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Abstract: The spherical shape is an interesting approach to develop exploration robots, or rovers,
thanks to its capability of ensuring omnidirectional motion and of being basically unsensitive to
possible rollovers. This works intends to propose a novel detailed design for such a kind of robot
and to discuss the performance that can be reached by adopting this solution. The work hence
introduces the requirements assumed for the design of the robot and discloses the general layout
that was selected, which includes a pendulum for motion transmission and two coupled gyroscopes
to overcome high, steep obstacles, such as steps. The paper then summarizes the functional design
computation carried out to size and selects the components of the system. Eventually, a control
algorithm is described and tested on a complete multibody model of the robot. The results in the
execution of standard maneuvers such as motion on a horizontal plane, as well as in the overcome of a
step, are shown. The energetic balance of the rover is described, and some preliminary consideration
about mission planning are reported in the final discussion.

Keywords: rover; spherical robot; control moment gyroscope; planetary exploration; path control

1. Introduction

Spherical robots (SRs) are highly advantageous in mobile robotics due to their protec-
tive spherical shell, preventing contamination and collisions. Their symmetrical design
prevents overturning, allowing for falls and obstacle traversal without damage. The spher-
ical shape facilitates energy-efficient rolling on slopes. Additionally, depending on the
driving mechanism, SRs can achieve omnidirectional movements. These characteristics
make SRs suitable for diverse applications, including exploration of unstructured envi-
ronments, disaster area assessment, search and rescue operations, underwater inspection,
surveillance, and more.

In the literature, many examples of SRs can be found. However, performances depend
on the motion principle and on the mechanism employed to achieve it. One of the most
common motion principles is the Barycenter Offset (BO). In such systems, the sphere hosts
an internal mechanism that moves the barycenter from the equilibrium point so to create a
driving torque. The advantage is that the locomotion system can be entirely embedded in
the spherical shell, so to create a sealed environment. However, this results in a limited
driving torque, as the amount of the offset that can be reached is constrained within the
sphere radius. This also affect the capability to climb inclines and overcome obstacles, such
as steps.

One way to exploit the advantages of BO and to overcome the limitations against
obstacles is to combine it with auxiliary systems based on a different physical principle that
increases the driving torque. For example, Control Moment Gyroscope (CMG) systems use
the gyroscopic torque that is generated by tilting the axis of a flywheel rotating with high
speed, which depends on the angular momentum.
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This paper presents the design, modelling and control of a hybrid BO-CMG spherical
robot intended for planetary exploration. The robot represents an important step forward
with respect to the first prototype, described in [1]. The old version was based on a single-
pendulum activated by a differential mechanism to realize BO. The new version improves
the previous one by mounting a CMG on the pendulum.

The application of the single pendulum-CMG mechanism has some technical chal-
lenges. The spherical robot had a diameter of 0.5 m and a mass of 22 kg, so that it could
be carried by hand. Fitting the hybrid mechanism within such a compact size required
an iterative design, which considered the actual space available inside the shell and the
desired performance of the CMG.

The design of the robot is supported by mathematical models of the subsystems, like
gyroscopes, pendulum and transmission, and by multibody simulation. The result is a SR
that, on the Earth, can run up to 2.5 m/s, climb slopes of 15◦ and overcome steps that are
10 times higher with respect to the previous version, which means steps up to 100 mm.

In the next section, an insightful review of existing SRs is presented in order to
highlight the novelties of this work with respect to the state of the art.

1.1. Spherical Robots: State of the Art

Spherical robots can be classified based on the driving mechanisms developed so far [2,3].
The most common methods are BO and Shape Transformation (ST). Other propulsion strategies
found in the literature include CMG, Reaction Wheels (RW), Wind Driven (WD) and Jet
Propelled (JP). Each of the driving mechanisms will be covered in the following paragraphs,
explaining their function and providing examples, with special focus on BO and CMG, as they
are at the base of the robot presented in this work.

1.1.1. Barycenter Offset

The BO method involves an internal system that moves the barycenter of the SR,
generating an eccentric torque that causes the robot to roll towards the barycenter position.
This locomotion strategy enables movement on flat surfaces, overcoming small obstacles
and climbing gentle slopes. One of the most common mechanisms for realizing BO is a
pendulum with 2 Degrees of Freedom (DOF) hanging from a diametral shaft. The 2 DOF
enable the swing of the pendulum about pitch and roll axes of the robot, so to generate
rectilinear paths or curves as needed. Design and control are relatively simple, as the
rotational axes of the pendulum can be actuated by compact electric motors. The main
disadvantages are the lack of omnidirectionality and the limited torque.

A first example of a pendulum spherical robot is the GroundBot from Rotundus
AB [4]. Boasting a diameter of 0.6 m and a speed of 3 m/s, it is equipped with cameras
for surveillance, and it can autonomously patrol predefined routes via GPS. Despite its
stability and robustness, GroundBot encounters challenges in obstacle traversal due to its
propulsion mechanism’s limitations [5].

Researchers have proposed enhancements such as modifying pendulum structures
and incorporating extendable pods for improved performance [6,7]. Innovations like
Visionbot [8] and multi-mode motion designs [9] expand the capabilities of pendulum-
based spherical robots. However, most of them utilize a single pendulum system, yet a few
employ double pendulum configurations to enable quasi omni-directionality by turning in
place [10,11].

A different manner to exploit BO consists of a multi/single wheeled mobile robot,
placed inside the spherical shell and usually referred to as Internal Driving Units (IDUs),
or Hamster-Balls (HB). HB robots offer compactness and enhanced torque, with recent
HB designs featuring omni wheels for omnidirectional motion [12–14]. A simpler design
based on classic wheels can provide both quasi-omni-directional and omnidirectional
movements [15,16].
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Alternative propulsion methods like the moving mass method enable omnidirectional
movement with finer control over the barycenter position [17]. Finally, fluid-actuated spherical
robots eliminate pendular instability, enabling precise forward and lateral movement [18]

1.1.2. Shape Transforming

A different class is represented by the shape transforming (ST) spherical robots. This
class includes two groups that use two different propulsion strategies: the Shell Deforma-
tion (SD), which consists in deforming the spherical shape to generate a propulsive force,
and the Hybrid Robots (HR), which can change their structure to change the propulsion
method. The main advantage of being able to transform is the significant improvement in
the ability to cross obstacles while retaining the advantages of the spherical shape. On the
other hand, the mechanical design and control architecture of this type of robot are much
more complicated.

SD may involve spherical deformation using inflatable sections, as in [19], or elec-
troactive elastomer sections [20]. These robots benefit from softness, absorbing collisions,
adapting to terrains, and ensuring safe interaction with humans. Hybrid robots, like those
showcased in [21,22], combine rolling with walking or crawling, utilizing retractable legs
or actuated mechanisms; such designs offer versatility in traversing various terrains and
overcoming obstacles. A remarkable prototype by M. Zhang et al. [23] integrates rolling,
crawling and flying capabilities, maximizing adaptability across diverse environments.

1.1.3. Angular Momentum

Some SRs exploit the angular momentum conservation principle to enhance their
movement capabilities. Two possible strategies are used: the CMG, which consists in tilting
a spinning rotor, and the reaction wheel (RW), which exploits the third Newton’s law.

CMG is based on the same principle used in spacecraft attitude control systems. A
CMG array consists of one or more spinning rotors that can be tilted by one or more
motorized gimbals; changing the orientation of the rotor spinning axes produces a gyro-
scopic torque which can be used to accelerate or change the heading of the spherical robot.
Usually, two counter-rotating rotors are used, otherwise the tilting torque would cause the
unwanted motion of the sphere. This drive mechanism is often used with another drive
mechanism, such as BO.

An example of a spherical robot with a CMG drive system is the one developed by
G. C. Schroll [24]. This robot uses two actuation mechanisms: the pendulum for forward
and lateral movement, and a CMG group to provide greater torque to overcome to overcome
steep slopes and obstacles. A similar example is proposed by [25], but with a double gimbal
to solve the problem of desaturation, i.e., the gyroscopic torque decreases as the tilting
angle increases. Another example is developed by J. Chen et al. [26], with the aim to use
CMG to stabilize also the internal platform dedicated to sensors. Finally, a spherical robot
with CMG array is the one proposed by H. W. Kim and S. Jung [27], characterized by
three actuators: two are used to actuate two wheels in contact with the inner surface of
the spherical shell that provide the driving force; a CMG actuator is used to control the
heading angle (yaw).

On the other hand, the RW (Reaction Wheel) method employs spinning rotors to gen-
erate torques. However, it may suffer from unwanted gyroscopic precession, necessitating
the flywheel to stop before changing the heading direction. For instance, the L.U.N.A.
prototype [7] and the design by C. Li et al. [28] both utilize reaction wheels to enhance
self-stability, despite challenges like high power consumption and control difficulties.

1.1.4. Other Spherical Robots

Other types of systems include robots powered by an internal drone, underwater
spherical robots and wind-powered robots. For instance, a drone provides the cross-
obstacle ability, while a spherical frame around it serves for protection and can be used
for rolling as needed. The main disadvantage of this is the complicated control system.
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C. J. Dudley et al. presented a prototype of a micro spherical rolling and flying robot, that
consists of a quadcopter encased in a lightweight spherical exoskeleton [29]. The Rollcopter
by S. Sabet [30] uses six reversible propellers for controlled rolling and flying.

Underwater spherical robots, like MK-V and MK-VI from the University of Manchester,
monitor nuclear storage tanks and wastewater treatment plants [31]. E.V. Potapov et al.
presented the SUR IV model, capable of high-speed propulsion using propeller thrusters
and low-speed propulsion using waterjet thrusters [32].

Wind-driven spherical robots explore large environments like deserts and polar re-
gions; they feature low cost, low power consumption and a simple structure. Li T. and
Liu W. [33] developed a collapsible wind-driven spherical robot for rolling, bouncing and
flying. Team Tumbleweed’s wind-driven rover collects data from Mars [34], while Xie et al.
integrated an internal pendulum for navigation in the absence of wind [35].

1.1.5. Contribution of This Work

This paper addresses the limitations of BO spherical robots with the proposal of
a novel concept of hybrid BO-CMG propulsion system, based on a differential-driven
single pendulum and a pair of flywheels. The differential-driven single pendulum can
be seen as the primary locomotion system, while the CMG is denoted as the secondary
locomotion system, which gives a torque boost when needed. The aim is to investigate
design challenges and solutions to fit CMG within a pendulum-driven spherical robot and
address the energy balance and control aspects related to the simultaneous actuation of
pendulum and CMG when dealing with steps.

Similar solutions can be found in the literature. Some of them realize the same loco-
motion system but with a different design [24,26]; one has a different primary locomotion
system [25].

The novelties of this work with respect to the literature can be summarized in the
following points:

• An original design of the power transmission for a hybrid BO-CMG spherical robot.
• A method for the optimization of the size of the gyroscopes according to the specifica-

tions and the available volume in the shell.
• A control architecture with fuzzy gain scheduler for tracking straight trajectories.

2. Mission Specifications

The robot is thought of for the exploration of critical or uninhabited areas, and more
generally, of planetary surfaces.

The list of specifications is reported in Table 1.

Table 1. Spherical robot requirements.

Target Earth, Moon, Mars
Terrain Clay, Sand, Grass, Mineral, Water

Min. Step height 100 mm
Min. Slope 15◦

Min. Velocity 2.5 m/s
Min. Acceleration 0.5 m/s2

Max Diameter 0.5 m
Max Mass 25 kg
Autonomy 1 h

The robot must navigate diverse terrains, resembling those found on Earth, Moon and
Mars, where obstacles vary from rocky steps to inclined surfaces. Performance limitations
stem from the assessments of the robot’s functionality. Remote control capability is essential,
alongside provisions for battery power and recharging mechanisms. Lastly, the robot’s
maximum size is constrained to ensure it remains portable for manual transportation.
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The reason why the spherical shape is a viable solution for the mission specifications
lies in it being able to create a robot that is immune to tipping and can withstand shocks, and
to house sensor technology inside it that is protected by the shell. Furthermore, the ability
to overcome obstacles such as steps puts it in a position to deal with uneven terrain. Last
but not least, compactness: It will be demonstrated how it is possible to fit the locomotion
mechanism inside the sphere, while still leaving space available for the sensors, which,
depending on the mission, can measure temperature, pressure, humidity, radioactivity and
gas data, and can provide images [1].

The compactness also lends itself to the possibility of storing the robot on a lander, thus
opening up space exploration missions. In [1] for example, the possibility of using the robot
for lunar applications was discussed. In this view, the dimensioning of the locomotion
mechanism on the basis of Earth’s gravitational acceleration is a worst condition. This
precautionary approach means that the robot can be used with even better performance
against obstacles on Moon and Mars [1].

3. Functional Analysis of the Driving Mechanism

In the previous sections, the primary limitation of BO spherical robots was discussed:
their restricted ability to overcome obstacles. To address this challenge, the potential of
combining one or more Control Moment Gyroscopes (CMGs) as an auxiliary system is
analyzed in this section.

3.1. Analysis of the BO Principle

Consider a spherical robot on a flat surface with a pendulum hanging from a diametral
shaft. In the rest configuration, the pendulum is vertical and the system is balanced; otherwise,
the system is subjected to a driving torque due to gravity. For instance, when the pendu-
lum is horizontal, the driving torque is maximized. By extending this reasoning to the cases
of inclines and steps, it is possible to evaluate the spherical robot’s ability against obstacles.
Two performance parameters, the Maximum Step Height (MSH), and the Maximum Slope
Angle (MSA), can be introduced. These parameters are illustrated in Figure 1, with h repre-
senting the MSH, and φ denoting MSA. In the same picture, the barycenters of spherical shell,
pendulum and whole system are indicated with S, P and G, respectively.
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Let a denote the distance between the barycenter of the system and the center of the
sphere, and let R denote the sphere’s radius. The following relationships can be written:

φ = arcsin
a
R

,
h
R

= 1 −
√

1 −
( a

R

)2
(1)

Increasing a enhances the driving torque but also necessitates larger actuator sizes,
which, consequently, affect the offset. In practice, for small spheres, the ratio a

R can be
roughly 0.5 [36]. The requirement of minimum slope Table 1 is easily satisfied. On the other
hand, the minimum step of 0.1 m is unfeasible for a 0.5 m diameter sphere, as it would
require a 0.8 ratio. For example, the previous design of the same size achieved a 0.44 ratio
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with not a few challenges [1]. Hence the need to introduce an auxiliary system to increase
the driving torque.

3.2. Analysis of the CMG Principle

CMG is a device that has been used in several applications, such as attitude control
for space and stabilization for robotic systems. The purpose of this section is to recall the
working principle of the CMG and to discuss its potential application to spherical robots.

The most common version of CMG is the single gimbal configuration, which is shown
in Figure 2a.
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Figure 2. (a) One gimbal CMG. (b) Scissored-pair CMG.

The reference system in yellow î, ĵ, k̂ is fixed, while the red reference system λ̂, µ̂, ν̂ is
attached to the blue gimbal. The two reference systems are centered at the barycenter of
the gyroscope, which spins about ν̂ with a velocity ω, and that can be rotated about î with
a velocity Ω. For such a system, the gyroscopic torque can be written as:

MG = Iνω × Ω = IνωΩ·
[
cos θ(t )ĵ + sin θ(t )k̂

]
(2)

where Iν is the moment of inertia with respect to the ν̂ axis, and θ is the tilting angle with
respect to the î axis.

By assuming that ĵ is the rolling axis of a sphere, the k̂ component of MG is unwanted.
Moreover, the tilting action would require an actuation torque, which would be a distur-
bance for the sphere. A solution can be achieved using a second CMG in such a way that the
effect along the direction of interest is doubled, while the other component is canceled out.
To do so, the two gyroscopes must have opposite ω and Ω. When the gyroscopes are used
in this configuration, they are also known as scissored-pair control moment gyroscopes. In
Figure 2b a scissored-pair CMG is shown, mounted inside a spherical shell.

3.3. Combining BO and CMG

To exploit the gyroscopic torque, the idea is mounting a scissored-pair CMG on the
pendulum, as shown in Figure 3. Whenever the robot requires a torque boost, the CMG
can be activated and the gyroscopic torque is exerted to the pendulum.
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Activation of CMG translates into increasing the pendulum’s weight instantaneously.
Consequently, maintaining the pendulum at a 90◦ angle requires more torque by the
actuators, which is then transferred to the sphere shell. The free body diagram in Figure 4
examines the static equilibrium of a sphere encountering a step.
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The problem can be divided into two parts: analyzing the forces acting on the pendu-
lum and analyzing those acting on the sphere. The equations obtained are as follows:

τM = L·mpg + τG
V = mpg

b = R

√
1 −

(
1 − h

R

)2

a =
(

L·mp
)
/
(
mp + Ms

)
τM = b(V + Msg)

(3)

where τM is the total torque provided by the motors, τG = 2IνωΩcos θ(t ) is the gyroscopic
torque component of the scissored pair about the rolling axis, Ms is the spherical shell mass,
mp the pendulum mass, L is the distance between the barycenter of the pendulum and the
center of the sphere and V is the constraint force.

Rearranging these equations, it is possible to recalculate the MSH-over-radius curve
while including the effect of the gyroscopic torque:

h
R

= 1 −

√√√√√1 −

 a + τG
(mp+Ms)g

R

2

= 1 −

√
1 −

(
a∗

R

)2
(4)

Comparing Equation (1) and Equation (4), it can be observed that a is increased
by a factor that depends on the gyroscopic torque and the total mass of the system. In
Equation (4), a new variable, a∗ , is defined as:

a∗ = a +
τG(

mp + Ms
)

g
(5)

To understand how the maximum step height can vary with the aid of the gyroscopic
torque, the new relation between the step over radius and the maximum gyroscopic torque
expressed by Equation (4) is represented in Figure 5.
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Figure 5. MSH-over-radius curve against Maximum Gyroscopic Torque. Total mass and barycenter
position of the robot from [1].

Without gyroscopes, step height is a 10th of the radius, as noted in [1]. In Figure 5 is
considered θ = 0, as this is the initial condition. However, the gyroscopic torque’s useful
part changes with tilt angle, as from Equation (2). As the gyroscopes tilt, the effective
distance decreases until it matches the initial value a. Yet, the torque for climbing a step
decreases as the robot ascends. Also, a∗ is not solely determined by gyroscopic torque but
also by the system’s total mass.

4. Design
4.1. Overview of the Previous Design Based on 2-DOF Pendulum

The primary propulsion system is the 2-DOF pendulum. The design of the pendulum
mechanism is kept similar to [1] and is shown in Figure 6. Unlike traditional designs, the
pendulum actuators are not directly attached to the central shaft. Instead, they are placed
at the pendulum base to lower the robot’s center of gravity. Motion is transmitted to a
differential driving system at the shaft center via two belts. This system includes a single
planet gear on the shaft and two sun gears connected to motors with timing belt.
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Figure 6. (a) Driving mechanism and pendulum. (b) Assembly of the SR with the layer of harmonic
steel sheets [1].

The spherical shell consisted of two layers, namely the inner layer made of harmonic
steel sheets bent to assume a spherical shape, and the outer layer made of impermeable
rubber. The combined mass of the spherical shell and the differential mechanism was
approximately 5.7 kg. This value was used to determine the pendulum mass and the
barycenter distance from the sphere center.
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4.2. New Design Based on Pendulum-CMG Mechanism

To improve agility and counteract external disturbances, the CMG system is intro-
duced. However, seamlessly integrating this system without altering the robot’s size is
critical for maintaining compatibility and functionality. Therefore, the objective remains to
add CMG while preserving the SR’s footprint and integrity.

4.2.1. Design of CMG

The design of the locomotion system begins with the dimensioning of the flywheel,
highlighting the procedure that was followed to define its size based on the design specifi-
cations. Subsequently, the selection process for the spinning motors is presented. Finally,
the design of the gyroscope is presented.

Flywheel Dimensioning

The dimensions of the flywheel are established through an analysis of the maximum
gyroscopic torque. From Equation (4):

τG,MAX =
(√

2Rh − h2 − a
)

gMtot (6)

The step height (MSH) was set to be 110 mm. The spherical radius and the barycenter
position are determined based on the design specifications: R = 250 mm and
a = R · sin(φ) ≈ 87.5 mm. Subsequently, the influence of the system mass on the
gyroscopic torque was investigated. The system’s mass leads to a decrease in the required
gyroscopic torque. Various options are explored, ultimately leading to the determination
that the minimum achievable mass was Mtot = 22 kg. From this total mass, the pendulum
contributed 16 kg, while the sphere and differential mechanism together accounted for
6 kg. Consequently, the resulting maximum gyroscopic torque was determined to be
τG,MAX = 25.82 Nm.

This value was then used to compute the inertia of the gyroscope flywheel. The
spinning and tilting velocities were taken to equal to ω = 8000 rpm and Ω = 15 rpm,
respectively. The flywheel inertia was taken to result in I f l = 0.0098 kg m2. Thus, one can
write the following:

I f l = 0.5·m f l

(
R2

ext + R2
int

)
(7)

m f l = ρπh f l

(
R2

ext − R2
int

)
(8)

where ρ is the steel density and h f l the flywheel height.
The mass of the flywheel is assumed to be 3.2 kg. Two equations alone can not

determine its size. Fixing one variable might find a solution but may not maximize internal
space use. Hence, a nonlinear constrained optimization problem aimed to minimize
flywheel dimensions. The problem’s variables are x1 = Rint, x2 = Rext – Rint, x3 = h f l . The
function to minimize is distance from the cylinder’s edge to its center:

f (x1, x2, x3) =

√
(x1 + x2)

2 +
x2

3
4

(9)

In addition to constraints Equations (7) and (8), a linear inequality constraint can be
defined, which limits the external radius to 70 mm:

x1 + x2 ≤ 70 mm (10)

The flywheel sizes from problem solution are reported in Table 2; the final design is
then slightly adjusted due to initial hollow cylinder approximation.
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Table 2. Sizes of the flywheel.

Computed Final Design

m f l 3.2 kg 3.35 kg
I f l 9.75 ·10−3kg·m2 9.8·10−3kg·m2

Rext 66 mm 66 mm
Rint 42 mm 40 mm
h f l 51 mm 51 mm

Drag forces on a high-speed spinning flywheel

In order to size motors for the flywheel’s rotation, accounting for potential high-speed
rotor losses due to aerodynamic forces is critical. Typically, reducing drag involves housing
the flywheel and lowering inner pressure with a vacuum pump. However, this is not viable
for the spherical rover, nor would the occasional use of gyroscopes suggest this solution.
The Von Karman-corrected formula was considered to estimate the drag torque [37]:

M = CM
R + 5

2 l
R

ρaω
2R5·0.5 (11)

where R is the radius of the flywheel, l its thickness, ρa air density, ω angular velocity and
CM drag torque coefficient (CM = 3.87 Re−

1
2 if Re < 5·104, CM = 0.146Re−

1
5 if Re ≥ 5·104).

Table 3 reports the data used for the drag torque computation.

Table 3. Values considered for drag torque computation.

ρa 1.204 kg/m3 Air density at 20 ◦C
ω 8420 rpm Angular speed
l 0.051 m Thickness of the rotor

Rext 0.066 m External radius
µ 1.81·10−5 kg/ms Dynamic viscosity of air at 20 ◦C

Rint 0.005 m Radius of the flywheel shaft

The computed drag torque is 42 mNm. A safety coefficient of 1.25 was considered
and, so, a drag torque of 52.5 mNm was assumed as the reference for the purpose of
motor sizing.

Spinning motors

The motor selection process focused on three main criteria: torque, speed and voltage.
It was crucial to ensure that the motor’s torque exceeded air friction torque at maximum
velocity. The obtained result was 52 Nm. The nominal speed was fixed when designing
the flywheel at 8000 rpm. As for the nominal torque, the value used for the motor choice
has been divided by a safety factor of 0.95, obtaining a speed of approximately 8420 rpm.
A nominal voltage close to 12 V was desired, with Maxon’s tools confirming the motor’s
suitability within the required operating range, along with voltage and current requirements
of about 12.6 V and 4.1 A, respectively. Following thorough analysis, a fitting motor was
discovered in the Maxon catalogue: the DCX 35 L, a graphite-brushed DC motor.

Gyroscope assembly

The gyroscopic group consists of the flywheel and its associated motors. The system’s
design is depicted in Figure 7, showing a front view and a lateral cross-section. A jaw
coupling connects the motor to the shaft. The gyro case provides structural support and
user safety, minimizing drag friction. It is split into two halves for easy assembly, connected
by screws and plates. The tilting motor axis aligns vertically with the system’s center of
mass, allowing for a smaller motor (QMot QSH2818). Connectors (elements 10 and 15) bear
the system’s weight, reducing shear load on the stepper motor shaft.



Robotics 2024, 13, 87 11 of 24

Robotics 2024, 13, x FOR PEER REVIEW 25 of 59 
 

 

<math><mrow><mn>12.6</mn><mtext>&#x00A0;</mtext><mi 
mathvariant=ʺnormalʺ>V</mi></mrow></math> 

<!-- MathType@End@5@5@ --> 
 and <!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no 

namespace)@ --> 
<math><mrow><mn>4.1</mn><mtext>&#x00A0;</mtext><mi 

mathvariant=ʺnormalʺ>A</mi></mrow></math> 
<!-- MathType@End@5@5@ --> 
, respectively. Following thorough analysis, a fitting motor was discovered in the 

Maxon catalogue: the DCX 35 L, a graphite-brushed DC motor. 
Gyroscope assembly 

The gyroscopic group consists of the flywheel and its associated motors. The system’s 
design is depicted in Figure 7, showing a front view and a lateral cross-section. A jaw 
coupling connects the motor to the shaft. The gyro case provides structural support and 
user safety, minimizing drag friction. It is split into two halves for easy assembly, 
connected by screws and plates. The tilting motor axis aligns vertically with the system’s 
center of mass, allowing for a smaller motor (Qmot QSH2818). Connectors (elements 10 
and 15) bear the system’s weight, reducing shear load on the stepper motor shaft.  

 
(a) (b) (c) 

Figure 7. (a) Front view of the gyroscope system; (b) cross-section; (c) 3D of the assembly. (1) First 
half of the case, (2) shaft, (3) second half of the case, (4) jaw coupling, (5) spacer, (6) small angular 
contact ball bearing, (7) big angular contact ball bearing, (8) motor plate, (9) C-plate for tilting motor 
connection, (10) flange1 for main structure connection, (11) flange1 for tilting motor-gyroscope 
connection, (12) tilting motor, (13) angular contact ball bearings for tilting axis positioning, (14) 
flange2 for tilting motor-gyroscope connection, (15) flange2 for main structure connection, (16) 
motor-to-C-plate connection plate, (17) closing Plate and (18) Spinning Motor. 

4.2.2. Pendulum Actuators 
The introduction of CMG changes the mass distribution of the pendulum and 

increases the power needs of actuators. The process to estimate the new size of 
differential drive motors is similar to [1] and considered the required nominal speed <!-- 
MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --> 

<math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi><mi>o</mi><mi>m<
/mi></mrow></msub><mo>=</mo><mn>10</mn><mtext>&#x00A0;</mtext><mi 
mathvariant=ʺnormalʺ>r</mi><mi mathvariant=ʺnormalʺ>a</mi><mi 
mathvariant=ʺnormalʺ>d</mi><mo>/</mo><mi mathvariant=ʺnormalʺ>s</mi></mrow></math> 

Figure 7. (a) Front view of the gyroscope system; (b) cross-section; (c) 3D of the assembly.
(1) First half of the case, (2) shaft, (3) second half of the case, (4) jaw coupling, (5) spacer, (6) small
angular contact ball bearing, (7) big angular contact ball bearing, (8) motor plate, (9) C-plate for
tilting motor connection, (10) flange1 for main structure connection, (11) flange1 for tilting motor-
gyroscope connection, (12) tilting motor, (13) angular contact ball bearings for tilting axis positioning,
(14) flange2 for tilting motor-gyroscope connection, (15) flange2 for main structure connection,
(16) motor-to-C-plate connection plate, (17) closing Plate and (18) Spinning Motor.

4.2.2. Pendulum Actuators

The introduction of CMG changes the mass distribution of the pendulum and increases
the power needs of actuators. The process to estimate the new size of differential drive
motors is similar to [1] and considered the required nominal speed ωnom = 10 rad/s for
climbing a 15◦ slope. In such case, the motors provide the torque to maintain the pendulum
at the equilibrium angle θ = 48◦, i.e., where the robot’s barycenter aligns vertically with
the contact point between the shell and ground. Consequently, the resultant continuous
power output from the gearbox of the single actuator is derived as:

Pr =
Mtot g a sinθ ωnom

2ηDηB
(12)

where ηD = 0.98 and ηB = 0.95 are the differential and toothed belt transmission efficiencies,
respectively. Moreover, because of the CMG, the gearbox must withstand a maximum
torque τmax,r, which is determined by halving the combined torque needed to elevate the
pendulum to a 90◦ angle and by adding the maximum gyroscopic torque.

Table 4 provides insight into the data used for motor and gearbox selection. Gearbox
selection focused on meeting nominal and maximum torque requirements. Gear ratio was
optimized to match the allowable ratio, minimizing torque demand on the motor. At the
end, the Planetary RE 40 motor combined with Gearhead GP 42 C was selected from the
Maxon catalogue.
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Table 4. Data used to design the main motors.

τnom,s 13.96 Nm Nominal torque at the shaft
ir 81 : 1 Gear ratio
Pr 75 W Output power at the gearbox

τnom,r 7.5 Nm Nominal torque at the gearbox
τmax,r 22 Nm Maximum torque at the gearbox

ηD 0.72 Efficiency of the gearbox
Pm 104 W Output power of the motor

τnom,m 0.129 Nm Nominal torque of the motor
τmax,m 0.276 Nm Maximum torque of the motor

4.2.3. Electrical Integration

The hardware configuration of the SR encompasses a comprehensive set of compo-
nents, shown in Figure 8. A microcontroller drives the execution of tasks and coordi-
nates the interplay between different hardware modules. “Main motor 1” and “Main
motor 2” are the two motors responsible for controlling the orientation of pendulum.
Motors 3 and 4 are the ones responsible for the spinning motion of the gyroscope flywheels,
while motors 5 and 6 are the ones used to perform the tilting movement. To ensure efficient
operation and control of the motors, all of them are equipped with dedicated drivers.

Robotics 2024, 13, x FOR PEER REVIEW 13 of 26 
 

 

 
Figure 8. Diagram of the hardware configuration. 

For teleoperation, four kinds of sensors are essential: encoders for main motors, IMU 
for angular tracking, and an encoder for pendulum alignment. Power relies on two large 
batteries for motors and a smaller one for microcontroller and sensors. Batteries were care-
fully chosen for space, weight and runtime. A remote controller enables user interaction 
via radio or Wi-Fi. 
Battery dimensioning 

Batteries were sized for a minimum 1 h runtime while climbing a 15°  slope 
at 2.5 m/s . Motor requirements were computed using torque and speed, resulting in a 
need for 25.7 V and 4.3 A. For a 1 h runtime, a battery with at least a 4300 mAh capacity 
is necessary. The best option found is an 8𝑠2𝑝 Li-Ion battery pack with 5200 mAh capac-
ity and 28.8 V nominal voltage, meeting project needs. 
CMG impact on autonomy 

The gyroscope’s motor significantly impacts battery life. By assessing the power 
needed for maximum velocity (8000 rpm) with a 12 V input, current consumption over 
time is calculated. Integrating this gives the total charge consumed; one minute consumes 
about 4.3% of a 5200 mAh battery’s capacity. 

During a gyroscope-assisted maneuver, the primary motors play a crucial role in 
counterbalancing the gyroscopic torque to stabilize the pendulum and transfer torque to 
the sphere. The maximum torque required by the motors is the amount necessary to sus-
tain the pendulum in a raised position at a 90° angle throughout the entire maneuver. In 
paragraph 4, the maximum gyroscopic torque was evaluated, resulting in 𝜏 ,  = 25.82 Nm. The torque required to raise the pendulum to a 90° angle can be calculated 
using equation 28, yielding 𝜏 °  =  18.88 Nm. Therefore, the total torque required by each 
of the main motors is: 𝜏 = 18.88 Nm + 25.82 Nm · sin (Ω𝑡)2  (13)

Figure 8. Diagram of the hardware configuration.

For teleoperation, four kinds of sensors are essential: encoders for main motors,
IMU for angular tracking, and an encoder for pendulum alignment. Power relies on
two large batteries for motors and a smaller one for microcontroller and sensors. Batteries
were carefully chosen for space, weight and runtime. A remote controller enables user
interaction via radio or Wi-Fi.

Battery dimensioning

Batteries were sized for a minimum 1 h runtime while climbing a 15◦ slope at 2.5 m/s.
Motor requirements were computed using torque and speed, resulting in a need for 25.7 V
and 4.3 A. For a 1 h runtime, a battery with at least a 4300 mAh capacity is necessary.
The best option found is an 8s2p Li-Ion battery pack with 5200 mAh capacity and 28.8 V
nominal voltage, meeting project needs.
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CMG impact on autonomy

The gyroscope’s motor significantly impacts battery life. By assessing the power
needed for maximum velocity (8000 rpm) with a 12 V input, current consumption over
time is calculated. Integrating this gives the total charge consumed; one minute consumes
about 4.3% of a 5200 mAh battery’s capacity.

During a gyroscope-assisted maneuver, the primary motors play a crucial role in
counterbalancing the gyroscopic torque to stabilize the pendulum and transfer torque
to the sphere. The maximum torque required by the motors is the amount necessary
to sustain the pendulum in a raised position at a 90◦ angle throughout the entire ma-
neuver. In paragraph 4, the maximum gyroscopic torque was evaluated, resulting in
τG,MAX = 25.82 Nm. The torque required to raise the pendulum to a 90◦ angle can be cal-
culated using Equation (24), yielding τ90◦ = 18.88 Nm. Therefore, the total torque required
by each of the main motors is:

τM =
18.88 Nm + 25.82 Nm·sin(Ωt)

2
(13)

where t ∈
[

0, pi
2

]
, while is the tilting velocity of the gyroscope, set to Ω = 15 rpm.

Integrating this equation over the time interval the total charge consumed is computed.
The obtained result is approximately the 3.1 % of the total charge of a 5200 mAh battery.
Therefore, the total amount of charge consumed each time the gyroscope is used can reach
up to a 7.4% of the total charge of a 5200 mAh battery.

4.3. Design Result and Considerations

The CAD model Figure 9 illustrates the design; though hardware components are not
depicted, the design accounts for their space requirements.
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The pendulum structure of the spherical robot is crucial for functionality and stability,
supporting the CMG group, main motors, batteries and hardware. Its design prioritizes
structural integrity, weight optimization and compactness, using steel and aluminum alloy
plates. Overcoming space limitations posed by the spherical shape was challenging, ensur-
ing CMG rotation without interference and meeting barycenter placement requirements.
The result is a lightweight pendulum frame structure (under 0.425 kg) for future upgrades.
When placing the main motors and the CMG group, the total mass of the pendulum sub-
system is about 12 kg, with 4 kg still available for batteries and hardware components. A
rendering of the pendulum frame, actuators and CMG is shown in Figure 9a. A PMMA
shell was used instead of the harmonic steel sheets of the SR from [1] because they were
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considered too flexible. A second layer made of impermeable rubber is needed to enhance
the static friction of the shell on the ground, like in [1]. The total mass of the model is
approximately 22 kg, where the pendulum accounts for 16 kg.

In Table 5 the properties of the final design are listed. These specifications make the
SR able to climb a step with a height of 110 mm. This value was chosen in order to satisfy
the MSH design requirement of 100 mm. From a theoretical point of view, it can be verified
that these values are correct, using the equation Equation (5). In particular, the value of
a∗/R results in being equal to 0.8285. The corresponding h/R value is equal to 0.44, which,
when multiplied by the radius, gives a MSH of 110 mm.

Table 5. Final design parameters of the spherical robot.

R 250 mm Radius of the sphere
Mtot 22 kg Total mass of the system
Ms f 6 kg Sphere mass
mp 16 kg Pendulum mass
a 87.5 mm Robot COM—sphere center distance
l 120 mm Pendulum COM—sphere center distance

τ90 18.88 Nm Torque to raise the pendulum at 90◦ angle
ω 8000 rpm Flywheel spinning velocity
Ω 15 rpm Flywheel tilting velocity
I f l 9.76·10−3 kgm2 Flywheel inertia
τG 25.8 Nm Maximum gyroscopic torque

5. Modelling and Control
5.1. Two-Dimensional Analytical Model

The subsequent chapter focuses on the analysis of the two-dimensional analytical
model of the robot rolling along a straight path. The model plays a pivotal role in investi-
gating the robot’s response to varying inputs and to design and test the control strategy,
which aims to track the spherical robot’s reference speed along a straight path.

5.1.1. Two-Dimensional Kinematics

The problem of the robot moving along straight path is represented through a schematic
illustration in Figure 10. The system can be described through two generalized variables:
the angle of rotation of the sphere computed from the starting position (q1), and the lifting
angle of the pendulum measured from the line perpendicular to the inclined plane (q2).
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Considering a fixed reference system with the x-axis parallel to the inclined plane, the
robot’s x-coordinate can be defined under the assumption of pure rolling as:

x = R · q1, (14)

Therefore, the position and linear velocity, as well as the rotational velocity of the
sphere can be described as:

→
r 1 =

q1R
R
0

,
→
v 1 =

 .
q1R

0
0

,
→
w1 =

 0
0
.
q1

. (15)

The pendulum is attached to the center of the sphere, and it can be approximated as a
point mass with a constant distance from the sphere center equal to l. Its position depends
on the sphere center position and on the lifting-angle described by q2. The equations
describing the pendulum kinematics are the following ones:

→
r 2 =

q1R + ls2
R − lc2

0

,
→
v 2 =

 .
q1R + lc2

.
q2

ls2
.
q2

0

,
→
w2 =

 0
0
.
q2

, (16)

where ci and si are the cosine and the sine of the generalized variable qi, respectively.

5.1.2. Two-Dimensional Dynamics

The dynamic model is obtained through the Lagrangian Approach. The Lagrangian
function is defined as:

L
(
q,

.
q
)
= K

(
q,

.
q
)
− P(q) (17)

where K and P are the total kinetic and potential energy of the system, respectively. This
function is used to obtain the n differential equations describing the problem, where n is
the number of generalized coordinates. In this case, two generalized coordinates have been
used; therefore, two differential equations are sufficient to describe the problem. Their form
is the following one:

d
dt

(
∂L
(
q,

.
q
)

∂
.
qi

)
−

∂L
(
q,

.
q
)

∂qi
= Fnc

i (q) (18)

where Fnc
i are the generalized forces, non-conservative forces acting along the i-th coordinate.

The total kinetic energy of the system composed by the sphere and the pendulum is
computed as:

K =
1
2

Mv2
1 +

1
2

mv2
2 +

1
2

Iω2
1 +

1
2

Ipω2
2 (19)

where m and M are the pendulum and sphere masses, respectively; I is the total inertia of
the sphere, while Ip is the total inertia of the pendulum.

The potential energy of the system is described by the following equation:

P = −M
→
g ·→r1 − m

→
g ·→r2 (20)

where the gravitational acceleration vector is expressed in the fixed reference system of:

→
g = −g

sin(α)
cos(α)

0

 (21)
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These equations can be used to obtain the n differential equations describing the
problem: { ..

q1(In) +
..
q2(mRlc2)−

.
q2

2mRls2 + β1
.
q1 + Rsαg(M + m) = τM − τnc

ext,1..
q1(mRl2) +

..
q2
(
ml2 + Ip

)
+ mgl

(
sαc2 + β2

.
q2 + cαs2

)
= τM − τnc

ext,2
(22)

where τM is the motor torque, and τnc
ext are the torques due to external non-conservative

forces, In is equal to:
In = mR2 + MR2 + I, (23)

Under the assumption of pure rolling, and by neglecting the rolling friction, non-
conservative forces are null. However, some dissipation is considered through viscous
friction coefficients β1 and β2.

These equations do not account for the effect of the gyroscopic torque, because they
were used to study the straight-line movement of the robot, but it could be included by
subtracting the gyroscopic torque in the right-hand side of the second equation.

5.2. Straight-Trajectory Control Strategy

The controller aims to track accurately the spherical robot’s reference speed along
a straight path. It is characterized by two control loops: an external loop and an inner
loop (Figure 11a). The external loop is tasked with determining the input to the pendulum
motor based on the angular velocity error of the robot, whereas the inner loop is focused
on regulating the motor speed.
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It must be noted that the two-dimensional analytical model of the robot accounts for
only one motor, while the real robot has two. Nevertheless, when the pendulum motors
operate at equal and opposing speeds, the system’s behavior is the same as that of a
single-motor configuration delivering double the torque. Consequently, the control strategy
devised for the two-dimensional model can be seamlessly extended to the physical robot
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with a minor adaptation: the incorporation of two inner control loops, each dedicated to
governing the behavior of its respective motor (Figure 11b).

The internal control loop is responsible for tracking the input reference current coming
from the external control loop. The controller is a PI (proportional integrative) controller,
whose transfer function is:

Ci(s) =
Raωb + Laωb · s

s
. (24)

The proportional and the integral gain are equal to the armature motor resistance
and inductance, respectively, multiplied by a frequency ωb. It can be demonstrated that a
proper tuning of this value can make the inner control loop much faster than the external
one, allowing to ignore the motor internal dynamics. Specifically, a higher ωb leads to a
wider bandwidth of the current loop. However, a trade-off must be made, as increasing
this value also leads to an increase in the requested armature voltage.

The external control loop is responsible for the SR rolling speed control. In the previous
paragraph, it was explained that a proper tuning of the current controller allows to ignore
the motor internal dynamics. Hence, a new block scheme is obtained (Figure 12).
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The reference armature current is calculated by subtracting the pendulum angular
velocity

.
q2 multiplied by a constant term β to the output of the speed controller uω . In the

next paragraphs, first, this negative feedback is studied, then the Speed Controller block
is described.

5.2.1. The Viscous Friction Problem

The analytical system that has been developed includes the effects of the viscous
friction of the pendulum joint and the sphere. The viscous friction is always present in real
applications and contributes to the damping of the system. However, it is very difficult
to determine the real values of the viscous coefficients β1 and β2. At the same time, the
absence of a damping term causes the model to be unstable. The problem has been solved
by including the damping effect in the control input, where the pendulum angular speed is
multiplied by a constant term β and subtracted to the speed control output. This solution
allowed to stabilize the system regardless of the presence of the viscous friction in the plant
model. Referring to Figure 12, the input to the plant is equal to:

τm =
(
uω − β

.
q2
)
K (25)

It can be observed that through this input, a damping effect like the one caused by the
viscous friction has been introduced.

Having defined as G(s) the transfer function describing the linearization of the system
inside the dark green square of Figure 12, the influence of β on its closed loop poles
was studied. In particular, the closed-loop system becomes stable for values of β greater
than 0.32.
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5.2.2. The Speed Controller

The speed controller is designed to track a step angular velocity reference input with
a value that can vary from 0 rad/s to 10 rad/s (equivalent to a linear speed of 2.5 m/s)
within a maximum percentage overshoot value of 10% and a minimum settling time of 2 s.
This value has been chosen based on the minimum acceleration requirement. Moreover,
the controller has been designed to work when the sphere is rolling on an inclined plane
with an angle of steepness that can vary from −15◦ to 15◦.

The SR is a highly non-linear system, and for this reason, a nonlinear controller is
adopted. A scheme of the overall speed controller is shown in Figure 13. It can be observed
that PID (Proportional Integral Derivative) and PI (Proportional Integral) controllers are
used. The first one (PID1) relies on a fuzzy gain scheduler logic to perform an on-line
tuning of the PID gains based on the error signal. The second one (PI*) is characterized
by constant gains and it works only when the output gets closer to the reference input.
Its objective consists of ensuring a faster convergence to the desired value, limiting the
response overshoot. A set/reset block is responsible for turning on or off the PI* block,
depending on how close the system response is to the reference input.
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Finally, a switch is used to turn to zero the output of the speed controller when the
angle of the pendulum overcomes 90◦. This simple solution was adopted to limit the range
of motion of the pendulum without slowing down the system response.

The fuzzy gain scheduler has the following characteristics:

• The input is the error between the desired and actual angular velocity; the outputs are
the three PID gains. Both the input and the output variables are identified through
“Linguistic Variables”: “error” was used to refer to the input signal, and “P-gain”,
“I-gain” and “D-gain” to the output ones.

• The linguistic values associated with the error are “Ze”, “S”, “M”, “L” and “XL”.
• The ones associated with the outputs are:
• P-gain: “XS”, “S”, “M”, “L” and “XL”;
• I-gain: “S” and “M”;
• D-gain: “S” and “M”.
• The membership functions associated with the error and the outputs are depicted in

Figures 14 and 15, respectively.
• The rules of the fuzzy gain scheduler are depicted in Figure 16. The “centroid defuzzi-

fication method” was adopted.
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The PI* controller gains have been chosen with the objective of providing a faster
convergence of the output to the reference value. Consequently, higher gains were selected
with respect to the ones of the PID1, namely, kp = 4, and ki = 10. As already mentioned, to
control the activation of the PI* controller, a set/reset block has been incorporated before it.
This block enables the controller to operate only when the error is close to zero. Specifically,
if the speed reference is greater than 4 rad/s, the controller starts working when the error is
less than the 8% of the speed reference, while it is deactivated if it overcomes the 20%. For
speed references below 4 rad/s, the percentage error is calculated relative to this velocity.
The use of different threshold values (8% and 20%) for activating and deactivating the
controller avoids chattering issues.

6. Results
6.1. Simulation Environment

The results reported in this section are obtained by simulating the robot motion in
Simulink and Simscape multibody. In particular, two types of models are built. The first
one is the analytical model, which is used for tuning the control scheme in Simulink, for
a more efficient computation. The second one is the robot multibody, which is made in
Simscape by importing the CAD of the components designed in Solidworks. In both, the
motors are modelled as resistor-inductor circuits, where electrical parameters were given
by Maxon datasheets. The motors receive input signals by the control scheme in Simulink,
according to the control strategy, and the resulting driving torque is transferred to the
analytical model or to the multibody joints, depending on the type of simulation. Flexible
parts, where useful, are modeled according to the method defined in [38].

As regarding the multibody, to simulate the interaction between the floor and the
spherical shell of the robot, the Simscape built-in block responsible for computing the
spatial contact forces has been used. In particular, the normal force is modelled with
stiffness and damping parameters equal to 1·106 N/m and 1·103 N/(m/s), respectively;
these values are the one suggested by the library [39] as initial guesses, and they produced
good results, i.e., the robot does not vibrate in contact with the ground. The friction force is
based on the Stick–slip continuous model, with a coefficient of static friction of 0.8 and a
coefficient of kinetic friction of 0.4. In this case, since it is planned to cover the ball with a
rubber sleeve, indicative values have been taken in the range of friction coefficients between
rubber and different materials [40].

The step obstacle is modelled by introducing a solid object on the top of the floor and
establishing a connection between it and the sphere, using a new spatial contact force block.
This approach enables the simulation to accurately replicate the interaction between the
sphere and the step, allowing for a realistic representation of the scenario.
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6.2. Analysis of the Performance of the Control Strategy

In the following paragraphs, the results of the application of the linear speed controllers
on the simulated SR models are presented. First, the results obtained from the analytical
simulations when using the linear speed controller with the fuzzy gain scheduler are
illustrated. Subsequently, the performance of this controller on the multibody model of the
SR with Solidworks-designed components is showcased.

6.2.1. Test with the Analytical Model

To test the control architecture and verify its functioning, two linear speed profiles have
been provided as inputs for the controllers and the system response has been evaluated
by comparing them with the desired one. The functioning of the system was evaluated
by giving two types of input: a signal composed by subsequent velocity steps of 1 m/s,
1.5 m/s, 2 m/s and 2.5 m/s, and a trapezoidal velocity profile that reaches 2.5 m/s. The
results of the analytical model of the robot with the linear speed controller are shown in
Figure 17. As can be seen, the controller is able to accurately track the velocity set profile.
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6.2.2. Test with the Multibody Model

The results from testing the control architecture when the robot moves on a horizontal
plane are shown in Figure 18. Similar input speed profiles that were given to the analytical
model of the SR were used.
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It can be noted that the response is not as accurate as that of the analytical model,
but both the velocity profiles are still well tracked by the SR. Under the sphere center
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speed graphs, the path followed by the robot in the XY plane during the maneuvers can be
observed. It can be noted that, in the first scenario, there is a slight deviation in the negative
direction of the y-axis. However, this deviation accounts for less than 0.5% of the length of
the displacement along the x-axis. In the “Supplementary Materials”, the reader can find an
example of simulation of a straight trajectory obtained with the presented control strategy.

6.3. Analysis of the Performance of the CMG for Step Overcoming

The aim of this test is to assess the capability of the robot to overcome a 100 mm step,
as required. The simulations were started with the robot standstill in front of the step and
the flywheel spinning at the velocity of 8000 rpm (Figure 19a). First, a torque ramp up to
9.44 Nm was provided to each pendulum motor; this permits to raise the pendulum in the
horizontal position, as depicted in Figure 19b. It is remarked that, in this configuration, the
mere barycenter offset does not allow the robot to overcome the obstacle. Thus, by keeping
the pendulum in the horizontal configuration, the CMG system was activated with a tilting
velocity of π

2 rad/s. The activation of CMG causes an initial torque increase of 25.8 Nm on
the pendulum. Simultaneously, the same torque increase was provided to the pendulum
motors to react to the gyroscope action. The driving torque is then the sum of pendulum
and CMG effects and the shell can climb the step (Figure 19c). Notice that, during the
tilting motion of the CMG, the torque increase becomes zero, following a sinusoidal law. In
the simulation, the pendulum motors counteract CMG with the same torque profile and
return to 9.44 Nm when the CMG effect runs out; for this, the pendulum maintains about
the horizontal direction during motion (Figure 19d). For a comprehensive overview of the
simulation outcome, the reader is referred to the video in the “Supplementary Materials”.
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Figure 19. Four frames of the simulation of the robot overcoming a step of 100 mm.

In Figure 20, the MSH-over-radius curve is plotted and two points have been marked.
The blue one corresponds to the MSH over radius of this robot without the aid of the
gyroscopes, which only depends on the barycenter position. The red one, instead, repre-
sents the MSH that can be theoretically overcome when the gyroscopes are functioning
with the spinning and tilting velocities from Table 5. The theoretical MSH/R is increased
from a value of 0.06325 to one of 0.8285, which correspond to steps of a height equal to
15.8 mm and 110 mm, respectively. Notice that, in practice, the robot is able to overcome
steps < 110 mm. In fact, the theoretical value is an equilibrium point. It was for this reason
that the design phase was carried out considering a MSH of 110 mm, so to satisfy the
requirement of 100 mm.
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7. Conclusions

This research concentrates on refining a pendulum-driven spherical robot (SR), in-
spired by prior work by [1]. The primary aim of this study was to develop a practical
solution that could improve the robot’s obstacle-climbing capability. Specifically, it focuses
on improving a performance parameter called MSH (Maximum Step Height) from 25 mm to
100 mm. For a basic pendulum-driven spherical robot, it was shown that the only solution
to improve the MSH value consisted in increasing the distance between the barycenter and
the center of the sphere. However, this greatly complicates the design process. Alternatively,
this study proposes integrating a Control Moment Gyroscope (CMG) auxiliary propul-
sion system. This allows for a temporary boost in maximum torque without significant
displacement of the robot’s barycenter, leading to substantial MSH improvements.

The initial phase focused on studying CMG systems’ principles. A spherical robot
driving mechanism using pendulum and gyroscopes was proposed. The scissored pair
CMGs is introduced as an auxiliary propulsion system, coupled with the pendulum system
using a differential mechanism from [1].

Following the preliminary study, the CMG design process was presented, detailing
solutions to meet project requirements. Drag forces on high-speed spinning flywheels were
briefly analyzed to select appropriate motors. After finalizing the CMG group design, the
main motors controlling the pendulum were dimensioned to achieve a nominal robot speed
of 2.5 m/s. Subsequently, the battery pack was sized to ensure a minimum 1-h runtime
under the nominal operating conditions. The resulting design was a spherical UGV with a
0.5 m diameter and a total mass of 18 kg. While batteries and hardware were not included,
the dimensioning process accounted for a total mass of 22 kg, allowing for the inclusion of
hardware components weighing up to 4 kg while still meeting project requirements.

Simulated models of the SR were created to assess its performance. An analytical
model describing straight motion was developed, and linear speed controllers were de-
signed based on this model. More detailed multibody models of the SR were used to
verify project requirements and test the designed controllers. The results showed that the
CMG system effectively enhanced the robot’s obstacle-overcoming capability. The main
advantage is shown in terms of the maximum height of a step obstacle, which increases
to 44% of the sphere radius. This result is obtained without affecting the total mass of the
robot, as the gyroscopes and their actuating systems and mechanisms are included in the
mass of the pendulum.

On the other hand, it must be pointed out that the use of gyroscopes has a strong
impact on the energetic balance of the robots: each single jumping maneuver requires a
total amount of energy equal to 7.4% of the total battery capacity, which, if gyroscopes are
not used, can ensure 72 min, or 10.8 km, running on 15◦ slope at 2.5 m/s. This involves that,
as in any rover, a careful planning of the mission is required. For example, once the area
to be explored is known, the possibility of having recharging stations at predetermined
locations, the distance of which can vary according to the unevenness of the terrain, is
not ruled out. In this way, the robot could move autonomously within the radius of the
stations. In any case, the jump must be considered a residual option, and when possible,
the selection of a new path that avoids the need for it should be preferred.

This research has significantly advanced the design of a pendulum-driven SR, provid-
ing a practical solution to enhance its obstacle-climbing ability. The integration of a CMG
auxiliary propulsion system showed promise in boosting performance, but we do not rule
out the possibility of expanding the CMG with an additional gimbal in order to improve
the robot’s steering capabilities in the lateral direction, or to improve the robot’s stability.

There are aspects that can be explored further. For example, it will be necessary to
analyze the behavior of the control strategy with different uneven terrains, or in the face
of disturbances such as accidental impacts. This will make it possible to consolidate the
control and evaluate its robustness. In this context, the usage of gyroscopes to improve
steering capabilities can be investigated; for instance, they could be activated individually
or with different tilting velocities to apply lateral torques and, at the same time, produce



Robotics 2024, 13, 87 23 of 24

a boost in the direction of motion. These studies will be addressed in future works, in
addition to the experimental validation of the physical prototype and the design of the
control scheme for navigating curvilinear paths, as well as for dealing with inclines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/robotics13060087/s1, Video of simulations of speed tracking
control and step obstacle.
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