
29 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

AgentQuest: A Modular Benchmark Framework to Measure Progress and Improve LLM Agents / Gioacchini, Luca;
Siracusano, Giuseppe; Sanvito, Davide; Gashteovski, Kiril; Friede, David; Bifulco, Roberto; Lawrence, Carolin. -
ELETTRONICO. - 3:(2024), pp. 185-193. (Intervento presentato al convegno 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies tenutosi a Mexico City
(Mexico) nel June 16-21, 2024) [10.48550/arxiv.2404.06411].

Original

AgentQuest: A Modular Benchmark Framework to Measure Progress and Improve LLM Agents

Publisher:

Published
DOI:10.48550/arxiv.2404.06411

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989709 since: 2024-06-19T16:08:55Z

Association for Computational Linguistics

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System Demonstrations), pages 185–193

June 16-21, 2024 ©2024 Association for Computational Linguistics

AgentQuest: A Modular Benchmark Framework
to Measure Progress and Improve LLM Agents

Luca Gioacchini1,2, Giuseppe Siracusano1, Davide Sanvito1, Kiril Gashteovski1,3,
David Friede1, Roberto Bifulco1, Carolin Lawrence1

1 NEC Laboratories Europe, Heidelberg, Germany
2 Politecnico di Torino, Turin, Italy

3 CAIR, Ss. Cyril and Methodius University, Skopje, North Macedonia

Abstract
The advances made by Large Language Mod-
els (LLMs) have led to the pursuit of LLM
agents that can solve intricate, multi-step rea-
soning tasks. As with any research pursuit,
benchmarking and evaluation are key corner
stones to efficient and reliable progress. How-
ever, existing benchmarks are often narrow
and simply compute overall task success. To
face these issues, we propose AgentQuest1 – a
framework where (i) both benchmarks and met-
rics are modular and easily extensible through
well documented and easy-to-use APIs; (ii) we
offer two new evaluation metrics that can re-
liably track LLM agent progress while solv-
ing a task. We exemplify the utility of the
metrics on two use cases wherein we identify
common failure points and refine the agent ar-
chitecture to obtain a significant performance
increase. Together with the research commu-
nity, we hope to extend AgentQuest further and
therefore we make it available under https:
//github.com/nec-research/agentquest.

1 Introduction

Generative Agents (Kiela et al., 2023) are soft-
ware systems that leverage foundation models like
Large Language Models (LLMs) to perform com-
plex tasks, take decisions, devise multi-steps plans
and use tools (API calls, coding, etc.) to build solu-
tions in heterogeneous contexts (Wang et al., 2023;
Weng, 2023). The potential ability to solve hetero-
geneous tasks with high degrees of autonomy has
catalysed the interest of both research and indus-
trial communities. Nonetheless, it is still unclear
to which extent current systems are successfully
able to fulfil their promises. In fact, methodologies
to benchmark, evaluate and advance these systems
are still in their early days.

We identify a couple of gaps. Firstly, bench-
marking agents requires combining different bench-
mark types (Liu et al., 2023; Chalamalasetti et al.,

1Demo provided at https://youtu.be/0JNkIfwnoak.

LLM Agent
Observation Action

Thought

Open Close

State

Environment

/

(a) Existing

LLM Agent
Observation Action

Thought

AgentQuest

Driver

Open Close

State

Environment

/

(b) AgentQuest

Figure 1: Overview of agent-benchmark interactions in
existing frameworks and in AgentQuest. AgentQuest
defines a common interface to interact with the bench-
marks and to compute progress metrics, easing the ad-
dition of new benchmarks and allowing researchers to
evaluate and debug their agent architectures.

2023). For example, some benchmarks focus on
specific capabilities and provide gaming environ-
ments, which we refer to as “closed-box” – i.e. with
a finite set of actions (Liu et al., 2023; Patil et al.,
2023; Chalamalasetti et al., 2023) – whereas other
benchmarks provide open-ended tasks and access
to general tools, like web browsing (Zhuang et al.,
2023; Zheng et al., 2023; Mialon et al., 2023). As
benchmarks are developed independently, signif-
icant effort goes into custom integration of new
agent architectures with each benchmark.

Secondly, and more critically, existing bench-
marks mostly focus on providing a success rate
measure, i.e. a binary success/fail evaluation for
each of the proposed tasks. While success rate is
helpful to measure overall advances of an agent
technology, it has limited use in guiding improve-
ments for new generative agent architectures. Here,
it is important to consider that generative agents of-
ten combine foundation models with multiple other
components, such as memory and tools. Develop-

185

https://github.com/nec-research/agentquest
https://github.com/nec-research/agentquest
https://youtu.be/0JNkIfwnoak

ers can reason about these individual components
in terms of architecture and their inter-dependence,
and could actively change and evolve them using
deeper insights about how an agent performs in a
benchmark. That is, developers need benchmarks
to both evaluate and debug agents.

For example, current benchmarks make it hard
to answer questions like does the agent fail com-
pletely the tasks or does it partially solve them?
Does the agent fail consistently at a certain step?
Would extra run time lead to finding a solution?
Answering these questions would require tracing
and inspecting the execution of the agent. We ar-
gue that providing a more efficient approach that is
consistent over multiple benchmarks is a stepping
stone towards evolving generative agents.

We address these gaps introducing AgentQuest,
a modular framework to support multiple diverse
benchmarks and agent architectures (See Figure 1),
alongside with two new metrics – i.e. progress rate
and repetition rate – to debug an agent architecture
behaviour. AgentQuest defines a standard interface
to connect an arbitrary agent architecture with di-
verse benchmarks, and to compute progress and
repetition rates from them.

We showcase the framework, implementing 4
benchmarks in AgentQuest: ALFWorld (Shridhar
et al., 2020), Lateral Thinking Puzzles (Sloane,
1992), Mastermind and Sudoku. The latter two
are newly introduced with AgentQuest. Additional
benchmarks can be easily added, while requiring
no changes to the tested agents.

Our final contribution is to present our expe-
rience leveraging the proposed metrics to debug
and improve existing agent architectures as imple-
mented in LangChain (Chase, 2022). In particular,
we show that in the Mastermind benchmark the
combination of progress rate and repetition rate
identifies a limitation in the ability of the agent to
explore the full space of potential solutions. Guided
by this insight we could improve the success rate in
this benchmark by up to ≈20%. In Lateral Think-
ing Puzzles we show that partially repeating actions
is part of the agent strategy, whereas in ALFWorld,
we show that monitoring the progress rate makes it
possible to identify that the final success rate is lim-
ited by the allowed runtime of the agent, and that
more steps lead to a better performance. Finally,
in the Sudoku benchmark, we show that the low
success rate is actually paired with low progress
rate, making clear that the tested agent is unable to
solve this type of tasks.

2 Generative AI Agents in a Nutshell

Generative AI agents are automated systems rely-
ing on software components integrated with LLMs
pre-trained on large amount of data for language
understanding and processing. When assigned a
task, an agent engages in a systematic process: it
iteratively formulates self-generated instructions,
executes them, and observes the outcomes until the
ultimate objective is achieved. Next, we showcase
the basic interaction between agents and the en-
vironment in which they operate and describe the
standard benchmarking techniques.

2.1 Agent-Environment interaction
Closely following the terminology in Reinforce-
ment Learning (RL)2 (Sutton and Barto, 2018), the
core elements defining the agent-environment in-
teraction are environment, state, observation and
action (see Figure 1a).

Environment and states. The environment
refers to the external system the agent interacts
with. In this context, we treat the benchmark and
the environment as synonyms. It is typically de-
scribed through a finite set of hidden states, which
are not directly observable by the agent and repre-
sent the benchmark configuration.

Observations and actions. The agent interacts
with the environment for multiple execution steps.
At each step, the environment produces an observa-
tion providing information about its current hidden
state. The agent uses the internal LLM to pro-
cess the received observation. Being pre-trained
on general knowledge data, the LLM engages a
reasoning process generating a thought on the ob-
servation (e.g. the planned strategy to follow in the
current step or the usage of a tool). According to
this thought, the agent provides the environment an
action to modify the current hidden state. 3

The following is an example of an agent in-
teracting with a closed-box environment to solve
a code-breaking challenge, i.e. the Mastermind
game (Stuckman and Zhang, 2005). The agent
is tasked to guess a four-digit code. At each step,
the agent devises a strategy and acts accordingly to
guess the code. The environment provides a feed-
back on the number of guessed digits in correct

2Unlike RL scenarios, the agent does not need a further
training process. It relies on the pre-trained LLM and does
not perform an action under the influence of any reward.

3Unlike RL, the LLM outputs are unconstrained, and any
provided action is considered valid.

186

and wrong positions. The process continues until a
stopping condition is met.� �
ENVIRONMENT: Initializing a new environment...
OBSERVATION: Start guessing the 4 digits code.
THOUGHT: I’ll start by guessing 1234 to get an idea of which
of these numbers are in the secret number and if any are in
the correct position.
ACTION: 1234

ENVIRONMENT: Comparing the guessed code with the truth...
OBSERVATION: Your guess has 1 correct numbers in the wrong
position and 0 correct numbers in the correct position.
Keep guessing...
THOUGHT: One of the digits 1, 2, 3, or 4 is correct but in
the wrong position. I’ll try to move each digit to a
different position to see if I can get a correct position.
ACTION: 2143
...� �

2.2 Benchmarking an agent
When evaluating agents performance on a bench-
mark, the following two metrics are commonly
used (Liu et al., 2023): (i) Success Rate (SR), i.e.
the ratio of successful tasks to the total instances;
(ii) Time to Success, i.e. the average time required
to obtain a solution. While important and trending
metrics (Chalamalasetti et al., 2023; Hessel et al.,
2022; Zhang et al., 2020a), they exclusively address
the final success. They cannot measure intermedi-
ate success or failure and therefore make it difficult
to understand why agents might systematically fail
and how they can be improved. In contrast, we
want to define intermediate metrics that allow us
to easily assess and compare the performance of
agents across a wide range of tasks.

3 AgentQuest Overview

We designed AgentQuest as a separation layer be-
tween agent and environment (see Figure 1b). Es-
sentially, it offers (i) a unified interface (i.e. the
driver) ensuring compatibility between different
agent architectures and benchmarks with minimal
programming efforts (Section 3.1); (ii) the imple-
mentation of two metrics beyond task success (i.e.
progress rate and repetition rate) aimed at moni-
toring the agent advancement toward the final goal
and allowing us to understand the reasons behind
failures (Section 3.2); (iii) a unique vantage point
and interface for implementing new metrics to mon-
itoring and measuring the execution (Section 3.3).

3.1 Benchmarks common interface
Different benchmarks require invoking distinct
functions, using specific formats, and performing
parsing and post-processing of observations and
agent actions. To integrate different agent archi-
tectures, the common trend is hardcoding such

benchmark-specific requirements directly in the
framework (Liu et al. 2023; Chalamalasetti et al.
2023, inter alia). This results in many custom in-
terfaces tailored on each environment, making it
difficult to easily move to other benchmarks and
agent architectures.

Instead, AgentQuest exposes a single unified
Python interface, i.e. the Driver and two classes
reflecting the agent-environment interaction com-
ponents (i.e. Observation, Action).

Observations and actions. We provide two sim-
ple classes: Observation and Action. The first
has two required attributes: (i) output, a string
reporting information about the environment state;
(ii) done, a Boolean variable indicating if the final
task is currently accomplished or not. The Action
class has one required attribute, action_value. It
is a string directly output by the agent. Once pro-
cessed and provided to the environment, it triggers
the environment change. To customise the interac-
tions, developers can define optional attributes.

Driver. We provide the Driver class with two
mandatory methods: (i) the reset method ini-
tialises a new instance of the environment and re-
turns the first observation; (ii) the step method
performs one single execution step. It accepts one
instance of the Action class from the agent, pro-
cesses the action (e.g. parses the action_value
string) and uses it to modify the environment state.
It always returns an observation. The driver sup-
ports also the benchmark-specific state attribute,
acting as a simple API. It exposes the environment
state at step t, useful to compute the progress rate.

We here provide an example of the implemented
interaction for Mastermind:� �
from agentquest.drivers import MasterMindDriver
from agentquest.utils import Action
from agentquest.metrics import get_progress, get_repetition

agent = ... # Initialize your agent
actions, progress, repetitions = [], [], []
Initialize the environment and reset round
driver = MasterMindDriver(truth='5618')
obs = driver.reset()
Agent loop
while not obs.done:

guess = agent(obs.output) # Get the agent output
action = Action(action_value=guess) # Create action
actions.append(action.action_value) # Store action
obs = driver.step(action) # Execute step
Compute current progress and repetition
progress.append(get_progress(driver.state, '5618'))
repetitions.append(get_repetitions(actions))
Extend with your custom metrics here ...

Compute final metrics
PR = [x/len('5618') for x in progress]
RR = [x/(len(actions)-1) for x in repetitions]� �

187

3.2 Understanding agent advancements

Getting insights on how they tackle a specific task
is key to comprehend agent behaviours, capabili-
ties and limitations. Furthermore, identifying sys-
tematic agent failures allows to pinpoint necessary
adjustments within the architecture to effectively
address the underlying issues.

AgentQuest contributes towards this direction
introducing two cross-benchmark metrics, the
progress rate and the repetition rate. While the
first expresses how much the agent is advancing
towards the final goal, the latter indicates how it is
reaching it, with a specific focus on the amount of
repeated (i.e. similar) actions the agent performs.

Milestones and progress rate. To quantify
the agent advancement towards the final goal,
AgentQuest uses a set of milestones M. In a nut-
shell, we break down the final solution into a series
of environment hidden states the agent needs to
reach to get the final solution of the task, hence,
M ⊆ S, where S is the set of hidden states. The
magnitude of M determines the level of granular-
ity in the evaluation process. Specifically, when
M aligns closely with S, it offers a more compre-
hensive insight into the agent progress, resulting in
finer granularity, whereas for |M| = 1 the evalua-
tion coincides with the success rate.

We assign a score to all the states included in
M through a scoring function f and, at execution
step t, we define the progress rate PRt : S → [0, 1]
dependant of such scoring function, as an indica-
tion of how far the agent is from the goal, allowing
to track agent progress over time. Depending on
the benchmark, the progress rate might also de-
crease during the execution. Milestones can either
be manually annotated, or internally computed.

Repetition rate. The repetition rate RRt is a mea-
sure of the agent tendency of repeating actions.
Depending on the benchmark, we do not consider
repetitions as a limitation, – e.g. solving a maze
requires repetitions, such as going left repeatedly.
See also Section 4 for a positive and negative ex-
ample of repetitions.

At execution step t, we consider the set of unique
actions taken by the agent up to t− 1, At−1. Then,
we compute the similarity function g between the
current action at and all the previous ones in At−1.
As any action generated by the LLM is considered
valid, we consider the action at as repeated if it ex-
ists at least one previous action a ∈ At−1 such that

Table 1: Attributes exposing components of the agent-
environment interaction useful to define new metrics.

Class Attribute Access to

Driver state Hidden states
Observation output Observations
Action action_value Agent actions

g(at, a) ≥ θa, where θa ∈ [0, 1] is the resolution.4

If the action is not repeated, we update the set of
unique actions as At = At−1 ∪ at.

Based on this, we define the repetition rate at
step t as the cumulative number of repeated actions
normalised by the number of execution steps, T ,
except for the first. Formally, RRt =

t−|At|
T−1 .

3.3 Adding new metrics
We rely on the progress and repetition rates to show
how AgentQuest can be extended with new metrics
through a simple function template. We then show
the implementations of the functions adapted to the
considered benchmark.

Metric function template. We use a Python
function template to easily define the elements
of the agent-environment interactions required for
computing a given metric. Table 1 provides a re-
cap of the main attributes and reference classes
that can be used as input for the custom metrics.
Additionally, users can provide external data, like
milestones or action history.

Implement progress rate. Depending on the
benchmark, developers need to implement the cus-
tom scoring function f through the get_progress
function and define the set of milestones M. Mile-
stones can either be user-defined or internally
computed within get_progress. Here, we show
the definition of get_progress to quantify the
achieved milestones for Mastermind. The mile-
stones are the digits of the final solution and the
progress indicates the count of correctly guessed
digits in their positions:� �
def get_progress(state, milestones):

reached_milestones = 0 # Digits in correct position
for i, j in zip(state, milestones):

if i == j: reached_milestones += 1
return reached_milestones

Usage example. The code to guess is '5618'
progress = get_progress('2318', '5618') # Reached milestones
>>> 2
progress/len('5618') # Compute Progress Rate
>>> 0.5� �

4A higher resolution demands closer matches for classi-
fication as repeated actions, while lower values broaden the
spectrum of qualifying action similarities.

188

Table 2: Overview of the benchmarks provided in AgentQuest.

Benchmark Description Milestones

Mastermind Guessing a numeric code with feedback on guessed digits and positions. Digits of the code to guess.

LTP Solving riddles by asking Yes/No questions. Guessed riddle key aspects.

ALFWorld Finding an object in a textual world and using it. Sequence of actions.

Sudoku 9x9 grid puzzle. Digits 1-9 fill each column, row, and 3x3 sub-grid
without repetition.

Total number of correct
inserted digits.

Implement repetition rate. To determine if an
action is repeated, the end user must define the simi-
larity function g according to the considered bench-
mark. We provide the get_repetitions template
function to compute the number of repeated ac-
tions. Here, we illustrate its implementation in
Python and provide a usage example for Master-
mind, where g is the Levenshtein similarity (Lev-
enshtein, 1966).� �
from Levenshtein import ratio as g

def get_repetitions(actions, THETA_A):
unique_act = set() # Initialise unique actions
for i,a in enumerate(actions):

Check for repetitions
if all([g(a,actions[x])<THETA_A for x in range(i)]):

unique_act.add(a)
return len(actions)-len(unique_act)

Usage example. The code to guess is '5618'
actions = ['1234', '2143', '1234', '5618'] # Actions history
repetitions = get_repetitions(actions, 1.0)
>>> 1 repeated action
Compute Repetition Rate
repetitions/(len(actions)-1)
>>> 0.33� �

In other cases, where a can be any text string,
we can use standard metrics, such as BLEU (Pa-
pineni et al., 2002), ROGUE (Lin, 2004) or
BERTScore (Zhang et al., 2020b).

4 Insights via AgentQuest

We investigate agent behaviours in different rea-
soning scenarios by proposing a starting set of four
benchmarks. We implemented from scratch Su-
doku (Felgenhauer and Jarvis, 2006) and Master-
mind (Stuckman and Zhang, 2005) environments,
while ALFWorld (Shridhar et al., 2020) and Lat-
eral Thinking Puzzles (LTP)(Sloane, 1992) are ex-
isting implementations (Liu et al., 2023). Table 2
provides an overview of the benchmarks and their
respective milestones used to measure progress.

We emphasise that this evaluation is not aimed
at providing a thorough evaluation and comparison
of agent architectures, but rather to show how to
use AgentQuest and how monitoring progress and
action repetition can provide relevant insights to
developers, even after a few executions.

Table 3: Average existing and proposed metrics for
the tested benchmarks. We report the metrics, Success
Rate (SR), Steps, Progress Rate at step 60 (PR60) and
Repetition Rate at final step 60 (RR60). We denote
with ∗ the improved results after modifying the agent
architecture.

Existing Metrics AgentQuest
SR Steps PR60 RR60

Mastermind 0.47 41.87 0.62 0.32
LTP 0.20 52.00 0.46 0.81
ALFWorld 0.86 21.00 0.74 0.06
Sudoku 0.00 59.67 0.08 0.22

Mastermind∗ 0.60 39.73 0.73 0.00
ALFWorld∗ 0.93 25.86 0.80† 0.07†

†Metrics referred to the extended runtime up to 120
steps, hence PR120 and RR120.

Experimental setup. We use as reference archi-
tecture the off-the-shelf chat agent provided by
LangChain (Chase, 2022) powered by GPT-4 (Ope-
nAI, 2023b) as LLM because it is intuitive, easy
to extend and open source. We run 15 instances
of the four benchmarks within AgentQuest, setting
the maximum number of execution steps as 605. In
Appendix B we provide examples on how to use
AgentQuest with two additional agent architectures
and GAIA (Mialon et al., 2023) as open-ended en-
vironment.

Experimental results. For Mastermind, Fig-
ure 2a shows the progress rate PRt and repetition
rate RRt. In the first 22 steps, the agent explores
different solutions (RR[0,22] < 5%). This leads to
growing progress towards the final goal, reaching
half of the milestones (PR22 ≈ 55%). Then, the
agent starts performing the same actions, exhibiting
a repetitive pattern (see also Figure 3a rightmost
part) and failing to reach the final goal within the

5We limit the number of instances in our experiments for
two main reasons: (i) the work primarily serves as a demon-
stration of the developed framework itself, rather than an
extensive evaluation of the agent performance; (ii) extensive
tests could have significantly impacted the ability to reproduce
the experiments due to the expensive nature of API calls.

189

0 20 40 60
Execution steps

0.00

0.25

0.50

0.75

1.00
A

v
er

a
g
e

ra
te

s
[%

]

PRt RRt

(a) Mastermind

0 20 40 60
Execution steps

0.00

0.25

0.50

0.75

1.00

A
v
er

a
g
e

ra
te

s
[%

]

PRt RRt

(b) LTP

Figure 2: Average Progress rate PRt and the repetition
rate RRt on Mastermind and LTP. Mastermind: It starts
out with a low RRt but this increases after step 22 while
the progress rate also stall at 55%. LTP: at first a higher
RRt allows the agent to progress by making small varia-
tions that lead to success, but later this plateaus.

0 10 20 30 40 50 60
Execution steps

1

11

22

A
ct

io
n
s

ID

(a) Mastermind

0 10 20 30 40 50 60
Execution steps

1

5

10

A
ct

io
n
s

ID

(b) LTP

Figure 3: Examples of repeated actions in Mastermind
and LTP. Mastermind: there is a set of unique actions at
first, but then gets stuck repeating the same actions over
and over. LTP: repeated actions are small variations of
the same question that lead to progress.

next 38 steps. This results in a rise of the repetitions
to RR60 = 30% and a saturation of the progress
rate at PR60 = 55%. Hence, AgentQuest offered
us a crucial insights on why the current agent can-
not solve the Mastermind game.

To overcome this agent limitation we incorpo-
rate a memory component (Park et al., 2023) into
the agent architecture. The agent stores the past
guesses in a local buffer. Then, at each step, if
the agent outputs an action already in the buffer,
it is prompted to provide a new one. Table 3
(Mastermind∗) shows that this simple change in
agent architecture has a big impact: the agent
can now solve more instances, increasing the final
SR from 47% to 60% and preventing repetitions
(RR60 = 0%). This highlights how studying the
interplay between progress and repetition rates can
allow us to improve agent architecture, sometimes
even with simple remedies. We support our intu-
ition extending the evaluation to more instances of
Mastermind from 15 to 60 achieving comparable
results – i.e. 43% of SR with the standard archi-
tecture and 62% with the simple memory (19% of
improvement).

For LTP, the AgentQuest metrics reveal a dif-

ferent agent behaviour, where repetitions are part
of the agent reasoning strategy, enhancing the
progress rate (Figure 2b). From the initial steps,
the agent changes aspects of the same questions
until a local solution emerges. This leads to hori-
zontal indicators in Figure 3b and RR20 ≈ 30%.
Despite solving only a few riddles (SR=0.2), these
repetitions contribute to progress, achieving 46%
of the milestones by the end of the execution, with
a final repetition rate of RR60 = 81%. This shows
us how the interplay of progress and repetition rates
provides an insight on how agents behave across
the different time steps.

Consider the benchmark ALFWorld in Table 3
(we report the metrics trend in Appendix A). It re-
quires the exploration of a textual world to locate
an object. While the agent explores the solution
space and limits action repetitions (RR60 = 6%),
it fails to solve all the games (PR60 = 74%). This
discrepancy may arise from the more exploration
steps required to discover the object. We support
this intuition extending the benchmark runtime to
120 steps resulting in a success and progress rates
increase by 6% (ALFWorld∗ in Table 3). This
confirms the usefulness of AgentQuest in under-
standing the agent failures.We support our intuition
also extending the evaluation to more instances of
ALFWorld from 15 to 60 achieving comparable
results – i.e. 83% of SR with 60 steps as limit and
87% with 120 steps as limit (4% of improvement).

Finally, we look at Sudoku, known for its high
level of difficulty (Felgenhauer and Jarvis, 2006).
The low progress and repetition rates achieved after
60 steps (PR60 = 8% and RR60 = 22%) indicate
that the current agent architecture struggles in find-
ing correct solutions solving this task. We report
the metrics trend in Appendix A.

5 Conclusions

AgentQuest allows the research community to keep
track of agent progress in a holistic manner. Start-
ing out with a first set of four benchmarks and
two new metrics, AgentQuest is easily extendable.
Furthermore, the two proposed metrics, progress
and repetition rates, have the great advantage of
allowing to track how agents advance toward the
final goal over time. Especially studying their inter-
play can lead to important insights that will allow
the research community to improve agent perfor-
mance. Finally, we believe that promptly sharing
AgentQuest with the research community will fa-

190

cilitate benchmarking and debugging agents, and
will foster the creation and use of new benchmarks
and metrics.

Ethical Considerations

The complexity of LLM agents poses challenges
in comprehending their decision-making processes.
Ethical guidelines must demand transparency in
such systems, ensuring that developers and end-
users comprehend how decisions are reached.

We are not aware of any direct ethical impact
generated by our work. However, we hope that in-
sights into Generative AI agents’ decision-making
processes will be applied to improve and promote
transparency and fairness.

Acknowledgements

This project has received funding from the Euro-
pean Union’s Horizon Europe research and innova-
tion programme (SNS-JU) under the Grant Agree-
ment No 101139285 (“NATWORK”).

References
Kranti Chalamalasetti, Jana Götze, Sherzod Haki-

mov, Brielen Madureira, Philipp Sadler, and David
Schlangen. 2023. Clembench: Using Game Play to
Evaluate Chat-Optimized Language Models as Con-
versational Agents.

Harrison Chase. 2022. LangChain - Building applica-
tions with LLMs through composability.

Bertram Felgenhauer and Frazer Jarvis. 2006. Mathe-
matics of Sudoku I. Mathematical Spectrum.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ro-
nan Le Bras, and Yejin Choi. 2022. CLIPScore: A
Reference-free Evaluation Metric for Image Caption-
ing.

Douwe Kiela, Tristan Thrush, Kawin Ethayarajh, and
Amanpreet Singh. 2023. Plotting Progress in AI.
Contextual AI Blog.

Vladimir I. Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet Physics Doklady.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, et al. 2023. AgentBench: Evalu-
ating LLMs as Agents.

Grégoire Mialon, Clémentine Fourrier, Craig Swift,
Thomas Wolf, Yann LeCun, and Thomas Scialom.
2023. GAIA: a benchmark for General AI Assistants.

OpenAI. 2023a. Assistants API.

OpenAI. 2023b. GPT-4 Technical Report.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-
uation of Machine Translation.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative Agents: Interactive Simu-
lacra of Human Behavior.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large Language
Model Connected with Massive APIs.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. ALFWorld: Aligning Text and
Embodied Environments for Interactive Learning.

Paul Sloane. 1992. Lateral Thinking Puzzlers. Sterling
Publishing Company, Inc.

Jeff Stuckman and Guo-Qiang Zhang. 2005. Master-
mind is NP-complete.

Richard S Sutton and Andrew G Barto. 2018. Reinforce-
ment Learning: An Introduction. MIT press.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2023. A Survey on Large
Language Model based Autonomous Agents.

Lilian Weng. 2023. LLM-powered Autonomous
Agents.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
ReAct: Synergizing Reasoning and Acting in Lan-
guage Models.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020a. BERTScore:
Evaluating Text Generation with BERT.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. BERTScore:
Evaluating Text Generation with BERT.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging LLM-as-a-judge with MT-Bench and Chat-
bot Arena.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and
Chao Zhang. 2023. ToolQA: A Dataset for LLM
Question Answering with External Tools.

191

http://arxiv.org/abs/2305.13455
http://arxiv.org/abs/2305.13455
http://arxiv.org/abs/2305.13455
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
http://arxiv.org/abs/2104.08718
http://arxiv.org/abs/2104.08718
http://arxiv.org/abs/2104.08718
https://contextual.ai/plotting-progress-in-ai/
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2311.12983
https://platform.openai.com/docs/assistants/overview
http://arxiv.org/abs/2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2010.03768
http://arxiv.org/abs/2010.03768
http://arxiv.org/abs/cs/0512049
http://arxiv.org/abs/cs/0512049
http://arxiv.org/abs/2308.11432
http://arxiv.org/abs/2308.11432
https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.13304
http://arxiv.org/abs/2306.13304

A Appendix: ALFWorld and Sudoku
benchmarks

In this section we report the detailed metrics for
each step for the ALFWorld and Sudoku bench-
marks, omitted for the sake of brevity from the
main paper.

0 20 40 60
Execution steps

0.00

0.25

0.50

0.75

1.00

A
v
er

ag
e

ra
te

s
[%

]

PRt RRt

(a) ALFWorld

0 20 40 60
Execution steps

0.00

0.25

0.50

0.75

1.00
A

v
er

ag
e

ra
te

s
[%

]
PRt RRt

(b) Sudoku

Figure 4: Progress rate PRt and the repetition rate RRt

on ALFWorld and Sudoku averaged over 15 runs. ALF-
World: It starts out with a low repetition rate and quick
increase of the progress rate. Then a slow increase of the
repetition rate enables to further increase the progress
rate although less quickly. Sudoku: The progress rate
quickly reaches 8%. The repetition rate then slowly
increases without any positive change in the progress
rate.

Figure 4a reports the progress rate and repetition
rate for ALFWorld. The repetition rate is close to
0% for the first 20 steps, then it slowly increases
up to 6% after 60 steps. The progress rate quickly
reaches over 50% in 10 steps, then keeps increas-
ing, although slowly, up to 74%. The consistent
improvement of the progress rate even for steps
close to 60 together with the low repetition rate
suggests that higher values may be reached by in-
creasing the maximum number of steps. We vali-
date this hypothesis by extending the benchmark
runtime to 120 steps. As previously reported in
Table 3, this results in an improvement of 6 per-
centage points for both the success rate the progress
rate, i.e. SR= 93% and PR120 = 80%.

Figure 4b includes the two metrics for the Su-
doku benchmark. We can observe that the progress
rate quickly reaches a plateau at 8% in very few
steps. The repetition rate is close to 0% for the first
10 steps, then it slowly increases up to 22% after
60 steps without any improvement of the progress
rate.

B Appendix: Additional agents
architectures and benchmarks

In this section we highlight the plug-and-play as-
pect of AgentQuest showing the implementation
of Mastermind with two additional agents archi-

tectures, i.e. ReAct (Yao et al., 2022) as the most
used architecture in literature and OpenAI Assis-
tant (OpenAI, 2023a), as the most recent propri-
etary architecture. Additionally, we show how to
implement the open-ended benchmark GAIA (Mi-
alon et al., 2023) requiring the usage of external
tools. For brevity, in the following snippets we
omit details, like error handling or full agent defini-
tion. The complete code is available in the GitHub
repository.

B.1 ReAct for Closed-box Environments
We show an example of how to execute a closed-
box benchmark (i.e. ALFWorld) with an agent
based on the ReAct architecture (Yao et al., 2022).
Such architecture forces the agent decision making
process to generate both textual reasoning traces
and actions pertaining to a task in an interleaved
manner. Common implementations (Chase, 2022;
Yao et al., 2022) rely on external tools to perform
actions. Here, we ensure compatibility with exist-
ing implementations providing a single tool (i.e.
ProxyTool) that forwards the actions to the driver.
In a nutshell, the agent reflects on the action to take
and invokes the tool. Then, we feed the tool input
to the driver to perform the interaction with the
environment. At each step, we provide the agent
the updated history of the actions and observations
through the intermediate_steps variable.� �
from agentquest.drivers import MasterMindDriver
from agentquest.metrics import ...
from agentquest.utils import Action
...

Define a dummy tool for closed-box environments
class ProxyTool(BaseTool):

name = "proxytool"
description = "Provide the action you want to perform"
def _run(self):

pass

Instantiate custom prompt
prompt = CustomPromptTemplate(

template=..., # LLM prompt
tools=[ProxyTool()],
input_variables=["intermediate_steps", ...]

)
Initialise the agent
agent = create_react_agent(llm, [ProxyTool()], prompt)
intermediate_steps = []
Initialise the driver
driver = MasterMindDriver(game)
Get the first observation
obs = driver.reset()
Agent Loop
while not obs.done:

Retrieve the agent output
agent_choice = agent.invoke(

{'input':obs.output,
'intermediate_steps':intermediate_steps}

)
action = Action(action_value=agent_choice.tool_input)
Perform the step
obs = driver.step(action)
Update intermediate steps
intermediate_steps.append((agent_choice, obs.output))
Get current metrics ...� �

192

https://github.com/nec-research/agentquest
https://github.com/nec-research/agentquest

B.2 OpenAI Assistant for Closed-box
Environments

The OpenAI Assistant (OpenAI, 2023a) is a pro-
prietary architecture. It allows users to define cus-
tom agents by specifying the tasks to accomplish
and the set of tools the agent can use. While the
decision-making process is not directly accessible
by the end-users (the agent and the LLM are hosted
on the proprietary cloud environment), the tools
can be invoked both remotely or locally. In the
latter, users have control on the tool invocation
managing the agent loop.

Similarly to ReAct, we here rely on the
ProxyTool, acting as a proxy between the agent
and the environment. We invoke the remote agent
with the initial task (e.g. first ALFWorld observa-
tion) and process the output of its decision making
process, i.e. the action to perform provided as tool
input. Then, we bypass the tool invocation, directly
forwarding the action to the driver to perform the
execution step and retrieve the next observation. Fi-
nally, we invoke the agent with the new observation
concluding the execution step.� �
from agentquest.drivers import MasterMindDriver
from agentquest.metrics import ...
from agentquest.utils import Action
...

Define a dummy tool for closed-box environments
class ProxyTool(BaseTool):

name = "proxytool"
description = "Provide the action you want to perform"
def _run(self):

pass

Initialise the agent
agent = OpenAIAssistantRunnable.create_assistant(

instructions=... # LLM prompt
tools=[ProxyTool()],
model=... # Chosen LLM
as_agent=True

)
Initialise the driver
driver = MasterMindDriver(game)
Get the first observation
obs = driver.reset()
Get the first action
response = agent.invoke({"content": obs.output})
Agent Loop
while not obs.done:

Retrieve the agent output
agent_guess = response[0].tool_input
action = Action(action_value=agent_guess)
Perform the step
obs = driver.step(action)
Get current metrics ...
Manage Proxy Tool output
tool_outputs = [

{"output": obs.output,
"tool_call_id": response[0].tool_call_id}

]
Invoke the agent to get the next action
response = agent.invoke(

{"tool_outputs": tool_outputs,
"run_id": response[0].run_id,
"thread_id": response[0].thread_id}

)� �

B.3 OpenAI Assistant for Open-ended
Environments

When interacting with an open-ended environment,
the agent is not restricted to the pre-defined actions
of the closed-box environment and it is allowed
to select any user-defined tool (e.g. retrieving in-
formation online or executing code). Hence, we
provide the agent the list of tools via the tool vari-
able. The agent relies on its reasoning process to
choose which tool to invoke. Omitted here for the
sake of brevity, we rely of the manual annotations
of the GAIA questions (Mialon et al., 2023) as
milestones to compute the progress rate.� �
from agentquest.drivers import GaiaDriver
from agentquest.metrics import ...
from agentquest.utils import Action
...

Define the tools
tools=[

OnlineSearch(), # Retrieve a web page link
WebContentParser(), # Read the web page
FinalAnswerRetriever(), # Provide the final answer
...

]
Initialise the agent
agent = OpenAIAssistantRunnable.create_assistant(

instructions=... # LLM prompt
tools=tools,
model=... # Chosen LLM
as_agent=True

)
Initialise the driver
driver = GaiaDriver(question, tools)
Get the first observation
obs = driver.reset()
Get the first action
response = agent.invoke({"content": obs.output})
Agent Loop
while not obs.done:

Retrieve the agent output
act = f'{response[0].tool}:{response[0].tool_input}'
action = Action(action_value=act)
Perform the step invoking the local tool
obs = driver.step(action)
Get current metrics ...
Manage tool output as observation
tool_outputs = [

{"output": obs.output,
"tool_call_id": response[0].tool_call_id}

]
Invoke the agent to get the next action
response = agent.invoke(

{"tool_outputs": tool_outputs,
"run_id": response[0].run_id,
"thread_id": response[0].thread_id}

)� �
Here, the driver acts as a wrapper, executing the
tool with the parameters provided by the agent
(tool_input) and forwards the output to the agent
in the correct format:� �
class GaiaDriver():

def __init__(self, question, tools, ...):
Initialise the tool lookup
self.tool_lookup = {x.name:x for x in tools}

...
def step(self, action):

Parse the action
tool, tool_input = action.action_value.split(':')
Invoke the tool
tool_out = self.tool_lookup[tool]._run(tool_input)
Parse the tool output here ...
return Observation(output=tool_out)� �

193

