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Abstract

Fracture is the physical process through which an initially pristine and continuous
structural domain undergoes changes in its mechanical configuration due to the de-
velopment of an internal discontinuity over time. Macroscopically, this phenomenon
manifests as a worsening in the structural performance of the affected components
that eventually leads to a total collapse. Therefore, the proper understanding of the
involved physics is essential for ensuring structural integrity. On the other hand, the
inherent dynamism that arises from the evolution over time of fracturing systems
suggests that the dynamic aspects of fracture should not be lightly neglected. In
this context, the present thesis delves into the modelling of dynamic fracture by
exploiting two different but complementary approaches: the Phase Field fracture
model and the Finite Fracture Mechanics failure criterion. The former provides a
highly-detailed and theoretically robust description of fracture that allows the devel-
opment of a solid core understanding of the involved physics, albeit at a considerably
high computational cost. In contrast, the latter failure criterion provides less detailed
but cost effective predictions that align with experimental evidence, rendering it a
useful tool for preliminary stages of structural design. As such, the present work
provides a multi-perspective insight into the modelling of dynamic fracture.

The first thematic block is devoted to the Phase Field fracture model, which is
introduced and developed following a bottom-up approach. Firstly, the framework is
contextualized by describing the pioneer variational revisit of brittle fracture and its
ensuing regularization that led to the original Phase Field fracture model. Thereafter,
the generalized formulation of the Phase Field fracture model in a quasi-static context
is introduced, and the main existent modelling options are briefly described. The
ability of the approach to accurately reproduce crack growth under multi-axial stress
states is then tested through a case study on the crack onset from circular holes
under quasi-static biaxial loadings, in which reasonable agreement is shown with
Dugdale’s Cohesive Zone Model when the No-Tension strain energy decomposition



viii

and the AT1 Phase Field model are used. With these learnings present, the Phase
Field fracture model is subsequently developed in a dynamic context by virtue of
Hamilton’s principle and variational inequalities. In addition to the theoretical deriva-
tion of the governing principles, the main technical aspects concerning its numerical
implementation with an explicit time integrator are also covered. Subsequently, the
inherent ability of the Phase Field fracture model to reproduce complex crack pat-
terns is exploited to study the post-punching fragmentation of biaxially pre-strained
glass panes, depicting the effect of the pre-straining intensity and biaxiality on the
resultant crack patterns. Eventually, the already introduced quasi-static and dynamic
Phase Field fracture models are juxtaposed under unstable crack growth conditions,
revealing that: (i) inertial effects are not negligible for such conditions, even under
quasi-static loadings; (ii) the representativeness of the resulting crack paths is under-
mined if the actual diffusion of mechanical information is overlooked; and (iii) the
irreversibility condition of fracture is significantly weakened if crack growth is not
modelled progressively.

The second thematic block instead covers the Finite Fracture Mechanics failure
criterion, once again following a bottom-up approach. Hence, the well-established
quasi-static formulation is first introduced and then particularized to two different
case studies. The first one involves the size-effect of failure when stemming from
a spherical void embedded in a uniaxially tensioned infinite domain. This setup
leads to relatively simple failure conditions, and available experimental results show
reasonable agreement with the Finite Fracture Mechanics predictions. More complex
failure conditions are instead obtained by retrieving the case study on the crack
onset from circular holes under biaxial loadings, where the resultant Finite Fracture
Mechanics predictions are found to agree with those of Dugdale’s Cohesive Zone
Model. Once the specific aspects of the criterion are understood in a quasi-static
setup, its formulation is then extended to include sudden loadings. To that end,
the basic requirements of proper dynamic failure criteria are first drawn, and then
the existent approaches are put to the test. To address the identified shortcomings
of the previously proposed criteria, a pre-emptive proposal for the dynamic Finite
Fracture Mechanics is put forward, implemented, and compared with relevant sets
of experiments. Despite the limited amount of experimental data, the proposed
formulation shows promising capabilities for predicting the loading rate effect in the
onset of cracks.



Sommario

La frattura è il processo fisico attraverso il quale un dominio strutturale, inizial-
mente intatto e continuo, subisce cambiamenti nella sua configurazione meccanica
a causa dello sviluppo nel tempo delle discontinuità interne. Macroscopicamente,
questo fenomeno si manifesta come una riduzione delle prestazioni strutturali dei
componenti interessati, che porta infine al collasso. Perciò, la corretta comprensione
della fisica coinvolta è necessaria per garantire l’integrità strutturale. D’altra parte,
il dinamismo intrinseco che deriva dall’evoluzione delle fessure suggerisce che gli
aspetti dinamici non debbano essere trascurati. In questo contesto, la presente tesi
approfondisce la modellazione della frattura dinamica sfruttando due approcci diversi
ma complementari: il modello di frattura con Campo di Fase e il criterio di rottura
della Meccanica della Frattura Finita. Il primo rileva una descrizione dettagliata
e teoricamente robusta del processo di fessurazione, consentendo lo sviluppo di
una solida comprensione della fisica coinvolta, sebbene a un costo computazionale
considerevole. D’altro canto, il secondo fornisce delle previsioni che, pur essendo
meno dettagliate, sono in grado di riprodurre risultati sperimentali. Ciò, unito ad un
minore costo computazionale, lo rende uno strumento adatto per le fasi preliminari
della progettazione strutturale. Di conseguenza, il presente lavoro approfondisce da
diverse prospettive la modellazione della frattura dinamica.

Il primo blocco tematico è dedicato al modello di frattura con Campo di Fase,
il quale viene introdotto e sviluppato seguendo un approccio dal basso verso l’alto.
Inizialmente, la metodologia viene contestualizzata introducendo sia la primigenia
rivisitazione variazionale della frattura fragile, sia la regolarizzazione che ha portato
al modello di frattura con Campo di Fase originale. Successivamente, la formu-
lazione generalizzata si introduce in un contesto quasi statico, e le principali opzioni
di modellazione esistenti vengono descritte brevemente. La capacità dell’approccio
di riprodurre lo sviluppo della frattura in condizioni di tensione multi-assiale viene
testata mediante uno studio sull’innesco di fessure da fori circolari presenti in domini
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sottoposti a carichi biassiali e quasi statici, dove si riscontra un ragionevole accordo
con il Modello di Zona Coesiva di Dugdale. Il modello di frattura con Campo di
Fase viene successivamente sviluppato in un contesto dinamico in virtù del principio
di Hamilton e delle disuguaglianze variazionali. Oltre alla derivazione teorica dei
principi governanti, vengono trattati anche i principali aspetti tecnici relativi alla sua
implementazione numerica con un integratore nel tempo esplicito. Inoltre, la capacità
intrinseca del modello di frattura con Campo di Fase di riprodurre percorsi di frattura
complessi viene sfruttata per studiare la frammentazione dovuta a punzonatura in
lastre di vetro biassialmente pre-tensionate. In particolare, viene mostrato l’effetto
sui percorsi di frattura risultanti dell’intensità e biassialità della pre-tensione. Infine,
i già noti modelli di frattura con Campo di Fase quasi statico e dinamico vengono
confrontati in condizioni di frattura instabile, rivelando che: (i) gli effetti inerziali
non sono trascurabili per tali casi, anche sotto carichi quasi statici; (ii) la rappre-
sentatività dei percorsi di frattura risultanti viene meno se trascurata la diffusione
dell’informazione meccanica; e (iii) la condizione di irreversibilità della frattura
risulta indebolita se lo sviluppo delle fessure non si modella progressivamente.

Il secondo blocco tematico tratta il criterio di rottura della Meccanica della Frat-
tura Finita seguendo ancora un approccio dal basso verso l’alto. Pertanto, la ben
consolidata formulazione quasi statica viene prima introdotta e poi particolarizzata
per due geometrie (di studio). La prima coinvolge l’effetto di scala sulla rottura
quando essa si innesca da un poro sferico presente in un dominio infinito sotto
trazione uniassiale. Questa configurazione rileva condizioni di rottura relativamente
semplici, e le previsioni della Meccanica della Frattura Finita mostrano un ragionev-
ole accordo coi risultati sperimentali disponibili. Condizioni di rottura più complesse
sono analizzate considerando l’innesco della frattura da fori circolari soggetti a
carichi biassiali, dove le previsioni risultanti della Meccanica della Frattura Finita si
trovano comunque in accordo con quelle del Modello di Zona Coesiva di Dugdale.
Infine si introduce l’estensione del modello per includere carichi dinamici. A tale
scopo i requisiti di base per i criteri di rottura dinamici vengono prima delineati, e poi
si mettono alla prova gli approcci esistenti. Al fine di risolvere le carenze identificate,
si propone una formulazione dinamica della Meccanica della Frattura Finita, la quale
viene poi implementata e confrontata con dei set di esperimenti dinamici pertinenti.
Nonostante la quantità limitata di dati sperimentali, la metodologia proposta si mostra
promettente per prevedere l’effetto della velocità di carico sull’innesco della rottura.



Resumen

La fractura es el proceso físico a través del cual un dominio estructural inicialmente
prístino y continuo sufre cambios en su configuración mecánica debido al desarrollo
en el tiempo de discontinuidades internas. Macroscópicamente, este fenómeno se
manifiesta como una reducción en el rendimiento estructural de los componentes
afectados que eventualmente lleva a su colapso. Por tanto, la adecuada comprensión
de la física involucrada es esencial para garantizar la integridad de estructural. Por
otro lado, el dinamismo inherente de la evolución temporal de la fractura sugiere
que los aspectos dinámicos no deben ser descuidados. En este contexto, la presente
tesis profundiza en la modelización de la fractura dinámica explotando dos enfoques
diferentes pero complementarios: el modelo de fractura con Campo de Fase y el
criterio de fallo de la Mecánica de Fractura Finita. El primero proporciona una
descripción detallada y teóricamente robusta de la fractura, permitiendo el desarrollo
de una sólida comprensión de la física involucrada, aunque a un costo computacional
considerable. En cambio, la segunda metodología proporciona predicciones más
económicas que, aún siendo menos detalladas, son capaces de reproducir resultados
experimentales, lo que le convierte en una herramienta útil para las etapas prelim-
inares del diseño estructural. En consecuencia, el presente trabajo proporciona una
visión multi-perspectiva de la modelización de la fractura dinámica.

El primer bloque temático está dedicado al modelo de fractura con Campo de
Fase, el cual se introduce y desarrolla siguiendo un enfoque ascendente. En primer
lugar, el marco se contextualiza introduciendo la revisión variacional de la fractura
frágil primigenia, así como la regularización que llevó al modelo original de fractura
con Campo de Fase. A continuación, se introduce la formulación generalizada en
un contexto cuasi-estático, describiéndose brevemente las principales opciones de
modelado existentes. La capacidad del modelo para reproducir con precisión el
desarrollo de la fractura bajo estados de tensión multi-axial se prueba estudiando
la nucleación de grieta desde agujeros circulares presentes en dominios bajo carga



xii

biaxial y cuasi estática, caso para el cual se muestra un acuerdo razonable con el
Modelo de Zona Cohesiva de Dugdale. El modelo de fractura con Campo de Fase
posteriormente se desarrolla en un contexto dinámico en virtud del principio de
Hamilton y las desigualdades variacionales. Además de la derivación teórica de
los principios rectores, también se tratan los principales aspectos técnicos de su
implementación numérica usando un integrador temporal explícito. Posteriormente,
la capacidad inherente del modelo de fractura con Campo de Fase para reproducir
grietas complejas se explota para estudiar la fragmentación post-punzonado de
paneles de vidrio pre-tensados biaxialmente, detallando el efecto de la intensidad y
la biaxialidad de la pre-tensión en la fragmentación resultante. Finalmente, los ya
introducidos modelos de fractura con Campo de Fase cuasi estático y dinámico se
yuxtaponen bajo condiciones de fractura inestable, revelando que: (i) los efectos
inerciales no son despreciables para tales casos, incluso bajo cargas cuasi-estáticas;
(ii) la representatividad de las grietas resultantes se ve socavada si se obvia la difusión
real de la información mecánica; y (iii) la condición de irreversibilidad de la fractura
se debilita si el crecimiento de grieta no se modela de forma progresiva.

El segundo bloque temático trata el criterio de fallo de la Mecánica de Fractura
Finita siguiendo una vez más un enfoque ascendente. De este modo, primero se
introduce la bien establecida formulación cuasi-estática y luego se particulariza a dos
casos. El primero consiste en el estudio del efecto de escala de la rotura cuando esta
se desarrolla a partir de un vacío esférico incrustado en un dominio infinito sometido
a tensión uniaxial. Esta configuración genera condiciones de fallo relativamente
simples, donde los resultados experimentales disponibles muestran un acuerdo
razonable con las predicciones de la Mecánica de Fractura Finita. Condiciones de
fallo más complejas se obtienen por otro lado recuperando el estudio de la nucleación
de grieta desde agujeros circulares bajo cargas biaxiales, para el cual se obtiene que
las predicciones de la Mecánica de Fractura Finita coinciden con las del Modelo
de Zona Cohesiva de Dugdale. Una vez comprendido el criterio cuasi-estático,
su formulación se extiende para incluir cargas dinámicas. Para ello, primero se
determinan los requisitos básicos para un criterio de fallo dinámico, y luego se ponen
a prueba los enfoques existentes. En base a las deficiencias identificadas, se presenta
una propuesta para la Mecánica de Fractura Finita dinámica, la cual se implementa y
se compara con resultados experimentales relevantes. A pesar de la cantidad limitada
de datos empíricos, la formulación propuesta se muestra prometedora para predecir
el efecto de la velocidad de carga en la nucleación de grietas.
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Chapter 1

Introduction

1.1 Background and motivation

In the realm of mechanics, the term fracture encompasses all the physical phenomena
related to the nucleation and propagation of cracks within structural domains. Its
study and comprehension are the responsibility of Fracture Mechanics, a highly
specialized branch of Structural Mechanics. In turn, the latter is deeply rooted in
Newtonian mechanics, which provides the fundamental laws governing the motion
and dynamics of systems under the umbrella of classical physics. The analysis of
fracture cannot be thereby carried out independently from the principles of Newto-
nian physics, being only through this multi-layered lens that one can begin to unravel
the complexities of material fracture.

As introduced in the very own Newton’s Principia [1], the evolution of classical
systems is dictated by a balance between mass, acceleration and forces, be they inter-
nal or external. As such, these are generally dynamic processes in that they present
non-null inertial effects. Indeed, only in the idealized case of exact balance between
the internal and external forces acting on a system with unchanging mechanical
configuration, the resulting acceleration is null, and its evolution (or the lack thereof)
can be perfectly static with respect to an inertial reference system. Particularizing to
fracture, this statement implies that crack development is always a dynamic process
for it entails changes in the structural domains itself; only under very restrictive
conditions it can be treated quasi-statically, i.e. insofar as the rate of change of any
involved magnitude or characteristic is negligible.
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The two main sources of dynamic effects in a fracture problem are the external
loading and the internal changes in the mechanical configuration due to crack growth.
From a rigorous standpoint, a quasi-statically loaded system undergoing sudden
failure is as dynamic as if the applied loading rapidly changes. For that reason, only
through the comprehensive study of dynamic fracture, in the sense of both sudden
loadings and fast growing cracks, the breakage mechanisms featured by real-world
components can be understood and their structural integrity can be ensured. Certainly,
the study of dynamic evolutions in a continuum context is not straightforward even
upon "stationary" domains1, let alone when time-dependent cracks come into play.
For that reason, most of the developments within the Fracture Mechanics field are
left to sprout in a quasi-static context and, once mature enough, they are transplanted
into a more complete dynamic framework.

Regarding the evolution of Fracture Mechanics as a scientific field, its starting
point is now consensually identified in the work by Griffith [2], although it remained
quite unnoticed until Irwin’s work [3]. In any case, the study of cracks had already
garnered certain interest within the scientific community, especially in what concerns
the effect of their presence on the quasi-static solution of the elastic problem [4–6].
Later on, the dynamic nature of crack evolution, unquestionable in many cases, also
favoured the research on non-stationary cracks [7–9]. However, these studies were
carried out under strong simplifying assumptions so as to keep the studies analytical,
and as such, they overlooked or could not explain some experimentally observed
phenomena like crack branching or the actual upper bound for crack velocities
[10–13].

The introduction of the numerically-convenient Cohesive Zone Model [14, 15],
boosted by the ever improving computational capabilities, eventually allowed for
conducting much less restrained analyses on dynamic fracture. In this sense, the
numerical implementation of a dynamic cohesive framework was proven able to
reproduce crack branching or the upper-bounded crack tip velocity [16]. Thereafter,
several studies have exploited the Cohesive Zone Model to study complex dynamic
fracture conditions, including high-velocity impacts [17], fragmentation [18, 19]
or unstable crack propagations [20, 21], to mention but a few. Indeed, the much
less restrictive numerical setup enabled capturing phenomena that had hitherto been
out-of-reach. On the downside however, Cohesive Zone Models can only propagate

1Stationary domains in that they present an unchanging mechanical configuration.
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cracks along predefined paths, unless specific re-meshing or kinematic enrichment
techniques are used, thus undermining their representativeness for modelling bulk
fracture.

In an attempt to introduce a generalized approach to brittle bulk fracture within
a variational context, the Phase Field fracture model was introduced [22, 23]. Its
main advantage lies in the obtention of the crack topology as an outcome of an
energy minimization principle, thus eliminating the need to define its potential
paths a priori. Likewise, the numerically challenging sharp discontinuities are
regularized through the introduction of a continuous phase field that governs the
material soundness, considerably easing the numerical implementation and reducing
the problem’s mesh dependency. The intricacies of this regularization and its effect
on the resulting predictions have been the focus of many studies [24–26]. Moreover,
the variational origin of the framework allows for a straightforward incorporation
of the inertial effects, and theoretically robust dynamic frameworks are available
[27–29]. Subsequently, these have proven to reproduce certain complex dynamic
fracture phenomena [30–32] that were mostly out of reach for previous modelling
frameworks.

However, any degree of failure is unacceptable for some structural applications,
and hence it is only of interest therein to predict when fracture nucleates, and not
how it evolves afterwards. In most of these cases, the highly-detailed approaches
introduced above can still provide the required answers, yet at a considerable compu-
tational cost. Instead, a cheaper alternative is to develop a failure criterion capable
of predicting when and where fracture onsets. Being computationally lighter in most
cases, such a strategy is more convenient for the iterative and preliminary stages of
structural design. Notice that this pathway has been the classical way of dealing
with material fracture, with some relevant pre-modern scientific rationale being doc-
umented as early as in Galileo’s [33]. Arguably, this represented an early proposal of
a stress-based failure criterion, although it was not until Rankine’s [34] that the first
stress failure criterion would take its modern shape. On the other hand, Griffith’s
proposal [2] can be regarded as the inception of energy-based failure criteria.

As simple as they are, early failure criteria lacked generality: local stress ap-
proaches only work for plain geometries, whereas large cracks are required for those
relying on the infinitesimal energy release. In an aim to bridge the uncovered set
of configurations in between, several studies proposed more general failure crite-



4 Introduction

ria that non-locally assess a stress or an energy condition [35–38]. These showed
promising predictive capabilities, although some important limitations still applied.
In this context, the modern Finite Fracture Mechanics framework for crack onset
was introduced in [39, 40] by taking the paradigm of non-local assessment further
and coupling stress and energy failure conditions. Its main underlying concept is to
regard crack onset as a phenomenon that is: (i) instantaneous in time and finite in
space, and (ii) subjected to the simultaneous fulfilment of both stress and energy con-
ditions. The resultant framework has ever since proven to be effective in predicting
failure onset upon a wide variety of stress-raisers under quasi-static loadings [41]. In
contrast, the panorama of existent failure criteria applicable to sudden loadings is
noticeably less well-established, and despite some relevant proposals having been
made [42–44], these still present limited predictive capabilities and applicability.

1.2 Main objectives

The primary objective of this thesis is to provide a comprehensive insight into the
modelling of dynamic fracture so as to improve its understanding and eventually
contribute to the enhancement of structural safety. In particular, such a task is herein
carried out through the Phase Field fracture model and the Finite Fracture Mechanics
failure criterion. These two well-established frameworks represent disparate but
complementary approaches to the modelling of fracture; the former aims at a detailed
physical description of the phenomenon, whereas the latter restrains itself to positing
the necessary and sufficient conditions for a crack to nucleate. This dichotomy
allows for a thorough, two-sided analysis of dynamic fracture that covers from pure
theoretical aspects up to the development of predictive engineering-grade tools.

Regarding the Phase Field modelling of fracture, both the quasi-static and dy-
namic frameworks have already been proposed in the literature with a great deal of
success. Therefore, the present work will not focus on developing a new and disrup-
tive formulation, but instead on validating and delving into the predictive capabilities
of the existing Phase Field fracture model, first in quasi-static contexts and then in
dynamic ones. Once presented and well-understood, both variants are confronted
using bespoke case studies so as to unequivocally prove that every fracturing system
should indeed be treated as dynamic unless the validity of quasi-static hypotheses has
been ascertained, both locally and globally. This statement eventually leads to the
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ultimate objective of the first thematic block, which is to provide proof supporting
that quasi-static fracture is a very restrictive case of the dynamic one, and that naively
neglecting this aspect can lead to unsafe failure predictions.

The second thematic block, on the other hand, covers the deep-rooted Finite
Fracture Mechanics framework for crack nucleation. In this case however, there is
no well-established formulation applicable to dynamic loading scenarios. The main
objective of this section is thereby to make an experimentally supported proposal
in such regard. Once again, a bottom-up approach to the undertaken task is fol-
lowed: first, the conventional quasi-static criterion is introduced and implemented for
different cases; then, a modified formulation that incorporates rate-dependent load-
ings is presented, discussed, implemented, and finally, validated with experimental
evidence.

1.3 Thesis outline

The contents of this thesis are therefore organized in two thematic blocks that spread
along five chapters. The first block, which covers the Phase Field fracture model, is
structured as follows.

Chapter 2 serves as an introduction to the Phase Field fracture model, describing
the origins of the framework and developing its formulation in a quasi-static context.
The different modelling choices, functions and parameters are described in detail so
as to get familiarized with the methodology. Eventually, the introduced approach
is used to study the failure onset from a circular hole under remote biaxial loading
conditions, validating the resultant predictions against those of Dugdale’s Cohesive
Zone Model.

Chapter 3 drops the quasi-static hypothesis and describes the Phase Field fracture
model in a dynamic context. Particular attention is paid not only to the theoretical
framework but also to the technical aspects concerning its numerical implementation.
The potential of the approach for modelling dynamic fracture is exploited to conduct
a case study on the post-punching fragmentation of a biaxially pre-strained glass
pane under different loading conditions.

Chapter 4 makes use of the already introduced quasi-static and dynamic variants
of the Phase Field fracture model, and delves into the differences between the respec-
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tive predictions upon unstable crack growth under quasi-static loadings. Particularly,
the lack of representativeness of the former approach is revealed evident through
a series of case studies, including simple spring-mass models of multi-ligament
fracture, detailed Phase Field simulations and experimental results. In contrast, the
dynamic Phase Field fracture model is shown to yield theoretically robust predictions
that align with the empirical findings.

The second block covers instead the Finite Fracture Mechanics approach for
crack nucleation, and spans along two chapters that are organized as described below.

Chapter 5 introduces the well-established coupled criterion of Finite Fracture
Mechanics for predicting crack onset under quasi-static loading conditions. The
described approach is then used to study the size-effect of failure in a uniaxially-
tensioned infinite domain that contains a single spherical void, and the resultant
predictions are proven to closely agree with the experimental data from the literature.
Besides, the previously studied case of crack onset from a circular hole under
remote biaxial loading conditions is also tackled with this approach, yielding failure
predictions comparable to those already obtained.

Chapter 6 undertakes the modification of the Finite Fracture Mechanics criterion
to enable its implementation under sudden (dynamic) loadings. To that end, a
discussion covering the requisites to be fulfilled by a generic dynamic failure criterion
is first presented, and then the existent proposals are put to the test. Once identified
their shortcomings, a tentative proposal for the dynamic Finite Fracture Mechanics
criterion is presented, implemented for different dynamic setups, and the resultant
failure predictions are validated with the results from relevant dynamic experiments.



Chapter 2

Phase Field fracture model1

2.1 Introduction

Widely regarded as the father of Fracture Mechanics, Griffith [2] pioneered the use
of energetic considerations for predicting fracture. The advent of this approach
was mainly triggered by the work of Inglis [4], which proves that elastic solutions
present stress singularities at sharp corners. Such a discovery showed that the then
contemporary stress-based failure criteria are unsuitable for cracked and notched
domains, since these would predict breakage at an arbitrarily small loading intensity.
To overcome this limitation, Griffith regarded failure in cracked domains as governed
by a competition between the decrease of potential energy and the increase of surface
energy upon infinitesimal crack growth; hence, failure develops when it leads to
a reduction in the system’s energy. This groundbreaking paradigm proved fruitful
and eventually became the cornerstone of the Linear Elastic Fracture Mechanics
framework.

Despite its subsequent success, the simplicity of Griffith’s proposal came at
the cost of significant limitations. For instance, it requires the pre-existence of a
sufficiently large crack within the domain, thus not being able to describe how cracks

1Part of the work described in this chapter has been published in: (i) Chao Correas, A., Sapora,
A., Reinoso, J., Corrado, M., Cornetti, P. (2023). Coupled versus energetic nonlocal failure criteria: A
case study on the crack onset from circular holes under biaxial loadings. Eur J Mech A Solids 101,
105037; and (ii) Chao Correas, A., Reinoso, J., Cornetti, P., Corrado, M. (2024). On the (lack of)
representativeness of quasi-static variational fracture models for unstable crack propagation. J Mech
Phys Solids 186, 105573.
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appear in the first place. Even if so, the obtainable predictions are mostly limited
to the loading intensity that triggers fracture, although it can also provide some
insights on the stability and direction of propagation right after onset. In any case,
the prediction of complete crack patterns is out of reach. As such, it cannot explain
complex but practically important fracture phenomena such as crack branching,
coalescence or kinking. Moreover, its reliance on perfectly linear elastic solutions
limits the applicability to many widespread and not-so-brittle structural materials,
inter alia concrete, metals or polymers.

Aiming at broadening the applicability of Griffith’s energetic approach to fracture,
Dugdale [14] and Barenblatt [15] put forward the concept of cohesive forces. Their
proposal assumed that the continuum’s stress-strain constitutive relation only holds
below a certain stress threshold, above which the behaviour turns cohesive, i.e.
governed by a stress-crack opening law. Hence, cohesive process zones develop
in the vicinities of highly stressed regions, wherein material softening occurs and
fracture energy builds up. In some sense, these cohesive laws mimic the essence of
intermolecular forces, and it is through their tailoring that the model can reproduce
different fracturing behaviours. Nonetheless, the interfacial nature of cohesive
process zones restraints numerical implementations to only develop fracture within
predefined regions, thus precluding a rigorous reproduction of generic bulk fracture.

To cover the niche of modelling bulk fracture, Griffith’s framework was revisited
from a variational standpoint by Francfort and Marigo [22] and, for the first time,
the whole crack pattern was considered as an output of the energy minimization
principle. The original proposal in itself was eminently theoretical due to its unprac-
tical implementation, but it did pave the way for the subsequent highly-successful
variational approaches to bulk fracture. In this sense, Bourdin, Francfort and Marigo
[23] presented a theoretically robust regularized model of bulk fracture by exploiting
the mathematical developments of Ambrosio and Tortorelli for image segmentation
problems [45]. Particularly, this approach consisted in smearing sharp cracks into
the domain through a continuous phase field that governs the state of a material,
hence the name of Phase Field fracture models. The resultant variational framework
turned out dual in nature: on one hand, it acts as a Gradient Damage Model upon
crack nucleation; on the other, it represents a regularization of Griffith’s problem in
the sense of Γ-convergence when into crack propagation [46]. In addition to this,
the regularized formulation shows thermodynamical consistency and can be easily
implemented in conventional Finite Element frameworks [47, 48].
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Given its theoretical robustness, versatility and simplicity of implementation,
several pieces of research have been ever since devoted to comprehend, generalize
and exploit the full potential of Phase Field fracture models. In this sense, one can
highlight the theoretical studies in [25, 26] which illustrate several mathematical
formalisms, such as the stability of the homogeneous solution, the localization of
damage along bands and the size-effect of failure. The model’s performance under
multiaxial stress states has also been a topic of great interest and many proposals have
been developed in this regard [49, 24, 50–52], allowing for instance the modelling
of fracture in the presence of interacting stress concentrators [53]. More complex
material behaviours have also been tackled, with applications to anisotropic [54]
and heterogeneous [55] materials being available in the literature. The model’s
versatility is ultimately proven by its applicability to studying fracture in multi-
physics problems, including but not limited to those concerning thermo-elasto-
plasticity [56], thermal shocks [26], hydrogen embrittlement [57], electro-chemo-
mechanical degradation [58], corrosion-driven damage in fractal porous media [59],
and hygro-thermo-mechanical degradation [60].

The present chapter is thus devoted to introduce and describe the widespread
Phase Field fracture model for quasi-static setups. To that end, a bottom-up approach
to the framework is utilized: first, the evolution of variational approaches to bulk
fracture towards the Phase Field fracture model is presented, followed this by the
derivation of the latter’s generalized weak form and the introduction of the most
common formulations available. The presented approach is then exploited to conduct
a case study on the crack onset from circular holes under biaxial loadings, which
yields a wide range of failure conditions and complex stress states. Lastly, the
resultant predictions are validated through comparison with the well-established
Dugdale’s Cohesive Zone Model.

2.2 Variational approaches to bulk brittle fracture

Let us consider the N-dimensional fracture mechanics problem described in Fig. 2.1,
where an elastic domain Ω ∈ RN |N ∈ {2, 3} with an external boundary ∂Ω ∈ RN−1

is subjected to quasi-static mechanical solicitations. Hence, Ω deforms per a displace-
ment field u : Ω→ RN that complies with certain Dirichlet and Neumann boundary
conditions along ∂uΩ and ∂ f Ω = ∂Ω\∂uΩ, respectively. Let us further introduce in
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Fig. 2.1 Schematic representation of a classical displacement-controlled Fracture Mechanics
problem.

Ω an internal sharp crack Γ ∈ RN−1 so that the displacement field u is not necessarily
continuous therein. In the absence of body forces and pressure components, i.e.
b = 0 ∀x ∈Ω and f = 0 ∀x ∈ ∂ f Ω, the work done by the prescribed external forces
Wext is null, and the domain’s potential energy P is the sum of strain Estr and fracture
Efrac energies. For the instant t, this reads as:

P(ut , Γt) = Estr(ut , Γt)+Efrac(Γt) , (2.1)

Estr(ut , Γt) =
∫

Ω\Γt

1
2

λ tr
(

ε(ut)
)2

+µ

(
ε(ut) : ε(ut)

)
dx , (2.2)

Efrac(Γt) =
∫

Γt

GC dx, (2.3)

where •t represents the value of a magnitude • at the instant t, λ and µ are
the Lamé constants, GC stands for the specific fracture energy, and ε (u) is the
infinitesimal strain tensor:

ε(u) =
∇u+∇Tu

2
. (2.4)

After revisiting brittle fracture from a variational perspective, Francfort and
Marigo [22] theorized that the system evolution in terms of (ut , Γt) is governed by
the global minimization of P . Their proposal was in turn subjected to the inequality
condition Γt ⊆ Γt+∆t ∀∆t > 0, so as to account for the irreversibility of fracture and
forbid material healing. This way, the resultant variational model impedes the crack
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set Γt to unrealistically shrink or translate with respect to previous states. At the same
time, no information regarding the prospective crack pattern is required a priori,
for this is an outcome of the conditioned minimization problem. This latter feature
undoubtedly represents the biggest advantage of the proposed variational approach
to bulk fracture, since it allows robust modelling of complex fracture phenomena,
such as crack branching, coalescence and kinking, among others.

Despite such an outstanding upside, the original proposal from [22] is not devoid
of weaknesses. For instance, by considering the global minimization of P as the
governing principle, the model can unrealistically overcome any arbitrarily large
energetic barrier in order to reach the globally stable state [61]. On the other
hand, the potential discontinuity of u along Γ renders its numerical implementation
rather tortuous, especially given that the latter evolves in time and is not necessarily
coherent with the spatial discretization of Ω.

The latter difficulty was somehow sorted out in [23], where a theoretically rigor-
ous regularization of the sharp problem above was put forward after exploiting the
mathematical developments from [45]. The proposed approach relies on enriching
the displacement problem so that a continuous scalar field α : Ω→ [0,1] (so-called
phase field) portrays a smeared representation of Γ. This way, the displacement
jumps are regularized along a finite region of dimension ∼ ℓ, and thus u remains
continuous even for "cracked" configurations. Likewise, since the concept of sharp
cracks no longer holds in the regularized approach, Efrac must be instead computed
by the domain integral of a proper elliptic functional of α . Assuming that α = 0 and
α = 1 represent pristine and broken conditions, respectively, the original Phase Field
fracture model (PFM) can be interpreted to rely on the global minimization of the
following potential energy functional P [23]:

P(ut , αt) = Estr(ut , αt)+Efrac(αt) , (2.5)

Estr(ut , αt) =
∫

Ω

[
(1−αt)

2 + k
][1

2
λ tr
(

ε(ut)
)2

+µ

(
ε(ut) : ε(ut)

)]
dx, (2.6)

Efrac(αt) =
∫

Ω

GC

(
α2

t
2ℓ

+
ℓ

2
∇αt ·∇αt

)
dx, (2.7)

where k is a small parameter (k≪ 1) that ensures the well-posedness of the
numerical implementation when α → 1. Given the multi-field description of the
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regularized problem, both ut and αt are admissible only if they comply with their
corresponding Dirichlet boundaries, i.e. ut(x ∈ ∂uΩ) = U t and αt(x ∈ ∂αΩ) = At .
Likewise, the admissibility of αt is also subjected to the irreversibility condition of
fracture, which translates upon regularization to αt(x ∈Ω)≥ αs(x ∈Ω) ∀s < t.

The global minimization of PFM’s potential energy functional P is not trivial
for it is not convex in (ut , αt), yet it is so in both2 (ut ; αt) and (αt ; ut). Therefore,
the minimization of P can be undertaken by combining a staggered approach with
an alternate minimization scheme, although at the cost of only getting convergence
to stationary points [62]. Anyhow, it was already suggested in [23] that metastable
evolutions are probably more realistic than globally stable ones. All of this, combined
with the proven thermodynamic consistency [47], led to the widespread adoption of
the PFM with the staggered alternate minimization as the default resolution scheme
(see e.g. [46, 26, 24]). Remarkably, relaxing the search of minimizers from global
to local also reconciles the variational approach to bulk fracture with the original
Griffith’s criterion for infinitesimal crack growth [2].

2.3 Weak form of the Phase Field fracture model

The PFM has come a long way since its first proposal in [23], and ever since many
studies have been devoted to its study and generalization (see e.g. [25, 26, 52, 63]).
The generic description of the strain and fracture energy component can be written
as:

Estr(ut , αt) =
∫

Ω

ψ

(
ε(ut) , aPF(αt)

)
dx, (2.8)

Efrac(αt) =
∫

Ω

GC

cw

(
wPF(αt)

ℓ
+ ℓ∇αt ·∇αt

)
dx, (2.9)

where ψ stands for the strain energy density modulated by the degradation
function aPF(α), wPF(α) is a function that governs the local term of Efrac, and cw is
a scaling parameter defined as in Eq. (2.10). It results evident from Eq. (2.9) that ℓ
weights the relative importance of the local and non-local terms in Efrac, so that for a
large (small) values of ℓ, smooth (sharp) transitions of α are energetically cheaper.

cw = 4
∫ 1

0

√
wPF(α) dα (2.10)

2The semicolon separates variable fields to its left from fixed ones to its right.
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In the herein considered quasi-static framework, the inclusion of non-null external
forces of either surface f or body b type can jeopardize the problem resolution due
to the domain softening as fracture develops. For that reason, it is a common practice
to perform the quasi-static implementation of the PFM under displacement control
and refrain from considering non-null external work components Wext.

Following the conventionalities of variational procedures, the admissibility of
both ut and αt fields is weakly imposed by requiring them to belong to the affine
spaces Vt and Bt , correspondingly defined as:

Vt =
{

ut : Ω→ RN |ut =U t ∀x ∈ ∂uΩ
}
, (2.11)

Bt =

{
αt : Ω→ [0,1]

∣∣∣∣∣ αt = At ∀x ∈ ∂αΩ and
0≤ ατ ≤ αt ≤ 1 ∀x× τ ∈Ω× [0, t)

}
. (2.12)

Likewise, the admissible variations δu and δα belong to the vector spaces V0

and B0, respectively, which are in turn the homogeneous counterparts of Vt and Bt .
Upon this, the governing variational principle of the PFM can be obtained from the
first order stability condition δP ≥ 0, which once developed results in:

DuP(ut , αt) [δu]+DαP(ut , αt) [δα]≥ 0 ∀{δu, δα} ∈ {V0,B0} , (2.13)

where the notation DφF (φ , ...) [δφ ] represents the first Gateaux derivative of
the functional F with respect to the field φ and in the direction of the variation
δφ . Remarkably, the weak inequality in Eq. (2.13) stems from the irreversibility of
α and portraits duality in the system’s evolution: if the irreversibility condition is
not violated, the solution lies at a stationary admissible state (δP = 0); otherwise,
it lies in an admissible state surrounded by either inadmissible or higher potential
energy states (δP > 0).

Certainly, P not being convex in (ut , αt) means that also the second order stabil-
ity condition is required in order to determine whether the stationary point obtained
from solving Eq. 2.13 is actually a minimum [26]. Nonetheless, a workaround to
this burden is possible on the basis that P is convex on both (ut ; α) and (αt ; u): a
local minimum of P can be iteratively approached through alternate minimization
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of the staggered variational principles, which are defined as follows:

DuP(ut ; α) [δu] = 0 ∀δu ∈ V0 , (2.14)

DαP(αt ; u) [δα]≥ 0 ∀δα ∈ B0 . (2.15)

Substituting the generalized energetic components from Eqs. (2.8) and (2.9) and
developing the functional derivatives, the staggered governing principles for both the
displacement and phase field problems result as:∫

Ω

σ

(
ε(ut) ; aPF(α)

)
: ε(δu) dx = 0 ∀δu ∈ V0 , (2.16)

∫
Ω

GC

cw

(
1
ℓ

∂wPF(αt)

∂α
·δα +2ℓ∇αt ·∇δα

)
dx+

+
∫

Ω

∂ψ

(
aPF(αt) ; ε(u)

)
∂α

·δα dx≥ 0 ∀δα ∈ B0 ,

(2.17)

where the notation ∂g(φt)/∂φ represents the first derivative of the function g
with respect to φ evaluated at φt , the integrand ∂ψ/∂α in Eq. (2.17) is commonly
referred to as the crack driving force, and σ stands for the stress tensor. The latter is
nothing but the dual magnitude of the strain ε , and hence gets defined as:

σ

(
ε(u) ; aPF(α)

)
=

∂ψ

(
ε(u) ; aPF(α)

)
∂ε

. (2.18)

In Eqs. (2.16) and (2.17), the parameters fed to each staggered equation are
"generic" fields, i.e. not related to any instant t in particular. This notation is
chosen to emphasize that such fields are no longer unknowns but externally-defined
inputs. In any case, for the staggered variational principles to be coherent with the
original one in Eq. (2.13), both fixed fields should always correspond to their best
estimates available. Even in that case, the sequential resolution of Eqs. (2.16) and
(2.17) does not necessarily yield a good approximation to the solution of Eq. (2.13),
specially upon coarse time-discretizations. For that reason, it is essential for the
representativeness of the quasi-static PFM to perform proper convergence control
within the alternate minimization procedure.
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2.3.1 Phase Field laws for stiffness degradation and homoge-
neous fracture energy

The dependence of the generalized PFM with α is hence governed by two different
laws: aPF(α) for the stiffness degradation, and wPF(α) for the homogeneous fracture
energy term. In particular, for a function aPF(α) to be admissible as a Phase Field
law for stiffness degradation, it must comply with the following conditions [47]:

aPF : α → [0, 1]

∣∣∣∣∣∣∣∣∣
aPF(α = 0) = 1 and
aPF(α = 1) = 0 and

a′PF(α)< 0 and
a′PF(α = 1) = 0

, (2.19)

so that aPF yields one and zero for pristine and broken conditions, respectively,
evolving monotonically in between. Likewise, the not-so-straightforward fourth
condition ensures that the crack driving force vanishes as α → 1, thus inherently
upper bounding α . On the other hand, the suitability conditions of the Phase Field
law for the homogeneous fracture energy wPF(α) are [26]:

wPF : α → [0, 1]

∣∣∣∣∣∣∣
wPF(α = 0) = 0 and
wPF(α = 1) = 1 and

w′PF(α)> 0
, (2.20)

which entail that the homogeneous fracture energy component must monotoni-
cally increase from zero to one as α transitions from pristine to broken conditions.

The requirements above can be fulfilled by simple polynomial functions such
as those from the widespread AT1 and AT2 models in Eqs. (2.21) and (2.22),
respectively. Clearly, aPF(α) is the same quadratic polynomial for both cases and the
difference resides instead in the choice of wPF(α): AT1 considers a linear expression
as opposed to the quadratic one in the AT2 model. This difference in the definition
results in noticeable differences behaviour-wise, as proven by the corresponding
one-dimensional localized profiles α1D illustrated in Fig. 2.2, which are obtained for
an infinite 1D bar under traction that breaks in the surroundings of x = 0.
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AT1 [25] :



aPF(α) = (1−α)2

wPF(α) = α

cw =
8
3

α1D (−2ℓ≤ x≤ 2ℓ) =
(

1− |x|
2ℓ

)2

(2.21)

AT2 [23] :



aPF(α) = (1−α)2

wPF(α) = α2

cw = 2

α1D (x ∈ R) = exp
(
−|x|

ℓ

) (2.22)

In a generic N-dimension scenario, this translates into the AT1 damaged regions
being compactly supported so that purely elastic behaviour (α = 0) is allowed
for low enough stresses; conversely, AT2’s are infinitely supported and feature α

developing for every non-zero stress state. For that reason, AT1 model is often
regarded as superior than the AT2 for capturing the distribution of fracture energy
[30]. On the other hand, the quadratic definition of wPF(α) in the AT2 model presents
considerable numerical advantages for it inherently bounds α to be semi-positive,
while AT1 requires an explicit enforcement of this condition.

Fig. 2.2 Localized damage profiles obtained for a one-dimensional bar under uniaxial
traction when using the AT1, AT2 and PF-CZM models.
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The simplistic definition of aPF(α) and wPF(α) in both AT1 and AT2 models
straightjackets the resulting PFM in contrast to the flexibility showcased by cohesive
laws for instance. Furthermore, none of these two incorporates the tensile strength
σC in their definition, which results instead to be a modelling artefact that depends
on the regularization length and the material properties (see e.g. [64]). Towards
palliating the rigidity showcased by the PFM when using the AT models, the work
by Wu [63] aimed at proposing a more general definition in which: (i) σC and ℓ

were uncoupled so as to fully recover the regularized nature of the PFM; and (ii)
the fracturing behaviour could be modified to match different materials. Due to
its resemblance with the renowned Cohesive Zone Model, Wu’s proposal is often
identified with the acronym PF-CZM. Particularly for the case of linear softening,
the corresponding aPF(α), wPF(α), cw and α1D are:

PF−CZM [63] :



aPF(α) =
πℓσ2

C (1−α)2

πℓσ2
C (1−α)2 +2EGC (2α−α2)

wPF(α) = 2α−α2

cw = π

α1D
(−πℓ

2 ≤ x≤ πℓ
2

)
= 1− sin

(
|x|
ℓ

)
, (2.23)

where E represents the Young’s modulus. As seen in Fig. 2.2 and Eq. (2.23), the
PF-CZM model also showcases compact support for the one-dimensional damage
bands, and so it allows purely elastic behaviour at low stresses. On the downside,
the improved flexibility with respect to the aforementioned AT models comes at the
cost of increased complexity. Remarkably, the definition of the generic PF-CZM’s
aPF(α) as a fraction (see [63]) requires special care when implementing it in a Finite
Element package that features automatic differentiation, since these techniques are
not inherently robust to handle 0/0 indeterminations for instance (see [65]).

2.3.2 Strain energy decompositions

At this point, the last PFM ingredient to be defined is the strain energy density
function ψ modulated by the stiffness degradation law aPF(α). For the sake of
generality, ψ can be separated into two parts, one damageable ψD and one residual
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ψR, as follows:
ψ

(
ε, aPF

)
= ψD

(
ε ,aPF

)
+ψR

(
ε

)
. (2.24)

For pure brittle fracture, an ideal decomposition of ψ would involve ψD and ψR

being exclusively associated to traction and compression states, respectively. Besides,
once a crack is formed and ψD = 0, the ideal residual term ψR would be able to
mimic the shear-free unilateral contact between crack lips. Undoubtedly, finding
a variationally consistent decomposition of ψ that simultaneously fulfils all these
requirements is not easy, if possible at all. Still, many strain energy decompositions
have been proposed in the literature (see e.g. [52]). Among these, the most common
of those fitting in the variational framework of structured deformations are hereafter
presented and briefly commented. It should be noted that, since the material is always
assumed linear elastic when pristine, its original strain energy density function ψ0 is
equal to:

ψ0

(
ε

)
=

1
2

λ tr
(

ε

)2
+µ

(
ε : ε

)
. (2.25)

Standard decomposition

The first expression for ψ(ε, aPF) was introduced in the PFM’s seminal work [23],
wherein it was assumed that the stiffness degradation function aPF affects all compo-
nents of the straining equally. As such, it is not an energy decomposition per se, for
it is defined as:

ψ
Std
D

(
ε, aPF

)
= aPF ψ0

(
ε

)
, (2.26)

ψ
Std
R

(
ε

)
= 0. (2.27)

Despite its simple definition and easiness of implementation, the resultant strain
energy density function satisfies virtually none of the requirements listed above other
than the traction and shear-free crack plane. Moreover, it predicts an unrealistic
fracture behaviour that is symmetric between tensile and compressive states.

Volumetric-Deviatoric-based decompositions

On the basis of the Volumetric-Deviatoric decomposition of the strain tensor, two
well-known energy splits were proposed in [50] and [49], namely the Deviatoric
and Cleavage-Deviatoric decompositions (see e.g. [51]). In the former, only shear
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fracture is permitted by defining ψDev
D and ψDev

R as:

ψ
Dev
D

(
ε, aPF

)
= aPF

[
µ

(
ε

dev
: ε

dev

)]
, (2.28)

ψ
Dev
R

(
ε

)
=

(
λ

2
+

µ

3

)
tr
(

ε

)2
. (2.29)

where ε
dev

is the deviatoric part of ε . For the latter instead, shear-only fracture
was limited to cases where the volumetric component of the strain was negative.
Otherwise, the "total" fracture pertaining to the Standard "decomposition" was
recovered. To that end, the strain tensor trace was divided into positive and negative
parts per •± = (•± |•|)/2, each correspondingly contributing to ψCD

D and ψCD
R as:

ψ
CD
D

(
ε, aPF

)
= aPF

[(
λ

2
+

µ

3

)
tr+
(

ε

)2
+µ

(
ε

dev
: ε

dev

)]
, (2.30)

ψ
CD
R

(
ε

)
=

(
λ

2
+

µ

3

)
tr−
(

ε

)2
. (2.31)

Compared to the Standard model, the Cleavage-Deviatoric decomposition im-
proves marginally the tension-compression strength asymmetry. Once fractured, it
also features both shear and traction-free interaction between the crack lips. At the
same time, this strain energy decomposition avoids trans-crack interpenetration in
the sense of Γ-convergence [66]. As such, the residual stiffness featured by this en-
ergy decomposition tends to rigorously reproduce the sought after unilateral contact
conditions between the crack lips as ℓ→ 0.

No-Tension decomposition

Aiming at improving the insufficient strength asymmetry of the existent energy
decompositions, the Theory of Structured Deformations [67] was exploited in [51]
in order to obtain a PFM that, once in broken conditions, mimics the behaviour of
the so-called No-Tension materials. The proposal’s basic idea consists in gathering
the tensile components of the strain in a structured deformation tensor η , so that it
reduces the strain energy stored in the domain modulated by α . For a given strain
state defined by ε , the corresponding structured deformation tensor η is the solution
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of the following minimization problem:

η

(
ε

)
= argmin

φ∈Sym+

(
ψ0

(
ε−φ

))
, (2.32)

where Sym+ represents the set of all symmetric and semidefinite positive tensors.
Generally speaking, the pointwise resolution of Eq. (2.32) for determining η renders
its implementation potentially unmanageable. Nonetheless, the minimization prob-
lem above can be solved analytically for linear elastic materials since the tensors
ε and η result to be coaxial for such a case [68]. Assuming without any loss of
generality that the eigenvalues of a tensor follow •1 ≥ •2 ≥ •3, the corresponding
closed form relation between ε and η is:

[η1,η2,η3] =



[ε1, ε2, ε3] if ε3 ≥ 0

[ε1 +νε3, ε2 +νε3, 0] else if ε2 +νε3 ≥ 0[
ε1 +

ν (ε2 + ε3)

1−ν
, 0, 0

]
else if ε1 +

ν (ε2 + ε3)

1−ν
≥ 0

[0, 0, 0] else

, (2.33)

and the No-Tension strain energy density function ψNT can be then defined for a
generic stiffness degradation function aPF(α) as follows [52]:

ψ
NT
(

ε, aPF

)
= ψ0

(
ε− (1−

√
aPF)η

(
ε

))
. (2.34)

From Eqs. (2.33) and (2.34) it results clear how the stiffness modulation function
aPF(α) only affects ψNT whenever η is not null, i.e. for tensile straining. In turn,
this also means that: (i) the resultant material model presents infinite compressive
strength; and (ii) even for completely broken conditions, the system retains its
original compressive stiffness. Total fracture is once again recovered for sufficiently
tensile conditions so that ε = η . On the downside, non-null shear stiffness is obtained
in the crack planes.
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2.4 Case study on the crack onset from circular holes
under biaxial loadings (I)

As seen in the previous section, there exist many options regarding the PFM mod-
elling choices, each resulting in different behaviours. Recalling that the ultimate
objective of this thesis is the dynamic modelling of fracture, wherein tensile and
compressive stress waves are ubiquitous, it is paramount that the PFM is ascertained
to be able to deal with failure under complex multiaxial stress states. To that end,
the present section conducts a thorough study on the PFM’s ability to predict crack
initiation from a circular hole in an infinite (or at least very large) plate under bi-
axial loading conditions. The resultant predictions are then put against those of
the renowned Dugdale’s Cohesive Zone Model (CZM) for validation. Remarkably,
by just modifying the loading biaxiality, the showcased conditions upon fracture
vary noticeably in terms of the pre-cracking stress field and energy release rate,
making this setup a powerful contender for benchmarking failure criteria. For the
sake of simplicity, the analysis is conducted under plane strain conditions and the
continuum is assumed homogeneous and filled with an isotropic, linear elastic and
brittle material that only cracks under tension.

2.4.1 Problem characterization

The setup herein considered is shown in Fig. 2.3a, where Σ1 and Σ2 represent
remotely-imposed constant stresses in two perpendicular directions. Given the
geometric symmetry and the material isotropy and homogeneity, the expected failure
behaviour is symmetric with respect to the bisector of the first and third quadrants of
the bidimensional loading space (Σ1−Σ2). The analysis can be thereby restricted
to only considering the Σ1 ≥ Σ2 loadings with no loss of generality. However, the
problem definition in terms of Σ1 and Σ2 is not adequate for characterization because
it couples the parametrization of the loading intensity and biaxiality. Previous
relevant studies have instead used Σ1 and β = Σ2/Σ1 to separately control those two
loading characteristics [69, 70]. Nonetheless, such a choice is not convenient either
since β presents an infinite discontinuity for Σ1 = 0. To avoid this, the problem
can be instead characterized in the more appropriate (Σ′1−Σ′2) surrogate loading
space, which rotates the (Σ1−Σ2) baseline loading space π/4 radians clockwise (see
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(a) (b)

Fig. 2.3 Schematic representation of: (a) a biaxially loaded infinite plate containing a
circular hole; (b) the loading subspace of interest (light blue), the baseline (black) and

surrogate (green) biaxial loading spaces.

Fig. 2.3b). Mathematically, the mapping between both corresponds to the following
vector rotation transformation:(

Σ′1
Σ′2

)
=

1√
2

[
1 −1
1 1

](
Σ1

Σ2

)
. (2.35)

This way, all the biaxiality ratios of interest are continuously parametrized by the
so-called surrogate biaxiality ratio β ′ = Σ′2/Σ′1 |β ′ ∈ (−∞, ∞), which relates to β as:

β
′ =

1+β

1−β
; β =

−1+β ′

1+β ′
. (2.36)

Additionally, Σ′1 remains semi-positive for Σ1 ≥ Σ2 so that the sign analysis of
relevant magnitudes simplifies considerably in the surrogate loading space. From
a physical perspective, the change of coordinates entails that loading biaxiality is
achieved by superposing pure shear and plane hydrostatic states governed by Σ′1
and Σ′2, respectively. As such, β ′ = ±∞ represent either uniform bi-tension or bi-
compression states; β ′ =±1 stand for either uniaxial tension or compression; and
β ′ = 0 corresponds to pure shear conditions.

The well-known exact solution of the stress field around a hole embedded in an
uniaxially tensioned infinite plate was given in [71]. Using the superposition principle
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and taking Σ′1 and β ′ as the loading parameters, the pre-crack stress components for
the case at hand result as follows:

σrr
(
r, θ , Σ

′
1,β
′)= Σ′1√

2

{
β
′

[
1−
(

R
r

)2
]
+

+

[
1−4

(
R
r

)2

+3
(

R
r

)4
]

cos2θ

}
= Σ

′
1 S′rr(r, θ , β

′) ,

(2.37)

σθθ

(
r, θ , Σ

′
1,β
′)= Σ′1√

2

{
β
′

[
1+
(

R
r

)2
]
+

+

[
1+3

(
R
r

)4
]

cos2θ

}
= Σ

′
1 S′θθ(r, θ , β

′),

(2.38)

τrθ

(
r, θ , Σ

′
1
)
=

Σ′1√
2

[
1+2

(
R
r

)2

−3
(

R
r

)4
]

sin2θ = Σ
′
1 S′rθ(r, θ) . (2.39)

Clearly, both σrr and σθθ are maximized for θ = {0, π} when Σ′1 > 0, whereas
τrθ is null along these two azimuths. Therefore, fracture is expected to develop along
the directions θ = {0, π} and in pure Mode I.

By virtue of Irwin’s relation [3], the energetic balance upon fracture can be fully
characterized by means of only the Mode I Stress Intensity Factor KI . Analytical
estimates of KI for a single radial crack along θ = 0 or θ = π (asymmetric cracking)
and for two antipodal twin cracks along θ = 0 and θ = π (symmetric cracking) can
be found in [69]. Nonetheless, the latter breakage mechanism is more energetically
convenient since the corresponding KI is higher for equal single-crack length a.
Therefore, symmetric cracking as represented in Fig. 2.4 is expected for every case
here studied. Likewise, the corresponding expression for KI is as in Eqs. (2.40) to
(2.43), where ξ = a/(a+R).

KI
(
a, Σ

′
1, β

′)= Σ
′
1
√

πaFβ ′
(
a, β

′) (2.40)

Fβ ′
(
a, β

′)=√2
[

F0(ξ )+
β ′−1

2
F1(ξ )

]
(2.41)

F0(ξ ) = 0.5(3−ξ )
[
1+1.243(1−ξ )3

]
(2.42)

F1(ξ ) = 1+(1−ξ )
[
0.5+0.743(1−ξ )2

]
(2.43)
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Fig. 2.4 Schematic representation of the symmetric cracking stemming from a circular hole
in a biaxially loaded plate.

Expressions above show that the loading biaxiality can considerably change the
conditions for fracture in terms of the stress and energy release rate. Particularly,
Table 2.1 details the ranges of β ′ leading to different sign and trend evolutions of the
hoop stress σθθ along r with θ = {0,π}, as well as of KI with respect to a. Therein,
+ or − signs stand for traits of positive or negative function values, whereas↗ or
↘ represents increasing or decreasing trends. Likewise, the sequence of symbols
from left to right indicate the evolution of the considered characteristic as either r or
a grows. For the sake of clarity, Table 2.1 is graphically complemented by the plots
in Fig. 2.5.

Table 2.1 Dependence of σθθ and KI with β ′

σσσθθ KKKIII

βββ
′′′ ranges Sign Trend Tag βββ

′′′ ranges Sign Trend Tag

(−∞,−6) − ↗ A1 (−∞,−2) − ↘ B1
(−6,−2) − ↘↗ A2 (−2,−1) +− ↗↘ B2
(−2,−1) +− ↘↗ A3 (−1,−0.194) + ↗↘↗ B3(
−1, 6−4

√
3
)

+−+ ↘↗ A4 (−0.194, ∞) + ↗ B4(
6−4

√
3, 0
)

+ ↘↗ A5
(0, ∞) + ↘ A6
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(a) (b)

Fig. 2.5 Graphic representation of the dependence on β ′ of: (a) σθθ and (b) KI .

2.4.2 Implementation of the Phase Field fracture model

The numerical implementation of the PFM in a Finite Element context was performed
in the Open Source computational framework FEniCSx [72–76]. The original setup
defined in Fig. 2.3a was modified according to Figs. 2.6. Geometry-wise, this
consisted in relaxing the original hypothesis of an infinitely large plate to just being
considerably larger than the hole (at least L/R∼ 40). The setup’s vertical symmetry
was also exploited to reduce the computational cost while keeping the prospective
crack far from the model boundaries. On the other hand, the original Neumann
boundary conditions were substituted by Dirichlet ones to avoid issues in the quasi-
static resolution upon fracture-caused softening. Only for infinite domains such a
change is rigorous in the sense of not affecting the resultant predictions. However,
given that L >> R, it is still deemed a reasonable approximation herein. Values of the
remote stresses at failure Σ1 f and Σ2 f were then computed out of the corresponding
reaction forces right before the "instant" of crack onset, i.e. whenever α reached a
close-to-one threshold anywhere in Ω. To ensure capturing properly the localization
bands of α , the mesh was refined in the prospective cracking regions so that the
characteristic element size was ℓ/7 therein.
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(a) (b)

Fig. 2.6 Crack onset in a biaxially loaded large plate containing a circular hole: (a)
Schematic descriptions of the actual failure event and (b) of the PFM approximation.

The PFM resolution algorithm used was iterative on two levels: on one hand,
the prescribed displacements were gradually increased at each time step up to the
failure onset; on the other, the staggered principles were alternatively minimized
until convergence was achieved. Such a condition was assessed at the end of each
alternate minimization iteration through two different ideally-vanishing L2-norms:
(i) that of the variation in α with respect to the previous iteration, and (ii) that of the
displacement problem residual upon substitution of the latest estimates for the u and
α fields. For more details on this resolution algorithm, please refer to Appendix A.

Moreover, all simulations were herein conducted using the AT1 model so as to
avoid both AT2’s lack of linear elastic behaviour for low stresses and the numerical
difficulties of implementing the PF-CZM. Regarding the strain energy decompo-
sitions instead, only the Standard and the No-Tension proposals were considered:
the former provides the reference for total fracture, while the latter is the most
promising choice for modelling only-tensile cracking. For the sake of conciseness,
the Deviatoric and Cleavage-Deviatoric decompositions were herein neglected for
their marginal improvement in the strength asymmetry with respect to the Standard
model.

For the AT1 model, the intrinsic strength can be determined from the loss of
stability of the corresponding PFM’s homogeneous solution [26]. For instance,
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considering the Standard decomposition and a plain (R = 0) biaxially loaded domain,
one gets the following elliptical-shaped intrinsic locus of failure states:

Σ
′
1 f
(
β
′)∣∣Std

R=0 =

√
3GCE

8ℓ(1+ν)

1
1+(1−2ν)β ′2

, (2.44)

where it holds that Σ′2 = β ′Σ′1. Particularizing Eq. (2.44) to uniaxial traction
conditions (β ′ = 1, see Fig. 2.3b) yields the corresponding apparent tensile strength
σStd

C =
√

3GCE/ [8ℓ(1−ν2)] after reverting the transformation in Eq. (2.35). For
the No-Tension decomposition instead, the expression for Σ′1 f (β

′) |NT
R=0 writes as:

Σ
′
1 f
(
β
′)∣∣NT

R=0 =



√
3GCE

8ℓ(1+ν)

2(1−ν)

(1−2ν)(1+β ′)2 if −1≤ β ′ <
1

1−2ν√
3GCE

8ℓ(1+ν)

1
1+(1−2ν)β ′2

if
1

1−2ν
≤ β

′ ≤ ∞

, (2.45)

and the corresponding model-dependent apparent tensile strength is
σNT

C =
√

3GCE (1−ν)/ [8ℓ(1+ν)(1−2ν)], which is always larger than σStd
C . It

results evident from Eqs. (2.44) and (2.45) that the No-Tension decomposition
also features total fracture for β ′ ≥ 1/(1−2ν), and so its intrinsic failure locus is
piecewise elliptical. Besides those cases, the corresponding failure locus straightens
so that it coincides with the vertical line Σ1 f = σNT

C in the baseline loading space
(Σ1−Σ2). Furthermore, Eq. (2.45) is smooth all along, meaning that the elliptical
trait is tangent to the vertical one at β ′ = 1/(1−2ν). Lastly, no failure is foreseen
by the No-Tension decomposition for purely compressive straining states, i.e. when
β ′ <−1.

In view of the regularization nature of the PFM, the set (E, ν , GC, ℓ) of properties
and parameters was herein kept constant; hence, the apparent tensile strength σC

and the plane strain Irwin’s length lch = GCE/
[
(1−ν2)σ2

C
]

were dependent on the
energy decomposition used. Table 2.2 reports the particular numerical values used
for the PFM simulations, which mostly correspond to those used in [64] for PMMA.

Results in Fig. 2.7a correspond to the PFM simulations under uniaxial tensile
conditions (β ′ = 1), and they show that the Standard and the No-Tension decompo-
sitions predict an almost identical normalized transition from holeless (Σ1 f /σ i

C = 1)
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Table 2.2 Material properties and modelling parameters used for the Phase Field simulations.

EEE ννν GGGCCC ℓℓℓ σσσStd
CCC lllStd

ccchhh σσσNT
CCC lllNT

ccchhh

[MPa] [−] [MPa ·mm] [mm] [MPa] [mm] [MPa] [mm]

2300 0.3 0.461 0.025 132.20 0.067 146.32 0.054

to large hole (Σ1 f /σ
j

C = 1/3) failure regimes. Note that the superindices of σC and
lch indicate the use of different normalizations for each decomposition. Anyhow,
these results highlight that for predominantly tensile conditions, decomposing the
strain energy density becomes significantly less important.

(a) (b)

Fig. 2.7 Crack onset predictions by the PFM for: (a) uniaxial tension, and (b) uniaxial
compression loadings.

For uniaxial compression (β ′ =−1) instead, proper decomposition of the strain
energy is required to avoid unrealistically predicting failure in compressed regions.
Due to this, only the No-Tension decomposition is implemented for that loading, and
the resultant predictions are shown in Fig. 2.7b. Regarding the failure size-effect, it
results that Σ2 f /σC ≈−1 for very large holes, and this ratio monotonically increases
in absolute value as R decreases. For R ≲ lNT

ch however, the occurrence of crack
onset was no longer clearly identifiable since it became dependent of the numerical
threshold for α used to acknowledge crack onset. Such an occurrence might be
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attributed to a shielding effect in the development of α for small enough values of
R, which causes the tensioned region to become of the order of magnitude of the
regularization length ℓ.

Failure onset predictions under biaxial loadings are then reported in Figs. 2.8 for
the Standard and No-Tension decompositions. Such graphs represent biaxial safety
domains, and as such must be read radially: for a given origin-centred spoke the
biaxiality ratio is constant, and the loading states are safe if they are closer to the
origin than the corresponding failure point (Σ1 f , Σ2 f ). Therefore, the previous plots
in Figs. 2.7a and 2.7b can be seen as curves resulting from the intersection between
the R-dependent safety domains and the radial directions corresponding to β ′ = 1
and β ′ =−1, respectively.

The elliptical shape of the R = 0 safety domain showcased by the Standard
decomposition, i.e. its intrinsic failure locus, reveals evident in Fig. 2.8a. The
increase of R eventually turns the safety domains spear-shaped, thus tending to what
predicted by a maximum tensile stress criterion. It is noteworthy that the sharp angle
of the safety domain at β ′→ ∞ for large holes is due to the change in the azimuths
along which cracking occurs, abruptly switching from θ = {0, π} when Σ1 f > Σ2 f

to θ = {π/2, 3π/2} when Σ1 f > Σ2 f . Given the large value of R, these two fracture
mechanisms are independent and the overall crack onset is obtained as the minimum
of the corresponding failure loads, hence the non-smooth safety domain. On the
other hand, this independence eventually vanishes as R is reduced, and the abrupt
transition is observed to turn smooth when R/lStd

ch ≲ 0.5. It is to be noted that only
the predictions for β ′ > 0 are shown in Fig. 2.8a since otherwise failure onset would
be unrealistically predicted to occur in regions under compression.

For the No-Tension decomposition instead, Fig. 2.8b reveals that spear-shaped
safety domains are mostly showcased for every hole size, although with a blunt
elliptical "tip" for small values of R. Of course, such a shape is better aligned with
tensile dominated fracture than the previous one. Likewise, the above mentioned
shielding effect for compression loadings and small holes was observed, whenever
β ≲ −0.7, for the two smallest values of R considered, namely R/lNT

ch = 0.014
and R/lNT

ch = 0.046. Consequently, such a phenomenon cannot be exclusively
blamed on the fact that the tensioned region vanishes, since this only occurs for
β ′ < 6−4

√
3≈−0.93. Another potential culprit for this shielding effect can be

found in the non-monotonous evolution of KI(a) observed for β ′ <−0.194, so that
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(a) (b)

(c)

Fig. 2.8 Biaxial safety domains predicted by PFM with: (a) the Standard, (b) the
No-Tension, and (c) both decompositions. Matching colours imply same hole radius.

its decreasing trait chokes the development of α for small enough holes and does
not allow the regularized crack to onset properly.

Lastly, a direct comparison between the dimensional safety domains predicted
by the Standard and the No-Tension decompositions is given in Fig. 2.8c. Upon
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sufficiently tensile conditions and small enough holes, both are shown to yield almost
identical predictions. As the compressive states gain importance, the two sets of
predictions rapidly diverge in the case of small to intermediate hole sizes, yet they
remain close for large holes. For these latter cases it holds that R >> ℓ, which causes
the PFM solution to be mainly governed by the tensile hoop stress in the vicinity of
the crack onset points, i.e. σθθ (r = R, θ = {0,π}). This, combined with a radial
stress component σrr that vanishes therein, causes the total and tensile-only fracture
behave quite similarly. Indeed, the slight difference observed between the two R→∞

safety domains is due to σNT
C being approximately 10% larger than σStd

C as per Table
2.2.

2.4.3 Implementation of Dugdale’s Cohesive Zone Model and
results comparison

As proposed in [77], Dugdale’s Cohesive Zone Model (CZM) [14] admits a semi-
analytical implementation in terms of the failure load and the process zone length. By
virtue of the Paris’ integral [78], it was demonstrated in [79] that such implementation
can be undertaken purely in terms of three Mode I Stress Intensity Factors KI: one
corresponding to the setup under study, plus other two auxiliary cases herein named
as Constant Stress Lip (CSL) and Line-Load Edge (LLE) loadings. For the case at
hand, these two latter loading scenarios particularize as schematically shown in Figs.
2.9.

C�C�

C�C�

(a)

PP

PP

(b)

Fig. 2.9 Schematic representations of the (a) Constant Stress Lip and (b) Line-Load Edge
auxiliary loading scenarios.
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For the CSL loading case, the following approximated expression for KσC
I was

given in [69]:
KσC

I (a, σC) = σC
√

πaFσC(a) , (2.46)

FσC(a) = 1+(1−ξ )
[
−0.137+0.258(1−ξ )2−0.4ξ

2 (1−ξ )
]
. (2.47)

For the LLE loading scenario, the approximated expression for KP̄
I was deter-

mined through the interpolation between its known values for the limit cases of an
edge and a Griffith crack [80], resulting in:

KP̄
I (a, P̄) =

P̄√
πa

FP̄(a) , (2.48)

FP̄(a) = 2.594
(

R
R+5a

)2

+2

[
1−
(

R
R+5a

)2
]
. (2.49)

Upon combination of the three different Mode I Stress Intensity Factors defined
in Eqs. (2.40) to (2.43) and in Eqs. (2.46) to (2.49), CZM’s semi-analytical im-
plementation consists in solving the system of two equations in Eq. (2.50). The
two unknowns are the process zone length ap and the failure load Σ′1. For the sake
of convenience, the numerical implementation is done in the (Σ′1−Σ′2) surrogate
loading space, while the (Σ1− Σ2) baseline loading space is used for graphical
representations.

CZM:



Σ′1 f

σC
=

FσC

(
ap, f

)
Fβ ′
(
ap, f , β ′

)
Σ′1 f

σC
=

lch +2
∫ ap, f

0
FσC(a) FP̄(a) da

2
∫ ap, f

0
Fβ ′
(
a, β

′) FP̄(a) da

(2.50a)

(2.50b)

Eq. (2.50a) results from imposing the Stress Intensity Factor to be null for
any cohesive crack of length ap. Using the superposition principle, such condition
is equivalent to determining the crack length a = ap for which KI(ap) = KσC

I (ap).
Therefore, for a given loading intensity Σ′1, Eq. (2.50a) determines the corresponding
length of the process zone ap. On the other hand, Eq. (2.50b) imposes that the
opening displacement at the mouth of the process zone (r = R) is equal to the critical
value GC/σC at the instant of failure. As such, simultaneous fulfilment of these two
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equations yields the CZM predictions for the failure load Σ′1 f and the critical process
zone length ap, f .

The safety domains predicted by CZM are shown in Fig. 2.10 alongside those
of the PFM with the No-Tension energy decomposition. For the latter set of results,
failure stresses and hole radii are normalized with σNT

C and lNT
ch , respectively. This

comparison shows that, despite the intrinsic differences between the PFM and the
CZM, a proper choice of the former’s energy decomposition leads to failure onset
predictions that match nicely those of the later in a wide range of failure conditions.
Remarkably, the curved shape of PFM’s safety domains for R∼ 0 and β ′→ ∞ is in
better agreement with experimental evidence than CZM’s quasi-right angle [81, 82].

(a) (b)

Fig. 2.10 (a) Comparison of the safety domains predicted by the PFM No-Tension and the
CZM, and (b) close-up centred at the loading space origin.

2.5 Conclusions

The Phase Field fracture model was comprehensively described herein in a quasi-
static context. After a constant development spanning ever since the introduction
of the variational approach to brittle fracture, this framework has proven to be
theoretically robust and versatile. Its variational nature and continuous primary



34 Phase Field fracture model

fields allows for straightforward numerical implementation in the context of Finite
Elements, unlike many other approaches to fracture. Likewise, the wide range of
modelling choices available allows for replicating several fracturing behaviours. All
of these advantages have lately rendered the Phase Field modelling of fracture one
of the main cornerstones of the computational Fracture Mechanics community.

Specifically, it was herein proven that for the comprehensive benchmark study
on the crack onset from a circular hole under biaxial loading conditions, the Phase
Field fracture model is able to yield crack onset predictions matching those of the
well established Dugdale’s Cohesive Zone Model when the former uses the No-
Tension energy decomposition and the AT1 model. This is of great importance
for the present thesis, for it covers the modelling of dynamic fracture wherein the
mechanical information is spread through waves that lead to complex combinations
of traction and compression stress states. Hence, this chapter served not only to
introduce the underlying concepts behind the Phase Field fracture model, but also
to pre-emptively assess the existent modelling choices with view to a subsequent
implementation in dynamic contexts.



Chapter 3

Dynamic Phase Field fracture model1

3.1 Introduction

Although the Phase Field fracture model was initially conceptualized as a regularized
variational framework for quasi-static fracture (see e.g. [46, 47]), its energy-based
definition allows for easily incorporating the inertial effects in the governing prin-
ciples. Hence, the resultant dynamic Phase Field fracture model can inherit the
previously discussed advantages of the quasi-static counterpart, while having its
applicability extended to a much broader range of conditions. Among the many
strengths of the Phase Field fracture model, its ability to inherently reproduce
complex fracture phenomena results of special importance in a dynamic context,
where the branching, coalescence and kinking of cracks commonly occur, and the
propagating pressure waves often lead to complex tensile-compressive stress states.

In this regard, the first relevant developments of the dynamic Phase Field fracture
model can be found in the complementary works by Bourdin, Larsen and co-Authors
[27, 28]. These eminently fundamental studies managed to prove that their proposed
time-discretized dynamic Phase Field fracture model converges to the continuous
solution as the temporal discretization gets finer, and so the total energy in the
system is asymptotically conserved. Likewise, simple numerical experiments were
conducted for show that the dynamic Phase Field fracture model can reproduce some

1Part of the work described in this chapter has been published in: Chao Correas, A., Reinoso,
J., Cornetti, P., Corrado, M. (2024). On the (lack of) representativeness of quasi-static variational
fracture models for unstable crack propagation. J Mech Phys Solids 186, 105573.
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experimentally observed aspects of fast-propagating fracture, such as the dynamic
cracks branching or the upper bounded crack tip velocity.

Leaving the purely theoretical aspects aside and striding for an algorithmically
convenient formulation instead, two similar but independent proposals derived the
governing principles for the dynamic PFM from the Euler-Lagrange equations
[83, 84]. Analogously to the resolution procedure introduced for the quasi-static
Phase Field fracture model [24], both approaches strongly imposed the irreversibility
condition through the use of history variables. Likewise, the monotonic resolution
of the coupled motion/damage governing principle was therein dropped in favour
of a staggered scheme. The obtained simulation results were once again reported
to reproduce complex dynamic crack propagation phenomena without the need
of ad-hoc criteria. Another heuristic dynamic PFM was proposed in [85], where
the staggered governing equations were derived from the "reversible" Hamilton’s
principle and the irreversibility of fracture was strongly imposed through Dirichlet
boundary conditions, which applied wherever the phase field reached a certain
threshold.

Going back to rigorous formalisms, the use of variational inequalities to account
for the irreversibility of fracture within the context of Hamilton’s principle was
initially proposed in [86] and further developed in [29]. This methodology allowed
for a theoretically robust representation of dynamic fracturing events, yet at the cost
of increased complexity implementation-wise. The computational cost of resolving
the numerical problem was also thoroughly heeded therein, and advanced techniques
such as parallel computing were successfully exploited in an aim to render the
approach more applicable. Overall, the authors concluded that the variational-
inequality-based dynamic Phase Field fracture model could indeed be practical to
investigate real dynamic brittle fracture.

Thereafter, many studies have delved into the capability of the Phase Field frac-
ture model to reproduce and provide insights concerning different aspects of dynamic
fracture. For instance, crack microbranching in glass-like materials was thoroughly
studied in [31], eventually concluding that it is primarily a 3D instability effect. Fur-
thermore, the evolution of the crack tip velocity in a dynamic fracturing process was
extensively investigated in [30] under linear elastic and brittle assumptions. Therein,
it was reported that the dynamic Phase Field fracture model is able to capture the
well-known apparent toughening for increasing crack tip velocities, it being the
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main responsible for the observed dynamic branching once a critical value of energy
release rate is reached. Different theoretical and algorithmic aspects of simulating
cohesive dynamic fracture with the Phase Field fracture model were covered in [87],
including case studies on the Kalthoff–Winkler experiments [88] or the stochastic
fragmentation of a thick cylinder. Likewise, the inclusion of hydrogen embrittlement
considerations into the dynamic Phase Field fracture model was explored in [89],
proving that higher material brittleness favours increased dynamic crack branching.
Dropping the assumption of linear elasticity, the dynamic fracturing of pre-strained
hyperelastic materials was instead studied in [32], and a novel dynamic Phase Field
fracture model formulation was proposed on the basis of modifying how the kinetic
energy interacts with the phase field. Using this new approach, the dynamic Phase
Field fracture model could be implemented for non-linear materials where the con-
ventional formulation was reported to not function properly. Besides, the authors
were able to reproduce complex experimental findings observed in non-linear brittle
gels, such as the ultra-high-velocity oscillation. Lastly, aiming at the study of failure
in composite glass structures, the interaction between dynamic bulk fracture and
cohesive interfaces was studied in [90], showing the tight interrelation between both
phenomena and the resultant crack patterns obtained.

In this context, the present chapter will be devoted to developing the conventional
formulation of the dynamic Phase Field fracture model, and then couple it with an
explicit time integrator. The resultant numerical approach will then be utilized for
studying the phenomena of fragmentation in a biaxially pre-strained 2D glass pane
that is punched in the middle. In particular, the effect of the pre-straining intensity
and biaxiality will be depicted in detail, showing that indeed the dynamic Phase
Field fracture model is inherently able to capture very complex crack phenomena.

3.2 The dynamic Phase Field fracture model

Let us now recall the quasi-static PFM presented in the previous chapter and, fol-
lowing the developments in [29], generalize it to the dynamic context in Fig. 3.1. In
order to account for the inertial effects, the mass density ρ is required in addition
to the aforementioned properties and parameters, i.e. E, ν , GC, σC and ℓ. Besides,
dropping the quasi-static hypothesis allows t to retrieve its physical meaning as the
actual temporal coordinate of the time-dependent evolution.
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Fig. 3.1 Illustration of the Phase Field approximation to a generic dynamic fracture problem.

Differently from the quasi-static PFM, the dynamic counterpart can deal with
non-null prescribed forces without any issue. Therefore, the energy of the structural
system now includes the kinetic K , strain Estr and fracture Efrac components, as
well as the work done by the prescribed external forces Wext. Mathematically, each
of these terms gets defined as:

K (u̇t , t) =
1
2

∫
Ω

ρ u̇t · u̇t dx , (3.1)

Estr(ut , αt) =
∫

Ω

ψ

(
ε(ut) , aPF(αt)

)
dx , (3.2)

Efrac(αt) =
∫

Ω

GC

cw

(
wPF(αt)

ℓ
+ ℓ∇αt ·∇αt

)
dx , (3.3)

Wext(ut , t) =
∫

Ω

bt ·ut dx+
∫

∂ f Ω

f t ·ut dx , (3.4)

where u̇ stands for the velocity field, and the acceleration field will be instead
represented by ü. As introduced in the previous chapter, the admissibility condition
for the fields ut and αt can be weakly imposed by forcing them to belong to the sets
Vt and Bt , respectively (see Eqs. (2.11) and (2.12)). Furthermore, since u̇ = du/dt
and ü = d2u/dt2, if ut is admissible so are the associated velocity and acceleration
fields from a theoretical standpoint. On the other hand, Hamilton’s principle states
that for any dynamic evolution along the time interval T = [0, t ′], the admissible
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variations δu and δα belong to the evolution spaces VT
0 and BT

0 defined in Eqs. (3.5)
and (3.6), respectively. It is to be noted that ∂T represents the extrema of T , i.e. the
instants t = 0 and t = t ′.

VT
0 =

{
δu : Ω×T → RN

∣∣∣∣∣δu = 0 ∀x× t ∈ ∂uΩ×T and
δu = 0 ∀x× t ∈Ω×∂T

}
(3.5)

BT
0 =

δα :Ω×T→ [0,1]

∣∣∣∣∣∣∣
δα = 0 ∀x×t∈∂αΩ×T and
δα = 0 ∀x×t∈Ω×∂T and

0≤ατ≤αt+δα≤1 ∀x×τ∈Ω×[0, t)

 (3.6)

The energetic terms defined in Eqs. (3.1)-(3.4) can be combined per Eq. (3.7) to
obtain the generalized Lagrangian L of the system. In turn, the integral over T of
the latter functional yields the space-time action integral A of the system evolution
as shown in Eq. (3.8).

L (ut , u̇t , αt , t) =−K (u̇t , t)+Estr (ut , αt , t)+Efrac (αt , t)−Wext (ut , t) (3.7)

A
(
ut , u̇t , αt , t ′

)
=
∫ t ′

0
L (ut , u̇t , αt , t) dt (3.8)

Based on Hamilton’s principle for irreversible evolutions, the considered system
will follow a path of states (ut , u̇t , αt) along T for which δA ≥ 0 holds upon every
admissible variation (δu, δα). Developing such variational principle while consid-
ering that this must be true ∀t ′ > 0, one can perform some algebraic manipulations
and derive the generalized Euler-Lagrange equation of the system as:

− d
dt

(
Du̇L (ut , u̇t , αt , t)

)
[δu]+DuL (ut , u̇t , αt , t) [δu]+

+DαL (ut , u̇t , αt , t) [δα]≥ 0 ∀{δu, δα} ∈
{

VT
0 , BT

0
}
.

(3.9)

The underlying concept behind Eq. (3.9) is analogous to Eq. (2.13): the structural
system follows the path of kinematically admissible states that make A stationary
(δA = 0) provided that the irreversibility condition is fulfilled; otherwise, the ad-
missible states must yield a positive first variation of the action (δA > 0). However,
since the monolithic resolution of the variational principle results arduous, it is
commonly staggered into two more easily solvable principles that read:



40 Dynamic Phase Field fracture model

− d
dt

(
Du̇L (ut , u̇t , t; α)

)
[δu]+DuL (ut , u̇t , t; α) [δu] = 0 ∀δu ∈ VT

0 , (3.10)

DαL (αt , t; u, u̇) [δα]≥ 0 ∀δα ∈ BT
0 . (3.11)

Concerning their physical meaning, Eq. (3.10) represents the condition of
dynamic equilibrium for fixed α , whereas Eq. (3.11) controls the evolution of
the phase field for a given state of motion. Therefore, the staggering procedure
simplifies the resolution by weakening the coupling between the motion and damage
aspects of the problem. Still, this is only representative if the best available estimates
for each of the fixed fields are fed to the staggered principles (see Section 2.3). As
with the quasi-static PFM, the consecutive resolution of Eqs. (3.10) and (3.11) does
not guarantee a good approximation to the solution of Eq. (3.9), especially if coarse
time discretizations are used. This shortcoming can be mitigated in the dynamic
PFM by either using alternate minimization algorithms or small time increments.

Considering the energy components defined in Eqs. (3.1) to (3.4) and developing
the derivative terms of the staggered variational principles in Eqs. (3.10) and (3.11),
the following governing expressions are obtained:∫

Ω

ρ üt ·δudx+
∫

Ω

σ

(
ε (ut) ; aPF (α)

)
: ε (δu) dx =

=
∫

Ω

bt ·δudx+
∫

∂ f Ω

f t ·δudx ∀δu ∈ VT
0

, (3.12)

∫
Ω

GC

cw

(
1
ℓ

∂wPF(αt)

∂α
·δα +2ℓ∇αt ·∇δα

)
dx+

+
∫

Ω

∂ψ

(
aPF(αt) ; ε(u)

)
∂α

·δα dx≥ 0 ∀δα ∈ BT
0

. (3.13)

Therefore, the staggered principles of the dynamic PFM present three different
primary magnitudes, namely the displacement u and acceleration ü fields in the
dynamic equilibrium equation, added to the phase field α in the damage criterion.

The comparison of Eqs. (3.12) and (3.13) with Eqs. (2.16) and (2.17) reveals the
similarities definition-wise between the quasi-static and dynamic PFMs. In particular,
the corresponding damage criteria are effectively identical since BT

0 and B0 collapse
∀t /∈ ∂T . In contrast, the motion principles change and the quasi-static equilibrium
equation from Chapter 2 is just a particularization of the dynamic one. Besides, since
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α is fixed in Eq. (3.12), this principle matches the classical governing equation for
an elastodynamic problem wherein the elastic properties are inhomogeneous. As
such, the resolution of Eq. (3.12) can benefit from the well-established developments
in that regard, such as time integration algorithms or optimized dynamic solvers.

3.2.1 Implementation of the dynamic Phase Field Fracture model
using explicit time integration

In what follows, the undertaken numerical implementation of the dynamic equilib-
rium equation in the context of the PFM is detailed. Concerning the time integration
algorithm, the explicit version of the well-known Newmark’s β -method [91] has
been used. This is the most common choice for solving highly-dynamic evolu-
tions of heavy numerical models given its ability to be rendered computationally
lightweight. Its basic fundament consists in estimating the time-continuous ut and u̇t

fields through the propagation into the future of known punctual-in-time states of
motion. In particular, considering a time discretization in which ti (i ∈ N) represents
the last instant whose state is known, and ∆ti = ti+1− ti is the size of the time step
for propagation, the estimates for the displacement and velocity field at ti+1 can be
written as:

uti+1
≈ ui+1 ( ; ui, u̇i, üi) = ui +∆tiu̇i +

∆t2
i

2
üi , (3.14)

u̇ti+1
≈ u̇i+1

(
üi+1; u̇i, üi

)
= u̇i +∆ti

üi + üi+1

2
. (3.15)

It is to be noted that the estimated magnitudes are here identified with the indices
of the time step they refer to, i.e. i and i+ 1, rather than with the instants ti and
ti+1 like their exact counterparts. In particular, the expressions above correspond
to the Newmark’s "Central difference method", which is an explicit time integrator
scheme in that ui+1 is completely defined in terms of the known motion state at ti.
Likewise, once ui+1 is known, the estimate αi+1 can be determined through the Eq.
(3.13). On the other hand, the velocity estimate u̇i+1 depends partially on the system
state at ti+1 through the acceleration estimate, which is unknown a priori. However,
particularizing the dynamic equilibrium condition in Eq. (3.12) to ti+1 and using the
known estimate ui+1, one can write:
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∫
Ω

ρ üi+1 ·δudx+
∫

Ω

σ

(
ε
(
ui+1

)
; aPF (αi+1)

)
: ε (δu) dx =

=
∫

Ω

bti+1
·δudx+

∫
∂ f Ω

f ti+1
·δudx ∀δu ∈ V0

, (3.16)

wherein üi+1 is the sole unknown. As such, for a given displacement ui+1 (and a
phase field αi+1), the determination of the estimated acceleration field üi+1 is straight-
forward. Subsequently, u̇i+1 can be calculated through Eq. (3.15). Remarkably, this
procedure is almost identical to the conventional explicit approach to elastodynamics
were it not for the update of α .

The simplicity of the explicit time integrator comes at the cost of conditional
stability in what concerns the time step size ∆t. Indeed, for it to be stable, the
Courant–Friedrichs–Lewy (CFL) condition [92] in Eq. (3.17) has to be fulfilled,
ωmax being the maximum natural frequency of the system.

∆t <
2

ωmax
(3.17)

Therefore, the maximum time step size for the explicit scheme to be stable when
applied to a continuum is zero since ωmax is infinite therein. For discretized domains
within the Finite Element context instead, ωmax is finite and generally increases as
the characteristic size of the elements gets smaller. In order to avoid the considerable
computational cost of exactly computing of ωmax, the exact CFL condition above is
often substituted by the following approximation:

∆t <
hmin

η c
, (3.18)

where hmin is the minimum distance between two different nodes, η is a safety
factor greater than 1, and c is the speed of sound in the material, which is in turn
proportional to

√
E/ρ . Therefore, the approximated stability condition depends

on the domain discretization and on the effective elastic properties. As such, the
development of α in the dynamic PFM will affect the stability condition, yet turning
it less restrictive on the size of ∆t. Consequently, the critical value for ∆t is safely
computed beforehand by assuming pristine conditions all along the domain.

Upon discretization of PFM’s dynamic equilibrium condition to a Finite Element
context, the continuous fields are transformed into nodal vectors following u→ d,
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u̇→ v, ü→ a and α → c. Likewise, the discretization of the two bilinear forms
in the left hand side of Eq. (3.16) yields the mass M and stiffness K matrices, the
latter being modulated by the nodal values of the phase field c. Discretizing instead
the linear form on the right hand side of Eq. (3.16), the vector of nodal forces
f is obtained. Eventually, the unknown vector of nodal accelerations ai+1 can be
explicitly determined from the discretized dynamic equilibrium condition at ti+1 as
follows:

ai+1 =M−1 [−Ki+1(ci+1)di+1 + fi+1] . (3.19)

The conventional assembly of M from the associated bilinear form generally
leads to a full symmetric matrix, commonly referred to as Consistent mass matrix. If
used, the determination of ai+1 for a discretized system of NDoF degrees of freedom
is of cost O

(
N3

DoF
)
. This, combined with the small ∆t required to comply with the

CFL condition, implies that the use of fine meshes in explicit models for elastody-
namics in general, and dynamic PFM in particular, can lead to a prohibitively high
computational cost. To avoid this, the Consistent mass matrix M is often diagonal-
ized, yielding the Lumped mass matrix ML and reducing the cost of determining
ai+1 to O (NDoF). Different approaches are proposed in the literature to calculate the
diagonal counterpart [93], yet the choice herein used writes as:

ML = (M1) I (3.20)

where 1 is a NDoF × 1 vector of ones, I is the NDoF ×NDoF identity matrix.
Therefore, Eq. (3.20) lumps the consistent mass matrix M by finding the diagonal
one ML that yields, for a nodal acceleration vector of ones, the same vector of nodal
forces. Implementation-wise, this is achieved by assigning to each diagonal term
of ML the sum of all the components within the corresponding row of M. For more
details on the dynamic PFM’s resolution algorithm, please refer to Appendix A.

3.3 Case study on the post-punch fragmentation of
biaxially pre-strained 2D glass panes

The above detailed dynamic PFM will be now exploited to study the fragmentation
problem illustrated in Fig. 3.2. The squared domain is initially pristine and under
uniform pre-straining so that its deformation state prior to crack nucleation is well-
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Fig. 3.2 Illustration of the biaxially pre-strained 2D glass pane "punched" in its centre.

defined. At t = 0, α is set to 1 (broken state) within the red and white chequered
region, which is supposed to mimic the instantaneous punching of the glass pane.
Provided a sufficiently intense pre-straining, the localized sudden loss of stiffness
causes an abrupt concentration of stresses that eventually triggers fracture, which
develops as multiple and interacting cracks that end up fragmenting the pane. In
particular, the conducted analysis heeds the effect, according to the dynamic PFM,
of the pre-straining intensity and biaxiality in the resultant cracking process. In this
regard, the prescribed elongations ∆Ux and ∆Uy relate to the uniform pre-straining
state ε

0
as:

ε
0
=

(
∆Ux/L 0

0 ∆Uy/L

)
, (3.21)

which in turn can be expressed more conveniently in terms of the pre-straining
intensity ε0 and biaxiality ratio βε = ∆Uy/∆Ux as:

ε
0
= ε0

(
1 0
0 βε

)
. (3.22)

In order to model a material only damageable in tension, the No-Tension energy
decomposition [51] was chosen. Likewise, the AT1 model [25] was used so as to
have a reasonable management of the fracture energy term [30] while keeping the
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numerical complexity low. Per the results in Section 2.4, this combination proved
good predicting capabilities for the evolution of fracture in complex multiaxial
stress states. For simplicity, 2D plane strain conditions were assumed in every PFM
simulation here conducted.

Regarding the dynamic PFM implementation in a Finite Element context, first
order triangular elements with an overall size equal to ℓ/4 were used. This ensured
proper capturing of the solution even upon the high gradients in the regions transition-
ing from pristine to broken. Moreover, the element size was kept uniform throughout
the mesh in order to minimize undesired wave reflections due to localized coarser
discretizations. Regarding the material properties and modelling parameters instead,
the values in Table 3.1 were used, which in turn correspond to the characteristic
mechanical properties of glass.

Table 3.1 Material properties and modelling parameters used for the Phase Field simulations.

ρρρ EEE ννν GGGCCC ℓℓℓ σσσNT
CCC[

Kg/m3] [MPa] [−] [MPa ·mm] [mm] [MPa]

2500 72000 0.2 0.0075 0.09 50.0

3.3.1 Case study A: Effect of the pre-straining magnitude

In order to capture the influence of the pre-straining intensity on the resultant crack
patterns, let us consider the setup described in Fig. 3.2 and set its characteristic
dimensions to L = 14 mm and R = 0.25 mm. Likewise, prescribing in-plane hy-
drostatic traction conditions prior to cracking, i.e. ∆Ux = ∆Uy > 0, the pre-straining
biaxiality is βε = 1. Under these loading conditions and material properties, the
PFM/No-Tension/AT1 homogeneous solution losses its stability at ε0 ≈ 3.95 ·10−4;
above this pre-straining intensity α develops prior to the punching. On the other
hand, the minimum pre-straining intensity for which post-punch crack propagation is
observed was iteratively found to be ε0 ≈ 2.4 ·10−4. Remarkably, the quasi-static res-
olution of the same problem would reveal this lower threshold to be ε0 ≈ 2.57 ·10−4

instead. Such a difference can be attributed to the inability of the quasi-static model
to properly capture the transient evolution right after the localized sudden loss of
stiffness. For more details on the differences between the quasi-static and dynamic
modelling of fracture, please refer to the comprehensive analysis in Chapter 4.
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In order to cover the whole range of pre-straining intensities that lead to post-
punching fragmentation, four equispaced values of ε0 have been simulated, namely
ε0 = 2.4 · 10−4, ε0 = 2.9 · 10−4, ε0 = 3.4 · 10−4 and ε0 = 3.9 · 10−4. The crack
patterns obtained right after the first fracturing event are shown in Fig. 3.3, i.e. at
the first instant t > 0 in which α does not develop anywhere in the domain. After
the first cracking event, stress wave reflections were found to eventually resume the
growth of α in subsequent cracking events, especially for the highest pre-straining
intensities, yet these will be omitted herein.

(a) (b)

(c) (d)

Fig. 3.3 Crack patterns after the first fracturing event obtained for a 2D glass pane under
in-plane hydrostatic pre-straining with: (a) ε0 = 2.4 ·10−4, (b) ε0 = 2.9 ·10−4, (c)

ε0 = 3.4 ·10−4 and (d) ε0 = 3.9 ·10−4.

The dependence of the obtained crack patterns with ε0 results moderate, showing
a mostly unvaried cracking mechanism: the initially cruciform crack first splits into
the primary branches, which in turn then branch to become the secondary ones (see
Fig. 3.4). Likewise, the branching angles were also found to be rather insensitive
to ε0, with approximately 40◦ and 90◦ as the primary and secondary branching
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Fig. 3.4 One quarter schematic representation of the crack pattern after the first fracturing
event in the hydrostatically pre-strained punched glass pane (βε = 1).

angles for all cases considered but when ε0 = 2.4 · 10−4. More into details, the
obtained crack patterns show that larger values of ε0 mainly lead to: (i) the initial
cruciform crack branching sooner, (ii) the secondary branches developing further,
and (iii) generally thicker smeared cracks. The latter observation was interpreted
in the literature as the PFM representation of the micro-branching phenomenon
[30], in turn inferring high crack tip velocities. Moreover, the motif behind the two
former insights can be identified in the larger strain energy component stored in the
domain prior to fracture, which requires more developed dissipation mechanisms.
Conversely, when the initial pre-straining is relatively small, e.g. for ε0 = 2.4 ·10−4,
crack growth is more restricted due to its energetic cost, and some shielding effects
between branches are observed (see Fig. 3.3a). Overall, the obtained results indicate
that the more intense the pre-straining, the more developed the crack patterns, but
the general cracking mechanism is maintained in all cases.

The energetic transformations taking place along the first cracking event are
reported in Fig. 3.5 for each ε0 considered. These plots explicitly depict how the
strain energy initially stored in the domain gets progressively converted into kinetic
and fracture energy components as the cracks develop. Given that the dynamic PFM
mostly conserves the total energy in the system [27], the higher the pre-straining,
the more energy needs to be dissipated into fracture energy or converted into kinetic
energy during fracturing. The system achieves the former effect through crack
branching, be it macro or micro, yet the maximum rate of conversion to fracture
energy seems upper bounded as ε0 grows (see Fig. 3.5c). Therefore, intense enough
pre-strainings take the system’s dissipative fracture power Ėfrac to saturation, entailing
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a sheer growth of inertial effects to cope with the surplus of strain energy released
(see Fig. 3.5a). A potential explanation to this saturation regime can be found in
the interaction between different crack branches, which can shield further branching
and thereby upper limit the system’s ability to dissipate energy through Efrac. Lastly,
results in Fig. 3.5 show that the increase in ε0 leads to the cracks propagating faster,
in that the first fracturing event is completed in a shorter time interval.

(a) (b)

(c)

Fig. 3.5 Evolution of: (a) K , (b) Estr and (c) Efrac during the first fracturing event of a 2D
glass pane under in-plane hydrostatic pre-straining of different intensity.
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3.3.2 Case study B: Effect of the pre-straining biaxiality

The analysis above is hereafter complemented by studying the effect of the pre-
straining biaxiality βε on the glass pane fragmentation. For all cases here considered,
the initial strain energy Estr stored in the domain is kept constant for the sake of
coherence. Therefore, for a given hydrostatic pre-straining magnitude of reference
ε0(βε = 1) and biaxiality ratio βε , the corresponding pre-straining intensity ε0(βε)

can be determined as:

ε0(βε) =

√
4(λ +µ)

(λ +2µ)(1+β 2
ε )+2λβε

ε0(βε = 1) . (3.23)

Now taking the four different equispaced and positive biaxiality ratios βε = 0.75,
βε = 0.5, βε = 0.25 and βε = 0.0, and ε0(βε = 1) = 2.9 ·10−4 as the in-plane
hydrostatic reference, the pre-straining intensities to be here considered are

(a) (b)

(c) (d)

Fig. 3.6 Crack patterns after the first fracturing event obtained for a 2D glass pane under
biaxial pre-straining with: (a) β = 0.75 and ε0 = 3.29 ·10−4, (b) β = 0.5 and

ε0 = 3.74 ·10−4, β = 0.25 and (c) ε0 = 4.21 ·10−4, and (d) β = 0.0 and ε0 = 4.59 ·10−4.
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ε0 = 3.29 ·10−4, ε0 = 3.74 ·10−4, ε0 = 4.21 ·10−4 and ε0 = 4.59 ·10−4. For each
of these conditions, the corresponding crack patterns after the primary fracturing
event are shown in Fig. 3.6, which are to be compared against Fig. 3.3b.

The most evident change observed for the cases where βε < 1 is the absence
of horizontal crack stems. This reduces the shielding effect on the initially vertical
cracks, and allows to reach branching angles as high as ∼ 170◦ in order to dissipate
the strain energy coming from the vertical pre-straining (see e.g. Fig. 3.6a). Further
reductions in the pre-straining biaxiality lead to smaller crack branching angles,
hence implying that βε , unlike ε0, has a significant effect on the crack patterns. It
also results interesting to analyse in detail the crack pattern observed in Fig. 3.6d,
in which the widest (secondary) crack branching takes place before the narrowest
(primary) one, in contrast with the rest of cases here presented (see Fig. 3.7). A
potential explanation for this difference lies in that the only horizontal pre-straining,

(a)

(b)

Fig. 3.7 One half schematic representation of the crack pattern after the first fracturing event
of the pre-strained punched glass pane for: (a) βε = 0.75 and ε0 = 3.29 ·10−4, and (b)

βε = 0.0 and ε0 = 4.59 ·10−4.
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of higher magnitude so as to keep the initial Estr constant, maximizes the crack
driving force in the vertical direction. Therefore, the initially vertical cracks rapidly
accelerate, which causes them to branch at an angle∼ 80◦. Nonetheless, the resultant
rate of conversion into fracture energy considering those branches alone would not
suffice, and so the system keeps propagating the most-energetically-favourable
vertical cracks as well. Eventually, these latter cracks branch at an angle ∼ 30◦ once
they reach high enough propagation velocity.

(a) (b)

(c)

Fig. 3.8 Evolution of: (a) K , (b) Estr and (c) Efrac during the first fracturing event of a 2D
glass pane under pre-straining of different positive biaxiality.
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For the five non-negative ratios of pre-straining biaxiality considered, the en-
ergetic transformations obtained along the different primary fracturing events are
reported in Fig. 3.8. Once again, it is seen how Estr is reduced as the domain fractures
and Efrac increases. However, and differently from the case study on the pre-straining
intensity, now Estr is seen to diminish almost identically regardless of the consid-
ered βε . At the same time, Efrac becomes smaller in average as βε → 0; due to the
conservation of total energy, this also implies that K becomes larger (in average).
Moreover, it is seen how the time necessary to complete the first cracking event
is non-monotonic with respect to εβ , the case of βε = 0.75 taking the longest. In
such case, one has to consider that the absence of initially horizontal crack branches,
combined with a reasonably large vertical pre-straining, causes the most external
branches of the initially vertical crack to curve and become almost horizontal. There-
fore, these secondary crack branches follow a considerably long path that leads to
longer first cracking events. Besides this exception, the time elapsed for the first
cracking event is seen to generally be shortened as the biaxiality is reduced.

In the event of compressive vertical pre-straining, i.e. for βε < 0, the use of the
No-Tension energy decomposition hinders the horizontal development of cracks, and
so it reduces the system’s capacity to branch. This is clearly seen in the patterns
reported in Fig. 3.9, in which βε =−0.25 and βε =−0.5, ε0 being determined from
Eq. (3.23). The comparison between the results from Fig. 3.3b and 3.6 with those
from Figs. 3.9 reveals much smaller crack branching angles in the latter ones.

(a) (b)

Fig. 3.9 Crack patterns after the first fracturing event obtained for a 2D glass pane under
biaxial pre-straining with: (a) β =−0.25 and ε0 = 4.74 ·10−4, and (b) β =−0.5 and

ε0 = 4.59 ·10−4.
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Regarding the energetic transformations that occur for βε < 0, the limitation in
the crack branching capabilities reduces how much energy can be converted into
Efrac (see Fig. 3.10c). Simultaneously, the compressive component of the straining
does not participate in the release of energy, and thus the reduction of Estr as the
cracks propagate becomes smaller as βε becomes more negative (see Fig. 3.10b).

(a) (b)

(c)

Fig. 3.10 Evolution of: (a) K , (b) Estr and (c) Efrac during the primary fracture event of a 2D
glass pane under pre-straining of different negative biaxiality.
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Overall, these two reductions in the magnitude of the energetic transformations are
not balanced: the surplus of energy released during the primary fracturing event
decreases as the compressive pre-straining increases. As a result, K decreases as βε

becomes more negative as well (see Fig. 3.10a).

3.4 Conclusions

The Phase Field fracture model introduced in the previous chapter has been now par-
ticularized and developed into a dynamic context by virtue of Hamilton’s principle.
In addition to providing the required theoretical framework, i.e. the governing varia-
tional principle, the main technical aspects of its numerical implementation using an
explicit time integrator have also been covered. Moreover, the potential of the Phase
Field fracture model to handle complex fracture phenomena has been exploited to
study the post-punching fragmentation of a biaxially pre-strained glass pane. Specifi-
cally, two main aspects of the pre-straining have been independently considered: its
intensity and degree of biaxiality. The obtained results have revealed that the former
feature mainly affects the amount and extension of the crack branches, but it leaves
the overall morphology of the crack patterns mostly unaltered. Conversely, the latter
pre-straining characteristic was observed to heavily influence the branching angles,
with the resultant crack patterns differing considerably from one another. All in all,
the dynamic Phase Field fracture model has been explicitly proven to be capable of
naturally handling complex bulk fracturing phenomena without additional ad-hoc
considerations, hence posing a great advantage over other comparable approaches to
fracture.



Chapter 4

Inconsistencies of quasi-static Phase
Field fracture models for unstable
crack propagations1

4.1 Introduction

As seen in the previous chapter, quasi-static loading conditions can lead to highly-
dynamic evolutions in the event of unstable fracture. This occurs when the potential
energy released as the crack propagates exceeds the dissipative capacity of the system.
In such cases, crack growth is no longer driven by an external energy input but by the
release of potential energy due to crack growth itself, hence posing an uncontrolled,
self-sustained and potentially-catastrophic structural failure event. Therefore, it is
paramount to properly understand and model the involved phenomena in order to be
able to ensure the safety of critical structural components.

The study of unstable crack growth has been traditionally undertaken by means
of quasi-static approaches, and the relevant works were mainly focused on unveiling
the solution branches overshadowed by the snap-back or snap-through discontinu-
ities (see e.g. [94, 95]). Such jumps in the overall behaviour occur whenever the
strict fulfilment of quasi-static equilibrium leads to a decreasing trait in the loading

1Part of the work described in this chapter has been published in: Chao Correas, A., Reinoso,
J., Cornetti, P., Corrado, M. (2024). On the (lack of) representativeness of quasi-static variational
fracture models for unstable crack propagation. J Mech Phys Solids 186, 105573.
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function, e.g. the magnitude of the prescribed force or displacement, which conven-
tional control schemes cannot follow. To overcome such a difficulty while remaining
in quasi-static equilibrium conditions, several experimental and theoretical works
have used non-standard monotonically-increasing measures as inputs for controlling
the loading, such as the crack opening displacement [96] or the crack extension
itself [97–99]. Other pertinent numerical studies have relied on bespoke resolution
techniques, namely the arc-length method [100, 101], in order to be able to follow
the unstable solution branches [21].

From an energetic perspective, most of the approaches used to study the details
of unstable fracture from a quasi-static standpoint rely on the same concept: the
introduction of a factitious mechanism that disposes the excess of potential energy
released during crack growth. This way, the originally unstable crack is artificially
stabilized, although at the cost of changing the nature of the system under study. On
the other hand, if the structural system is kept as-is and unstable fracture is naively
modelled in a quasi-static context, the resultant behaviour would correspond to that
of infinite viscous dissipation. Either way, the representativeness of quasi-static
approaches is seriously undermined upon unstable crack propagations. Indeed, these
are essentially dynamic processes whose actual energetic transformations cannot
be accurately captured by quasi-static approaches [61]. Remarkably, the study of
unstable fracture using dynamic cohesive models was undertaken in [21], and the
results were compared to those obtained with a quasi-static model and the arc-length
method. However, the particular choice of studied setup precluded capturing all
the underlying differences between the predictions obtained with each cohesive
framework.

In light of this, the present chapter will be devoted to prove the lack of represen-
tativeness of quasi-static approaches when applied to unstable fracture conditions.
Particular attention will be paid to the cases where crack propagation encounters
an energetic barrier, as well as to those in which the crack patterns are not trivial.
To that end, the undertaken analysis is inspired by three different sources: (i) the
experimental findings in [102] on the highly dynamic nature of unstable cracking
under globally quasi-static conditions; (ii) the empirically observed effect of the
energetic barriers for dynamic fracture development [103]; and (iii) the possibility
of tailoring crack patterns using stress concentrators [53]. As such, the Phase Field
fracture model vests as the ideal candidate for the present analysis, since both quasi-
static and dynamic frameworks are available and well-established. For the sake of
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conciseness, all the presented outcomes were addressed exclusively from the optic
of the Phase Field fracture model; however, most of these apply to other widespread
variational approaches to fracture as well, e.g. Cohesive Zone Models or Continuum
Damage Mechanics. Bespoke experiments on 3D printed specimens were performed
to support the theoretically obtained findings. From the contents of this chapter, it
should rest clear that inertial effects are significant upon unstable crack propagation
events, even under quasi-static loading conditions, and so only dynamic fracture
models can be rigorous, robust and representative of reality in those cases.

4.2 Equivalent spring-mass model of multi-ligament
unstable crack propagation

Unstable crack propagation takes place after nucleation whenever the potential
energy release rate due to crack growth exceeds its specific energetic cost. Following
Griffith’s conventional notation, the post-crack-onset instability condition reads as
∂G/∂Γ > ∂GC/∂Γ, with G being the potential energy release rate. The mismatch in
the infinitesimal energy balance makes crack growth a self-sustained process that: (i)
develops in short lapses of time, and (ii) abruptly changes the system’s mechanical
configuration. The resulting evolution thereby presents non-negligible inertial effects
which have the potential to render quasi-static predictions inaccurate.

tU

�

(a)
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K

1( )K z 2 ( )K z
M
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tz

(b)

Fig. 4.1 Schematic representation of: (a) a domain with two resisting ligaments that features
unstable crack propagation, and (b) its equivalent spring mass model.

The issues arising from quasi-statically modelling unstable fracture can be il-
lustrated with the setup in Fig. 4.1a, where a generic 2D domain under uniaxial
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tension presents a resisting section comprised of two ligaments with different overall
strength. It being filled with a linear elastic and perfectly brittle material, fracture is
confined to develop unstably within each ligament. As such, the system’s mechanical
response can be first-order approximated by means of the Spring-Mass system in
Fig. 4.1b, in which the stiffness of the i-th spring (i = {1,2}) obeys the following
cut-off law:

Ki (z) =

{
Ki for z < zCi

0 for z≥ zCi
, (4.1)

where Ki is the spring’s pristine stiffness and zCi its ultimate elongation, the loss
of stiffness being irreversible. By convention, let us further assume that the spring 1
is the weakest of the two, so that:

zC2 = zC1 +∆zC , (4.2)

with zC1 and ∆zC being strictly positive. Furthermore, Ut evolves quasi-statically
and increases monotonically with time, so that the system’s only degree of freedom
zt follows the states of quasi-static equilibrium z̃t up to the breakage of spring 1.
Assuming that such an event occurs at t = 0, it results that zt=0 = zC1 and Ut=0 =UC1.
From there onwards, the imposed displacement Ut is frozen so as to avoid introducing
extra energy in the system, and therefore:

zt = z̃t =
K

K +K1 +K2
Ut for t < 0 , (4.3)

Ut =UC1 =
K +K1 +K2

K
zC1 for t ≥ 0 . (4.4)

Due to the breakage of spring 1, both the system’s mechanical configura-
tion and its state of quasi-static equilibrium z̃t change at t = 0, meaning that
zt→0+ = zC1 ̸= z̃t→0+ . This causes the evolution to turn dynamic thereafter, gov-
erned by the following well-known initial value problem:

Mz̈t +(K +K2)zt = (K +K1 +K2)zC1

z0 = zC1

ż0 = 0
for t ≥ 0 , (4.5)
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which holds up to the breakage of spring 2, provided that it occurs. Eq. (4.5)
admits analytical resolution, yielding the following temporal law for zt :

zt = (C0−C1 cos(ω0t))zC1 for t ≥ 0 , (4.6)

where:
C0 =

K +K1 +K2

K +K2
, C1 =

K1

K +K2
, (4.7)

and ω0 stands for the system’s natural frequency:

ω0 =

√
K +K2

M
. (4.8)

As such, at t = 0 the system starts an oscillatory harmonic motion of semi-
amplitude C1 zC1 centred at the new state of quasi-static equilibrium z̃t≥0 =C0 zC1.
Therefore, neglecting the inertial effects would lead to underpredicting the maxi-
mum elongation reached by spring 2. Particularly for a structural system in which
C0zC1 < zC1 +∆zC < (C0 +C1)zC1, the quasi-static analysis would not foresee break-
age of spring 2, i.e. zt reaching zC2, in contrast to what is predicted dynamically.

From an energetic perspective, quasi-static models pursue the minimization of
the system’s potential energy at each instant. Consequently, the resulting evolutions
are constrained neither by the temporal continuity of zt nor by the conservation
of the total energy, yet these two aspects are pivotal for actual massive systems.
Indeed, the deformation energy of spring 1 is lost as soon as it breaks, but that of
the other two is initially retained. Hence, the dynamic system begins to oscillate
with an excess of potential energy in comparison to the new quasi-static equilibrium
state, since zt→0+ = zC1 ̸= z̃t→0+ =C0zC1. This energy surplus fuels the system’s
oscillatory motion, cyclically exchanging potential and kinetic energy while their
sum is conserved. As a result, the dynamic system can reach higher deformations
than the quasi-static one, and the former’s maximum elongation zt for t > 0 is
achieved as soon as all the kinetic energy is reverted back into deformation energy.

Furthermore, Eq. (4.6) shows that the evolution of the dynamic system is con-
tinuous in time and governed by the natural frequency ω0, so that no immediate
mechanical responses are possible. When generalized to a continuum, such a condi-
tion forces the mechanical information to propagate at a finite material-dependent
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velocity c. Nonetheless, the disregard of the concept of time in quasi-static ap-
proaches renders "instantaneous" both the diffusion of information and the system’s
reactions to changes. These simplifications are thus expected to noticeably under-
mine the representativeness of quasi-static predictions upon unstable fracture, since
the crack tip velocity is often on the same order of magnitude than c for such cases.

4.3 Case studies of unstable crack propagation

The preliminary rationale established along the previous subsection is now further
developed through detailed analyses based on the PFM and on experiments conducted
on 3D printed specimens. Both simulated and real setups were quasi-statically loaded
under displacement control in a way that ensures unstable fracture. The placement
of different interacting stress concentrators allowed to reproduce the multi-ligament
interplay, as well as to modulate the magnitude of the energetic barrier for crack
growth. Simulation-wise, the juxtaposition of the quasi-static and dynamic fracture
predictions was achieved by using two different PFMs from the instant crack onset
gets acknowledged onwards: one quasi-static (QS) and another one dynamic (DYN).

Just as in Section 3.3, the PFM/No-Tension/AT1 combination was here used
given its proven good performance in modelling crack development under complex
multiaxial stress states. Likewise, every PFM simulation was conducted under
the assumption of 2D plane strain conditions. In any case, none of the presented
conclusions is exclusive to these modelling choices. Moreover, first order triangular
elements of size ℓ/4 were once again used for domain discretization, without mesh
refinement so as to avoid wave reflections caused by coarser elements. The same
uniformly fine meshes were used in the quasi-static simulations in order to avoid any
distortion that could compromise the comparison with the dynamic solutions.

The considered material properties and modelling parameters are reported in
Table 4.1, which are representative of the elastic and ultimate behaviour of the
Formlabs® Clear Resin used for the experimental campaign. This material is a
thermoset polymer for which cross-linking is photo-triggered. As such, controlled
passages of a moving laser beam allows for selective hardening of the resin, eventu-
ally generating the 3D specimen layer by layer through the Stereolithography (SLA)
technique. The resulting methacrylated polymer presents a mechanical behaviour
akin to others commonly used for fracture testing, e.g. PMMA, showcasing strong
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non-linearities under heavy loading and a mostly-brittle fracture. In order to reduce
the non-linear behaviour, the post-print curing process was performed at 75◦C for 60
minutes, following what was reported in [104]. However, the experimental campaign
here undertaken serves only as a qualitative validation of the simulations; extensive
material characterization procedures or complex constitutive relations are thereby
beyond the scope of the present chapter.

Table 4.1 Material properties and modelling parameters used for the PFM simulations.

ρρρ EEE ννν GGGCCC ℓℓℓ σσσNT
CCC[

Kg/m3] [MPa] [−] [MPa ·mm] [mm] [MPa]

1180 2800 0.35 0.4 0.16 65.0

The 3D printed specimens were tested using the DEBEN® Microtest 5kN tensile
stage shown in Fig. 4.2. Global quasi-static conditions were ensured by setting the
crosshead velocity to 1 mm/min. On the other hand, the specimen thickness was
limited to 4 mm by the fixtures, thereby not showcasing pure plane strain conditions.
Either way, such a thickness was deemed admissible since the comparison between
simulations and experiments is only qualitative.

Fig. 4.2 DEBEN® Microtest 5kN tensile stage used for testing the 3D printed specimens.
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The load applied to the specimens was measured using the machine’s built-in
5 kN load cell, while the elongation was determined via a self-developed virtual
extensometer. This optical technique tracked the position of two coloured optical
markers, each adhered to one end of the gauge section, allowing to avoid the intrinsic
distortion of crosshead displacement readings and maintain the measuring precision
in the order of microns and a high accuracy, which resulted essential given the small
size of the specimens. For more details on the virtual extensometer technique, please
refer to Appendix B.

4.3.1 Case study A: Evidencing the kinetic energy contribution
to unstable crack growth

The first case study here presented involves a uniaxially-tensioned specimen that
contains a U-notch aligned with a circular hole, as schematically depicted in Fig.
4.3. As such, it represents a straightforward particularization of the generic multi-
ligament setup from Section 4.2. There are two main reasons for choosing this
particular geometry: (i) the smoothness of the stress concentrators improves both the
manufacturing and simulation accuracy, and (ii) the failure sequence is theoretically
certain and foreseeable. In particular, this latter characteristic is essential for ensuring
the soundness of the comparison between quasi-static and dynamic simulations, as
well as with the experiments.

tU
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Fig. 4.3 Geometrical definition of the specimen type A. Dimensions in millimetres.
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For the given setup, fracture is always expected to nucleate from the tip of
the U-notch when Ut = U{QS,DY N}

C1 , an event hereafter referred to as primal crack
onset (see Fig. 4.4a). Following this, the crack propagates unstably along the first
ligament, eventually generating a longer U-notch with radius R once it reaches the
hole. Depending on the severity of the new U-notch stress concentration compared
with the original’s, the elongation at secondary crack onset U{QS,DY N}

C (see Fig.
4.4b) will be equal to U{QS,DY N}

C1 or not: the longer (blunter) the U-notch, the higher
(lower) its stress concentration. As such, it is the hole radius R what determines the
magnitude of the energetic barrier for crack growth, with bigger holes being more
difficult to overcome. A parametric analysis on the specimen type A with R as the
single free parameter would thus reveal the existence of two differentiated failure
regimes: one where both primal and secondary crack onset take place at the same
elongation (Regime I), and another in which they do not (Regime II).

(a) (b)

Fig. 4.4 Schematic representation of: (a) the specimen type A state upon primal and (b)
secondary crack onset.

The critical elongations that trigger the primal and secondary crack onset ac-
cording to the quasi-static PFM, namely UQS

C1 and UQS
C , are depicted in Fig. 4.5a

as the frontier between specimen states. This chart should be interpreted vertically
from bottom to top, with each iso-R line indicating the evolution of the specimen
failure state as Ut increases. From this, the existence of the two distinct failure
regimes depending on R is evident, the transition taking place at RQS

∗ ≈ 0.675 mm.
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For R < RQS
∗ , quasi-static simulations show that the hole does not stop crack prop-

agation, specimen failure thus being in Regime I (UQS
C1 = UQS

C ). Conversely for
R > RQS

∗ , the hole’s energetic barrier becomes large enough to showcase failure in
Regime II (UQS

C >UQS
C1 ). In these latter instances, UQS

C results to be approximately
proportional to a decimal root of R, which is aligned with the literature findings on
the failure size-effect from U-notches [105]. On the other hand, the corresponding
predictions of the dynamic PFM are presented in Fig. 4.5b. The two differentiated
failure regimes are again clear, but now the transition occurs at a significantly larger
threshold RDY N

∗ ∈ (1.75, 2.00) mm. Remarkably, the dynamic PFM predicts an
abrupt transition of the failure regime in contrast with the continuity foreseen by the
quasi-static counterpart.

(a) (b)

Fig. 4.5 Specimen type A failure map per: (a) the quasi-static, and (b) the dynamic PFM.

This fundamental difference primarily stems from the energetic transformations
that take place during the development of fracture according to each of the two
models. Setting R = 1.5 mm for instance, the quasi-static PFM predicts the evolution
of the energetic components as depicted in Fig. 4.6. Specifically, Fig. 4.6a shows
that the behaviour is mostly linear-elastic up to the primal crack onset at Ut =UQS

C1 ,
when the first ligament breaks completely. Due to the inability of quasi-static models
to follow unstable crack propagation events, these "develop" entirely within the
AltMin iteration at each time step. In this regard, Fig. 4.6b details the energetic
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(a)

(b) (c)

Fig. 4.6 Evolution of the energetic components along the fracturing of a specimen type A
with R = 1.5 mm per the quasi-static PFM.

transformations occurring within the AltMin scheme for Ut =UQS
C1 . These results

clearly show that Efrac increases and Estr decreases as the crack "propagates" along
the first ligament. However, their variances are unbalanced so that the system’s
potential energy Estr +Efrac has shrunk by 30% once the crack reaches the hole. At
this point, the system lacks enough stored energy to trigger the secondary crack onset,
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thus halting crack propagation at the hole. Additional strain energy is needed to
resume crack propagation into the second ligament, which is achieved by increasing
the specimen elongation. Secondary crack onset eventually happens when Ut =UQS

C ,
as described in Fig. 4.6c. Afterwards, the specimen is completely broken, with all
the system’s energy being in the form of Efrac but for a small Estr term arising from
the numerically-required non-zero residual stiffness.

As anticipated, quasi-static PFM simulations feature the "snap-back" disconti-
nuity, which is the manifestation of crack instability under displacement control.
Traditionally, this has been studied by introducing an artificial mechanism that draws
energy out of the system and enables quasi-static equilibrium conditions by stabi-
lizing fracture (see e.g. [97]). This can be accomplished for instance by explicitly
controlling the crack extension or the crack mouth opening displacement. Nonethe-
less, introducing such a energy depletion scheme changes the nature of the modelled
system with respect to that under study, thus affecting its representativeness.

(a) (b)

Fig. 4.7 Evolution of the energetic components along the fracturing of a specimen type A
with R = 1.5 mm per the dynamic PFM.

An alternative, less intrusive approach to unstable fracture consists in assuming
dynamic equilibrium conditions instead. In a temporally continuous framework,
the excess of potential energy released during crack growth gets entirely converted
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into kinetic energy K , thereby preserving the system’s total energy. As demon-
strated in [27] however, the dynamic PFM only conserves the system’s total energy
asymptotically as the time steps vanish. Nonetheless, using a reasonably small time
increment leads to almost imperceptible total energy losses as shown in Figs. 4.7 for
R = 1.5 mm. For comparative purposes, Fig. 4.7a is analogous to Fig. 4.6a, whereas
Fig. 4.7b is somewhat the dynamic counterpart to Figs. 4.6b and 4.6c combined, but
with the X-axis representing the temporal coordinate of the dynamic PFM.

As anticipated by Fig. 4.5b, the dynamic PFM foresees Regime I failure for
R = 1.5 mm, thus showcasing a single fracturing event at Ut = UDY N

C1 = UDY N
C in

Fig. 4.7a. The energetic transformations detailed in Fig. 4.7b demonstrate that the
system’s total energy is mostly conserved during the fracturing process, since the
reduction in potential energy is compensated by an increase in kinetic energy. This
turns out crucial barely after the crack reaches the hole, when the accumulated kinetic
energy begins to revert partially into strain energy (from t = 11.8µs to t = 14µs in
Fig. 4.7b). Such a partial back-conversion eventually allows the system to overcome
the hole’s energetic barrier and trigger the secondary crack onset without further
specimen elongation.

Moreover, the cases here examined showed that even if both quasi-static and
dynamic approaches agree in predicting Regime II failure, the latter still yields
larger values of α at the site of secondary crack onset just after crack arrest. This
discrepancy can also be traced back to the partial recovery of strain energy, which
can still cause α to grow therein in spite of not being enough to nucleate fracture.
Nonetheless, the critical elongations UQS

C and UDY N
C turned out to be indiscernibly

equal for such cases. This finding aligns with the results reported in [21] for the
unstable growth of a cohesive-modelled crack in a cantilever specimen with an array
of relatively large circular holes.

Experimental results

The conducted experimental tests were designed to juxtapose the two-ligament
unstable fracturing behaviour against the quasi-static secondary crack onset, i.e. the
energetic barrier. For this purpose, two main types of specimens with the same
value of R were used: one where both ligaments were load bearing (see Fig. 4.4a),
and another where only the second was (see Fig. 4.4b). Apart from that difference,
both kinds of specimens are identical. As such, if samples from the former group
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were to fracture in Regime I at a lesser elongation than those of the latter kind, it
would represent indisputable proof that the dynamic effects upon unstable crack
propagation are significant.

Overall, twelve specimens type A with R = 0.5 mm (nominal) were 3D printed.
The actual specimen geometry was designed so that the domain 25 mm overall
length corresponded to the initial distance between the optical markers, i.e. the gauge
length (see Fig. 4.8). Preliminary experiments revealed that, due to the combined
effect of the material high-brittleness and complex behaviour with the presence of
surface defects, it was no longer guaranteed that fracture nucleates from the U-notch
tip. Towards minimizing the need for post-mortem analyses while ensuring the
desired failure sequence, a small incision was performed at the notch tip with a razor
blade. This is akin to decreasing the effective radius of the notch, or somewhat like
increasing R while maintaining the nominal notch.

Fig. 4.8 Video frame of specimen type A1 with R = 0.5 mm (nominal) showing the digital
recognition of the green (upper) and red (lower) markers. Each cross represents a marker

barycentre (see Appendix B).

The effective reduction of the notch radius was quantified by comparing the
fracture load of the two-ligament specimens without (type A) and with the cut
(type A1), with four specimens of each kind tested. The adequacy of the failure
sequence in the former group was individually verified by post-mortem analyses.
The experimental results obtained for the ultimate elongation UEXP

C and force FEXP
C

are given in Tables 4.2 and 4.3, which yield that the cut reduced the ultimate force
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by an average factor of 3.17. This ratio, combined with a maximum stress criterion
and the approximated U-notch stress field from [106], allows to estimate an effective
notch radius after the cut of 0.28 mm. Consequently, specimens type A1 can be
regarded as equivalent to the R = 1.75 mm simulations from Subsection 4.3.1, in
that both present the same effective ratio of notch to hole radii.

Lastly, the remaining four specimens form another control group in which only
the second ligament was load-bearing (type A2). The corresponding experimental re-
sults given in Table 4.4 unequivocally demonstrate, alongside those in Table 4.3, that
despite specimens A1 show failure in Regime I, they break at considerably smaller
elongations than those of type A2. This provides empirical evidence supporting what
was hitherto theoretically asserted, i.e. that dynamic effects upon unstable crack
growth are substantial even under quasi-static loadings.

Table 4.2 Experimental results for the specimens type A.

Specimen # Overalls

111 222 333 444 Avg. CoV %

UUUEEEXXXPPP
CCC,,,AAA [mm] 0.30 0.35 0.35 0.42 0.36 13.70

FFFEEEXXXPPP
CCC,,,AAA [N] 1540.3 1806.6 1727.9 1983.6 1764.6 10.42

Table 4.3 Experimental results for the specimens type A1.

Specimen # Overalls

111 222 333 444 Avg. CoV %

UUUEEEXXXPPP
CCC,,,AAA111 [mm] 0.07 0.09 0.11 0.08 0.09 19.00

FFFEEEXXXPPP
CCC,,,AAA111 [N] 477.7 577.4 600.7 570.0 556.7 9.73

Table 4.4 Experimental results for the specimens type A2.

Specimen # Overalls

111 222 333 444 Avg. CoV %

UUUEEEXXXPPP
CCC,,,AAA222 [mm] 0.45 0.36 0.43 0.30 0.39 17.59

FFFEEEXXXPPP
CCC,,,AAA222 [N] 984.4 779.8 996.3 761.2 880.4 14.45
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4.3.2 Case study B: Revealing the significance of sequential and
progressive diffusion of mechanical information

As introduced in Section 4.2, another key aspect to consider upon unstable crack
propagation is how the quasi-static and dynamic approaches handle the diffusion
of mechanical information within the continuum. In real materials, this takes place
through pressure waves that travel at the corresponding speed of sound c ∝

√
E/ρ ,

thereby implying that any evolving process is inherently dynamic. However, if and
only if the rate of every mechanical change in the system is slow enough, one can
disregard the dynamic effects and develop predictive models that take advantage
of quasi-static simplifications. This condition is not typically satisfied for unstable
fracturing conditions however, for the crack tip velocity and c are often of the same
order of magnitude in such cases.

In particular, quasi-static models present "instantaneous" transmission of the
mechanical information for they disregard the concept of time. This implies that
any arbitrarily distant point immediately gets aware of and reacts to changes in
the system’s mechanical configuration. In the context of unstable fracture, such an
immediacy leads to the whole domain changing its deformation state while the crack
is growing, which in turn influences both future crack growth and deformation states.
In reality, right after fracture nucleation only the immediate vicinity of the new crack
receives notice of its growth and starts to adapt to the new configuration. As such,
quasi-static approaches predict states that significantly dissent with those physically
admissible with regards to the mechanical information diffusion.
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Fig. 4.9 Geometrical definition of the specimen type B. Dimensions expressed in
millimetres.
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The significance of such an issue will be here examined with the specimen
type B defined in Fig. 4.9, which results from modifying a specimen type A with
R = 1.5 mm by vertically separating the notch and the hole by a distance H. As a
result, the interaction between the two stress concentrators becomes more complex,
and so do the resultant crack patterns. In this sense, one can anticipate a crack that
initially propagates horizontally and then gradually veers towards the hole. For small
enough values of H, the crack reaches the hole and the aforementioned competition
between halting or resuming crack growth takes place. Otherwise, the crack misses
the hole and a single cracking event occurs. This fundamental difference in the
resultant fracturing behaviour hinges on the crack’s ability to change direction, which
is in turn ruled by its interaction with the hole during propagation. Consequently,
any delays in how the diffusion of mechanical information is modelled materialize
as less pronounced changes of crack direction. As such, differences in this regard
have the potential on its own to change whether the crack impinges the hole or not.

(a) (b)

Fig. 4.10 Crack patterns according to (a) the quasi-static and (b) the dynamic PFM for a
specimen type B and H = 2.5 mm.

For the specific configuration under study, the quasi-static and dynamic PFM
dissent in this sense when H = 2.5 mm, as shown in Figs. 4.10. Besides this, it is
worth noting that the quasi-static PFM unexpectedly predicts a piecewise straight
crack pattern, in contrast to the curved path that emerges when inertial effects are
incorporated. A detailed analysis on the underlying reasons behind such a surprising
prediction uncovers a significant inconsistency of quasi-static approaches upon
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unstable crack growth: the weakening of the essential irreversibility condition of
fracture.

As outlined in Section 2.2, the quasi-static PFM pursues the local minimization
of the system’s potential energy conditioned by an irreversibility constraint on
α . However, this crucial admissibility condition is only enforced with respect
to previously converged states, and so changes in α occurring within the AltMin
scheme at a given time step are reversible. This reveals paradoxical in that the
quasi-static PFM is able to "correct" crack patterns from past AltMin iterations as
long as convergence is not reached, yet based on information that only becomes
available once such states would have been reached.

(a) (b)

(c) (d)

Fig. 4.11 Cracking of the first ligament in a specimen type B with H = 2.5 mm as predicted
by the quasi-static PFM after: (a) 100, (b) 500, (c) 1500 and (d) 4500 AltMin iterations.
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This line of reasoning is supported by the results in Fig. 4.11, which illustrate the
crack patterns at various AltMin iterations for the time step where the first ligament
breaks, i.e. when Ut = UQS

C1 . As seen in Figs. 4.11a and 4.11b, the crack initially
follows the curved path that is expected beforehand, confirming that the deformation
state drives the crack to be as such before it impinges the hole. Nonetheless, once the
first ligament is completely broken, the curved crack practically results in the same
reduction of Estr as if straight, but it is more expensive in terms of Efrac. At the same
time, the irreversibility condition is enforced with respect to the latest converged
result prior to crack onset, which was an essentially pristine state. Thereof, it results
admissible for the quasi-static PFM to straighten the crack once it has reached the
hole, as evident from Figs. 4.11b through 4.11d. This way, the quasi-static system
ends up breaking the first ligament with a straight crack, for it is allowed to do
so and it leads to a bigger reduction in the potential energy (see Fig. 4.12). The
oxymoron reveals evident: while a straight crack is energetically optimal once the
first ligament is broken, the deformation state drives the crack to propagate along
a curved path from the notch to the hole. Therefore, considering that fracture is
irreversible, the straight crack solution can only be achieved by contravening the
cause-effect principle.

Fig. 4.12 Evolution with the AltMin iterations of the energetic components along the
fracturing of the first ligament of a specimen type B with H = 2.5 mm according to the

quasi-static PFM. Bullet notes on top indicate correspondence with Figs. 4.11.
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Experimental results

Although the theoretical discussion above is comprehensive and robust, supporting
experimental evidence is also provided herein. In this sense, a single specimen type
B with H = 2.5 mm, analogous to those numerically simulated, was 3D printed
and tensile tested. Following the rationale already presented in Subsection 4.3.1, a
slight incision was made at the notch tip with a razor blade. It is noteworthy that the
experimentally-obtained crack pattern shown in Fig. 4.13a is not only curved but it
also matches closely the prediction by the dynamic PFM (see Fig. 4.13b).

(a) (b)

Fig. 4.13 (a) Picture of the experimental crack pattern of a specimen type B with
H = 2.5 mm and (b) superposition with the predictions by the dynamic PFM.

4.4 Conclusions

This chapter provides comprehensive theoretical, numerical and empirical evidence
proving that the fundamental hypothesis of the quasi-static variational models of
fracture does not hold in the event of unstable crack propagation, even when the load-
ing is quasi-static. Consequently, neglecting the inertial effects leads to intrinsically
unrealistic models that yield potentially unsafe predictions, as demonstrated with
a simplified Spring-Mass model of multi-ligament fracture. This simplistic model
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resulted enough to identify the two primary characteristics of quasi-static models
that render their fracture predictions unrepresentative: the neglection of the kinetic
energy component, and the instantaneous propagation of mechanical information.

Based on these initial observations, two distinct case studies were designed to
emphasize each of the two aforementioned shortcomings. The well-established
Phase Field fracture model was used since it is capable of dealing with bulk fracture,
and both quasi-static and dynamic formulations are available. Additionally, the
numerical findings are supported by experimental results from tests on bespoke 3D
printed specimens. Out of these comprehensive case studies, three key points should
be highlighted:

• The principle of local minimization of the potential energy leads to the pre-
diction of an unrealistic dissipation of energy upon unstable fracture. Often
manifested as a snap-back discontinuity if under displacement control, most
of this excess of energy is not actually disposed but converted into kinetic
energy. This can then partially convert back into strain energy, further driving
crack propagation in the presence of energetic barriers. Therefore, quasi-static
predictions of unstable fracture are potentially unsafe for they overestimate
the system’s energy dissipation.

• Assuming quasi-static equilibrium upon rapidly changing evolutions allows to
admit states that are unphysical because they require the mechanical informa-
tion to travel faster than the speed of sound in the material. This assumption
severely undermines the accuracy of the resultant crack patterns, and so, of
the predicted unstable fracturing behaviour.

• The inability of quasi-static approaches to follow unstable crack propagation
significantly weakens the robustness of the essential irreversibility condition
for fracture and leads to admit as solutions states that violate the cause-effect
principle.

To conclude, it is important to consider that the limitations observed in the
quasi-static predictions are not unique to the Phase Field fracture model, but are
common to many variational approaches to fracture. This, combined with the
prevalence of unstable fracturing in real-world structures, even under quasi-static
loading conditions, underscores the importance of the findings described in this
study.



Chapter 5

Finite Fracture Mechanics1

5.1 Introduction

Despite its huge potential in the modelling of complex fracture processes, the Phase
Field fracture model carries a considerable computational cost. At the same time,
certain structural applications deem any degree of failure inadmissible, thereby
making it enough to have crack nucleation criteria. In this regard, the prediction
of failure onset from brittle and similar materials has classically been tackled by
frameworks either based on local stress values or on infinitesimal energy balances.
These two approaches are somewhat complementary in that those of the former kind
work only for non-singular geometries, while sufficiently intense singularities in the
elastic solution are a must for the latter ones. Cases in between, i.e. moderate stress
raisers, are thereby out of reach for traditional crack onset criteria. All the more so,
none of these formulations could explain the experimentally-observed size-effect of
failure in plain geometries (see e.g. [107]).

In this context, Leguillon [39] theorized that failure onset is not an infinitesimal
but a finite phenomenon whose occurrence is subjected to the simultaneous fulfilment
of non-local stress and energy conditions. As such, the coupled criterion of Finite

1Part of the work described has been previously published in: (i) Chao Correas, A., Corrado,
M., Sapora, A., Cornetti, P. (2021). Size-effect on the apparent tensile strength of brittle materials
with spherical cavities. Theor Appl Fract Mech 119, 103120; and (ii) Chao Correas, A., Sapora, A.,
Reinoso, J., Corrado, M., Cornetti, P. (2023). Coupled versus energetic nonlocal failure criteria: A
case study on the crack onset from circular holes under biaxial loadings. Eur J Mech A Solids 101,
105037.
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Fracture Mechanics was born, which subsequently proved to be all-round robust in
predicting crack onset, be it for plain, notched, slightly-cracked, or largely-cracked
geometries. Following this same coupling paradigm, an analogous yet different
formulation for the coupled criterion was later proposed by Cornetti and co-Authors
in [40]. These two contributions are widely regarded as the main pillars of the
modern Finite Fracture Mechanics framework.

Ever since its introduction, Finite Fracture Mechanics has proven versatile to
deal with failure onset in the presence of widely varied stress raisers and quasi-static
conditions. Concerning pure brittle failure in a linear elastic context, the approach
has been successfully applied to singular geometries such as sharp cracks [108],
V-notches [40, 109, 110], Penny-shaped cracks [77], rhomboidal holes [111], and
squared holes [112], to mention but a few. Non-singular stress concentrators have
also been at the centre of relevant investigations, as implementations are available
for circular holes [113–115, 70], U-notches [116] and elliptical holes [117], among
others. Crack nucleation in more complex multi-phase materials has also been
tackled by Finite Fracture Mechanics, which has been used to predict interfacial
delamination [118, 119], as well as the macroscopic failure of composite laminates
[120–122] and concrete structures [123]. Dropping the hypothesis of linearity in the
material behaviour to include more general laws, the approach was extended to hyper-
elastic materials [124]. The showcased robustness of Finite Fracture Mechanics in
predicting crack onset has been as well ascertained through comparisons with the
Cohesive Zone Model [77, 79, 125] and the Phase Field fracture model [126, 80].

The present chapter serves as an introduction to the Finite Fracture Mechanics
approach in a quasi-static context. In such regard, the generalized formulation is
first put forward and then particularized per the proposals in [39] and [40]. The
approach is then implemented to study the failure size-effect when it stems from a
spherical void embedded in a uniaxially tensioned domain, which poses a relatively
straightforward failure scenario. The obtained crack onset predictions are validated
against the well-established Dugdale’s Cohesive Zone Model, experimental results
and atomistic simulations. On the other hand, the particularities of the Finite Fracture
Mechanics approach upon intricate conditions for failure are evidenced through the
case study of crack onset from circular holes under biaxial loadings. Once again,
the resulting predictions are benchmarked against Dugdale’s Cohesive Zone Model,
which was already introduced in Subsection 2.4.3. As such, an indirect comparison
with the Phase Field fracture model is also here undertaken.
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5.2 The Finite Fracture Mechanics approach to quasi-
static crack nucleation

The Finite Fracture Mechanics (FFM) framework [39, 40] posits that crack initiation
is an instantaneous event that develops in finite spatial increments. Such a criterion
hypothesizes that failure triggers at the minimum loading intensity for which both
stress and energetic conditions are simultaneously fulfilled over any prospective
crack growth surface. Rigorously speaking, no assumption on the size or shape
of the critical finite surface is required a priori, which poses a great advantage in
comparison with other comparable non-local failure criteria, namely the Theory of
Critical Distances [38] or Quantized Fracture Mechanics [37]. Nonetheless, it should
be pondered that FFM’s theoretical robustness is not kept implementation-wise,
since its resolution is quite arduous whenever the crack onset mechanisms are not
well-defined.

Fig. 5.1 Schematic representation of a fracture mechanics problem with the finite crack
growth highlighted.

To write FFM’s failure criterion in mathematical terms, let us consider the
generic N-dimensional fracture problem in Fig. 5.1. There, ∆Γ ∈ RN−1 represents
any potential finite crack growth and Σ is a parameter governing the loading intensity,
be it an imposed displacement, a concentrated force or distributed pressure. In its
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original state (∆Γ = /0), the domain Ω sees a stress field σ ∝ Σ and has a potential
energy P ∝ Σ2. Given a finite crack growth ∆Γ, the system’s potential energy varies
as ∆P ∝ Σ2 due to the changes in the domain’s mechanical configuration. Based on
this, FFM defines two necessary and sufficient inequality conditions for failure: one
based on the pre-cracking stress σ , and another related to the release of potential
energy during the finite crack growth ∆P . Therefore, the corresponding set S of
combinations of Σ and ∆Γ that could potentially trigger failure generically writes as:

S =

Σ×∆Γ ∈ R×RN−1

∣∣∣∣∣∣∣
h
(

σ(Σ) , ∆Γ

)
≥ σC and

g(∆P (∆Γ, Σ))≥ GC

 , (5.1)

with h and g being two monotonically increasing functions with respect to each
of their corresponding inputs. Among all the combinations of Σ and ∆Γ that belong
to S, FFM identifies the one minimizing Σ as that actually triggering fracture, and so:(

Σ f , ∆Γ f
)
= argmin

(Σ,∆Γ)∈S
(Σ) . (5.2)

With respect to the particular choices of the non-local conditions for fracture,
two main variants exist: the original pointwise-stress proposal [39] and the averaged-
stress modification [40]. In both cases, the finite energy balance is identical, their
difference residing instead in the non-local stress condition. In what follows, these
two variants will be referred to as FFM-orig and FFM-avg, respectively, whereas the
FFM acronym will be reserved for the Finite Fracture Mechanics framework as a
whole. For the sake of simplicity, only pure Mode I crack onset conditions will be
considered in what follows (including throughout Chapter 6).

5.2.1 Original formulation

The original FFM formulation [39] requires that, for failure to occur, the pre-failure
crack opening stress component σ must point-wise meet or exceed the material
tensile strength σC throughout ∆Γ. At the same time, failure can only occur if the
decrease of potential energy ∆P is at least equal to the energy consumed by the
finite crack growth ∆Γ. Therefore, the resulting set Sorig of Σ and ∆Γ combinations
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for which FFM-orig reckons failure to be feasible is defined as:

Sorig =

Σ×∆Γ ∈ R×RN−1

∣∣∣∣∣∣∣
σ(x, Σ)≥ σC ∀x ∈ ∆Γ and

∆P(∆Γ, Σ)≥ GC H N−1(∆Γ)

 , (5.3)

where H N−1 represents the N−1-dimensional Haussdorf measure of ∆Γ.

5.2.2 Averaged stress formulation

The other major FFM formulation [40] couples the Neuber-Novozhilov [35, 36]
non-local stress condition with the above presented finite energy balance. In this
context, FFM-avg theorizes that it is the average of σ all along ∆Γ that has to exceed
σC, rather than its punctual values therein. The averaged-stress condition can be
thereby deemed weak as opposed to the strong requirement of the original FFM
variant. As such, the former yields more conservative failure predictions, i.e. lower
values of Σ f . The corresponding failure admissibility set Savg therefore writes as:

Savg =

Σ×∆Γ ∈ R×RN−1

∣∣∣∣∣∣∣
∫

∆Γ

σ (x, Σ) dx≥
∫

∆Γ

σC dx and

∆P (∆Γ, Σ)≥ GCH N−1 (∆Γ)

 . (5.4)

The underlying concept behind the averaged stress condition is to require the
net force exerted by σ along ∆Γ to be at least equal than if a constant stress σC

was applied over the same region. Such an averaged stress condition has proven
advantageous with respect to the original proposal when applied to small-sized
specimens [108], for which FFM-orig yields unrealistic predictions.

5.3 Case study on the crack onset from a spherical
void in an uniaxially tensioned domain

The presence of a spherical void in an uniaxially tensioned and infinite domain (see
Fig. 5.2a) causes the effective strength to diminish per the resulting stress concentra-
tion. The non-null stress gradient additionally entails that the strength reduction is
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dependent on the pore size, a phenomenon that cannot be explained by local stress-
based failure criteria. On the other hand, the geometry not being singular precludes
the use of infinitesimal energetic approaches such as Linear Elastic Fracture Me-
chanics, even though these do reproduce the size-effect of failure. These limitations
can be overcome by coupling non-local stress and energy conditions, which in turn
enable capturing the size-effect of failure even for non-singular geometries.

For the case at hand, the stress field solution in the surroundings of the spherical
cavity of radius R was given in [127]. The maximum crack opening stress pertains
to the void’s equator (z = 0), wherein the distribution of σzz is as follows:

σzz(r, Σ1)|z=0 = Σ1

[
1+

4−5ν

14−10ν

(
R
r

)3

+
9

14−10ν

(
R
r

)5
]
= Σ1 Szz(r) , (5.5)

for an imposed remote stress Σ1 along the z direction. As it usually occurs for
axisymmetric problems, the stress field depends on the material Poisson’s ratio ν .
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Fig. 5.2 Schematic representation of: (a) a spherical void in an infinite tensioned body in 3D
and (b) its axisymmetric reduction featuring an annular crack.

Given the axial symmetry of the problem with respect to the z-axis, every internal
magnitude is independent of the angular coordinate ϕ . As a consequence, also
the crack growth is expected to be axisymmetric and to develop as annular cracks
surrounding the void equator. This entails that the only degree of freedom for crack
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growth is its width a, thus leaving the axial-symmetric reduction of the 3D cracking
problem as in Fig. 5.2b.

Considering failure to develop as annular cracks in the equator plane leads to pure
Mode I failure conditions. By virtue of Irwin’s relation ({G, GC}= {KI, KIC}2/E ′,
where E ′ = E/(1− ν2) for plane strain), the infinitesimal reduction of potential
energy upon growth of an annular crack of width a can be thereby determined
from only the corresponding Mode I Stress Intensity Factor KI . By simplifying the
interpolation procedure from [128], the following approximated expression for KI(a)
was given in [79]:

KI(a, Σ1) = Σ1
√

πaFΣ1(a, R) (5.6)

FΣ1(a) =
(

R
R+5a

)2

F0 +

[
1−
(

R
R+5a

)2
]

F1(a) (5.7)

F0 = 1.122
27−15ν

14−10ν
(5.8)

F1(a) =
2
π

√
a+2R
a+R

[
1+

1
2

(
R

a+R

)2

+
3

7−5ν

(
R

R+a

)4
]

(5.9)

where F0 is the shape factor for an edge crack subjected to a remote tensile stress
equal to the maximum stress concentration, i.e. at the pore equator, and F1 is the
shape function of a Penny-shaped crack to which the stress distribution σzz from Eq.
(5.5) is applied over the corona r ∈ [R,R+a].

5.3.1 Implementation of the Finite Fracture Mechanics approach

Particularizing to the axisymmetric case under study and Σ1 > 0, the FFM formula-
tion presents two scalar degrees of freedom: the remotely imposed tensile stress Σ1,
and the finite growth of the annular crack ∆a. Eq. (5.5) shows that the governing pre-
cracked stress component σzz monotonically decreases with r, whereas Eqs. (5.6) to
(5.9) reveal that the annular crack Stress Intensity Factor KI monotonically increases
with a. All of this combined entails a huge simplification of the FFM formulation,
since it means that the solution of the conditioned minimization problem always lies
at the intersection of the stress and energy admissibility frontiers, i.e. where both
conditions are strict equalities. As a result, the FFM approach here particularizes
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into a system of two equations with two unknowns: the remote stress at failure Σ1 f

and the critical finite crack length ∆a f .

For the FFM-orig formulation, the monotonically decreasing stress field allows
only enforcing σzz|z=0 to be equal to σC at r = R+∆a. Recalling Irwin’s relation
on the other hand, the energy condition can be written in terms of KI and the
corresponding fracture toughness KIC, both of them squared. The Hausdorff measure
of the finite crack growth H 2(∆Γ) here represents the in-plane area of a circular
corona with inner and outer radii equal to R and R+∆a, respectively. Hence, the
particularization of the FFM-orig approach writes as:

FFM−orig :


σzz
(
R+∆a f , Σ1 f

)∣∣
z=0 = σC∫

∆a f

0
2π (R+a) K2

I
(
a, Σ1 f

)
da = π

(
∆a2

f +2R∆a f
)

K2
IC

. (5.10)

Each of the equations above can be expressed with explicit dependence to the
weakening ratio Σ1 f /σC and the critical finite crack advance ∆a f by performing
some algebraic manipulations, which result in:

FFM−orig :



Σ1 f

σC
=

1
Szz
(
R+∆a f

)
Σ1 f

σC
=

√√√√√√
(

∆a2
f +2R∆a f

)
lch

2π

∫
∆a f

0

(
a2 +aR

)
F2

Σ1
(a) da

, (5.11)

where lch = (KIC/σC)
2 is the Irwin’s length. For given values of ν , R and lch,

the two unknowns Σ1 f and ∆a f can be easily determined by numerical solvers for
non-linear systems of equations.

Likewise, the governing system of equations for the FFM-avg approach particu-
larizes to the considered problem as follows:

FFM− avg :


∫ R+∆a f

R
2πr σzz

(
r, Σ1 f

)∣∣
z=0 dr = π

(
∆a2

f +2R∆a f
)

σC∫
∆a f

0
2π (R+a) K2

I
(
a, Σ1 f

)
da = π

(
∆a2

f +2R∆a f
)

K2
IC

, (5.12)
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and after pertinent algebraic manipulations, the corresponding numerically-
convenient formulation writes as:

FFM− avg :



Σ1 f

σC
=

∆a2
f +2R∆a f

2
∫ R+∆a f

R
r Szz(r) dr

Σ1 f

σC
=

√√√√√√
(

∆a2
f +2R∆a f

)
lch

2π

∫
∆a f

0

(
a2 +aR

)
F2

Σ1
(a) da

. (5.13)

The normalized failure size-effect predicted by both FFM variants is illustrated
in Fig. 5.3a. So as to also show the problem’s dependency with the Poisson’s
ratio, three widely different values are considered therein: the two limit cases of
ν ≈ 0.5 and ν ≈ −1, plus the intermediate ν = 0.0. For each of these, the maxi-
mum stress concentration factor Szz|max is equal to 7/4, 27/14 and 13/6, respec-
tively. Both FFM-orig and FFM-avg agree to predict that Σ1 f /σC(R→ 0) = 1 and
Σ1 f /σC(R→ ∞) = 1/Szz|max. For such cases, the extreme values of R degenerate
the coupling of stress and energy conditions, and only the values of σzz at r→ ∞ and
r→ R govern failure, respectively. For intermediate values of R/lch instead, failure

(a) (b)

Fig. 5.3 FFM predictions on the size-effect of: (a) the weakening ratio, and (b) the
normalized critical finite crack growth.
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is governed by the coupling of both stress and energy conditions, thus resulting in
different yet comparable predictions. As expected, FFM-orig predicts higher failure
loads than FFM-avg for a given pore radius.

The resultant predictions for the size-effect on the normalized critical finite
crack size ∆a f /lch are given in Fig. 5.3b for the same three values of ν . Once
again, both FFM variants yield the same predictions for extreme void sizes:
∆a f /lch(R→ 0) = 3π/8 and ∆a f /lch(R→ ∞) = 2/(1.1222π). These two ∆a f /lch

values in turn correspond to those of a vanishing edge crack [40] and an immensely
large Penny-shaped crack [77], respectively. Besides, the dependency of ∆a f on ν

for a given FFM variant is proven to be minimal whereas it is noticeable between dif-
ferent approaches, the trend with R being non-monotonic (monotonic) for FFM-orig
(FFM-avg).

5.3.2 Implementation of Dugdale’s Cohesive Zone Model and
results comparison

In line with what was done in Subsection 2.4.3, failure predictions by the CZM are
used for benchmarking those by the FFM approaches. Approximated expressions for
the Stress Intensity Functions corresponding to the auxiliary CSL and LLE loading
cases2 were proposed in [79]. Provided that the present geometry is somewhat
the axisymmetric counterpart to that studied in Section 2.4, the limit cases now
correspond to an edge crack when R >> a and a Penny-shaped crack when R << a.
For the CSL loading scenario, the proposed expression for KσC

I reads:

KσC
I (a, σC) = σC

√
πaFσC(a) , (5.14)

FσC(a) = 1.122
(

R
R+2a

)2

+
2
π

√
a+2R
a+R

[
1−
(

R
R+2a

)2
]
. (5.15)

For the LLE loading case instead, the approximated expression for KP̄
I is:

KP̄
I (a, P̄) =

P̄√
πa

FP̄(a) , (5.16)

2As introduced in Subsection 2.4.3, CSL and LLE stand for Constant Stress Lip and Line Load
Edge loadings, respectively; these two were illustrated in Fig. 2.9 for the analogous case of a 2D
circular hole.
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FP̄(a) = 2.594
(

R
R+5a

)2

+
2R√

(a+R)(a+2R)

[
1−
(

R
R+5a

)2
]
. (5.17)

When using the Paris’ integral [78], it must be considered that P̄ is now applied
all along the inner circumference of the annular crack on each lip, and so the resultant
force applied per lip is P = 2πRP̄. Using this relation and performing the pertinent
algebraic manipulations, CZM’s governing system of equations writes as:

Σ1 f

σC
=

FσC

(
ap, f

)
FΣ1

(
ap, f

)
Σ1 f

σC
=

Rlch +2
∫ ap, f

0
(R+a) FσC(a) FP̄(a) da

2
∫ ap, f

0
(R+a) FΣ1(a) FP̄(a) da

. (5.18)

Then fixing ν = 0.2, one obtains the normalized size-effect of failure reported in
Fig. 5.4 for the FFM-orig, FFM-avg and CZM approaches. The results show that
CZM provides even higher failure predictions than FFM-orig, which in turn is the
FFM variant closest to CZM. Typically, cohesive laws featuring constant stress lead
to failure predictions better in agreement to FFM-orig than to FFM-avg, whereas the
opposite occurs for linear softening cohesive laws [77, 129].

Fig. 5.4 Comparison between the size-effect on the weakening ratio as predicted by FFM
and CZM.
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5.3.3 Comparison with experiments and atomistic simulations

The effect of pore size and porosity in the ultimate strength of sodium borosilicate
specimens under four-point bending was experimentally studied in [130]. To reduce
the scatter due to the material’s high brittleness, each specimen was sanded using
grits with an overall average grain size equal to 17.25 µm. As a result, non-negligible
superficial defects were introduced in the specimens, causing the showcased plain
strength σC to actually be a structural property. On the other hand, no information
on the material toughness KIC was given. To estimate it, one can assume that the
superficial defects in the specimens are edge cracks of length a0 = 17.25 µm, thus
yielding the structural Irwin’s length lch = 1.1222πa0 = 68.22 µm. Combining this
with the reported plain strength σC = 82.25 MPa, the fracture toughness can be
estimated as KIC = 0.68 MPa

√
m (see Table 5.1), which agrees with experimental

measures in the literature [131]. The experimental results corresponding to the two
lowest specimen porosities available in [130], namely 2% and 5%, are compared
with the FFM failure predictions in Fig. 5.5a. In this figure, the pore size uncertainty
arises from the experimental results being aggregated in ranges of R, whereas
the 95% confidence interval is used to represent the failure load scatter within
each pore size range. Such a comparison shows that FFM delivers predictions
in reasonable agreement with experiments, especially for the 2% porosity, yet it
generally overestimates the actual failure performance.

Table 5.1 Relevant magnitudes used for the comparison of FFM predictions with experimental
results.

Reference [130] [132] [133]
Material Sodium borosilicate Silicon nitride β − silicon carbide

ννν 0.20 0.28 0.20

σσσCCC 82.25 MPa 735.0 MPa 58.0 GPa

KKKIIICCC 0.68 MPa
√

m 6.0 MPa
√

m 1.69 MPa
√

m

lllccchhh 68.23 µm 66.64 µm 8.48 Å

RRR ranges [5.0−186.0] µm [56.0−273.5] µm [1.17−19.96] Å

Another set of relevant experiments consisting in four-point bend tests performed
on silicon nitride specimens containing a single spherical pore placed close to the
tensile surface are reported in [132]. The given material properties are shown in
Table 5.1, and the corresponding comparison with the FFM predictions is shown
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in Fig. 5.5b. Once again, FFM shows reasonable agreement with the experimental
results, although now these are mostly underestimated. Such a difference could be
due to a non-null pore interaction in the previous set of experiments, for instance.

(a) (b)

(c)

Fig. 5.5 Comparison of the FFM failure predictions with: experimental results from (a)
[130] and (b) [132]; and (c) atomistic simulations from [133].
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The presented set of experimental results infers that the FFM predicted size-effect
of failure stemming from a spherical void is representative of the reality. Nonetheless,
the material’s high-brittleness combined with the presence of intrinsic defects, among
other factors, disrupts the comparison of experimental results with the theoretical
predictions. Towards providing a mean of validation devoid of empirical uncertainty,
the failure results from atomistic simulations on a β -silicon carbide crystalline lattice
that contains a "spherical" void [133] are reported in Fig. 5.5c alongside the FFM
predictions. Clearly, at such scales the development of fracture is quantized to
the interatomic length, which restricts the possible crack widths as opposed to a
continuum setup. Still, the comparison with FFM failure predictions show adequate
overall correlation. These results also show that FFM-avg is more accurate for
small pore sizes, whereas FFM-orig performs best for larger voids. Remarkably, the
properties reported in the reference, and not any fitting parameters, are used for such
confront (see Table 5.1).

5.4 Case study on the crack onset from circular holes
under biaxial loadings (II)

Let us now retake the (more intricate) case study already introduced in Section 2.4
and implement the FFM approach. As thoroughly described in Subsection 2.4.1,
varying the loading biaxiality leads to a wide range of conditions for failure in
terms of both the sign and trend distribution of σθθ and KI (see Table 2.1). As a
consequence, FFM’s conditioned minimization problem can no longer be simplified
into a system of two equations. This setup thereby allows for a much richer evaluation
of the FFM framework.

Given that the geometry under study is bidimensional and its failure mechanism
is well defined, the only degree of freedom pertaining to the crack is once again its
length a (see Fig. 2.4). The biaxial loading is instead governed by the pair of values
Σ′1 and β ′ defined in the surrogate loading space (Σ′1−Σ′2) (see Subsection 2.4.1).
Taking the latter as an input parameter, Σ′1 and ∆a remain as the two unknowns of the
FFM approach when particularized to the case at hand. Specifically, FFM-orig states
that the set Sorig for which failure stemming from the hole is admissible particularizes
as:
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Sorig=


Σ
′
1×∆a ∈ R×R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Σ′1
σC
≥ 1

min
r∈[R,R+∆a]

(
S′θθ (r,0, β

′)
) and

Σ′1
σC
≥

√√√√√ lch ∆a

π

∫
∆a

0
aF2

β ′(a, β
′)da


. (5.19)

Nonetheless, the non-monotonic evolution of S′
θθ

for β ′ < 0, combined with the
minimum operator in the stress condition, causes FFM-orig to predict crack onset
from very small holes at Σ1 f /σC > 1 in the baseline loading space (Σ1−Σ2). For
such cases, the trivial hole-less failure solution Σ1 f /σC = 1 takes over according to
FFM’s minimization paradigm, and thus FFM-orig expects failure to onset infinitely
away from the hole. For the sake of simplicity though, the exhaustive definition of
Sorig is omitted here, and the safety domains corresponding to the crack stemming
from the hole are just truncated at Σ1 f /σC = 1.

On the other hand, FFM-avg yields the following particularization of the corre-
sponding admissibility set:

Savg=


Σ
′
1×∆a ∈ R×R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Σ′1
σC
≥ ∆a∫ R+∆a

R
S′θθ (r, 0, β

′)dr
and

Σ′1
σC
≥

√√√√√ lch ∆a

π

∫
∆a

0
aF2

β ′(a, β
′)da


, (5.20)

which inherently considers the trivial hole-less solution due to the absence of the
minimum operator in the stress condition.

The resulting biaxial safety domains are reported in Figs. 5.6, with the ratio
R/lch as a parameter. Leveraging the low computational cost of the FFM approach,
Figs. 5.6a and 5.6c illustrate the size-effect of failure through continuous contour
plots. Their discretizations at fixed values of R are presented as contour lines in
Figs. 5.6b and 5.6d. These figures demonstrate that FFM-orig and FFM-avg provide
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comparable predictions for the safety domains: while these are mostly straight for
the stress-dominated extreme configurations (R→ 0 and R→ ∞), they resemble
arched curves for the intermediate cases in which the energy balance is relevant.

(a) (b)

(c) (d)

Fig. 5.6 R-dependent biaxial safety domains as predicted by: (a, b) FFM-orig, and (c, d)
FFM-avg. Shaded regions indicate that failure onset is predicted to occur in Scenario E;

elsewhere Scenario C takes place.
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Both FFM approaches show a rather particular behaviour for β ′ <−0.443 due
to the appearance of a local minimum in the energy condition frontier. In such cases,
there exists a particular range of R for which the FFM failure predictions correspond
to such a local minimum (Scenario E in Figs. 5.6b and 5.6d). This renders the
stress condition irrelevant, and thereby the solutions are governed exclusively by the
fracture toughness despite the geometry being non-singular. For values of R outside
that particular range, FFM predictions are still governed by both conditions (Scenario
C). Such a duality in the nature of FFM crack upon non monotonic frontiers of the
energy conditions was also observed in [134] for interfacial cracks surrounding
cylindrical inclusions.

(a) (b)

Fig. 5.7 Evolution of ∆a f as predicted by: (a) FFM-orig, and (b) FFM-avg.

The predictions for ∆a f as the hole size and load biaxiality change are shown
in Figs. 5.7a and 5.7b for the FFM-orig and FFM-avg, respectively. Therein, the
dependence with R is implicit, in the sense that one should first determine from
Figs. 5.6 the failure state (Σ1 f , Σ2 f ) for given R and β ′, to then individuate the value
of ∆a f in Figs. 5.7 that corresponds to such failure state. The evolution of ∆a f

is thereby proven to be rather complex within the failure domain. Regardless of
the FFM variant considered, larger values of ∆a f are expected towards bi-traction
loading conditions or larger hole sizes. On the other hand, ∆a f decreases as the
loading becomes more compressive, especially when failure initiation occurs in
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Scenario E. The transition between crack onset scenarios also imprints the evolution
of ∆a f , which manifests as a discontinuity for smaller holes and as a continuous kink
otherwise. A detailed graphical explanation to this difference is given in Figs. 5.8, in
addition to representing the complex interplay between the averaged stress and the
energy conditions frontiers.

(a) (b)

Fig. 5.8 Details on the evolution of the FFM-avg stress and energy condition frontiers in the
surroundings of the transition between Scenario C and E for: (a) small and (b) large holes.

5.4.1 Comparison with Dugdale’s Cohesive Zone Model

The biaxial safety domains predicted by the two FFM variants are benchmarked
against those by the CZM in Figs. 5.9. Comparisons once again show that FFM-orig
is in better overall agreement with CZM than the averaged-stress counterpart. The
effect of hole size and loading biaxiality in the FFM versus CZM correlation is
also evident: discrepancies are higher for smaller holes and for bi-traction loading
conditions. Detailed analyses show that FFM-orig and CZM are closer the more
intense the normalized maximum crack opening stress component σ̂θθ becomes at the
instant of failure (see Eq. (5.21) and Fig. 5.10). These findings are coherent with the
closeness between FFM-orig and CZM predictions reported in [77] for crack onset
from Penny-shaped cracks (σ̂θθ → ∞), and with the relative dissension reported in
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Section 5.3 (σ̂θθ ∼ 2). Likewise, given the good agreement showcased in Subsection
2.4.3 between CZM and the PFM when using the No-Tension energy decomposition
and the AT1 model, these results indirectly infer that the crack onset predictions by
FFM-orig are also in fair agreement with those of the PFM/No-Tension/AT1.

σ̂θθ =
σθθ (R, 0, Σ′1 f , β ′)

σc
=

Σ′1 f

σc

√
2
(
β
′+2

)
(5.21)

(a) (b)

(c) (d)

Fig. 5.9 Comparison of the safety domains predicted by CZM with those by: (a, b)
FFM-orig, and (c, d) FFM-avg.
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Fig. 5.10 Evolution of σ̂θθ along the failure domain according to CZM.

5.5 Conclusions

The Finite Fracture Mechanics framework for predicting quasi-static crack nucle-
ation has been thoroughly presented in this chapter. To that end, the generalized
principle of the criterion was first presented and then particularized to each of the
two main variants, namely those proposed in [39] and in [40]. The approach was
then implemented for predicting the crack onset from a spherical void embedded
in an infinite domain subjected to uniaxial remote tension. The simplicity in the
evolution of the pre-cracked stress field and the energy release upon fracture ren-
dered this case study a nice demonstrator of the approach predictive capabilities.
Therein, good agreement was obtained with respect to Dugdale’s Cohesive Zone
Model and relevant results from experimental test and atomistic simulations. The
application to the much more intricate case of the crack onset from a circular hole
under biaxial loading was also here undertaken, and its complexity allowed evidenc-
ing some of the approach peculiarities. It is worth to be noted the prediction of a
purely-energy-driven crack onset for some loading cases despite the geometry not
being singular. Once again, Dugdale’s Cohesive Zone Model was used as a vector of
validation, against which Finite Fracture Mechanics shows reasonable agreement for
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the whole failure domain. Once familiarized with the intricacies and capabilities of
the Finite Fracture Mechanics approach for predicting crack onset under quasi-static
loading conditions, the foundations for undertaking its extension to dynamic loading
conditions are set.



Chapter 6

Dynamic Finite Fracture Mechanics1

6.1 Introduction

Despite the extensive development that the Finite Fracture Mechanics approach has
undergone in the last years, most of it is confined to purely quasi-static conditions.
Indeed, only a few recent exploratory studies have ventured to consider dynamic
effects within the Finite Fracture Mechanics framework [135, 136]. Nonetheless,
these were mostly focused on the localized dynamic effects arising from the crack
nucleation and propagation themselves rather than from the loading.

With regard to the prediction of failure under dynamic loadings, many criteria
have been proposed in the literature as dynamic extensions of well-established
quasi-static approaches. For instance, the "Classical dynamics approach" (see [137])
posits that the strength and toughness are material rate-dependent functions. These
properties are thereby obtained from coupon testing first and then extrapolated to
more complex failure scenarios. For plain geometries, failure is assessed analogously
to the quasi-static Maximum Stress criterion; for singular geometries instead, akin to
the Linear Elastic Fracture Mechanics approach. This allows for a simple yet limited
dynamic failure criterion whose numerical implementation is straightforward. A
well-known framework falling within this category would be the dynamic component
of the Johnson-Cook model for elastoplastic materials [42].

1Part of the work described has been previously published in: Chao Correas, A., Cornetti, P.,
Corrado, M., Sapora, A. (2023). Finite Fracture Mechanics extension to dynamic loading scenarios.
Int J Fract 239, 149–165.
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A slightly more developed stress-based criterion was introduced in [44] as a
dynamic reformulation of the Theory of Critical Distances [38]. Through non-local
assessment of the stress condition for failure, different limitations of the classical
approaches to fracture are sorted out while keeping the approach simple. Its increased
versatility allows its implementation to different notched specimens, and comparisons
with dynamic experimental results revealed errors in the±20% range [44, 138]. Still,
the use of a material length for the non-local condition precludes its application to
small specimens. Likewise, its instantaneous assessment, combined with the use
of material functions for the rate-dependency of strength, renders it an eminently
empirical criterion.

On the contrary, Petrov and Morozov [43] approached dynamic failure by quan-
tizing both the spatial and temporal nature of the dynamic problem. They proposed
that the observed rate dependence of the strength and toughness is only apparent
and stems from the temporal inhomogeneity of the stress field. According to this
rationale, the dynamic strengthening/toughening represents the temporal counterpart
of the failure size-effect observed upon stress concentrations. This allows to con-
sider that the quasi-static measures for the strength and toughness still hold in the
dynamic failure regime, their apparent changes being captured instead through the
non-instantaneous assessment of a stress condition. In particular, they proposed a
modified version of the Neuber-Novozhilov criterion [35, 36] that requires the quasi-
static stress and toughness, plus a characteristic time period. This latter property,
therein called "incubation time", encapsulates the rate-dependence of the material
and gives name to the approach: Incubation Time failure criterion [139]. As such,
the dynamic material characterization results considerably less dependent on the
post-processing of experimental data. Besides, it proves capable to capture particular
phenomena observed in dynamic experiments, such as the post-peak-load failure
onset under short pulse loadings [140]. Reasonable accuracy against dynamic experi-
mental results was also observed for crack onset in pre-cracked geometries [43, 141],
or for spalling failure [137]. On the downside, the use of a fixed length for the
non-local assessment entrains the limited applicability to small specimens.

Following the paradigm of finite spatio-temporal approaches, an energy-based
dynamic failure criterion was introduced in [142] under the name of Dynamic
Quantized Fracture Mechanics. Therein, the condition for failure is expressed in
terms of the dynamic energy released by a finite crack growth integrated along a fixed
time period preceding each instant. The criterion thereby results non-instantaneous



6.2 Requisites of a proper dynamic failure criterion 99

and non-local like the Incubation Time failure criterion, and they were even reported
to yield similar predictions for the dynamic failure of notched metallic specimens.
Nonetheless, its particular energy-based definition proposed leads to a difficult and
not-so-robust implementation.

In this context, the versatile Finite Fracture Mechanics approach is believed
to have the potential for significantly contributing to the prediction of dynamic
failure onset. Thereof, the present chapter presents an extension of the framework to
dynamic loadings. In awe of fairness though, this proposal should not be understood
as a definitive answer to the modelling of dynamic failure, but as the establishment
of a preliminary line of thought that showcases reasonable accuracy against a limited
set of experiments. Additional empirical data would thus be required in order to
provide a more robust and better understood approach, although the complexity of
dynamic testing makes it a challenging endeavour.

6.2 Requisites of a proper dynamic failure criterion

Let us bring back the generic failure onset problem defined in Fig. 5.1, but now
assuming that the loading is no longer quasi-static but dynamic. As such, the
prescribed displacements and forces along the Dirichlet and Neumann boundaries
are U t and f t , respectively. Prior to fracture nucleation, the domain Ω undergoes
dynamic stressing per σ

t
(x). In the event of an infinitesimal crack growth per δΓ,

the energy stored in Ω gets released at a rate Gdyn, t(δΓ). Noteworthy, the latter
incorporates variations in potential and kinetic energy due to crack growth [143],
hence the "dyn" subindex.

Under these circumstances, one can apply a stress and/or energy-based dynamic
failure criterion to predict the instant t f at which fracture nucleates. However, the
representativeness of the resultant prediction is conditioned to the compliance with
certain requirements. For instance, given that quasi-static loadings are a particular
dynamic case in which ḟ t → 0 and U̇ t → 0, any proper dynamic failure criterion is
ought to be also applicable to quasi-static loadings. Thereof, this mostly obvious
first requisite also implies that all the discussions from the literature that regard the
representativeness of quasi-static failure criteria also apply to those dynamic, e.g.
the necessity of non-local criteria.
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The law of conservation of momentum imposes a second requirement to dynamic
failure criteria: these cannot be assessed instantaneously and should account for
impulses. To illustrate this concept, let us assume the scenario in Fig. 6.1. Therein,
the massive domain Ω is composed of two rigid subdomains Ω1 and Ω2, in contact
through a generic interface ∂IΩ that cannot transmit tensile forces. Furthermore,
Ω1 is fixed, whereas Ω2 is subjected to the distributed dynamic force ft . This case
represents a degenerated tensile failure scenario in which both the material strength
and specific fracture energy are null for δΓ ∈ ∂IΩ, and infinite otherwise. Therefore,
Ω can be supposed to "fail" once Ω1 and Ω2 cease to be in contact along ∂IΩ.
Eventually, this can only happen if a non-null impulse is absorbed by Ω2, which
allows it to change its linear momentum and separate from Ω1. This condition cannot
be captured by instantaneous failure criteria since they do not ensure the conservation
of momentum [137].

Fig. 6.1 Schematic representation of the domain used for proving that impulses should be
accounted for in a robust dynamic failure criterion.

Remarkably, the necessity of non-instantaneous dynamic failure criteria some-
what entails symmetry between the temporal and spatial aspects of the problem:
whenever the stress field varies in time (space), failure criteria should be non-
instantaneous (non-local) in order to be robust. This spatio-temporal analogy of frac-
ture was already reckoned in [137]. Furthermore, the necessity of non-instantaneous
failure criteria is experimentally supported by the findings in [140], wherein failure
was observed to nucleate after the peak stress upon short pulse loadings.

Finally, when passing from quasi-static to dynamic loadings one should rein-
terpret how to predict failure based on the fulfilment of certain conditions. In a
quasi-static mindset, failure criteria predict crack nucleation at the minimum load
level for which certain conditions are met. Nonetheless, per the irreversibility of
fracture and the one-way time flow, this is only acceptable under monotonically
increasing loadings. Therefore, in the more generic dynamic case, failure should be
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instead assumed to take place at the earliest instant for which the failure conditions
are met.

All in all, the necessary (but non sufficient) conditions for a dynamic failure
criterion to be robust are:

1. Straightforward applicability to quasi-static scenarios.

2. Non-instantaneous definition that accounts for impulses.

3. Minimization of the time to failure subjected to certain conditions.

6.3 State of the art for dynamic failure criteria

The prediction of failure under dynamic loadings has already been tackled through
different approaches in the literature. Upon such conditions, the domain Ω is in
dynamic equilibrium of forces, its deformation diffusing through mechanical waves.
This feature renders the dynamic cases severely more complex than those quasi-
static, generally precluding to have self-similar states scaled by one single intensity
parameter akin to Σ in Chapter 5. As a consequence, in what follows let us simplify
the dynamic crack onset problem by further assuming that: (i) the Dirichlet boundary
conditions are homogeneous, i.e. U t = 0; (ii) the loading comes from a single
dynamic Neumann boundary condition f t ∝ Σt applied along ∂ f Ω; and (iii) the
prescribed force follows f t≤0 = 0 and f t>0 ̸= 0.

The most simplistic dynamic failure criterion represents the direct extrapolation to
dynamic loadings of either the Maximum Stress failure criterion for plain geometries,
or the Linear Elastic Fracture Mechanics framework for singular ones. Commonly
known as the "Classical dynamics approach" (see e.g. [137]), the condition for
failure is locally and instantaneously assessed by comparing relevant measures of
the stress field or the stress intensity factors against rate-dependent measures of the
strength or toughness as in Eq. (6.1). Moreover, the functions defining these dynamic
thresholds are assumed to only depend on the material, and thus can be determined
from dynamic coupon testing.{

σt f , KI t f

}
=
{

σC
(
Σ̇
)
, KIC

(
Σ̇
)}

(6.1)
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Therefore, the application of the "Classical dynamics approach" first requires to
determine whether the domain presents a stress singularity, and so its implementation
is not consistent for every geometry and loading. Likewise, its definition is local and
instantaneous, and the rate-dependent ultimate properties are merely empirical.

The issues arising from a local assessment of the classical dynamic criterion were
partially remedied by the Dynamic reformulation of the Theory of Critical Distances
(DTCD) [44, 138]. Mimicking the quasi-static criterion [38], a non-local measure
of the dynamic stress was instantaneously put against the empirical rate-dependent
strength. For instance, in the case of the Line Method for a 2D problem, the DTCD
failure criterion writes as:

1
L
(
Σ̇
) ∫ L(Σ̇)

0
σt f (r) dr = σC

(
Σ̇
)
, (6.2)

where r is a radial coordinate stemming from the critical stress-raiser, and L
(
Σ̇
)

is a material and rate-dependent length defined as:

L
(
Σ̇
)
=

2
π

[
KIC
(
Σ̇
)

σC
(
Σ̇
) ]2

. (6.3)

The non-local stress condition allows the DTCD to be applied irrespectively to
plain or singular geometries, as well as to capture the size effect of failure. On the
other hand, its assessment is still instantaneous and it relies on empirical functions
for the rate-dependent strength and toughness. Moreover, the used critical length L
only depends on the material and the loading, and so the DTCD criterion cannot be
applied to specimens that are too small (see e.g. [40]).

A completely different paradigm was proposed by Petrov and Morozov [43] with
the Incubation Time (IT) failure criterion. Taking the Neuber-Novozhilov [35, 36]
condition as a basis, the IT approach posits that failure in a 2D domain takes place
when:

1
τ

∫ t f

t f−τ

1
d

∫ d

0
σt(r) dr dt = σC , (6.4)

where τ is the so-called Incubation Time, an additional material property that
governs the dynamic dependence of failure. Likewise, r plays the same role as in the
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DTCD, and d is a fixed material length defined as:

d =
2
π

(
KIC

σC

)2

. (6.5)

Therefore, the IT criterion hypothesizes that the dynamic dependence of failure
stems from the temporal inhomogeneity of the stress field, just as its size-effect
arises from the presence of stress concentrations. Besides, the dynamic material
characterization is reasonably simple for it only comprises the quasi-static strength
σC and toughness KIC, plus the incubation time τ . This advantage adds up to the
non-local and non-instantaneous definition of the criterion, which is also accounting
for impulses. Indeed, this is a quite robust approach whose main limitation is its
reliance on a constant characteristic length d.

Although many stress-based dynamic failure criteria have been proposed, those
energy-based are much more scarce. One of the few proposals in this sense is the
Dynamic Quantized Fracture Mechanics (DQFM) [142], whose failure condition in
a 2D setup is defined as:

1
∆t

∫ t f

t f−∆t

1
∆a

∫
∆a

0
Gdyn, t(a) dadt = GC . (6.6)

where a represents the crack length, and ∆a and ∆t are regarded as crack advance
and time quanta, respectively. The similarities between Eqs. (6.4) and (6.6) are
evident. Nonetheless, the latter presents limited physical soundness since it averages
the energy released upon a crack growing by ∆a at each instant t ∈

[
t f −∆t, t f

]
,

which is not a good estimation of the actual energy released during the prolonged-
in-time and cumulative process of finite crack growth. What is more, the resultant
mathematical formulation was found to not be robust for certain cases. Besides these
drawbacks, both the IT and the DQFM criteria agree in several aspects, such as the
spatio-temporal quantification through constant parameters (d− τ and ∆a−∆t) or
the assumption that the quasi-static ultimate properties still apply to dynamic fracture
onsets.
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6.4 Dynamic Finite Fracture Mechanics approach

Per the previous sections, the most promising dynamic failure criterion of those
available is the IT [43], yet the use of a fixed assessment length d ∝ (KIC/σC)

2

limits its applicability. For quasi-static setups, the FFM approach [39, 40] solved this
very same issue of the TCD [38] and QFM [37] criteria by coupling the non-local
stress and energy conditions for failure. Hereafter, such a rationale is exploited in
order to propose an extension of the FFM framework to dynamic loading conditions
(DFFM). As above mentioned though, dynamic loading conditions render structural
problems noticeably more complex. This mostly precludes meticulous modelling of
the actual dynamic fracturing event through semi-analytical approaches akin to the
FFM. Thereof, the following DFFM proposal is aimed at presenting a line of thought
upon which to establish a convenient and reasonably accurate tool for preliminarily
predicting dynamic failure without actually modelling it in detail.

Fig. 6.2 Schematic representation of the generic 2D setup used for the DFFM proposal.

Aiming for a concise proposal, only the FFM-avg variant [40] is here considered
for its dynamic extension. Likewise, the generic fracture onset problem from Fig.
5.1 is now restricted to only the 2D case depicted in Fig. 6.2. The prospective crack
path is assumed known and parametrized by the arc-length a, a0 and ∆a being the
pre-existing crack length and the finite growth, respectively. Besides, the loading is
exerted through prescribed forces whose magnitude is proportional to the temporal
function Σt . Then, under the assumption that there exist the functions σ (x, Σt) and
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Gdyn (a, Σt), the proposed DFFM posits failure to be admissible only within the set
Sdyn

avg defined as:

Sdyn
avg =

t×∆Γ ∈ R×R

∣∣∣∣∣∣∣∣∣
∫

∆Γ

σ
(
x, ⟨Σ⟩tt−τ

)
dx≥

∫
∆Γ

σc dx and∫
Γ+∆Γ

Γ

Gdyn
(
a, ⟨Σ⟩tt−τ

)
da≥

∫
Γ+∆Γ

Γ

GC da

 , (6.7)

where:
⟨Σ⟩tt−τ =

1
τ

∫ t

t−τ

Σt ′ dt ′ . (6.8)

The instant of failure t f and critical crack growth ∆Γ f are eventually determined
through the following conditioned minimization problem:(

t f , ∆Γ f
)
= argmin

(t,∆Γ)∈Sdyn
avg

(t) . (6.9)

Clearly, the DFFM proposal above relies on the strong assumption that σ (x, Σt)

and Gdyn(a, Σt) exist. This implies that the temporal dependence of σt and Gdyn, t

exactly follows that of Σt , and so these magnitudes can be defined with no explicit
dependence on t; however, such a hypothesis is only reasonably true under certain
conditions (see Section 6.5). On the upside, all three aforementioned requisites
for dynamic criteria are fulfilled. For instance, it is evident from Eq. (6.9) that
failure onset is acknowledged at the first admissible instant. Likewise, in the quasi-
static limit Σ̇→ 0, Sdyn

avg can be turned into Savg in Eq. (6.10), which is nothing
but the particularization to the case at hand of the failure admissibility set per the
well-established FFM-avg approach.

Savg=

Σ×∆Γ ∈ R×R

∣∣∣∣∣∣∣∣∣
∫

∆Γ

σ(x, Σ)dx≥
∫

∆Γ

σc dx and∫
Γ+∆Γ

Γ

G(a, Σ) da≥
∫

Γ+∆Γ

Γ

GC da

 . (6.10)

Furthermore, Eq. (6.8) implies that the evaluation of the criterion is non instanta-
neous, for it spans along an interval of duration τ preceding each instant. Moreover,
⟨Σ⟩tt−τ can be regarded as a measure of a constant load that generates the same



106 Dynamic Finite Fracture Mechanics

impulse as Σt along the aforementioned time lapse. These considerations allow to
establish a two-sided interpretation for τ: mathematically, it represents the time a
constant load equal to that of quasi-static failure has to be applied for a crack to
nucleate; phenomenologically, it can be seen as the minimum time required for the
microcracks to coalesce into a single most-convenient macrocrack. Hence, τ will be
hereafter referred to as "Coalescence period". Nonetheless, DFFM does not identify
τ as a lower bound for the time to failure, but instead as the minimum value for t f

that allows dynamic fracture to develop as a single crack.

The proposed non-instantaneous energy condition can also be physically inter-
preted upon the assumption that finite crack onset takes place through the coalescence
of microcracks along a finite time interval. This prolonged-in-time energy-releasing
process thereby develops under varying-in-time conditions due to the dynamic load-
ing. In order to handle this complex phenomenon in a reasonably simple way, the
proposed DFFM determines an effective energy release equal to that if a constant
load equal to ⟨Σ⟩tt−τ was applied throughout the coalescence process. As such, the
simplified energy balance herein proposed differs conceptually from that introduced
in [142], and it does not share the latter’s limited physical representativeness.

According to Eqs. (6.7) and (6.10), should the loading magnitude at quasi-static
failure be known, namely Σ f , the corresponding dynamic failure admissibility set
Sdyn

avg could be compactly written as:

Sdyn
avg =

{
t ∈ R

∣∣⟨Σ⟩tt−τ ≥ Σ f
}
. (6.11)

thus meaning that DFFM essentially requires the applied dynamic force magni-
tude Σt to at least generate an impulse equalling Σ f τ for the dynamic failure onset to
occur. Likewise, the equation above implies that ∆Γ f is rate-independent under the
assumptions here made.

6.5 Implementation and experimental validation

The representativeness of the DFFM proposal is hereafter proven through comparison
with results from relevant dynamic experiments available in the literature. Aiming for
comprehensiveness, the chosen experimental campaigns include failure upon singular
and non-singular stress concentrators, as well as upon constant stress distributions
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[144–146]. All the considered tests were performed on Laurentian granite, which
is a fine-grained rock that allows using reasonably small specimens while keeping
the homogeneity assumption. Likewise, it has been reported to showcase linear
elastic behaviour and quasi-brittle fracture [147, 148]. On the downside, it presents
some variability in the mechanical properties per being a natural and multi-granular
material, especially in the fracture toughness [149].

For the relevant experiments, the dynamic loading was reported to be exerted via a
modified Split Hopkinson Pressure Bar system (SHPB), which used the pulse shaping
technique to yield an almost constant loading rate [150]. This characteristic is often
overlooked in dynamic testing despite being essential to ensure the representativeness
of the results. Indeed, conventional SHPB systems generate square-like pulses whose
loading rate Ṗ tends to infinity, thereby rendering the interpretation of dynamic test
results a very delicate task. Instead, the loading rate is well defined when using the
pulse shaping technique, and one can model the prescribed loading up to breakage
as:

Pt =

{
0 if t < 0

Ṗt if t ≥ 0
. (6.12)

Furthermore, it was found that using the modified SHPB for coupon testing can
actually lead to the specimens showcasing a quasi-equilibrium between the applied
and reaction forces that diminish the inertial effects [150]. This allows for the two
quasi-static expressions σ(r, P) and KI(a, P) to still hold once the loading is dynamic
as per Pt in Eq. (6.12) [151, 152]. On the other hand, the conventional Irwin’s relation
between KIt and Gdyn, t still applies for dynamic conditions and stationary cracks
[143]. As such, the existence of the functions σ(r, Pt) and Gdyn(a, Pt) is ascertained
for coupon tests performed with the modified SHPB system, thus enabling the
implementation of the above proposed DFFM approach to predict failure onset.

Hereafter, the oncoming sections will particularize the DFFM approach to the
two different setups used in the experiments: the Semi-Circular Bend (SCB) and the
Brazilian Disk (BD) test depicted in Figs. 6.3. For the former, both notched (NSCB,
a0 > 0) and unnotched (USCB, a0 = 0) specimens are considered. Thereafter, the
comparison between the DFFM predictions and the dynamic experimental results
is undertaken. It is noteworthy that these setups are commonly studied for rock
specimens under quasi-static loadings [153–157].
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(a) (b)

Fig. 6.3 Geometrical definition of: (a) the SCB and (b) BD specimens.

6.5.1 Semi-Circular Bend test

The SCB test is among the most common procedures for testing rock materials under
bending since the specimens can be directly obtained from drilled cores. As shown
in Fig. 6.3a, four parameters define the geometry of each test, namely the specimen’s
radius R, thickness B and initial crack length a0, in addition to the distance between
the support rollers 2S. On the other hand, the loading is applied through contact on
the curved surface, and can be thus approximated by a concentrated force Pt .

Regardless of whether the SCB specimen under consideration is notched or not,
the most failure-prone region corresponds to its midplane. For instance, in the case
of a straight crack of length a stemming from the flat surface along this plane, KI

can be defined as:
KI (a, P) =

P
BR
√

πaF(a) , (6.13)

where F(a) represents a polynomial shape function derived from Finite Element
analyses. Please notice that a in Eq. (6.13) encompasses the initial crack length a0

plus any subsequent crack growth ∆a when applied to the case in Fig. 6.3a.

Likewise, for an SCB specimen with an initial crack of length a0, the crack
opening stress component along the specimen’s midplane σxx can be approximated
by:

σxx (r, P) =
P

BR

[√
a0

2r
F(a0)+ sxx (r)

]
=

P
BR

Sxx (r) , (6.14)
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where the term
√

a0/2r F(a0) captures the asymptotic stress field in the sur-
roundings of the crack tip in the case of a0 > 0. The stress field far from the crack
is instead governed by the polynomial function sxx (r), which in turn complies with
sxx (r = 0) = 0 and is derived from Finite Element analyses.

The performed Finite Element analyses showed that the SCB presents a monoton-
ically decreasing σxx (r, P) and a monotonically increasing KI (a, P) in both notched
and unnotched configurations. As such, the quasi-static FFM-avg failure force Pf

and critical crack advance ∆a f can be determined through the following system of
two equations: 

Pf =
σCBR∆a f∫
∆a f

0
Sxx (r) dr

Pf =
KICBR

√
∆a f√

π

∫
∆a f

0
(a0 +a) F2(a0 +a) da

. (6.15)

Then, applying Eq. (6.11) to the monotonically increasing in time loading from
Eq. (6.12), one can obtain the DFFM prediction for the dynamic failure force Pt f in
terms of the loading rate Ṗ, which writes as:

Pt f =


Pf +

Ṗτ

2
if Ṗ <

2Pf

τ√
Pf
√

2Ṗτ if Ṗ≥
2Pf

τ

. (6.16)

Therefore, the dynamic failure force Pt f is seen to increase monotonically with Ṗ
from its quasi-static value Pf , although not uniformly: for slow enough loadings, Pt f

grows proportionally to Ṗ; for higher rates instead, Pt f becomes proportional to
√

Ṗ.
In any case, the evolution of Pt f with Ṗ is ensured continuous and smooth all along.
Dividing both sides of Eq. (6.16) by Ṗ, one can obtain the DFFM prediction for the
time to failure t f as follows:

t f =


Pf

Ṗ
+

τ

2
if Ṗ <

2Pf

τ√
Pf

√
2τ

Ṗ
if Ṗ≥

2Pf

τ

. (6.17)
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Just as expected, t f tends to infinity for very slow loadings, it reducing as Ṗ grows.
Eventually, t f turns equal to τ when Ṗ = Ṗ∗= 2Pf /τ and triggers the aforementioned
change in the rate dependence of failure. In what follows, cases where t f > τ will
be referred to as Regime I failure, otherwise it will be referred to as Regime II. The
underlying differences between these two failure regimes reveal evident after the
graphical representations in Fig. 6.4, which illustrate how the non-instantaneous
assessment of the DFFM interacts with the piecewise defined load Pt from Eq. (6.12)
for different loading rates Ṗ.

(a) (b) (c)

Fig. 6.4 Illustration of the non-instantaneous assessment of the DFFM approach for a
dynamic load Pt as in Eq. (6.11) upon failure: (a) in Regime I, (b) in between Regime I and

II, and (c) in Regime II.

6.5.2 Brazilian Disk test

Since the SCB test yields a non-constant distribution of the crack opening stress
component, it is not suitable for characterizing the tensile strength on its own. Instead,
the BD test is commonly used for this purpose given its fairly constant stress field.
Once again, BD specimens are obtained directly from a drilled rock core, these being
characterized by only its radius R and thickness B. Besides, the loading Pt is applied
analogously to that of the SCB (see Fig. 6.3b).

Just as in the SCB case, the midplane is the region most favourable to the
appearance of tensile failure. Except from the surroundings of the contact points, the
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crack opening stress component σxx is almost constant and can be approximated as:

σxx(P) =
P

BR

(
1
π

)
. (6.18)

Hence, the homogeneity in the governing stress component renders the energy
condition irrelevant for the determination of the quasi-static failure force Pf according
to FFM-avg, which collapses to a maximum tensile stress criterion and yields:

Pf = σCBRπ . (6.19)

If the BD specimen is dynamically loaded per Pt in Eq. (6.12), the DFFM
predictions for the rate dependence of Pt f and t f remain as in Eqs. (6.16) and (6.17).

6.5.3 Material characterization and comparison with experimen-
tal results

The experimental results here used for comparison with the DFFM predictions
comprise dynamic tests on NSCB [146], USCB [145] and BD [144] specimens.
Given that all these three experimental campaigns were conducted using the same
material and testing technique, the DFFM predictions would ideally correlate all the
test results using a fixed triad {σC, KIC, τ} of properties. Nonetheless, the natural
origin of the rocks and its inhomogeneity introduces certain variability, especially
in what concerns the energy release upon fracture (see e.g. [149]). To account for
the uncertainty, KIC was independently obtained for the NSCB and USCB sets of
experiments, whereas σC and τ were concurrently determined and kept constant for
all three studied cases.

Per the constant crack opening stress distribution in the BD test, the value for
σC was directly obtained from the reported Pf by using Eq. (6.19). For the USCB
tests, the particularization of Eq. (6.15) allows determining KIC from the values
of Pf and σC. On the other hand, the experimental result for Pf in the NSCB
case was not available in [146], it being instead determined through a best-fitting
procedure with the dynamic results. Remarkably, for fixed σC and τ , changes in
KIC mostly manifests as vertical translations of the predicted failure curve, its shape
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(a) (b)

(c) (d)

Fig. 6.5 Illustration of the failure patterns of: (a) USCB with t f = 64.17 µs, (b) USCB with
t f = 40.02 µs, (c) USCB with t f = 31.74 µs, and (d) NSCB with t f = 46.23 µs. Artwork
approximately to scale with respect to figures reported in [145] for the USCBs and [146] for

the NSCB.

barely changing. Therefore, the fitting procedure has very limited impact on the
representativeness of the comparison between predictions and experiments.

For determining the remaining parameter τ , one should first recall its given
physical interpretation, i.e. the minimum time required for microcracks to coalesce
into a single macrocrack. Thereof, for smeared stress concentrations such as the
USCB test, failure patterns can shift from fracture surfaces to damaged regions as Ṗ
grows (see Fig. 6.5). Still, the DFFM proposal from Section 6.4 relies on the energy
released by a sharp crack, thus lacking accuracy to capture diffused damage and
potentially affecting the proper determination of τ . To avoid this, a highly localized
stress concentration can be used instead, e.g. the NSCB test, which showcases the
DFFM-friendly crack-like failure for considerably high loading rates. The use of
only NSCB results for determining τ is therefore deemed more adequate. Changes in
this parameter for fixed σC and KIC result in curves with different slopes but constant
quasi-static predictions, thus being somewhat uncoupled from the aforementioned
determination of KIC.

Now, for each of the three sets of experiments considered, the geometrical
definition and resulting material properties are reported in Table 6.1. Using these,
the comparison between the DFFM and the experimental results is given in Fig. 6.6.
Per the DFFM hypotheses, only the purely dynamic cases reported in the references
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Table 6.1 References, specimen characteristics and material properties used for the compari-
son between DFFM and experiments.

Reference Geometry Dimensions Material properties

BBB RRR 222SSS aaa000 σσσCCC KKKIIICCC τττ

[mm] [mm] [mm] [mm] [MPa] [MPa
√

m] [µs]

[146] NSCB 25 25 27.5 5 12.8 3.2 69.0

[145] USCB 25 25 27.5 − 12.8 2.9 69.0

[144] BD 16 20 − − 12.8 − 69.0

were considered. From these figures, it is evident that DFFM is able to nicely capture
the rate dependence of failure when t f > τ for all three setups, which clearly proves
to be mostly linear.

On the other hand, the agreement between DFFM and experiments is not com-
pletely convincing for loading rates yielding t f < τ: while it is very accurate for
NSCB tests, substantial overshooting is observed in both USCB and BD cases. More-
over, the extent of the difference grows with the loading rate, reaching up to 20% for
the cases here considered. A potential explanation for this growing disagreement can
be found in the aforementioned inadequacy of the DFFM crack-like energy release
as opposed to that of the actual damaged region. As seen in Figs. 6.5 (a) to (c), the
larger the loading rate, the wider the damaged region in the USCB specimen is. As
such, the energy released per unit length of crack onset is noticeably underestimated
if a sharp crack is assumed, thus resulting in the overprediction of the failure load.
Indeed, if a larger effective energy release per unit crack growth was instead con-
sidered, i.e. a larger K2

I , the failure load predictions would be reduced for a given
loading rate, thus better approximating the experimental results.

Lastly, the rate dependence of failure is jointly illustrated for the three considered
setups in Fig. 6.6d. Therein, the apparent strengthening ratio Pt f /Pf is shown as
a function of the time to failure t f normalized by τ . This figure suggests that the
dynamic dependence of failure is mostly independent of the specimen geometry
since all three clouds of points collapse almost perfectly. This result supports the
interpretation of τ as a fixed material property, yet much more comprehensive
experimental data is required to determine the limitations of this statement.

To conclude, it is natural to wonder how good the approaches presented in
Section 6.3 would perform for the cases at hand. For instance, both DFFM and IT
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(a) (b)

(c) (d)

Fig. 6.6 Comparison of the DFFM predictions with dynamic experimental results for: (a)
NSCB specimens [146], (b) USCB specimens [145], (c) BD specimens [144], and (d) all

three geometries.

criteria yield identical predictions upon the constant stress BD setup. For the SCBs
instead, the properties in Table 6.1 would result in the IT’s characteristic length
d being larger than the specimen itself, hence rendering the approach inadequate.
Regarding the DTCD and the "Classical dynamic approaches", the arbitrariness in
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the strength/toughness rate dependency functions renders their accuracy a result of
proper fitting rather than of model representativeness. Lastly, the DQFM approach
was found to only be applicable to certain combinations of the specimen geometry
and material properties, otherwise yielding complex values for the failure load.
Likewise, the crack growth quanta ∆a resulted larger than the specimens themselves
if the properties in Table 6.1 are used.

6.6 Conclusions

The extension to dynamic loadings of the Finite Fracture Mechanics approach for
crack nucleation has been undertaken. The key point of the present proposal was to
regard crack initiation as a process that unfolds over a certain material-dependent
time lapse. To account for this, the non-local stress and energy conditions of the
quasi-static approach are modified to reproduce the non-instantaneous nature of the
problem. Therefore, the proposed dynamic criterion retains the ability of Finite
Fracture Mechanics to interplay with the structure at hand, revealing more versatile
than previous proposals.

The accuracy of the proposed approach was evaluated by comparing the resul-
tant failure predictions against three different sets of experiments available in the
literature. These empirical studies were all conducted on the same material and
with similar techniques, thus allowing cross-referencing. Furthermore, the tested
geometries showcased very different stress distributions, namely constant profiles,
non-singular stress concentrations, and singular stress intensifications. In all three
cases, the Dynamic Finite Fracture Mechanics approach was proven to reproduce
the experimental results reasonably well. At this point, four main conclusions can be
drawn:

• Dynamic Finite Fracture Mechanics predicts two crack nucleation regimes
separated by a threshold in the time to fracture. This feature is supported
by the empirical evidence on rock specimens: for slow loadings failure is
observed to develop as a single crack; whereas for fast loading failure diffuses
and multiple cracks are formed.
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• For low loading rates yielding a single macrocrack, the rate dependence of
failure is captured accurately by the Dynamic Finite Fracture Mechanics
approach regardless of the geometry considered.

• At higher loading rates however, the merge of microcracks into a single
macrocrack is not complete. This leads to two distinct scenarios depending
on the type of stress concentration: for geometries with highly localized
stress raisers, failure remains pretty much fracture-like and the Dynamic
Finite Fracture Mechanics modelling hypotheses remain mostly valid; for
plain geometries instead, the diffusion of failure is more pronounced, thus
undermining the validity of a crack-like failure profile. As such, Dynamic
Finite Fracture Mechanics’ failure load predictions in the former cases resulted
considerably more accurate than in the latter.

• The experimental results suggest that the coalescence period does not show
a significant dependence on the specimen geometry or the pre-crack stress
distribution. These observations bolster the hypothesis that the coalescence
period is primarily dependent on the material, at least in the event of self-
similar dynamic loading profiles.

Although the Dynamic Finite Fracture Mechanics approach proposed in this
study is promising, there are still some unresolved issues that require further study.
For example, the current formulation is not sufficiently developed to adequately
manage the interaction between static prestressing and dynamic loads, being only
applicable to either quasi-static or dynamic scenarios. Similarly, the coalescence
period needs to be further characterized for various materials, loading profiles, and
specimen geometries. This would provide a more comprehensive understanding
of its dependency on the setup characteristics. Eventually, further work is needed
towards addressing the generalization to more extreme loading cases where both the
stress field and the energy release present an explicit dependence with t besides that
of Σt , i.e. when these get defined as σ (x, Σt , t) and Gdyn (a, Σt , t).



Chapter 7

Conclusions and Further Research

7.1 Conclusions

The modelling of dynamic fracture by means of the Phase Field fracture model and
the Finite Fracture Mechanics criterion has been extensively covered throughout
this thesis. Exploiting the complementary nature of the two considered approaches,
the understanding of this complex and rather important aspect of failure has been
faced twofold, from both a theoretically rigorous and detailed perspective, as well as
from an engineering and industrial-like standpoint. Overall, a bottom-up approach
to each framework has been followed, always starting from the well-established
quasi-static formulations to then progressively adding layers of complexity until
eventually reaching the coveted dynamic context.

Particularly for the Phase Field fracture model, its evolution from the inceptual
variational revisitation of brittle fracture up to the modern generalized formulation
has been covered in the first place so as to provide a solid comprehension of the
approach background. Its theoretical framework and weak form were then developed,
also providing detailed insights into the resulting modelling degrees of freedom and
the peculiarities of the most popular choices of the many available. The great
potential of the approach to deal with fracture initiation under multiaxial stress states
was ascertained using a simple yet exhaustive benchmark setup: the crack onset from
a circular hole under remote biaxial loading. Taking Dugdale’s Cohesive Zone Model
as a reference for validation, it was observed that the Phase Field fracture model
resulted accurate when coupled with the No-Tension energy decomposition and the
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AT1 modelling functions. Once conveyed the basic paradigm of Phase Field fracture
modelling, the approach was taken to a dynamic context by virtue of Hamilton’s
principle for irreversible evolutions. The main technical aspects concerning its
efficient numerical implementation in a Finite Element environment by using an
explicit time integrator were covered. The resulting formulation has been exploited to
study the post-punch fragmentation of a biaxially pre-strained glass pane, providing
clear evidence of the approach capability to inherently deal with highly-complex
crack patterns and dynamic evolutions. Eventually, the quasi-static and dynamic
variants of the Phase Field fracture model are juxtaposed in the case of unstable
fracture under quasi-static loadings. Through several bespoke case studies that
include analytical, numerical and experimental results, it was vehemently proven that
quasi-static models of fracture are neither suitable nor safe for reproducing unstable
crack growth. As such, the ultimate conclusion from this first thematic block is
that any fracturing event is essentially dynamic and that quasi-static simplifications
should be carefully applied.

On the other hand, the Finite Fracture Mechanics approach to crack nucleation
was used in the aim of providing a cost-effective and robust tool for predicting
the happening of failure. Once again, the framework potential to predict crack
nucleation was first investigated under quasi-static loading conditions, whereof two
scenarios were considered. The first consisted in an infinite uniaxially tensioned
domain containing a single spherical void of varying radius, and the Finite Fracture
Mechanics was proven to yield reasonable predictions of the size-dependent failure
load in comparison with Dugdale’s Cohesive Zone Model, as well as with relevant
experimental results and atomistic simulations. Furthermore, the considerably more
complex study of failure onset from a circular hole under remote biaxial loading
was resumed, and the resultant predictions showed fair agreement with those previ-
ously obtained. Moving towards the study of failure onset under dynamic loadings,
the conventional Finite Fracture Mechanics formulation first required introducing
modifications in order to account for the now-significant loading rate. To achieve
this in an ordered manner, a high-level discussion on the requirements of an ideal
dynamic fracture criterion was first presented and then used for evaluating relevant
dynamic failure criteria proposed in the literature. Based on the resultant insights,
a proposal for the Dynamic Finite Fracture Mechanics coupled criterion was made
by introducing a non-instantaneous assessment in the spirit of the Incubation Time
concept. The novel approach was then particularized to certain case studies, and the
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subsequent comparison with results from the corresponding dynamic experiments
yielded satisfactory agreement.

Of course, albeit it has been attempted that the conducted analyses were detailed
and exhaustive, the presented research does not embody a definitive answer to
the undertaken task. Instead, it is seen as a solid contribution towards the better
comprehension of the complex phenomenon of dynamic fracture and its modelling.
In this regard, some of the unresolved questions that are reckoned to be of utter
importance are shortlisted in the final section.

7.2 Further Research

In view of the insights acquired during the development of the present thesis, the
following still-to-be-addressed aspects have been identified as the most important
ones:

• The use of explicit time integrators in the dynamic Phase Field fracture model,
although computationally efficient, precludes the use of alternate minimization
techniques for solving the staggered variational principles. Hence, whether the
obtained results are a good approximation of the actual monolithic solution
is actually unknown, and thus a proper analysis on this regard should be
conducted. For instance, this can be done by comparing the results from
the explicit time integrator against those of an implicit time integrator with
alternate minimization. In any case, it is highlighted that per the learnings in
Chapter 4 regarding the robustness of the irreversibility condition, very refined
temporal resolution is a must for ensuring the representativeness of the fracture
predictions, regardless of the stability of the time integrator.

• The experimental validation of the dynamic Phase Field fracture model must
be taken considerably further in subsequent studies, for example by including
quantitative comparisons, more detailed observations and richer sets of data.
Likewise, the use of better comprehended materials behaviour-wise can also
improve the quality of the experimental validation. However, it is here reck-
oned that the best quality information for empirically validating the dynamic
fracture models comes from the use of high-speed cameras to visually capture
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(and extract in situ information of) the actual crack onset and propagation
events.

• The proposed formulation of the Dynamic Finite Fracture Mechanics criterion
is based upon some strong assumptions on how the dynamic loading relates
to the stress field and the release of energy upon fracture. Of course, it
should be investigated how to generalize the formulation by dropping such
assumptions. Likewise, it remains pending the task of figuring out how to
efficiently implement the Finite Fracture Mechanics approach, in both quasi-
static and dynamic variants, for the cases where the prospective crack paths
are not well defined.

• Just as mentioned above, more comprehensive experimental validation is
required in order to further develop the Dynamic Finite Fracture Mechanics
approach. In particular, this should cover specimens of different shapes, sizes
and materials so as to determine the dependency of the various parameters used
(or lack thereof). In this regard, using the modified Split Hopkinson Pressure
Bar with the pulse shaping technique is highly recommended for it allows to
trim the actual dynamic loading profile exerted on the samples, which is an
aspect found to be often overlooked in dynamic experimental campaigns.

While the discussions and contents enclosed in this thesis are fundamentally
theoretical, they serve a critical purpose: to assess, develop and refine the modelling
tools necessary for the resolution of real-world problems. The knowledge generated
herein is thereby not an end in itself, but a leap towards practical applications.
Hence, further research activities should be devoted to ensure that these theoretical
advancements do get translated into tangible, real-world solutions from which society
can benefit.

7.3 Conclusioni (ITA)

La modellazione della frattura dinamica attraverso il modello di frattura del Campo
di Fase e il criterio della Meccanica della Frattura Finita è stata ampiamente trattata
in questa tesi. Sfruttando la natura complementare dei due approcci considerati,
la comprensione di questo aspetto complesso e piuttosto importante della rottura
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dei materiali è stata affrontata in due modi, sia da una prospettiva teoricamente
rigorosa e dettagliata, sia da un punto di vista ingegneristico e industriale. Nel
complesso, si è seguito un approccio dal basso verso l’alto per ciascuna metodologia,
partendo sempre dalle formulazioni quasi-statiche ben consolidate per poi aggiungere
progressivamente strati di complessità fino a raggiungere infine il contesto dinamico.

In particolare per il modello di frattura con Campo di Fase, la sua evoluzione sin
dalla rivisitazione variazionale iniziale della frattura fragile fino alla formulazione
generalizzata moderna è stata descritta in primis al fine di fornire una solida com-
prensione del background dell’approccio. Sono stati quindi sviluppati il suo quadro
teorico e la forma debole, fornendo anche spunti dettagliati sui gradi di libertà risul-
tanti nella modellazione e le particolari scelte più popolari tra le tante disponibili.
Il grande potenziale dell’approccio per affrontare l’innesco della frattura sotto stati
di stress multiassiali è stato accertato utilizzando un semplice ma esaustivo test di
confronto, ossia analizzando la rottura da un foro circolare sotto carico biassiale
remoto. Prendendo come riferimento il Modello di Zona Coesiva di Dugdale, si è
osservato che il modello di frattura con Campo di Fase risulta accurato quando si
utilizza la decomposizione dell’energia No-Tension assieme alle funzioni di model-
lazione AT1. Una volta descritto il paradigma di base della modellazione della
frattura con Campo di Fase, l’approccio è stato applicato in un contesto dinamico
in virtù del principio di Hamilton per le evoluzioni irreversibili. Sono stati coperti i
principali aspetti tecnici riguardanti la sua efficiente implementazione numerica in
base al metodo degli Elementi Finiti utilizzando un integratore temporale esplicito.
La formulazione risultante è stata poi utilizzata per studiare la frammentazione post-
punch di un pannello in vetro biassialmente pre-caricato, fornendo chiare prove della
capacità dell’approccio di affrontare intrinsecamente pattern di fessure altamente
complessi ed anche evoluzioni dinamiche. Infine, entrambi le varianti quasi-statiche
e dinamiche del modello di frattura con Campo di Fase sono giustapposte nel caso
di frattura instabile sotto carichi quasi-statici. Attraverso diversi studi dedicati che
includono risultati analitici, numerici e sperimentali, è stato dimostrato con forza
che i modelli quasi-statici di frattura non sono né adatti né sicuri per riprodurre
lo sviluppo instabile della frattura. In conclusione, a seguito dei risultati ottenuti
possiamo affermare che qualsiasi evento di frattura è essenzialmente dinamico e che
le semplificazioni quasi-statiche dovrebbero essere applicate con somma cura.

D’altra parte, l’approccio della Meccanica della Frattura Finita all’innesco della
rottura è stato utilizzato con l’obiettivo di fornire uno strumento robusto e veloce
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per prevedere l’insorgenza della frattura. Ancora una volta, il potenziale del criterio
per prevedere l’innesco della rottura è stato prima investigato sotto condizioni di
carico quasi-statico, considerando due scenari diversi. Il primo consisteva in un
dominio infinito sottoposto a tensione uniassiale contenente un singolo poro sferico
di raggio variabile, e per il quale si è dimostrato che la Meccanica della Frattura Finita
fornisce previsioni ragionevoli del carico di rottura dipendente dalla dimensione del
poro, e che risultano in accordo con quelle ottenute attraverso il Modello di Zona
Coesiva di Dugdale o simulazioni atomiche, così come coi risultati sperimentali.
Inoltre, lo studio considerevolmente più complesso dell’innesco di rottura da un foro
circolare sotto carico biassiale remoto è stato ripreso, e le previsioni risultanti hanno
mostrato di essere in accordo con quelle precedentemente ottenute. Muovendosi
verso lo studio dell’innesco della rottura sotto carichi dinamici, la formulazione
convenzionale della Meccanica della Frattura Finita è stata prima modificata per
tener conto dell’influenza dell’ora significativa velocità di carico. Per raggiungere
questo obbiettivo in modo strutturato, si è prima condotta una discussione di alto
livello sui requisiti di un criterio di frattura dinamica ideale, per valutare i criteri
di rottura dinamica più rilevanti proposti in letteratura. Sulla base delle intuizioni
risultanti, è stato proposto un criterio accoppiato della Meccanica della Frattura
Finita Dinamica attraverso una valutazione non istantanea, nello spirito del concetto
di Tempo di Incubazione. Il nuovo approccio è stato poi particolarizzato per alcuni
casi di studio, e il successivo confronto con i risultati degli esperimenti dinamici
corrispondenti ha dimostrato un accordo soddisfacente.

Naturalmente, sebbene siano state condotte analisi dettagliate ed esaustive, la
ricerca qui presentata non costituisce una risposta definitiva al problema analizzato.
Invece, essa è vista come un solido contributo verso una migliore comprensione del
complesso fenomeno della frattura dinamica e della sua modellazione.

7.4 Conclusiones (ESP)

El modelado de la fractura dinámica mediante el modelo de fractura con Campo
de Fase y el criterio de rotura de la Mecánica de la Fractura Finita se ha cubierto
en detalle a lo largo de esta tesis. Aprovechando la naturaleza complementaria
de los dos enfoques considerados, se ha abordado la comprensión de este aspecto
complejo y bastante importante del fallo en dos modos diferentes, tanto desde
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una perspectiva teóricamente rigurosa y detallada, como desde un punto de vista
ingenieril e industrial. En general, para cada técnica de modelado se ha seguido un
enfoque ascendente, comenzando siempre desde las formulaciones cuasi-estáticas,
las cuales están bien establecidas, para luego ir progresivamente añadiendo capas de
complejidad hasta finalmente llegar al caso dinámico.

Particularmente para el modelo de fractura con Campo de Fase, se ha cubierto
en primer lugar su evolución desde la revisión variacional de la fractura frágil
primigenia hasta la formulación generalizada moderna en modo de proporcionar una
comprensión sólida de la metodología. A continuación, se ha desarrollado tanto el
marco teórico y como su forma débil, proporcionando también ideas detalladas sobre
los grados de libertad de modelado resultantes y las particularidades de las opciones
más populares de entre las muchas disponibles. El gran potencial del enfoque para
tratar la iniciación de la fractura bajo estados de tensión multiaxial se ha constatado
a través de un estudio de referencia simple pero exhaustivo: la nucleación de grieta
a partir de un agujero circular bajo una carga biaxial remota. Tomando el Modelo
de Zona Cohesiva de Dugdale como referencia, se ha observado que el modelo de
fractura con Campo de Fase resulta preciso cuando se acoplan la descomposición
de energía No-Tensión y las funciones AT1. Después de desarrollar el paradigma
cuasi-estático del modelado de fractura con Campo de Fase, esta metodología se ha
llevado al contexto dinámico en virtud del principio de Hamilton para evoluciones
irreversibles. Además, se han cubierto en detalle los principales aspectos técnicos
relacionados con su eficiente implementación numérica utilizando el método de los
Elementos Finitos y un integrador de tiempo explícito. La formulación resultante se
ha utilizado para estudiar la fragmentación post-punzonado de un panel de vidrio
pre-cargado biaxialmente, cuyos resultados han evidenciado claramente la capacidad
del enfoque para tratar intrínsecamente tanto patrones de grietas complejos como
evoluciones dinámicas. Finalmente, las variantes cuasi-estáticas y dinámicas del
modelo de fractura con Campo de Fase se han yuxtapuesto para casos de fractura
inestable y cargas cuasi-estáticas. En particular, se ha demostrado vehementemente
que los modelos cuasi-estáticos de fractura no son ni adecuados ni seguros para
reproducir el crecimiento inestable de grietas a través de varios estudios de caso,
los cuales incluyen resultados analíticos, numéricos y experimentales. Como tal,
de este primer bloque temático se puede concluir que cualquier evento de rotura es
esencialmente dinámico, y que por tanto las simplificaciones cuasi-estáticas deben
siempre aplicarse con sumo cuidado.
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Por otro lado, el enfoque de la Mecánica de Fractura Finita para la nucleación
de grietas se ha utilizado con el objetivo de proporcionar una herramienta robusta y
rentable para predecir la ocurrencia de fallos. Una vez más, el potencial del marco
para predecir la nucleación de grietas bajo condiciones de carga cuasi-estáticas se ha
desarrollado en primer lugar, habiéndose considerado dos escenarios diferentes. En
el primero se ha estudiado un dominio infinito bajo tracción uniaxial que contiene un
solo poro esférico de radio variable, y para el cual se ha demostrado que la Mecánica
de Fractura Finita proporciona predicciones razonables del efecto del radio en la
carga de fallo en comparación con el Modelo de Zona Cohesiva de Dugdale, así
como con resultados experimentales relevantes y simulaciones atómicas. Además,
el estudio considerablemente más complejo del inicio del rotura desde un agujero
circular bajo carga biaxial remota se ha retomado en este segundo bloque, y las
predicciones de la Mecánica de la Fractura Finita se han mostrado en consonancia
con las obtenidas previamente. Pasando al estudio del inicio del fallo bajo cargas
dinámicas, la formulación convencional de la Mecánica de Fractura Finita ha sido
modificada para tener en cuenta la ahora significativa velocidad de carga. Para lograr
esto de forma ordenada, primero se ha presentado una discusión de alto nivel sobre
los requisitos que debe cumplir un criterio de fractura dinámica ideal, a partir de
la cual se han evaluado los criterios de fallo dinámico propuestos en la literatura.
Basándose en las conclusiones obtenidas, se ha presentado una propuesta para el
criterio de la Mecánica de Fractura Finita Dinámica basada en una evaluación no
instantánea, siguiendo el concepto del Tiempo de Incubación. Finalmente, la nueva
formulación se ha validado mediante la particularización a diversos estudios de
caso, en los que la correlación entre predicciones y resultados experimentales resulta
satisfactoria.

Por supuesto, aunque se ha intentado que los análisis realizados fueran detallados
y exhaustivos, la investigación presentada no encarna la respuesta definitiva a la tarea
emprendida. En cambio, esta sí que se ve como una sólida contribución hacia una
mejor comprensión del complejo fenómeno de la fractura dinámica y su modelado.
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Appendix A

Resolution kernels for the quasi-static
and dynamic Phase Field fracture
models

This appendix contains the algorithms for the resolution kernels of the two main
variants of the Phase Field fracture model used, namely the quasi-static (Algorithm
1) and dynamic (Algorithm 2) approaches. These follow a notation coherent with the
rest of chapters, and so the fields in italic denote mathematical forms, i.e. expressions
that have not been discretized in the Finite Element context. On the other hand,
magnitudes in Sans Serif indicate already discretized fields, of which matrices and
vectors are represented by uppercase and lowercase letters, respectively. In any case,
it is to be noted that the different mathematical forms must be discretized for their
Finite Element implementation, yet the form notation has been retained wherever
possible for it is more generic.

Regarding the actual numerical implementation of the algorithms using FeniCSx,
some relevant minimum working examples for the Phase Field fracture models can
be found in NEWFRAC’s specific repository [158], to which the Author of this thesis
has contributed extensively.
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Algorithm 1 Resolution kernel for the quasi-static Phase Field fracture model using
a staggered approach and an Alternate Minimization scheme

Initialize {t, ∆t, i, Nfails, u0, α0}← {t0, ∆t0, 1, 0, ut0 , αt0}
while ti ≤ T and Nfails ≤ Nfails_max do

update Dirichlet BCs on u and α to ti
set { j, converged, ui0, αi0}← {0, False, ui−1, αi−1}
while j ≤ Niter_max and converged is False do

update j← j+1
solve for ui j with α = αi j−1 fixed
solve for αi j with u = ui j fixed
assess converged for

(
ui j, αi j

)
end while
if converged is True then

assign {ui, αi}← {ui j, αi j}
determine ∆t
perform postprocessing
update ti+1← ti +∆t
update i← i+1
set Nfails← 0

else
set ti← τ with τ ∈ (ti−1, ti)
update Nfails← Nfails +1

end if
end while
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Algorithm 2 Resolution kernel for the dynamic Phase Field fracture model problem
using a staggered approach and an explicit Newmark’s β -method time integrator

Initialize {t, i, u0, u̇0, ü0, α0}← {t0, 1, ut0 , u̇t0 , üt0 ,αt0}
determine ∆t according to Courant–Friedrichs–Lewy condition
compute the consistent mass matrix M

compute the lumped mass matrix: ML← (M1) I

while ti+1 ≤ T do
update BCs on u, u̇, ü and α to ti+1

propagate u to ti+1: ui+1← ui +∆t u̇i +∆t2 üi/2
impose restricted DoFs of ui+1 per the Dirichlet BCs on u at ti+1

solve for αi+1 with u = ui+1 fixed
compute the motion stiffness matrix Ku(αi+1)

compute the vector of nodal forces Fi+1←−Ku(αi+1)di+1

propagate ü to ti+1: ai+1←M−1
L Fi+1

correct restricted DoFs of üi+1 per the Dirichlet BCs on ü at ti+1

propagate u̇ to ti+1: u̇i+1← u̇i +∆t(üi+1 + üi)/2
correct restricted DoFs of u̇i+1 per the Dirichlet BCs on u̇ at ti+1

update ti+1← ti +∆t
update i← i+1

end while



Appendix B

The Virtual Extensometer: an
effective optical technique for in situ
measuring specimen elongations

This appendix describes the Virtual Extensometer (VE) technique used in Chapter 4
to measure specimen elongations in situ. In particular, this is a digital-optical tool
that exploits well-established object recognition techniques to track the position of
two differently coloured markers within the plane of measure. Since each marker
moves in unison with one end of the gauge region throughout the test, their relative
displacements provide a reliable measure over time of the specimen’s elongation.
Therefore, this technique mimics a conventional extensometer while not requiring any
physical contact with the specimen, since the sampling points are optically tracked.
This characteristic renders it particularly beneficial for testing setups in which the
space surrounding the specimen is limited (see e.g. Fig. 4.2). Furthermore, compared
to other conventional in situ measuring techniques, the VE proves more cost effective
than strain gauges and requires less pre- and post-processing than the also optical
Digital Image Correlation techniques. Moreover, the VE can also be easily upscaled
to yield multiple measures by increasing the number of optical markers, although
this appendix will focus on the use of just two markers placed along the specimen’s
length. In what follows, the VE working principles will be thoroughly described,
including an overview of the colour-based object recognition technique on which it
relies and a discussion on some technical aspects of its implementation, concluding
the appendix with a quantitative validation of the methodology.
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Fig. B.1 Illustration of the Virtual Extensometer’s logical flowchart.
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The logical flowchart behind the VE’s measure of the specimen elongation over
time is illustrated in Fig. B.1. Given that this particular optical approach relies on the
recognition of coloured markers, the actual test is conducted under bright indirect
lighting and against a matte black background to minimize unwanted reflections and
distortions. Similar to other digital-image-based measuring techniques, the evolution
of the specimen over time is video-recorded within the plane of measure. This is done
with a digital camera, which besides the lens set and other accessory components,
essentially comprises an optical sensor with an array of m×n sensels. Each of these
electro-optical components is able to encode the characteristics of the incident light
in a triad of discrete numerical values, mostly often corresponding to the intensity of
the three primary additive colours, i.e. Red, Green and Blue (RGB). At every instant
in which the sensor is sampled1, the RGB triplets determined by each of the sensels
are assembled into an array ARGB of dimensions m×n [×3], the so-called raster map,
which numerically encodes the tessellated sampling of the scene as projected onto
the sensor2. When recording a digital video, this sampling and encoding process is
performed at each time frame, hence generating a sequence in time of raster maps.
As such, a digital video essentially discretizes in space, colour and time a planar
projection of the recorded scene, encoding this information in a sequence of arrays
of digits. This discretization is then exploited by the VE’s digital image processing
module, which takes ARGB as an input, identifies the optical markers through digital
image processing, and outputs the corresponding barycentre positions. In particular,
this core module was implemented on Python using the open source computer vision
library OpenCV [159].

Therefore, the VE’s cornerstone lies in the digital image processing module that
enables the recognition of which pixels within ARGB correspond to one of the two
optical markers. Ideally, each marker would showcase a perfectly uniform colour3

that is unique in the recorded scene, so that only the pixels belonging to a specific
marker would display the corresponding RGB triplets. Nonetheless, this procedure

1Please notice that many commercially available sensors feature a rolling shutter, which does not
read all sensels simultaneously but quickly scans across them. While their use is admissible for scenes
with slowly-moving objects such as the one here at hand, a global shutter is required for applications
with fast-moving objects.

2Raster maps decode into rasterized images, which are a "mosaic" of m×n "tiles" (or pixels) in
which the colour of the i j-th pixel is dictated by the RGB triplet stored in the i j-th component of
ARGB.

3The term colour refers to the visual perception of electromagnetic radiation, which can be broken
down into different perceived properties such as hue, saturation, and brightness.
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proves too rigid for real-life images, since even apparently homogeneous colouring
is hardly ever so, as it can be seen when analysing Fig. B.2a in detail. As such, a
robust marker recognition procedure involves comparing pixels against a range of
colours that can be attributed to the markers, allowing it to tolerate moderate lighting
inhomogeneities and slight colour shifts, among other distortions occurring when
video-recording actual experiments. However, defining these sought after colour
subspaces in RGB coordinates is challenging because any change in each of the three
intensity channels simultaneously affects the hue, saturation, and brightness of the
colours (see Figs. B.2b to B.2d).

(a) (b) (c) (d)

Fig. B.2 Graphical representation of: (a) the rasterized image of a real-life experiment with
the optical markers; and the corresponding (b) red, (c) green, and (d) blue intensity channels.

In fact, the conventional 24-bit RGB colour space (8-bits per pixel and channel)
can be graphically depicted as a three-dimensional Cartesian-like space in Fig. B.3a,
with the three orthogonal axes representing the pure red, green, and blue intensity
channels. Thus, the greyscale lies along the cube diagonal from [0, 0, 0] (black)
to [255, 255, 255] (white), while fully-saturated colours are located on the cube
edges that do not intersect with this diagonal. Hence, the saturation of a colour
in the RGB space is in some sense determined by how close it is to the greyscale
diagonal, the brightness results from how close a colour is to white, and the hue
mainly changes as the colour revolves around the greyscale diagonal. Taking this into
consideration, the tridimensional colour space can be instead defined as a cylindrical-
like coordinate system in which the hoop, radial and height coordinates determine
the hue, saturation and brightness channels, respectively. In this way, apparent
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colour shifts due to lighting inhomogeneities or reflections would primarily affect the
saturation and brightness channels, while the hue channel would expectedly remain
unaffected. Therefore, the recognition of optical markers under real-life conditions
is considerably facilitated. Various colour spaces that meet these characteristics
are widespread available, such as Hue-Saturation-Value (HSV) or Hue-Saturation-
Lightness (HSL), with the former being the one here used. Provided the 24-bit pixel
encoding, both the saturation and brightness channels take integer values in the range
[0, 255]. On the other hand, the hue channel often takes integer values corresponding
to the polar angle in degrees, and so defined within the range [0, 360] in principle.
Nonetheless, such a range exceeds the 256 integers achievable by 8-bits encoding,
so that some libraries (such as OpenCV) actually half such range to [0, 179], as
illustrated in Fig. B.3b. Still, OpenCV allows hue values over 179 (and up to 255)
by treating them as if they were subtracted by 180, and so the hue value of 180 in
Fig. B.3b is actually equivalent to a hue of 0.

(a) (b)

Fig. B.3 Illustration of the (a) Red-Green-Blue and (b) Hue-Saturation-Value colour spaces
using 24-bit encoding per pixel.

The advantages of using the HSV colour space for marker recognition become
evident after examining Fig. B.4, which separately illustrates the hue, saturation,
and brightness channels corresponding to the rasterized image in Fig. B.2a. In
these figures, it can be observed that only the pixels corresponding to the markers
display relatively high values of both saturation and brightness. Likewise, a detailed
analysis of Fig. B.4a reveals that the green-ish and red-ish coloured markers present
quasi-homogeneous hue values approximately equal to 82 (green/teal hue) and 6 (red
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hue), respectively. Therefore, the green-ish (red-ish) marker can be easily recognized
by searching for pixels with an HSV triplet that has a hue channel close to 82 (6)
and displays sufficiently high values of both saturation and brightness. Thereafter,
the condition of each pixel concerning their belonging to a marker is stored in an
array ABool of m× n Boolean values aBool

i j , which is also referred to as a Boolean
mask.

(a) (b) (c)

Fig. B.4 Separate graphical representation of (a) hue, (b) saturation, and (c) brightness
channels of the rasterized image in Fig. B.2a after its conversion to the HSV colour space.

(a) (b) (c)

Fig. B.5 Graphical representation of: the Boolean masks corresponding to (a) the green-ish
(ABool|Green), and (b) the red-ish (ABool|Red) markers from Fig. B.2a; and (c) superimposition

of the recognized marker contours over the original image.
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Using the image in Fig. B.2a as an example, there can be assumed that any pixel
with an HSV triplet within [55,55,100] and [90,255,255] belongs to the greenish
marker, while any pixel within [0,100,100] and [15,255,255] belongs to the reddish
marker (see Fig. B.3b). In such a case, one obtains the two Boolean masks ABool

represented in Fig. B.5a and B.5b, where white (black) pixels represent True (False)
values. Notice that, even though these HSV ranges are broader than strictly necessary,
the approach proves robust enough to accurately identify the location of each of the
two markers, as clearly shown in Fig. B.5c.

At this point, each of the obtained Boolean masks contains the spatial distribution
of pixels that belong to the corresponding marker, so that leveraging the fact that
each pixel represents an in-plane spatial element of constant size, one can determine
the position of each marker’s barycentre within the raster map (ic, jc) as:

(ic, jc) =
∑

m
i=1 ∑

n
j=1 (i, j) aBool

i j

∑
m
i=1 ∑

n
j=1 aBool

i j
, (B.1)

which is a reliable estimate of the marker position within the raster map for it
relies on the aggregation of many individual measures. In fact, neither ic nor jc are
integers any longer but quantized natural numbers, with their quanta being equal to
1/∑

m
i=1 ∑

n
j=1 aBool

i j . Therefore, the larger the marker is in relation to the pixel size,
the higher the resolution of the VE’s barycentre measurements. For a digital video
with N frames recorded at the instants t = tk | k ∈ [1, N], repeating this entire marker
recognition process for every frame results in the discrete temporal sequence of the
in-plane position of both marker barycentres, i.e. (ic, jc) |Green, tk and (ic, jc) |Red, tk .
After post-processing these sequences, one can then determine the discrete evolution
over time of the in-plane distance dtk (in pixels) between the barycentres of the Green
and Red optical markers as:

dpx, tk =

√∣∣∣(ic, jc)Green, tk− (ic, jc)Red, tk

∣∣∣2 , (B.2)

which can easily be used to determine the engineering strain of the gauge length
at each sampled instant εtk as:

εtk =
∆dpx, tk
dpx, t1

=
dpx, tk−dpx, t1

dpx, t1
. (B.3)
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Eventually, given that the initial gauge length in millimetres dmm, t1 is known,
the actual gauge elongation can be derived from the VE measurements as
∆dmm, tk = εtk dmm, t1 .

B.1 Resolution, precision, accuracy and validation of
the Virtual Extensometer technique

Once the VE’s working principles have been thoroughly described, its quantitative
representativeness is now to be empirically proven. To this end, a tensile test was
performed on a plain 3D printed specimen with gauge dimensions 27×16×3.5 mm
while using the same polymeric resin, curing cycle, experimental setup, and testing
conditions as those described in Chapter 4. To avoid the uncontrolled failure of the
specimen, the tensile test was limited up to a ∼ 5% gauge elongation since the resin
manufacturer reports a post-curing failure strain of 6%. As previously mentioned, the
load applied was measured by the machine’s built-in 5 kN load cell, whereas the VE
was used to determine the specimen’s engineering longitudinal strain. In particular,
the sampling frequencies for each of these magnitudes were 10 Hz for the former
and 24 Hz for the latter. Likewise, the test was video-recorded on 4K resolution,
meaning that each frame consisted on 3840×2160 pixels, resulting in an apparent
pixel dimension within the plane of measure on the order of 10−2×10−2 mm2.
At the same time, the optical markers had an area on the order of 100×101 mm2,
hence meaning that O

(
102×103) pixels would belong to each marker. Overall, this

results in a quantization of the barycentre positions of O
(
10−5) pixels, or a VE’s

dimensional resolution on the order of 10−7 mm.

The measurements of the applied force and the marker position throughout the
test are then synchronized and post-processed to determine the evolution over time
of the engineering stress σt and strain εt , as reported in Fig. B.6a. Regarding the
strain results, the minimal scatter shown in Fig. B.6a, wherein no filter has been
used, indicates that the VE technique can produce measurements with relatively high
precision. In particular for the cases at hand, the scatter in the strain measures was
found to yield a measurement precision of O

(
10−4), thus considerably higher than

the aforementioned resolution. This, combined with the specimen’s gauge length
of 27 mm, involves a measuring precision in the specimen elongation on the order
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(a) (b)

Fig. B.6 For a single tensile test up to a 5% elongation: (a) evolution over time of the
engineering stress and strain measurements; and (b) the resulting stress versus strain chart.

of 10−3 mm. Henceforth, the punctual values for σt and εt can be interpolated to
a shared time discretization and plotted against each other as in Fig. B.6b. From
this figure, it is evident that the force and elongation measurements align well with
the post-curing “elastic” Young’s modulus reported in the resin datasheet [160],
i.e. 2.8 GPa. This suggests that the VE technique provides accurate elongation
measurements, thereby offering solid quantitative validation of the self-developed
optical tool. In addition, it is worth noting that, even though the test was stopped
before reaching specimen failure, the obtained results are still consistent with the
resin’s reported post-curing ultimate strength and elongation [160], namely 65 MPa
and 6 %.
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