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Abstract 

 
The applications of composite materials and structures have recently risen due 

to their exceptional mechanical properties and multifunctional capabilities. 
Nevertheless, a thorough analysis of their failure mechanisms, particularly under 
complex loading conditions, remains a significant challenge. Fatigue, as the most 
common failure mode in real-world structures, encompasses these complex 
conditions and continues to be a focal point of research. Precise estimation of 
fatigue life is essential for the design and maintenance of mechanical systems and 
structures, as it determines the maximum loading cycles a material can endure 
before failure. The primary aim of this thesis is to study fatigue and fracture of 
composite structures. Conventional methods addressing this issue often suffer from 
being time-consuming, lacking universality, or exhibiting reliability concerns. This 
thesis introduces innovative criteria based on Finite Fracture Mechanics to first 
analyze debonding failure and then address fatigue failure in composite structures. 
Additionally, a fatigue analysis leveraging the powerful numerical approach of 
Phase Field is conducted.  

Focusing on composite structures, debonding emerges as a fundamental failure 
mode influencing the structure's ultimate load-bearing capacity. As a starting point, 
FFM is employed to analyze debonding behavior in composite structures, 
specifically in the direct shear test – a pivotal test for understanding debonding in 
externally bonded systems. A comparison with the cohesive zone models enriches 
this analysis. Given the presence of geometric discontinuities such as cracks, 
notches, and holes in mechanical components – whether by design or due to external 
factors – it is crucial to analyze their role as stress concentrators, affecting the 
structural durability and functionality. Subsequently, FFM is developed by the 
author to estimate the finite fatigue life of notched elements in isotropic materials, 
for the first time. The next step extends the model to assess the fatigue lifetime of 
notched laminated composites. With a comprehensive experimental campaign on 
notched carbon fiber laminated composites, validation is performed. Finally, the 
Phase Field model, having been recently adapted for fatigue, is examined and 
validated through experimental data to derive the Paris curve, based on available 
experimental data in the literature. 



 

Regarding the outcomes, for analyzing the debonding in composite materials 
using direct shear tests, closed-form solutions are proposed to fully study the effect 
of different parameters. The results highlight the importance of considering residual 
strength (friction) in the analysis even at debonding onset. The models demonstrate 
high accuracy in predicting the failure load in experimental data, based on the 
interface mechanical properties obtained from a single test. Furthermore, to extend 
FFM to the finite fatigue life regime, the effectiveness of the methodology is first 
confirmed through various experimental data encompassing a wide range of notch 
geometries (such as circular holes, U- and V-notches), loading scenarios (including 
tension and bending), load ratios, and materials (like steel, aluminum, and samples 
produced through additive manufacturing). Due to the low computational cost of 
the model, parametric studies on the effect of notch geometry on fatigue life are 
performed. Then, without relying on any fitting parameters from experimental data 
and only employing standard tests, as well as utilizing (semi-analytical) stress and 
energy fields, the FFM model is employed to study the fatigue lifetime of notched 
orthotropic plates. Despite the complexity of the problem, high accuracy is 
achieved, and results demonstrate a consistent behavior with the conventional hole 
size effect, i.e., the number of cycles to failure for a given stress amplitude decreases 
as the hole radius increases. Finally, the robustness and reliability of the Phase Field 
approach as a computational tool for predicting the fatigue failure of structures are 
proved when its results are compared to experimental data. This research paves the 
way for more efficient and reliable design and maintenance protocols in aerospace, 
automotive, and civil engineering industries, where the lifetime and safety of 
composite structures are paramount. 
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Chapter 1 

1. Introduction  

1.1 Background and motivation 

Composite structures are considered one of the most crucial topics in mechanical 
engineering due to their superior ability to combine strength, stiffness, and 
lightness. These structures, achieved by layering or joining two or more distinct 
materials, offer mechanical properties that often surpass those of their individual 
constituents. This integration enables tailored mechanical behaviors, making such 
composite configurations indispensable in several engineering applications, 
ranging from aerospace assemblies to civil infrastructure. However, their complex 
nature presents unique challenges, particularly in the domain of fatigue, fracture, 
and debonding. It is worth highlighting that the history of composites stretches back 
to the very beginnings of human civilization, exemplified by the ancient technique 
of reinforcing clay with straw to make bricks. On the one hand, joining points—
often resulting from the shape of the bond or the mismatch between the mechanical 
properties of the joined materials—act as stress concentrations and are frequently 
the most critical points for failure analysis. On the other hand, geometrical 
discontinuities commonly found in structures, such as holes and notches, act as 
stress concentrators and can be the hot spots that trigger fractures.  

In this thesis, two main approaches called Finite Fracture Mechanics (FFM) 
and Phase Field are employed to study failure in several problems. FFM is a failure 
criterion that predicts failure by simultaneously fulfilling stress and energy 
conditions. It is based on the idea that crack advancement occurs by discrete 
amount, contrary to the concept of infinitesimal crack growth (Griffith’s approach). 
FFM is especially powerful at handling structures with discontinuities, such as 
notches. The model was introduced for static loading and later extended to the 
fatigue limit regime. However, it has not been employed to estimate the finite 
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fatigue life of structures yet. Besides the physically sound bases, FFM can be easily 
integrated with analytical solutions to provide results quickly, which is 
advantageous for parametric studies.  

On the other hand, the Phase Field (PF) model is known as a computational 
approach that employs a gradient-based fracture representation. Some of the 
advantages of the approach are: (a) eliminating the challenges of explicit crack 
tracking, (b) robust numerical implementation, (c) handling of arbitrary crack 
initiation and growth. Although the model has been extended to estimate fatigue 
loading, its proper validation with experimental data is pending, owing to the 
approach’s high computational demand. In this thesis, the PF model is employed to 
derive the Paris Curve, utilizing available experimental data. 

It is worthwhile to mention that this project received funding from the European 
Union’s Horizon 2020 research and innovation program under the Marie 

Skłodowska-Curie grant agreement No. 861061 – NEWFRAC Project. The 
NEWFRAC training network represents a pioneering European initiative aimed at 
advancing predictive capabilities for failure in heterogeneous systems through a 
comprehensive computational framework. This framework uniquely integrates 
Finite Fracture Mechanics and Phase Field modeling strategies, targeting the 
enhancement of failure prediction across different scales in varied engineering 
systems. The network offered 13 PhD positions, distributed across a consortium of 
prestigious academic and industrial institutions in five European countries (France, 
Germany, Italy, Portugal, and Spain) and two associated countries (Israel and 
Switzerland), facilitating a multidisciplinary and multisectoral training 
environment. For more detailed information, you can visit the NEWFRAC Training 
Network's website at https://www.newfrac.eu/. 

Prior to moving to the introduction of the approaches and conducting 
bibliographical research, this thesis first introduces some common expressions used 
throughout the thesis. Subsequently, the models themselves are presented. 

 

1.2 Some common definitions in fracture and fatigue 

Fracture and fatigue are key concerns in materials science and engineering, 
playing a crucial role in evaluating structural integrity. Although both concepts deal 
with how materials fail, they are influenced by different factors.  

1.2.1 Fracture 

 Fracture denotes the breaking apart of a material due to an external force or 
stress. The rate of occurrence and the nature of this separation can vary based on 
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the type of applied stress and the inherent properties of the material. Traditionally, 
fracture is divided into two primary types: 

1. Brittle Fracture: It can be described as a property exhibited by materials that 
fracture with limited or negligible preceding plastic deformation. Such fractures are 
abrupt; glass can be mentioned as a typical brittle material. Considering 
symmetrical loading condition, Mode I, the fractured surface in this case is often 
flat and aligns perpendicularly to the applied stress direction. 

2. Ductile Fracture: In contrast to its brittle counterpart, a ductile fracture is 
characterized by significant plastic deformation occurring prior to the fracture 
event. Metals, for instance, often undergo this type of fracture. A notable 
characteristic of ductile fractures is the necking phenomenon, where the material's 
cross-sectional area reduces before the final fracture. 

1.2.2 Fatigue 

 Fatigue arises when materials undergo repetitive and fluctuating stresses over 
an extended duration, typically at amplitudes significantly lower than the material’s 
yield strength. Unlike a single, isolated event such as fracture, fatigue results from 
the cumulative impact of numerous loading and unloading cycles. Broadly, the 
fatigue phenomenon can be divided into three main phases: 

1. Initiation: During this initial stage, tiny cracks begin to form, often at 
locations where stress concentrations occur, such as surface irregularities, 
inclusions, or notches. In these small areas, the appearance of cracks sets the stage 
for the development of persistent slip bands. These bands propagate along the plane 
of maximum shear, oriented at a 45-degree angle from the direction of the applied 
load, under the influence of cyclic loading. 

2. Propagation: Following initiation, these small cracks progressively grow 
with each subsequent loading cycle. The rate of growth depends on the amplitude 
of cyclic stress and the mechanical properties of the material. 

3. Final Failure: After enduring a specific number of cycles, the crack reaches 
a critical size, leading to the sudden failure of the structure. 

1.2.3 Wöhler Curve and Basquin Equation 

The study of material fatigue and fracture mechanics has evolved significantly 
over the past century. One of the foundational concepts in fatigue analysis is the 
Wöhler curve [1], named after the German engineer August Wöhler. Running 
parallel in importance to the Wöhler curve is the Basquin equation [2], which 
provides a mathematical representation of the Wöhler curve. Understanding these 
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concepts and their relationship is crucial for predicting the fatigue life of materials 
under cyclic loading. 

Wöhler curve: The Wöhler curve, also known as the SN (Stress-Number of 
cycles) curve, is a graphical representation that describes the relationship between 
the amplitude of a cyclic stress and the number of cycles to failure of a material. 
Typically, the curve is plotted with stress amplitudes on the y-axis and the logarithm 
of the number of cycles to failure on the x-axis. It is worth noting that Wöhler did 
not present the results of his studies as a curve, and this was done in 1936 by Kloth 
and Stroppel [3]. The curve typically exhibits three distinct regions: 

1. Low-cycle fatigue (LCF): Here, the material fails after a relatively small 
number of cycles. In this case, the stress amplitude is high, and the failure is 
characterized by repeated plastic deformation. 

2. Transition region: This is a region where the material’s behavior shifts from 
LCF to High-cycle fatigue. The transition point is usually in between 103 and 104 
cycles. 

3. High-cycle fatigue (HCF): In this region, the material can withstand a large 
number of cycles (at lower stress amplitudes) and is characterized by elastic 
deformation. 

It is important to note that the Wöhler curve is specific to a particular material 
and loading condition. Environmental factors, like temperature and humidity, as 
well as microstructural properties of the material, can influence the shape and 
characteristics of the curve. 

Basquin Equation: The high-cycle fatigue region of the Wöhler curve is often 
approximated as a straight line on a log-log plot, and this linear relationship can be 
described by the Basquin equation [2]. The equation is given by a power law like 
 = a Nb, where:  is the stress amplitude, a is the fatigue strength coefficient, 
representing the stress amplitude at which failure occurs after a single reversal of 
stress, N is the number of cycles to failure, and b is the fatigue strength exponent, 
typically a negative value, which indicates the slope of the line in the log-log plot. 

By fitting experimental SN data to this equation, one can derive the fatigue 
strength coefficient and the fatigue strength exponent for a specific material. These 
parameters are crucial for predicting the fatigue life of materials under various 
loading conditions. 

1.2.4 Paris Curve 

The Paris-Erdogan Law [4], commonly referred to as the Paris curve, offers a 
fundamental approach to understanding the sub-critical crack growth behavior 
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under cyclic loading. This relationship, established through rigorous yet empirical 
studies, links the rate of crack growth to the cyclic range of stress intensity factor, 
providing a foundational framework for fatigue crack propagation analysis. 
Mathematically, the Paris Law is represented as da/dN = c ΔKm, where da/dN is the 
incremental crack growth per loading cycle, ΔK symbolizes the range of the stress 
intensity factor, c and m are empirically derived material constants, with c often 
representing a scaling factor and m characterizing the sensitivity of crack growth to 
the stress intensity factor range. The Paris region is typically characterized by a 
near-linear trend on a log-log plot of da/dN against ΔK. Outside this region, the 
crack growth rate can either accelerate rapidly (leading to catastrophic failure) or 
decelerate to a threshold below which no significant crack growth is observed. It is 
also essential to recognize the limitations and applicability of the Paris Law. The 
Paris curve’s significance lies in its ability to predict the fatigue life of engineering 
components. By determining the material constants c and m through experimental 
tests and fitting the data to the Paris Law, engineers and researchers can estimate 
the crack propagation rate under different stress conditions, enabling more accurate 
life predictions and safer design practices. 

1.2.5 Debonding 

Debonding is a phenomenon especially related to composite structures which 
refers to the separation or loss of bond between distinct layers or components of the 
composite. Such separation can be the result of various factors, including 
mechanical stresses, thermal fluctuations, or environmental degradation. In 
adhesive joints and laminated composites, debonding can critically affect structural 
integrity. Consequently, a robust understanding and predictive capability 
concerning debonding is essential for optimizing design, enhancing durability, and 
foreseeing maintenance requirements of composite structures. The multifaceted 
nature of debonding, influenced by material properties, geometrical considerations, 
and external conditions, typically necessitates a multidisciplinary approach. 

1.3 Fundamental failure criteria 

For the sake of simplicity, the analysis in this section focuses solely on Mode I 
crack propagation. In analyzing brittle or quasi-brittle materials, two failure criteria 
are commonly employed. The first one is based on stress state, is typically referred 
to as Rankine’s criterion [5] and it is represented by the equation: 

c =  (1-1) 

In simple terms, failure occurs if the maximum principal (positive) normal 
stress  attains the material’s tensile strength c, at least in one point. The second 
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criterion, commonly known as Griffith criterion, is based on energy and is 
expressed by the equation: 

c=G G  (1-2) 

 This criterion states that failure occurs when the crack-driving force G meets 
the crack resistance Gc. Here, Gc is known as the fracture energy, which is the energy 
required to form a unit fracture surface. According to Irwin’s formula, this energy-
based criterion can also be described using the stress intensity factor KI and the 
fracture toughness KIc, as represented by: 

IcK K=  (1-3) 

Rankine’s criterion is effective for analyzing bodies without cracks, while the 
energy-based (Griffith) criterion is suitable for bodies that have a sufficiently large 
crack. However, both criteria have limitations. Specifically, the stress criterion 
predicts a null failure load for a body containing a crack, as the stress field becomes 
singular at the crack tip. Conversely, the energy-based criterion predicts an infinite 
failure load for a crack-free body, since the stress-intensity factor is zero when there 
is no crack. Clearly, the aforementioned criteria are effective for extreme cases, 
such as bodies with no cracks or those with large cracks. However, they are not 
applicable for intermediate scenarios, such as bodies with short cracks or sharp 
notches. 

To address these limitations, various failure criteria have been introduced in the 
literature. For numerical applications involving quasi-brittle materials, one notable 
model is the Fictitious Crack Model (FCM), introduced by Hillerborg et al. [6]. This 
model considers both the tensile strength and fracture energy of the material in 
question. The FCM, along with the strictly related Cohesive Zone Model, 
necessitates the implementation of a specialized numerical algorithm within 
structural design codes. So, it offers a highly versatile tool for the analysis of 
structures made from quasi-brittle materials. 

Simpler criteria can also be proposed by introducing a material characteristic 
length lf. This facilitates obtaining analytical results, especially for straightforward 
geometries, or allows for the coupling of the failure criterion with a linear elastic 
analysis conducted via computer simulations, such as the Finite Element Method. 
The role of the characteristic length lf is to incorporate the fracture toughness into 
the stress-based criterion or the tensile strength into the energy-based criterion. 
These models are explored in more detail in the following section. For clarity, 
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consider the scheme presented in Fig. 1-1. In this scheme, the crack is subjected to 
Mode I loading, and it extends along the x-axis and has a length of 2a. 

 

Fig. 1-1. A schematic view of a central crack in an infinite plate under remote stress of . 

1.4 Theory of Critical Distances and Quantized Fracture 
Mechanics 

In the stress-based failure criterion, failure is expected to occur when the 
average stress within a segment of length lLM ahead of the crack tip reaches the 
critical value c. In other words, failure is achieved when the force resultant over a 
segment of length lLM located in front of the crack tip attains the critical value c × 
lLM. It is worth noting that the stress criterion has historical roots in the work of 
Neuber [7] and Novozhilov [8]. The criterion can be expressed mathematically as 
follows: 

( )dLMa l

y c LMa
x x l 

+

=  (1-4) 

Clearly, this criterion reverts to Eq. (1-1) for a specimen without a crack under 
tensile loading. Conversely, the value of the material length lLM must be determined 
by imposing Eq. (1-3) for a relatively large crack, i.e.,  a ≫ lLM. In this scenario, the 
asymptotic stress field / 2 ( )y IK x a = − can be employed. Substituting this into 
Eq. (1-4) yields: 





x

y

2a
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 

 
=  

 
 (1-5) 

To yield accurate results for intermediate cases, the stress field used in Eq. (1-4) 
should be the exact solution, rather than the asymptotic one applicable as x →a. For 
example, in the case of a central through-crack in an infinite body, Westergaard’s 
solution should be employed. When an exact analytical solution is not available, 
the stress field can be determined numerically using finite element analysis. It 
should be noted that Eq. (1-5) was proposed by Taylor, refining this criterion 
further. The method is termed the Theory of Critical Distances, a name stemming 
from the fact that failure is assessed over a material-dependent distance. 

The energy criterion, as defined by Eq. (1-6), was pioneered by Pugno and 
Ruoff [9] under the name of Quantized Fracture Mechanics. According to this 
criterion, failure occurs when the energy available over the crack extension length 
(lE) attains the critical value Gc×lE. This can be mathematically formulated as 
follows: 

2 2
c( )d or ( )dE Ea l a l

E I Ic Ea a
a a l K a a K l

+ +

= = G G  (1-6) 

Clearly, this criterion reverts to Eq. (1-3) for a specimen with a large crack. 
Conversely, the value of the material length lE must be determined by imposing Eq. 
(1-1) for a specimen with a vanishing crack, a = 0. In this context, considering only 
through-cracks in two-dimensional geometries, the asymptotic value for the stress-
intensity factor KI is given by IK c a = , where c is a dimensionless factor called 
shape factor. It is equal to 1 for center cracks and 1.122 for edge cracks. Substituting 
this expression into Eq. (1-6) results into: 

2
2 Ic

E
c

Kl
c 

 
=  

 
 (1-7) 

To obtain meaningful results, the function describing the stress intensity factor 
in Eq. (1-6) should be exact, rather than asymptotic, as a approaches zero. However, 
it is important to note that when the stress-intensity factor vs. crack length (a) 
functions are readily available in SIF handbooks, Eq. (1-6), the energy criterion, is 
much simpler to apply compared to Eq. (1-4), the stress criterion. This is because 
an analytical solution for the stress field needed in Eq. (1-4) is often not available, 
therefore, requiring finite element analysis for each specific crack length a. 
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A second observation regarding the failure criteria discussed above is that the 

characteristic lengths (Eqs. (1-5) and (1-7)) serve as indicators of the material’s 
brittleness. For example, from Eq. (1-4), it becomes evident that a very small 
characteristic length implies that the failure load is primarily influenced by the 
asymptotic stress field, leading to a brittle structural behavior governed by material 
toughness (Eq. (1-3)). Conversely, a very large characteristic length suggests that 
the failure load is influenced by the entire stress field, resulting in a ductile 
structural behavior governed by material strength (Eq. (1-1)). In essence, the 
brittleness of the structural behavior is determined by the ratio of the material length 
to a characteristic length of the structure itself. This ratio aligns with the brittleness 
number introduced by Carpinteri [10]. 

The physical interpretation of the two criteria (Eqs. (1-4) to (1-6)) is 
straightforward: fracture does not propagate in a continuous manner but rather 
through finite extensions of the crack, the length of which is a material constant. 
From a physical standpoint, it is worth noting that many, if not all, fracture 
processes involve discontinuous crack growth instead of smooth, continuous 
extension. This is observed at least in the initial stages of the fracture process, as 
documented for various materials such as metals [11], polymers [12], and bones 
[13]. These discontinuous crack advancements are likely influenced by the 
material’s microstructure, such as barrier spacing or grain boundaries, contributing 
to phenomena like snap-back. However, a complete understanding of these 
microstructural processes remains elusive.  

It is noteworthy that the crack extensions, as defined by Eqs. (1-5) and (1-7) for 
the stress and energy criteria, are identical for a center crack but exhibit slight 
differences for an edge crack. Simulations conducted in [14] revealed that while the 
predictions made by these two criteria are generally similar, they are not identical.  

1.4.1 TCD for finite fatigue life estimation 

To employ the TCD approach within the static loading, input data include c 
and KIc. To expand its application to finite fatigue life failure, one needs access to 
the critical stress and SIF amplitude as functions of the number of cycles until 
failure, as outlined in [15]. Wöhler curve for an unnotched specimen can serve as a 
representation of how the critical stress varies with the number of cycles until 
failure: 

( ) sb
f f sN a N  −

= =  (1-8) 

Taking inspiration from Basquin equation [2], it is possible to assume a power-
law relationship with respect to N for the critical SIF, KIf [16,17]: 
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( ) kb
If If kK K N a N −

= =  (1-9) 

It is worth noting that Eq. (1-9) is equivalent to using a critical distance lf, LM 
that varies with the number of cycles to failure, as described by a power-law 
equation. Eq. (1-10) illustrates that the parameters al and bl are straightforwardly 
related to as, bs, ak, bk: 

2

, ,
2( ) lIf b

f LM f LM l
f

K
l l N a N −

 
= = =    

 (1-10) 

Indeed, in the original paper [15], the Authors directly employed Eq. (1-10) 
rather than Eq. (1-9), deriving the function lf,LM (N) through an inverse calibration 
method utilizing stress-life data associated with the sharpest notched sample. 
Subsequently, by substituting c and lf,LM in Eq. (1-4) with f and lf,LM one gets: 

,

,( )df LMa l

y f f LMa
x x l 

+

=  (1-11) 

With a known nominal stress amplitude for the sample, y, there exists a single 
unknown variable N, whose solution determines the number of cycles to failure, Nf. 

In order to obtain the two free parameters in lf, LM (Eq. (1-10)), namely al and bl 
(or equivalently, ak and bk for KIf), necessitates a minimum of two data points. In 
[15], two distinct methods were suggested for this calibration process. The first 
method involved the use of two extreme scenarios in the finite fatigue life regime, 
specifically the static and fatigue limits. The second method utilized stress-life (SN) 
data obtained from a notched sample across a wide range of finite fatigue lives to 
calibrate the parameters. In this thesis, both approaches are employed. 

1.5 Finite Fracture Mechanics criterion 

The coupled stress and energy criterion, Finite Fracture Mechanics (FFM), 
seeks to bridge the shortcomings inherent in the stress-based and energy-based 
criteria when they are independently taken into account. In both approaches, the 
introduction of the internal length l accommodates limit cases –namely, the long 
crack failure load for the stress criterion and the no crack failure load for the 
energetic criterion. However, the fulfillment of one criterion typically implies the 
violation of the other. Specifically, when the stress-based criterion is met, the 
energy released during the crack extension may not necessarily equal Gc×lE, 
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violating the energy balance. Conversely, when the energy-based criterion is 
satisfied, the resultant of the stresses acting on the crack extension might not align 
with the product c×lLM. 

Thus, the need arises for a coupled approach that harmonizes these two facets 
to yield a more comprehensive failure criterion. The idea is to establish a framework 
in which both the stress and energy conditions are satisfied, with the characteristic 
length, lc, being not only a material constant but a structural variable: 

2 2

( )d

( )d

c

c

a l

y c ca
a l

I Ic ca

x x l

K a a K l
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+

+

 


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




 (1-12) 

Eq. (1-12) states that failure occurs when two conditions are met. First, the 
stress in a segment of length lc is larger than c×lc. Second, the energy available for 
the crack to grow in that segment is greater than Gc×lc. Eq. (1-12) consists of two 
inequalities with two unknowns, and meeting both conditions is both necessary and 
sufficient for the crack to grow. It can be straightforwardly verify that the lowest 
load at which both inequalities are met is when they are rigorously satisfied [18]. 
In other words, in the context of what are referred to as positive geometries, that is 
the predominant scenario, the set of inequalities presented in Eq. (1-12) transforms 
into a pair of equations with two variables: the failure load (for instance, the critical 
remote stress, which is implicitly embedded in the stress field and the SIF) and the 
critical crack advance. 

Note that a similar criterion was proposed by Leguillon [19,20] to predict the 
failure load in a three-point bending beam with re-entrant corners of varying 
opening angles. In Leguillon’s approach, the stress condition is based on a 
pointwise criterion. However, in this thesis, the focus is only on Eq. (1-12).  

1.5.1 FFM for fatigue limit estimation 

More recently, an adaptation of FFM has been introduced to estimate the fatigue 
limit of notched elements. This adaptation was achieved by substituting the 
mechanical properties, typically observed in static loading, with their respective 
counterparts at the fatigue limit [21,22]: 
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 (1-13) 
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In this equation, Δ0 shows the fatigue limit or the high-cycle fatigue strength 

related to the unnotched specimen, while ΔKth stands for the threshold value of the 
SIF range related to the cracked sample. It should be noted that both material 
attributes (Δ0 and ΔKth) should correspond to the same load ratio, R. Similar to 
FFM for static loading, Eq. (1-13) once more demonstrates a system with two 
unknowns: the critical crack advance lRf, and the fatigue strength ΔRf, implicitly 
embedded in Δy and ΔKI. 

 

1.6 Phase Field approach 

The Phase Field model provides a continuum-based framework for 
approximating fracture phenomena, thereby eliminating the need for explicit 
tracking of the crack interface. In this methodology, material heterogeneities, such 
as cracks, are characterized by a smooth function that delineates the evolution of 
damage, d, between two reference states: intact material and a fully developed 
crack, see Fig. 1-2.  

 

Fig. 1-2. Regularized crack approximation based on Phase Field approach. 

The theoretical foundation of the Phase Field  model for fracture is rooted in 
the principles of variational mechanics, as established by Francfort and Marigo [23] 
in 1998 and subsequently refined by Bourdin et al. [24] in 2000. The model 
comprehensively captures the entire sequence of crack initiation, propagation, and 
branching by minimizing the system’s energy functional. This minimization yields 
a set of coupled partial differential equations (PDEs) that govern both the 
mechanical deformation and the evolution of the Phase Field (damage).  

To start, assume the following conditions for the problem: isothermal 
conditions, negligible inertial effects, smooth time-dependent loading, and brittle 
fracture conditions. These assumptions allow for the application of specific 
energetic principles associated with rate-independent systems [25], including an 
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energy balance, a dissipation inequality, and a stability criterion, applied to a well-
defined set of energetic variables. Additionally, the study assumes that small strains 
are present and that all dissipative processes are irreversible. Following the 
assumptions, for a linear elastic body, the internal energy density, W, can be written 
as: 

( ( ), ) ( ( ), ( )) ( )elW d g d d = + u u  (1-14) 

where el and  are the elastic energy density and fracture energy density of the 
solid.  represents the infinitesimal strain tensor, which can be calculated as the 
gradient of the displacement field, u. The variable d serves as a scalar indicator for 
the Phase Field (damage) parameter, with its value fluctuating between 0 and 1, to 
represent intact and fractured material. The function g is a non-increasing function 
which controls the shift in the material’s mechanical properties from an intact to a 
fractured state. Its value should be one for the intact state, and zero for the broken 
state. While various functions have been proposed in the literature [26,27], in this 
thesis, the most well-established relationship is used: 

2( ) (1 )g d d= −  (1-15) 

Focusing on fracture energy density, it can be written as [24]: 

2c ( )( )
4 w

w dd l d
c l


 
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 

G  (1-16) 

where 

1

0
( ) dwc w  =   (1-17) 

The parameter l is the key parameter that characterizes the width of the diffuse 
interface between different phases or domains, see Fig. 1-2. In other words, it sets 
the length scale over which the transition between different phases occurs. Gc 
represents the fracture toughness, and the non-decreasing function w is called 
dissipation function that describes the rate at which energy is dissipated or lost in 
the system due to irreversible processes. In other words, the energy dissipation due 
to the formation of new cracks in the material is governed by the dissipation 
function. The function should be equal to zero for the intact state, and equal to unity 
for the broken state. Here, focus is on two widely-used models for the dissipation 
function, which are called AT1 and AT2 [28]. In AT1, w(d)=d and cw=2/3, while in 
AT2, w(d)=d2 and cw=1/2. Note that the AT1 model was introduced to reproduce a 
constitutive behavior that includes an initial linear elastic branch, while for AT2, 
w′(0) is equal to zero, which implies a vanishing threshold for the onset of damage. 
As a result, the material model does not feature an initial linear elastic branch. 
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Considering D-dimensional body  by integrating over its domain, energy 

functional can be written as:  

2( )( , ) ( ( ), ( )) d d
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l el
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G w dE d g d l d
c l 


 

= + +  
 

 u u x x  (1-18) 

-convergence ensures that the regularized energy functional, El, is a valid 
approximation to the unregularized functional, particularly as l approaches zero. It 
provides a rigorous way to understand how the solutions to a regularized problem 
approximate the solutions to the original. Specifically, -convergence results 
guarantee that both the minimum values (minima) and the configurations that 
achieve these minimum values (minimizers) of El will converge to the 
corresponding minima and minimizers of the unregularized functional when l tends 
to zero. 

Utilizing the energy functional in Eq. (1-18) and incorporating the 
irreversibility condition, ḋ ≥ 0, results in the governing equations. These equations 
address both the balance of momentum and the evolution of the Phase Field, along 
with their corresponding boundary conditions. For more information, see [29,30]. 

1.6.1 Decomposition of the elastic strain energy density 

To account for the asymmetry in materials behavior under tension and 
compression, a decomposition of the elastic strain energy into active and inactive 
components is required. This is an important feature, especially in fatigue, where 
the material undergoes several tension and compression cycles. For this reason, the 
elastic strain energy density can be written as: 

,0 ,0 ,0( ( ), ( )) ( ) ( ) ( ) ( , ) ( )el el el el elg d g d d    + − + −= + = +    u  (1-19) 

In this context, ,0 ( )el +  and ,0 ( )el −  represent the active and inactive segments of 
the undamaged elastic strain energy density ,0el . Consequently, the stored elastic 
strain energy density in a damaged material is divided into an active component 

,0 ,0( , ( )) ( ) ( )el elg d g d + +=  , which undergoes degradation, and an inactive component 

,0 ( )el −  which remains unaffected by the Phase Field parameter. In the following, 
some of the common decompositions are mentioned. 

Isotropic split [24]. It is the simplest model which allows for the degradation 
of the entire elastic strain energy density. As a result, it allows the material to 
undergo damage under both tension and compression.  
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where  and  are Lamé parameters. 

Volumetric/Deviatoric split [31]. In this model, the degradation function 
impacts only the energy density associated with the deviatoric component and the 
positive volumetric portion of the strain tensor. The mathematical expression of it 
can be given as: 

2 22
,0 ,0

1 1( ) ( ) ( ) , ( ) ( )
2 2el dev dev eltr tr tr  + −

+ −
= + =      B B  (1-21) 

where B =  +2 /3 represents the bulk modulus of the body, and  represents the 
Macaulay bracket. 

Spectral Split [32]. This model distinguishes between the degraded and 
undegraded segments of the energy density by employing the spectral 
decomposition of the strain tensor, represented as 3

1 a a aa


= 
=  n n , where a 

and na are the eigenvalues and eigenvectors of the strain, respectively. Thus, the 
model can be cast as: 
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2el tr tr   


 = +      (1-22) 

No-Tension Split [33]. This model is simple and effective to mimic the 
behavior of brittle and quasi-brittle materials, such as masonry. These materials are 
typically strong in compression but weak in tension. The no-tension split allows the 
model to capture this behavior by degrading the energy associated with tensile 
strains, while leaving the energy associated with compressive strains undegraded. 

2 2
,0

1( ) ( ) ( ) , ( )
2el tr tr sym     


 = + =       (1-23) 

1.6.2 Relations between parameters 

In Phase Field modeling, a fundamental approach is to examine a one-
dimensional (1-D) homogeneous solution since the problem can be solved 
analytically. This analysis, rooted in the work presented in [29], allows for the 
derivation of the relations between the peak stress c, the fracture toughness Gc, the 
Young modulus E and the regularization length l for both AT1 and AT2 models: 
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1.7 Cohesive Zone Modelling 

One of the fundamental assumptions in the energy (Griffith) criterion is the concept 
of stress singularity, which assumes an instantaneous change in stress along the 
crack path as the crack grows. According to Griffith’s original formulation, points 
along the crack path move abruptly from a state of full integrity to complete 
fracture. This assumption has been shown to be inconsistent with experimental 
observations, where stress fields near the crack tip exhibit a finite range [34]. 

This limitation restricts the Griffith criterion’s predictive capability for crack 
initiation. In this model, if the stress at a point undergoes an instantaneous change, 
the energy dissipated during the process must reach a finite value instantaneously, 
drawing from the energy released during crack propagation. This is consistent with 
the concept of the energy release rate G, which is a key quantity in fracture 
mechanics [35]. However, as mentioned before, this condition is only feasible when 
a crack of finite length exists. In contrast, due to the differential scaling between 
energy dissipation and release, the Griffith criterion is not applicable for a crack 
with negligible length. Therefore, if this assumption is relaxed – meaning that the 
stresses can evolve in a more gradual manner – the energy required to create a new 
crack surface with an infinitesimal area can be met continuously, following a 
predetermined trajectory. This concept is the basis for Cohesive Zone Models 
(CZMs), initially introduced by Dugdale in 1960 [36] and Barenblatt in 1962 [37]. 
These models establish laws that correlate the separation of crack faces with the 
stresses transmitted across them, usually named traction-separation laws. 

Generally, CZMs define the normal tractions  along the cohesive zone as 
functions of the relative displacements s between the two surfaces,  = (s). These 
tractions become zero when the relative displacements reach a critical value sf . In 
case of symmetric cracking under Mode I loading conditions, a crucial 
characteristic of the CZM is that the area beneath the cohesive law curve is 
equivalent to the fracture energy. This relationship can be mathematically expressed 
as follows: 
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Based on this, there exists a direct relationship among the fracture energy, the 
cohesive law, and the final displacement. Possessing information on any two of 
these three parameters is sufficient to comprehensively define the problem. Similar 
equation as Eq. (1-26) can be written for Mode II of fracture; however mixed modes 
problems might be much more changing within this approach. 

In a broader context, the CZM can be seen as a specific application of damage 
mechanics, with some key conceptual differences. In CZM, damage is limited to a 
set number of defined surfaces, known as cohesive zones. The dimensionless 
separation parameter s/sf, often represented as , acts as a damage variable that 
controls the constitutive law for the material. In CZM, the area experiencing 
damage is called the process zone. This term is especially relevant for cracked 
bodies, as this is the area where irreversible processes mainly occur. 

In supporting the assumption of a continuous separation law and the presence 
of cohesive tractions, analysis of the microstructural features is useful. For example, 
in concrete, interactions among its components mainly lead to the formation of 
isolated microcracks and other phenomena. This reduces the material's ability to 
endure tractions. Detailed studies, such as those by Otsuka and Date [38], offer a 
complete understanding of the process zone in concrete. In composite materials, the 
existence of a process zone is also linked to the different behaviors of its 
components. Long fibers in the composite can act as traction bridges, helping to 
maintain a significant part of the material’s ability to bear loads. Interestingly, Huo 
et al. [39] proposed an approach to extract the traction-separation law based on 
digital image correlation (DIC). It is important to note that the form of the cohesive 
law is closely related to the material’s microstructure and how it fails. So, in 
addition to basic failure properties like strength and fracture energy, the specific 
form of the cohesive law also depends on the material. Many different forms have 
been proposed to accurately describe the behavior of specific materials or to address 
particular problems. For the sake of simplicity, the focus is on pure Mode I loading 
conditions. Some of the most commonly used forms of the cohesive law are 
discussed in the following and their shapes are presented in Fig. 1-3: 
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Fig. 1-3. Some of the common cohesive laws. (a) Dugdale (constant), (b) Linear softening, (c) 
Triangular, (d) Bilinear, (e) Exponential. 

Constant cohesive law [36]: The Constant Cohesive Law represents a 
simplistic yet effective approach for understanding and describing fracture 
processes, especially near the crack tip, where the behavior of materials under stress 
becomes critical. Initially proposed by Dugdale, this model is pivotal in addressing 
the plastic deformation occurring near the crack tip by capping the tractions at a 
predefined yield strength. By doing so, the model effectively mitigates the 
unrealistic stress singularities observed at the crack tip. This is particularly 
beneficial as it provides a more realistic representation of the stress distribution 
around the crack tip, aiding in the prediction and analysis of crack propagation and 
failure under various loading conditions. Furthermore, thanks to its simplicity, the 
Dugdale model lends itself well to analytical or semi-analytical solutions. 

Linear softening cohesive law [6]: It was introduced by Hillerborg, and is 
significantly useful when it comes to modeling fracture processes in concrete or 
similar materials, a behavior that has been substantiated through experimental 
findings. Basically, this model delineates the behavior of concrete as linear elastic 
as far as the tractions remain below the tensile strength. Once the tensile strength is 
reached, a linear softening phase ensues, extending up to a specified softening point, 
denoted as sf. The simplicity and empirical relevance of the Linear Softening model 
provide a useful tool for understanding and analyzing the fracture behavior of 
several materials.  
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Triangular cohesive law [40]: It was proposed by Geubelle and Baylor, and 

offers a more nuanced representation of material behavior under stress, especially 
in comparison to the Linear Softening law. This model consists of an initial linear 
hardening phase characterized by a finite slope, before transitioning to a softening 
phase similar to that of the Linear Softening model. The inclusion of an initial 
hardening phase not only reflects a more accurate behavior of certain materials 
under loading but also introduces an additional parameter into the model – the slope 
of the hardening phase. This additional parameter necessitates a definition, which 
adds a layer of complexity to the modeling process. However, this slope is often 
included for the sake of computational convenience, allowing for a smoother 
transition from the initial loading to the softening phase, and is typically set at a 
high value to ensure its impact on the overall modeling results is minimized. This 
high value helps in maintaining a near-constant stress level until the material 
reaches its tensile strength, after which the softening behavior dominates.  

Bilinear Softening cohesive law: The Bilinear Softening cohesive law extends 
the concept of linear softening by introducing two distinct slopes during the 
softening phase, aiming to account for the mechanisms that cause an increase in 
fracture toughness with crack growth [41]. In this law, an extra parameter is 
introduced to define the transition between the two slopes, effectively dividing the 
traditional concept of fracture energy into initial and total fracture energy. The 
initial fracture energy is associated with the energy required to initiate crack 
propagation, while the total fracture energy encompasses the energy needed to 
sustain crack growth up to the point of material failure. Note that the second slope 
is typically less steep, and could represent a slowed rate of traction reduction, 
possibly due to mechanisms like crack bridging or other toughening mechanisms 
that come into play in the last cracking stage. 

Exponential cohesive law [42]: The Exponential law proposed by Needleman 
in 1990 is a noteworthy model within cohesive zone modeling, characterized by an 
exponential form of traction-separation relationship. This law builds upon the 
concept of universal binding energy correlation, a notion initially brought forward 
by Rose et al. [43] in 1981. The universal binding energy correlation is a theoretical 
framework that relates the cohesive energy (or binding energy) between atoms to 
their separation distance, providing insight into the interatomic forces and the 
resultant material behavior at a macroscopic scale. The Exponential law leverages 
this concept to derive an exponential function that accurately represents the 
traction-separation relationship in a material as it undergoes fracture. 

1.8 Connection analysis of Phase Field, FFM, and CZM 
approaches 

In recent years, several attempts have been made to combine different models, 
leveraging the strengths of each. Regarding Phase Field and CZM, the Phase Field 
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regularized Cohesive Zone Model (PF-CZM), initially developed by Wu [44] and 
further elaborated by Wu and Nguyen [45], stands out as a pioneering approach 
applicable to both brittle and cohesive fractures. Compared to traditional discrete 
CZMs, such as those proposed by Wells and Sluys [46] and Wu and Li [47], the 
PF-CZM offers several advantages: it eliminates the need to track crack surfaces, 
avoids the penalty stiffness associated with intrinsic CZMs, and prevents crack face 
penetration. For a comprehensive discussion, refer to [48]. 

Considering the Phase Field model and Finite Fracture Mechanics (FFM), 
Doitrand et al. [49,50] reformulated the Phase Field approach to require the material 
tensile strength as input instead of the internal length classically used in Phase Field 
models. This reformulation addresses the challenge of identifying distinct internal 
length scales for various testing configurations of the same material, obviating the 
need to choose or identify an internal length. The implementation of this 
reformulated Phase Field method, termed Length-Free Phase Field (LF-PF), closely 
resembles the classical approach. However, the key distinction lies in substituting 
the internal length with a formulated expression incorporating the material's 
characteristic length and a normalized tensile strength term. This normalized term 
depends on the Poisson's ratio and the local principal stress ratio experienced by the 
material. 

To the author’s best knowledge, there is no existing approach that couples FFM 

and CZM. However, it is noteworthy that despite their different mechanisms—
continuous versus discrete crack growth—the energy expended to create a new unit 
fracture surface, Gc, is the same for both models. This condition is not typically met 
by simple strength criteria or by the Theory of Critical Distances. Furthermore, both 
CCM and FFM consider tensile strength: CCM incorporates it through the shape of 
the cohesive law, while FFM includes it in the stress condition expression. To date, 
there has been excellent correspondence between CCM with a constant cohesive 
law and FFM using a point-wise stress requirement, as well as between CCM with 
a linearly descending cohesive law and FFM using an average stress condition [51]. 

 

1.9 Problem statement and research objectives 

In recent years, composite laminates have emerged as paramount in advanced 
structural engineering, mainly due to their superior mechanical properties and 
multifunctionality. However, a comprehensive understanding of their failure 
mechanisms, especially under complex loading conditions, remains unsolved. One 
of the complex loading conditions which is also the most common failure mode in 
real structures is fatigue, and is still an open topic of study. Accurately estimating 
fatigue life is crucial in the design and maintenance of a wide range of mechanical 
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systems and structures. This assessment determines the number of loading cycles a 
material can withstand before failure. The preliminary objective of the thesis is to 
study fatigue and fracture in composite structures. The previous methods to analyze 
such problems are usually time-consuming, lack generality across various 
problems, or are not completely reliable. For this reason, the thesis focuses on 
proposing a novel fatigue failure criterion, grounded in Finite Fracture Mechanics, 
which has already demonstrated accuracy in the failure analysis of notched 
components under static loading conditions. Furthermore, in the last part of the 
thesis, we propose an approach to study fatigue failure based on the Phase Field 
model. 

Focusing on composite structures, debonding can be one of the main failure 
modes that defines the final load bearing of the structure. Therefore, first, FFM is 
extended to study the debonding behavior in composite structures, specifically the 
direct shear test, which is the most important test for studying debonding behavior 
in the external strengthening of existing structures. For this problem, a comparison 
with the cohesive zone model will also be provided for a complete analysis. Then, 
the FFM will be extended to estimate finite fatigue life of notched components in 
isotropic materials. Considering that the geometric discontinuities, including 
cracks, notches, and holes, are prevalent in mechanical structures, and since these 
discontinuities act as stress concentrators, they significantly influence the load-
bearing capacity and operational lifetime of the structural component. Therefore, 
providing an accurate yet simple criterion has high value. Next, the proposed model 
for isotropic materials will be extended to obtain the fatigue lifetime of notched 
laminated composites. To validate the model, an extensive experimental program 
on notched carbon fibre laminated composites is conducted. Finally, the Phase Field 
model, which was recently extended to fatigue, is examined and validated by 
experimental data to obtain the Paris curve for isotropic materials.  

The significance of this research goes beyond academic boundaries, extending 
to the practical problems of mechanical engineering and materials science. By 
offering a more reliable method for studying fatigue and fracture in composite 
structures, the thesis aims to reinforce safety standards in structural designs, thereby 
potentially preventing catastrophic failures, where the economic implications are 
also substantial. A precise understanding of fatigue can lead to an optimized 
maintenance schedule, providing significant savings by identifying when 
intervention is truly necessary. In an era increasingly conscious of environmental 
sustainability, the research promises an additional benefit: by developing structures 
with extended lifetimes, we can reduce material consumption and waste, promoting 
eco-friendly construction. This study also stands to invigorate future research, 
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serving as a foundational base upon which subsequent inquiries can develop. 
Industries such as aerospace and automotive can have valuable insights from our 
findings, refining their design strategies and material choices. Additionally, the 
thesis has an educational benefit. The methodologies and insights derived from this 
research can enrich academic curriculums, equipping the next wave of engineers 
and scientists with cutting-edge knowledge.  

1.10 Structure of the Thesis 

This thesis is organized to provide an exhaustive exploration of fatigue and 
fracture in composite structures, emphasizing the contributions of both the Finite 
Fracture Mechanics and the Phase Field approaches. 

Chapter 1: Introduction.  

The chapter presents some fundamental expressions within the domain of 
fatigue and fracture mechanics. It emphasizes the essential role of fracture 
mechanics in the engineering landscape, the challenges faced in current research, 
and then introduces the FFM and Phase Field methodologies, elucidating their 
respective merits, limitations, and potential intersections. The chapter provides a 
precise definition of the research objectives and an elaboration on the significance 
of the undertaken study. 

Chapter 2: Literature Review. 

This chapter provides a detailed chronological overview of the developments 
of FFM and Phase Field approaches. It systematically traces the evolution of key 
ideas and milestones, offering a comprehensive historical perspective that enriches 
the reader’s understanding. 

Chapter 3: Analytical Modeling of Debonding Mechanism in Direct Shear 
Tests Accounting for Residual Strength. 

This chapter delves into the complexities of the debonding mechanism, 
specifically within the context of direct shear tests. This chapter acknowledges the 
importance of considering residual strength and utilizes analytical modeling to 
rigorously investigate this issue. Following an introductory section that 
contextualizes the importance of understanding debonding mechanisms, the chapter 
outlines the methodologies for modelling debonding by FFM and CZM, presents 
the results, engages in comprehensive discussions, and concludes with key 
takeaways from the study. 

Chapter 4: Extension of Finite Fracture Mechanics Approach to Assess the 
Lifetime of Notched Components. 
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The focus of this chapter is to extend the FFM approach to assess the lifetime 

of notched components. Understanding the behavior of notches is crucial due to 
their presence in mechanical structures. After presenting the main idea behind, the 
model is developed and validated using five different sets of experimental data from 
the literature, encompassing a wide range of materials, notched geometries, loading 
conditions, and ratios for a wide range of fatigue lives. 

Chapter 5: Extension of Finite Fracture Mechanics and Theory of Critical 
Distances to Fatigue Life Prediction of Notched Orthotropic Composite Laminates. 

Starting from the previous chapter concepts and results, Chapter 5 extends FFM 
and integrates the Theory of Critical Distances to predict the fatigue life of notched 
orthotropic laminated composites. To validate the model, extensive ad hoc 
experimental tests were conducted, and the results are also presented in this chapter. 

Chapter 6: Implementation of Phase Field to Model Fatigue of Brittle 
Materials. 

The penultimate chapter of the main body focuses on the implementation of the 
Phase Field approach, particularly concerning the fatigue behavior of brittle 
materials. Recognizing the challenges associated with modeling such behavior, the 
chapter employs the Phase Field to offer new insights. Then, the model is validated 
by experimental data from literature. 

Chapter 7: Conclusion and Future Work. 

This chapter presents the main insights from the preceding chapters, drawing 
coherent conclusions. It further outlines prospective directions for subsequent 
research in the field of fatigue and fracture of composite structures.   
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Chapter 2 

2. Literature Review 

Fatigue and fracture mechanics have occupied an important position in 
mechanical engineering and materials science for decades. Over the years, as the 
understanding of fractures and fatigue in materials and structures has expanded, a 
significant body of research has accumulated. This chapter offers a review of 
studies related to Finite Fracture Mechanics (FFM) and the Phase Field model, 
presenting a structured overview of theoretical developments and the latest updates. 
It aims to establish a solid foundation for discussions in subsequent chapters. By 
examining both the historical and current state of FFM and Phase Field approaches, 
this literature review highlights ongoing challenges and potential opportunities for 
future research. 

2.1 Finite Fracture Mechanics 

In this section, a historical review on the formation of FFM is first presented, 
and its application for notched components is mentioned. Then, the studies by FFM 
for analyzing the debonding behavior and failure in laminated composites are 
presented. 

Over many years, various approaches have been proposed to estimate the 
lifetime of materials weakened by different types of notches, affecting their 
resistance to failure. One of the most successful methods, introduced by Neuber [7] 
in Germany, is now commonly referred to as the Theory of Critical Distances 
(TCD). Neuber’s method starts with the idea that the elastic stress caused by stress 
concentration is not as high as what is suggested by continuum mechanics theory. 
Based on this idea, Neuber suggested that to find the actual stress impacting the 
failure process, one should average the stress near the peak of the stress 
concentration over elements like crystals or structural particles. A few years later, 
Peterson [52] offered a simpler application of this concept. He argued that the 
reference stress, which should be compared to the material's strength, can be easily 
calculated at a specific distance from the tip of the stress concentrator. Several years 
later, the concept was reformulated to include both classical and Linear Elastic 
Fracture Mechanics. To this end, Taylor [53] introduced a formula for determining 
the critical distance, broadening the scope of the approach for assessing the fatigue 
strength of notched components. The updated methodology is termed the Theory of 
Critical Distances (TCD). Within this framework, the approach by Neuber [7] is 
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called the line (averaged) method, and the approach by Peterson [52] is called the 
point method. Based on the work by Taylor, for static loading conditions, the 
critical distance for brittle materials is a function of a characteristic length and can 
be obtained as a function of fracture toughness, KIc, and the ultimate strength of a 
plain specimen, c, as lch = (1/) (KIc /c)2. Clearly the characteristic length is only 
a function of material properties. The critical distance for the point method is lPM = 
1/2 lch, and for line method is lLM = 2 lch.  

Due to its simplicity and robustness, the TCD has been developed for a variety 
of problems. In the context of static loading, the strength of notched samples under 
mixed-mode loading conditions was accurately estimated by the TCD in [54]. The 
approach proved effective not only in predicting the failure load but also in 
determining the direction of crack propagation. Using analytical stress fields, Smith 
et al. [55] demonstrated the influence of T-stress on failure predictions by TCD for 
PMMA. The study highlighted that the impact of T-stress increases with greater 
dominance of Mode II loading. More recently, an extensive experimental program 
on blunt V-notches was conducted by Ayatollahi and Torabi [56] to verify the TCD 
approach for estimating the failure load of brittle materials. In a different 
application, TCD was adapted to predict static failures in notched low-carbon steel 
specimens undergoing large-scale plastic deformations [57]. The study confirmed 
the high accuracy of TCD-based predictions – within a 15% error margin – using 
post-processed results from linear-elastic Finite Element Analysis. A marginally 
higher level of precision was achieved when incorporating elasto-plastic analysis. 
As the use of additively manufactured materials is becoming more and more 
common, the TCD approach has been extended to assess the failure of notched 
samples made of acrylonitrile butadiene styrene (ABS) [58]. The study showed that 
the effects of different manufacturing angles can be neglected by averaging material 
properties. Despite this simplification, the model was found to offer acceptable 
accuracy in failure predictions.  

Besides, TCD has been developed to predict the finite fatigue life of structures. 
This development is grounded in the pivotal concept that the critical distance 
diminishes as the number of cycles increases, adhering to a power-law behavior 
[15]. The two parameters that describe this dependency are functions of both the 
material and the loading ratio. Owing to the dependence of both the critical distance 
and fatigue strength on the number of cycles, an iterative method was proposed to 
determine the number of cycles until failure. Subsequently, the model was 
expanded to encompass multiaxial loading conditions by integrating the TCD with 
the critical plane approach [59]. To validate the model, several experimental fatigue 
tests were conducted under combined tension and torsion in both in-phase and out-
of-phase scenarios. It is worth mentioning that due to the robustness of the model, 
the TCD has been recently applied to various fatigue conditions, ranging from 
torsional [60] to variable amplitude loading [61–63]. 
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As previously discussed, within the static framework, the TCD relies on a 

critical length, hypothetically intrinsic to the material. This becomes problematic in 
specific configurations, such as small size devices, where this material length scale 
approaches or even surpasses the dimensions of the structure. To address this 
limitation, Leguillon [20] proposed a coupled fracture criterion commonly known 
as FFM. Analogous to TCD, FFM posits that crack extension takes place by finite 
increments. However, unlike TCD, FFM calculates the failure load and the critical 
distance by simultaneous fulfillment of two different criteria: a stress condition and 
an energy condition. As a result, the finite crack extension evolves into a structural 
parameter, thereby incorporating geometric considerations. This stands in contrast 
to the TCD methodology, where the critical distance remains solely a material 
parameter. Cornetti et al. [18] developed independently a similar criterion, but in 
this criterion the stress condition is in average form, while in Leguillon’s proposed 
method [20], the stress at a point (similar to point method in TCD) should not 
exceed the material strength. The superior accuracy of FFM over TCD for sharp V-
notches under Mode I was shown by Carpinteri et al. [64]. Subsequently, the FFM 
model successfully employed for static failure prediction of blunt notches under 
Mode I [65,66] and mixed mode loading conditions [67]. Notably, Sapora et al. [68] 
employed several experimental data sets on sharp V-notched samples under mixed-
mode loading, to illustrate the accuracy of the FFM model. It is worthwhile to 
mention that Doitrand and Leguillon [69] extended the FFM criterion to estimate 
crack initiation by means of 3D finite element modeling. For a review on FFM and 
its applications, please refer to [70,71]. 

Moving from static to cyclic loading, the model was successfully extended to 
fatigue limit regime by Sapora et al. [21,22,72]. They checked the validity and 
accuracy of FFM for different notched geometries (from sharp cracks to blunt V-
notches) under Mode I loading conditions. Studies by Shen et al. [73] and Liu et al. 
[74] have drawn comparisons between TCD and FFM predictions concerning the 
fatigue limit of V-notched components. These investigations revealed that while 
both criteria yield comparable results, FFM demonstrates superior precision for 
blunter notches, given that the critical distance is influenced by the radius of 
curvature. It is beneficial to highlight that several research papers in the literature 
[75,76] have validated that the critical distance is intrinsically linked to geometrical 
properties, contrary to the foundational assumptions of TCD. It is worth noting that 
based on an analogy between the Dugdale model [36] and the FFM criterion, Murer 
and Leguillon [77,78] tried to extend the FFM to fatigue loading conditions, but the 
model was not validated by the experimental results. This extension was achieved 
by considering a gradual degradation process along the presumed crack path. 
Notably, the model identifies a parameter that aligns the rate of crack advance with 
the Paris Law for pre-existing long cracks. 

The literature on the applications of FFM to interface failures and debonding in 
composite structures is rich and evolving. Cornetti et al. [79] for the first time 
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extended FFM for determining the debonding load in composite structures using an 
elastic interface model. Another study extended this by applying FFM to a 
composite structure called double pull-push shear test, which is an important 
configuration in the context of reinforcement tests in civil engineering [80]. The 
paper employs Timoshenko beam theory and a Linear Elastic Brittle Interface 
Model (LEBIM), to predict the critical load for debonding. Interestingly, a 
comparative study between CCM and FFM for predicting debonding in double 
cantilever beam (DCB) test showed that both methods closely match in their 
predictions [81]. This paper also compares these approaches with simple and 
enhanced beam theories, highlighting the superiority of predictions by CCM and 
FFM for less brittle interfaces. In [82], a new numerical procedure based on LEBIM 
and FFM was developed by demonstrating its applicability in 2D Boundary 
Element Method codes. Furthermore, a hybrid method based on Leguillon’s 
approach has been proposed to assess interface debonding, focusing on the integrity 
of adhesive bonds under severe thermal loading conditions [83]. Following the 
extension of FFM to 3D failure analyses [69], Doitrand and Leguillon [84] 
compared the results of 2D and 3D FFM formulation to predict crack initiation in 
scarf adhesive joints. 

In the context of laminated composites, Camanho et al. [85] used FFM to study 
the size effect in open-hole laminated composites. Their work demonstrated the 
effectiveness of FFM in accurately predicting experimental results. Subsequently, 
FFM has been applied to assess the failure of laminated composites across diverse 
structural configurations, including but not limited to, mechanically fastened joints 
[86], irregular multi-bolt composite repairs [87], open-holed laminates subjected to 
mixed-mode loading [88], and those exhibiting R-curve behavior [89]. Further 
validation of FFM's robustness and reliability was provided by Reinoso et al. [90], 
who conducted a comparative analysis between FFM and Phase Field approaches 
on notched thin-ply laminates, affirming higher accuracy of FFM for the considered 
problem. It is worth emphasizing that all the investigations mentioned, which are 
based on the FFM model, have analyzed failure under static loading. In this thesis, 
the application of FFM is extended for the first time to the finite fatigue life regime. 

2.2 Phase Field approach  

The variational Phase Field approach to fracture, originally introduced by 
Bourdin et al. [24] in 2000 as a regularization of Francfort and Marigo’s variational 
fracture formulation proposed in 1998 [23], has recently emerged as a 
transformative force in computational fracture mechanics, enabling new insights 
and capabilities in this field. The computational framework that arises from this 
variational Phase Field model eliminates the need for complex crack-tracking 
algorithms and additional criteria for managing phenomena such as crack branching 
or merging. As a result, the approach offers a unique flexibility in fracture 
simulations, which is likely a primary factor contributing to its success. Another 
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advantage of the Phase Field is its inherent ability to manage both crack nucleation 
and propagation. Nevertheless, the comprehension of the intrinsic nucleation 
criteria and the deliberation on their physical relevance are still complex and open 
issues. These aspects remain the focal points of ongoing debate within the Scientific 
Community.  

Variational Phase Field models can be categorized as a distinct subset of 
gradient-damage models, incorporating a length-scale parameter. -Convergence 
analyses indicate that as this parameter (length-scale) approaches zero, the global 
minimizers of the damage energy functional converge towards the global 
minimizers of energy for the sharp interface in Griffith model. In the context of 
rate-independent processes, this convergence principle extends to quasi-static 
evolutions through time-discretization, as elucidated by Giacomini [91]. However, 
it is crucial to note that this convergence is only achieved in terms of global 
minimizers, necessitating that the current state attains the lowest feasible energy 
level among all permissible alternatives at a given time increment. This concept of 
global minimization underpins the variational approach originally proposed by 
Francfort and Marigo [23] and plays a fundamental role mathematically, facilitating 
the application of direct methods in the calculus of variations. Nonetheless, the 
requirement for global minimality is incompatible with both experimental 
observations and numerical practices. Numerically, the pursuit of global 
minimization is impractical for large-scale computations, and existing numerical 
methods aim to identify local minimizers of the energy functional. Physically, local 
minimization – or meta-stability – emerges as a more fitting criterion for identifying 
states that are experimentally observable. These considerations were initially 
foreseen in the works by Bourdin et al. [24] and Francfort and Marigo [23], and 
have been elaborated upon in subsequent publications, see Francfort et al. [92] and 
additional Authors (e.g., Larsen [93]; Negri [94]).  

Within the variational Phase Field framework, crack nucleation is synonymous 
with the localization of the Phase Field variable. In a quasi-static evolution, when 
local minimization is employed as the criterion for selecting stable states, such 
localization events correspond to the destabilization of a solution characterized by 
nearly uniform damage levels. The nucleation loading refers to the stage at which 
the existing solution branch no longer acts as a local minimum for the energy 
functional. Importantly, this nucleation load may not align with the critical load 
derived from an evolution law that employs global minimization as its stability 
criterion.  

In the context of local minimization, the critical load is dependent on the 
internal length scale of the Phase Field model. Conversely, when global 
minimization is considered, the critical load converges to a value that is independent 
of this regularization length. Several researchers have adopted the concept of local 
minimization as a stability criterion, calibrating this internal length scale to induce 
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nucleation at a specific stress level under uniaxial conditions – essentially equating 
it to the known uniaxial tensile strength of the material at hand. This perspective, 
viewing the length scale as a material parameter, has been incorporated in multiple 
studies, including but not limited to those by Amor et al. [31], Borden et al. [95], 
Mesgarnejad et al. [96], Nguyen et al. [97], Pham et al. [29,98,99], Tanné et al. [28], 
and Wu et al. [100]. The influence of this length scale is analogous to the impact of 
the process zone size in cohesive fracture models. The investigation led by Tanné 
et al. [28] in 2018 stands as the most exhaustive study concerning crack nucleation 
under mode-I loading within the context of variational Phase Field models for 
brittle fracture. The authors posited that, given the aforementioned interpretation of 
the length scale and the utilization of local minimizers as a stability criterion, 
variational Phase Field models can accurately predict crack nucleation under mode-
I conditions across a diverse array of geometries and notch types for various brittle 
materials. 

Focusing on fatigue loading, in the current landscape of Phase Field fracture 
modeling, the phenomenon of fatigue is principally characterized by two key 
phenomenological considerations. These are predicated on the introduction of 
additional fatigue-related stored energies and dissipation potentials, which are 
functions of specific history variables. In the latter approach, a fatigue history 
variable is formulated as a locally accumulated quantity, serving as the argument 
for a fatigue degradation function that alters the dissipation potential relative to the 
static scenario. The primary distinctions among existing formulations lie in the 
definitions of the dissipation potentials and the fatigue history variables. In [101–
103], the approach introduces an extra potential for fatigue dissipation that does not 
depend on the gradient of the Phase Field variable. Rather, this potential is 
determined by the Phase Field and fatigue history variables. These variables 
accumulate over time, reflecting changes in both damage and elastic strains. Within 
this framework, studies have been conducted to explore the effects of aging [102] 
and temperature [101] under cyclic loading conditions. 

A novel approach to modeling fatigue failure, based on the variational Phase 
Field model, is presented in [104,105]. In this model, standard Phase Field 
dissipation potentials are modified to allow for a decrease in the material’s fracture 
toughness as the corresponding fatigue scalar history variable increases. The 
accumulation of this fatigue history variable can be based on various factors, such 
as elastic strains [104], elastic strain energy density [105,106], or the notched-strain 
concept [107]. This innovative modification in modelling fracture resistance has led 
to the generation of phenomenological observations and curves that describe fatigue 
behavior, including the Wöhler curve, Paris law, and the Palmgren-Miner rule 
[105]. Recent extensions of this approach have incorporated considerations for 
residual stresses [108] and elasto-plastic deformations [109]. 
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Conversely, the incorporation of fatigue effects is achieved by defining a 

fatigue-related stored energy term within the total energy of the system. In this 
context also, the uniqueness of the presented formulations relies on the specific 
definition of the fatigue-related stored energy and its associated dependencies. In 
reference [110], an auxiliary fatigue damage variable is introduced, whose 
evolution is empirically modeled in accordance with the Miner rule and the 
Chaboche concept. A corresponding fatigue-related energy term is then defined, 
which is a function of both this additional fatigue variable and the Phase Field 
variables. This formulation ultimately results in a fatigue driving force that appears 
in the Phase Field evolution equation, as well as an additional term in the 
constitutive relation accounting for fatigue-induced micro-stresses. In the study of 
fatigue behavior in rubber materials [111], the energetic contribution of the fatigue 
mechanism is dependent on the Phase Field variable and an accumulated history 
variable. This history variable is based on the elastic strain energy density. Separate 
from these two approaches, a novel framework is developed in [112] that employs 
a modified J-integral-based crack growth rate and stress intensity factor behavior. 
This modification serves to inform the kinetic law that governs the Phase Field 
evolution, offering yet another avenue for the study of fatigue phenomena. 
Considering the various models proposed based on the Phase Field approach under 
cyclic loading, it is noted that they have either not been validated or have been 
validated with limited experimental data due to high computational costs. In this 
thesis, a comprehensive validation and analysis of the model will be provided. 
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Chapter 3 

3. Debonding Analyses of Direct 
Shear Tests1 

3.1 Introduction 

One effective approach to increase or restore the load-bearing capacity of an 
existing structure is the implementation of external reinforcements. Fiber-
Reinforced Polymers (FRPs) are particularly advantageous in this context due to 
properties such as their high strength-to-weight ratio. More importantly, FRP plates 
and sheets have gained significant attention for their application in structural 
strengthening in recent years, largely due to their ease and speed of application. 
However, FRPs are not without limitations; they exhibit significant mechanical 
mismatch with the structure, and the epoxy resins possess poor fire resistance. To 
address these challenges, Fiber-Reinforced Cementitious Matrix (FRCM) 
composites have been recently considered, offering a promising alternative for 
structural reinforcement. 

A crucial challenge in structural strengthening is preventing the debonding of 
FRP or FRCM from the existing structure, as this directly impacts the load-bearing 
capacity. The direct shear test, also known as the pull-push test, is commonly used 
to investigate debonding in such structures. In this test the material interface is 
mainly subjected to shear forces, minimizing the effects of peeling stress [80]. 
Notably, in the literature, the one-dimensional shear-lag model has been widely 
used for this test [113]. In this chapter, the shear-lag model is applied using four 
different approaches, each accounting for residual strength; an aspect which is 
particularly important in FRCM systems. In these systems, debonding generally 
occurs when the fiber net detaches from the cementitious matrix. The friction 
between the components is considered to contribute to residual strength. Regarding 
analytical investigations into the debonding process, various approaches have been 
adopted to model FRP-to-concrete joints. Yuan et al. [114] utilized a bilinear 

 

1 Some parts of this chapter have been adapted from our work previously published as “Mirzaei, 

A. M., Corrado, M., Sapora, A., and Cornetti, P., 2021, Analytical Modeling of Debonding 
Mechanism for Long and Short Bond Lengths in Direct Shear Tests Accounting for Residual 
Strength, Materials (Basel). 14(21).” 
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cohesive law (without accounting for residual strength) to model the pull-push test, 
while Cornetti and Carpinteri [115] employed a linear-exponential softening law 
for the same problem. This subject was further addressed by Biscaia et al. [116] 
using an exponential softening law. Additionally, D'Antino et al. [117] applied a 
trilinear cohesive crack model to experimental data concerning PBO FRCM 
composites [118]. In related studies, two simpler constitutive interface laws were 
implemented in [119,120] to tackle the same debonding problem. Cornetti et al. 
[79] adopted FFM [18] to analytically determine the delamination load during pull-
push tests (without residual stress), revealing that FFM outcomes closely align with 
those obtained through cohesive crack models. 

The primary objective of this investigation is to undertake a parametric study 
examining bond behavior in direct shear tests, with a focus on the influence of 
residual strength. The next section will elaborate mathematical formulations, 
providing closed-form expressions for load values during the debonding process, 
maximum debonding load relative to bond length, and effective bond length. These 
formulations will be derived by using three distinct interface cohesive laws and a 
finite fracture mechanics approach. 

3.2 Mathematical modelling 

To provide simple closed-form equations for parametric studies, a one-
dimensional model is considered, which can be applied to various strengthening 
systems, as depicted in Fig. 3-1. These systems include: (a) FRP plates, (b) Near 
Surface Mounted (NSM) reinforcements, (c) embedded bars, and (d) FRCM 
systems. Given that both the total area and the perimeter of the reinforcement differ 
depending on the specific case, the equations are derived to be universally 
applicable across all geometries. For illustrative clarity, let us focus on the geometry 
in Fig. 3-1(a). However, the validation using experimental data will specifically 
focus on FRCM tests, denoted as geometry (d), where the influence of residual 
strength, which is the main focus in this study, is most pronounced. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3-1. Schematic representation of direct shear tests for various strengthening systems: (a) 
Externally Bonded FRP Plate, (b) NSM Reinforcement, (c) Embedded Bar, (d) FRCM Strengthening 
System Featuring n = 3 Longitudinal Fibers. To simplify the illustration, details of the adhesive layer are 
enlarged and provided only in configuration (a), while constraints designed to prevent block uplifting 
are omitted for clarity. 

To formulate the governing equation for this problem, the horizontal 
equilibrium equations can be employed for an arbitrary element within the 
reinforcement and for the composite system of the reinforcement and substrate (see 
Fig. 3-1(a), [121]): 
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d d 0p p pA L x − =  (3-1) 

0p p b bA A + =  (3-2) 

In this formulation, the subscripts p and b denote the reinforcement and the 
substrate block, respectively. The parameters Ap and Ab illustrate the cross-sectional 
areas of the reinforcement and the substrate, while Lp represents the bonded 
perimeter. Linear elastic behavior is assumed for all components. Using  for 
normal stress, E for Young’s modulus, and u for displacement along the 
longitudinal axis x, the stress-strain relationship can be expressed as i =Ei (dui /dx), 
where i = p, b. The shear stress at the interface between the substrate and the 
reinforcement is denoted by . Employing analytical manipulation, these relations 
yield the following governing second-order differential equation: 

2

2

d 1 [ ] 0
d p

p p

s L s
x E A




+
− =  (3-3) 

In this formulation,  = Ep Ap / Eb Ab represents the mechanical fraction of the 
reinforcement relative to the substrate. Additionally, s denotes the relative 
longitudinal displacement between the reinforcement and the substrate, expressed 
as s = up − ub. The normal stress within the reinforcement is described as follows: 

d[ ] [ ]
1 d

p
p

E ss s
x

 


= =
+

 (3-4) 

For further details regarding the mathematical manipulations, refer to [122]. In 
Eq. (3-3), the bond-slip law, [s], is considered as an inherent property of the 
bonding system, serving as a constitutive (cohesive) law for the interface. This 
study explores three distinct cohesive law models: the Equivalent-Linear Elastic 
Brittle Interface Model (EL), the Dugdale Model (DM), and the Rigid-Linear 
Softening Model (RL). Additionally, a fourth approach using Rigid Finite Fracture 
Mechanics Model (RF) is included. All models take into account the presence of 
residual strength. Subsequent sub-sections will introduce and apply each model to 
the analysis of reinforcement debonding. It is noteworthy that these models are all 
based on three key parameters: the fracture energy, Gc, the shear strength, c, and 
the residual strength, r. 
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3.2.1 Equivalent- Linear Elastic Brittle Interface Model (EL) 

Utilizing the Equivalent-Linear Elastic Brittle Interface Model, the interface is 
modeled as an array of linear springs, each characterized by a stiffness represented 
by k. Eq. (3-5) outlines the governing constitutive law for this interface. 

,
[ ]

,
f

r f

k s s s
s

s s





= 


 (3-5) 

In this formulation, sf refers to the final relative displacement which can be 
defined as the displacement at which the shear stress drops to the residual strength 
level. Given that the primary governing equation (Eq. (3-3)) is a second-order 
differential equation, two boundary conditions are required for obtaining the 
relative displacement, s. In accordance with Fig. 3-2 and Eq. (3-4), the boundary 
conditions can be set as: 

   0 0 0 0s = → =  (3-6) 

    ( )
1r p

r p
p p p

F a L
l a s l a F a L

A E A
 

 
−

=
+

− → − = −  (3-7) 

In this equation, a represents the length of the debonded or cracked region, 
where the stress distribution remains constant at r. Based on these boundary 
conditions, the relative displacement can be expressed as: 
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 (3-8) 
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Fig. 3-2. Distribution of shear stress along the interface for a debonding crack of length a. 

The associated stress can be determined by multiplying Eq. (3-8) by the 
interface stiffness, k. The maximum stress occurs at the boundary between the 
undamaged area and the frictional region, specifically at x = l−a. 
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 (3-9) 

Note that Eqs. (3-8) and (3-9) are applicable for any value of k. The current 
model is termed Equivalent because, unlike in the Linear Elastic Brittle Interface 
Model where the interface stiffness k is an independent parameter, in the EL model 
k is dependent on other interface properties as indicated in Eq. (3-11). Specifically, 
in the EL model (refer to Fig. 3-3(a)), both the stiffness k and the final displacement 
sf are functions of Gc, c, and r as follows: 
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The bond-slip, -s, behavior of the interface, as modeled by the EL approach, 
is illustrated in Fig. 3-3(a). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3-3. Cohesive laws for the interface based on: (a) Equivalent Linear Elastic Brittle Interface 
Model (EL), (b) Dugdale Model (DM), (c) Rigid Linear Softening Model (RL). (d) A dimensionless 
comparison of the models.  

It is worth noting that to justify the utilization of the grey area as the interface’s 
fracture energy, one can assess the work needed for crack closure in an infinitesimal 
step. The stress needed to close the crack is c −r, and the corresponding 
displacement is (c −r) / k. This accounts for the grey triangle observed in Fig. 
3-3(a), as corroborated by [120,123,124]. Similarly, the strain energy release rate G 
represents the elastic energy released by the spring at the crack tip. Therefore: 
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Crack propagation takes place when G meets Gc. In light of Eq. (3-12), this 
essentially means that the crack grows when max=c. Before advancing further, it 
is convenient to normalize the variables involved by introducing reference load and 
length values. The reference load can be defined as: 
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It can be demonstrated that, in scenarios lacking residual strength, Fc
∞ serves 

as the upper limit for the debonding load, typically attained for infinite (very large) 
bond lengths. This maximum is not a function of the bond-slip law, and solely 
depends on the fracture energy, as supported by different studies such as Cornetti 
et al. [79]. 

Accordingly, the characteristic length is specified as follows: 
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Eq. (3-14) demonstrates that lch serves as the bond length that can withstand 
Fc

∞ under conditions of uniform interfacial shear stress distribution equal to the 
interface shear strength, c. 

Dimensionless auxiliary variables may now be introduced in the following 
manner: 
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Therefore, the debonding load can be rewritten as: 
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3.2.1.1 Maximum load vs. bond length 

The maximum load during debonding, Fc, is a critical design parameter as it 
dictates the ultimate load-bearing capacity of the joint. Upon examination of Eq. 
(3-16), it becomes evident that this maximum load is attained at the initiation of the 
crack (a = 0) when the bond length falls below a certain threshold, denoted as  < 
lim, where: 
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 (3-17) 

For bond lengths exceeding lim, the crack length at which the maximum load 
is attained can be determined by setting the derivative of the debonding load, as per 
Eq. (3-16), with respect to the crack length a to zero. Thus, the crack length that 
maximizes the load is given by: 

lim  = −  (3-18) 

Consequently, the maximum or critical load Fc can be obtained by substituting 
Eq. (3-18) into Equation (3-16). To summarize, according to the EL, the expression 
for the maximum load is as follows: 
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 (3-19) 

It should be noted that in dimensionless terms, the maximum load is solely 
dependent on the normalized bond length and the ratio between the residual and 
undamaged strengths. This characteristic is consistent across the subsequent models 
discussed. The relationship between the maximum load and bond length, according 
to Eq. (3-19), is graphically represented in Fig. 3-4 for  ̅r = 0, 0.15. In the figure, 
the limit value of the bond length, lim, is depicted for  ̅r = 0.15, while it approaches 
infinity for  ̅r = 0. 
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Fig. 3-4. Graphical representation of the maximum load as a function of bond length according to 
EL for  ̅r = 0, 0.15. 

3.2.1.2 Effective Bond Length 

Fig. 3-4 reveals that the maximum load experiences a sharp increase for smaller 
values of bond length, subsequently showing a decline in slope until reaching a 
constant value for bond lengths greater than the limit value, as indicated in Eq. 
(3-17). In the regime of small bond lengths, the slope is proportional to the 
undamaged strength, c, whereas for longer bond lengths, the slope correlates with 
the residual strength r. 

To address this behavior, it is useful to introduce the concept of an effective 
bond length. This is a length beyond which any increment in the load is constrained. 
In the context of the EL, it is not advisable to equate the effective bond length with 
the limit bond length from Eq. (3-17), as the latter becomes infinite when r 
approaches zero. A more practical approach is to define the effective length as the 
bond length that can sustain  percent of the load at the transitional point between 
short and long bond lengths, denoted as lim. Further analytical work leads to the 
following expression for the effective bond length: 
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In the EL model, the effective bond length is evidently dependent on . Given 
that the value of Arctanh[1] is infinite, selecting high  values (nearing unity) may 
yield impractically large effective bond lengths. To mitigate this and generate 
realistic estimates of effective bond lengths by considering the residual strength, a 
 value of 80% was selected. This choice is illustrated in Fig. 3-4, where the 
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effective bond lengths are accentuated for both frictionless and frictional cases,  ̅r 
= 0, 0.15. 

Though the EL model has been previously introduced in existing literature, the 
present study offers an original contribution through Eq. (3-19), which presents the 
critical load. Additionally, the method for determining the effective bond length, as 
outlined in Eq. (3-20), is postulated to be more accurate. This updated approach 
incorporates friction, thus potentially providing a more reliable estimate than the 
simplified eff  4 presented in [119,120]. 

3.2.2 Dugdale Model (DM) 

In the DM, it is assumed that a constant shear stress, c, is presented within the 
cohesive process zone. Once the relative displacement s attains its critical threshold 
sf, debonding happens, causing the shear stress to drop to the residual strength r. 
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and 
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The bond-slip relationship based on the DM is depicted in Fig. 3-3(b). 
Similarly, the shaded area illustrates the fracture energy of the interface. 

For the calculation of the fracture load during debonding, the initial step is to 
obtain the minimum bond length necessary for a fully developed process zone. 
Appropriate boundary conditions for this computation are traction-free and no-slip 
conditions at x = 0. 

 0 0s =  (3-23) 

   0 0 0 0s = → =  (3-24) 

Utilizing Eqs. (3-3) and (3-21) (for s < sf) along with the boundary conditions 
(3-23) and (3-24), the distribution of slip is determined as follows: 
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For a fully developed process zone, the necessary bond length can be 
determined using the condition that at the end of this length, the relative slip equals 
sf, as depicted on the left side of Fig. 3-5. Notably, in this figure, the area beneath 
the curve of shear stress distribution illustrates the debonding load. Furthermore, 
for bond lengths exceeding the fully developed process zone, subsequent increases 
in load are minimal (as seen in stages (c) to (e) in Fig. 3-5) and are attributable only 
to residual strength. As a result, this length can be designated as the effective bond 
length leff for the DM model. Therefore, by setting s[leff] = sf and applying Eqs. 
(3-14), (3-22) and (3-25), the effective bond length is determined as follows: 
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Fig. 3-5.The shear stress distribution across various debonding stages according to the DM. Stages 
(a) to (g) correspond to long bond lengths (l > leff), whereas stages (h) to (l) are applicable for short bond 
lengths (l< leff). 
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Considering conditions described above, two distinct scenarios appear: one for 

long bond lengths (l > leff), represented on the left side of Fig. 3-5, and another for 
short bond lengths (l < leff), represented on the right side of the figure. Considering 
long bond lengths, subsequent calculations reveal that the load during the 
debonding (stages (c) to (g)) can be calculated as follows: 
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3.2.2.1 Maximum load vs. bond length 

According to Eq. (3-27), the maximum load is attained when  is equal to 
( − eff), corresponding to stage (e) in Fig. 3-5, left column. Conversely, for short 
bond lengths, the maximum load is realized at the onset of debonding, specifically 
at stage (j) in Fig. 3-5, right column. Therefore, the following expression holds: 
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In Fig. 3-6, the relationship between maximum load and bond length for  ̅r = 0, 
0.15 is depicted based on Eq. (3-28). The effective bond length, eff, is also marked 
in the figure for reference. It is noteworthy to mention that the maximum load 
corresponding to the limit/effective bond length based on EL and DM models is 
identical and exceeds cF  when friction is taken into account. 
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Fig. 3-6. Graphical representation of the maximum load as a function of bond length according to 
DM for  ̅r = 0, 0.15. 

3.2.3 Rigid-Linear Softening Model (RL) 

In the RL, depicted in Fig. 3-3(c), the interface exhibits a linear softening 
behavior. Specifically, the shear stress decreases linearly from c to r as the relative 
displacement, s, transitions from 0 to sf. The bond-slip law governing this behavior 
in the RL model is expressed as follows: 
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The final (relative) displacement based on RL model can be written as: 
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Similar to DM, to calculate the debonding load in the RL, it is necessary to first 
establish the minimum bond length for a fully developed softening zone, denoted 
as leff. The boundary conditions applied are no-slip and traction-free at x = 0, as 
specified in Eqs. (3-23) and (3-24). By employing the RL constitutive law for s < 
sf, Eq. (3-29), and inserting it into the governing Eq. (3-3), the distributions of 
relative slip and shear stress along the interface can be derived as follows: 
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(3-31) 
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Fig. 3-7 illustrates the distribution of shear stresses at various stages of 
debonding according to the RL. 

 

 

Fig. 3-7. The shear stress distribution across various debonding stages according to the RL. Stages 
(a) to (g) correspond to long bond lengths (l > leff), whereas stages (h) to (m) are applicable for short bond 
lengths (l< leff). 

For the RL model, the length required for a completely developed softening 
zone, leff, can be determined by setting s[leff] = sf in Eq. (3-31). Alternatively, this 
length can also be obtained by setting leff = r in Eq. (3-32). Consequently, the 
expression for leff can be formulated as follows: 
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For bond lengths greater than l > leff (as illustrated on the left side of Fig. 3-7, 

the applied load during the stages of debonding (from stage stages (c) to (e)) can be 
calculated using the following equation: 
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For stages (e) to (g), where  > −eff, solving Eq. (3-3) within the softening 
zone is required (employing Eq. (3-29) for the constitutive behavior). The related 
boundary conditions for this scenario are described by Eq. (3-24) alongside the 
following additional condition: 

  fs l a s− =  (3-35) 

Consequently, the relative slip s[x] for 0 < x < l−a is obtained. Its derivative 
evaluated at the right boundary reads: 
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Following the solution of Eq. (3-3) in the frictional zone – employing the 
second row of Eq. (3-29) and utilizing the boundary conditions expressed in Eqs. 
(3-35) and (3-36) – continuity in stress and displacement at x = l−a is ensured. 
Consequently, the relative slip s[x] for the interval l−a < x < l is determined. By 
assessing its derivative at the loaded end, the applied load for stages (e) to (g) can 
ultimately be computed using Eq. (3-4). 
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Eqs. (3-34) and (3-37) delineate the behavior of the applied load during the 
debonding process as specified by the RL. 

3.2.3.1 Maximum load vs. bond length 

For bond lengths that are less than the effective bond length  < eff, it is evident 
from Fig. 3-7 (right column) that the peak load is reached at stage (j). At this stage, 
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the entire interface undergoes softening, and the shear stress at the origin is 
0 = c. This can be expressed by employing Eq. (3-32). 

( )
0

sin 1
[ ]d

1
r

p p

l

c ch
r

cF L x x l L
 

 


 −  
= =

−  (3-38) 

For long bond lengths where   eff, the peak load is attained at stage (e). The 
value of the maximum load can be determined by substituting  = −eff into either 
Eq. (3-34) or Eq. (3-38). In summary, the equation for the maximum load can be 
represented as follows: 
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The behavior of maximum load versus bond length based on the RL model is 
depicted in Fig. 3-8, utilizing Eq. (3-39) for  ̅r = 0, 0.15. Notably, the maximum 
load associated with the effective bond length – represented by the first term in the 
second row of Eq. (3-34) – is higher in the RL model than those predicted by either 
the EL or DM models. 

 

Fig. 3-8. Graphical representation of the maximum load as a function of bond length according to 
RL for  ̅r = 0, 0.15. 
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3.2.4 Rigid-Finite Fracture Mechanics Model (RF) 

In this section, FFM is employed to examine the debonding process during the 
direct shear test. Although the model has been introduced previously, key 
parameters are presented again for the sake of completeness. As mentioned, in 
FFM, crack propagation is assumed to occur in discrete increments, denoted by lc. 
The discrete energy balance for such a test can be written as: 
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To facilitate both simplicity and a basis for comparison with rigid Cohesive 
Zone Models, such as DM and RL, a rigid interface is also considered for this 
model. This can be achieved by utilizing Eqs. (3-9) and (3-11) and setting k → ∞: 
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By inserting Eq. (3-41) into Eq. (3-40), the dimensionless form of the equation 
is derived as follows: 

2 2 2 2(2 ) (3 3 ) 1r rF F      − + + + +   (3-42) 

In this equation,  = lc/lch. The second (stress) condition for crack propagation 
stipulates that the average stress exerted over the crack advancement, lc, must 
exceed the interfacial strength, c. Given that the interface is characterized as rigid, 
the force within the plate is transferred to the block precisely at the crack tip, (x = 
l−a). Therefore, the stress criterion is determined as follows: 
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Employing Eq. (3-42), in conjunction with the dimensionless from of Eq. 
(3-43), provides the debonding load. This load can be regarded as the minimum 
value that fulfills the system of inequalities: 
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The inclusion of the Heaviside function H[] in the system of inequalities 
accounts for the special case of complete failure, where lc = l−a. In this situation, 
the energy condition is inherently satisfied.  
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(a) 

 
(b) 

 
(c) 

Fig. 3-9. Graphical depiction of inequality system: continuous lines indicate the energy condition 
(first inequality), while dashed lines show the stress requirement (second inequality). The red dot marks 
the minimum load, identifying the debonding load and corresponding crack growth. Normalized load vs. 
crack advance per RF model for (a) short bond length ( = 0.8) at debonding onset ( = 0); (b) long bond 
length ( = 3) at debonding onset ( = 0, stable crack growth); (c) long bond length ( = 3) at maximum 
load ( = 2) where crack growth becomes unstable. For all the cases, it is assumed that ̅r = 0.3. 
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To identify the maximum load, Fc, during the debonding process, two scenarios 

can be employed. The first scenario occurs when the normalized bond length, , is 
less than 1. In this case, the maximum load is attained at the onset of debonding,  
= 0, as illustrated in Fig. 3-9(a). The corresponding dimensionless load F c is  = , 
and crack propagation occurs in an unstable manner under load control, leading to 
instantaneous debonding across the entire interface. Conversely, for long bond 
lengths where  > 1, the minimum point of the system in Eq. (3-44) is realized for 
infinitesimal crack growth  = 0 and a dimensionless unit load, as shown in Fig. 
3-9(b). In this scenario, the debonding process is stable as the load required for 
debonding increases with the crack length a. However, as demonstrated in Fig. 
3-9(c), the debonding becomes unstable when  attains the value −1. At this point, 
the crack increment, , jumps from 0 to 1. The corresponding maximum load in this 
case is F c = 1 +  ̅r (−1). 

Based on the observations made earlier, it is evident that for long bond lengths, 
the debonding load is determined by the energy condition (the first equation in 
system (3-44)) with an infinitesimal crack increment  = 0 as long as  < −1. 
Conversely, the stress condition (the second equation in system (3-44)) governs 
when  > −1, where the crack advance is equal to the ligament ( = −). 
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It should be noted that the second row in Eq. (3-45)(3-44) is consistent with the 
corresponding term in the DM. 

3.2.4.1 Maximum load vs. bond length 

Based on the prior analysis, the relationship between maximum load and bond 
lengths is as follows: 
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Eq. (3-46) is depicted in Fig. 3-10 to show the relationship between maximum 
load and bond length based on RF model for  ̅r = 0, 0.15. The RF model consistently 
yields an effective bond length of unity (eff = 1), making it independent of residual 
strength. The maximum load corresponding to this effective bond length is cF  , 
which is lower than the predictions by previous models. 
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Fig. 3-10. Graphical representation of the maximum load as a function of bond length according to 
RL for  ̅r = 0, 0.15. 

3.3 Results and discussion 

This section explores parametric studies focusing on the impact of residual 
strength and bond length on the maximum debonding load. Furthermore, the 
relationships involving effective bond length are revisited more closely. The 
variations in load during the debonding process are evaluated based on different 
theoretical models. Finally, the results of the theoretical equations are compared 
with experimental data from the literature for validation. 

3.3.1 Maximum debonding load vs. bond length 

The maximum debonding load is graphically represented in Fig. 3-11, 
considering different models: EL, DM, RL, and RF. In this figure, the effective 
bond length for each model is shown by red lines. Additionally, in Fig. 3-11 (a), the 
limit for the bond length lim related to the EL model is highlighted by a green line. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3-11. Comparison of maximum debonding load against bond length and residual strength as 
per EL (a), DM (b), RL (c), RF (d). Effective bond lengths are indicated. For the EL model,  = 0.8, and 
the limit bond length is also emphasized. 
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In the scenario of  ̅r = 0 and long bond lengths, the DM, RL, and RF models 

predict a normalized maximum debonding load of F c = 1. On the other hand, the 
EL model demonstrates an asymptotic behavior that approaches unity. Moreover, 
in the context of the EL model, the critical bond length parameter lim, which 
distinguishes between short and long bond solutions, tends toward infinity by 
diminishing the residual strength. As a result, lim is not an effective metric for 
estimating the effective bond length for the EL model. 

In summary, Fig. 3-11 illustrates that each graph can be segmented into two 
distinct regions by eff. In the region to the left of eff, an increase in bond length 
results in a significant rise in the load. Conversely, in the region to the right, the 
increment in load with respect to bond length is relatively modest. Additionally, the 
influence of residual strength on the maximum debonding load is stronger for long 
bond lengths compared to short ones. 

To perform a comparative analysis, estimations of the maximum debonding 
load using different models are depicted in Fig. 3-12(a) for a constant value of 
residual strength  ̅r = 0.15. As observed, all models yield similar predictions for the 
maximum debonding load in the case of very short bond lengths. For long bond 
lengths, DM and RL provide nearly identical estimates, RF offers intermediate 
values, while EL yields the lowest estimations for the maximum debonding load. It 
should also be noted that the slope of the tangent at the origin is proportional to the 
undamaged shear strength c (represented as 1 in the dimensionless plot), whereas 
the slope of the linear segment during the frictional stage is proportional to r 
(represented as  ̅r in the dimensionless plot). It can be argued that when there is no 
available information regarding the shape of the bond-slip law, the EL model is 
recommended for use, as it provides the most conservative estimates for the 
maximum debonding load. Utilizing other models may result in an overestimation 
of this parameter. 
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(a) 

 

(b) 

Fig. 3-12. (a) Comparison of maximum debonding load as a function of bond length for EL, DM, 
RM, and RF models with a constant residual strength of  ̅r = 0.15. (b) effective bond length plotted against 
residual strength. In the case of the EL model,  = 0.8. 

3.3.2 Effective bond length 

For the sake of clarity, it is good to recall expressions for the effective bond 
length in their dimensional forms, according to the EL, DM, RL and RF models, 
respectively: 
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As mentioned before, according to Eq. (3-47), the effective bond length for the 
EL model depends on the parameter . Given that arctanh[1] is infinite, selecting 
high  values close to one can lead to unrealistic estimates of effective bond lengths. 
To obtain reasonable estimates for effective bond lengths across any value of 
residual strength, we opted for  = 80%, as illustrated in Fig. 3-12(b). 

It should be emphasized that Eq. (3-49) serves as an extended version of the 
formula mentioned in the Italian Standards CNR-DT 200 R1/2013 [125], 
considering the residual strength and the mechanical properties of reinforcement. 
Specifically, by tending r and  to zero, and incorporating the plate thickness tp = 
Ap / Lp, one can revert to the effective bond length expression as defined in CNR-
DT 200 R1/2013. 
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In Fig. 3-12(a), the estimated effective bond lengths, derived from Eq. (3-47) 
to (3-50), was illustrated for four different models. Furthermore, these estimates are 
presented as functions of the normalized residual strength in Fig. 3-12(b). Except 
for the RF, all other models indicated an increase in effective bond length with 
rising residual strengths, while the estimates by RF remain constant. Among the 
presented models, RL was the most conservative, offering the highest estimated 
values for effective bond length. 

A concluding remark considering the effect of residual strength, which could 
be significantly high, particularly for FRCMs is that neglecting it leads to an 
underestimation of both the debonding load and the effective bond length. 
Consequently, when employing equations such as Eq. (3-51), the full potential of 
the strengthening system is not optimally utilized. 
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3.3.3 Debonding load vs. relative crack length 

Fig. 3-13 presents the load during the debonding process for long bond lengths, 
using different models as described by Eqs. (3-16), (3-27), (3-34) (3-37), and 
(3-45). It is observed that all models, except the RF, predict a normalized load 
greater than one when  = 0, indicating the presence of residual strength even at the 
onset of debonding. Both the DM and RF models exhibit similar trends during the 
debonding process: initially a linear increase in load, followed by a linear decrease. 
However, it is worth noting that the RF model predicts lower values in the stable 
debonding phase. The RL model demonstrates a linear increase in load within the 
stable branch, culminating in a sharp drop after reaching the maximum load. In 
contrast, the EL predicts the lowest maximum load, accompanied by a gradual 
variation in load through the debonding process. 

 

Fig. 3-13. Variation of debonding load with respect to crack length  for  =  and  ̅r = 0.15. 

Fig. 3-13 confirms the trend observed in Fig. 3-12(a). Specifically, when 
arranging the models in descending order based on their estimated maximum load 
values, the sequence is DM, RL, RF, EL. This trend is also evident in Fig. 3-12(a) 
for a fixed long bond length. 

3.3.4 Comparison with experimental data 

To validate the models presented, experimental data for direct single lap shear 
tests on joints between polyparaphenylene benzobisoxazole (PBO) fiber-reinforced 
cementitious matrix (FRCM) and concrete were taken from existing literature [118] 
(the geometry is the one presented in Fig. 3-1(d)). The tests employed concrete 
blocks with a cross-section of 125 mm × 125 mm. Each fiber in the FRCM net 
featured a cross-section approximately 5 mm × 0.092 mm and had an elastic 
modulus of 206 GPa. These fibers were sandwiched between two layers of 
cementitious matrix, each with a 4 mm thickness. While the elastic modulus of the 
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matrix was not specified in the cited reference, it was assumed to be 30 GPa for the 
purpose of this study. 

To evaluate the accuracy of the models in estimating the maximum debonding 
load, experimental results were analyzed considering three distinct bond widths –
43 mm, 60 mm, and 80 mm – as well as six different bond lengths – 100 mm, 150 
mm, 200 mm, 250 mm, 330 mm, and 450 mm. Failure predominantly happened due 
to debonding between the PBO net and the cementitious matrix. Therefore, the area 
of the PBO fibers in contact with the matrix (Ap) was approximated as n×5 
mm×0.092 mm and the length of the contact perimeter (Lp) as n×2×5 mm, where n 
represents the number of PBO longitudinal fibers. The number of longitudinal 
fibers n was found to be 5, 7, and 9 for reinforcement-to-substrate widths of 43 mm, 
60 mm, and 80 mm, respectively. 

In four specimens, all having a bond length of 330 mm, the central PBO fiber 
was equipped with strain gauges. Utilizing these measurements, D’Antino et al. 
[117,118] subsequently derived an average bond-slip law characterized by the 
following parameters: Gc = 0.481 N/mm, c = 0.77 MPa and   = 0.06 MPa. It is 
noteworthy that the Authors employed a distinct definition for fracture energy, 
specifically, the total area under the -s curve up to sf. Consequently, their reported 
fracture energy corresponds to a value of 0.387 N/mm when the presented 
framework is considered. Based on the experimental data and utilizing Eqs. (3-13) 
through (3-15), the derived values are:  ̅r = 0.078, 819.3 NcF n =  and lch = 106.4 
mm. 

A comparison between experimental data and analytical predictions with 
respect to failure load per unit fiber as a function of bond length is presented in Fig. 
3-14. In the figure, theoretical outcomes are depicted through lines, while the 
experimental results for bond widths of 43 mm, 60 mm, and 80 mm are represented 
by squares, circles, and triangles, respectively. It is noteworthy that all the models 
exhibit good alignment with the experimental data. The agreement between 
theoretical predictions and experimental observations gains additional importance 
when considering that the interface parameters were not specifically fitted for this 
comparison. Instead, they were derived from strain and displacement measurements 
conducted on a single geometry, specifically one with a bond length of 330 mm. 
This implies that by examining just one bond length, the models possess the 
capability to predict failure across varying bond lengths and thicknesses. This 
serves as a sample of the robustness of the approaches presented, in addition to the 
high accuracy of the experimental measurements provided in [117]. 

Furthermore, for bond lengths in proximity to the transition length lch, the 
predictions from the DM and RF models are slightly less accurate. Experimental 
data indicates a smooth transition between short and long bond lengths, a feature 
better captured by the EL and RL models. Specifically, the EL model offers superior 
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predictions for short bond lengths, while the RF model aligns more accurately with 
experimental data for long bond lengths. This observation, coupled with the 
model’s simplicity, attests to the efficacy of the FFM approach in addressing the 
problem under study. Lastly, concerning data associated with varying 
reinforcement widths, Fig. 3-14 demonstrates that despite being one-dimensional, 
the models account for the width effect with reasonable accuracy. 

 

Fig. 3-14. Representation of maximum debonding load across various bond lengths and widths. The 
dot-dashed purple line, short-dashed red line, long-dashed blue line, and solid black line correspond to 
estimations obtained using the EL, DM, RL, and RF models, respectively. Experimental data sourced 
from [118] are indicated by markers, the shapes of which denote different bond widths. 
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Chapter 4  

4. Extension of FFM to Assess 
Lifetime of Notched Structures2  

4.1 Introduction 

Stress concentrators, such as cracks, notches, or holes, are incorporated into 
structures for design purposes or can arise from wear and environmental exposure. 
These features can amplify stress, influencing the component’s load-bearing 
capability and lifetime. Regarding the loading condition of structures, fatigue stands 
out as particularly prominent. Generally, deformations under fatigue conditions can 
be categorized into two groups: low-cycle and high-cycle fatigue. The former 
involves materials undergoing substantial plastic deformation within each cycle, 
resulting in changes to their microstructure. On the other hand, high-cycle fatigue 
is characterized by lower stress levels, primarily in the domain of elastic 
deformation. The distinction between high and low-cycle fatigue is typically 
determined by the number of cycles, usually set around103-104 cycles. It is crucial 
to note that the extension of the FFM model here is not reliable when addressing 
low-cycle fatigue since the modeling employs the Basquin equation. 

In Chapter 2, the fundamentals of FFM within static scenarios were mentioned. 
Its utility was further validated when assessing the failure of structures weakened 
by cracks, sharp and blunt V-notches, as supported by references [66,126]. Then, 
the criterion was adapted to tackle the fatigue limit in scenarios involving uniaxial 
loadings. Several studies on fatigue limit have delved into areas like crack and notch 
sensitivity [21], the effects of U- and blunt V-notches [22], fatigue characteristics 
of welded T-joints considering residual stress [127], and the size effect of 
spheroidal voids and corrosive pits [128]. To support the accuracy of prediction by 
FFM, Shen et al. [73] and Liu et al. [74] compared its results with those obtained 
using the TCD approach for different notched geometries. It was found that both 
criteria produced similar results; however, FFM exhibits higher accuracy when 

 

2 Some parts of this chapter have been adapted from our work previously published as “Mirzaei, 

A. M., Cornetti, P., and Sapora, A., 2023, A Novel Finite Fracture Mechanics Approach to Assess 
the Lifetime of Notched Components, Int. J. Fatigue, p. 107659.” 
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dealing with blunter notches, as the critical distance is influenced by the curvature 
radius. 

Having the extension of FFM for static and fatigue limit loading conditions, in 
this chapter, FFM is expanded to predict the lifetime of notched components 
subjected to constant amplitude uniaxial loadings, following [129]. The emphasis 
is on the high-cycle fatigue domain, grounded in the assumption that stage II, 
marked by crack propagation perpendicular to the loading direction, governs the 
fatigue lifetime of the component. Therefore, the discussion remains limited to 
Mode I loading scenarios. Given the negligible size of the plastic zone in the high-
cycle fatigue domain, linear elastic mechanics is utilized to extract the stress and 
energy release rate fields (required for FFM implementation) near the notch tip. 

4.2 Extension of FFM to finite fatigue life regime 

Previously, in Chapter 1, it was discussed that FFM can be utilized to evaluate 
the failure behaviour of notched components (Fig. 4-1) when specific material 
properties are given: c and KIc for the static scenario according to Eq. (1-12), and 
Δ0 and ΔKth for situations concerning the fatigue limit as outlined by Eq. (1-13). 
To extend the applicability of FFM for fatigue life predictions, which falls between 
the static and fatigue limit cases, a new set of material properties is introduced, 
namely f and KIf [129]. These represent the critical cycle stress and the stress 
intensity factor amplitude, respectively. It is supposed that each of these properties 
is a function of number of cycles N, following a power law relationship [16,130]. 

 

Fig. 4-1. Blunt V-notch geometry and Cartesian coordinate system located at the notch tip. 
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where as, bs and ak, bk are positive functions of material properties and of 
loading conditions. Their variation can be calculated by fitting experimental fatigue 
data with 50% survival probability, obtained from both plain and cracked test 
samples (similar to static loading) under uniaxial loading with a constant loading 
ratio. It is worthwhile to mention that Eqs. (4-1) and (4-2) are in the form of Basquin 
equation [2]. The applicability of Eq. (4-1) is widely accepted. On the other hand, 
to justify Eq. (4-2), it is observed that SN data for a cracked design tend to align 
linearly on a log-log graph, as demonstrated in various studies [17,131–133]. It is 
important to note that creating sharp cracks is often a challenging task. A 
comprehensive discussion on calibrating as, bs (from Eq. (4-1)) and ak, bk (from Eq. 
(4-2)) will be developed in the following section. 

In summary, to determine the lifetime of notched components, the FFM 
criterion can be recast as follows: 
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Substituting Eqs. (4-1) and (4-2) into Eq. (4-3) yields: 

0

22 2

0

1 ( )d

1 ( )d

s

k

l b
y s

l b
I k

x x a N
l

K a a a N
l

 −

−





 





 (4-4) 

It is essential to emphasize that the Basquin equation is predominantly valid 
within the medium range of fatigue cycles, specifically within the finite fatigue life 
domain. Consequently, Eq. (4-4) is not applicable to the extreme cases such as static 
and fatigue limit regimes. Nonetheless, the streamlined representation of Eq. (4-4) 
provides a useful framework for analytical derivation. Indeed, by considering the 
normal stress and the SIF as products of the nominal (gross-section) stress 
amplitude a multiplied by a geometric shape function, such that y(x) = a gs(x) 
and KI(a) = a gk(a), Eq. (4-4) can be recast in the subsequent form [129]: 
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According to Eq. (4-5), the two variables that should be determined within the 
FFM framework are the number of cycles to failure, Nf and the critical crack 
advancement, lf. Within the proposed methodology, it is essential to recognize that 
Nf represents the number of cycles at which a crack of length lf appears. Given a 
material and loading ratio, equating the right sides of the equations, and solving the 
resultant implicit equation with respect to l yields the critical length lf for distinct 
stress amplitudes, a. Subsequently, the determined value of lf should be 
incorporated into one of the equations in Eq. (4-5) to calculate the number of cycles 
to failure, Nf. 

It should be noted that the proposed approach can be also expressed by 
employing a “pointwise” stress criterion, as originally presented by Leguillon [20]: 
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Simple analytical manipulations to Eq. (4-5) lead to: 
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It is crucial to clarify that the descriptor pointwise may not be entirely accurate, 
as the condition a > f should be satisfied across the entire length l. However, since 
the stress field is monotonically decreasing, this condition is consistent with the 
first equation in Eq. (4-6). 
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4.3 Calibration of the model’s free parameters 

To determine the values of as and bs, a best fitting procedure can be utilized on 
the experimental data from plain specimens. Such tests are typically conducted for 
different material and loading ratios/conditions, following specific standards. The 
calibration process should focus on the medium/high cycle domain, since for some 
materials, the linear elastic hypothesis might not hold true for N < 103-104, and 
relying on stress based methods within this span might result in significant error. 
While a pair of SN data points can be sufficient to calibrate as and bs, the inherent 
variability in fatigue experimental results suggests using an expanded dataset 
(spanning the entire desired range), to enhance the accuracy. Next section will 
address this through an interpolation method rooted in linear least squares on a log-
log scale. 

Conversely, for the determination of ak and bk, experiments associated with 
cracked sample are required, or potentially a sharp V-notch. It is useful to recall 
Williams’ eigenvalues remain relatively stable over the amplitude range of 0° ≤ α 

≤ 90° [134]. In scenarios where experimental data on sharp cracks or V-notches is 
missing, or when the root radius is significant (common in many notched designs), 
an alternative methodology can be introduced. This method involves a reverse 
calibration of Basquin equation (Eq. (4-2)), focusing on experimental results related 
to a notched specimen. It is worth noting that when data from different notch 
geometries are accessible, it is suggested to select the most sharp geometry for the 
calibration of ak and bk, in line with prior findings in [15,16,135]. In more detail, 
once applied stress and the number of cycles to failure are experimentally 
established, lf can be derived from the first equation of system (4-3); subsequently, 
the second equation yields KIf. By iterating this process across several stress 
amplitudes (again, using an extensive dataset is recommended for comprehensive 
coverage), KIf = KIf (N) can be specified, enabling the calibration of ak and bk via a 
straightforward interpolation method rooted in linear least squares. To encapsulate, 
Fig. 4-2 provides a flowchart demonstrating the steps necessary for FFM to estimate 
fatigue life of notched components. 
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Fig. 4-2. Flowchart of the procedure for employing the FFM model for a given material and loading 
ratio [129].  

4.4 FFM validation 

In this section, the FFM model is validated through experimental data, 
encompassing a variety of notch shapes and sizes, loading conditions, and materials 
[15,136,137]. To compute the shape function gs(x) associated with the normal stress 
y (x) across all geometries, the asymptotic stress methodology presented by 
Mirzaei et al. [138] is utilized. The method facilitates the determination of the stress 
field around different notch shapes across relatively long distances from notch tip, 
taking into account the influence of higher order terms [139]. On the other hand, 
finite element analyses are undertaken for each configuration using Abaqus® 
software to obtain the shape function gk (a) related to KI(a). For this purpose, the 
specimens are meshed using 8-node biquadratic elements. A detailed convergence 
analysis is subsequently executed to ensure that the numerical outcomes are not 
affected by variations in mesh size. 

4.4.1 Different notch shapes 

The validation process for the FFM model begins by utilizing experimental data 
presented in [15], which are related to a plain sample as well as single edge notched 
plates made of EN3B steel. The notched plates encompass the following 
configurations: a V-notch characterized by an opening angle  = 60° and a notch 
tip radius  = 0.12 mm; a U-notch ( = 0°) with  = 1.5 mm; a central circular hole 
with two distinct radii,  = 1.75 and 4 mm. Testing was carried out under tension-
compression loading conditions (with a loading ratio R = −1), and the failure cycle 
number Nf was identified as 50% reduction in initial stiffness. Further specifics 
regarding this process are elaborated in [15]. An optimal fitting method applied to 
the experimental data for plain specimens resulted in f = 935 N−0.107 MPa, 
following Eq. (4-1). Conversely, when taking into account all data related to the V-
notch geometry (as it is the sharpest one) to calibrate ak and bk in accordance with 

Experiments on a (sharp) 
notched geometry

Experiments on plain 
samples: c(N), Eq. (4-1) 

FFM, Eq. (4-3) : Nf , lf

Calibration of KIf(N), Eq. (4-2) FFM system, Eq. (4-5) 
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Eq. (4-2), the findings are as follows: KIf = 1530 N−0.381 MPa√m for average FFM 
(Eq. (4-3)), and KIf = 504 N−0.300 MPa√m for the pointwise version (Eq. (4-6)).  

In order to evaluate the performance of FFM, Fig. 4-3a plots the fatigue life 
predictions utilizing the FFM average version (Eq. (4-5)) against the related 
experimental data. One the other hand, Fig. 4-3b refers to the pointwise version, 
Eq. (4-7). Within Fig. 4-3, the horizontal axis shows the predicted lifetime, while 
the vertical axis represents the experimental one. Consequently, the region above 
the solid black line refers conservative estimations. 
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(a) 

 

(b) 

Fig. 4-3. Comparison of failure cycle counts for various notched EN3B steel samples (R = −1): 
experimental results [15] versus FFM estimates using both averaged (a) and pointwise (b) approaches. 
Dotted lines indicate 1/3 and 3 scatter bands. 

Considering Fig. 4-3, the predictions of fatigue life by FFM across different 
geometries appear promising, particularly when the range of fatigue lives spans 
from 104 to 106 cycles. All predictions stemming from the average stress FFM 
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formulation, as represented by Eq. (4-5), fall within the scatter band of 1/3 and 3. 
However, results obtained from the pointwise FFM equation, Eq. (4-7), show 
slightly lower accuracy, tend to fall in the conservative range. To further evaluate 
the accuracy of the model, the R-squared error (often shown as R2 or the coefficient 
of determination) is utilized, resulting in 0.702 and 0.649 for the averaged and 
pointwise FFM, respectively. Given these results, only the averaged FFM approach 
expressed by Eq. (4-3) will be considered hereafter. 

To illustrate the predictions for each notch geometry in more detail, Fig. 4-4, 
showcases the amplitude of the nominal stress (gross-section) alongside its 
corresponding number of cycles to failure (SN diagram).  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4-4. Comparison of the predictions by average FFM (Eq. (4-7)) with experimental data: 
nominal (gross-section) stress amplitude vs. number of cycles to failure for different notched EN3B steel 
samples (R = −1), a) V-notch, b) U-notch, c) Hole  =1.75 mm, d) Hole  = 4 mm.  

Upon examination of this experimental dataset, the model demonstrates 
promising accuracy for V- and U-notches. However, when applied to holed 
configurations, it exhibits a tendency to be slightly unconservative for lower cycle 
intervals. 
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Before moving forward, it is advisable to deepen the understanding of the FFM 

system, (Fig. 4-5). This illustration is based on an arbitrary example of a specimen 
weakened by a circular hole with a notch radius of 4 mm under σa =150 MPa. Fig. 
4-5 shows that the stress condition is monolithically increasing, while the energy 
condition is monolithically decreasing, and the intersection point shows the outputs 
of the FFM system, lf = 3.54 mm and Nf = 44478 cycles. 

 

Fig. 4-5. A graphical representation of the FFM system for an arbitrary case of holed sample with 
= 4 mm and a =150 MPa. 

After analyzing the performance of the model, it is useful to illustrate the other 
outcome of the FFM system, the critical crack advancement lf. For this purpose, the 
variation of lf as a function of number of cycles to failure is illustrated in Fig. 4-6 
for the V-notched configuration. A linear regression approximation for lf results in 
the relationship: lf =245 N−0.406. 

 

lf
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Fig. 4-6. Crack progression (critical distance) lf  plotted against cycle count for the V-notched design 
[15]: Representations from FFM (markers) compared with TCD predictions (continuous line). 

On the other hand, the critical distance by TCD is represented by lf,LM = 134.8 
N−0.342 (as referenced in Eq. (17) of [15]), is shown. As anticipated, the crack 
advancement determined from both approaches exhibits a similarity, especially in 
the realm of lower cycle domains. Again, it is essential to emphasize that lf,LM is 
assumed to vary based on a power law equation dependent on N, thereby serving as 
an input parameter for the model. In contrast, within the framework of the FFM 
methodology presented, lf is an outcome generated by the system, as outlined in Eq. 
(4-4). 

4.4.2 Different (uniaxial) loading conditions 

To validate the applicability of the FFM model for predicting fatigue life across 
various notch geometries under different uniaxial loading conditions, an additional 
set of experimental data concerning EN3B steel is now examined [15]. This dataset 
encompasses six distinct notched samples that underwent tension-tension testing 
with a loading ratio R = 0.1. Both tensile and bending loading conditions were 
considered. The specimens under tensile loading maintain identical geometrical 
properties as those described in the previous subsection. In contrast, the bending 
specimens, which were approximately four times thicker than tensile ones, were 
comprised of an edge V-notched plate weakened by an opening angle  = 45° and 
a radius  = 0.383 mm, as well as an edge U-notched plate with an angle  = 0° and 
a radius  = 5 mm. 

From an examination of this dataset, we get: f = 1920 N−0.178 MPa according 
to Eq. (4-1). Furthermore, by calibrating the parameters ak and bk utilizing the 
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tensile V-notched configuration (specifically, the sharpest design) as outlined in Eq. 
(4-2), KIf  = 436 N−0.312 MPa√m is obtained. 

 

Fig. 4-7. Number of cycles to failure for various notched geometries made of EN3B steel (R = 0.1): 
experimental data [15] vs. predictions by FFM. The dashed lines represent 1/3 and 3 scatter bands. 

Fig. 4-7 shows that the theoretical predictions closely match the experimental 
data. Notably, the results tend to be more conservative for samples subjected to 
bending. This observation can be understood by recognizing that SN data for 
unnotched specimens vary when shifting from tensile to bending loading 
conditions, as highlighted in [140,141]. Specifically, within the cycle range of 104 
and 106, plain specimens under bending display a longer fatigue life, with a 
difference ranging from 18 percent to 10 percent, based on the results presented in 
[15]. To improve prediction accuracy, it might be beneficial to determine the 
strength parameters (specifically, calibrating as and bs) by focusing on data related 
to bending loading conditions. Moreover, the significant difference in thickness 
(more than four times) between the sample sets, might affect the model’s accuracy: 
such a variance might arise from neglecting 3D effects, as underscored in [142–
144]. 

4.4.3 Size effect in fatigue 

The study of size effects on failure in solid mechanics has been a crucial topic 
for researchers, given its significance in the engineering design of structures 
moving from small to large scales, and vice versa. To evaluate the FFM’s ability in 
capturing size effect within fatigue life estimations, data related to plates with 
circular holes of varying radii ( = 0.12, 0.25, 0.5, 1.5 mm) is examined [137]. Tests 
were conducted under tension-compression loading conditions, with a loading ratio 
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of R = −1. The recorded fatigue lives range from 104 to 108 cycles, making this 
dataset ideal for assessing the model’s performance over a broad cycle range. The 
material used was a high-strength aluminum alloy, designated as Al 2024-T351. 
From the analysis, f = 1380 N−0.146 MPa is determined based on Eq. (4-1). By 
utilizing all the data corresponding to the hole with  = 1.5 mm for calibration, a 
value of KIf  = 64.7 N−0.205 MPa√m is inferred. Alternatively, if the smallest hole is 
selected as the reference (a possible option in situations without a sharp geometry), 
the resultant value would be KIf  = 26.6 N−0.170 MPa√m, leading to a minor shift in 
predictions. 

 

Fig. 4-8. Number of cycles to failure for various radii of holes in samples made of Al 2024-T351 (R 

= −1): experimental data [137] vs. predictions by FFM. The dashed blue lines represent the scatter bands 
of 1/3 and 3, whereas the dotted-dashed gray lines illustrate the scatter bands of 1/5 and 5. 

From Fig. 4-8, it is evident that FFM’s predictions align fairly well with the 
experimental data. The model’s estimations stay within the scatter bands marked 
by life factors of 1/3 and 3 for hole sizes of  = 0.5 and 0.25 mm, representing size 
reductions by factors of 3 and 6, respectively. On the other hand, for the smallest 
considered hole, characterized by  = 0.12 mm, which is 12.5 times smaller than 
the reference  = 1.5 mm, the fatigue life predictions reach scatter bands marked by 
life factors of 1/5 and 5. It is essential to highlight that while some studies have 
achieved slightly higher accuracy in their predictions for this specific dataset 
[75,76], they required the calibration of additional parameters, leading to a more 
complex model. 

Since the results by the proposed model can be obtained quite fast, a parametric 
analysis illustrating the impact of hole radius on the lifetime of notched samples is 
presented in Fig. 4-9. 

0.12 mm

0.25 mm

0.5 mm

1.5 mm

1000 104 105 106 107 1081000

104

105

106

107

108

N f

N
f,

ex
p

R2=0.914 

 



Extension of FFM to Assess Lifetime of Notched Structures 73 

 

 

(a) 

 

(b) 

Fig. 4-9. (a) Influence of hole size on the nominal stress amplitude maintaining a consistent fatigue 
lifetime. (b) Variation in fatigue life due to hole radius under a steady stress, showcased in a logarithmic 
scale. Data pertains to Al 2024-T351 specimens [137] under tension-compression load scenarios (R = −1). 

Fig. 4-9a reveals a diminishing impact of the notch radius with an increase in 
fatigue life. In contrast, Fig. 4-9b demonstrates an amplified notch effect for lower 
applied stress conditions, typical of high-cycle fatigue scenarios.  

4.4.4 Additively manufactured samples  

To further validate the model, attention is directed towards a non-metallic 
material, specifically polylactide (PLA) [136]. The tested specimens were double-
edge notched plates, featuring V-notches characterized by  = 35° and  = 0.383 
mm, as well as U-notches with  =1 mm. These specimens had widths of 12.5 mm 
and net widths of 3 mm. Tests were carried out under zero-tension loading 
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conditions (R = 0). The samples were fabricated using Fused Deposition Modeling 
technology with three distinct manufacturing angles: p = 0°, 30°, and 45°. Here, p 
represents the angle between the specimen’s longitudinal axis and the primary 
manufacturing direction. Stress-strain curves confirmed the suitability of adopting 
a linear-elastic model. Furthermore, the material was assumed to exhibit 
homogeneous and isotropic behavior, consistent with the comprehensive 
assessment by Ezeh and Susmel [145]. Considering the unnotched specimen, f  is 
determined to be 47.8 N−0.161 MPa, while the data associated with the sharpest notch 
geometry lead to KIf = 25.9 N−0.195 MPa√m. 

 

Fig. 4-10. Number of cycles to failure for various notch geometries and manufacturing angles in 
samples made of PLA (R = −1): experimental data [136] vs. predictions by FFM. The dashed blue lines 
represent the scatter bands of 1/3 and 3. 

Considering the inherent simplifications, FFM effectively predicts the fatigue 
lives of additively manufactured specimens across various manufacturing angles, 
falling within the 1/3 and 3 life factor ranges, as shown in Fig. 4-10. Moreover, this 
dataset highlights a distinctive attribute of the coupled approach: the crack 
advancement is not solely function of material properties but also of geometrical 
factors. In practice, the averaged version of TCD does not apply in this context, as 
the critical distance exceeds the geometry’s net width [136]. This characteristic was 
previously manifested in static failure scenarios for both uncracked and cracked 
specimens [18,128]. 

Subsequently, focus is shifted to another dataset related to materials produced 
through additive processes, specifically Inconel 718 [146]. The specimens were 
double-edged notched plates, which were produced using selective laser melting 
with a manufacturing angle p set at 0°. Samples were tested under zero-tension 
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loading conditions (R = 0). The notch geometries include a V-notch with  = 90° 
and two distinct radii,  = 0.1 and 1 mm, in addition to a semi-circular notch with 
 = 5 mm. Note that consistent with previous assumptions, the material behavior is 
again considered homogeneous and isotropic. Based on results derived from the 
plain geometry and the sharpest V-notch ( = 0.1 mm), input parameters are 
deduced as f = 13000 N−0.272 MPa and KIf = 555 N−0.319 MPa√m. 
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(a) 

 

(b) 

Fig. 4-11. Number of cycles to failure for various notched samples made of Inconel 718 (R = 0): 
experimental data [146] vs. predictions by a) FFM, and b) TCD. The dashed blue lines represent the 
scatter bands of 1/3 and 3. 

Fig. 4-11a displays a strong correlation between FFM predictions, Eq. (4-5), 
and experimental data. For this dataset, the TCD in its averaged version [15] is also 
implemented, and the corresponding results are presented in Fig. 4-11b. 
Interestingly, the two approaches provide close predictions for this specific dataset. 
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Chapter 5 

5. Extension of FFM for Lifetime 
Analysis of Laminates3 

5.1 Introduction 

Fiber-reinforced polymeric laminated composites have become viable substitutes 
for conventional materials in several engineering applications, owing to their 
exceptional mechanical performance and the capacity for tailoring specific material 
characteristics [147–150]. Yet, the structural integrity of such composite laminates 
can be markedly compromised by the presence of geometric discontinuities, such 
as cracks or notches. Considering the presence of notches in engineering structures 
[138,151–153], coupled with the predominance of fatigue as a primary failure 
mechanism [154,155], an in-depth comprehension of the fatigue behavior of 
notched composite laminates is essential for assuring the structural reliability and 
safety [156–159].  

The origins of investigations into the notch failure behavior of composite 
materials, utilizing the coupling of linear elastic mechanics with a material length 
scale, date back to the pioneering work of Whitney and Nuismer [160]. 
Accordingly, failure happens when an effective stress at/along a critical distance 
from the notch tip reaches the ultimate strength. The critical distance was 
empirically ascertained, through a theoretical dependence on fracture toughness, 
utilizing a fitting procedure that accounted for the influence of both sharp notches 
and circular holes. This model has been a foundation for numerous studies probing 
the failure of notched components in both static [148,161–166] and fatigue [167] 
regimes. The work by Whitney and Nuismer [160] essentially laid the groundwork 
for the TCD, that was formalized nearly three decades later by Taylor [53]. Taylor’s 
significant contribution [168] lays in articulating the critical distance as a function 
of the material properties, specifically through the squared ratio of tensile strength 
to fracture toughness. As a material property, this length serves as an intrinsic model 

 

3 Some parts of this chapter have been adapted from our work previously published as “Mirzaei, 

A. M., Mirzaei, A. H., Shokrieh, M. M., Sapora, A., and Cornetti, P., 2024, Fatigue Life Assessment 
of Notched Laminated Composites: Experiments and Modelling by Finite Fracture Mechanics, 
Compos. Sci. Technol., 246, p. 110376.” 
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input. Under monotonic loading, TCD has proven to be an effective tool in 
estimating the notch effect in long-fiber composites [169] and short glass fiber 
reinforced polyamide 6 (SGFR-PA6) [170,171]. However, its application to the 
prediction of fatigue lifetime in notched composite laminates remains an 
unexplored problem. 

As mentioned in Chapter 2, to eliminate the limitation of neglecting 
geometrical properties in critical distance, works by Leguillon [20] and Cornetti et 
al. [18] introduced FFM. Specifically, in the context of composite materials under 
monotonic loading, Camanho et al. [85] employed FFM to study the failure of open-
holed composite laminates, thereby demonstrating its proficiency in accurately 
aligning with experimental data.  

The principal objective of the present study is the extension and validation of 
the FFM approach for evaluating the fatigue life of notched composite laminates, 
based on the FFM extension to finite fatigue life derived from homogeneous 
materials [129], which was presented in the previous chapter. The present approach 
has been recently published in [172]. 

5.2 Linear elastic analysis of laminated composites  

As mentioned in the previous chapter, the determination of fatigue life in 
notched structures requires an understanding of both the stress distribution and 
energy release rate within the components.  

Let us now consider a composite laminate of width W, weakened either by a 
central circular hole of radius  (Fig. 5-1a) or by a crack of length 2a perpendicular 
to the loading direction (Fig. 5-1b). This laminate is subjected to a cyclic uniaxial 
tensile remote stress with an amplitude a. 
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(a) 

 

(b) 

Fig. 5-1. Schematic view of a sample with: (a) a circular hole and (b) a crack, under cyclic remote 
uniaxial loading conditions. 

In the current study, it is assumed the failure mode of the composite laminate 
is based on the fiber behavior, either as a brittle failure characterized by fiber 
fracture with minimal sub-critical damage or through a process involving fiber pull-
out, which is indicative of significant subcritical damage [151,173]. Given this 
understanding of the failure behaviour, it is reasonable to assume that failure 
initiation and propagation occur along the x-axis. Consequently, the analysis will 
be oriented toward an investigation of mode I fracture, which is validated with the 
observed failure characteristics of the laminated composites. 

5.2.1 Stress field ahead of a circular hole 

Konish and Whitney [174] introduced an analytical expression to articulate the 
distribution of normal stress perpendicular to the loading direction (i.e., y = 0) in 
the region ahead of a circular hole within an infinite orthotropic plate. The solution 
accounts for the finite width of the specimens by implementing a correction factor, 
RK, allowing the stress field to be analytically approximated for x  : 
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Here, TK and TK  represent the stress concentration factor at the opening edge 
for an infinite-width and a finite-width laminate, respectively. The components of 
the in-plane stiffness matrix of the laminate, Aij, can be ascertained based on the 
properties is presented in Table 5-1. 

5.2.2 Stress intensity factor for holed samples 

In a specimen similar to the one depicted in Fig. 5-1a, failure is observed to 
initiate and propagate through two symmetric cracks along the x-axis, based on 
experimental findings [175]. It is noteworthy that, according to both references 
[85,176] and comparison with numerical analyses, the influence of anisotropy on 
the SIF is considered to be marginal and can be disregarded for the configuration 
under investigation. 

Additionally, the finite width of the specimen must be taken into consideration 
when approximating the SIF. As described in literature [177,178], the SIF at the tip 
of crack with length a originated from the circular hole can be analytically 
represented as: 

( )I a h w a kK F F a a f a   = =  (5-5) 
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It is important to emphasize that the accuracy of Eq. (5-5) has been confirmed 
to be within 2% of the results obtained through boundary-collocation methods 
[178]. The analyses presented in this section provide a robust basis for 
understanding the behavior of holed samples under various loading conditions, 
contributing to the broader understanding of composite laminate failure 
mechanisms. 
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5.2.3 Stress intensity factor for cracked samples 

In analyzing the cracked geometry as shown in Fig. 5-1b, the material’s 
orthotropy, represented by Y(), and the finite width of the plate, denoted by 
F(a/W), must be considered. Accordingly, the SIF for a center crack with length 2a 
can be expressed based on the following mathematical relations [179]: 

( ) ( / )I aK a Y F a b  =  (5-8) 

( ) ( ) ( )
2 3( ) 1 0.1 1 0.016 1 0.002 1Y    = + − − − + −  (5-9) 

2 4 ( / )( / ) [1 0.025( / ) 0.06( / ) ] sec
2

a WF a W a W a W 
= − +  (5-10) 

Here, the dimensionless parameter  is specifically defined in terms of the 
engineering elastic constants of the material [179,180]: 
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It should be noted that the error associated with the utilization of Eq. (5-8) has been 
quantified as being under 5%.  

5.3 Fatigue failure criteria 

In order to estimate the fatigue lifetime of notched laminated composites, FFM 
and TCD models are employed, and their results are compared. To recall, Section 
1.4.1 discussed the extension of the TCD model for finite fatigue life estimation of 
notched specimens made of homogeneous materials, according to Susmel and 
Taylor’s approach [15]. Moreover, Chapter 4 presented the extension of the FFM 
model to the finite fatigue life regime [129].  

The only distinction in formulation is that, in composite materials, the ultimate 
tensile strength is denoted by Xc (insteat of c), and thus, the critical cyclic stress 
for composite materials is represented as Xf(N). Section 5.6.1 elaborates further on 
the input material properties of the models. Before proceeding, two notable 
distinctions regarding TCD and FFM should be highlighted: 

1. According to TCD, the critical crack advancement is presumed to 
follow a power law function of the number of cycles to failure. 

2. In scenarios of static loading, the FFM approach necessitates solving a 
system of two equations, indicating a more complex analysis compared 
to TCD. However, in the context of fatigue loading, both methodologies 
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entail solving nonlinear equations. Consequently, they are comparable 
from a computational cost perspective. 

5.4 Experimental campaign 

An experimental investigation is conducted on composite laminates, with two 
different stacking sequences. The campaign encompasses static tests to obtain the 
elastic properties, as well as fatigue tests on specimens with various geometrical 
configurations, namely plain, cracked, and notched specimens. The notched 
specimens are specifically created with drilled circular holes of two distinct radii 
[172]. 

5.4.1 Materials and fabrication of samples 

The experimental specimens are fabricated from carbon fiber (T300-12K, 200 
g/m2) combined with a low-viscosity epoxy resin (Araldite LY 5052), and cured 
with Aradur 5052 Hardener at a weight fraction of 100:38. Utilizing the vacuum-
assisted resin injection method, the composite laminates undergo an initial curing 
at 23°C for 24 hours, followed by a post-curing phase at 100°C for 4 hours, adhering 
to the supplier’s recommendations. 

Following the curing process, the composite laminate plates are sectioned into 
specimens using a waterjet machine. For the holed samples, central holes are 
reamed to the final size with a drill press at a controlled speed of 300 RPM. This 
specific methodology is employed to mitigate delamination at the hole perimeter – 
a common phenomenon with the waterjet machine, particularly for smaller 
diameters. To introduce cracks, a central slit measuring 12 mm in length and 2 mm 
in width is created in each sample using waterjet cutting. Subsequently, cracks of 
1.7 mm in length are meticulously crafted on both sides of the slit using a thin razor 
blade, resulting in a total crack length of a = 15.4 mm. All lateral and hole surfaces 
are then finely polished using sandpaper. 

The final stage of preparation involved equipping the specimens with quasi-
isotropic glass/epoxy tabs, having [0/90/45/-45]s configuration. A schematic 
illustration of the fabricated notched specimens is presented in Fig. 5-2. 
Additionally, Table 5-1 provides a detailed presentation of the geometrical 
properties of the specimens both with and without stress concentration, enabling a 
thorough characterization and evaluation of the proposed theoretical models. 
Notably, the ratio of the width to hole radius for the notched specimens is 
consistently maintained at approximately 6. 
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Fig. 5-2. Schematic view of the fabricated notched specimens. (a) Holed (W = 24, 36 mm and  = 
2.1, 3.25 mm) and (b) cracked geometry. 
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Table 5-1. Specifications of the performed experimental tests. 

 Specimen 
configuration Layup W 

(mm) 
L 

(mm) 
t 

(mm) Aim Type of 
loading 

Number 
of tests 

1 Longitudinal 
loading [06]t 15 250 1.44 Material 

characterization Static  4 

2 Transverse loading [9010]t 25 175 2.2 Material 
characterization Static  4 

3 Shear loading [45/-45]4s 25 200 3.53 Material 
characterization Static  4 

4 Cross-ply, plain [0/90]2s 25 240 1.9 Model 
characterization Fatigue  10 

5 Cross-ply, cracked, 
a = 15.4 mm [0/90]2s 48 240 1.9 Model 

characterization Fatigue  8 

6 Cross-ply, drilled, 
 = 2.1mm [0/90]2s 24 240 1.9 Model 

validation Fatigue  8 

7 Cross-ply, drilled, 
 = 3.25mm [0/90]2s 36 240 1.9 Model 

validation Fatigue  7 

8 Cross-ply, plain [90/0]2s 25 240 1.9 Model 
characterization Fatigue  9 

9 Cross-ply, cracked, 
a = 15.4 mm [90/0]2s 48 240 1.9 Model 

characterization Fatigue  7 

10 Cross-ply, drilled, 
 = 2.1mm [90/0]2s 24 240 1.9 Model 

validation Fatigue  8 

11 Cross-ply, drilled, 
 = 3.25mm [90/0]2s 36 240 1.9 Model 

validation Fatigue  11 

5.4.2 Testing setup and experimental details 

The comprehensive experimental campaign contains both static and fatigue 
testing, utilizing the Santam SAF-50 machine equipped with hydraulic grips. To 
eliminate the risk of self-heating and temperature increase in the specimens during 
fatigue tests, a controlled frequency of 5 Hz was applied [158,181]. A concerted 
effort is made to minimize the influence of out-of-plane stresses and the probability 
of delamination within the composite laminates. This is systematically achieved by 
establishing the stress ratio (minimum stress to maximum stress) at 0.1 and 
selecting low-thickness specimens for the tests [182]. Fig. 5-3 illustrates the 
experimental setup employed in the testing procedure. 
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Fig. 5-3. Experimental setup employed to conduct the static and fatigue tests. 

The notch sensitivity in a laminate is governed by a multifaceted interplay of 
factors such as size, thickness, ply orientation, notch geometry, and the composite 
material’s intrinsic constituents [183]. Research by Harris and Morris [184], as well 
as by Vaidya et al. [185], has demonstrated the relationship between increased 
laminate thickness and strength, finding that a bigger thickness typically confines 
damage near the surface, thereby changing the failure mechanism to delamination. 
Consequently, ensuring that the failure mode in the samples aligns with either a 
brittle failure or a pull-out mechanism is vital for the accurate application of the 
models to laminated composites. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5-4. Specimens post-fatigue failure in pull-out mode: (a) plain, (b) cracked, (c) holed with  = 
2.1 mm, (d) holed with  = 3.25 mm. 

5.4.3 Static tests: material characterization 

The mechanical properties of the materials are determined in accordance with 
standardized testing protocols. The longitudinal and transverse properties, 
encompassing elastic moduli, ultimate tensile strength, and Poisson’s ratio, are 
obtained using the ASTM D3039 standard [186]. In addition, in-plane shear 
properties are determined in line with the ASTM D3518 standard [187]. Table 5-2 
displays the results of the quasi-static tests (average of four tests) conducted to 
obtain the material properties. It should be mentioned that the fiber-to-matrix 
volume fraction is accurately determined utilizing the burn-out method as suggested 
in the ASTM D3171 standard [188]. 
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Table 5-2. Material properties of T300/LY5052 unidirectional composites. 

Magnitude Symbol Property 

42 GPa E1 Tensile modulus 

8.5 GPa E2 Transverse modulus 

6 GPa G12  In-plane shear modulus 

0.31  Poisson’s ratio 

914 MPa Xc Ultimate tensile strength 

17 MPa Yt Transverse strength 

78 MPa Sxy In-plane shear strength 

0.235 mm t Ply thickness 

56% f Fiber volume fraction 

The measured ply thickness for the material is equal to t = 0.235 mm. As shown 
in Fig. 5-4, the primary failure mode observed across the specimens is 
predominantly associated with the pull-out effect, with no instances of brittle failure 
noted. 

5.4.4 Fatigue tests 

The fatigue performance of the composite laminates is thoroughly investigated 
for two different layup configurations: [90/0]2s and [0/90]2s, with the corresponding 
stress-life (SN) diagrams presented in Fig. 5-5 and Fig. 5-6, respectively. These 
diagrams illustrate the experimental data for both plain and cracked specimens, 
which are used as inputs of models. Additionally, specimens featuring holes with 
radii of  = 2.10 and 3.25 mm are employed for blind predictions. According to the 
detailed information in Table 5-1, the comprehensive fatigue evaluation consists of 
a total of 33 samples for the [0/90]2s configuration and 35 samples for the [90/0]2s 
configuration, with each individual notch geometry being represented by 7 to 11 
specimens. The SN diagrams are constructed in a log-log format, showing the 
nominal (gross-section) stress amplitude, σa, in relation to the number of cycles to 
failure, Nf, where failure is explicitly defined as the complete detachment of the 
specimens. Within the experimental framework, fatigue loading amplitudes were 
selected to span a wide range of stress levels, facilitating a comprehensive 
evaluation of material behavior under varying fatigue conditions. The SN diagrams 
include solid black lines, representing the best-fitting curves derived from the 
experimental data, which correspond to a Probability of Survival (PS) of 50%. 
Complementing these, scatter bands are restricted by dashed red lines, symbolizing 
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PS values of 97.7% and 2.3%, thereby providing a statistical context to the fatigue 
performance of the specimens. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5-5. Stress-life diagrams for [90/0]2s composite laminate: (a) plain sample, (b) cracked sample, 
(c) samples weakened by a hole with radius  = 2.1 mm and (d)  = 3.25 mm. The dashed red lines 
represent a PS of 97.7% and 2.3%.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5-6. Stress-life diagrams for [0/90]2s composite laminate: (a) plain sample, (b) cracked sample, 
(c) sample weakened by a hole with radius  = 2.1 mm and (d)  = 3.25 mm. The dashed red lines 
represent a PS of 97.7% and 2.3%. 
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Fig. 5-7. Stress-life diagrams for all investigated composite laminates represented by power-law 
best-fitting curves for the eight experimental datasets.  

To assess and compare the fatigue behavior of laminated composites, the best-
fitting curves representing all the studied cases are delineated in Fig. 5-7. This 
illustration provides a proper insight into the fatigue performance of laminates, 
encompassing those with and without stress concentrators, subjected to varying 
loading regimes. An examination of these trends yields the following observations: 

I) The [90/0]2s layup exhibits a higher fatigue resistance in comparison to the 
[0/90]2s layup. 

II) With an increase in stress concentration, there is a decrease in the critical 
stress amplitude for the same number of cycles to failure. Furthermore, the disparity 
in critical stress amplitude between the two layups decreases. 

III) In the case of holed specimens, the strength decreases – with a constant number 
of cycles – as the hole’s radius increases. This behavior is consistent with the 
conventional size effect observed in isotropic materials [85], confirming the 
assumption that the primary failure mechanism in these samples is pull-out rather 
than delamination. 

5.5 Results and discussion 

Within this section, data obtained from fatigue tests concerning both plain and 
cracked structures are employed to define the free parameters of the model. 
Specifically, this involves deriving the two functions Xf(N) and KIf(N) to 
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characterize the model. Following this characterization, predictions are obtained for 
the two structures containing circular holes, utilizing both the TCD and FFM 
methods. Additionally, a comprehensive parametric study is performed to analyze 
the influence of the hole radius on fatigue lives. 

5.5.1 Model characterization and validation 

As mentioned, the models rely on functions Xf(N) and KIf(N) as inputs. Utilizing 
the best-fitting procedure on the stress-life data of plain specimens (as depicted in  
Fig. 5-5a and Fig. 5-6a, values of as and bs in Eq. (4-1) are determined and are 
summarized in Table 5-3 for each respective stacking sequence. Similarly, the SIF-
life data from cracked specimens (Fig. 5-5b and Fig. 5-6b) lead to the derivation of 
ak and bk values, as outlined in Eq. (1-9) or Eq. (4-2). The calculated values for 
these input parameters are reported in Table 5-3. 

Table 5-3. The computed values of as, bs, ak and bk for both layups. 

Layup 
( )

[MPa]

xb
f xX N a N −

=  
( )

[MPa m ]

kb
If kK N a N −

=
 

[90/0]2s 
as = 879 [MPa] ak = 98 [MPam] 

bs= 0.045 bk = 0.047 

[0/90]2s 
as = 702 [MPa] ak = 107 [MPam] 

bs = 0.036 bk = 0.052 

Given Xf(N) and KIf(N), blind predictions can be formulated for the fatigue data 
of specimens with holes. In employing the TCD method, Eq. (1-11) must be solved. 
However, in order to solve the equation, first the critical distance should be 
determined based on Eq. (1-10). In contrast, to obtain the predictions by FFM 
approach, Eq. (4-5) should be solved.  

To further evaluate the behaviors of both TCD and FFM models, Fig. 5-8 
depicts the relationship between the crack advance (critical distance) and Nf, as 
predicted for both the [0/90]2s and [90/0]2s stacking sequences. Within this figure, 
the solid line represents the critical distance, as computed via Eq. (1-10), while the 
finite crack advance is calculated through the solution of the system expressed in 
Eq. (4-5). Additionally, the triangular data points in the plot are correlated with a 
value of  = 2.1 mm, and the circular data points are corresponded to a  value of 
3.25 mm. 
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(a) 

 

(b) 

Fig. 5-8. Depiction of the crack advance in relation to Nf for (a) [90/0]2s and (b) [0/90]2s layups, 
presented on a linear-logarithmic scale. The solid line serves to denote the critical distance, while the 
triangular markers are associated with  = 2.1 mm. The circular data points, conversely, correspond to 
 = 3.25 mm. 
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The figure presents a clear understanding that the finite crack advance, as 

calculated by FFM, is a function of both the inherent material properties and the 
specific geometric features. In this scenario, a reduction in the notch radius leads to 
a smaller finite crack advance, which consistently stays below the TCD critical 
distance. Furthermore, when keeping Nf constant, the relationship between the 
critical distance and finite crack advance for the [0/90]2s layup is found to be greater 
than that for the [90/0]2s layup, with a more noticeable difference in the number of 
cycles. It can therefore be concluded that the [0/90]2s layup’s damage zone is more 
extensive than that of the [90/0]2s layup, resulting in the latter’s increased strength, 
as previously illustrated (Fig. 5-7). 

Another observation worth noting is related to the [90/0]2s layup for a sample 
with a 2.1 mm notch radius. Here, the critical distance exceeds the sample’s 
ligament. To solve this issue in the TCD method, a fixed critical distance of 10.4 
mm is applied to this specific sample, under the assumption that this span 
encompasses the entire ligament. However, this assumption might influence TCD 
method’s capability to accurately predict fatigue life. 

For a thorough assessment, Fig. 5-9 reports the SN diagrams, as predicted by 
both the TCD and FFM models, supported by experimental data for each type of 
notched geometry and stacking sequence. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5-9. SN Diagrams, featuring both experimental data and forecasts from the TCD and FFM 
models, for the following configurations: (a) [90/0]2s layup with a notch radius  = 2.1 mm, (b) [90/0]2s 
layup with  = 3.25 mm, (c) [0/90]2s layup with  = 2.1 mm, and (d) [0/90]2s layup with  = 3.25 mm. 

From an examination of Fig. 5-9, it becomes apparent that the theoretical 
fatigue life predictions align closely with the median fit line (with PS equal to 0.5) 
observed in the experimental data. Notably, the outcomes from FFM are 
consistently located beneath this median line across all the considered scenarios, 
reflecting an inherent tendency towards conservative estimations. Conversely, the 
TCD predictions are found to be greater than the median line, thus leading to 
predictions that are typically less conservative. It is of significance to underline that 
in Fig. 5-9c (corresponding to the [0/90]2s  layup with  = 2.1 mm), a constant 
critical distance of 10.4 mm is adopted, in agreement with prior discussions. 

Furthermore, Fig. 5-10 and Fig. 5-11 showcase the theoretical versus 
experimental comparison in a different manner, specifically comparing the 
predicted fatigue life Nf and the actual experimental values Nf,exp. Fig. 5-10 shows 
the results obtained by TCD, whereas Fig. 5-11 provides a presentation of the 
outcomes by FFM. Within both figures, a solid black line (angled at 45°) illustrates 
the precise estimations, with the region above referring to conservative predictions. 
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Dashed blue lines are representative of the 1/3 and 3 scatter bands, while the dotted-
dashed gray lines denote the 1/5 and 5 scatter bands. 

 

(a) 

 

(b) 

Fig. 5-10. A comparison of the number of cycles to failure between experimental data, denoted as 
Nf,exp , and TCD predictions, denoted as Nf, for two configurations: (a) [90/0]2s, and (b) [0/90]2s. Dashed 
blue lines delineate the scatter bands of ratios 1/3 and 3, while dotted-dashed gray lines depict the scatter 
bands corresponding to ratios 1/5 and 5. 
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(a) 

 

(b) 

Fig. 5-11. A comparison of the number of cycles to failure between experimental data, denoted as 
Nf,exp , and FFM predictions, denoted as Nf, for two configurations: (a) [90/0]2s, and (b) [0/90]2s. Dashed 
blue lines delineate the scatter bands of ratios 1/3 and 3, while dotted-dashed gray lines depict the scatter 
bands corresponding to ratios 1/5 and 5. 
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Both TCD and FFM approaches show a remarkable capability in forecasting 

the fatigue life of laminated composite materials. The correlation coefficients, R2 
(already introduced in Chapter 4), determined from a natural logarithm 
transformation of the collected data, lie within a range of 0.81 to 0.86. This range 
underscores the effectiveness of the employed models. Here, the TCD approach 
appears to be more precise, whereas FFM outcomes are consistently inclined 
towards the conservative side.  

5.5.2 Examination of radius impact in holed samples 

A detailed parametric investigation has been performed to understand the 
influence of the hole radius on the lifetime of [90/0]2s and [0/90]2s layups. This study 
presents only the findings derived from the FFM model, which was proved to be 
more conservative. The examination extends to cyclic loadings what was previously 
done in a static framework by Camanho et al. [85]. To overcome numerical 
problems and sidestep potential physical complications tied to finite width, the 
width of all specimens has been held constant to W = 1000 mm (a value noticeably 
greater than the largest hole radius). Fig. 5-12a elucidates the connection between 
hole radii and the nominal stress amplitude, denoted as σa, for specific lifetimes Nf, 
on the other hand, Fig. 5-12b presents the influence of hole radius on the lifetime 
for designated stress amplitudes σa. It is pertinent to note that the stress amplitudes 
in Fig. 5-12b are scaled according to the strength of unnotched samples for 1000 
cycles (with differing values for each stacking sequence). Moreover, the selection 
of stress amplitude values has been carried out to facilitate a comparative 
assessment of the size effect behavior between the two layups, both for a uniform 
absolute value and a consistent relative value, in relation to their unnotched strength 
for 1000 cycles. 
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(a) 

 

(b) 

Fig. 5-12. (a) Illustration of the relationship between the hole radius and nominal stress amplitude 
(considering the gross-section) for specific fatigue lives. (b) Depiction of the influence of the hole radius 
on fatigue life, given constant stress amplitudes, presented on a logarithmic scale for both axes. 

From Fig. 5-12 the following observations can be outlined:  

I) An increase of the hole radius results in a corresponding reduction in the 
required stress amplitude to reach an equivalent fatigue life (as depicted in Fig. 
5-12a); Conversely, at a constant stress amplitude, the fatigue lifetime diminishes 
with the expansion of the hole radius (as shown in Fig. 5-12b).  
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II) For fixed fatigue lifetimes, differences in performance between the layups 

become more pronounced with smaller hole dimensions, or conversely, both layups 
tend to demonstrate analogous behavior with an increase in notch radius.  

III) The [90/0]2s layup shows superior fatigue endurance relative to the [0/90]2s 
layup, in coordinate with the observations in Fig. 5-7.  

IV) The [90/0]2s layup is slightly more sensible to notches, which is apparent 
from the steeper gradient of the corresponding curves. 
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Chapter 6 

6. Implementation of Phase Field to 
Model Fatigue Failure4 

6.1 Introduction 

The study of fatigue failure is still a critical problem across various industrial 
and research domains, primarily due to its significant role in the failure of 
engineering structures. A notable advancement in this area is the application of the 
Phase Field method to fatigue phenomena, starting from its origins in brittle fracture 
modeling. This method, fundamentally based on Griffith’s criterion within a 
variational framework, was revolutionized by Francfort and Marigo [23], later 
extended by Bourdin et al. [24] through regularization techniques proposed by 
Ambrosio and Tortorelli [189]. Such regularization facilitates modeling without 
predefined crack paths, enabling the capture of crack nucleation and propagation 
without the need for remeshing. 

Efforts to adapt the Phase Field method for fatigue involve either modifying 
the critical energy release rate over time or introducing an additional energy term 
to represent fatigue damage accumulation. Among the first ones to adapt Phase 
Field models for fatigue were Alessi et al. [104] and Carrara et al. [105], focusing 
on fracture energy degradation. Alternative models, such as those by Grossman-
Ponemon et al. [190] and Seiler et al. [107,108], employ continuous cycle counting 
or the local strain approach to circumvent cycle-by-cycle analysis, aiming for 
efficient fatigue lifetime prediction. Boldrini et al. [101] and Schreiber et al. [110] 
represent another strategy by integrating fatigue-specific driving forces, a concept 
that enhances the model’s fidelity to microscopic fatigue effects. Despite these 
advancements, the high computational demand of accurately simulating millions of 
loading cycles remains a significant challenge, impeding the practical application 
of Phase Field models in high cycle fatigue regimes. To address computational 
efficiency, several strategies have been proposed, including adaptive mesh 
refinement [191–193], specialized elements [194,195], and modified solution 

 

4 Some parts of this chapter have been adapted from our work currently under review as 
“Heinzmann, J., Carrara, P., Ambati, M., Mirzaei, A. M., and De Lorenzis, L., An Adaptive 
Acceleration Scheme for Phase-Field Fatigue Computations, Comput. Mech.” 
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algorithms [17, 24, 39, 71]. Notably, the cycle jump method, introduced by 
Lemaitre and Doghri [41] and further developed by Seleš et al. [196], and Haveroth 
et al. [101], offers a promising avenue for reducing computation times by skipping 
explicit cycle resolutions through predictive modeling. 

This chapter outlines the core concepts of the Phase Field approach to fatigue 
failure, based on studies [104,105]. It then briefly introduces an innovative, fully 
adaptive cycle jumping method that significantly lowers computational demands 
while ensuring minimal errors [197]. Following this, the model is rigorously 
validated against available experimental data to accurately establish the Paris curve. 

6.2 Extension of Phase Field model to fatigue 

Considering that the foundational theory of Phase Field models, as laid down 
by Griffith concerning crack propagation, posits that a crack can only expand when 
the energy release rate surpasses a certain threshold, a contradiction emerges when 
one considers the nature of fatigue crack growth, which notably occurs under sub-
critical load conditions. To adjust this within the Phase Field approach, one can 
consider two distinct, yet sophisticated avenues of adaptation for the model in the 
context of fatigue. The first approach would involve a gradual, history dependent 
reduction of the critical energy release rate, i.e. effectively lowering the threshold 
for crack advancement. Alternatively, the second approach involves the 
incorporation of an extra contribution of energy dissipation specifically related to 
fatigue, therefore enhancing the driving force behind crack propagation based on 
same representative fatigue history variable. Following the work by Carrara et al. 
[105], this chapter is based on the first category of models.  

To integrate the effects of fatigue, the fracture energy density (Eq. (1-16)) can 
be modified based on a cumulated history variable [105]: 
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In the equation above, t represents pseudo-time, ( )  shows a cumulated history 
variable, and ( ( ))f    is fatigue degradation function. ( )  can be defined as an 
accumulation of any scalar measure  that comprehensively characterizes the 
fatigue history endured by the material, satisfying the requisite property of ( )  ≥ 
0. For the meanings of the other parameters, please refer to Section 1.6. Given that 
the model presented is energy-based, it is logically coherent to take into 
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consideration the active part of the elastic strain energy density as the fatigue history 
variable, .  

Several choices are available for the mentioned parameters. Considering the 
effect of mean load of cycles, two different cumulative history variables can be 
defined. For mean load independent, we have: 

0
( ) ( ) d

t
H     =   (6-2) 

where ( )H   shows a Heaviside function to accumulate the fatigue effect only 
for loading phases (it is one for loading, and zero for unloading). Considering mean 
load independent, one can introduced a function that has different weights for the 
rate of the cumulated variable, as: 

 0

1( ) ( ) d
t

N

H      


=   (6-3) 

Furthermore, the function ( ( ))f   , known as the fatigue degradation function, 
mathematically describes the intensity of reducing the fracture toughness during 
fatigue loading. It can be defined by a general function as: 
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 (6-4) 

where p and q should be calibrated based on experimental data. th

demonstrates the point at which the fatigue effect is triggered and is also obtained 
based on experimental data. It should be noted that Eq. (6-4) is chosen to encompass 
a wide range of degradation functions, however, any non-increasing function that 
varies between 1 and 0 is applicable. 

Finally, to obtain the governing equations, the initial step involves considering 
the total energy functional. 
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Note that the last two terms are potential energy of body force, b, and traction 
vectors, t, where  represents the mass density. Furthermore, considering the 
introduction of ( )   that brings in a history-dependency, the formulation diverges 
from the brittle fracture model where the energy dissipation could be neatly 
categorized as a state function. In this context, the energy loss becomes intricately 
linked to the sequence of events that have unfolded, implying that it is influenced 
by all the previous states the system has gone through. 

Employing integration by parts technique, then, first-order stability principle, 
and finally, standard arguments of variational calculus, one can obtain the following 
governing equations related to the damage and mechanical problems: 
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and these boundary conditions: 

. on , on , . 0 onn N D D  d  =  =   =  n t u u n  (6-7) 

In the context of numerical implementation of Eq. (6-6), the most common 
schemes for solving the Phase Field equations are the monolithic and staggered 
approaches. However, advancements in computational methodologies and the need 
for more efficient and robust solutions have led to the exploration and development 
of alternative strategies. The staggered scheme in the context of Phase Field 
modeling represents a pivotal computational strategy aimed at solving the coupled 
partial differential equations (PDEs) that govern the evolution of fracture and 
damage in materials. This approach systematically segregates the solution of the 
mechanical and phase field problems into separate, sequential steps, thereby 
simplifying the computational complexity inherent in simultaneously resolving the 
coupled system. Specifically, the mechanical problem is solved first to update the 
displacement and stress fields, followed by the resolution of the Phase Field 
problem, which updates the damage based on the newly computed mechanical state. 
This decoupling facilitates the use of different solvers or numerical techniques 
tailored to the specific characteristics of each sub-problem, enhancing 
computational efficiency and stability. For further information, see [32]. 
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To determine the numerical results, Eq. (6-6) which is written in weak form 

should be solved. Following this, they are discretized employing linear finite 
elements and subsequently reformulated into incremental form. Once prepared, Eq. 
(6-6) is solved through a staggered scheme as in [32]. 

In the context of time-discretized framework, the fatigue history variable can 
be presented as follows: 
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For mean load independent accumulation function (Eq. (6-2)), we have: 
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While for mean load dependent accumulation function (Eq. (6-3)), we have: 
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This section briefly (since the model is well-developed in the literature and is 
not the aim of this chapter) discusses the fundamentals of extending the Phase Field 
approach to fatigue. In the following section, these equations are used to obtain 
numerical results. 

6.3 1D bar case study 

In order to have a better insight into how the model works, and the effects of 
each parameter, it is advisable to start the analyses with the simplest case: a one-
dimensional problem. 

Consider an unstretched and undamaged one-dimensional continuum bar, fixed 
at one end and subjected to a time-varying displacement, u (t), at the other end, as 
shown in Fig. 6-1. The displacement boundary conditions establish a clear 
definition of how the bar is constrained and how it is expected to deform over time. 
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Fig. 6-1. One-dimensional fatigue test setup. 

 Consider the following values and inputs for numerical modeling of the 
problem: L = 2 m, u max = 0.85, E = 1 Pa, Gc = 0.071 J/m2. Regarding the mesh size, 
following the literature [105], a spatial discretization of l/5 was employed. For the 
AT1 model, l = 0.177 m was used (Eq. (1-24)), while, to maintain equivalent 
ultimate strength across both models, l = 0.05 m was adopted for the AT2 model 
(Eq. (1-25)), for more information, see [28]. Moreover, for the sake of simplicity, 
the mean load independent accumulation function (Eq. (6-2)) was used. Fig. 6-2 
presents numerical results based on AT1 model while Fig. 6-3 is related to AT2 
model. In each figure, parts a) show accumulated history variable, parts b) illustrate 
the growth of damage localization for entire bar at each cycle and parts c) present 
stress-displacement diagram. 
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(a) 

 
(b) 

 
(c) 

Fig. 6-2. Numerical response of a bar subjected to a cyclic loading based on AT1 model. (a) 
accumulated history variable at the end of all cycles, (b) damage localization growth for entire bar at 
each cycle and (c) stress-displacement diagram. 
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(a) 

 
(b) 

 
(c) 

Fig. 6-3. Numerical response of a bar subjected to a cyclic loading based on AT2 model. (a) 
accumulated history variable at the end of all cycles, (b) damage localization growth for entire bar at 
each cycle and (c) stress-displacement diagram. 
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Considering the accumulated history variable, part a), it can be seen that it 

considers four different stages of loading and unloading during a cycle, while it 
only increases during two loading phases. Comparing this parameter for both AT1 
and AT2 models, it can be seen that although they are quite similar, the accumulated 
history variable is slightly higher for the AT1 model. Based on part b), for the cyclic 
damage profile, it is clear that the results are quite different; for AT2, damage 
increases uniformly along the bar for some cycles, then localization starts, and by 
increasing the damage at the localized point, failure happens. In contrast, for AT1, 
as soon as the threshold is met, failure occurs and there are no cyclic damage growth 
stages. This behavior of the AT1 model can be observed in Fig. 6-2 part c), since 
no cyclic stress softening can be seen, and the stress suddenly drops to zero. While 
for the AT2 model, as shown in Fig. 6-3 part c), the stress decreases due to cyclic 
loading, and failure occurs. It should be noted that, similar to the static loading, the 
stress-displacement relationship for AT1 is linear, while for AT2, as soon as we 
load the sample, the damage starts. This might justify the slightly lower 
accumulated history variable for the AT2 model. It should be noted that for AT1, 
the bar fails after 4 cycles, while it is 13 cycles for the AT2 model. The number of 
cycles to failure was intentionally chosen to be low to show the different stages of 
fatigue modeling by the Phase Field in more detail. 

Finally, it is worth to note that since the fatigue extension model shares the 
basics with the standard (static) Phase Field, the effect of mesh size and length scale 
is not studied here. On the other hand, regarding one-dimensional analyses of 
fatigue failure using the Phase Field approach, the reader can refer to [104]. 
However, it worth to mention that in [104], the Authors employed strain as the 
fatigue history variable, while it was later shown that employing strain for two-
dimensional cases results in mesh-dependent simulations since it is singular around 
the crack tip, as seen in [105]. Therefore, the results for one-dimensional analyses 
are original. 

6.4 2D case study 

6.4.1 A brief introduction on the cycle jump approach 

While the study of Phase Field models for fatigue analysis in one-dimensional 
(1D) settings has been relatively straightforward, extending these models to two-
dimensional (2D) applications significantly increases computational demands, 
typically requiring several days for a single analysis. To enhance the efficiency of 
this approach, the introduction of a cycle jump technique seems advantageous. This 
computational strategy accelerates fatigue simulations by skipping a specified 
number of load cycles, effectively decreasing the total count of cycles necessary for 
a comprehensive analysis. It is important to mention that the principal objective of 
this chapter is to extend the application of the Phase Field approach to the domain 
of fatigue analysis. This involves a detailed examination of critical parameters and 
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the subsequent validation of the model against a set of experimental data to derive 
the Paris curve. However, a concise overview of the cycle jump methodology, set 
to be detailed in an upcoming publication in collaboration with researchers from 
ETH, is provided. This overview offers a preliminary insight into the method’s 
contribution to the field. For an in-depth discussion, the reader is referred to [197]. 

The development of the adaptive acceleration strategy is inspired by a key 
observation: fatigue effects are most pronounced around the crack tip. This insight 
is crucial, as it directs our focus towards improving the accuracy of system state 
forecasts during cycle jumps, which is vital for understanding the dynamic nature 
of fatigue without overburdening the computational resources. A key aspect of this 
approach is the adaptive determination of the cycle jump size (∆N), intended to 
ensure a balance between predictive accuracy and computational efficiency. 

A point-wise finite difference (FD) method is employed to forecast system 
evolution, primarily since it has a light computational load, and lends to the 
necessary adaptation. This method works by using a Taylor series expansion to 
predict the state of a variable Θ(x,N) at the most recently resolved cycle before 
making a jump, which gives: 

2
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Here, ′(x,N) and Θ′′(x,N) represent the first and second cycle count 
derivatives, respectively, approximated using backward finite differences from 
recent cycle data. For this approach, we select a stencil size of 4, which means we 
explicitly calculate four cycles between each cycle jump. Consequently, the 
formula for predicting Θ(x,N +∆N) is derived as follows: 
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This FD-based extrapolation scheme is distinguished by its direct application 
to discrete nodal or Gauss point locations, facilitating the efficient storage of state 
variable histories and ensuring negligible CPU time involvement. 

In order for the model to calculate the proper number of cycles to jump, an 
adaptive scheme is chosen. The adaptation of cycle jump size is governed by a 
criterion aiming to constrain system evolution within specified limits, thereby 
maintaining the non-linearity and prediction errors at manageable levels. This 
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process is informed by monitoring a state variable Λ(N), which reflects the system’s 
fatigue progression. The "cycle jump criterion" is established as: 

( ) ( ) ( )allowedN N N +  =  +   (6-13) 

This criterion ensures that the system evolution during a jump matches a 
predetermined increment, leading to an explicit formula for ∆N based on potential 
non-linear evolutions:  

2
1 1 2 0

2

( ) 4 ( ) ( )

2
allowedN

N
 −  +  −   −  −  

 =


 (6-14) 

In this formula, 1 , 2 , and 0  serve as fitting parameters, facilitating an exact 
determination of the optimal number of cycles to be skipped. This innovative cycle 
jump criterion and prediction method collectively enhance the computational 
efficiency of fatigue analysis, allowing for the acceleration of simulations without 
compromising the precision required for accurate fatigue life assessments. Further 
details can be found in [197]. 

6.4.2 Validation with experimental data 

In order to validate the model with available experimental data, the presented 
Phase Field approach in two-dimensional form is employed. This validation focuses 
on Al7075, a metal widely utilized in the fields of aerospace and automotive 
engineering. According to [198], the material properties are characterized by the 
elastic modulus (E) of 71700 MPa, Poisson’s ratio (ν) of 0.33, and fracture 
toughness (KIc) of 18.75 MPa√m which results in a critical energy release rate (Gc) 
of 4.9 MPa mm. Through a series of trail and error steps, we determined that setting 
the parameters q = 1, p = 3.3, and th = 15500 J mm−3 optimally describes the fatigue 
degradation function, Eq. (6-4), and closely matched the Paris curve with da/dN = 
2.268 × 10−8 (ΔK) 3.16. The experimental setup in [198] adopted a mean load ratio 
(R) of 0.1 for the three-point bending test. The sample specified a geometry with a 
width of 40 mm and a thickness of 1 mm, under plane stress conditions. The 
computational mesh, finely detailed around the anticipated crack path, consists of 
27,738 bilinear quadrilateral elements and 27,833 nodes, with a discretization 
parameter of l/h = 5. In terms of boundary conditions, the model fixes one node at 
the bottom left in all directions and another node at the bottom right in the direction 
of the load to emulate the support structure. The load is applied as a concentrated 
force at a node on the upper boundary, incorporating the strain tensor’s spectral 
decomposition as suggested by Miehe et al. in [32]. The AT1 model, with l = 0.2 
mm, was selected for conducting this analysis. The crack propagation rate curves, 
derived using the introduced cycle jumping approach, are depicted across different 
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loading intensities in Fig. 6-4, alongside the curve fitted to the Paris law based on 
the experimental findings reported in [198]. In the figure, experimental points are 
marked by red dots, the solid black line indicates the most accurate fit to these data, 
and various loading amplitudes are represented by differently colored lines showing 
the rate of crack expansion. 

 

Fig. 6-4. Crack growth rate curves by Phase Field for the three-point bending test: The solid black 
line represents the best fitting line for experimental data, while the red dots depict the experimental 
points [198], and the colored lines illustrate crack growth rate curves for different loading amplitudes 

Based on Fig. 6-4, the proximity of the Phase Field model curves to the fitted 
line for the experimental data indicates a reasonable agreement between the 
theoretical predictions and the experimental observations. On the other hand, as ΔK 
increases, the crack growth rate (da/dN) also increases, which is consistent with the 
expected physical behavior of materials under fatigue loading. At lower levels of 
ΔK, the crack growth rate is relatively slow, which corresponds to the threshold 
region where cracks do not propagate significantly. Furthermore, by approaching 
ΔK to the material’s fracture toughness (KIC), the rate of crack growth increases 
sharply, ensuring failure would occur before reaching KIC. 
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Chapter 7  

7. Conclusions and Future Work 

7.1 Conclusions 

This thesis investigated the application of Finite Fracture Mechanics and Phase 
Field models for the study of debonding and fatigue failure in composite structures. 
This work addressed the critical need for efficient and comprehensive 
methodologies to predict the strength and durability of composite structures, 
especially under different complex loading conditions. 

Chapter 3 examined the mechanics of debonding in direct shear by means of 
four one-dimensional interface models. These comprise three CZM models and the 
FFM approach. The closed-form solutions of these models provided important 
insights into the influence of different parameters on the debonding response in 
direct shear test configurations. The need for consideration of residual strength 
(friction) at the interface, even at the onset of debonding, was shown to be crucial. 
The models also showed high agreement in predicting the failure load in 
experimental data based on interface mechanical properties obtained from a single 
test, thus providing significant advantage for design and optimization. 

Chapter 4 introduced a novel FFM model for finite life estimation of notched 
components under uniaxial cyclic loading. The model employed the Basquin 
equation to capture the variation in cyclic strength and SIF at failure calibrated from 
SN data to predict the life of various notch geometries under different loading 
amplitudes. The robustness of the model was demonstrated through agreement with 
a wide spectrum of experimental data from various notched configurations and 
materials. Furthermore, the FFM approach was used to describe the size effect of 
notched components. Similar to static loading, the model showed reliable results 
even for structures in which the TCD exceeds the net width of the specimen (making 
the TCD inapplicable in this case). 

Chapter 5 extended TCD and FFM methodologies to address finite fatigue life 
of orthotropic materials containing drilled holes under tension-tension cyclic 
loading. These methodologies, in conjunction with the use of semi-analytical 
relationships for stress field and SIF calculations provided a framework for rapid 
and accurate fatigue life estimation. To validate the models, an extensive ad hoc 
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fatigue testing campaign on notched laminated composites was performed, 
encompassing four different specimens and two different layups, [90/0]2s and 
[0/90]2s. Two geometries were utilized to determine the model input parameters, 
while the remaining ones served to validate the blind predictions by FFM and TCD 
models. The results were more than satisfactory; although the TCD model proved 
slightly more accurate, it was slightly less conservative compared to the FFM 
model. General observations revealed that the [90/0]2s layup exhibited superior 
fatigue strength compared to the [0/90]2s layup. However, this difference in strength 
decreased as stress concentration increased from plain to cracked specimens. This 
phenomenon was consistent with the conventional hole size effect, where the 
number of cycles to failure decreases as the hole radius increases. Further 
investigations through parametric studies showed the impact of hole radius on the 
fatigue lifetime of both configurations. The results indicated that as the hole size 
increased, the differences between the two layups decreased. This led to the 
observation that the [90/0]2s layup becomes more sensitive to notch size. 

Chapter 6 explored the Phase Field method for fatigue in brittle materials. The 
method consists of modifying the standard phase-field free energy functional to 
account for a fatigue history variable that reduces the fracture toughness of the 
material. The choice of fatigue history variable along with the fatigue degradation 
function allows one to tailor the model to different materials. The chapter showed 
the capability of the approach to replicate the Paris curve for fatigue crack growth 
in brittle materials, while displaying the ability to capture effects beyond the Paris 
regime including nucleation and unstable crack propagation. An efficient “cycle 
jump” approach was also outlined aiming to accelerate simulations. 

This research contributed to the field of composite structures by: 

I) Developing new and efficient methodologies for debonding and fatigue 
failure of composite structures. The closed-form solutions from FFM and CZM 
models provide engineers a useful tool for predicting and understanding debonding 
behavior in externally bonded systems. 

II) Demonstrating the FFM’s effectiveness in predicting the finite fatigue life 
of notched components. The model presented in Chapter 4 establishes a robust and 
accurate framework for estimating the life of notched components under a variety 
of notch geometries.  

III) Extending the TCD and FFM methodologies to analyze the fatigue life of 
orthotropic materials with drilled holes. This development, discussed in Chapter 5, 
provides valuable insights into the behavior of composite laminates, ultimately 
leading to more reliable design strategies.  

IV) Adapting the Phase Field method for fatigue analysis of real tests. The 
framework presented in this thesis provides a promising approach to analyzing 
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fatigue crack growth and failure in brittle materials, with potential applications to a 
variety of brittle composite systems. 

V) These findings have important implications to a number of industries, 
including aerospace, automotive, and civil engineering, where the reliable, safe 
operation of composite structures is critical. The methods developed in this work 
provide engineers with a set of tools that can be used to:  

- Design composite structures for maximum strength and durability 

- Develop and implement efficient maintenance and inspection protocols,  

- Improve the overall safety and reliability of composite structures in a wide 
range of applications.  

7.2 Future work  

This thesis represents a significant step towards leveraging FFM and Phase 
Field modeling to investigate the fatigue and fracture behavior of composite 
structures. However, realizing a comprehensive understanding and predictive 
capabilities require further exploration of the following key areas. 

In the current work, it was shown that FFM is effective in analyzing debonding 
in direct shear tests. Future work should endeavor to: 

I) Expand the scope of geometries and loading conditions: Real-world 
applications typically involve complex geometries and a variety of loading 
scenarios beyond the direct shear test. Extending the FFM framework to adhesively 
bonded joints that are subjected to complex loading, such as combined tension, 
shear, and/or bending, is critical for practical implementation.  

II) Incorporate environmental effects: The influence of environmental factors, 
such as moisture and temperature, on debonding behavior should not be neglected. 
Future research should seek to incorporate these effects into the FFM model 
through environmentally dependent material properties. 

The established FFM-based model for fatigue life estimation of notched 
components has set the stage for advancing to the next level through various 
avenues: 

I) Incorporating crack propagation mechanisms: The current model is limited 
to estimating the final fatigue life based on FFM for a given material. Future work 
will involve aligning this with classical approaches by incorporating various crack 
propagation mechanisms (e.g., Paris law, exponential models, etc.) within the FFM 
framework.  
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II) Extending to multiaxial fatigue: Real-world applications often involve 

multiaxial loading conditions, where stresses act in multiple directions 
simultaneously.  

III) Material heterogeneity and anisotropy: Composite materials generally 
exhibit inherent heterogeneity and anisotropy in their mechanical properties. The 
FFM modeling approach for fatigue damage in composite laminates was developed 
to work with such material complexities. Future research will involve incorporating 
other failure mode than brittle or pull out into the FFM model to extend the model 
for “thick” composite laminate materials under cyclic loading. 

IV) Probabilistic and stochastic modeling: Fatigue life is inherently 
probabilistic due to inherent material variability and manufacturing imperfections. 
Introducing a probabilistic and/or stochastic paradigm into the FFM framework will 
enable the provision of fatigue failure predictions that are more realistic and 
reliable.  

V) Variable amplitude loading: Most engineering structures experience 
variable amplitude loading profiles in real-world service conditions.  

Further works related to Phase Field approach to study fatigue failure can be:  

I) Computational efficiency and scalability: The “cycle jump” approach 
presented in this work alleviates the computational cost associated with the growth 
of complex and highly entangled 3D crack geometries, opening the door to the 
treatment of even larger volumes and crack networks. Despite this advance, even 
further improvement will be necessary to carry out large-scale simulations 
including complex geometries and intricate crack propagation paths. This 
development will involve exploring adaptive meshing techniques, more efficient 
solvers, and parallelization strategies, all of which can significantly reduce the 
computational cost and enable the analysis of more realistic engineering problems. 

II) Experimental validation and calibration: Given the wide options for 
different functions withing Phase Field model, the accuracy of it must be rigorously 
assessed across various materials, loading conditions, and crack geometries to find 
the best combination of functions and modeling.  

III) Conjugating Phase Field with Machine Learning: Integrating Phase Field 
methodologies with Machine Learning (ML) techniques can lead to significant 
acceleration in fatigue life predictions and enhanced efficiency of the overall 
simulation process.  

IV) Conjugating Phase Field with FFM: As discussed in Section 1.8, the FFM 
can be integrated into Phase Field formulations to replace the internal length with 
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the material strength. This methodology can be further investigated for applications 
under fatigue loading. 

7.3 Final thoughts 

The future of fatigue and fracture analysis in composite structures anticipates a 
transition towards a comprehensive methodology that can handle complexities in 
material behavior and loading conditions. This work has endeavored to adapt the 
FFM model to more complex loading conditions and processes such as fatigue and 
debonding (with emphasis on the role of friction). Thus, FFM may be recognized 
as a powerful tool for failure analysis of composite structures that can embrace a 
spectrum of failure mechanisms. Moreover, by implementing sophisticated 
computational strategies, notably the Phase Field model, and proposing a 
methodology to properly validate the approach, one manifests a robust 
computational capability for analyzing fatigue processes. This approach not only 
can be used to predict the final life of materials but exploited to allow insight into 
the various stages of fatigue life, that amplifies the depth and strength of the 
research. Furthermore, the experimental investigation of the fatigue behavior of 
notched laminated composites has revealed a number of important insights into the 
complexity of the relationships that determine fatigue behavior. 

All in all, the present work has laid a solid foundation for the application of 
advanced computational methodologies for analyzing the fatigue and fracture 
behavior of composite structures. However, the perpetuation for deeper insights and 
more accurate predictions will necessitate continual exploration and innovation on 
multiple fronts. By embracing the future directions articulated above researchers 
can unlock the potential of composite materials and ensure their safe and efficient 
application in a variety of engineering fields.  
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