each test was 150 min. After each RhB
degradation test, the solution was centrifuged to separate ZnO, which was then added
to a new fresh dye solution. The initial dye concentration was the same for all the tests.
Figure S6 shows that the photocatalytic activity of the ZNP 4 sample remains almost
unchanged after five cycles. This result confirms that ZNP 4 photocatalyst has good
recyclability properties.

The photocatalytic mechanism of the organic dye decomposition in the presence of
ZnO is illustrated in Figure S7. Photocatalysis is the acceleration of a chemical reaction
due to the combined action of a catalyst and light irradiation. In photogenerated catalysis,
photocatalytic activity depends on the ability of the catalyst to generate electron–hole pairs,
which produce free radicals that can then be involved in secondary reactions [50]. As
shown in Figure S7, after light absorption, the electron–hole pairs moved toward the ZnO
surface. Then, the h+ combined with water to produce hydroxyl radicals, whereas electrons
combined with oxygen to form superoxide radical anions. Subsequently, these radicals, as
oxidizing agents, reacted with the adsorbed contaminants present on the ZnO surface and
decomposed them to form H2O, CO2, and mineral acids [50,51].
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3.3. Electrocatalytic Activity of ZnO Nanostructures for CO2RR

The electrocatalytic activity of all the ZnO samples toward the CO2RR was studied by
CO2 electrolysis on ZnO electrodes in a potential-controlled mode. Under the negative po-
tentials typically employed for CO2 electrolysis, ZnO is reduced to metallic Zn, as reported
in the literature [41]. Figure 5 shows direct evidence that ZnO undergoes progressive re-
duction at −1.0 V vs. reversible hydrogen electrode (RHE), independent of the morphology
of the nanostructures. The ZnO content decreased quickly in the first 30 min of reduction
for all morphologies with the three representative electrodes. After 2 h of reduction, the
lamellar (ZNP 4) and nanoparticle (ZNP 6) structures showed only diffraction peaks related
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to metallic Zn, and the nanorod (ZNP 3) structure displayed mainly metallic Zn peaks with
tiny ZnO peaks, probably due to the large diameter of ZNP 3 that needed more time to be
fully reduced.
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The morphology of the reduced electrodes was also studied using FESEM. As shown
in Figure 6, the nanostructures of the ZnO samples changed after being reduced to metallic
Zn. All samples showed a reduced particle size. However, each electrode still retained the
original morphology of the ZnO sample. ZNP 3, ZNP 4, and ZNP 6 electrodes showed
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nanorod-like, nanoflake, and nanoparticle morphologies, respectively. Hence, it is foreseen
that the ZNP 4 electrode has a higher aspect ratio with respect to the other two electrodes.

Nanomaterials 2023, 13, x FOR PEER REVIEW  11  of  16 
 

 

nanorod-like, nanoflake, and nanoparticle morphologies, respectively. Hence, it  is fore-

seen that the ZNP 4 electrode has a higher aspect ratio with respect to the other two elec-

trodes. 

 

Figure 6. Field emission scanning electron microscope images of the reduced electrodes: (a,b) ZNP 

3, (c,d) ZNP 4, and (e,f) ZNP 6. 

In order to verify the activity and selectivity of various ZNP electrodes for the CO2RR, 

chronoamperometric measurements were carried out at various potentials of −0.8 V, −1.0 

V, and −1.1 V (vs. RHE) in a three-electrode two-compartment cell using online µGC anal-

ysis. Unless specified otherwise, all the potentials refer to RHE. The gas products were 

analyzed during 2 h of testing at each potential, and the reported data were collected at 

the end of each test until the distribution of the gas products was stable. As studied via 

XRD analysis (Figure 5), the electrodes were mainly composed of metallic Zn derived from 

ZnO. The FE values of both CO and H2 are shown in Figure 7 for all the ZNP electrodes, 

together with the total current density at each applied potential. 

It  is evident  that  the electrodes  featuring a  lamellar structure  (ZNP 4 and ZNP 5) 

perform far better than those with nanorod (ZNP 1, ZNP 2, and ZNP 3) and nanoparticle 

(ZNP 6) structures. In particular, the ZNP 4 and ZNP 5 electrodes show good CO selec-

tivity with FECO of about 70% and 80% at −1.0 V and −1.2 V, respectively. The highest FECO 

is 84.3% on the ZNP 4 electrode at −1.2 V, with an appreciable current density of 4.9 mA 

cm−2. The ZNP 6 also exhibits relatively good CO selectivity and reaches FECO of about 

70% at both −1.0 V and −1.2 V, outperforming the electrodes with a nanorod structure. The 

ZNP 1, ZNP 2 and ZNP 3 electrodes characterized by a nanorod morphology perform 

similarly, reaching FECO of about 50% and 60% at −1.0 V and −1.2 V, respectively. The best 

performance of the ZNP 4 electrode could be attributed to the higher aspect ratio of the 

ZNP 4 oxide material, which is preserved in the reduced electrode. It is worth noting that 

Figure 6. Field emission scanning electron microscope images of the reduced electrodes: (a,b) ZNP 3,
(c,d) ZNP 4, and (e,f) ZNP 6.

In order to verify the activity and selectivity of various ZNP electrodes for the
CO2RR, chronoamperometric measurements were carried out at various potentials of
−0.8 V, −1.0 V, and −1.1 V (vs. RHE) in a three-electrode two-compartment cell using
online µGC analysis. Unless specified otherwise, all the potentials refer to RHE. The
gas products were analyzed during 2 h of testing at each potential, and the reported
data were collected at the end of each test until the distribution of the gas products was
stable. As studied via XRD analysis (Figure 5), the electrodes were mainly composed
of metallic Zn derived from ZnO. The FE values of both CO and H2 are shown in
Figure 7 for all the ZNP electrodes, together with the total current density at each
applied potential.
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It is evident that the electrodes featuring a lamellar structure (ZNP 4 and ZNP 5) perform
far better than those with nanorod (ZNP 1, ZNP 2, and ZNP 3) and nanoparticle (ZNP 6)
structures. In particular, the ZNP 4 and ZNP 5 electrodes show good CO selectivity with FECO
of about 70% and 80% at −1.0 V and −1.2 V, respectively. The highest FECO is 84.3% on the
ZNP 4 electrode at −1.2 V, with an appreciable current density of 4.9 mA cm−2. The ZNP
6 also exhibits relatively good CO selectivity and reaches FECO of about 70% at both −1.0 V
and −1.2 V, outperforming the electrodes with a nanorod structure. The ZNP 1, ZNP 2 and
ZNP 3 electrodes characterized by a nanorod morphology perform similarly, reaching FECO
of about 50% and 60% at −1.0 V and −1.2 V, respectively. The best performance of the ZNP 4
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electrode could be attributed to the higher aspect ratio of the ZNP 4 oxide material, which is
preserved in the reduced electrode. It is worth noting that the ZNP 4 catalyst is in line with the
best-performing ZnO catalysts reported in the literature with a batch cell setup and bicarbonate
electrolyte, as shown in Table S4.

4. Conclusions

Various ZnO nanostructures, namely nanorods, nanoflakes, and nanoparticles, were
synthesized using simple, low-cost, and environmentally friendly methods, showing an
aspect ratio trend of nanoflakes > nanorods > nanoparticles.

The morphology effects on the photocatalytic activity of the ZnO nanostructures
toward the degradation of RhB dye were studied in an aqueous solution under UV-Vis
irradiation. It is worth highlighting that the aspect ratio of the ZnO structures was identified
as a key indicator for photoactivity. By increasing the aspect ratio, the structure became
more active for the photodegradation of organic dyes. Among all the investigated ZnO
nanostructures, the highest rate of RhB degradation was 1.73 h−1 for the ZnO lamellar
structure with the largest aspect ratio.

The electrochemical CO2RR on the ZnO electrodes was also found to be highly de-
pendent on the morphology. The oxide-derived metallic Zn was found to be the active
phase, and the difference in morphology among the various samples was conserved after
ZnO reduction. It was noticed that the anisotropic lamellar morphology was the one
characterized by the best performance in terms of activity and selectivity toward CO2RR to
CO, showing a good FECO of 84.3% and a relatively high current density of 4.9 mA cm−2 at
−1.2 V. This outcome could be attributed to the high aspect ratio of Zn derived from the
lamellar ZnO structure.

In addition to the good photo- and electro-catalytical activity of the prepared ZnO
nanostructures, it is also worth highlighting that all the methods employed for the synthesis
of ZnO materials are economical, easy to implement, do not require complex and expensive
equipment, and are appropriate for large-scale production. Hence, it is foreseen that the
investigated ZnO catalysts have promising potential for implementation in industrial
processes for photocatalysis and electrocatalysis.
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planes characteristic of the ZnO wurtzite crystalline structure. Figure S3. The optical density spectra
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also ZnO nanostructures corresponding to samples (a) ZNP 1, (b) ZNP 2, (c) ZNP 3, (d) ZNP 4,
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