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Summary

In this thesis we deal with some problems regarding zero-dimensional schemes
related to different areas of Algebraic Geometry. In particular, we draw inspiration
from the investigation of the Jacobian scheme of a plane algebraic curve to define a
new class of schemes, which we call symmetric schemes. We study the algebraic and
geometric properties of these schemes and we use them to define some new varieties
parameterising symmetric and partially symmetric tensors. Thanks to these new
varieties we recover some already known results about tensors and we are able
to prove some generalisations of them. Finally, we study the Hilbert functions
of zero-dimensional reduced schemes lying on Veronese surfaces and we use our
characterisation to classify the complete intersection zero-dimensional schemes lying
on Veronese surfaces and rational normal curves.
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Introduction

In the wide panorama of Algebraic Geometry, a key role is played by Scheme
Theory and a very noteworthy class of schemes is the one of zero-dimensional
schemes. Indeed, apart from their intrinsic interest, zero-dimensional schemes de-
serve a particular and careful consideration in light of their several interactions with
other fields of Algebraic Geometry. For instance:

i) many problems concerning secant varieties of projective varieties can be trans-
lated, via Apolarity Theory, in problems concerning zero-dimensional schemes;
see [44] and [66] for more details about this topic;

ii) some intensely studied topics regarding plane algebraic curves, such as free-
ness and computation of Tjurina and Milnor numbers, are strictly related to
the analysis of Jacobian schemes, which are zero-dimensional schemes encod-
ing all the information about the singularities of the curve; see [82] and [104]
for more details on free curves and [8] for more details on computations of
Tjurina and Milnor numbers;

iii) zero-dimensional schemes are the constitutive elements of Hilbert schemes of
points, a widely studied branch of Algebraic Geometry; see [72] and [80] for
more details on Hilbert schemes.

Zero-dimensional schemes allow establishing deeper connections between these three
topics; see [29], [30], [31], [32] and [80] for connections between i) and iii), and see
[37] and [55] for connections between i) and ii). Also see [48] for a collection of
topics about zero-dimensional schemes.

Beyond Algebraic Geometry, some other research fields where zero-dimensional
schemes find applications are:

• Commutative Algebra, where they can be used, for instance, for a geometrical
approach to Artin algebras and Gorenstein rings; see [81] for a recent state
of the art;

• Code Theory for error-correcting codes associated to 0-dimensional schemes;
see [15] for some application.
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Introduction

A particularly interesting class of zero-dimensional schemes is represented by fat
points, which have long been, and still are, at the core of many Algebraic Geometry
problems. Indeed, they represent a powerful tool for the study of many problems,
such as the computation of the defectivity of some secant varieties and the study
of singular points of projective varieties. These two aspects are among those that
will be addressed in this thesis. Nowadays, our knowledge of fat points is certainly
very rich, but nonetheless, there are still important open problems associated with
them, such as the Gimigliano-Harbourne-Hirschowitz-Segre conjecture and, more
in general, the complete classification of fat point schemes with bad postulation.
See [66] for an exhaustive state of the art on fat points and see [2], [4], [5], [6],
[7], [14], [16], [20], [21] for some applications of fat points to the study of secant
varieties.

The main purpose of this thesis is to generalise fat points by introducing a
new class of zero-dimensional schemes. In the literature, there already are some
examples of such generalisations that broaden, for instance, the definition from
Pn to Pn1 × · · · × Pnk . An important example can be found in [43], where fat
points in multiprojective spaces are used to study a classical problem concerning the
dimension of certain secant varieties of Segre varieties. However, to our knowledge,
there are no generalisations that, given the ambient space, specifically pertain to
the geometry of the scheme itself. This is the type of generalisation that we are
seeking in the thesis. More specifically we state the following question:

Question 1. How can one define a new class of schemes in Pn that generalises the
class of fat points?

There are several motivations behind this question, some more related to the topics
of this thesis.

The first one sprouts from studying the Jacobian scheme of a plane algebraic
curve, which, in recent years, has proven to be of great interest. The two aspects
most carefully considered in connection with the Jacobian scheme are the study
of free divisors and the computation of Tjurina number for isolated singularities;
see [53] for more details on the former, and see [8] for more details on the latter.
However, despite the extensive research on these topics, we are not aware of any
analysis on the geometric structure of the Jacobian scheme. We address this gap
and, carrying on this analysis for ordinary singularities, we note that fat points
play an important role, but are not sophisticated enough to provide a satisfactory
geometric analysis. For this reason, it is necessary to extend the definition of fat
point and consider a broader class of schemes. This concept will be clarified below.

Another motivation comes from the application of algebraic geometry to the
study of tensors. Indeed, zero-dimensional schemes have proven to be very useful
tools for studying many problems in this context. Some important examples in this
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regard can be found in [14], [20], [21], [22], [29], [30], [32], [43], [45], [66], where
zero-dimensional schemes are used to study and generalise secant varieties of some
classical projective varieties, such as Segre, Veronese and Segre-Veronese varieties.
In particular, new classes of zero-dimensional schemes can give new information on
the geometry of tensors. We will show how to get this information via our new
schemes.

This thesis is divided into five chapters. Chapter 1 is totally devoted to present
the mathematical entities which are the objects of our research and to introduce the
tools we will use to describe them. We start by recalling some general definitions
and properties of Hilbert functions and fat points, and by giving a quick overview
on Apolarity Theory and Inverse Systems. After that, we introduce Segre, Veronese
and Segre-Veronese varieties in the setting of Waring-like problems, stressing the
interchangeability of the algebraic, geometrical and tensorial interpretations of these
varieties. We also present the machinery of secant varieties, showing how zero-
dimensional schemes can be used to study the defectivity of secant varieties. In
particular, we briefly describe how the postulation of zero-dimensional schemes can
be studied via the Horace method and the differential Horace method. Finally, we
give some definitions about singularities of plane algebraic curves and we recall the
Jacobian and Milnor schemes related to a plane algebraic curve.

In Chapter 2 we devote our attention to a special type of zero-dimensional
schemes: the Jacobian scheme of a plane algebraic curve. To this purpose we start
by proving an algebraic version for plane curves of the famous Mather-Yau theorem,
stated in [89], which allows us to simplify the next results. After that, we focus
on the Jacobian schemes at ordinary singularities, and this study suggests us the
introduction of a new class of schemes answering Question 1: symmetric schemes.
In Chapter 2 we give the definition only for the projective plane. We also provide
some examples of ordinary singularities whose Tjurina number is strictly less than
the Milnor number, so partially recovering, with more algebraic tools, some results
of [27] and [87].

In Chapter 3 we give the definition of symmetric scheme for any Pn and we point
out how symmetric schemes are a generalisation of fat points. We also introduce
the definition of superfat points and we study the geometry of these new schemes.
Since it is quite difficult to manage symmetric schemes in Pn, after some general
results, we narrow down to symmetric schemes of P2. After showing some of their
properties, we use them to define some new varieties parameterising symmetric
and partially symmetric tensors. We study the defectivity of these varieties and
the shape of the tensor parameterised by them.

In Chapter 4 we prove the good postulation of generic unions of 2-squares in P2.
To do that, we use the Horace method ad we provide two different proofs. The two
proofs only differ in proving the good postulation with respect to curves of even
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degrees, which are the hardest ones: in the first proof we use the differential Horace
method, while in the second one we avoid using the differential Horace method
and we solve the problem giving an argument based on a particular property of
2-squares.

Finally, in Chapter 5 we deal with the classification of reduced zero-dimensional
schemes lying on Veronese varieties. We show how this problem can be considered
as a generalisation of the Cramer-Euler problem and we completely solve it for
the case of Veronese surfaces. The main tool we use to give our classification is
an accurate study of the possible Hilbert functions of reduced points on Veronese
surfaces. We conclude the chapter with a conjecture on complete intersections
lying on Veronese varieties, inspired by the case of Veronese surfaces and by other
experimental evidences.

From Jacobian schemes to symmetric schemes
The reasons that led us to pose Question 1 arose from studying a particular

type of zero-dimensional schemes: the Jacobian scheme of a plane algebraic curve.
However, before bringing up the “more sophisticated” Jacobian schemes, let us
explore the origin of the idea of using zero-dimensional schemes, in particular fat
points, to study the singularities of plane algebraic curves.

The first well-known remark is that if C : F = 0 is a reduced curve of P2 passing
through a point P , then saying that C has a singular point of multiplicity m at P
means that C contains the fat point mP but not the fat point (m+ 1)P . This is a
very rough information, because it does not allow to distinguish different analytical
classes of singularities having the same multiplicity. Nevertheless, there are other
0-dimensional schemes contained in C which could characterise the singularity more
carefully. For example, if P is an An singularity, then P is a nodal-type singularity
if and only if for any ℓ ≥ 1 there is a curvilinear scheme supported at P of length ℓ
contained in C, while P is a cuspidal singularity A2r if and only if for any ℓ ≤ 2r+1
there is a curvilinear scheme supported at P of length ℓ contained in C, and no
curvilinear scheme supported at P of length > 2r + 1 is contained in C (see [68],
Theorem 2.3). So, one possible approach to study a singularity is to understand
which kind of “maximal” zero-dimensional schemes supported at P are contained
in C but, since the curve C is 1-dimensional, it might contain curvilinear schemes
supported at P of arbitrary lengths. We can undertake another way by using X(C),
the Jacobian scheme of C, which is defined as the subscheme of P2 associated to
the Jacobian ideal

J(C) :=
(︄
∂F

∂x0
,
∂F

∂x1
,
∂F

∂x2

)︄
⊆ C[x0, x1, x2].

Indeed, the Jacobian scheme is the zero-dimensional scheme encoding all the infor-
mation, up to analytical equivalence, of all the singularities of C.
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An analogue of the Jacobian algebra C[x0, x1, x2]/J(C) can be defined, mutatis
mutandis, also in the set of analytic geometry and it is a highly studied topic; see
for instance [70] and [71]. As proved by a famous theorem of J. N. Mather and S.
S.-T. Yau in [89], the Jacobian algebras of two analytical germs at O, both having
an isolated singularity at O, are isomorphic as C-algebras if and only if the two
germs are analytically equivalent. Clearly, this result greatly simplifies the study
of singularities up to analytical equivalence. However, it has the disadvantage, in
case one wishes to work in an algebraic context, of requiring a transition from the
algebraic setting to the analytic one. In order to avoid this transition, we prove, in
Chapter 2, an analogue of Mather-Yau Theorem in a purely algebraic context.

Theorem 1. (Theorem 2.1.6) Let C : f = 0, D : g = 0 be reduced algebraic curves
in A2 with a singular point at O. Then the analytical germs of C and D at O are
analytically equivalent if and only if their (algebraic) Jacobian schemes at O are
isomorphic as schemes over C.

After proving this theorem, we focus on the geometry of Jacobian schemes
at ordinary singularities and on their Tjurina and Milnor numbers. In doing so,
we remark that these schemes possess a particular symmetry property: each line
passing through their support intersects them with the same length. Let us be
more precise.

Definition 1. (Definition 2.2.4) Let Y be a 0-dimensional scheme supported at one
point P ∈ P2. We say that Y is k-symmetric if, for every line r passing through P ,
ℓ(Y ∩ r) = k. We say that Y is a k-symmetric local complete intersection (k-slci
for short) if it is a local complete intersection of two curves D, E with no tangent
in common at P and such that mP (D) = k,mP (E) = k, this implying ℓ(Y ) = k2.

Clearly, a k-slci is k-symmetric.

Theorem 2. (Theorem 2.2.7) Let P be a multiple ordinary point of multiplicity
m for a plane curve C in P2 and let ZP be its Milnor scheme at P and XP be its
Jacobian scheme at P . Then:

1. the tangent cones of the derivative curves Cx, Cy have no lines in common, hence
ZP = (Cx ∩ Cy)P is a (m− 1)-slci, so that µ = ℓ(ZP ) = (m− 1)2;

2. XP is a (m− 1)-symmetric scheme and τ = ℓ(XP ) ≤ (m− 1)2;

3. in particular, if C is a union of m distinct lines through P , then XP = ZP , so
that ℓ(XP ) = (m− 1)2.

It is precisely this theorem that has inspired Question 1. In fact, the only case
in which the Jacobian scheme of an ordinary singularity is a fat point is the case of
nodes, that is, double points with two distinct principal tangents. In all other cases,
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the obtained schemes are not fat points, but share with them the symmetry property
stated in Definition 1. Note that one can wonder if all symmetric schemes arise as
Jacobian schemes at ordinary singularities, however, there are many examples of
symmetric schemes that cannot be obtained in this way; see Remark 2.2.6 for some
examples.

We will shortly discuss how Theorem 2 not only inspired Question 1 but also a
possible answer to it. Before that, however, we want to emphasise that Theorem 2
also suggests another question:

Question 2. Do there exist ordinary singularities whose Tjurina number is strictly
less than the Milnor number?

Questions of this kind date back to Zariski and appear quite often in Algebraic
and Analytic Geometry; see for instance [8] and [107]. In fact, Question 2 already
has a complete answer, which can be recovered using some results of [27] and [87].
In Chapter 2, we state the result in the form of following theorem.

Theorem 3. (Theorem 2.2.10) Let C be a plane algebraic curve and assume that
P ∈ Sing C is a multiple ordinary point of multiplicity m ≥ 2. Then⌊︄

3m2 − 2m− 4
4

⌋︄
≤ τP (C) ≤ (m− 1)2.

Moreover, the bounds are sharp and all the values of τP (C) occur.

Despite Question 2 being fully answered, in Chapter 2 we provide some explicit
examples of ordinary singularities whose Tjurina number is strictly less than the
Milnor number. Our examples are special cases of a more general class of curves
given in [27], but there is a main difference: the approach used in [27] is analytical,
while ours is entirely algebraic. We consider the family of curves

Cb,c : xm + ym + xbyc = 0

with b + c > m, having an ordinary singularity at O and we compute the Tjurina
number τO(Cb,c) using Gröbner basis. In particular, we prove in Theorem 2.3.6 that
for m ≥ 5 the curves Cb,c attain the lower bound in Theorem 3.

Symmetric schemes and tensors
As anticipated, the symmetric schemes inspired by Theorem 2 give a satisfying

answer to Question 1. In Chapter 3 we start by generalising the definition of m-
symmetric scheme and m-symmetric local complete intersection as follows.

Definition 2. (Definition 3.1.1) A 0-dimensional scheme X supported at one point
P ∈ Pn is said to be

6
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• m-symmetric if ℓ(X ∩ L) = m, for every line L passing through P ;

• an m-symmetric local complete intersection (m-slci for short) if it is a local
complete intersection of n hypersurfaces having multiplicity at P equal to m
and whose tangent cones at P have no line in common.

The reason why m-symmetric schemes are good candidates to generalise fat points,
is that m-fat points are the prime example of m-symmetric schemes and, moreover,
any m-symmetric scheme supported at P ∈ Pn contains the fat point mP . In other
words, fat points are the m-symmetric schemes which are minimal with respect to
the schematic inclusion. In light of that, we found quite natural to ask the following
questions:

Question 3. Among all the m-symmetric schemes supported at the same point P ,
which are the maximal ones with respect to schematic inclusion?

Question 4. What is the maximum length of an m-symmetric scheme?

Since these points are, in some sense, “fatter” than fat points, we call the
maximal m-symmetric schemes m-superfat points and we answer to both questions
thanks to the following theorem.

Theorem 4. (Theorem 3.1.9) A scheme X ⊆ Pn is an m-superfat point supported
at P ∈ Pn if and only if it is an m-slci. Thus, any m-superfat point in Pn has
length mn and it is a Gorenstein scheme.

We also stress the existence of a special class of m-superfat points of Pn, that of m-
hypercubes, i.e. m-superfat points defined by an ideal of the form (ℓm

1 , ℓ
m
2 , . . . , ℓ

m
n )

for ℓ1, . . . , ℓn ∈ C[x0, . . . , xn]1 linearly independent linear forms. However, even
though up to this moment we mentioned just m-fat points, m-superfat points and
m-hypercubes, there are other schemes possessing m-symmetry; see, for instance,
Remark 3.1.11.

This last remark shows how bad the situation can be in Pn. For this reason,
after we have given some general results on symmetric schemes, we narrow down to
the case of P2, where the situation is easier to manage. The first noteworthy result
in this direction is the coincidence of 2-superfat schemes of P2 with 2-squares, i.e.
with the 2-hypercubes of P2.

Proposition 1. (Proposition 3.2.2) Every 2-superfat scheme X ⊆ P2 is a
2-square, i.e. IX can be written, up to some projectivity, as IX = (x2

1, x
2
2).

This identification has nothing similar neither in higher dimension nor in higher
degree; see Example 3.2.3. The other main result about superfat schemes in P2 is
the following theorem, which allows us to relate fat points and superfat points.
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Theorem 5. (Theorem 3.2.6) For every P ∈ P2 and for any m ≥ 1, the schematic
union of all m-squares supported at P is the fat point (2m− 1)P .

A very classical issue when dealing with zero-dimensional schemes is the study
of their postulation. For this reason, after analysing the aforementioned properties
of 2-squares, we deemed appropriate to investigate the postulation of a generic
union of 2-squares.

Question 5. What is the postulation of a generic union of 2-squares in P2?

In Chapter 4 we answer this question by showing that a generic union of 2-
squares always has good postulation. The proof strategy we use is the “Horace
method”, introduced by J. Alexander and A. Hirschowitz in several papers, which
we briefly recall in §1.6. We provide two different proofs, which agree for odd
degrees but differ for the even ones. Indeed, the odd degree case can be solved
using some simple specialisations, while the even one is more challenging.

In the first proof, we solve the problem by introducing a new specialisation: we
collapse two 2-squares together, thus finding a new scheme that, with the help of
differential Horace method, allows to bypass the arithmetic obstruction.

The idea of the second proof for even degrees is the following: we start by
substituting one of the 2-squares with a double point contained in it, so obtaining
a subscheme of the initial scheme and proving by induction that the number of
conditions imposed on the degree d curves by this new scheme is one less than the
expected number of conditions imposed by the initial scheme. After proving that,
we conclude coming back to the original scheme and proving that when we pass
from the double point to the 2-square, we actually impose one more condition.

As we have already mentioned, zero-dimensional schemes have proven to be
very useful in the study of varieties parameterising tensors. For this reason, once
enough tools to handle the 2-squares are obtained, it is quite natural to pose the
following question:

Question 6. Is it possible to obtain new information about tensors using our new
class of symmetric schemes? If so, what kind of information?

We partially answer this question for the special case of 2-squares but, as we
will recall in the list of open problems at the end of this introduction, we reckon
that a general insight of symmetric schemes can provide considerable information
about symmetric and partially symmetric tensors. In our analysis, we consider some
embeddings of 2-squares on Veronese and Segre-Veronese varieties, constructing a
“bridge” between 2-squares and (partially) symmetric tensors. By doing so, we
define new varieties, that we briefly describe here.
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• Q(V2,d) (Considered in §3.3)

We define

Q0(V2,d) :=
⋃︂

Q⊆P2

L(ν2,d(Q)), Q(V2,d) = Q0(V2,d)

where the union is taken on all the 2-squares Q of P2. Even though we show that
Q(V2,d) = τ2(V2,d), and thus Q(V2,d) is an already known variety, this new way
of defining it gives a more refined description of the forms in τ2(V2,d); see Propo-
sition 3.3.2. As a consequence, we can show that τ2(V2,d) is always contained in
σ4(V2,d); see Corollary 3.3.3.

• QQ(V2,d) (Considered in §3.3)

The description given by Q(V2,d) highlights that the variety τ2(V2,d) contains a
1-codimensional subvariety parameterising more particular forms, namely the
ones that can be written (up to a projectivity in P2) as yd−2

0 y1y2. Let d ≥ 3 and
consider the morphism

Φ : P(T1) × P(T1) × P(T1) → τ2(V2,d) ⊆ P(Td)
([ℓ0], [ℓ1], [ℓ2]) → [ℓd−2

0 ℓ1ℓ2]
.

The cuckoo variety QQ(V2,d) of V2,d is defined to be the scheme theoretic image
of Φ, that is,

QQ(V2,d) := Im Φ.
We investigate the geometrical properties of QQ(V2,d) in Proposition 3.3.7.

• q2(SVd,d) (Considered in §3.4)

After considering Veronese varieties, we move on to Segre-Veronese varieties and,
more precisely, we consider the (d, d)-embeddings

P1 × P1 → SVd,d ⊆ Pd2−1.

Clearly, to do that we need to specify what we mean by a 2-square in P1 × P1:
given a point P = [a0, a1; b0, b1] we call 2-square of P1 × P1 supported at P the
0-dimensional subscheme QP ⊆ P1 × P1 defined by the bihomogeneous ideal
(ℓ2

1,0, ℓ
2
0,1) ⊆ R, where

ℓ1,0 = a1x1,0 − a0x1,1, ℓt = b1x2,0 − b0x2,1.

The reason why we choose these subschemes is explained in Remark 3.4.1. At
this point we can define, for any d ≥ 2, the following varieties:

q2(SVd,d) :=
⋃︂

P ∈P1×P1

L(svd,d(QP ))

9
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whose points correspond to partially symmetric tensors of the form

(a0s0 + a1s1)d(b0t0 + b1t1)d.

We show that q2(SVd,d) and its secant variety σ2(q2(SVd,d)) have the expected
dimension for any d ≥ 2; see Proposition 3.4.6 and Proposition 3.4.7. In par-
ticular, for d = 2 the secant variety σ2(q2(SVd,d)) fills the whole P8, thus any
partially symmetric tensor in P8 can be written as the sum of two partially
symmetric tensors which depend only on four parameters each.

• qq2(SV(d,d)) (Considered in §3.4)

Analogously to the cuckoo varieties QQ(V2,d), we define the cuckoo varieties
qq2(SVd,d) as the image of the morphism

P(T (1)
1 ) × P(T (1)

1 ) × P(T (2)
1 ) × P(T (2)

1 ) → q2(SVd,d) ⊆ P(Td,d)
([ms], [ns], [mt], [nt]) → [md−1

s nsm
d−1
t nt]

.

For d = 2, qq2(SV2,2) is the Segre Variety S2,2, which is well-known to be 2-
defective, i.e. dim σ2(S2,2) = 7. This does not happen for d ≥ 3, as shown in
Proposition 3.4.13.

Zero-dimensional schemes on Veronese varieties
In Chapter 5, we change a bit our perspective and we consider the following

problem related to the geometry of Veronese varieties:
Question 7. What are the possible complete intersections lying on a Veronese
variety Vn,d?

There are several reasons that make this question interesting. Indeed, complete
intersections and their algebraic counterpart, regular sequences, play a central role
in Commutative Algebra and in Algebraic geometry. We have examples ranging
from the more classical and still open Hartshorne conjecture to modern applications
in the field of geometry of tensor. In fact, complete intersections have recently been
shown to have unexpected applications. For example, in [18] and [25], the strength
and the slice rank of polynomials are studied using complete intersections. For a
more exhaustive overview on complete intersections, we advise to see [69].

Note that, for d = 1 and n = 2, the Veronese surface V2,1 is the plane P2, so
that our problem in this special case is exactly the Cramer-Euler problem, which
consists in characterising the sets of points in P2 that are complete intersections.
We answer Question 7 in the case of Veronese surfaces, showing that for d > 2 the
only reduced complete intersections of PNn,d lying on V2,d are finite sets of either one
or two points while, for the Veronese surface V2,2 ⊆ P5, one also has plane conics
and their intersections with suitable hypersurfaces. More precisely, we prove the
following theorem.

10
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Theorem 6. (Theorem 5.3.5) If X ⊆ V2,d ⊆ PN2,d is a reduced complete intersection
of type (a1, . . . , ar), with a1 ≤ · · · ≤ ar, then one of the following holds:

1. (d, r, (a1, a2, . . . , ar)) = (2,4, (1,1,1,2)), that is, X is a conic lying on V2,2;

2. (d, r, (a1, a2, . . . , ar)) = (2,5, (1,1,1,2, a5)), any a5 ∈ N, that is, X is a set of
2a5 complete intersection points of a conic lying on V2,2 and a hypersurface
of degree a5;

3. (d, r, (a1, a2, . . . , ar)) = (d,N2,d, (1,1, . . . ,1)) for any d ≥ 2, that is, X is a
reduced point;

4. (d, r, (a1, a2, . . . , ar)) = (d,N2,d, (1,1, . . . ,1,2)) for any d ≥ 2, that is, X is a
set of two reduced points.

In order to prove this theorem, we characterise the possible Hilbert functions
of reduced subvarieties of Veronese varieties; see Theorem 5.1.11. Beyond their
application to the proof of our theorem, Hilbert functions play a central role in
Commutative Algebra and in Algebraic Geometry, for example see [24], [90] and
[99]. In recent times Hilbert functions have also been used as tools in other fields,
such as the study of Waring rank, that is the tensor rank for symmetric tensors,
see [36], and the study of the identifiability of tensors.

In characterising these Hilbert functions, we generalise the notion of 0-sequences
and of differentiable 0-sequences introduced in [67]. We give a more effective char-
acterisation for the case of the rational normal curves V1,d in Theorem 5.1.7, thus
recovering a classical result, and for the case of the surfaces V2,d in Theorem 5.2.4.

Moreover, in Theorem 5.3.3 we show that, except for the case d = 2, the only
complete intersections lying on rational normal curves V1,d are the trivial ones, that
is one single point or the set of two points. The case V1,2, that is of a plane conic,
is different. In fact, by cutting with any properly chosen curve, one will produce a
complete intersection set of points. Inspired by this evidence, we formulate Conjec-
ture 5.4.2: the only reduced complete intersections of Vn,d, d ≥ 3, are finite sets of
either one or two points, while for d = 2 one also has plane conics and their inter-
sections with suitable hypersurfaces. We also checked the validity of the conjecture
for V3,2, see Proposition 5.4.1.

Open problems
We list here some open problems related to the topics of this thesis.

1. The Jacobian scheme of a plane curve whose singularities are just double and
triple ordinary points is a zero-dimensional scheme whose components are

11
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reduced points and 2-squares. What can be said about the freeness of the
curve?

2. Form = n = 2, all them-superfat points of Pn have maximal Hilbert function.
This is not true for any other value of m > 2 and n > 2, but there is
some evidence that the generic m-superfat point of Pn has maximal Hilbert
function. Is this true?

3. Would it be possible to generalise the varieties Q(V2,d), QQ(V2,d), q2(SVd,d),
qq2(SV22) by considering m-symmetric schemes more general than 2-squares?
Clearly, this would require a deeper study of m-symmetric schemes.

4. Is it true that any generic union of m-hypercubes in Pn has good postulation?
We just know that for m = n = 2.

5. Is it possible to find an “effective” characterisation of the Hilbert functions
of subvarieties of Vn,d for n > 3 similar to the one we found for n = 2?

6. Is it true that the only reduced complete intersections lying on a Veronese
variety are the ones we listed in Conjecture 5.4.2?

12



Chapter 1

Preliminaries

If it is not different specified, we always work over the base field C. This chapter
is devoted to the introduction of some preliminary notions that will be widely used
in this thesis. In particular, we describe the mathematical entities which are the
objects of our research and we introduce the tools we will use to describe and
analyse them.

1.1 Hilbert functions
In this section, we recall the notion of Hilbert function with a special focus on

the Hilbert functions of standard graded algebras, that are strictly related to the
geometry of projective varieties.

We start by setting some notation.

Notation 1.1.1. Let A be a Z-graded commutative and unitary ring. Given a
Z-graded A-module M we denote by Mt its homogeneous summand of degree t,
getting the following decomposition of Abelian groups.

M =
∞⨁︂

t=−∞
Mt.

In our case, the elements of the Z-graded modules have non-negative degree, thus
we write

M =
∞⨁︂

t=0
Mt and Mt = 0 ∀ t < 0.

For any d ∈ Z we denote by M(d) the Z-graded A-module defined as

M(d)t = Md+t

and we call M(d) the d-th twist of M . In particular, a homogeneous ideal I ⊆ A is
a Z-graded A-module and we denote, in agreement with the previous notation, the

13



Preliminaries

degree t homogeneous part of I by It. In the following, we will refer to Z-graded
modules simply as graded modules. We will also need to use multigraded modules,
but we prefer to postpone the introduction of the notations related to them until we
begin using them. Finally, given n ∈ N, we denote by R the ring R := C[x0, . . . , xn]
with the standard grading.

Definition 1.1.2. If M is a finitely generated R-module, then the Hilbert function
of M is the function

HM(t) : Z → N
t → dim(Mt)

where dim(Mt) is the dimension of Mt as C-vector space.

The Hilbert function of a module can be defined in a much more general setting
but, for the purposes of this thesis, we only need this more specific case. The
following theorem is a first fundamental result on the Hilbert function of a graded
module.

Theorem 1.1.3. If M is a finitely generated R-module, then there exist a unique
polynomial HPM(t) ∈ Q[t], of degree less or equal than n, and t ∈ N such that
HM(t) = HPM(t) for any t ≥ t.

Proof See [57], Theorem 1.11 and Lemma 1.12.

Definition 1.1.4. With the notation of Theorem 1.1.3, we call HPM(t) the Hilbert
polynomial of M and t the regularity index of M .

Now we want to consider the case where M is the algebra defining a scheme.

Notation 1.1.5. We denote by Pn the projective space of dimension n over the
base field C and we use in Pn homogeneous coordinates [x0, . . . , xn] so that R
is the ring of coordinates of Pn. For any scheme X ⊆ Pn, we denote by I(X),
or equivalently by IX, the only homogeneous and saturated ideal of R for which
X = Proj(R/I(X)). Moreover, we denote by R[X] := R/I(X) the homogeneous
coordinate ring of X.

The Hilbert function and the Hilbert polynomial of R[X] encode several geo-
metrical information about the scheme X and about its embedding in the projective
space. Let us be more precise by giving the following definition.

Definition 1.1.6. Given a closed subscheme X ⊆ Pn we define:

• the Hilbert function of X to be HX(t) := HR[X](t);

• the Hilbert polynomial of X to be HPX(t) := HPR[X](t);

• the regularity index of X to be the regularity index of HX(t).

14
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Remark 1.1.7. For a given X ⊆ Pn the value HX(t) represents the “number of con-
ditions” that the containment of X imposes to the degree t hypersurfaces. Indeed,
we have

HX(t) = dim(R/I(X))t = dimRt − dim(I(X))t

and I(X)t is exactly the linear system of the degree t hypersurfaces of Pn containing
X.

Usually, given a scheme X, its dimension is defined to be the maximum of the
lengths of chains of irreducible Zariski closed subsets of X, while its degree is defined
to be the number of points where a general linear space of the “right” codimension
intersects X. Using the Hilbert polynomial of X we can define, in a more algebraic
way, both the dimension and the degree of X as follows.

Definition 1.1.8. Given a scheme X, we call the degree d of HPX(t) the dimension
of X and we call the leading coefficient of HPX(t) multiplied by d! the degree of X.
We denote the dimension of X by dimX and the degree of X by degX. If dimX = 0,
the degree of X is also called the length of X and it is denoted by ℓ(X).

It is easy to show that these algebraic definitions agree with the geometrical
ones; more details can be found, for instance, in [59] Chapter III, §III.3.1, III.3.2,
III.3.3 and in [73] Chapter I, §7.

Example 1.1.9. If X = Pn then R[X] = R[Pn] = R and thus

HPn(t) = dimRt =
(︄
n+ t

t

)︄

and HPPn(t) = HPn(t) for all t ∈ N agreeing with the fact that dimPn = n and
degPn = 1.

Example 1.1.10. Let X ⊆ Pn a degree e hypersurface. Clearly I(X) = (F ) and,
for each t ∈ N, we have the following short exact sequence

0 R(−e)t Rt (R/(F ))t 0F π

where the first map is the multiplication by F and the second is the projection to
the quotient. As a consequence, we get

HX(t) = dim(R/(F ))t = dimRt − dimR(−e)t =
⎧⎨⎩
(︂

n+t
n

)︂
, if t ≤ e− 1(︂

n+t
n

)︂
−
(︂

n+t−e
n

)︂
, if t ≥ e

.

Hence, the Hilbert polynomial of X is

HPX(t) =
(︄
n+ t

n

)︄
−
(︄
n+ t− e

n

)︄
= e

(n− 1)!t
n−1 + · · ·

agreeing with the fact that dimX = n− 1 and degX = e.
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Remark 1.1.11. If X,X′ ⊆ Pn are two schemes and X ⊆ X′, then I(X′) ⊆ I(X)
and thus HX(t) ≤ HX′(t) for any t ≥ 0. Note that the equality HX(t) = HX′(t) holds
if and only if dim I(X)t = dim I(X′)t or, equivalently, if and only if I(X)t = I(X′)t,
that is, if and only if all the hypersurfaces of degree t containing X also contain X′.

If X is a 0-dimensional scheme, its Hilbert polynomial is just a constant, but we
can say something more on the behaviour of HX(t).

Proposition 1.1.12. If X ⊆ Pn is a 0-dimensional scheme of length d and regu-
larity index t then

HX(t− 1) < HX(t) ≤ d ∀ 0 ≤ t ≤ t and HPX(t) = d.

Proof See [59] Proposition III-59.

The Hilbert function of a 0-dimensional scheme X also allows to understand
why the first cohomology of the ideal sheaf of X can be interpreted as a measure of
the “speciality” of X. To make that clearer, we fix some more notation.

Notation 1.1.13. Given a projective space Pn, we denote by OPn its structure
sheaf and by Ld the linear system |OPn(d)| of hypersurfaces in Pn. If X ⊆ Pn is
a closed subscheme, we denote by IX the ideal sheaf of X in OPn and by Ld(X)
the linear system |OPn(d) ⊗ IX| of hypersurfaces in Pn containing X. In order to
simplify some computations, when we write dim Ld or dim Ld(X) we refer to the
vector dimension of the linear system; in particular we have

dim Ld =
(︄
n+ d

d

)︄
.

Moreover, if Y is a closed subscheme of Pn, we denote by IX,Y the ideal sheaf of X
restricted to Y.

Remark 1.1.14. If X is a 0-dimensional subscheme of Pn, we have

HX(t) = dimRt − dim I(X)t = h0(OPn(t)) − h0(IX(t)) = ℓ(X) − h1(IX(t))

so that
h1(IX(t)) = ℓ(X) −HX(t)

is exactly the measure of how X fails to impose on hypersurfaces of degree t as
many conditions as its points counted with multiplicity. Moreover, by this formula
we get that

HX(t) = ℓ(X) ⇔ h1(IX(t)) = 0.

Properties of Hilbert functions of schemes can also be studied, in a more alge-
braic way, through the so-called standard graded algebras.
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Definition 1.1.15. Let K be a field and A be a graded K-algebra. We say that A
is a standard graded K-algebra if A0 = K and A is generated, as K-algebra, by a
finite number of elements of A1.

Proposition 1.1.16. A is a standard graded K-algebra if and only if A0 = K and
there exist n ∈ N and an ideal I ⊆ K[x0, . . . , xn] such that A ∼= K[x0, . . . , xn]/I as
K-algebras, where K[x0, . . . , xn] is endowed with the standard grading.

Proof Since A is a standard graded K-algebra, there exist y0, . . . , yn ∈ A1 that
generate A as K-algebra. The map

φ : K[x0, . . . , xn] → A
1K → 1A

xi → yi

,

extended in the obvious way, is a surjective homomorphism of K-algebras and thus
A ∼= K[x0, . . . , xn]/ kerφ. The vice versa is immediate.

Proposition 1.1.16 shows that studying Hilbert functions of closed schemes of
Pn is equivalent to studying the Hilbert functions of standard graded C-algebras.
In the rest of the thesis we use these two points of view interchangeably.

1.1.1 Macaulay inequalities and 0-sequences
Proposition 1.1.12 is a special case of a much more general result on the be-

haviour of Hilbert functions. Indeed, the possible values that a Hilbert function can
attain in t are in a range depending only on the value of the Hilbert function in t−1
and these ranges are called Macaulay inequalities. In order to define the Macaulay
inequalities, we have first to introduce the binomial expansion of a non-negative
number c.

Proposition 1.1.17. For any non-negative integers i, c there exist mi,mi−1, . . . ,mj

non-negative integers with mi > mi−1 > · · · > mj ≥ j ≥ 1 such that

c =
(︄
mi

i

)︄
+
(︄
mi−1

i− 1

)︄
+ · · · +

(︄
mj

j

)︄

and the integers mi, . . . ,mj are unique.

Proof See [85] §1.

Definition 1.1.18. Given i and c positive integers, the expression

c =
(︄
mi

i

)︄
+
(︄
mi−1

i− 1

)︄
+ · · · +

(︄
mj

j

)︄

is called the i-binomial expansion of c.
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Note that Proposition 1.1.17 guarantees the well-posedness of Definition 1.1.18.

Definition 1.1.19. If c is a positive integer having i-binomial expansion as in
Definition 1.1.18, we set

c<i> :=
(︄
mi + 1
i+ 1

)︄
+
(︄
mi−1 + 1

i

)︄
+ · · · +

(︄
mj + 1
j + 1

)︄
.

Moreover, we set 0<i> = 0 for any i ∈ N.

Example 1.1.20. If c = 153 and i = 5 then we have

153 =
(︄

9
5

)︄
+
(︄

6
4

)︄
+
(︄

5
3

)︄
+
(︄

2
1

)︄

and thus we get

153<5> =
(︄

10
6

)︄
+
(︄

7
5

)︄
+
(︄

6
4

)︄
+
(︄

3
2

)︄
= 249.

Definition 1.1.21. A sequence of natural numbers (ct)t∈Z is called a 0-sequence if
ct = 0 for any t < 0, c0 = 1 and ct+1 ≤ c<t>

t ∀ t ≥ 1.

In order to state the next theorem in all its generality, we need to give the
definition of order ideal of monomials.

Definition 1.1.22. Let K be a field and M ⊆ K[x0, . . . , xn] a non-empty set of
monomials in the variables x0, . . . , xn. We say thatM is an order ideal of monomials
if the following condition holds:

m ∈ M,m′ | m ⇒ m′ ∈ M.

Note that, in general, an order ideal of monomials is not an ideal. As we
mentioned above, these definitions allow us to characterise the Hilbert function via
the following famous theorem, originally stated by Francis S. Macaulay in [88] and
then rephrased by Richard P. Stanley in [99].

Theorem 1.1.23. Let
h : Z → N

t → ht

and let K be any field. The following conditions are equivalent:

1. There exists a standard graded algebra A with A0 = K and with Hilbert func-
tion h.

2. The sequence (ht)t∈Z is a 0-sequence.
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3. ht = 0 for any t < 0, h0 = 1 and ht+1 ≤ h<t>
t for any t ≥ 0.

4. Let s = h1 and, for each t ≥ 0, let Mt be the set of the first ht monomials
in the variables x0, . . . , xs−1 with respect to the graded reverse lexicographic
order. Then the set

M :=
⋃︂
t≥0

Mt

is an order ideal of monomials.

Proof See [99], Theorem 2.2.

Example 1.1.24. We consider the sequence (ht)t∈Z defined by the following table

t 0 1 2 3 4 t ≥ 5
ht 1 4 9 16 19 4t+ 1

Table 1.1: An example of 0-sequence

and we ask if there exists a standard graded algebra having (ht)t∈Z as Hilbert
function. By Theorem 1.1.23 it is enough to check that ht+1 ≤ h<t>

t and, in fact,
we have

h<1>
1 = 4<1> = 10 ≥ 9 = h2

h<2>
2 = 9<2> = 16 ≥ 16 = h3

h<3>
3 = 16<3> = 25 ≥ 19 = h4

h<4>
4 = 19<4> = 26 ≥ 21 = h5.

Moreover, one can see that ht+1 ≤ h<t>
t for any t ≥ 5 and thus there exists a

standard graded algebra with Hilbert function (ht)t∈Z. The proof of Theorem 1.1.23
also gives us a way to explicitly construct such a standard graded algebra; we
describe the construction just in this specific example without any presumption of
generality, which would be outside the purposes of this thesis. First of all, since
h1 = 4, we work in the algebra R = C[x0, x1, x2, x3], although for this construction
we could use any other base field. Consider the monomial ideal I ⊆ R whose
generators are defined as follows: for any t ≥ 1 a monomial in Rt is a generator of
I if and only if it is one of the last

(︂
3+t

t

)︂
− ht monomials of Rt with respect to the

graded reverse lexicographic order. We describe more in details the first steps of
the construction of I.

• t = 1
We have

R1 =< x0, x1, x3, x4 >

and
(︂

3+1
1

)︂
− h1 = 4 − 4 = 0 so that I have no generators of degree 1.

19



Preliminaries

• t = 2
We have

R2 =< x2
0, x0x1, x

2
1, x0x2, x1x2, x

2
2, x0x3, x1x3, x2x3, x

2
3 >

and
(︂

3+2
2

)︂
− h2 = 10 − 9 = 1, so that the only generator of degree 2 of I is x2

3.

• t = 3
We have

R3 =< x3
0, x

2
0x1, x0x

2
1, x

3
1, x

2
0x2, x0x1x2, x

2
1x2, x0x

2
2, x1x

2
2, x

3
2, x

2
0x3,

x0x1x3, x
2
1x3, x0x2x3, x1x2x3, x

2
2x3, x0x

2
3, x1x

2
3, x2x

2
3, x

3
3 >

and
(︂

3+3
3

)︂
− h3 = 20 − 16 = 4 so that we have to add to I the generators

x0x
2
3, x1x

2
3, x2x

2
3 and x3

3.
By Dickson’s Lemma I has a finite basis of monomials and thus the procedure
ends, that is, there exists a degree t such that any generator of degree t ≥ t can be
obtained by the generators of smaller degrees. In particular, more computations
show that is enough to reach the step t = 7 to determine I and finally one finds

I = (x2
3, x

3
2x3, x1x

2
2x3, x0x

2
2x3, x

2
1x2x3, x0x1x2x3, x

2
0x2x3, x

4
1x3, x0x

3
1x3,

x2
0x

2
1x3, x

3
0x1x3, x

4
0x3, x

6
2, x1x

5
2, x0x

5
2, x

3
1x

4
2)

and the standard graded algebra we were looking for is R/I.

1.1.2 The first difference function
In this subsection we analyse the first difference of a Hilbert function or, equiv-

alently, of a 0-sequence.
Definition 1.1.25. If M is a finitely generated R-module then the first difference
of its Hilbert function is the function ∆HM(t) := HM(t) −HM(t− 1).

For the first difference of the Hilbert function of a scheme X we use an analogue
notation. We define the first difference of a 0-sequence as follows.
Definition 1.1.26. Given a 0-sequence (ct)t∈Z we define its first difference to be
the sequence of integers (∆ct)t∈Z defined as ∆ct = ct − ct−1.
Remark 1.1.27. If A is a reduced standard graded K-algebra, then there exists a
non-zero-divisor F ∈ A1 and the sequence

0 A(−1)t At (A/(F ))t 0F π

is exact for any t ∈ N. As a consequence, we get

∆HA(t) = HA(t) −HA(t− 1) = HA/(F )(t)

so that, in particular, ∆HA(t) is itself a Hilbert function.
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The previous remark shows that a necessary condition for a 0-sequence (ct)t∈Z
to be the Hilbert function of a reduced standard graded K-algebra is that (∆ct)t∈Z
is a 0-sequence but, actually, even more is true. For this purpose, we recall the
definition of differentiable 0-sequence.

Definition 1.1.28. A 0-sequence (ct)t∈Z is called a differentiable 0-sequence if its
first difference (∆ct)t∈Z is a 0-sequence.

A.V. Geramita, P. Maroscia and L. G. Roberts proved in [67] that being a
differential 0-sequence is also a sufficient condition for a 0-sequence to be the Hilbert
function of a reduced standard graded K-algebra; in particular, they proved the
following theorem.

Theorem 1.1.29. Let K be an infinite field and let (ct)t∈Z be a differentiable 0-
sequence with c1 = n + 1. There exists a radical ideal I in K[x0, . . . , xn] such that
(ct)t∈Z is the Hilbert function of K[x0, . . . , xn]/I.

Proof See [67], Theorem 3.3.

Hence, differentiable 0-sequences completely characterise the Hilbert functions
of reduced standard algebras.

Remark 1.1.30. The first difference of the Hilbert function of a scheme also has a
geometrical interpretation. Let X ⊆ Pn be a variety and let α : F = 0 be a general
hyperplane in Pn. Since X is a reduced scheme, R[X] is a reduced C-algebra and
[F ], the equivalence class of F in R[X], is a non-zero-divisor. As a consequence, we
have

∆HX(t) = HR[X]/([F ])(t),
that is, ∆HX(t) is the Hilbert function of the generic hyperplane section of X. Thus,
if X is reduced, one can study ∆HX rather than HX. Indeed, HX(t) can be totally
recovered by ∆HX(t) through the formula

HX(t) =
t∑︂

i=0
∆HX(t)

but ∆HX(t) is the Hilbert function of a variety whose dimension is one less than
X and embedded in a Pn−1. In more algebraic terms, when we work with ∆HX(t),
we have one variable less and the degree of the Hilbert polynomial is one less than
the previous one.

1.1.3 Castelnuovo Functions
The study of Hilbert functions of 0-dimensional subschemes of P2 goes back to

G. Castelnuovo, see for instance [42], and still plays an important role in Algebraic
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Geometry. It is a very powerful tool allowing a deep understanding of the geometry,
for example, of point configurations in P2 and it also provides several numerical
invariants of 0-dimensional subschemes of P2. In this subsection we recall some
results that we will need in the next chapters; for a more detailed treatise we refer
to [50] and [83], this subsection being a short summary of these two papers. Let us
start with some definitions.

Definition 1.1.31. Let X be a 0-dimensional subscheme of P2. We say that a
curve C ∈ Ld (recall Notation 1.1.13) defined by F ∈ Rd is a fixed curve of Lt(X)
if every member of Lt(X) contains C or, equivalently, if I(X)s ⊆ Rs−dF for every
s ≤ t. If C is the greatest common divisor of Lt(X) (viewed as a set of divisors) or,
equivalently, if F is the greatest common divisor of the set of polynomials I(X)t,
then we say that C is the fixed curve of Lt(X).

Definition 1.1.32. If X is a 0-dimensional subscheme of P2 we set:

• α(X) := min{t | Lt(X) /= ∅};

• β(X) := min{t | Lt(X) has no fixed curve};

• τ(X) := min{t | HX(t) = ℓ(X)} = min{t | h1(IX(t)) = 0}, that is τ(X) is the
regularity index of HX(t).

One has α(X) ≤ β(X) ≤ τ(X) + 1, where the first inequality is immediate from
the definition and the second one follows from the fact that I(X) is generated by
forms whose degree is at most τ +1 (see [51] (3.7)). We are now ready to introduce
the notion of Castelnuovo function and some of its properties.

Definition 1.1.33. If X is a 0-dimensional subscheme of P2, the first difference
∆HX(t) is called the Castelnuovo function of X.

Remark 1.1.34. The Castelnuovo function of a 0-dimensional subscheme X of P2

can also be interpreted as a measure of the trend of the speciality of X with respect
to the curves of degree d. Indeed, we have

∆HX(t) = HX(t) −HX(t− 1) = ℓ(X) − h1(IX(t)) − (ℓ(X) − h1(IX(t− 1))) =

= h1(IX(t− 1)) − h1(IX(t)).

The following theorem is a collection of results on the Castelnuovo function of a
0-dimensional scheme. They are mainly due to P. Dubreil (see, for instance, [56]),
which is why we refer to the theorem as Dubreil Theorem, while the form in which
we state the theorem is the same used by E. Davis in [50] and by E. Davis, A.V.
Geramita and P. Maroscia in [51].
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Theorem 1.1.35 (Dubreil). For any 0-dimensional scheme X ⊆ P2 one has:

• ∆HX(t) ≥ 0 for any t ∈ Z and ∆HX(t) /= 0 ⇔ 0 ≤ t ≤ τ(X);

• ∆HX(t) ≤ t+ 1 for any t ∈ Z and ∆HX(t) = t+ 1 ⇔ 0 ≤ t ≤ α(X) − 1;

• ∆HX(t) ≤ ∆HX(t− 1) for any t ≥ α(X);

• ∆HX(t) < ∆HX(t− 1) for any β(X) ≤ t ≤ τ(X) + 1;

•
d∑︂

t=0
∆HX(t) ≤ ℓ(X) and the equality holds if and only if d ≥ τ(X).

Proof See [50] (2.1).

Actually, in [50] the author also proved other results on Castelnuovo functions
that we recall in Proposition 1.1.37.

Definition 1.1.36. Given any function f : Z → N we denote by fd(t) := min{f(t), d}
the truncation of f at d.

Proposition 1.1.37. If X is a 0-dimensional subscheme of P2, then the following
hold:

• If d ≤ α(X) and C ∈ Ld, then ℓ(X∩ C) ≤ ℓd(X). Moreover, if the equality holds,
then ∆HX∩C(t) = ∆HX(t)d and C is a fixed curve of Lt(X) for every t such that
∆HX(t) ≥ d;

• If C ∈ Ld is a fixed curve of Lt(X) and t ≥ α(X) then d ≤ ∆HX(t) and if the
equality holds then ℓ(X ∩ C) = ℓd(X);

• If ∆HX(t) = ∆HX(t − 1) /= 0, then β(X) > t ≥ α(X) and the fixed curve of
Lt(X) has degree ∆HX(t);

• If α(X) < β(X) and ∆HX(β(X)) = ∆HX(β(X) − 1) − 1, then the fixed curve of
Lβ(X)−1(X) has degree ∆HX(β(X) − 1).

Since Theorem 1.1.35 gives a complete characterisation of Castelnuovo func-
tions, B. Kreuzer and M. Kreuzer gave, in [83], the definition of Castelnuovo func-
tion with assigned invariants α and τ . The definition below is equivalent to the one
given in [83], but slightly different in order to preserve consistent notations with
respect to Dubreil Theorem.

Definition 1.1.38. Let αh ≥ 1 and τh ≥ αh − 1 be natural numbers and

h : Z → N
t → h(t)

be such that
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• h(t) ≥ 0 for any t ∈ Z and h(t) /= 0 ⇔ 0 ≤ t ≤ τh;

• h(t) ≤ t+ 1 for any t ∈ Z and h(t) = t+ 1 ⇔ 0 ≤ t ≤ αh − 1;

• h(t) ≤ h(t− 1) for any αh ≤ t ≤ τh + 1.

Then h is called a Castelnuovo function with invariants αh and τh.

Given a Castelnuovo function h, in [83] the authors introduced some 0-dimensional
subschemes of P2 associated to h and defined as follows.

Definition 1.1.39. Let K be an algebraically closed field of arbitrary characteristic.
Let h : Z → N be a Castelnuovo function with invariants αh and τh and let

{s0, s1, . . . , sτh
} ⊆ K, {t0, t1, . . . , tαh−1} ⊆ K

be sets of pairwise distinct elements. The reduced 0-dimensional subscheme of P2

X(h) := {[1, si, tj] ∈ P2 | 0 ≤ i+ j ≤ τh, 0 ≤ j ≤ h(i+ j)}

is called the Castelnuovo set for h with parameters s0, . . . , sτh
and t0, . . . , tαh−1.

Castelnuovo sets allow to construct 0-dimensional subschemes of Pn with a
prescribed Castelnuovo function, as shown by the following theorem.

Theorem 1.1.40. Let K be an algebraically closed field of arbitrary characteristic.
If h is a Castelnuovo function with invariants αh and τh and s0, s1, . . . , sτh

∈ K
and t0, t1, . . . , tαh−1 ∈ K are pairwise distinct elements, then the Castelnuovo set
X(h) for h with parameters s0, . . . , sτh

and t0, . . . , tαh−1 has Castelnuovo function
∆HX(h) = h. Moreover, if we set m(i) = min{n ≥ αh | h(n) ≤ i}, we have

I(X(h)) = (F0, . . . , Fαh
)

where

Fi =
m(i)−i−1∏︂

j=0
(x1 − tjx0)

i∏︂
j=0

(x1 − sjx0).

Example 1.1.41. Let us consider, over C, the Castelnuovo function h : Z → N
defined by the following table

t 0 1 2 3 4 5 6 t ≥ 7
h(t) 1 2 3 4 4 3 2 0

Table 1.2: An example of Castelnuovo function

We want to construct a Castelnuovo set for h above. Since h(t) = t+ 1 if and only
if 0 ≤ t ≤ 3 we have, by definition, that αh = 4 and since h(t) /= 0 if and only if
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0 ≤ t ≤ 6 we have, again by definition, that τh = 6. To construct a Castelnuovo
set associated to h we have to choose the two sets of pairwise distinct elements
{s0, s1, . . . , s6} ⊆ C and {t0, t1, t2, t3} ⊆ C and the easiest way to do that is to
choose si = i for any 0 ≤ i ≤ 6 and ti = i for any 0 ≤ i ≤ 3. In doing so, the
Castelnuovo set associated to h with respect to the chosen parameters is

X := {[1, i, j] ∈ P2 | 0 ≤ i+ j ≤ 6, 0 ≤ j ≤ h(i+ j)}

and its affine representation is

Figure 1.1: The Castelnuovo set associated to h

1.2 Fat Points
Among all the 0-dimensional schemes there is a very interesting family, that of

fat points, which, due to its large number of interactions in different fields of Alge-
braic Geometry, deserves a more in-depth study. Historically, these 0-dimensional
schemes were introduced in the study of linear systems of hypersurfaces of Pn with
a fixed set of singularities; let us see this in more detail.

Notation 1.2.1. For the ideal of a reduced point we use a specific notation, that
is, if P is a point of Pn we will denote by ℘ its ideal I(P ).

Remark 1.2.2. We fix a point P in Pn defined by the ideal ℘ and, up to a projec-
tivity, we can suppose P = [1,0, . . . ,0] and ℘ = (x1, x2, . . . , xn). Any F ∈ ℘d can
be written as

F = xd−1
0 f1 + xd−2

0 f2 + · · · + x0fd−1 + fd =
d∑︂

j=1
xd−j

0 fj

with fj ∈ C[x1, . . . , xn]j. The hypersurface defined by F has a singularity at P if
and only if

∂F

∂xi

(P ) = 0 for any i = 1, . . . , n
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and we have

∂F

∂x0
=

d−1∑︂
j=1

(d− j)xd−j−1
0 fj ⇒ ∂F

∂x0
(P ) =

d−1∑︂
j=1

(d− j)fj(0, . . . ,0) = 0

∂F

∂xi

=
d∑︂

j=1
xd−j

0
∂fj

∂xi

⇒ ∂F

∂xi

(P ) =
d∑︂

j=1

∂fj

∂xi

(0, . . . ,0) = ∂f1

∂xi

for any i = 1, . . . , n

so that P is singular for the hypersurface defined by F if and only if

∂f1

∂xi

= 0 for any i = 1, . . . , n ⇔ f1 = 0 ⇔ F ∈ ℘2.

This shows that (℘2)d is the linear system of the degree d hypersurfaces of Pn

having a singularity at P or, equivalently, that all the hypersurfaces of Pn having
a singularity at P contain the 0-dimensional scheme defined by ℘2. A similar
argument shows that, more in general, (℘m)d is the linear system of the degree d
hypersurfaces of Pn having at P a point of multiplicity at least m. Note that all the
ideals ℘m are ℘-primary, that is they are primary and √

℘m = ℘. This discussion
justifies the following definition.

Definition 1.2.3. Let P ∈ Pn be a point defined by the prime ideal ℘ ∈ R. If m
is any positive integer, then the subscheme Proj(R/℘m) of Pn is called the fat point
of Pn supported on P of multiplicity m and it is denoted by mP .

From the point of view of the Hilbert function, a fat point of multiplicity m
behaves like

(︂
n+m−1

m−1

)︂
reduced points, as shown by the following lemma.

Lemma 1.2.4. Let P ∈ Pn. Then HmP (t) = min
{︂(︂

n+t
t

)︂
,
(︂

n+m−1
m−1

)︂}︂
.

Proof We can suppose P = [1,0, . . . ,0] so that ℘ = (x1, . . . , xn). We start by
computing dim(℘m)t for any t ∈ N. Clearly, if t < m then we have dim(℘m)t = 0
and thus we can suppose, for the moment, t ≥ m. The vector space (℘m)t can be
written in the following way

(℘m)t = C[x1, . . . , xn]t ⊕ x0C[x1, . . . , xn]t−1 ⊕ · · · ⊕ xt−m
0 C[x1, . . . , xn]m

so, as a consequence, we have

dim(℘m)t =
t∑︂

i=m

(︄
n− 1 + i

i

)︄
=

t∑︂
i=0

(︄
n− 1 + i

i

)︄
−

m−1∑︂
i=0

(︄
n− 1 + i

i

)︄
=

=
(︄
n− 1 + t+ 1

t

)︄
−
(︄
n− 1 +m− 1 + 1

m− 1

)︄
=
(︄
n+ t

t

)︄
−
(︄
n+m− 1
m− 1

)︄
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where the second equality follows by the hockey-stick identity. Hence, we have

HmP (t) = dimRt − dim(℘m)t =
⎧⎨⎩
(︂

n+t
t

)︂
if t < m(︂

n+m−1
m−1

)︂
if t ≥ m

.

Clearly we can consider a scheme made up of more than one fat point.

Notation 1.2.5. If X and Y are two projective subschemes of Pn, we denote by
X + Y their schematic union, that is, the closed subscheme of Pn defined by the
ideal I(X) ∩ I(Y).

Definition 1.2.6. Let P1, . . . , Ps be distinct points in Pn and let m1, . . . ,ms ∈ N>0.
The subscheme of Pn

m1P1 +m2P2 + · · · +msPs

is called a scheme of fat points in Pn.

Inspired by Lemma 1.2.4, one can wonder if s fat points in general position and
of multiplicity m1, . . . ,ms in Pn have the same Hilbert function of

s∑︂
i=1

(︄
n+mi − 1
mi − 1

)︄

reduced points in general position in Pn. Unfortunately, however, the answer to
this question is negative, and the situation is much more complicated, even though
there are two notable results due to J. Alexander and A. Hirschowitz: the first one
classifies, for mi ≤ 2 for any i = 1, . . . , s, all the cases when the Hilbert function is
not the expected one, while the second one is an asymptotic result.

Theorem 1.2.7 (Alexander-Hirschowitz). Let X be a scheme of s double points in
general position in Pn. Then,

HX(t) = min
{︄(︄

n+ t

n

)︄
, (n+ 1)s,

}︄

except in the following cases:

• t = 2, 2 ≤ s ≤ n and in this case HX(2) =
(︂

n+2
2

)︂
−
(︂

n−s+2
2

)︂
;

• n = 2, t = 4, s = 5 and in this case HX(4) = 14;

• n = 3, t = 4, s = 9 and in this case HX(4) = 34;

• n = 4, t = 3, s = 7 and in this case HX(3) = 34;
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• n = 4, t = 4, s = 14 and in this case HX(4) = 69.

Proof The original proof of the theorem can be found in [7], while more self-
contained explanations and proofs of the theorem can be found in [26] and in [91].

Unfortunately, up to our knowledge, there is no analogous result for higher
multiplicities of the points. However, the following two theorems, again due to J.
Alexander and A. Hirschowitz, give an asymptotic behaviour of the union of fat
points of any multiplicity.

Theorem 1.2.8 (Alexander-Hirschowitz). For any m ≥ 0 there exists t0 such that
any scheme of fat points

X = m1P1 +m2P2 + · · · +msPs

with mi ≤ m for any i = 1, . . . , s and the Pi’s in general position in Pn has Hilbert
function

HX(t) = min
{︄(︄

n+ t

t

)︄
,

s∑︂
i=1

(︄
n+mi − 1
mi − 1

)︄}︄
∀ t ≥ t0.

Proof This theorem is a special case of the much more general Theorem 1.1 in [4].

The previous theorem can also be stated in a more or less equivalent formulation
as follows.

Theorem 1.2.9 (Alexander-Hirschowitz). For any m ≥ 0 there exists an integer
ℓ such that any scheme of fat points

X = m1P1 +m2P2 + · · · +msPs

with mi ≤ m for any i = 1, . . . , s, the points Pi’s in general position in Pn and
ℓ(X) ≥ ℓ has Hilbert function

HX(t) = min
{︄(︄

n+ t

t

)︄
,

s∑︂
i=1

(︄
n+mi − 1
mi − 1

)︄}︄
∀ t ∈ Z.

Proof This theorem is a special case of Corollary 1.2 in [4].

These two theorems stress that the defective cases appear only for low degrees
and low lengths of the scheme.

We conclude this section giving a way to graphically represent a fat point in
P2 and, more in general, the 0-dimensional subschemes of P2 whose support is just
one point and whose defining ideal is monomial.
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Remark 1.2.10. Let us consider X = Proj(R/℘) a 0-dimensional subscheme of
P2 supported at just one point which, up to projectivity, we can suppose to be
P = [1,0,0] and such that ℘ is monomial. Since X is supported at just one point,
representing it is equivalent to representing X, the affinised scheme of X in the
affine plane A2 with coordinate ring R = C[x, y], where x = x1

x0
and y = x2

x0
. Since ℘

is monomial, its dehomogenised ℘ with respect to x0 is monomial too, that is there
exists a set A ⊆ N2 such that

℘ = (xiyj)(i,j)∈A ⊆ R

and, since R is Noetherian, we can suppose that A is finite, say

A = {(i1, j1), . . . (ir, jr)}.

Clearly, if (i′, j′) ∈ A then any generator of the form xiyj with i ≥ i′ and j ≥ j′

is redundant, thus can be removed and in this way we can suppose that im /= in
and jm /= jn for any m,n = 1, . . . , r, m /= n. At this point we can order A so that
i1 < i2 < · · · < ir (as a consequence, j1 > j2 > · · · > jr) and setting in the plane N2

all the points (i1, j1), . . . (ir, jr) we will never find two distinct points among these
having at least one of the two coordinate equal, that is, none of the lines joining two
of the points will be vertical or horizontal. Finally, for any m = 1, . . . , r−1 we draw
the segment joining (im, jm) to (im+1, jm) and that joining (im+1, jm) to (im+1, jm+1).
In doing so we obtain a figure similar to a stair that can be interpreted as follows:
the monomials contained in the stair are all and only the ones not contained in I
and the number of squares inside the stair equals the length of X.
Example 1.2.11. Let us consider the fat point mP ∈ P2 with P = [1,0,0]. Its
defining ideal is ℘m = (x1, x2)m whose dehomogenised with respect to x0 is

℘m = (x, y)m = (xm, xm−1y, . . . , xym−1, ym)

so that its graphic representation is

Figure 1.2: The graphic representation of mP ∈ P2
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Note that the number of inner square of the stair is exactly
m∑︂

i=1
i = m(m+ 1)

2 =
(︄
m+ 1

2

)︄

according to Lemma 1.2.4.

1.3 Apolarity Theory and Inverse Systems
A very powerful tool to study many questions concerning 0-dimensional sub-

schemes of Pn is given by the theory of Apolarity and Inverse Systems, originally
introduced by Macaulay and then rediscovered and applied to the study of 0-
dimensional schemes by A. Iarrobino. In this section, we give a quick overview on
this topic using as main reference [66]. We only treat the case when the base field
is C, but a much more general theory has been developed for an arbitrary base field.

Since in this and other sections we need to deal with different polynomial rings,
some of which will be considered as coordinate rings of projective spaces, others as
rings of polynomials and others as rings of derivations, we fix now some notations
in order to avoid ambiguity and confusion.

Notation 1.3.1. For any n ∈ N we denote by T the ring T = C[y0, . . . , yn] and we
think of the elements of T just as polynomials. We write a linear form F ∈ T1 in
the following form

F = x0y0 + x1y1 + · · · + xnyn

so that the variables yi are the indeterminates, the variables xi are the coefficients,
and we think of the projective space Pn having as coordinate ring R = C[x0, . . . , xn]
as the projective space P(T1) through the identification given by

P(T1) ∋ [x0y0 + x1y1 + · · · + xnyn] ↔ [x0, x1, . . . , xn] ∈ Pn.

For any n, d ∈ N>0 we denote by Nn,d :=
(︂

n+d
d

)︂
− 1 the dimension of the projective

space P(Td) = P(C[y0, . . . , yn]d) and by α0, . . . , αNn,d
we denote the multi-indices

of {0,1, . . . , d}n+1 such that |αj| = d ordered by the usual lexicographic order.
Moreover, we denote by Nn+1

d the set of such multi-indices, that is

Nn+1
d = {(i0, i1, . . . , in) ∈ Nn+1 | i0 + i1 + · · · + in = d} = {α0, α1, . . . , αNn,d

}.

We set
x = (x0, . . . , xn)

and, if αj = (α0j, . . . , αnj), we set

xαj = x
α0j

0 . . . xαnj
n
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and analogously for y and yαj . For any multi-index αj we denote by αj! the number

αj! =
n∏︂

i=0
αij!

and by
(︂

d
αj

)︂
the multinomial coefficient(︄

d

αj

)︄
=
(︄

d

α0j, . . . , αnj

)︄
= d!
αj!

=
n∏︂

i=0

(︄
α0j + · · · + αij

αij

)︄
.

A basis of the vector space Td is given by(︄(︄
d

αj

)︄
yαj

)︄
j=0,...,Nn,d

so that we can write a form G ∈ Td in the following way

G =
Nn,d∑︂
j=0

zj

(︄
d

αj

)︄
yαj

for some coefficients zj ∈ C. We think of PNn,d as the projective space P(Td) with
homogeneous coordinates [z0, . . . , zNn,d

] through the identification given by

P(Td) ∋

⎡⎣Nn,d∑︂
j=0

zj

(︄
d

αj

)︄
yαj

⎤⎦ ↔ [z0, . . . , zN,d] ∈ PNn,d

and we denote by S := C[z0, . . . , zNn,d
] the coordinate ring of PNn,d . Finally, for any

n ∈ N we denote by U the ring U = C[w0, w1, . . . , wn] and we think of its elements
as derivations on T . We use the notations w and wαj analogously to x and xαj

Remark 1.3.2. For any n, d ∈ N and for any β = (β0, . . . , βn) ∈ Nn+1
d and

i ∈ {1, . . . , n} we set

wi ◦ yβ :=
⎧⎨⎩

∂yβ

∂yi
if βi > 0

0 otherwise
.

The map
◦ : U × T → T

(F,G) → F ◦G
obtained by extending in the obvious way the action of the variables w0, . . . , wn

previously defined, is an action of U on T and makes T an U -module. Note that,
since the action of U lowers the degree, T is not a finitely generated U -module.
Moreover, the action ◦ respects the grading of U and T in the sense that for any
i, j ∈ N it restricts to

◦ : Ui × Tj → Tj−i

(F,G) → F ◦G .
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Definition 1.3.3. The map ◦ : U × T → T is called the apolarity action of U on
T .

We introduce now a lemma, whose proof is trivial, that we will need in the
following.

Lemma 1.3.4. Let β, γ ∈ Nn+1 (not necessarily with |β| = |γ|). If we set
β = (β0, . . . , βn) and γ = (γ0, . . . , γn), then

wβ ◦ yγ =
⎧⎨⎩0 if β ∤ γ

γ!
(β−γ)!y

γ−β if β | γ

Remark 1.3.5. Since ◦ makes T a U -module, the apolarity action induces a
C-bilinear pairing

Ut × Tt → C

for any t ∈ N. As a consequence we have two induced C-linear maps:

ϕ : Ut → HomC(Tt,C)
F → ϕF

where ϕF : Tt → C
G → F ◦G

and
χ : Tt → HomC(Ut,C)

G → χG
where χG : Ut → C

F → F ◦G .

Proposition 1.3.6. The C-bilinear pairing Ut × Tt → C induced by the apolarity
action is a perfect bilinear paring, i.e. the C-linear maps ϕ and χ described in
Remark 1.3.5 are isomorphisms of C-vector spaces.

Proof See [66] Proposition 2.3.

We are now ready to give the definitions of perp and inverse system.

Definition 1.3.7. Let V be a vector subspace of Ut and W be a vector subspace
of Tt. The perp of V (with respect to ◦) is the vector subspace of Tt defined as

V ⊥ := {G ∈ Tt | F ◦G = 0 ∀ F ∈ V } = {G ∈ Tt | χG(V ) = ⟨0⟩}

and analogously the perp of W (with respect to ◦) is the vector subspace of Ut

defined as

W⊥ := {F ∈ Ut | F ◦G = 0 ∀ G ∈ W} = {F ∈ Ut | ϕG(W ) = ⟨0⟩}.

Definition 1.3.8. Let I be a homogeneous ideal of the ring U . The inverse system
of I, denoted by I−1, is the U -submodule of T defined as

I−1 := {G ∈ T | F ◦G = 0 ∀ F ∈ I}.
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Remark 1.3.9. The inverse system of a homogeneous ideal I ⊆ U is a graded
submodule of T but, in general, it is not closed under multiplication, i.e. I−1

is not, in general, an ideal of T . Moreover, unfortunately, I−1 is not a finitely
generated U -submodule of T , as the next easy example will show.

Example 1.3.10. Let us fix n = 1, so that U = C[w0, w1] and T = C[y0, y1] and
let us consider the ideal I = (w0) ⊆ U . By definition, we have

I−1 =
{︄
G ∈ T

⃓⃓⃓⃓
∂G

∂y0
= 0

}︄

and easy computations show that

I−1 = C ⊕ ⟨y1⟩ ⊕ ⟨y2
1⟩ ⊕ ⟨y3

1⟩ ⊕ · · · =
∞⨁︂

i=0
⟨yi

1⟩.

In particular, I−1 is not finitely generated as U -submodule of T and it is not an
ideal of T .

As their definition suggest, the perp and the inverse system are related, as shown
by the following proposition. Also note that, since I−1 is graded, the proposition
gives a way to construct, grade by grade, the entire submodule I−1.

Proposition 1.3.11. If I is a homogeneous ideal of U , then (I−1)t = I⊥
t .

Proof See [66] Proposition 2.5.

Remark 1.3.12. Let us consider a homogeneous ideal I ⊆ U = C[w0, . . . , wn]. We
have

dim(I−1)t = dim I⊥
t = Nn,t − dim It = dimRt/It = HR/I(t),

where the first equality follows from Proposition 1.3.11 and the second from the
fact that ◦ : Ut × Tt → C is a perfect pairing. Clearly, this can be used in two
directions: on the one hand we can compute HR/I(t) by discussing the dimension
of the inverse system of I, on the other hand we can compute the size of (I−1)t if
we know HR/I(t).

Remark 1.3.13. Using Remark 1.3.12 we can find a necessary and sufficient condi-
tion for an ideal I ⊆ U to have a finitely generated inverse system. Indeed, keeping
in mind that the apolarity action lowers the degree of polynomials, we have that
I−1 is finitely generated as U -submodule of T if and only if dim(I−1)t = 0 for all
t ≫ 0 and, by Remark 1.3.12, this happens if and only if HR/I(t) = 0 for all t ≫ 0.
But this is true if and only if I is an artinian ideal, so that one has

I−1 is finitely generated as U -module ⇔ I is an artinian ideal.
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Remark 1.3.14. We can use Proposition 1.3.11 to characterise the inverse system
of a monomial ideal I ⊆ U . Since I is monomial, for any t ∈ N there exists
At ⊆ Nn+1

t such that
It = ⟨wαj ⟩αj∈At

and by Lemma 1.3.4 we easily find that

I⊥
t = ⟨yαj ⟩αj∈Nn+1

t \At

and thus, by Proposition 1.3.11, we get

I−1 =
∞⨁︂

t=0
(I−1)t =

∞⨁︂
t=0

I⊥
t =

∞⨁︂
t=0

⟨yαj ⟩αj∈Nn+1
t \At

= ⟨yβ | wβ /∈ I⟩.

The perp has a good behaviour with respect to the intersection and the sum of
vector spaces, as shown by the following lemma.

Lemma 1.3.15. Let W1 and W2 be two vector subspaces of Tt, or of Ut. Then the
following hold:

(W1 ∩W2)⊥ = W⊥
1 +W⊥

2 and (W1 +W2)⊥ = W⊥
1 ∩W⊥

2 .

Proof See [66] Lemma 2.7.

The inverse system of the intersection of two ideals can be computed using the
following proposition, which follows immediately from Lemma 1.3.15.

Proposition 1.3.16. Let I and J be ideals of U . Then

(I ∩ J)−1 = I−1 + J−1.

We conclude this section describing the inverse system of a union of fat points.
In order to preserve the coherence with the previous notations and with how we
defined inverse systems, we consider fat points in the projective space P(U1) thus
defined by ideals of U . However, when in the following we will deal with fat points
of Pn = P(T1) we will be able to apply all the results of this section using the trivial
isomorphism P(U1) ∼= P(T1).

Theorem 1.3.17. Let P1, . . . , Ps be points of P(U1) with I(Pi) = ℘i and let
m1, . . . ,ms be positive integers. Suppose that Pi = [pi0, pi1, . . . , pin] and set

LPi
= pi0y0 + pi1y1 + · · · + pinyn ∈ T1

and I = ℘m1+1
1 ∩ · · · ∩ ℘ms+1

s ∈ U . Then we have

(I−1)t =
⎧⎨⎩Tj for j ≤ max{mi}
Lj−m1

P1 Tm1 + · · · + Lj−ms

Ps
Tms for j ≥ max{mi + 1}

.
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Proof See [66] Theorem 3.2.

Corollary 1.3.18. Let {L1, . . . , Ls} be a general set of linear forms in T1. Then,
for any integer t, the vector space V =< Lt

1, . . . , L
t
s > has the maximal possible

dimension, i.e.
dimC(V ) = min{s, dimC Tt}.

Proof See [66] Corollary 3.7.

1.4 Veronese varieties
As its name suggests, the Veronese surface was originally introduced and studied

by G. Veronese in [105] and [106]. The definition was then extended to the more
general class of Veronese varieties that are interesting thanks to several peculiar
characteristics, that we discuss in this section.

Definition 1.4.1. For any n, d ∈ N>0 the (n, d)-Veronese embedding is the map

νn,d : Pn → PNn,d

[x0, . . . , xn] → [xα0 , . . . , xαNn,d ]

and the (n, d)-Veronese variety is Vn,d := νn,d(Pn).

It is easy to show that Vn,d is a variety and that νn,d is an isomorphism of
algebraic varieties between Pn and Vn,d; see [97], §4.4, Example 1.28 for a detailed
proof.

Remark 1.4.2. Given a linear form

F = x0y0 + x1y1 + · · · + xnyn ∈ T1

by the multinomial theorem we have

F d =
(︄

n∑︂
i=0

xiyi

)︄d

=
Nn,d∑︂
j=0

(︄
d

αj

)︄
xαjyαj =

Nn,d∑︂
j=0

xαj

(︄(︄
d

αj

)︄
yαj

)︄
.

Thus, using the identification mentioned in Notation 1.3.1, we have

P(Td) ∋ F d ↔ [xα0 , . . . , xαNn,d ]⏞ ⏟⏟ ⏞
νn,d([x0,...,xn])

∈ PNn,d

so that another way to see the Veronese embedding is the following

νn,d : P(T1) → P(Td)
[L] → [Ld]
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and Veronese varieties can be thought of as the varieties parameterising powers of
linear forms.
This point of view on Veronese varieties immediately brings with it another one
connected to tensors. Indeed, the polynomial algebra T is isomorphic as graded
algebra to the symmetric algebra

Sym(T1) =
∞⨁︂

i=0
Symi(T1)

and, more in particular, we have Td
∼= Symd(T1) as vector spaces. In light of this,

we could also see the Veronese embedding as

νn,d : P(Sym1(T1)) → P(Symd(T1))
[v] → [v ⊗ v · · · ⊗ v⏞ ⏟⏟ ⏞

d times

] .

We will mainly use the first or the second point of view; the purpose of introducing
the last is just for the sake of completeness and coherence with Segre and Segre-
Veronese varieties.

Remark 1.4.3. Let us consider a hypersurface C in Pn defined by the polynomial
F ∈ Rd. If we write F as

F =
Nn,d∑︂
i=0

aix
αi

we can construct the linear form

Lin(F ) :=
Nn,d∑︂
i=0

aizi ∈ S1

defining a hyperplane HC in PNn,d and an easy check shows that

νn,d(C) = HC ∩ Vn,d.

In particular, if we now consider another hypersurface D in Pn defined by the
polynomial G ∈ Rd and we define the hyperplane HD analogously to HC, we find
that

νn,d(C ∩ D) = HC ∩HD ∩ Vn,d.

Hence, the embedding νn,d allows to translate problems concerning intersection of
hypersurfaces of degree d in Pn into problems concerning intersections of hyper-
planes in PNn,d with the Veronese variety Vn,d.

A first important property of Veronese varieties is described by the following
proposition.
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Proposition 1.4.4. Let P1, . . . , Ps ∈ Vn,d ⊆ PNn,d be distinct points in Vn,d. If
s ≤ d+ 1, then dimL(P1, . . . , Ps) = s− 1.

Proof It is enough to prove the statement for s = d+ 1. For any s = 1, . . . , d + 1
we set Qs := ν−1

n,d(Ps) ⊆ Pn and for any s = 1, . . . , d let Fs ∈ T1 be a linear form
such that Fs(Qs) = 0 and Fs(Qs+1) /= 0. The form

F :=
d∏︂

s=1
Fs ∈ Td

defines, as in Remark 1.4.3, a hyperplane of PNn,d containing the linear space
L(P1, . . . , Pd), but not Pd+1, and this ends the proof.

We now state a useful proposition providing a link between Veronese embedding
and Apolarity Theory; note that in this case, the considered apolarity action is the
one of U on the ring R, which is obviously analogous to the apolarity action of U
on T .

Notation 1.4.5. Given X a projective subscheme of Pn, we denote by L(X) the
smallest linear projective subspace of Pn containing X.

Proposition 1.4.6. Let X be a projective subscheme of Pn. Then

L(νn,d(X)) ∼= P(I(X)⊥
d ) ⊆ P(Ud)

and the isomorphism is natural.

Proof Given the scheme X and its ideal I(X) = (F1, . . . , Fs), we denote by r the
number r := |{F ∈ {F1, . . . , Fs} , deg(F ) = d}| and, up to a change of the order of
the generators, we can suppose that deg(F1) = deg(F2) = · · · = deg(Fr) = d. We
write the polynomials F1, . . . , Fr as

Fj =
Nn,d∑︂
i=0

aijx
αi

and we set

Hi := Lin(Fi) =
Nn,d∑︂
i=0

aijzi

for any j = 1, . . . , r. Using the same argument of Remark 1.4.3, we get

I(νn,d(X))1 = ⟨H1, H2, . . . , Hr⟩ ⊆ S1

and, since L(νn,d(X)) = V (I(νn,d(X))1), we find

L(νn,d(X)) =
⎧⎨⎩[z0, . . . , zNn,d

] ∈ PNn,d |
Nn,d∑︂
i=0

aijzi = 0 ∀ j = 1, . . . , r
⎫⎬⎭ =
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=
⎧⎨⎩
⎡⎣Nn,d∑︂

i=0
zi

(︄
d

αi

)︄
yαi

⎤⎦ ∈ PNn,d |
Nn,d∑︂
i=0

aijzi = 0 ∀ j = 1, . . . , r
⎫⎬⎭ ⊆ PNn,d .

Now we pass to describe the vector subspace I(X)⊥
d ⊆ Ud. We have

I(X)d = ⟨F1, . . . , Fr⟩

and, by definition of perp and Lemma 1.3.15, we obtain

I(X)⊥
d =

r⋂︂
j=1

(Fj)⊥
d =

r⋂︂
j=1

{G ∈ Ud | G ◦ Fj = 0} .

A generic G ∈ Ud can be written as (recall the notation αi = (αi0, . . . , αin))

G =
Nn,d∑︂
i=0

ti

(︄
d

αi

)︄
wαi

and for any j = 1, . . . , r we have

G ◦ Fj =
Nn,d∑︂
i=0

ti

(︄
d

αi

)︄
wαi ◦

Nn,d∑︂
k=0

akjx
αk =

∑︂
0≤i≤Nn,d

0≤k≤Nn,d

akjti

(︄
d

αi

)︄
wαi ◦ xαk =

∑︂
0≤i≤Nn,d

0≤k≤Nn,d

akjti

(︄
d

αi

)︄
αk!δik =

Nn,d∑︂
i=0

aij

(︄
d

αi

)︄
αi!ti = d!

Nn,d∑︂
i=0

aijti

where δik is the usual Kronecker delta. Thus, we get

I(X)⊥
d

∼=

⎧⎨⎩
Nn,d∑︂
i=0

ti

(︄
d

αi

)︄
wαi ∈ Ud |

Nn,d∑︂
i=0

aijti = 0 ∀ j = 1, . . . , r
⎫⎬⎭ .

Hence, the linear projective subspace P(I(X)⊥
d ) ⊆ P(Ud)) is naturally isomorphic

to L(νn,d(X)) via the trivial identification yi ↔ wi and this concludes the proof.

Notation 1.4.7. In light of the proof of Proposition 1.4.6, we use in P(Ud) an iden-
tification analogous to the one we introduced for P(Td). More precisely, we identify
P(Td) with PNn,d endowed with homogeneous coordinate [t0, . . . , tNn,d

] through

P(Ud) ∋

⎡⎣Nn,d∑︂
j=0

tj

(︄
d

αj

)︄
wαj

⎤⎦ ↔ [t0, . . . , tN,d] ∈ PNn,d .

In fact, we will need to work in P(Ud) only in Chapter 3, and there we will use the
natural isomorphism given by Proposition 1.4.6. Hence, we will never again use ho-
mogeneous coordinates [t0, . . . , tNn,d

] in PNn,d , but we will always use [z0, . . . , zNn,d
]

as in Notation 1.3.1. (We gave this notation just to make things clearer and to
stress the identification used in the proof of Proposition 1.4.6.)
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1.4.1 Waring problem and secant varieties of Vn,d

In 1770 the British mathematician E. Waring, in his book Meditationes Alge-
bricae, stated that every natural number is a sum of at most 9 positive cubes and
of at most 19 fourth powers and supposed that, for every natural number d ≥ 2,
there existed a number g(d) such that every natural number is a sum of at most
g(d) dth powers of natural numbers. Waring did not prove any of these statements
that, nevertheless, turned out to be true, as proved by D. Hilbert and other math-
ematicians.

We can follow Waring’s footsteps and pose a similar question in the context of
homogeneous polynomials.

Definition 1.4.8. Let F ∈ Td be a homogeneous polynomial of degree d. The
Waring rank, or symmetric rank, of F , or simply the rank of F , is defined to be the
number

srk(F ) = min
{︄
r ∈ N | ∃ L1, L2, . . . , Lr ∈ T1 such that F =

r∑︂
i=1

Ld
i

}︄
.

Note that the well-posedness of the definition follows by Corollary 1.3.18. When
no confusion can arise, we will refer to the Waring rank of a polynomial F just as
the rank of F . The reason why the Waring rank is also called symmetric rank is
explained by Remark 1.4.16.

Remark 1.4.9. Clearly, given F ∈ Td and λ ∈ C∗, one has srk(F ) = srk(λF ) or,
in other words, srk(F ) = srk(G) for any G ∈ [F ] ∈ P(Td) = PNn,d . Hence, in some
sense, the notion of Waring rank is a “projective” notion, and when one deals with
problems regarding the Waring rank, one can work in PNn,d rather than Td.

At this point we can ask two questions:

• Does there exist a minimum integer g(d) such that srk(F ) ≤ g(d) for all
[F ] ∈ PNn,d ?

• Does there exist a minimum integer G(d) such that there exists a non-empty
Zariski open subset W of PNn,d such that srk(F ) ≤ G(d) for all [F ] ∈ W ?

Clearly, one has G(d) ≤ g(d) and Corollary 1.3.18 guarantees that g(d) exists and
that g(d) ≤ dimTd. Questions related to G(d) and g(d) or, more in general, to the
Waring rank of homogeneous polynomials are all called Waring problems.

Now we want to highlight the link between Waring problems and Veronese
varieties and the consequent usefulness of the Veronese variety geometry knowledge
in the study of the Waring problems. This link is mainly given by secant and
osculating varieties of Veronese varieties and by the fact that, as we have already
said, the points of Veronese varieties can be seen of as powers of linear forms. Let
us clarify what we mean.
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Definition 1.4.10. Let X ⊆ Pn a projective variety. We define

σ0
s(X) :=

⋃︂
P1,...,Ps∈X

Pi /=Pj for i /=j

L(P1, . . . , Ps)

and
σs(X) := σ0

s ⊆ Pn.

The variety σs(X) is called sth-secant variety of X. Moreover, given a point P ∈ Pn

we say that the X-rank of P is the minimum integer r such that P ∈ σ0
r(X), and

the X-border rank of P is the minimum integer r′ such that P ∈ σr′(X).

As we will soon see, the notion of border rank is strictly necessary, since it can
be different than the rank.

The sth-secant variety of a variety X has an expected dimension obtained by a
rough computation of the parameters, but it can happen that the true dimension
of the secant variety is less than the expected one.

Definition 1.4.11. Let X ⊆ Pn be a projective variety. The expected dimension of
σs(X) is

expdim(σs(X)) := min{s(dim(X) + 1) − 1, n}

and the number
δ(σs(X)) := expdim(σs(X)) − dim(σs(X))

is called the defect of σs(X). If δ(σs(X)) > 0, then the variety σs(X) is called
defective.

The effective dimension of a secant variety can be computed by using the famous
Terracini Lemma. To recall this result, we first introduce the osculating spaces to
a variety, which we will also use in the section on osculating varieties.

Definition 1.4.12. Let X ⊆ Pn a projective variety and P ∈ X. The kth-osculating
space to X at P is the projective linear space

τk,P (X) := L((k + 1)P ∩ X).

Note that τ1,P (X) is the classical tangent space to X at the point P ; see [59]
§III.2.4. for more details.

Lemma 1.4.13 (Terracini Lemma). Let X be a variety in Pn and let p1, . . . , ps ∈ X
general points and z ∈ L(p1, . . . , ps) a general point. Then

τ1,z(σs(X)) = L(τ1,p1(X), . . . , τ1,ps(X)).

Now we analyse in more detail the secant varieties of Veronese varieties.
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Remark 1.4.14. Let us now consider the sth-secant variety of the Veronese variety
Vn,d. Keeping in mind that we can view Vn,d as

Vn,d = {[Ld] | L ∈ T1} ⊆ PNn,d

we have

σ0
s(Vn,d) =

⋃︂
[Ld

1],...,[Ld
s ]∈Vn,d

L([Ld
1], . . . , [Ld

s]) =

=
⎧⎨⎩[F ] ∈ PNn,d | [F ] =

⎡⎣ s∑︂
j=1

ajL
d
j

⎤⎦ for some aj ∈ C, Lj ∈ T1

⎫⎬⎭ =

= {[F ] ∈ PNn,d | srk(F ) ≤ s}

that is σ0
s(Vn,d) is the set of the degree d form of Td having Waring rank equal or

less than s and in particular we have

σ0
s \ σ0

s−1 = {[F ] ∈ PNn,d | srk(F ) = s}

and hence the Waring rank coincides with the Vn,d-rank. This characterisation of
σ0

s(Vn,d), together with Corollary 1.3.18, gives the following chain of inclusions

Vn,d = σ0
1(Vn,d) ⊆ σ0

2(Vn,d) ⊆ · · · ⊆ σ0
r(Vn,d) = PNn,d

for some r ≤ Nn,d (among all the possible values of r we choose the minimal one)
and, consequently, there exists also r′ ∈ N with r′ ≤ r (we choose again the minimal
r′) such that

Vn,d = σ1(Vn,d) ⊆ σ2(Vn,d) ⊆ · · · ⊆ σr′(Vn,d) = PNn,d .

The expected value of r′ is

min{r ∈ N | expdim(σr(Vn,d)) = Nn,d}

and, as we will see, this expected value coincides with the actual value of r′ except
in some classified cases.

Unfortunately, σ0
s(Vn,d) is not, in general, an algebraic variety so it is easier to

work with its closure σs(Vn,d) but unfortunately, again, the points on the border
of σs(Vn,d) can have a Waring rank greater than s. All this brings us to introduce
another notion of Waring rank: the border Waring rank, which is nothing but the
Vn,d-border rank.

Definition 1.4.15. Let F ∈ Td be a homogeneous polynomial of degree d. The
border Waring rank of F , or simply the border rank of F , is defined to be the
number

srk(F ) = min {r ∈ N | [F ] ∈ σr(Vn,d)} .
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Note that, clearly, it is always true that srk(F ) ≤ srk(F ). As for the Waring
rank, when no confusion arises, we will refer to the border Waring rank of F just
as the border rank of F .

Remark 1.4.16. Given a symmetric tensor T ∈ Symd(T1), its symmetric rank
and its symmetric border rank are defined analogously to the Waring rank and the
border Waring rank of a homogeneous polynomial through the secant varieties of
Veronese varieties. Since we have a natural identification between homogeneous
polynomials and symmetric tensors, we use for the symmetric rank and the border
symmetric rank the same notations of the polynomial case, that is srk(T ) and
srk(T ).

In general, computing the rank or the border rank of a polynomial is very hard,
see [76], but it is possible to determine, at least, the value of G(d) for any d by
using the secant varieties to Veronese varieties and Theorem 1.2.7. Before stating
the theorem giving the exact value of G(d) note that, with the notion of secant
varieties, the numbers g(d) and G(d) can be redefined as follows:

• g(d) = min{r ∈ N | σ0
r(Vn,d) = PNn,d};

• G(d) = min{r ∈ N | σr(Vn,d) = PNn,d}.

Determining g(d) is harder than determiningG(d), since σ0
r(Vn,d) need not be closed,

and, up to our knowledge, it is still an unsolved problem. To determine G(d) we
need instead to understand when expdim(σs(Vn,d)) = dim(σs(Vn,d)). The key to do
that is the following theorem.

Theorem 1.4.17. Let P1, . . . , Ps be generic points in Pn and

X = 2P1 + 2P2 + · · · + 2Ps.

Then
dim(σs(Vn,d)) = HX(d) − 1.

Proof See [66] Theorem 6.1.

Using this latter theorem and Theorem 1.2.7 one gets the following theorem,
giving all the cases in which σs(Vn,d) is defective and thus all the values of G(d).

Theorem 1.4.18. For any n, d, s ∈ N it holds that expdim(σs(Vn,d)) = dim(σs(Vn,d))
except in the following cases:

• d = 2, 2 ≤ s ≤ n and in this case δ(σs(Vn,2)) = s(s−1)
2 ;

• n = 2, d = 4, s = 5 and in this case δ(σ5(V2,4)) = 1;
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• n = 3, d = 4, s = 9 and in this case δ(σ9(V3,4)) = 1;

• n = 4, d = 3, s = 7 and in this case δ(σ7(V4,3)) = 1;

• n = 4, d = 4, s = 14 and in this case δ(σ14(V4,4)) = 1.

Note that the defectivity in the case n = d = s = 2 is a classical result due to
Severi, who proved in [96] that the Veronese surface V2,2 ⊆ P5 is, up to projectivity,
the only irreducible non-degenerate surface, not a cone, of P5 whose second secant
variety is defective.

1.4.2 Generalised Waring problem and osculating varieties
of Vn,d

Waring problems can be generalised as follows: given F ∈ Td and k ≤ d, what is
the minimum r ∈ N for which there exist L1, . . . , Lr ∈ T1 and F1, . . . , Fr ∈ Tk such
that F = Ld−k

1 F1 + · · · + Ld−k
r Fr ? These kinds of problems are called generalised

Waring problems and as well as the study of Waring problems can be carried out
through the secant varieties of Veronese varieties, so the study of the generalised
Waring problems can be reduced to the study of the secant varieties of the osculating
varieties of Vn,d. Here we will be very concise; a more detailed treatise of this topic
can be found, for instance, in [21] and [46].

Definition 1.4.19. Let X ⊆ Pn a smooth projective variety. The kth-osculating
variety of X is the variety

τk(X) :=
⋃︂

P ∈X
τk,P (X).

As for secant varieties, we have an expected dimension for the osculating vari-
eties of Vn,d:

expdim(τk(Vn,d)) = min
{︄
Nn,d, n+

(︄
n+ k

n

)︄
− 1

}︄
.

In contrast to the case of secant varieties, the osculating varieties of Vn,d are never
defective, as stated in the following proposition.

Proposition 1.4.20. The dimension of τk(Vn,d) is always the expected one, that is

dim(τk(Vn,d)) = min
{︄
Nn,d, n+

(︄
n+ k

n

)︄
− 1

}︄
.

Proof See [21] Lemma 3.3.
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Remark 1.4.21. The relevance of the osculating varieties τk(Vn,d) in the study of
the generalised Waring problems is given by the following fact: if P ∈ Vn,d is the
point corresponding to [Ld], with L ∈ T1, then it can be shown that (see [46], §1)

τk,P (Vn,d) = {Ld−kF | F ∈ Tk}

and, as a consequence, we have

τk(Vn,d) = {[F ] ∈ PNn,d | F = Ld−kF for some L ∈ T1, F ∈ Tk}.

With this in mind, it is clear that determining the minimum r such that the generic
F ∈ Td can be written as F = Ld−k

1 F1 + · · · + Ld−k
r Fr with Li ∈ T1 and Fi ∈ Tk, is

equivalent to finding the minimum r such that σr(τk(Vn,d)) = PNn,d .

The previous remark motivates the study of the osculating varieties of Vn,d

and of their secant varieties, which, unfortunately, looks more difficult than the
secant varieties case. A concrete evidence comes from the fact that we do not
have a complete classification of the defective cases, and there are some exam-
ples in which the defect of these secants variety is very high. To show how un-
favourable the situation can be, we report in the following table the dimensions of
σs(τ4(V6,5)) ⊆ P461 obtained from [21], §4, Example 4:

s expdim(σs(τ4(V6,5))) dim(σs(τ4(V6,5))) δ(σs(τ4(V6,5)))
2 431 345 86
3 461 417 44
4 461 452 9

≥ 5 461 461 0

See [21] §4 for a list of solved cases, conjectures, and open problems on the
topic.

1.4.3 Catalecticant matrices and ideals of Vn,d

Catalecticant matrices were introduced by J. J. Sylvester in 1851 in [101], even
though the author used this name to refer to them only the following year in [102]
and [103]. They were originally investigated because the study of their determinant
allows to determine the Waring rank of binary forms. Here, we give a very quick
treatise following a more modern approach to catalecticant matrices.

Definition 1.4.22. For every n ∈ N and i, j ∈ N>0 such that i < j the
(i, j− i;n+ 1)-catalecticant matrix Cat(i, j− i;n+ 1) is the

(︂
n+i

n

)︂
×
(︂

n+j−i
n

)︂
matrix

with row and column indices respectively given by the multi-index sets {α ∈ Nn+1
i }

and {β ∈ Nn+1
j−i }, whose (α, β)-entry is equal to zα+β.
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Note that Cat(i, j − i;n + 1) = Cat(j − i, i;n + 1)t and Cat(i, j − i;n + 1) is
a square matrix if and only if i = j − i. For instance, the catalecticant matrix
Cat(2,2; 3) is

Cat(2,2; 3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z4,0,0 z3,1,0 z3,0,1 z2,2,0 z2,1,1 z2,0,2
z3,1,0 z2,2,0 z2,1,1 z1,3,0 z1,2,1 z1,1,2
z3,0,1 z2,1,1 z2,0,2 z1,2,1 z1,1,2 z1,0,3
z2,2,0 z1,3,0 z1,2,1 z0,4,0 z0,3,1 z0,2,2
z2,1,1 z1,2,1 z1,1,2 z0,3,1 z0,2,2 z0,1,3
z2,0,2 z1,1,2 z1,0,3 z0,2,2 z1,0,3 z0,0,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Once one has defined the generic Cat(i, j − i;n+ 1), it is possible to associate to a
homogeneous polynomial its catalecticant matrices.

Definition 1.4.23. Given F ∈ Td = C[y0, . . . , yn]d and a positive integer i < d, its
(i, d− i;n+ 1)-catalecticant matrix is the matrix CatF (i, d− i;n+ 1) obtained by
substituting in the catalecticant matrix Cat(i, d − i;n + 1) to zγ the coefficient of
yγ divided by the number of occurrences of zγ in Cat(i, d− i;n+ 1).

Example 1.4.24. Let us consider F = y4
0 + 2y2

0y1y2 − 3y2
0 + y4

1 − y4
2 + y0y

3
1 ∈ T4. If

we want to construct CatF (2,2; 3), following the definition, we have to substitute

z4,0,0 = 1, z2,1,1 = 1
2 , z2,0,2 = −1, z0,0,4 = −1, z0,4,0 = 1, z1,3,0 = 1

2
and zi,j,k = 0 in all the other cases. Hence, we obtain

CatF (2,2; 3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1
2 −1

0 0 1
2

1
2 0 0

0 1
2 −1 0 0 0

0 1
2 0 1 0 0

1
2 0 0 0 0 0

−1 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Lemma 1.4.25. Given F ∈ Td = C[y0, . . . , yn]d and a positive integer i < d we
have

F =
(︂
yi

0 yi
0y1 · · · yi

n

)︂
CatF (i, d− i;n+ 1)

(︂
yd−i

0 yd−i−1
0 y1 · · · yd−i

n

)︂t

where (yi
0 yi

0y1 · · · yi
n) are all the monomials of Ti ordered by the lexicographic

order and similarly for (yd−i
0 yd−i−1

0 y1 · · · yd−i
n ).

Proof The proof is a straightforward check.

We will see more facts about catalecticant matrices in the following chapters;
time being, we conclude this section presenting an important theorem that allows
to compute the ideals of Veronese varieties through catalecticant matrices.
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Theorem 1.4.26. For any n ≥ 1, d ≥ 2 and i = 1, . . . , d − 1 the ideal of
Vn,d ⊆ PNn,d has a system of generators given by the 2 × 2 minors of
Cat(i, d− i;n+ 1).
Proof See [92] Corollary 5.5.

1.5 Segre varieties and Segre-Veronese varieties
In the same way one can parameterise symmetric tensors of symmetric rank 1

through the Veronese varieties, one can use the so-called Segre varieties to param-
eterise tensors having tensor rank 1, which are also called decomposable tensors.
We start by recalling the definition of tensor rank and tensor border rank and then
we give the definition of Segre varieties.
Definition 1.5.1. Let V1 . . . Vk be finitely generated C-vector spaces and
T ∈ V1 ⊗ · · · ⊗ Vk. The tensor rank of T is defined to be

rk(T ) := min{r ∈ N | T =
r∑︂

i=1
vi1 ⊗ · · · ⊗ vik for some vij ∈ Vj}

and the tensor border rank is defined to be

rk(T ) := min{r ∈ N | T = lim
t→∞

Tt with rk(Tt) ≤ r ∀ t}.

Notation 1.5.2. Given n1, n2, . . . , nk with k ≥ 2, we denote the homogeneous coor-
dinates of Pni by [xi0, . . . , xini

] and the multihomogeneous coordinates of
Pn1 × Pn2 × · · · × Pnk by [x10, . . . , x1n1 ; . . . ;xk0, . . . , xknk

]. We set

R(i) := C[xi,0, . . . , xi,ni
] and R := C[x10, . . . , x1n1 ; . . . ;xk0, . . . , xknk

].

Moreover, on the set of all the variables xij, we use the lexicographic order with
the variables ordered so that xi1j1 < xi2j2 if i1 < i2 or i1 = i2 and j1 < j2.
Definition 1.5.3. Let n1, . . . , nk be positive integers. The (n1, . . . , nk)-Segre em-
bedding is the map

sn1,...,nk
: Pn1 × Pn2 × · · · × Pnk → P(n1+1)(n2+1)...(nk+1)−1

[x10, . . . , x1n1 ; . . . ;xk0, . . . , xknk
] → [. . . , x1i1x2i2 . . . xkik

, . . . ]

where the products x1i1x2i2 . . . xkik
are all the possible ones, ordered according to

the lexicographic order described in Notation 1.5.2. The image of sni,...,nk
is called

the (n1, . . . , nk)-Segre variety, and it is denoted by Sn1,...,nk
.

Notation 1.5.4. When we deal with sn1,...,nk
, we use in P(n1+1)(n2+1)...(nk+1)−1 ho-

mogeneous coordinates [ui1,i2,...,ik
] with ij ∈ {0,1, . . . , nj} for any j = 1, . . . , k. With

this notation, we have that Sn1,...,nk
has parametric equations given by

ui1,i2,...,ik
= x1i1x2i2 . . . xkik

.
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Remark 1.5.5. It is easy to see that the Segre embeddings can also be viewed in
following way:

sn1,...,nk
: P(Cn1+1) × · · · × P(Cnk+1) → P(Cn1+1 ⊗ · · · ⊗ Cnk+1)

([v1], [v2], . . . , [vk]) → [v1 ⊗ · · · ⊗ vk] .

One can repeat all the discussion on the secant varieties of Vn,d, substituting Vn,d

with Sn1,...,nk
and in this way one obtains that the tensor rank and the border tensor

rank respectively coincide with the Sn1,...,nk
-rank and the Sn1,...,nk

-border rank. For
this reason, the secant varieties of Segre varieties are widely studied, but a complete
classification of the defective cases is still missing. However, there are several partial
results; see [23] for an exhaustive description of the state of the art.

Segre and Veronese varieties can be “combined”, giving rise to the Segre-Veronese
varieties, which parameterise the so-called decomposable partially symmetric ten-
sors. We want to conclude this section with a quick overview on this topic.

Definition 1.5.6. Let n1, . . . , nl, d1, . . . , dl be positive integers and set

n := (n1, . . . , nl), d := (d1, . . . , dl), n := (n1+1)+· · ·+(nl+1), d := d1+· · ·+dl.

We say that a tensor T ∈ (Cn)⊗d is a (n; d)-partially symmetric tensor if

T ∈ Symd1(Cn1+1) ⊗ Symd2(Cn2+1) ⊗ · · · ⊗ Symdl(Cnl+1) ⊆ (Cn)⊗d

Definition 1.5.7. The partially symmetric rank of a (n; d)-partially symmetric
tensor T is the number

psrk(T ) := min{r ∈ N | T =
r∑︂

i=1
v⊗d1

i,1 ⊗ · · · ⊗ v⊗dl
i,l for some vi,j ∈ Cnj+1}

and the partially symmetric border rank of T is the number

psrk(T ) := min{r ∈ N | T = lim
t→∞

Tt with psrk(Tt) ≤ r ∀ t}.

In the same way that symmetric tensors can be identified with homogeneous
polynomials, partially symmetric tensors can be identified with multihomogeneous
polynomials. To clarify this concept, we need to introduce some cumbersome, but
necessary, notations; we imitate Notation 1.3.1 in a multigraded setting.

Notation 1.5.8. Given n1, n2, . . . , nl, d1, d2, . . . , dl positive integers we set

n := (n1, . . . , nl), d := (d1, . . . , dl).

We denote by T (i) := C[yi,0, . . . , yi,ni
] and we think of the elements of T (i) just as

polynomials. We write a linear form F (i) ∈ T (i) in the following way

F (i) = xi,0yi,0 + xi,1yi,1 + · · · + xi,ni
yi,ni
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so that the yi,ki
are the indeterminates, the xi,ki

are the coefficients and we think
of the projective space Pni with coordinate ring R(i) as the projective space P(T (i)

1 )
through the identification given by

P(T (i)
1 ) ∋ [xi,0yi,0 + xi,1yi,1 + · · · + xi,ni

yi,ni
] ↔ [xi,0, xi,1, . . . , xi,ni

] ∈ Pni .

At this point we consider the ring

T := C[y1,0, . . . , y1,n1 ; . . . ; yl,0, . . . , yl,nl
]

endowed with the multigrading induced by T (1), . . . , T (l). The multihomogeneous
part of T with multidegree (d1, . . . , dl) is denoted by Td1,...,dl

and it has dimension(︄
n1 + d1

n1

)︄
. . .

(︄
nl + dl

nl

)︄
,

and we set Nn;d := dim Td1,...,dl
− 1. An analogous notation is used for the multi-

homogeneous parts of a multihomogeneous ideals of T . A basis of the vector space
Td1,...,dl

is given by ⎛⎝ l∏︂
j=1

(︄
dj

αij

)︄
yj

αij

⎞⎠
(αi1 ,...,αil

)∈Nn1+1
d1

×···×Nnl+1
dl

,

so that we can write a form G ∈ Td1,...,dl
in the following way

G =
∑︂

(αi1 ,...,αil
)∈Nn1+1

d1
×···×Nnl+1

dl

v(αi1 , . . . , αil
)

l∏︂
j=1

(︄
dj

αij

)︄
yj

αij

for some coefficients v(αi1 , . . . , αil
) ∈ C depending on G and on αi1 , . . . , αil

. Given
any multi-index α = (a0, a1, . . . , an) ∈ Nn+1

d we can associate to it a d-ple (i1, . . . , id)
as follows:

(a0, a1, . . . , an) ∗−→ (0,0, . . . ,0⏞ ⏟⏟ ⏞
a0 times

, 1,1, . . . ,1⏞ ⏟⏟ ⏞
a1 times

, . . . , n, n, . . . , n⏞ ⏟⏟ ⏞
an times

) =: ∗((a0, a1, . . . , an)).

In what follows, it will be useful to write

v(αi1 , . . . , αil
) = v(i11,...,i1d1 ),...,(il1,...,ildl

)

where (ij1, . . . , ijdj
) is obtained by αij

using the association ∗. Note that{︂
∗(αij

) | αij
∈ Nnj+1

dj

}︂
=
{︂
(ij1, . . . , ijdj

) | 0 ≤ ij1 ≤ ij2 ≤ · · · ≤ ijnj
≤ nj

}︂
.
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We think of the projective space PNn;d as the projective space P(Td1,...,dl
) with ho-

mogeneous coordinates [v(i11,...,i1d1 ),...,(il1,...,ildl
)] through the identification given by

P(Td1,...,dl
) ∋

⎡⎣∑︂ v(i11,...,i1d1 ),...,(il1,...,ildl
)

l∏︂
j=1

(︄
dj

αij

)︄
yj

αij

⎤⎦ ↔ [v(i11,...,i1d1 ),...,(il1,...,ildl
)] ∈ PNn;d

and we denote by S := C[v(i11,...,i1d1 ),...,(il1,...,ildl
)] the coordinate ring of PNn;d . Finally,

we denote by U the ring

U := C[w1,0, . . . , w1,n1 ; . . . ;wl,0, . . . , wl,nl
]

and we think of its elements as derivations on T . For the multigraded apolar
action of U on T we refer to [63]. We will sometimes identify the projective space
P(Ud1,d2,...,dl

) with PNn;d through identifications analogous to the one we introduced
for P(Td1,d2,...,dl

).

Remark 1.5.9. Let T be a (n,d)-partially symmetric tensor, which means that

T ∈ Symd1(Cn1+1) ⊗ Symd2(Cn2+1) ⊗ · · · ⊗ Symdl(Cnl+1).

Via the isomorphisms
Symdj (Cnj+1) ∼= T (j)

dj

we get

Symd1(Cn1+1) ⊗ Symd2(Cn2+1) ⊗ · · · ⊗ Symdl(Cnl+1) ∼= Td1,...,dl

(F (1), . . . , F (l)) ↔ F (1) · · ·F (l)

and thus we can identify partially symmetric tensors with multihomogeneous poly-
nomials.

We can now give the definition of Segre-Veronese embeddings.

Definition 1.5.10. Let n1, . . . , nl, d1, . . . , dl be positive integers and set

n := (n1, . . . , nl), d := (d1, . . . , dl).

The (n; d)-Segre-Veronese embedding is

svn;d : Pn1 × · · · × Pnl → PNn,d

[x10, . . . , x1n1 ; . . . ;xl0, . . . , xlnl
] → [. . . , xi10

10 · · · xi1n1
1n1 · · · xil0

l0 · · · xilnl
lnl
, . . . ]

where the products xi10
10 · · ·xi1n1

1n1 · · ·xil0
l0 · · · xilnl

lnl
are all the possible ones such that

ij0 + · · · + ijnl
= dj for any j = 1, . . . , l, ordered according to the lexicographic

order introduced in Notation 1.5.2. The image of the embedding svn;d is called the
(n; d)-Segre-Veronese variety and is denoted by SVn;d.
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Remark 1.5.11. Using notation 1.5.8, we have that SVn;d has parametric equa-
tions given by

v(i11,...,i1d1 ),...,(il1,...,ildl
) = x1i11 · · ·x1i1d1

· · ·xlil1 · · ·xlildl
.

Remark 1.5.12. Using Remark 1.5.9 and the identifications that we introduced
in Notation 1.5.8, it is easy to see that the Segre-Veronese embeddings can also be
viewed as

svn;d : P(T (1)
1 ) × · · · × P(T (l)

1 ) → P(Td1,...,dl
)

([L(1)] × · · · × [L(l)]) → [(L(1))d1 · · · (L(l))dl ]

or equivalently as

svn;d : P(Cn1+1) × · · · × P(Cnl+1) → P(Symd1(Cn1+1) ⊗ · · · ⊗ Symdl(Cnl+1))
([v1] × · · · × [vl]) → [v⊗d1

1 ⊗ · · · ⊗ v⊗dl
l ] .

In particular, SVn;d parameterises the partially symmetric tensors having partially
symmetric rank equal to 1. Hence, in a totally analogous way to Veronese and Segre
varieties, one finds that the partially symmetric rank and the partially symmetric
border rank respectively coincide with the SVn;d-rank and the SVn;d-border rank.
For a description of the state of the art on the secant varieties of Segre-Veronese
varieties, see [2].

1.6 Méthode d’Horace and Méthode d’Horace dif-
férentielle

The Horace method, or Méthode d’Horace, and its stronger differential version
were introduced and developed by J. Alexander and A. Hirschowitz in several papers
having as main purpose the study of the postulation of fat points and other 0-
dimensional schemes; see [4], [5], [6], [7] and [77]. The strength of this method
lies in its use to make an induction start in order to compute the postulation or,
equivalently, the Hilbert function of a scheme; in particular, the method works very
well under the assumption of generality of the scheme because in this case it can
be combined with specialisation techniques. Here, we do not introduce the Horace
method and its differential version in all their generality and we just focus on what
we will need in this thesis; in order to give a more friendly exposition of the topic,
our main reference for this section is [22].

Definition 1.6.1. Let H ⊂ Pn be a reduced hypersurface and X a closed subscheme
of Pn. The closed subscheme of H given by the schematic intersection

H ∩ X
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and defined by the ideal sheaf IX⊗OH is called the trace of X on H and it is denoted
by TrH(X). The closed subscheme of Pn defined by the ideal sheaf IX : OPn(−H)
is called the residual of X with respect to H and it is denoted by ResH(X).
The canonical exact sequence

0 IResH(X)(−H) IX ITrH(X),H 0

is called the residual (or Castelnuovo) exact sequence of X with respect to H.

Lemma 1.6.2 (Lemme d’Horace). Let d be a positive integer. If X is a closed sub-
scheme of Pn and H is a reduced hypersurface of Pn such that h0(ITrH(X),H(d)) = 0,
then

h0(IX) = h0(IResH(X)(d− deg(H))).

Proof The statement follows immediately from taking the long cohomology exact
sequence induced by the residual sequence of X with respect to H tensorised by
OPn(d).

Definition 1.6.3. Let X be a 0-dimensional subscheme of Pn. We say that Ld(X)
has the expected dimension if X imposes as many conditions as possible to the
degree d hypersurfaces of Pn, i.e. if

dim(Ld(X)) = expdim(Ld(X)) = max{0, dim(Ld) − ℓ(X)}.

If dim(Ld(X)) = expdim(Ld(X)) for every d ∈ N we say that X has good postulation,
otherwise we say that X has bad postulation.

Remark 1.6.4. Let X be a 0-dimensional subscheme of Pn (we are not interested
in the case dim(X) > 0) and suppose that we want to prove that the postulation of
X is good. The ingredients that make the Horace method work are the following:

1. By the semicontinuity theorem (see [73], Chapter III, Theorem 12.8) the function
h0 is upper semicontinuous so that h0(X) ≤ h0(X′) for any X′ obtained by
specialising X. In particular

h0(IX′(d)) = expdim(Ld(X)) ⇒ h0(IX(d)) = expdim(Ld(X));

2. If we find a specialisation X′ and a reduced hypersurface H such that

h0(ITrH(X′),H(d)) = 0

then, by Lemma 1.6.2, we have

h0(IX′) = h0(IResH(X′)(d− deg(H)))

and, by induction on d and on ℓ(X), we can suppose that
h0(IResH(X′)(d− deg(H))) is the expected one.
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Note that, from a more geometric point of view, when we specialise X to X′ in order
to have h0(ITrH(X′),H(d)) = 0, we are considering a configuration of our points in
such a way that H is a fixed component of the linear system Ld(X′) so that the
number of the degree d hypersurfaces passing through X′ equals the number of the
degree d− deg(H) hypersurfaces passing through the part of X′ not lying on H.

Even though the Horace method is a powerful tool, it can be impeded by arith-
metic obstructions. Indeed, it could be impossible to specialise X without “wast-
ing” conditions, that is, without imposing on the trace more conditions than what
we need. In some cases, when ℓ(X) > dim Ld, this could not be a problem but in
other ones, the so-called cas rangé, when ℓ(X) = dim Ld and all conditions imposed
by X are necessary for the good postulation, this can cause some problems. Luck-
ily, this problem is solved by the differential version of the Horace method, that
allows us to take just one layer of the 0-dimensional component of X that we are
specialising. Let us be more precise.

Definition 1.6.5. In the algebra of formal functions C[[x, y]], where

x = (x1, . . . , xn−1),

a vertically graded ideal with respect to y is an ideal of the form:

I = I0 ⊕ I1y ⊕ · · · ⊕ Im−1y
m−1 ⊕ (ym)

where for i = 0, . . . ,m− 1, Ii ⊆ C[[x]] is an ideal.

Definition 1.6.6. Let H be a smooth irreducible hypersurface of Pn. We say that
X ⊆ Pn is a vertically graded subscheme of Pn with base H and support P ∈ H,
if X is a 0-dimensional scheme with support at the point P and there is a regular
system of parameters (x, y) at P such that y = 0 is a local equation for H and the
ideal of X in ˆ︁OPn,P

∼= C[[x, y]] is vertically graded with respect to y.

We can now introduce the differential trace and residual.

Definition 1.6.7. Let X ⊆ Pn be a vertically graded subscheme of Pn with base
H and p ≥ 0 a fixed integer. The pth differential residual of X with respect to H is
the closed subscheme of Pn denoted by Resp

H(X) and defined by the ideal sheaf

IResp
H(X) := IX + (IX : Ip+1

H )Ip
H .

The pth differential trace of X on H is the closed subscheme of Pn denoted by
Trp

H(X) and defined by the ideal sheaf

ITrp
H(X),H := (IX : Ip

H) ⊗ OH .
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1.7 – Singularities of plane algebraic curves

Note that Resp
H(X) is obtained by removing from X the (p + 1)th “slice” of X,

while Trp
H(X) is exactly the (p + 1)th slice. Moreover, for p = 0 we obtain the

standard trace and residual.

Notation 1.6.8. Let X1, . . . ,Xr ⊆ Pn be closed vertically graded subschemes with
base H, X = X1 + · · · + Xr and p = (p1, . . . , pr) ∈ Nr. We set

Trp
H(X) := Trp1

H (X1) + · · · + Trpr

H (Xr), Resp
H(X) := Resp1

H (X1) + · · · + Respr

H (Xr)

We are finally ready to state the Horace differential lemma.

Lemma 1.6.9 (Lemme d’Horace différentielle). Let H be a hyperplane in Pn and
let X be a 0-dimensional closed subscheme of Pn. Let Y1, . . . ,Yr,Y′

1, . . . ,Y′
r be

0-dimensional irreducible subschemes of Pn such that Yi
∼= Y′

i for i = 1, . . . , r,
Y′

i has support on H and is vertically graded with base H, and the supports of
Y = Y1 + · · · + Yr and Y′ = Y′

1 + · · · + Y′
r are generic in their respective Hilbert

schemes. Let p = (p1, . . . , pr) ∈ Nr. If

1. h0(ITrH(X)+Trp
H(Y′),H(d)) = 0 and

2. h0(IResH(X)+Resp
H(Y′)(d− 1)) = 0,

then
h0(IX+Y(d)) = 0.

Proof See [4] Proposition 9.1.

In some sense, the Horace differential Lemma tells us that we can differentially
specialise some of our points by taking only of their layers, in order to satisfy the
condition on the trace without “wasting” conditions.

We conclude now the section giving the definition of d-jets.

Definition 1.6.10. Let X be a 0-dimensional scheme of Pn with support at the
point P ∈ Pn. We say that X is a d-jet if there exists a line L ⊆ Pn such that
I(X) = I(P )d + I(L).

1.7 Singularities of plane algebraic curves
In this last section we recall some basic facts about the singularities of plane

algebraic curves, with a special focus on the Jacobian (or Tjurina) and Milnor
algebras, that are one of our subjects of study in the next chapters. Our main
references for this part are [70] and [71].
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Notation 1.7.1. Given C : F (x0, x1, x2) = 0 a reduced curve of degree d in P2,
we denote by Sing C the union of the singular points of C and if P is a point of
multiplicity m for C , we write mP (C) = m. For the partial derivatives, we use the
following short notation:

∂iF := ∂F

∂xi

, i = 0,1,2.

Moreover, if X is a subscheme of P2 and P is an isolated point of its support, XP

denotes the component of X supported on P .

Definition 1.7.2. Given C : F (x0, x1, x2) = 0 a reduced curve of degree d in P2,
the degree d− 1 curves

Ci : ∂iF = 0, i = 0,1,2
are called the derivative curves of C.

Now we can give the definition of Jacobian ideal and Jacobian scheme.

Definition 1.7.3. Given C : F (x0, x1, x2) = 0 a reduced curve in P2, the
(projective) Jacobian scheme X(C) of C is the 0-dimensional subscheme of P2 defined
by the homogeneous (but maybe not saturated) ideal

J(C) := (∂0F, ∂1F, ∂2F )

called the (projective) Jacobian ideal of C. The length of X(C) is called the global
Tjurina number τ(C) of C.

Note that the support of the Jacobian scheme is Sing C, which consists of a
finite number of points since the curve is reduced and thus the definition of τ(C) is
well-posed.

Lemma 1.7.4. Let C : F (x0, x1, x2) = 0 be a reduced curve in P2 and P ∈ C with
mP (C) = m ≥ 2. Then

a) The curve C contains X(C);

b) mP (Ci) ≥ m − 1 and for at least one of the Ci the multiplicity at P is exactly
m− 1;

c) In particular, XP ⊇ (m− 1)P and XP /⊇ mP .

Proof

a) The Euler relation d · F = ∑︁
xi(∂iF ) implies that F ∈ J(C), that is, C ⊇ X(C).
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b) We have that

mP (C) = m ⇔ ∂m−1F

∂xj
0x

h
1x

m−1−j−h
2

⃓⃓⃓⃓
P

= 0

for 0 ≤ j, h ≤ m− 1 and at least one of the derivatives

∂mF

∂xj
0x

h
1x

m−j−h
2

⃓⃓⃓⃓
P

is not 0. Hence, for each i = 0,1,2 and 0 ≤ j, h ≤ m− 2 one has

∂m−2(∂iF )
∂xj

0x
h
1x

m−2−j−h
2

⃓⃓⃓⃓
P

= 0

and for at least one i, one j and one h we have

∂m−1(∂iF )
∂xj

0x
h
1x

m−1−j−h
2

⃓⃓⃓⃓
P
/= 0.

c) It is enough to recall that for a curve D we have: mP (D) = k ⇔ D ⊇ kP and
D does not contain (k + 1)P .

When we want to locally analyse a curve, it is better to work with affine coor-
dinates. For this reason we now introduce the Jacobian scheme in its affine version
and a new scheme, called Milnor scheme of the curve.

Notation 1.7.5. In A2 we use affine coordinates (x, y). Let C : f(x, y) = 0 be
a reduced curve of degree d in A2; we use the same notation as in P2, i.e. Sing C
denotes the union of the singular points of C, and if P is a point of multiplicity m
for C, we write mP (C) = m. Moreover, we set

fx := ∂f

∂x
, fy := ∂f

∂y

and we denote by Cx, Cy the degree d− 1 derivative curves of C:

Cx : fx = 0, Cy : fy = 0.

Definition 1.7.6. Given C : f(x, y) = 0 a reduced curve in A2, the (affine)
Jacobian scheme X(C) of C is the 0-dimensional subscheme of A2 defined by the
ideal, called the (affine) Jacobian ideal of C,

J(C) := (f, fx, fy).
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Note that, since the curve is reduced, Sing C consists of a finite number of points
P1, . . . , Pr, and X(C) is the union of the 0-dimensional schemes
X(C)P1 , . . . , X(C)Pr . This guarantees that the following definition is well-posed.

Definition 1.7.7. Given C : f(x, y) = 0 a reduced curve in A2, the Tjurina number
of C at a singular point P is τP (C) := ℓ(XP ). If no confusion arises, i.e. when we
work locally, looking at the curve C at the point P , we just write τ instead of τP (C).

It is easy to see that, if C̄ is a curve in P2, U0 is the affine chart x0 /= 0, and
C = C̄ ∩ U0, then X(C̄) ∩ U0 = X(C). Hence, X(C̄)P = X(C)P for any P ∈ Sing C.

Definition 1.7.8. Given C : f(x, y) = 0 a reduced curve in A2, the (affine) Milnor
scheme Z(C) of C is the subscheme of A2 defined by the ideal, called the (affine)
Milnor ideal of C,

M(C) := (fx, fy).

Note that, by [70] Lemma 2.3 p.113, if P is a singular, necessarily isolated
(the curve being reduced), point of C, then P is an isolated point of Z(C). This
guarantees that the following definition is well-posed.

Definition 1.7.9. Given C : f(x, y) = 0 a reduced curve in A2, the Milnor number
of C at a singular point P is µP (C) := ℓ(ZP ). If no confusion arises, i.e. when
we work locally, looking at the curve C at the point P , we just write µ instead of
µP (C).

For completeness, we remark that some authors use a different notation than
ours and call Tjurina ideal the one defined in Definition 1.7.3 and Jacobian ideal
the one in Definition 1.7.8.

Now we briefly recall the notion of analytic, or right, equivalence and the ana-
lytic classification of double points, which we will use in the rest of this thesis. The
discussion could be carried out more in general, but for our purposes it is enough
to restrict the treatise just to plane algebraic curves. For more details, see [70],
Chapter I, §1 and §2.

Notation 1.7.10. We denote by C{x, y} the ring of convergent power series in the
two variables x, y.

Definition 1.7.11. Let C : f = 0 and D : g = 0 be reduced curves in A2 and let
P = (p1, p2) ∈ C and Q = (q1, q2) ∈ D. We say that the germs of C at P and of D
at Q, which we respectively denote by (C, P ) and (D, Q), are analytically (or right)
equivalent if there exists a germ of a biholomorphic function φ ∈ C{x− p1, y − p2}
such that φ(f) = g(x+q1−p1, y+q2−p2), and in this case we write (C, P ) ∼ (D, Q).
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Note that in [70], Definition 2.9, pag. 118, the definition of contact equivalence
is also given, but the notions of right equivalence and contact equivalence coincide
in the case of double points of reduced hypersurfaces, and thus in particular for
the plane curves. At this point we can describe the classification, up to analytic
equivalence, of the double points of reduced plane curves.

Theorem 1.7.12. Let C be a reduced curve in A2 and let P ∈ C be such that
mP (C) = 2. Then (C, P ) ∼ (Ak, O) where O = (0,0) and Ak : y2 − xk+1 = 0 for a
certain k ≥ 1 and we say that P is an Ak-singularity. Moreover, if k is even we
say that P is a cuspidal point of C while if k is odd we say that P is a nodal point
of C.

Proof See [70], Chapter I, Theorem 2.48.
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Chapter 2

The Jacobian scheme of a plane
algebraic curve

This chapter is based on a joint work with A. Gimigliano and M. Idà, see [34],
and it is mainly devoted to study the Jacobian scheme of a plane algebraic curve
and to introduce the notion of symmetric scheme, which we will widely study in
next chapters.

If C : F = 0 is a reduced curve of P2 passing through a point P , then to
say that C has in P a singular point of multiplicity m means that C ⊇ mP and
C /⊇ (m+1)P . This is a very rough information, but there are others 0-dimensional
schemes contained in C which could characterise the singularity more carefully. For
example, if P is an An singularity, then P is a nodal-type singularity if and only
if for any ℓ ≥ 1 there is a curvilinear scheme supported at P of length ℓ contained
in C, while P is a cuspidal singularity A2r if and only if for any ℓ ≤ 2r + 1 there is
a curvilinear scheme supported at P of length ℓ contained in C, and no curvilinear
scheme supported at P of length > 2r+1 is contained in C (see [68], Theorem 2.3).

So, if we want to study a singularity, one of the possible approaches is to answer
to the following question: which kind of “maximal” 0-dimensional schemes sup-
ported at P is contained in C? But the curve being 1-dimensional, in many cases
it will not be possible to bound the length of these schemes, due to the curvilinear
schemes contained in C. However, there is a very interesting 0-dimensional sub-
scheme of the curve that gives information on the singularity, the Jacobian scheme,
which, together with the Tjurina and Milnor numbers, has been an intensive object
of study in recent years, e.g. see [71], [8], [3], [107], [75], [65].

In this chapter, we focus our attention mainly on ordinary singularities. It is
precisely the study of these singularities that will lead us to introduce k-symmetric
schemes, which will be widely studied in the rest of the thesis. The structure of
the chapter is as follows.
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The Jacobian scheme of a plane algebraic curve

In §2.1 we show that, if b := (g1, . . . , gt) ⊆ C[x, y] is the ideal of a 0-dimensional
scheme with the origin O contained in its support, and m := (x, y), then there is a
canonical isomorphism of C-algebras

C[x, y]m/bC[x, y]m ∼= C{x, y}/bC{x, y}.

This allows us to state in a more algebraic way the Mather-Yau Theorem in [89]
saying that, if V : f = 0 and W : g = 0 are germs of hypersurfaces in Cn+1 with
isolated singularities at O, then (V,O) is analytically equivalent to (W,O) if and
only if

C{x1, . . . , xn+1}(︂
f, ∂f

∂x1
, . . . , ∂f

∂xn+1

)︂ ∼=
C{x1, . . . , xn+1}(︂
g, ∂g

∂x1
, . . . , ∂g

∂xn+1

)︂
as C-algebras.

In §2.2, in order to study the geometry of the Jacobian schemes at ordinary
m-multiple points, we introduce the notion of k-symmetric scheme, i.e. a scheme
supported at a point P and intersecting each line through P with the same length
k. In Theorem 2.2.7 we show that, if C : f = 0 is a plane reduced curve having an
ordinary multiple point at P , the Jacobian scheme of C at P is (m− 1)-symmetric
and its length τ is at most (m−1)2. After that we give in Theorem 2.2.10 the sharp
bounds for the Tjurina number of an ordinary singularity, which is an immediate
consequence of more general results in [27] and [87].

In §2.3 we apply the theory of Gröbner basis to compute the Tjurina number
at the origin of the family of curves

Cb,c : xm + ym + xbyc = 0

with b + c > m, having an ordinary singularity at O. In this way, we give a
large family of examples of curves having an ordinary singularity with τ < µ, thus
partially recovering some results of [87]. In particular, we prove in Theorem 2.3.6
that for m ≥ 5 the curves Cb,c allow to obtain the minimum expected by Theorem
2.2.10.

In §2.4 we show that, in the case of double points, the characterisation through
the Jacobian scheme is very easy: a double point is of type An if and only if the
Jacobian scheme of the curve at P is a curvilinear scheme of length n.

Finally, in the last section we prove a result on the global Tjurina number of a
curve in P2. Namely, if C is an irreducible curve of degree d and geometric genus g,
with no infinitely near points, then C has only nodes if and only if τ(C) =

(︂
d−1

2

)︂
−g.

2.1 The Mather-Yau Theorem for algebraic curves
In [89] the authors proved that the germs of two hypersurfaces in Cn+1 at one of

their isolated singularities are analytically equivalent if and only if their Jacobian
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(or Tjruina) algebras are isomorphic as C-algebras. In this section, we want to
translate this theorem in a more algebraic language. In particular, as a consequence
of [89], we prove that the analytic germs at O of two reduced algebraic plane curves
C and D, which we may assume to be in A2, are analytically equivalent if and only
if their algebraic Jacobian schemes X(C)O and X(D)O are isomorphic.

Notation 2.1.1. If A is a ring or a C-algebra, with dimA we denote the Krull
dimension of A. If A is a finite C-algebra, i.e. A is finitely generated as C-vector
space, the dimension of the C-vector space A is the length of A.

Lemma 2.1.2. A Noetherian C-algebra A of dimension 0 is a finite C-algebra.

Proof On the one hand, a ring is an Artin ring if and only if it is Noetherian and
of dimension 0, see [13], Theorem 8.5; on the other hand, if A is a finitely generated
K-algebra for a certain field K, then A is an Artin ring if and only if A is a finite
K-algebra, see [13] Exercise 8.3.

Lemma 2.1.3. Let m := (x, y) in C[x, y], and consider the injective morphisms of
C-algebras

C[x, y] j
↪→ C[x, y]m

φ
↪→ C{x, y}

and set
A := C[x, y]m, B := C{x, y}

The rings A and B are local rings with maximal ideals respectively mA and mB,
and the map φ induces an isomorphism on the completions: φ̂ : Â

∼=→ B̂.
Moreover, (A,B) is a flat couple, which means that B is a flat A-module and

for any ideal a of A the following holds:

aB ∩ A = a

Proof See [95] Proposition 3 for the first statement and [95] Proposition 22 and
Proposition 28 for the second one.

Theorem 2.1.4. Let g1, . . . , gt ∈ C[x, y]. Assume that the subscheme of A2 asso-
ciated to the ideal b := (g1, . . . , gt) is 0-dimensional with the origin O contained in
its support, and let m := (x, y). Then, there is an isomorphism of C-algebras

C[x, y]m/bC[x, y]m ∼= C{x, y}/bC{x, y}

Proof Let b = (g1, . . . , gt) = q1 ∩ · · · ∩ qn be a minimal primary decomposition,
with m1 = √

q1, . . . ,mn = √
q

n
maximal ideals; since O is in the support of the

subscheme defined by b, we may assume m1 = (x, y); set q = q1, m = m1.
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Since √
q = (x, y), there exist n,m > 0 such that xn ∈ q, ym ∈ q; hence, every

homogeneous polynomial of degree ≥ n+m− 1 is in q, i.e. q ⊇ (x, y)n+m−1.
Note that

bC[x, y]m = (q ∩ q2 ∩ · · · ∩ qn)C[x, y]m = qC[x, y]m ∩ q2C[x, y]m ∩ · · · ∩ qnC[x, y]m

and qjC[x, y]m = C[x, y]m for j = 2, . . . , n, since qj /⊆ m for j = 2, . . . , n. Hence
bC[x, y]m = qC[x, y]m, so that

bC{x, y} = qC{x, y}. (◦)

From now on we use the notation of Lemma 2.1.3, and we set a := bA.
The ideal aB = bB is the ideal of B generated by (φ◦j)(g1), . . . , (φ◦j)(gt), that is,
aB = (g1, . . . , gt)B = {σ1g1 + · · · + σtgt, σ1, . . . , σt ∈ B}. Now consider the map
induced by φ

Φ : A/a → B/aB
f + a → φ(f) + aB

which is well-defined, since f−g ∈ a ⇒ φ(f)−φ(g) = φ(f−g) ∈ φ(a) ⊆ aB, and is
a morphism of C-algebras. Moreover, the map Φ is injective: indeed, if φ(f) ∈ aB
then, using Lemma 2.1.3, we have f ∈ φ−1(aB) = aB ∩ A = a.
Now we want to prove that Φ is surjective. Since A/a is a Noetherian C-algebra
of dimension 0, by Lemma 2.1.2 the C-vector space A/a is finite dimensional and
thus there are f1, . . . , fs ∈ A such that f1 + a, . . . , fs + a is a basis for A/a. Since
we have the injection

C[x, y] j
↪→ A

the following is true:

∀ q ∈ C[x, y] ∃ a1, . . . , as ∈ C such that q − (a1f1 + · · · + asfs) ∈ a. (∗)

If we prove that φ(f1) + aB, . . . , φ(fs) + aB is a basis for the C-vector space B/aB
we are done. The injectivity of the map φ gives the linear independence over C of
φ(f1) + aB, . . . , φ(fs) + aB. Now we want to prove that for any σ ∈ B there are
a1, . . . , as ∈ C such that

σ + aB =
s∑︂

i=1
ai(φ(fi) + aB).

We can write
σ =

∑︂
0≤i+j<n+m−1

ai,jx
iyj +

∑︂
i+j≥n+m−1

ai,jx
iyj

and, since the series ∑︂
i+j≥n+m−1

ai,jx
iyj
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is uniformly convergent around O, we can rearrange its terms, so we get

∑︂
i+j≥n+m−1

ai,jx
iyj = xn

⎛⎜⎜⎝ ∑︂
i+j≥n+m−1

i≥n

ai,jx
i−nyj

⎞⎟⎟⎠+ ym

⎛⎜⎜⎝ ∑︂
i+j≥n+m−1

i<n

ai,jx
iyj−m

⎞⎟⎟⎠ ∈ qB.

By (◦) we have aB = bB = qB, so that

σ + aB =
∑︂

0≤i+j<n+m−1
ai,jx

iyj + aB

and we conclude applying (∗) to the polynomial∑︂
0≤i+j<n+m−1

ai,jx
iyj.

Corollary 2.1.5. Let C : f = 0 be a reduced curve in A2 with a singular point at
O and let J be its Jacobian ideal and M be its Milnor ideal. Let us consider the
analytic germ of C at O and let Jan, respectively Man, denote the ideals generated
by f, fx, fy, respectively fx, fy, in C{x, y}. Then there are canonical isomorphisms
of C-algebras:

C[x, y](x,y)/JC[x, y](x,y) ∼= C{x, y}/Jan

C[x, y](x,y)/MC[x, y](x,y) ∼= C{x, y}/Man.

In particular, the Tjurina number τ , respectively the Milnor number µ, of C at O
are the dimensions of the analytic algebras C{x, y}/(f, fx, fy)C{x, y}, respectively
C{x, y}/(fx, fy)C{x, y}.

Hence, the Theorem in [89] gives

Theorem 2.1.6. Let C : f = 0, D : g = 0 be reduced algebraic curves in A2 with
a singular point at O. Then the analytic germs of C and D at O are analytically
equivalent if and only if their (algebraic) Jacobian schemes at O are isomorphic as
schemes over C.

2.2 Jacobian schemes at ordinary singularities
In this section we want to study some geometrical properties of the Jacobian

schemes at ordinary singularities; in order to proceed with our investigation, we
give the definition of the k-symmetric schemes.

Notation 2.2.1. In the following, given a polynomial g, we always denote with gk

its homogeneous component of degree k.

63



The Jacobian scheme of a plane algebraic curve

First of all, we want to stress that a curve C having a multiple ordinary point
at P can have derivative curves with non-ordinary singularities at P , as shown in
the following remark.

Remark 2.2.2. Let C : f(x, y) = 0 be a reduced curve of degree d in A2 with
mO(C) = m; it is not restrictive to assume that the line x = 0 is not a principal
tangent at O, hence writing f as the sum of its homogeneous components we have

f = fm + · · · + fd, fm = ym + αm−1xy
m−1 + · · · + α0x

m

and O is an ordinary singularity of C if and only if fm is the product of m dis-
tinct linear factors, i.e. if and only if the discriminant ∆(g) is not zero, where
g(t) := fm(t,1). Anyhow, the derivative curves

Cx : (fm)x + · · · + (fd)x = 0, Cy : (fm)y + · · · + (fd)y = 0

may have a non-ordinary singularity at O. For instance, if we take

f = 1
4y

4 − (2a+ b)
3 xy3 + (2ab+ a2)

2 x2y2 − a2bx3y

with ∆(f4(1, y)) = ∆(f(1, y)) /= 0, the curve C has an ordinary point of multiplicity
4 at O but

fy = y3 − (2a+ b)xy2 + (2ab+ a2)x2y − a2bx3 = (y − ax)2(y − bx).

Hence, Cy has a non-ordinary triple point at O.

Before giving the definition of k-symmetric scheme, we recall that if D and E
are two plane curves and P is a point such that mP (D) = k,mP (E) = k, k ≥ 1,
then (D · E)P ≥ k2, with equality if and only if they do not have common tangents;
see for example [61] property (5) in §3.3 or [70] p.190. We also recall the definition
of local complete intersection.

Definition 2.2.3. A closed subscheme Y of Pn, respectively An, is said to be a local
complete intersection if there exists a complete intersection X ⊆ Pn, respectively
X ⊆ An, such that Y is an irreducible component of X.

Definition 2.2.4. Let Y be a 0-dimensional scheme supported at one point P ∈ P2

or P ∈ A2. We say that Y is k-symmetric if, for every line r passing through P ,
ℓ(Y ∩ r) = k. We say that Y is a k-symmetric local complete intersection (k-slci
for short) if it is a local complete intersection of two curves D, E with no tangent
in common at P and such that mP (D) = k,mP (E) = k, this implying ℓ(Y ) = k2.

It is immediate to see that a k-slci scheme is k-symmetric.
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Lemma 2.2.5. If Y is a k-slci scheme, then Y is k-symmetric.

Proof Since our schemes are supported at one point, we can work in A2. Let
Y denote the 0-dimensional component of the scheme defined by the ideal (ϕ, ψ),
where

ϕ(x, y) =
k∏︂

j=1
lj + ϕk+1 + . . . ϕp, ψ(x, y) =

k∏︂
j=1

hj + ψk+1 + . . . ψq

with l1 = 0, . . . , lk = 0, h1 = 0, . . . , hk = 0 lines through O, lj /= hi for
i, j = 1, . . . , k. The curves ϕ = 0 and ψ = 0 have no common irreducible com-
ponent at O (they may obviously have common components away from O), since
their tangent cones have no common lines. Let r be a line through O. Choosing
coordinates we may assume that r : y = 0. We have

ϕ̃(x) := ϕ(x,0) = akx
k + ak+1x

k+1 + · · · + asx
s

ψ̃(x) := ψ(x,0) = bkx
k + bk+1x

k+1 + · · · + btx
t

where at least one between ak and bk is not zero since, by assumption, if r is
one of the tangents of the curve ϕ = 0 at O, r cannot be in the tangent cone of
ψ = 0. Let us say ak /= 0. There exists a polynomial f(x) such that f(0) /= 0 and
ϕ̃(x) = xkf(x). Moreover, if ψ̃(x) /= 0, then there exist a polynomial g(x) with
g(0) /= 0 and an n ≥ k such that ψ̃(x) = xng(x). Hence

(C[x, y]/(ϕ, ψ, y))(x,y)
∼=
(︂
C[x]/(ϕ̃, ψ̃)

)︂
(x)

∼= C[x]/(xk).

Remark 2.2.6. We want now to stress some facts on the relationship between
k-symmetric schemes, k-slci and Jacobian schemes.

1. A k-symmetric scheme needs not to be a k-slci, indeed there are a lot of k-
symmetric schemes supported on P , and the smallest one is kP . For example,
if P = O, all the monomial schemes of ideal I with

(xk, yk) ⊆ I ⊆ (x, y)k

are k-symmetric; the above inclusions give
(︂

k+1
2

)︂
≤ ℓ(C[x, y]/I) ≤ k2.

2. If P is a multiple ordinary point of multiplicity m ≤ 3 for a plane curve C, then
the Jacobian scheme of C at P is an (m − 1)-slci. If m = 2 this follows by
Theorem 2.4.1. If m = 3, by Theorem 2.51 p.152 in [70], the germ of C at P is
analytically equivalent to the germ of any union of three distinct lines meeting
at O, for example D : x3 − y3 = 0; since the Jacobian ideal of D is (x2, y2), the
conclusion follows by Theorem 2.1.6.
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3. For any m there exist curves with a multiple ordinary point of multiplicity m at
P and such that their Jacobian scheme is a (m− 1)-slci. In fact, let us consider
the curve C : xm−ym = 0, which is the union of the m distinct lines (x−ηjy) = 0
where η1, . . . , ηm are the mth roots of unity. The curve C has a multiple ordinary
point at O of multiplicity m, and no other singularities. Its Jacobian ideal is

J = (mxm−1,mym−1, xm − ym) = (xm−1, ym−1)

and thus its Jacobian scheme is a (m− 1)-slci.

Theorem 2.2.7. Let P be a multiple ordinary point of multiplicity m for a plane
curve C in P2 and let ZP be its Milnor scheme at P and XP be its Jacobian scheme
at P . Then:

1. the tangent cones of the curves Cx, Cy have no lines in common, hence
ZP = (Cx ∩ Cy)P is a (m− 1)-slci, so that µ = ℓ(ZP ) = (m− 1)2;

2. XP is a (m− 1)-symmetric scheme and τ = ℓ(XP ) ≤ (m− 1)2;

3. in particular, if C is an union of m distinct lines through P , then XP = ZP , so
that ℓ(XP ) = (m− 1)2.

Proof

1. Without loss of generality, we may assume P = O. Let C : f = 0,
f = fm + · · · + fd; since fm is a homogeneous polynomial in x and y of degree
m, (fm)x and (fm)y are homogeneous in x and y of degree m− 1. If (fm)x = 0,
we have fm = aym against the assumption that P is an ordinary singularity,
and analogously for fy, hence mP (Cx) = mP (Cy) = m − 1. The polynomials
(fm)x and (fm)y are products of m−1 linear factor each, and no factors of (fm)x

divides (fm)y and vice versa. Indeed, assume they do have a linear factor l in
common

(fm)x = ll1 . . . lm−2, (fm)y = lh1 . . . hm−2.

By Euler formula

x(fm)x + y(fm)y = mfm ⇒ l|fm ⇒ fm = lg ⇒ (fm)x = lxg + lgx ⇒

⇒ l|lxg ⇒ l|g ⇒ l2|fm

against the assumption that the tangent cone of C at P is the union of m distinct
lines. Hence the curves Cx and Cy have no tangent in common, and we conclude
that ZP = (Cx ∩ Cy)P is a (m− 1)-slci of length ℓ(ZP ) = (m− 1)2.
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2. Let r : h = 0 be a line passing through O; by 1. and Lemma 2.2.5 we have
ℓ(ZP ∩ r) = m − 1. We want to prove that ℓ(XP ∩ r) = m − 1; we have
(f, fx, fy) + (h) = (f, h) + (fx, fy, h), that is, XP ∩ r = (C ∩ r) ∩ (ZP ∩ r).
Since P has multiplicity m for C, we have ℓ(C ∩ r) ≥ m, so that XP ∩ r is
obtained intersecting the subscheme of r of length m− 1 supported on P with a
subscheme of r of length ≥ m supported on P , and the thesis follows. Moreover,
since ZP ⊇ XP , we have that ℓ(XP ) ≤ ℓ(ZP ).

3. Let C : f = 0; since f is homogeneous of degree m, we have mf = xfx + yfy,
hence (f, fx, fy) = (fx, fy), i.e. XP = ZP .

Remark 2.2.8. In Remark 2.2.6 we noted that the Jacobian ideal of xm − ym is
(xm−1, ym−1) and the associated Jacobian scheme is a (m−1)-slci. At this point one
can wonder if all the k-slci are isomorphic to Spec

(︂
C[x, y]/(xk, yk)

)︂
, but Theorem

2.2.7 gives us a quick way to show that this is not true. For example, let C be the
union of the lines x = 0, y = 0, x + y = 0, x + 2y = 0 and let D be the union of
the lines x = 0, y = 0, x+ y = 0, x+ 3y = 0 respectively; then, the germs of C and
D at O are not analytically equivalent (see [70] p.157) so that, by Theorem 2.1.6,
their Jacobian schemes at O are not isomorphic. On the other hand, their Jacobian
schemes are 3-slci by Theorem 2.2.7, hence we found two 3-slci which cannot be
both isomorphic to Spec (C[x, y]/(x3, y3)).

Remark 2.2.9. Let C be a plane curve and assume that P ∈ SingC is a multiple
ordinary point of multiplicity m ≥ 2. If XP is the component of X = X(C) at P ,
then, by Lemma 1.7.4, we have XP ⊇ (m− 1)P and it is almost immediate to see
that this inclusion is strict, so that ℓ(XP ) >

(︂
m
2

)︂
. However, this bound can be much

improved: indeed, Theorem 3.2 in [8] says that, for any isolated plane singularity,
τ > 3

4µ. Hence, keeping in mind that for m ≥ 3 one has
(︂

m
2

)︂
< 3

4(m− 1)2 and that,
by Theorem 2.2.7, µP (C) = (m− 1)2, we get a better lower bound:

3
4(m− 1)2 < τP (C) ≤ (m− 1)2.

Moreover, the upper bound is sharp because we have already seen in Remark 2.2.6
that the case ℓ(XP ) = (m − 1)2 actually occurs, for example if C : xm − ym = 0.
However, the lower bound is not sharp but can be made so by applying some results
of [27] and [87], which we collect in the following theorem.

Theorem 2.2.10. Let C be a plane algebraic curve and assume that P ∈ Sing C is
a multiple ordinary point of multiplicity m ≥ 2. Then⌊︄

3m2 − 2m− 4
4

⌋︄
≤ τP (C) ≤ (m− 1)2.
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Moreover, the bounds are sharp and all the values of τP (C) occur.

Proof The upper bound follows by Remark 2.2.9 and the lower bound can be
computed using the formulas in Proposition 5.14 and Corollary 5.15 of [87] or of
Proposition p. 550 and Tableau 1, p. 543 in [27]. Finally, Theorem 5.2 of [87]
guarantees that all the values occur and thus that the bounds are sharp.

2.3 Ordinary singularities with τ < µ

In this section we compute the Tjurina number at the origin of the curves Cb,c

defined below, in order to give a large class of examples of ordinary singularities
having τ < µ. At the end of the computation of these Tjurina numbers, we partially
recover a more general result presented in [87], where the curves xa + yb = 0 and
their miniversal µ-constant families are analysed. The main purpose of this section
is to present a more algebraic way to carry out these computations through Gröbner
basis.

Throughout this section a, b, c denote non-negative integers, and we set

f = fb,c := xa + ya + xbyc, a ≥ 2, b+ c > a, b ≥ c

For any fixed a ≥ 2, we study the family of curves

Cb,c : xa + ya + xbyc = 0, b+ c > a

having an ordinary singularity of multiplicity a at O = (0,0), with the further
assumption b ≥ c. Clearly, the corresponding results for b < c can be deduced by
symmetry.

In the following we set m := (x, y) in C[x, y] and J = J(Cb,c). For generalities
about Gröbner basis, we refer to [49] Chapter 2, §7. With “grlex order” we mean
the graduate lexicographic order.

Lemma 2.3.1. We have xa, ya ∈ J . In particular, we have that the Jacobian
scheme X(Cb,c) is supported at O = (0,0), the Jacobian ideal J is primary with
radical m and τ = (Cb,c) = τO(Cb,c).

Proof It is enough to notice that:

xa = 1
(a− b)(a− c) − bc

((a− c)(xfx − bf) + b(yfy − cf))

ya = 1
(a− b)(a− c) − bc

(c(xfx − bf) + (a− b)(yfy − cf)) .

From now on, and for the rest of the section, we set τ = τO(Cb,c).
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2.3 – Ordinary singularities with τ < µ

Proposition 2.3.2. If b ≥ a then J = (xa−1, ya−1) and τ = (a− 1)2 = µ.

Proof We have

fx = xa−1(a+ bxb−ayc), fy = aya−1 + (cxb−a+1yc−1)xa−1

f = xa−1(x+ xb−a+1yc) + ya−1(y)
then, in the local ring C[x, y]m we have

JC[x, y]m = (xa−1(a+ bxb−ayc), fy, f)C[x, y]m = (xa−1, fy, f)C[x, y]m =

= (xa−1, ya−1, f)C[x, y]m = (xa−1, ya−1)C[x, y]m.
In a minimal primary decomposition of the Jacobian ideal J , the primary ideal
with radical m is the contraction of the ideal JC[x, y]m (see [13], Proposition 4.8),
that is, J being primary, the ideal (xa−1, ya−1).

Lemma 2.3.3. Assume b < a and set

f (1) = fx = bxb−1yc + axa−1, f (2) = fy = cxbyc−1 + aya−1, f (3) = xa, f (4) = ya

f (5) = xa−b−1ya−1, f (6) = xa−1ya−c−1, f (7) = xa−bya−1.

Then a reduced Gröbner basis of the Jacobian ideal J , up to normalization of the
leading term and with respect to the grlex order, is given by the following table (the
cases marked by "-" cannot occur under our assumptions):

A B C
b = a+1

2
a+1

2 < b < a− 1 b = a− 1

1 c < a−1
2 -

f (1), f (2), f (3)

f (4), f (7)

f (1), f (2), f (3)

f (4), f (7)

2 c = a−1
2 -

f (1), f (2), f (3)

f (4), f (7)

f (1), f (2), f (3)

f (4), f (7)

3 c = a
2 -

f (1), f (2), f (3)

f (4), f (5)

f (1), f (3)

f (5), f (6)

4 c = a+1
2

f (1), f (2), f (3)

f (4), f (5), f (6)

f (1), f (2), f (3)

f (4), f (5), f (6)

f (1), f (3)

f (5), f (6)

5 a+1
2 < c < a− 1 -

f (1), f (2), f (3)

f (4), f (5), f (6)

f (1), f (3)

f (5), f (6)

6 c = a− 1 - - f (5), f (6)

Table 2.1: Gröbner basis of J .
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Proof Given g, h ∈ C[x, y], let S̃(g, h) denote the S-polynomial of g and h as
defined in [49], Chapter 2, §6, Definition 4. We set

S(g, h) := αβ S̃(g, h)

where α and β are the leading coefficients of g and h (see [49], Chapter 2, §2,
Definition 7). For each case, let us denote by G the set of elements appearing in
a single cell of Table 1. We denote by gG the remainder of the division of g by G
(see [49], Chapter 2, §3, Theorem 3). It is immediate to see that for monomials
p, q one has S(p, q)G = 0. We prove that G is a reduced Gröbner basis using the
Buchberger’s Criterion (see [49], Chapter 2, §6, Theorem 6), i.e. showing first that
J = (G), and then that S(f (i), f (j))G = 0 ∀f (i), f (j) ∈ G. We consider the cases
summarised in Table 1, depending on the values of b and c.

• B1) c < a−1
2 , a+1

2 < b < a− 1.
By Lemma 2.3.1, in order to verify that J = (G) is it enough to show that
f ∈ (G) and f (7) ∈ J . We have:

f = x

b
f (1) +

(︃
1 − a

b

)︃
f (3) + f (4) ⇒ f ∈ (G)

f (7) = 1
a

(xa−bf (2) − cyc−1f (3)) ⇒ f (7) ∈ J.

Moreover,

S(f (1), f (2)) = acxa −abya = acf (3) −abf (4), S(f (1), f (3)) = ax2a−b = axa−bf (3)

S(f (1), f (4)) = axa−1ya−c = ya−cf (1) − bxb−1f (4)

S(f (1), f (7)) = axa−1ya−c−1 = a

c
xa−b−1ya−2cf (2) − a2

c
xa−b−1ya−2c−1f (4)

S(f (2), f (3)) = axa−bya−1 = xa−bf (2) − cyc−1f (3)

S(f (2), f (4)) = ay2a−c = aya−cf (4), S(f (2), f (7)) = ay2a−c−1 = aya−c−1f (4)

S(f (3), f (4)) = S(f (3), f (7)) = S(f (4), f (7)) = 0.

Thus we have S(f (i), f (j))G = 0 ∀f (i), f (j) ∈ G, hence G is a Gröebner basis and
it is easy to check that it is reduced.

• The cases C1) c < a−1
2 , b = a − 1, B2) c = a−1

2 , a+1
2 < b < a − 1 and C2)

c = a−1
2 , b = a− 1 are analogous to the case B1.
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• B3) c = a
2 ,

a+1
2 < b < a− 1.

To prove that J = (G) we have just to check that f (5) ∈ J :

f (5) = − c

a2

(︄
yc−1f (1) −

(︄
b

a
xb−1 + a

c
xa−b−1

)︄
f (2) + bc

a
x2b−a−1yc−1f (3)

)︄
.

As in case B1, one can see that

S(f (1), f (2))G = S(f (1), f (3))G = S(f (1), f (4))G = S(f (2), f (3))G = S(f (2), f (4))G = 0.
Moreover we have:

S(f (1), f (5)) = axa−1ya−c−1 = 2cxa−1yc−1 = 2xa−b−1f (2) − 2af (5)

S(f (2), f (5)) = ay2a−c−1 = aya−c−1f (4)

S(f (3), f (4)) = S(f (3), f (5)) = S(f (4), f (5)) = 0

so that S(f (i), f (j))G = 0, ∀f (i), f (j) ∈ G. Hence G is a Gröbner basis and again
it is easy to check that it is reduced.

• C3) c = a
2 , b = a− 1.

The proof that (f (1), f (2), f (3), f (4), f (5)) is a Gröbner basis is analogous to the
previous one. However, this is not a reduced Gröbner basis. Indeed, we have
f (5) = xa−b−1ya−1 = ya−1 so that we can remove f (4) and replace f (2) by

f (2) − af (5) = xbyc−1 = xa−1ya−c−1 = f (6).

Hence the reduced Gröbner basis is G = (f (1), f (3), f (5), f (6)).

• B5) a+1
2 < c < a− 1, a+1

2 < b < a− 1.
In order to prove that J = (G) it is enough to verify that f (5), f (6) ∈ J . In fact,
we have:

f (5) = 1
a2

(︂
−cyc−1f (1) + axa−b−1f (2) + bcxb−1y2c−a−1f (4)

)︂
f (6) = 1

a2

(︂
aya−c−1f (1) − bxb−1f (2) + bcx2b−a−1yc−1f (3)

)︂
.

As in case B1, one can see that

S(f (1), f (2))G = S(f (1), f (3))G = S(f (1), f (4))G = S(f (2), f (3))G = S(f (2), f (4))G = 0.
Moreover we have:
S(f (1), f (5)) = axa−1ya−c−1 = af (6), S(f (1), f (6)) = ax2a−b−1 = axa−b−1f (3)

S(f (2), f (5)) = ay2a−c−1 = aya−c−1f (4), S(f (2), f (6)) = axa−b−1ya−1 = af (5)

S(f (3), f (4)) = S(f (3), f (5)) = S(f (3), f (6)) = 0
S(f (4), f (5)) = S(f (4), f (6)) = S(f (5), f (6)) = 0.

Hence G is a Gröbner basis and, again, it is easy to check that it is reduced.
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• The cases A4) c = a+1
2 , b = a+1

2 and B4) c = a+1
2 , a+1

2 < b < a−1 are analogous
to the case B5.

• C5) a+1
2 < c < a− 1, b = a− 1.

The proof that (f (1), f (2), f (3), f (4), f (5), f (6)) is a Gröbner basis is analogous to
the case B5, but this is not a reduced one. To show that a reduced Gröbner
basis is G = (f (1), f (3), f (5), f (6)) one can proceed as in case C3.

• C4) c = a+1
2 , b = a− 1.

It is analogous to the case C5.

• C6) c = a− 1, b = a− 1.
This case follow easily by case C5 noting that f (5) = ya−1, f (6) = xa−1.

Corollary 2.3.4. Assume b < a; then a system of generators for the leading terms
ideal (LT (J)) of J is given by the following table:

A B C

b = a+1
2

a+1
2 < b < a− 1 b = a− 1

1 c < a−1
2 -

xb−1yc, xbyc−1

xa, ya, xa−bya−1

xb−1yc, xbyc−1

xa, ya, xa−bya−1

2 c = a−1
2 -

xb−1yc, xbyc−1

xa, ya, xa−bya−1

xb−1yc, xbyc−1

xa, ya, xa−bya−1

3 c = a
2 -

xb−1yc, xbyc−1

xa, ya, xa−b−1ya−1

xb−1yc, xa−b−1ya−1

xa, xa−1ya−c−1

4 c = a+1
2

xb−1yc, xbyc−1, xa, ya

xa−b−1ya−1, xa−1ya−c−1

xb−1yc, xbyc−1, xa, ya

xa−b−1ya−1, xa−1ya−c−1

xb−1yc, xa−b−1ya−1

xa, xa−1ya−c−1

5 a+1
2 < c < a− 1 -

xb−1yc, xbyc−1, xa, ya

xa−b−1ya−1, xa−1ya−c−1

xb−1yc, xa−b−1ya−1

xa, xa−1ya−c−1

6 c = a− 1 - -
xa−b−1ya−1

xa−1ya−c−1

Table 2.2: Generators for (LT (J)).

Proof It follows by the definition of Gröbner basis and by Lemma 2.3.3.
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Proposition 2.3.5. Assume b < a and set

ℓ1(a, b, c) = b(a− 1) + c(a+ 1) − bc−a+ 1, ℓ2(a, b, c) = b(a− 1) + c(a+ 1) − bc−a

ℓ3(a, b, c) = (a− 1)2, ℓ4(a, b, c) = b(a− 1) + c(a− 1) − bc

Let Y be the scheme associated to (LT (J)); then ℓ(Y ) is given by the following
table:

A B C

b = a+1
2

a+1
2 < b < a− 1 b = a− 1

1 c < a−1
2 - ℓ1(a, b, c) ℓ1(a, b, c)

2 c = a−1
2 - ℓ1(a, b, c) ℓ1(a, b, c)

3 c = a
2 - ℓ2(a, b, c) ℓ3(a, b, c)

4 c = a+1
2 ℓ4(a, b, c) ℓ4(a, b, c) ℓ3(a, b, c)

5 a+1
2 < c < a− 1 - ℓ4(a, b, c) ℓ3(a, b, c)

6 c = a− 1 - - ℓ3(a, b, c)

Table 2.3: Length of Y .

Proof The length of a scheme given by a monomial ideal can be easily computed if
we know a system of generators for the ideal, for example using its graphic repre-
sentation, which we described in Remark 1.2.10 (see [49], Chapter 9, §2, Example
1 for more details). In our case, the generators of (LT (J)) are given by Corollary
2.3.4, and it is enough to prove cases B1, B3, B5, C5 and C6 because the other
ones are analogous.

• B1) c < a−1
2 , a+1

2 < b < a− 1.
Since (LT (J)) = (xb−1yc, xbyc−1, xa, ya, xa−bya−1), the graphic representation of
Y is

Figure 2.1: Graphic representation of Y in case B1.
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and

ℓ(Y ) = (a−b)a+(2b−a−1)(a−1)+c+(a−b)(c−1) = b(a−1)+c(a+1)−bc−a+1.

• B3) c = a
2 ,

a+1
2 < b < a− 1.

Since (LT (J)) = (xb−1yc, xbyc−1, xa, ya, xa−b−1ya−1), the graphic representation
of Y is

Figure 2.2: Graphic representation of Y in case B3.

and

ℓ(Y ) = (a−b−1)a+(2b−a)(a−1)+c+(a−b)(c−1) = b(a−1)+c(a+1)−bc−a.

• B5) a+1
2 < c < a− 1, a+1

2 < b < a− 1.
Since (LT (J)) = (xb−1yc, xbyc−1, xa, ya, xa−b−1ya−1, xa−1ya−c−1), the graphic rep-
resentation of Y is

Figure 2.3: Graphic representation of Y in case B5.
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and

ℓ(Y ) = (a−b−1)a+(2b−a)(a−1)+c+(a−1−b)(c−1)+a−c−1 = b(a−1)+c(a−1)−bc.

• C5 a+1
2 < c < a− 1, b = a− 1.

Since (LT (J)) = (xa−2yc, xa, ya−1, xa−1ya−c−1), the graphic representation of Y
is

Figure 2.4: Graphic representation of Y in case C5.

and
ℓ(Y ) = (a− 2)(a− 1) + c+ a− c− 1 = (a− 1)2.

• C6) c = a− 1, b = a− 1.
Since (LT (J)) = (xa−1, ya−1) then ℓ(Y ) = (a− 1)2.

Theorem 2.3.6. Let a ∈ N with a ≥ 2 and b, c ∈ N with b+ c > a. Then the curve

Cb,c : xa + ya + xbyc = 0

has an ordinary singularity of multiplicity a at O, and, if b ≥ c, then the possible
values for its Tjurina number τ at O are:

τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a− 1)2 if b ≥ a or b = a− 1, c ≥ a
2

b(a− 1) + c(a+ 1) − bc− a+ 1 if a+1
2 < b ≤ a− 1, c ≤ a−1

2

b(a− 1) + c(a+ 1) − bc− a if a+1
2 < b < a− 1, c = a

2

b(a− 1) + c(a− 1) − bc if a+1
2 ≤ b < a− 1, a+1

2 ≤ c < a− 1

.
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The Jacobian scheme of a plane algebraic curve

The minimum value reached by the Tjurina number τ of Cb,c at O is

τa := min
b,c ∈N,b+c>a

{τ(Cb,c)O} =
⌊︄

3a2 − 2a− 4
4

⌋︄
.

Proof If Y denotes the scheme associated to the leading terms ideal (LT (J)), then
the affine Hilbert function of C[x, y]/J is equal to the affine Hilbert function of
C[x, y]/(LT (J)) (see [49], Chapter 9, §3, Proposition 4), so that, Y being supported
uniquely at O, τ = ℓ(Y ). Hence, the first statement follows from Lemma 2.3.2 and
Proposition 2.3.5.
For the second statement, we prove, under the assumption b ≥ c, that τa = 3a2−2a−4

4
if a is even and τa = 3a2−2a−5

4 if a is odd, and once this is done we can drop the
assumption b ≥ c just exchanging the variables x and y.
If P is a multiple ordinary point of multiplicity a ≤ 3 for any plane curve D, we
have already noticed in Remark 2.2.6 that the Jacobian scheme of D at P is an
(a − 1)-slci, hence τ = 1 if a = 2, τ = 4 if a = 3, and in fact τ2 = 1 and τ3 = 4.
Hence in the following we may assume a ≥ 4.
We use the notation of Proposition 2.3.5; recall that

ℓ1 = b(a− 1) + c(a+ 1) − bc− a+ 1, ℓ2 = b(a− 1) + c(a+ 1) − bc− a

ℓ4 = b(a− 1) + c(a− 1) − bc.

Assume a is even. To prove the statement, it is enough to minimise ℓ1, ℓ2 and ℓ4
in their definition domains. We find the minimum of ℓ1, ℓ2 and ℓ4 and finally the
minimum between these three minima. Let us start with ℓ1. Its domain is defined
by the following inequalities:

b+ c ≥ a+ 1, a+ 1
2 < b ≤ a− 1, c ≤ a− 1

2 (hence b ≥ c)

but, since a is even and a, b, c ∈ N, we can refine these inequalities to the following
ones:

b+ c ≥ a+ 1, a

2 + 1 ≤ b ≤ a− 1, 2 ≤ c ≤ a

2 − 1.

The plane region corresponding to these inequalities is the triangle T as shown by
Figure 2.5
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2.3 – Ordinary singularities with τ < µ

Figure 2.5: The domain of ℓ1.

where A = (a
2 + 2, a

2 − 1), B = (a− 1, a
2 − 1) and C = (a− 1,2).

We have ∇ℓ1(b, c) = (a− 1 − c, a+ 1 − b), so that

∇ℓ1(b, c) = (0,0) ⇔ (b, c) = (a+ 1, a− 1) /∈ T.

Hence the minimum of ℓ1 is along the boundary of T . We have:

ℓ1(b, c)|AB = ℓ1

(︃
b,
a

2 − 1
)︃

= ab+ a2 − 3a
2 ⇒ min

AB
ℓ1 = ℓ1

(︃
a

2 + 2, a2 − 1
)︃

= 3a2 − 2a
4

ℓ1(b, c)|BC = ℓ1(a− 1, c) = 2c+ a2 − 3a+ 2 ⇒ min
BC

ℓ1 = ℓ1(a− 1,2) = a2 − 3a+ 6

ℓ1(b, c)|CA = ℓ1(b, a+ 1 − b) = b2 + (−a− 3)b+ a2 + a+ 2 ⇒

⇒ min
CA

ℓ1 = ℓ1

(︃
a

2 + 2, a2 − 1
)︃

= 3a2 − 2a
4 .

Under our assumptions it easy to check that

min{3a2 − 2a
4 , a2 − 3a+ 6} = 3a2 − 2a

4

for a /= 5, and since we are assuming a even, we conclude that min ℓ1 = 3a2−2a
4 .

Now we find the minimum of ℓ2. The domain of ℓ2 is defined by the following
inequalities:

a+ 1
2 < b < a− 1, c = a

2 , b+ c ≥ a+ 1 (hence b ≥ c)

that, under our assumptions, can be refined as follows:
a

2 + 1 ≤ b ≤ a− 2, c = a

2 .
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Hence, we get:

ℓ2(b, c) = ℓ2

(︃
b,
a

2

)︃
= (a− 2)b+ a2 − a

2 ⇒ min ℓ2 = ℓ2

(︃
a

2 + 1, a2

)︃
= 3a2 − 2a− 4

4 .

Finally, we find the minimum of ℓ4. The domain of ℓ4 is defined by the following
inequalities:

a+ 1
2 ≤ b < a− 1, a+ 1

2 ≤ c < a− 1, b+ c ≥ a+ 1, b ≥ c

that, under our assumptions, can be refined as follows:
a

2 + 1 ≤ b ≤ a− 2, a

2 + 1 ≤ c ≤ a− 2, b+ c ≥ a+ 1, b ≥ c.

The plane region corresponding to these inequalities is the triangle T ′ as shown by
Figure 2.6:

Figure 2.6: The domain of ℓ4.

where A = (a− 2, a− 2), B = (a
2 + 1, a

2 + 1) and C = (a− 2, a
2 + 1).

Proceeding as we did for ℓ1 it easy to check that the minimum of ℓ4 is along the
boundary of T ′ and it is min ℓ4 = 3a2−12

4 .
Finally, an easy computation shows that

min
{︄

3a2 − 2a
4 ,

3a2 − 2a− 4
4 ,

3a2 − 12
4

}︄
= 3a2 − 2a− 4

4

and hence the result is proved for a even. If a is odd the proof is analogous (but it
is easier, since it is not necessary to consider ℓ2).
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2.4 Jacobian schemes at double points
We now consider the Jacobian scheme at a double, not necessarily ordinary,

point. Recall that, if k ≥ 1, a double point of type A2k−1, respectively A2k, for a
plane curve C is a 2-branched, respectively 1-branched, double point, which needs k
successive blow ups to be smoothed (hence A1 is a node, A2 an ordinary cusp, A3 a
tacnode and so on). For any n, even or odd, the normal form for an An singularity
is: y2 − xn+1 = 0; in other words, the germ of C at O is analytically equivalent to
the germ of the curve y2 − xn+1 = 0 at O.

Theorem 2.4.1. A point P is a double point of type An for a plane curve D if and
only if the Jacobian scheme of D at P is a curvilinear scheme of length n. Hence,
a double point P for a plane curve D is of type An if and only if τ(D)P = n.

Proof Let us consider the curve Cn : y2 − xn+1 = 0; C has a double point of type
An at O, and no other singularities in the affine plane; its Jacobian ideal is

J = (y2 − xn+1, 2y, (n+ 1)xn) = (y, xn)

hence its Jacobian scheme is a curvilinear scheme of length n. The conclusion
follows by Theorem 2.1.6.

Remark 2.4.2. The case of double points could induce to think that τ at an
ordinary singularity is always smaller than τ at a non-ordinary singularity, but the
following example shows that this is not always the case. Let us consider the curve
C : xy(x− y)(x+ y)2 + x6 + y6 = 0, which has a 5-ple non-ordinary point at O. A
computation with CoCoA shows that τ = 15, while for the curve D : x5 − y5 = 0
we have τ = 16.

2.5 A remark on the Tjurina number
In this short section we give a condition for a curve C to have only nodes, using

the global Tjurina number τ(C).

Proposition 2.5.1. Let C : f(x, y) = 0 be a plane curve. If P ∈ C, m = mP (C) ≥ 2
and P is not a node, then XP contains properly the 0-dimensional scheme (m−1)P ,
so that

ℓ(XP ) >
(︄
m

2

)︄

Proof First assume that P is an ordinary singularity with m ≥ 3; then,
XP ⊇ (m − 1)P by Lemma 1.7.4, and by Remark 2.2.9 we have
ℓ(XP ) = τ > 3

4(m − 1)2. Since for m ≥ 3 one has
(︂

m
2

)︂
< 3

4(m − 1)2, we get
XP ⊋ (m− 1)P .
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If m ≥ 2 and P is not an ordinary singularity, we can assume that P = (0,0) and
the tangent cone contains the double line supported on the x-axis, so that

f = y2h1 · · ·hm−2 + ϕ

where h1, . . . , hm−2 are linear forms and ϕ is the sum of forms of degree ≥ m + 1.
We have

fx = y2(h1 · · ·hm−2)x⏞ ⏟⏟ ⏞
deg m−1

+ϕx, fy = 2y(h1 · · ·hm−2) + y2(h1 · · ·hm−2)y⏞ ⏟⏟ ⏞
deg m−1

+ϕy

with ϕx = 0 or deg ϕx ≥ m, and ϕy = 0 or deg ϕy ≥ m. Hence the curves

Cx : fx = 0, Cy : fy = 0

have a singularity at P with mP (Cx) = m − 1, mP (Cy) = m − 1, and the two
curves have a common tangent at P , i.e. the x-axis, so that Cx ∩ Cy contains the
0-dimensional scheme Y union of (m−1)P and of the curvilinear scheme of length m
supported on the x-axis, i.e. IY = (x, y)m−1∩(xm, y) = (xm, xm−2y, . . . , xym−2, ym−1);
we have ℓ(Y ) =

(︂
m
2

)︂
+ 1. Moreover, IY ⊋ (x, y)m, that is, Y ⊊ mP .

The Jacobian scheme at P is the schematic intersection C ∩ Cx ∩ Cy at P , and
C ⊋ mP ⊋ Y , so we get that Y ⊆ XP , this giving ℓ(XP ) ≥

(︂
m
2

)︂
+ 1.

Proposition 2.5.2. Let C be an irreducible curve of degree d and geometric genus
g in P2, with no infinitely near points. Then C has only nodes if and only if
τ(C) =

(︂
d−1

2

)︂
− g.

Proof Let P1, . . . , Pr be the singular points of C, of multiplicity m1, . . . ,mr, and
let X be its Jacobian scheme. Assume τ(C) =

(︂
d−1

2

)︂
−g. Since there are no singular

infinitely near points, g = pa(C) −∑︁r
i=1

(︂
mi

2

)︂
, that is(︄

d− 1
2

)︄
− g =

r∑︂
i=1

(︄
mi

2

)︄
.

Hence the assumption
(︂

d−1
2

)︂
− g = τ(C) = ∑︁r

i=1 ℓ(XPi
) gives:

r∑︂
i=1

(︄
mi

2

)︄
=

r∑︂
i=1

ℓ(XPi
).

If Pi is a node, then ℓ(XPi
) = 1 =

(︂
mi

2

)︂
, while if Pi is not a node we have

ℓ(XPi
) >

(︂
mi

2

)︂
by Proposition 2.5.1, hence all the singular points must be nodes.

The vice versa is immediate.
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Chapter 3

Superfat points and associated
tensors

This chapter is based on a joint work with M. V. Catalisano, A. Gimigliano
and M. Idà (see [35]). In all this chapter we will use the identifications defined in
Notation 1.3.1 and in Remark 1.4.2 so that we will interchangeably think of νn,d as
a map from Pn to PNn,d or as a map from P(T1) to P(Td).

The ideas for this chapter sprang from the symmetric schemes we encountered
in Chapter 2 during the study of the Jacobian schemes of ordinary singularities (see
Definition 2.2.4). We found surprising that in the wide panorama of studies among
0-dimensional schemes the following simple (and, to us, quite natural) questions
had not been asked:

• What are the possible structures of a 0-dimensional scheme supported at one
point P which are symmetric, i.e. that give the same length m when intersected
with any line through P?

• Given m, how many points can sit “symmetrically” on a point P of the space?

The formulation of the last question deliberately recalls the well known one: “How
many angels can stand on the tip of a needle?” which has become a sort of metaphor
for “useless logic argument” ,“needless point” , even though it is related to Middle
Ages scholastic theology and to its way of debating similar questions (e.g. see [12]
for problems in angelology and [100] or [93] for a discussion about the story and
possible educational use of this kind of questions). We hope that our questions
about 0-dimensional schemes are not so abstruse!

In this chapter, we start by generalising the definition of m-symmetric scheme
and m-slci scheme from P2 to Pn. After that we give the definition of m-superfat
point as a symmetric scheme having the property of maximality with respect to
the inclusion and we show the coincidence of m-slci and m-superfat points.
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At this point the aim of the chapter is to begin the study of such 0-dimensional
schemes, also related to the varieties they can generate via Veronese or Segre-
Veronese embeddings of the space (either projective or multi-projective) where they
are embedded; this aspect could be of interest also for possible applications to tensor
decomposition (e.g. to products of symmetric W -states in evaluating tensor rank
as a measure of entanglement).

The plan of the chapter is the following: in §3.1 we give the main definition
and first properties related to symmetric 0-dimensional schemes. In particular, we
show that every m-symmetric scheme is contained in an m-slci and we deduce that
m-slci are m-symmetric schemes which are maximal with respect to the inclusion.

In §3.2 we study in more detail the case of points in the plane. In particular,
we show that the 2-superfat points of P2 coincide with the 2-squares and we prove
that the schematic union of all the m-superfat points supported at P ∈ P2 is the
fat point (2m − 1)P . After that we stress some intuition-baffling properties of
symmetric schemes.

Finally, in §3.3 and in §3.4 we point our attention to the kind of symmetric and
partially symmetric tensors which are parameterised by points in the span of the
image of such schemes via Veronese or Segre-Veronese embeddings and we study
the varieties that they define, determining the defectivity of some secant varieties
thereof.

3.1 Symmetric and superfat points in Pn

We start generalising the definition of m-symmetric scheme and m-slci, which
we originally gave only for P2 in Definition 2.2.4.

Definition 3.1.1. A 0-dimensional scheme X supported at one point P ∈ Pn is
said to be

• m-symmetric if ℓ(X ∩ L) = m, for every line L passing through P ;

• an m-symmetric local complete intersection (m-slci for short) if it is a local
complete intersection of n hypersurfaces having multiplicity at P equal to m
and whose tangent cones at P have no line in common.

Remark 3.1.2. It is easy to see that an m-slci is m-symmetric, and the proof is
analogous to the one of Lemma 2.2.5. Moreover, by [62], Corollary 12.4. one finds
that the length of an m-slci of Pn is mn.

As for the case n = 2, an m-fat point is an m-symmetric scheme in any Pn.
Actually, the m-fat points are the m-symmetric schemes of smallest possible length
and their peculiarity with respect to m-symmetry is illustrated by the following
lemma.
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3.1 – Symmetric and superfat points in Pn

Notation 3.1.3. We will use in the affine space An coordinates (x1, . . . , xn) and
we will think of it as the affine chart {x0 /= 0} of Pn.

Lemma 3.1.4. Let X be an m-symmetric scheme supported at P ∈ Pn and
IX = (G1, . . . , Gs), its defining ideal, where G1, . . . , Gs is a minimal set of gen-
erators. Then all the hypersurfaces Gi = 0 have multiplicity at least m at P , and
at least n of them have multiplicity exactly m. Moreover, there is no line common
to all the tangent cones of the hypersurfaces Gi = 0 which have multiplicity exactly
m at P .

Proof If there were a hypersurface Gi = 0 having multiplicity at P less than
m then a line L passing through P and not contained in the tangent cone of
{Gi = 0}, would locally intersect {Gi = 0} with length m′ < m, hence we would
have ℓ(L ∩X) ≤ m′ < m, thus getting a contradiction.
Now let us suppose that there are r hypersurfaces in IX with multiplicity exactly m
at P , say G1, . . . , Gr and, by contradiction, that r < n. Let {F1 = 0}, . . . , {Fr = 0}
be their tangent cones at P and consider the scheme Y ⊆ Pn with IY = (F1, . . . , Fr).
Since Y is a cone and dim(Y ) ≥ 1, then there is a line L ⊆ Y . By construction, L
passes through P and ℓ(L∩X) > m against the hypothesis that X is m-symmetric.

Finally, if there were a line L common to all the tangent cones {F1 = 0}, . . . , {Fr = 0},
then we would have ℓ(L ∩ X) > m again contradicting our hypothesis of
m-symmetry.

Remark 3.1.5. As an immediate consequence of the previous lemma, we have that
every m-symmetric scheme X ⊆ Pn supported at P contains the m-fat point mP .
Hence fat points are (with respect to inclusion) the smallest m-symmetric schemes;
in particular, the length reaches its minimum, i.e. for every m-symmetric scheme
X we have ℓ(X) ≥

(︂
m+n−1

n

)︂
, with equality if and only if X = mP .

Now we want to find out “how fat can an m-symmetric point be” i.e. we want
to consider the following questions:

• Among all the m-symmetric schemes supported on the same point P , which are
the maximal ones (with respect to schematic inclusion)?

• What is the maximum length of an m-symmetric scheme?

One can think of this problem as a problem of “packaging of points” : given m,
we want to “fit together” infinitesimal points over a point P in such a way that
m−symmetry holds, and we want to know how many of them we can “keep pack-
aging together” without violating m-symmetry.

Remark 3.1.6. The ideal (xm
1 , . . . , x

m
n ) ⊆ C[x0, . . . , xn] defines a projective scheme

X ⊆ Pn of length ℓ(X) = mn, and it is easy to check that it satisfies m-symmetry,

83



Superfat points and associated tensors

hence the answer to the second question above is at least mn, i.e. the maximal
length for an m-symmetric scheme in Pn is at least mn.

In Theorem 3.1.9 we show that in fact that the symmetric schemes which are
maximal with respect to the inclusion are exactly the symmetric local complete
intersections and thus they all have the same length and the maximum number of
infinitesimal points we can fit over a point P is mn. Before doing that we give two
definition.

Definition 3.1.7. An m-symmetric scheme in Pn which is maximal with respect
to the inclusion is called an m-superfat point, or just a superfat point if we do not
need to specify m.

Definition 3.1.8. An m-symmetric scheme whose ideal is of type (ℓm
1 , ℓ

m
2 , . . . , ℓ

m
n )

for ℓi ∈ C[x0, ..., xn]1, with ℓ1, . . . ℓn linearly independent, is called an m-hypercube.

Theorem 3.1.9. A scheme X ⊆ Pn is an m-superfat point supported at P ∈ Pn if
and only if it is an m-slci. Thus, any m−superfat point in Pn has length mn and
it is a Gorenstein scheme.

Proof By Remark 3.1.2, proving the statement is equivalent to proving that any
m−symmetric scheme X supported at P is contained in an m-slci.
We assume P = [1,0, ...,0] and we work in An using affine coordinates (x1, ..., xn).
If we set IX = (G1, ..., Gs) ⊆ C[x1, . . . , xn] then, by Lemma 3.1.4, we have that
all Gi’s have multiplicity at least m at P , and at least n of them have multiplicity
exactly m. Let G1, . . . , Gr, n ≤ r ≤ s be the ones that have tangent cone of
degree m at P , and let F1, . . . , Fr ∈ C[x1, ..., xn]m be the degree m summands of
G1, . . . , Gr, i.e. the equations defining their tangent cones. If the Fi’s are linearly
dependent, and for example F1 = a2F2 + . . . . + arFr, then G1 can be replaced by
G1 − (a2G2 + . . . . + arGr), which has tangent cone of degree > m; hence we can
assume that the Fi’s are linearly independent, and, again by Lemma 3.1.4, we have
that F1, ..., Fr do not have any common line.
We want to show that there are n polynomials in ⟨F1, . . . Fr⟩ ⊆ C[x1, . . . , xn]m
which have no common lines (actually we will find a regular sequence H1, . . . , Hn).
This is obvious if r = n, so we can assume r ≥ n + 1. Consider H1 := F1 and a
generic linear combination of F1, . . . , Fr

a21F1 + a22F2 + . . .+ a2rFr =: H2.

We want to check that dim{H1 ∩ H2} = n − 2. Let C1, . . . Ck, k ≤ m, be the
irreducible components of {H1 = 0} and for any i = 1, . . . , k let Pi ∈ Ci \ P . In
order to have that no Ci is contained in {H2 = 0} is enough that H2(Pi) /= 0 for
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3.1 – Symmetric and superfat points in Pn

any i = 1, . . . , k and this is true for the genericity of the linear combination H2:
indeed, for each i, we can view

x21F1(Pi) + x22F2(Pi) + . . .+ x2rFr(Pi) = 0

as a hyperplane in Pr−1, with respect to homogeneous coordinates [x21, . . . , x2r],
so it is enough to choose a point [a21, a22 . . . , a2r] not lying on these hyperplanes.
Hence {H1 ∩H2} has dimension equal to n− 2. Now we repeat this procedure by
defining a generic linear combination

a31F1 + a32F2 + . . .+ a3rFr =: H3

such that dim{H1 ∩ H2 ∩ H3} = n − 3 and so on in order to get H1, . . . , Hn that
form a regular sequence and their intersection is only supported at P .
Now, let K1 := G1 and

Ki :=
r∑︂

j=1
aijGj, ∀ i = 2, . . . , n

so Ki has Hi as tangent cone at P . Since
n⋂︂

i=1
Hi = {P}

the scheme Y defined by the ideal (K1, . . . , Kn) is 0-dimensional at P and YP

is locally complete intersection of n hypersurfaces with multiplicity m at P and
whose tangent cones have no common lines. We have that (K1, . . . , Kn) ⊆ IX ,
hence X ⊆ Y and this concludes the proof.

Remark 3.1.10. Two hypercubes of Pn given by the ideals I = (ℓm
1 , ..., ℓ

m
n ) and

J = (hm
1 , ..., h

m
n ) with the same support are different, provided that {l1, ...ln} /=

{h1, ...hn}. In fact, hm
j ∈ Im if and only if there exists i such that hj = li, since

the forms lm1 , ...lmn , hm
j , viewed as points of the Veronese variety Vn,m, are in general

position.

Remark 3.1.11. Even though, up to this moment, we mentioned just hypercubes,
fat and superfat points, there are other schemes possessing m-symmetry. As an
example, consider X ⊆ P2 defined by the ideal (x3

1, x
3
2, x

2
1x

2
2): this is 3-symmetric

and ℓ(X) = 8. This gives the opportunity of pointing out a few peculiar behaviours
of the 0-dimensional schemes which sometimes baffle our intuition. Let P = [1,0,0],
X = 2P and Y the hypercube of P2 having ideal (x2

1, x
2
2). We can observe that:

• Even though the linear sections X ∩ L = Y ∩ L coincide for any line L through
P , we have X /= Y .
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• If JL denotes the 2-jet supported on P and contained in L, we have

Y ∩ (
⋃︂

L∋P

L) = Y ∩ P2 = Y

and ⋃︂
L∋P

(Y ∩ L) =
⋃︂

L∋P

JL = 2P = X

where L varies on the set of the lines passing through P . Hence the schematic
unions and intersections does not commute, while they do so if we consider just
the support of the schemes.

As we will see, there are other unexpected properties of symmetric schemes.

In defining m−symmetry we have used lines through the support point, but the
following result shows that this is equivalent to using smooth curves.

Proposition 3.1.12. A 0-dimensional scheme X, supported at one point P ∈ Pn,
is m-symmetric if and only if ℓ(X ∩ C) = m for every curve C smooth at P .

Proof Let X ⊆ Pn be an m−symmetric scheme with support at P ∈ Pn, and
C ⊆ Pn be a curve smooth at P . We have mP ⊆ X, and ℓ(mP ∩ C) = m, so
ℓ(X ∩C) ≥ m. Since C is smooth, it is locally a complete intersection, i.e. there are
polynomials F1, . . . , Fn−1 such that they are smooth at P , the ideal (F1, . . . Fn−1)
defines C at P , and the intersection of their tangent cones at P is the tangent line
τ1,P (C). If we consider any F ∈ IX , whose tangent cone has multiplicity m and
does not contain τ1,P (C) (it must exist since X is m−symmetric), then the length
of the projective scheme defined by the ideal (F, F1, . . . , Fn−1) is m by [62] Corollary
12.4, and (F, F1, ..., Fn−1) ⊆ IX + IC ⊆ IX∩C hence ℓ(X ∩ C) ≤ m.

Recall that 0-dimensional schemes in Pn for n ≥ 3 are not all smoothable,
i.e. obtained by collapsing simple points; nevertheless, the m−hypercubes are all
smoothable.

Proposition 3.1.13. Let X ⊆ Pn be an m−hypercube, then X is smoothable.

Proof Modulo a projectivity, the ideal of any m−hypercube X can be put in the
form IX = (xm

1 , . . . , x
m
n ) and such an ideal can be seen as limt→0 It where

It = (F1(x1, t), . . . Fn(xn, t))

and
Fi(xi, t) = xi(xi + t)(xi + 2t) · · · (xi + (m− 1)t)

for each i = 1, . . . , n. The statement follows by the fact that It is actually the ideal
of mn simple points arranged on a hypercube for any t.
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3.2 – Superfat and m-symmetric points in P2

The above proposition leads the way to its generalisation: also m−superfat
points are not among the “bad 0-dimensional schemes” which are not smoothable
in Pn for n ≥ 3, i.e. we have the following proposition.

Proposition 3.1.14. Let X ⊆ Pn be an m−superfat point. Then X is smoothable,
∀ m,n ∈ N.

Proof The fact is actually known since every 0-dimensional locally complete in-
tersection is smoothable (e.g. see [80] Theorem 4.36) and m-superfat points are
locally complete intersection by Proposition 3.1.9. We just sketch the idea here:
if we have, locally, IX = (F1, ..., Fn), consider the schemes Xt defined, locally, by
IXt = (F1 + tG1, ..., Fn + tGn), where the Gi’s are generic forms of the same degree
as Fi. We will have that, locally, Xt is given by mn simple points, and, as t → 0,
Xt → X, so X is smoothable.

3.2 Superfat and m-symmetric points in P2

In this section we consider the case n = 2, where more detailed results are easier
to get.

Notation 3.2.1. In the case n = 2 we use the notation m-squares instead of
m-hypercubes.

We start showing that in the case m = 2, we have that actually 2−superfat
points are 2−squares.

Proposition 3.2.2. Every 2-superfat scheme X ⊆ P2 is a 2-square, i.e. IX can be
written, modulo projectivity, as IX = (x2

1, x
2
2).

Proof Let P = [1,0,0] be the support of X. By Theorem 3.1.9 X is a local complete
intersection of two conics C1 : F = 0 and C2 : G = 0 such that mP (C1) = mP (C2) = 2
and their tangent cones at P have no common line; in other words C1 and C2 are
both the union of two distinct lines meeting in P and the four lines are pairwise
distinct. Now, let Y be the 0-dimensional scheme defined by the ideal (F,G). Since
ℓ(Y ) = 4 = ℓ(X) and X ⊆ Y we have X = Y and in particular we get

IX = (F,G).

Let F = L1L2, G = L3L4, where all Li ∈ C[x1, x2]1. In the pencil

{aL1L2 + bL3L4}

there will always be two conics of rank 1, since such pencil gives a line in
P(C[x1, x2]2) ∼= P2 which will intersect in two points the conic representing the
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Superfat points and associated tensors

forms of rank 1 (i.e. the 2-Veronese embedding of P1, parameterising squares of
linear forms). Note that our pencil cannot be represented by a tangent line to
the conic, since such lines represent pencils of conics with a common linear factor.
Hence, the ideal of X can be written, modulo a projectivity, as IX = (x2

1, x
2
2).

Example 3.2.3. The coincidence of 2-superfat points of P2 and 2-square has noth-
ing similar neither in higher dimension nor in higher degree. Let us see some
examples.

• In P3 the 2-superfat point of ideal (x0x
2
2, x1x

2
2, x

3
2, x0x1x2 + x2

2x3, x
2
0, x

2
1) is not a

2-hypercube because it has generic Hilbert function while a 2-hypercube does
not.

• Even in P2 the situation for m = 3 is not similar to the case m = 2, i.e. a
3-superfat scheme X is not always a complete intersection of 2 cubics. Of course
any ideal of type

(L1L2L3,M1M2M3)
where Li,Mj ∈ C[x1, x2]1 and Li /= αMj, for all i, j ∈ {1,2,3}, gives a 3-superfat
point, but they are not all. For instance, consider the ideal

IX = ((x0 − x1)3, x3
1x2 + x2

0x
2
1, x0x

3
1, x

4
1).

It can be seen that it defines a scheme of length 9 which is 3-symmetric, i.e.
a 3-superfat point. Nevertheless, X is not a complete intersection because its
ideal generation is the generic one for a scheme of length 9: one cubic and three
quartics. Anyway, if we consider the intersection of its two first generators at
P = [0,0,1], we get a scheme of length 9, which has to be X; in other words, the
scheme X is the local complete intersection of two curves with a triple point at
P and with no common tangent, in accord with Theorem 3.1.9.

Looking at several examples leads to the following conjecture.

Conjecture 3.2.4. For every m ≥ 2 there exist an m−superfat point in P2 having
generic Hilbert function.

Let us note that since the 0−dimensional schemes with maximal Hilbert function
form an open subset in Hilbr(P2), if one can prove that the m−symmetric points
form an irreducible subscheme (or at least a subscheme with only one component of
maximal dimension) in Hilbm2

P (P2) ⊆ Hilbm2(P2), where Hilbm2

P (P2) is the Hilbert
scheme parameterising 0-dimensional subschemes of P2 of length m2 and supported
at a point P ∈ P2, then Conjecture 3.2.4 would imply that the generic m−superfat
point has maximal Hilbert function.

In the following sections, we will be considering m-squares on Veronese and
Segre-Veronese surfaces. To this aim it is useful to check what happens when we
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3.2 – Superfat and m-symmetric points in P2

consider all the m-squares supported at the same point P , so we want to find out
what the schematic union of all m-squares supported at one point P is.

In the sequel, we need the following combinatorial result on binomials (which
we think is also interesting per se). It might be already known, but for lack of a
reference we prove it here.

Lemma 3.2.5. In Z∞, ∀ m, i ≥ 1 consider the two vectors

vm =
(︄(︄

m− 1
0

)︄
,−
(︄
m

1

)︄
,

(︄
m+ 1

2

)︄
,−
(︄
m+ 2

3

)︄
, . . . , (−1)j

(︄
m+ j − 1

j

)︄
, . . .

)︄

wi,m =
(︄(︄

m

i

)︄
,

(︄
m

i− 1

)︄
, . . . ,

(︄
m

2

)︄
,

(︄
m

1

)︄
,

(︄
m

0

)︄
,0, . . . , 0, . . .

)︄
.

Then vm · wi,m = 0.

Proof Note that, for i ≥ m+ 1, wi,m has (i−m) initial 0’s. We have that:

• For m = 1 one has v1 = (1,−1,1,−1, . . .) and wi,1 = (0, . . . , 0,1,1,0, . . .), with
(i− 1) initial 0’s;

• For i = 1, we have w1,m = (m, 1, 0, . . .).

Hence, for all i, we have v1 · wi,1 = 0, and for all m, we have vm · w1,m = 0.
Now we assume m > 1 and i > 1 and we work by induction on m + i. By the
identity (︄

k

α

)︄
=
(︄
k − 1
α

)︄
+
(︄
k − 1
α− 1

)︄
we get vm = vm−1 + v′

m, where

v′
m =

(︄
0,−

(︄
m− 1

0

)︄
,

(︄
m

1

)︄
,−
(︄
m+ 1

2

)︄
, . . . , (−1)i

(︄
m+ i− 2
i− 1

)︄
, . . .

)︄

and
wi,m = wi,m−1 + wi−1,m−1.

Hence
vm · wi,m = (vm−1 + v′

m) · wi,m = vm−1 · wi,m + v′
m · wi,m =

= vm−1 · wi,m−1 + vm−1 · wi−1,m−1 + v′
m · wi,m.

Since v′
m · wi,m = −vm · wi−1,m, then the three summands above are zero by the

induction hypothesis, and we are done.

Theorem 3.2.6. For every P ∈ P2 and for any m ≥ 1, we have that the schematic
union of all m-squares supported at P is the fat point (2m− 1)P .
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Superfat points and associated tensors

Proof Without loss of generality, we can work in the affine case and consider the
case P = (0,0). Let A := {(ℓ1, ℓ2) ∈ C[x1, x2]1 ×C[x1, x2]1 | ℓ1 ∤ ℓ2}. What we have
to prove is that ⋂︂

(ℓ1,ℓ2)∈A

(ℓm
1 , ℓ

m
2 ) = (x1, x2)2m−1.

First let us check that

(x1, x2)2m−1 ⊆
⋂︂

(ℓ1,ℓ2)∈A

(ℓm
1 , ℓ

m
2 ).

Actually, for any choice of (ℓ1, ℓ2) in A, every generator of (x1, x2)2m−1 can be
written as

a0ℓ
2m−1
1 +a1ℓ

2m−2
1 ℓ2+...+am−1ℓ

m
1 ℓ

m−1
2 +am+1ℓ

m−1
1 ℓm

2 +...+a2m−2ℓ1ℓ
2m−2
2 +a2m−1ℓ

2m−1
2 ,

of course with different coefficients ai ∈ C if we change our choice of (ℓ1, ℓ2). Since
in every term of this polynomial either ℓ1 or ℓ2 appears with power at least m, we
get

(x1, x2)2m−1 ⊆
⋂︂

(ℓ1,ℓ2)∈A

(ℓm
1 , ℓ

m
2 ).

Now, in order to complete the proof, we have to prove that no form of C[x1, x2]d,
with d ≤ 2m− 2, belongs to ⋂︂

(ℓ1,ℓ2)∈A

(ℓm
1 , ℓ

m
2 )

and of course it is enough to prove that this happens for d = 2m − 2. Since the
statement is trivially true for m = 1, we assume m ≥ 2, i.e. 2m−2 ≥ m. We choose
2m − 1 particular m-squares supported at P , and we prove that the intersection
of their ideals has no form of C[x1, x2]2m−2. More precisely, we will prove that the
following ideal

I := (xm
1 , ℓ

m
1 )∩(xm

1 , ℓ
m
2 )∩. . .∩(xm

1 , ℓ
m
m−1)∩(xm

1 , x
m
2 )∩(ℓm

1 , x
m
2 )∩(ℓm

2 , x
m
2 )∩. . .∩(ℓm

m−1, x
m
2 ),

has no form of degree 2m− 2, where the ℓi’s are distinct linear forms different from
x1 and x2.
In order to prove our result, we study first the ideal (xm

1 , (x1 + ax2)m) in degree
2m− 2. Since

(x1 + ax2)m =
m∑︂

i=0

(︄
m

i

)︄
xm−i

1 aixi
2

we get that (xm
1 , (x1 + ax2)m)2m−2 is generated by the following 2m− 2 forms:

x2m−1−j
1 xj−1

2 , ∀ j = 1, . . . ,m− 1
m∑︂

i=j

(︄
m

i

)︄
aixm−1−i+j

1 xm−1−j+i
2 , ∀ j = 1, . . . ,m− 1
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3.2 – Superfat and m-symmetric points in P2

We identify these forms with the following points in P(C[x1, x2]2m−2)

P0 = [1,0, . . . ,0], P1 = [0,1,0, . . . ,0], · · · , Pm−2 = [0,0, . . . ,0,1,0, . . . ,0]
P2m−2−j = [ 0, . . . ,0⏞ ⏟⏟ ⏞

m−1 times

,
(︂

m
j

)︂
aj,

(︂
m

j+1

)︂
aj+1, . . . ,

(︂
m
m

)︂
am, 0, . . . ,0⏞ ⏟⏟ ⏞

j−1 times

], ∀ j = 1, . . . ,m− 1.

Clearly these points are linearly independent, so they span a single hyperplane. If
C[z0, . . . , z2m−2] is the coordinate ring of P2m−2, then the hyperplane spanned by
the Pi’s is

π :
(︂

m−1
0

)︂
am−1zm−1−

(︂
m
1

)︂
am−2zm+

(︂
m+1

2

)︂
am−3zm+1+· · ·+(−1)m−1

(︂
2m−2
m−1

)︂
z2m−2 = 0,

in fact, obviously, P0, . . . , Pm−2 ∈ π, and Pm−1, . . . , P2m−3 ∈ π by Lemma 3.2.5.
Analogously, if we consider the ideal (xm

2 , (x1 + ax2)m) in degree 2m − 2, we get
that the forms of degree 2m − 2 correspond to points in P2m−2 which span the
hyperplane

(−1)m−1
(︂

2m−2
m−1

)︂
am−1z0 + · · · +

(︂
m+1

2

)︂
a2zm−3 −

(︂
m
1

)︂
azm−2 +

(︂
m−1

0

)︂
zm−1 = 0.

Note that if we start from the m-square (xm
1 , x

m
2 ), i.e. for a = 0, we get the hyper-

plane zm−1 = 0. Let πx1,i, πx2,i and πx1,x2 be the 2m− 1 hyperplanes corresponding
to the m-squares (xm

1 , ℓ
m
i ), (xm

2 , ℓ
m
i ) and (xm

1 , x
m
2 ), respectively.

Now, in order to prove that the ideal I has no form of degree 2m−2 it is enough to
prove that the intersection of the hyperplanes πy,i, πx,y and πx,i is empty. We get a
homogeneous linear system, whose (2m− 1) × (2m− 1) matrix is the following:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

| . . . . . . . . . | 0 0 0 0
| . . . A . . . | 0 0 0 0
| . . . . . . . . . | 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 | . . . . . . . . . |
0 0 0 0 | . . . A′ . . . |
0 0 0 0 | . . . . . . . . . |

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The (m− 1) × (m) block A (in the first m− 1 rows) is:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)m+1
(︂

2m−2
m−1

)︂
am−1

1 (−1)m
(︂

2m−3
m−2

)︂
am−2

1 . . .
(︂

m+1
2

)︂
a2

1 −
(︂

m
1

)︂
a1 1

(−1)m+1
(︂

2m−2
m−1

)︂
am−1

2 (−1)m
(︂

2m−3
m−2

)︂
am−2

2 . . .
(︂

m+1
2

)︂
a2

2 −
(︂

m
1

)︂
a2 1

(−1)m+1
(︂

2m−2
m−1

)︂
am−1

3 (−1)m
(︂

2m−3
m−2

)︂
am−2

3 . . .
(︂

m+1
2

)︂
a2

3 −
(︂

m
1

)︂
a3 1

... ... ...
(−1)m+1

(︂
2m−2
m−1

)︂
am−1

m−1 (−1)m
(︂

2m−3
m−2

)︂
am−2

m−1 . . .
(︂

m+1
2

)︂
a2

m−1 −
(︂

m
1

)︂
am−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The block A′ is the same as A, but with the columns and the powers of a in reverse
order. These two blocks have maximal rank m − 1, since they can be viewed as a
Cauchy-Vandermonde matrix where each column is multiplied by a constant. Since
the two blocks lies in the first and in the last m− 1 columns of the matrix and the
middle row of the matrix is (0, ...,0,1,0, ...,0), the rank of the matrix is 2m− 1 and
we are done.

Remark 3.2.7. Let us note that the fat point 2mP can never be obtained as union
of squares. Let us show that in the cases m = 1 and m = 2:

• m = 1
Since any 2-square supported at P properly contains the fat point 2P , then
2P should be obtained as a union of 1-squares, but this is impossible, P being
the only 1-square supported at P .

• m = 2
Since any 4-square supported at P properly contains the fat point 4P , then 4P
should be obtained as a union of 1-squares, 2-squares and 3-squares supported
at P . Since the unique 1-square is P and it is contained in any 2-square and in
any 3-square supported at P , we can suppose that 4P is a union of 2-squares
and 3-squares supported at P . Let

A2 = {Q | Q is a 2-square supported at P}

A3 = {Q | Q is a 3-square supported at P}

and suppose, by contradiction, that there exist A′
2 ⊆ A2 and A′

3 ⊆ A3 such
that

4P =
⋃︂

Q∈A′
2∪A′

3

Q.

If r is a line through P , we have

4P \ r2 =
⋃︂

Q∈A′
2∪A′

3

(Q \ r2),

where r2 is the double line supported at r and we are considering the schematic
difference. If Q ∈ A2, then either Q \ r2 = ∅ or Q \ r2 = P . If Q ∈ A3, then
either Q \ r2 is a 2-square or Q \ r2 is a 3-jet. Thus, 4P \ r2 = 2P should be
a union of 2-squares and 3-jets, and this is a contradiction.

The proof for higher multiplicities is analogous to the case m = 2.

Remark 3.2.8. Let us note that something quite different can happen if we do not
consider all the pairs of lines as we did in Theorem 3.2.6. For example, consider
P = [1,0,0] ∈ P2 and the union of the 2-squares supported at P that are defined via
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3.3 – 2-squares on Veronese surfaces

two lines which are “perpendicular” with respect to the apolar action of C[w1, w2]
on C[x1, x2]; in this case we do not get the entire fat point 3P . In fact, if we set
AP = {(ℓ1, ℓ2) ∈ (IP )1 × (IP )1| ℓ1 ⊥ ℓ2 and (ℓ2

1, ℓ
2
2) is a 2-square } then⋂︂

(ℓ1,ℓ2)∈AP

(ℓ2
1, ℓ

2
2) = (x2

1 + x2
2, x

3
1, x

2
1x2).

It is quite immediate that each ideal (ℓ2
1, ℓ

2
2) contains the ideal (ℓ1, ℓ2)3 = (x1, x2)3;

if moreover ℓ1 ⊥ ℓ2, we can write ℓ1 = ax1 − bx2, ℓ2 = bx1 + ax2 and thus (ℓ2
1, ℓ

2
2)

contains both a2x2
1 + b2x2

2 − 2abx1x2, b2x2
1 + a2x2

2 + 2abx1x2 and we have that
(a2 + b2)(x2

1 + x2
2) ∈ (ℓ2

1, ℓ
2
2), i.e. (x2

1 + x2
2) is contained in any ideal (ℓ2

1, ℓ
2
2) with

(ℓ1, ℓ2) ∈ AP , and the thesis follows.
Note that it is actually enough to intersect two of those ideals to obtain the total
intersection ideal. Note also that (a2 + b2) /= 0, because the pairs (a, b) for which it
is zero correspond to the only two particular lines through P , namely {x1±ix2 = 0}
which we have to exclude among the pairs of lines in AP , because they are isotropic,
i.e. “perpendicular to themselves” and thus the ideal

((x1 ± ix2)2, (ix1 ∓ x2)2) = ((x1 ± ix2)2)

is not the ideal of a 2−square point but of a double line.
It is also interesting to observe that the scheme

Z =
⋃︂

(ℓ1,ℓ2)∈AP

Qℓ1ℓ2

where IQℓ1ℓ2
= (ℓ2

1, ℓ
2
2), is not 2-symmetric, even if it is an (infinite) union of 2-

symmetric schemes. Indeed, Z ∩ L has length 2 for all lines L, except for the two
lines x1 ± ix2 = 0 which meet it with length 3. On the other hand, the fat point
3P is 3- and not 2- symmetric, although it is a union of 2-symmetric schemes by
Theorem 3.2.6.
Finally, observe that the scheme Z considered above is 2-symmetric if we consider it
over the reals. Hence Theorem 3.1.9 does not hold over R, in fact (x2

1 +x2
2, x

2
1x2, x

3
1)

defines a 2-symmetric scheme in P2
R of length 5.

For the moment we stop our treatise on 2-squares and we pass to consider their
embedding on Veronese and Segre-Veronese varieties, but we will come back to them
in Chapter 4, where we will deal with the interpolation problem for 2-squares.

3.3 2-squares on Veronese surfaces
Now we want to begin to see how the m-squares can give, with their immersions

on Veronese surfaces V2,d (see Chapter 1, §1.4), parameterisations of structured sym-
metric tensors. We will start by considering only 2-squares, which at the moment
are the ones we know the best. Recall Notation 1.3.1.
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Remark 3.3.1. If we have a subscheme X ⊆ P2, then, by Proposition 1.4.6, we
know that L(νn,d(X)) ⊆ PNn,d is naturally isomorphic to P((IX)⊥

d ) ⊆ P(Ud). In the
following we will identify P((IX)⊥

d ) to L(νn,d(X)). For instance, consider a 2-square
Q ⊆ P2. Up to a linear change of coordinates we can suppose that IQ = (x2

0, x
2
1)

whose perp in degree d is

(IQ)⊥
d =< w0w1w

d−2
2 , w0w

d−1
2 , w1w

d−2
2 , wd

2 >⊆ P(Ud).

With our identification we have

P((IQ)⊥
d ) = L(ν2,d(Q)) = L([y0y1y

d−2
2 ], [y0y

d−1
2 ], [y1y

d−2
2 ], [yd

2 ]) ⊆ P(Td) = PN2,d .

In other words we are doing nothing but considering the apolarity action of T on
R.

Now we want to consider the variety spanned by all the possible schemes
ν2,d(QP ), on the surface V2,d.
Proposition 3.3.2. Let

Q0(V2,d) :=
⋃︂

Q⊆P2

L(ν2,d(Q)), Q(V2,d) = Q0(V2,d)

where the union is made on all the 2-squares Q of P2. Then we have

Q(V2,d) = τ2(V2,d).

Moreover, if a point [F ] of PN2,d lies on τ2(V2,d), the form F ∈ Td can be written,
modulo a change of variables in P2, either as

F = yd−2
2 (a0y0y2 + a1y1y2 + a2y

2
2 + a3y0y1), if [F ] ∈ Q0(V2,d)

or as
F = yd−2

2 (a0y
2
0 + a1y1y2), if [F ] ∈ Q(V2,d) \Q0(V2,d).

Proof By Theorem 3.2.6 we know that the union of all 2-squares supported at the
same point P in P2 is the fat point 3P so we have

Q(V2,d) =
⋃︂

Q⊆P2

L(ν2,d(Q)) =
⋃︂

P ∈P2

⋃︂
QP

L(ν2,d(QP )) =
⋃︂

P ∈P2

L(
⋃︂
QP

ν2,d(QP )) =

=
⋃︂

P ∈P2

L(ν2,d(
⋃︂
QP

QP ) =
⋃︂

P ∈P2

L(ν2,d(3P )) = τ2(V2,d)

where QP varies on the set of 2-squares supported at P .
By Remark 1.4.21 we know that if [F ] ∈ τ2(V2,d) then F can be written as
F = yd−2

2 G, where G is a conic. We write

G = a0y0y2 + a1y1y2 + a2y
2
2 +H(y0, y1)

with H ∈ C[y0, y1]2 and we distinguish two cases:
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3.3 – 2-squares on Veronese surfaces

• H(y0, y1) is not a square.
In this case there exist ℓ0, ℓ1 ∈ C[y0, y1]1 such that H = ℓ0ℓ1 and ℓ0 ∤ ℓ1. As a
consequence, there exist b0, b1 ∈ C such that

a0y0 + a1y1 = b0ℓ0 + b1ℓ1

and thus we get

G = y2(a0y0 + a1y1 + a2y2) +H(y0, y1) = y2(b0ℓ0 + b1ℓ1 + a2y2) + ℓ0ℓ1

and
F = yd−2

2 (b0ℓ0y2 + b1ℓ1y2 + a2y
2
2 + ℓ0ℓ1).

Note that in this case [F ] ∈ L(ν2,d(Q)), with IQ = (ℓ2
0, ℓ

2
1), thus [F ] ∈ Q0(V2,d).

• H(y0, y1) is a square
In this case we have H(y0, y1) = ℓ2

0 for some ℓ0 ∈ C[y0, y1]1 and we get

F = yd−2
2 (y2(a0y0 + a1y1 + a2y2) + ℓ2

0)

that, modulo a linear change of coordinate of P2, we can write as

F = yd−2
2 (b0y

2
0 + b1y1y2).

Note that in this case [F ] /∈ L(ν2,d(Q)), for any 2-squares Q ⊆ P2. Nevertheless,
we know that [F ] ∈ τ2(V2,d) = Q(V2,d) and thus [F ] ∈ Q(V2,d) \Q0(V2,d). To see
how in this case F is the limit of forms that lie in Q0(V2,d) consider the linear
form ℓϵ = y0 + ϵy1, and the 2-square Qε with IQε = (ℓ2

ϵ , y
2
0). Then we have

L(ν2,d(Qε)) = P((IQε)⊥
d ) = L([y0y

d−1
2 ], [y0y

d−2
2 ℓε], [yd−1

2 ℓε], [yd
2 ])

so
lim
ϵ→0

L(ν2,d(Qε)) = L([y2
0y

d−2
2 ], [y0y

d−1
2 ], [yd

2 ])

and any [F ] in there is such that F can be written, modulo projectivities of the
plane, as

yd−2
2 (a0y

2
0 + a1y1y2).

Since these are all the possible cases the proof is concluded.

Note that Proposition 3.3.2 gives, in some sense, a more refined way to distin-
guish the form lying on τ2(V2,d). Moreover, it has a noteworthy consequence which,
for d = 4, is Lemma 4.1 in [20].

Corollary 3.3.3. The second osculating variety τ2(V2,d) of a Veronese surface
V2,d ⊆ PN2,d is contained in the secant variety σ4(V2,d). Thus, for every
[F ] ∈ τ2(V2,d), we have srk(F ) ≤ 4.
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Proof We have to prove that if [F ] ∈ τ2(V2,d) then [F ] ∈ σ4(V2,d). By Proposition
3.3.2 we know that

τ2(V2,d) = Q0(V2,d) ∪ (Q(V2,d) \Q0(V2,d)).

Thus, if [F ] ∈ τ2(V2,d) then either [F ] ∈ Q0(V2,d) or [F ] ∈ Q(V2,d) \ Q0(V2,d). We
distinguish two cases:

• [F ] ∈ Q0(V2,d)
By Proposition 3.3.2 there exist a 2-square Q ⊆ P2 such that [F ] ∈ L(ν2,d(Q)).
Hence, since ℓ(Q) = 4 and Q is smoothable by Proposition 3.1.13, we have that
[F ] is a P3 which is the limit of a family of P3’s which are 4-secant to V2,d and
thus [F ] ∈ σ4(V2,d).

• [F ] ∈ Q(V2,d) \Q0(V2,d)
By Proposition 3.3.2 we know that, up to a projectivity of P2, F can be written
as

F = yd−2
2 (a0y

2
0 + a1y1y2).

If a0 = 0, then F = a1y1y
d−1
2 and thus

[F ] ∈ τ1(V2,d) ⊆ σ2(V2,d) ⊆ σ4(V2,d)

and we are done. If a1 = 0, then F = a0y
2
0y

d−2
2 and thus

[F ] ∈ τ2(Cd) ⊆ σ3(V2,d) ⊆ σ4(V2,d)

for some rational normal curve Cd ⊆ V2,d and we are done. So we can sup-
pose a0, a1 /= 0. Consider the scheme Z ⊆ P2, with IZ = (x3

0, x0x1, x
2
1). We

have ℓ(Z) = 4 and, since all the 0-dimensional schemes of P2 are smoothable,
L(ν2,d(Z)) ⊆ σ4(V2,d). More precisely, we have

L(ν2,d(Z)) = P((x2
1, x0x1, x

3
0)⊥

d ) = L([y2
0y

d−2
2 ], [y0y

d−1
2 ], [y1y

d−1
2 ], [yd

2 ])

So that [F ] ∈ L(ν2,d(Z)) and thus [F ] ∈ σ4(V2,d).

This concludes the proof.

Corollary 3.3.4. Every form in C[y0, y1, y2]d can be written as a sum of
s = ⌈d2+3d+2

16 ⌉, polynomials of the form described in Proposition 3.3.2 with the
only exception of the case d = 4, for which such s is 3 and not 2.

Proof By Proposition 1.4.20 we know that the osculating varieties of Veronese
varieties always have the expected dimension, in particular we get dim(τ2(V2,d)) = 7.
Moreover, by [14], it is known that σs(τ2(V2,d)) has always the expected dimension,
except for the case of σ2(τ2(V2,4)) ⊆ P14, which should fill up its ambient space, but
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it is a hypersurface. This implies that, apart from the case d = 4, for which we need
σ3(τ2(V2,4)) to fill up P14, in all other cases dim(σs(τ2(V2,d))) = 7s+ s− 1 = 8s− 1,
hence we get that the first s for which σs(τ2(V2,d)) is the whole ambient space is for
8s− 1 ≥

(︂
d+2

2

)︂
− 1, i.e. s = ⌈d2+3d+2

16 ⌉.

Remark 3.3.5. We can use the language of catalecticant matrix (see Chapter 1,
§1.4.3) to restate Proposition 3.3.2. A general F ∈ C[y0, y1, y2]d, d ≥ 3, has a
(2, d− 2; 3)-catalecticant matrix of the form

Cat(2, d− 2; 3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

zd,0,0 zd−1,1,0 . . . z2,0,d−2
zd−1,1,0 zd−2,2,0 . . . z1,1,d−2
zd−1,0,1 zd−2,1,1 . . . z1,0,d−1
zd−2,2,0 zd−3,3,0 . . . z0,2,d−2
zd−2,1,1 zd−3,2,1 . . . z0,1,d−1
zd−2,0,2 zd−3,1,2 . . . z0,0,d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By Proposition 3.3.2 we know that the generic [F ] ∈ τ2(V2,d) can be written, modulo
projectivities of P2, as

F = yd−2
2 (a0y0y2 + a1y1y2 + a2y

2
2 + a3y0y1)

and thus its catalecticant matrix CatF (2, d − 2; 3) can be written in such a way
that only five columns have some non-zero entries (for the case d = 4, see also [20],
Theorem 4.4 (2)). By the way, there is a mistake in [20], where it is stated that such
polynomials can be written as y2

0y1y2 via a Gauss elimination on CatF (2, d− 2; 3):
this is false since that Gauss elimination does not correspond to a projectivity in
P2. We will analyse which polynomials are of that monomial type in Proposition
3.3.7.

3.3.1 The cuckoo varieties QQ(V2,d)
The variety τ2(V2,d) contains a 1-codimensional subvariety parameterising more

particular forms, namely the ones that can be written (modulo a projectivity in P2)
as yd−2

0 y1y2. In this section we want to investigate such a subvariety.

Definition 3.3.6. Let d ≥ 3 and consider the morphism

Φ : P(T1) × P(T1) × P(T1) → τ2(V2,d) ⊆ P(Td)
([ℓ0], [ℓ1], [ℓ2]) → [ℓd−2

0 ℓ1ℓ2]
.

The cuckoo variety QQ(V2,d) of V2,d is defined to be the scheme theoretic image of
Φ, that is

QQ(V2,d) := Im Φ.
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Clearly the map Φ can also be thought as a map from P2 × P2 × P2 to
τ2(V2,d) ⊆ PNn,d through the identifications we defined in Notation 1.3.1 and Re-
mark 1.4.2. Note that for d = 2 one would have QQ(V2,2) = PN2,2 = P5 while for
d ≥ 3 one has dimQQ(V2,d) = 6.

Proposition 3.3.7. Let d ≥ 3. The following hold:

1. if [F ] ∈ QQ(V2,d), then srk(F ) ∈ {1, d − 1, d,2d − 2} for d /= 3 and
srk(F ) ∈ {1,3,4} for d = 3. In both cases, the generic point [F ] in QQ(V2,d) is
such that srk(F ) = 2d− 2;

2. ∀ P ∈ P2 we have that

QQ(V2,d) ∩ τ2,ν2,d(P )(V2,d) ∼= σ2(V2,2) = τ1(V2,2);

3. for any 2-square QP ∈ P2 supported at P ∈ P2 one has

QQ(V2,d) ∩ L(ν2,d(QP )) ∼= τ1,ν2,d(P )(V2,d) ∪ QQP

where QQP
⊆ L(ν2,d(QP )) ∼= P3 is a smooth quadric and we have

τ1,ν2,d(P )(V2,d) = τ1,ν2,d(P )(QQP
)

i.e. V2,d and QQP
have the same tangent plane at ν2,d(P ).

Proof Let us consider the degenerate cases first: let [F ] ∈ PN2,d be the point such
that F = ℓd−2

0 ℓ1ℓ2; if the form is of type ℓd
0, then srk(F ) = 1 and [F ] ∈ V2,d; if

the form is of type ℓd−1
0 ℓ1, then [F ] ∈ τ1(V2,d), and more precisely, since it can

be written in two variables, there is a rational normal curve Cd ⊆ V2,d such that
[F ] ∈ τ1(Cd). Eventually, if the form is of type ℓd−2

0 ℓ2
1, then [F ] ∈ τ2(Cd) for some

rational normal curve Cd ⊆ V2,d. It is known (e.g. see [20], Remark 24 or [36],
Proposition 3.1) that

srk(ℓd−1
0 ℓ1) = max{2, d} = d

and
srk(ℓd−2

0 ℓ2
1) = max{3, d− 1} = d− 1

unless for d = 3, when it is srk(ℓ0ℓ1ℓ2) = 3. Of course, all these [F ]’s of the
degenerate kind constitute a closed subset D of QQ(V2,d). When the form is of
type ℓd−2

0 ℓ1ℓ2, with ℓi ∤ ℓj i /= j ∈ {0,1,2}, then srk(F ) = 2d − 2 (e.g. see [36]).
Thus, the part regarding the symmetric rank is proved.
Now we fix P ∈ P2 corresponding to the linear form ℓ0 and we consider the oscu-
lating space τ2,ν2,d(P )(V2,d) ∼= P5. We know that the points of this osculating space
are of the form [ℓd−2

0 G] for some G ∈ T2 and have that the points of type ℓd−2
0 ℓ2

1 are
the image under Φ of the points ([ℓ0], [ℓ1], [ℓ1]), i.e. of {[ℓ0]} × ∆, where ∆ ∼= P2
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is the diagonal of (P2) × (P2), so that they form a subvariety V of τ2,ν2,d(P )(V2,d)
isomorphic to V2,2, the Veronese surface in P5. Now, we have two ways to check
that

QQ(V2,d) ∩ τ2,ν2,d(P )(V2,d) = σ2(V ).

First, if we consider two distinct points [ℓd−2
0 m2

1] and [ℓd−2
0 m2

2] on V but not on V2,d,
we have that the line joining them parameterises all the forms that can be written
as

ℓd−2
0 (α2m2

1 − β2m2
2) = ℓd−2

0 (αm1 − βm2)(αm1 + βm2).
Since any two lines in a pencil can be projectively transformed in other two lines
of the pencil, any form ℓd−2

0 ℓ′
1ℓ

′
2, with ℓ′

1 ∤ ℓ′
2 can be projectively transformed into

one of the form ℓd−2
0 (αm1 − βm2)(αm1 + βm2) and thus we get that

QQ(V2,d) ∩ τ2,ν2,d(P )(V2,d) = σ2(V ).

Otherwise, and more simply, it suffices to consider that σ2(V2,2) = τ1(V2,2), hence
τ1(V ) parameterises the forms of type ℓd−2

0 ℓ1ℓ2. So, ii) is proved.
Now consider a 2−square Q ∈ P2, with IQ = (ℓ2

1, ℓ
2
2). We have seen in Proposition

3.3.2 that the forms in L(ν2,d(Q)⟩ can be written as

ℓd−2
0 (a0ℓ

2
0 + a1ℓ0ℓ1 + a2ℓ0ℓ2 + a3ℓ1ℓ2)

so that if
[F ] ∈ QQ(V2,d) ∩ L(ν2,d(QP )) ∼= τ1,ν2,d(P )(V2,d) ∪ QQP

then there exist ℓ0, ℓ
′
1, ℓ

′
2 ∈ T1 such that

F = ℓd−2
0 (a0ℓ

2
0 + a1ℓ0ℓ1 + a2ℓ0ℓ2 + a3ℓ1ℓ2) = ℓd−2

0 ℓ′
1ℓ

′
2.

We write
ℓ′

1 = α0y0 + α1y1 + α2y2, ℓ′
2 = β0y0 + β1y1 + β2y2

and, up to projectivity of the plane we can suppose ℓi = xi for i = 1,2,3. At this
point, by imposing the equality, we get the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0β0 = a0

α0β1 + α1β0 = a1

α0β2 + α2β0 = a2

α1β2 + α2β1 = a3

α1β1 = 0
α2β2 = 0

which has solution if and only if a3 = 0 or a0a3 − a1a2 = 0. The forms with a3 = 0
are exactly those in τ1,ν2,d(P )(V2,d) while the equations a0a3 − a1a2 = 0 defines the

99



Superfat points and associated tensors

smooth quadric QQ that we were looking for. Note that if [F ] ∈ QQ and a3 = 0
then

F = ℓd−1
0 (a0ℓ0 + a1ℓ1 + a2ℓ2) ∈ τ1,ν2,d(P )(V2,d)

and either a1 = 0 or a2 = 0. Hence τ1,ν2,d(P )(V2,d) ∩ QQP
is given by two lines, and

so the tangent plane to V2,d is also tangent to QQP
.

Note that if we knew the equations defining QQ(V2,d), we would be able to check
if a given form F ∈ C[y0, y1, y2]d can be written as a monomial yd−2

0 y1y2 modulo a
linear change of coordinates. Hence it would be interesting to solve the following
problem.

Problem 3.3.8. Find equations defining (even just set-theoretically) the variety
QQ(V2,d).

Remark 3.3.9. The above problem could be interesting for applications, since we
have also that a symmetric tensor in PN2,d describes what in quantum information
theory is called a d − qutrits symmetric state, which is not entangled if it is on
V2,d. The generic elements in QQ(V2,d) would represent entangled states; see [16]
Lemma 2.1 and [28] for more details on the relationship between symmetric tensors
and quantum information.

3.4 2-squares on Segre-Veronese surfaces
In this section we consider 2-squares in P1 × P1 and their embedding on Segre-

Veronese surfaces SV(1,1;d,d) (see Definition 1.5.10). Since we will just deal with this
kind of Segre-Veronese varieties, in this section we write SVd,d instead of SV(1,1;d,d)
and analogously svd,d instead of sv(1,1;d,d).

Remark 3.4.1. As we said, we want to consider in P1 × P1 a kind of schemes
similar to 2-squares but, up to this moment, we know what a 2-square is just if we
are in P2, so we have to make things clearer. What we mean by 2-square in P1 ×P1

is the following: consider the affine chart U1,1 = {x1,1 /= 0, x2,1 /= 0} of P1 × P1,
with coordinates (x′

1, x
′
2), where

x′
1 = x1,0

x1,1
, x′

2 = x2,0

x2,1
.

For any point P = [a0, a1; b0, b1] ∈ U1,1 we can consider the 0-dimensional sub-
scheme QP ⊆ P1 × P1 supported at P and defined by the bihomogeneous ideal
(ℓ2

1,0, ℓ
2
0,1) ⊆ R, where

ℓ1,0 = a1x1,0 − a0x1,1, ℓ0,1 = b1x2,0 − b0x2,1.
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Since bd /= 0 we can look at QP in the affine chart U1,1 and here we have

IQP
=
⎛⎝(︃x′

1 − a0

a1

)︃2
,

(︄
x′

2 − b0

b1

)︄2
⎞⎠ .

Hence, QP is a 2-square in the alternative compactification of U1,1 as a chart in P2

with homogeneous coordinates [x0, x1, x2], when we view

(x′
1, x

′
2) =

(︃
x1

x0
,
x2

x0

)︃
.

This will be the kind of 2-squares we are going to consider in multi-projective envi-
ronment. Note that there are other structures which are 2-squares when considered
in an affine chart, but the bidegree of their generators is higher and we are not
going to consider them.

3.4.1 The variety q2(SV2,2)
Now we consider the Segre-Veronese embedding sv2,2 : P1 × P2 → P8. To

visualise what kind of structured tensors are parameterised by this variety, let us
make a brief detour about 24-tensors.
General 24-tensors

If we consider general tensors of this format, those of tensor rank 1 are pa-
rameterised by the Segre variety S1,1,1,1 given by the embedding (see Definition
1.5.3)

s1,1,1,1 : P1 × P1 × P1 × P1 → P15.

Recall Notation 1.5.4: in this P15 we have homogeneous coordinates [ui1,i2,i3,i4 ] with
i1, i2, i3, i4 ∈ {0,1}. These general tensors in P15 can be viewed as in Fig 3.1, and
the equations of S1,1,1,1 are given by all the 2 × 2-minors of all flattenings of the
tensor in question.
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Figure 3.1: The 24-tensors.

Partially Symmetric 24-tensors

The Segre-Veronese variety SV2,2 ⊆ P8 can be viewed as given first by the
Veronese embedding ν1,2 of both the P1-factors into P2, followed by the Segre em-
bedding s1,1 : P2 × P2 → P8. Moreover, this space P8 is actually a subspace of
the space P15 of general 24-tensors, and it parameterises 24-tensors which are sym-
metric on the first two indices and on the second two, i.e. the (1,1; 2,2)-partially
symmetric tensors (see Definition 1.5.6). More precisely, this P8 is the subspace of
P15 defined by the equations

ui1,i2,i3,i4 = uσ(i1,i2),τ(i3,i4) for all σ, τ ∈ S2

where S2 is the symmetric group on two elements. In this P8 the variety SV2,2
parameterise exactly the (1,1; 2,2)-partially symmetric tensors having partial sym-
metric rank 1. As we said in Notation 1.5.8, in this P8 we use homogeneous coor-
dinates

v(0,0),(0,0), v(0,0),(0,1), v(0,0),(1,1),

v(0,1),(0,0), v(0,1),(0,1), v(0,1),(1,1),

v(1,1),(0,0), v(1,1),(0,1), v(1,1),(1,1).

We can view the partially symmetric 24-tensors in figure 3.2. Note that the four
2 × 2 faces moving from left to right are symmetric and so are the four 2 × 2 faces
joining the “big cube” to the “small one” in the direction “perpendicular to the
paper”
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Figure 3.2: The Partially symmetric 24-tensors.

We have that SV2,2 is a Del Pezzo surface, of degree 8 in P8 (e.g. see [44]), its ideal
is defined by the 2 × 2 minors of the matrix⎛⎜⎜⎜⎝

v(0,0),(0,0) v(0,0),(0,1) v(0,1),(0,0) v(0,1),(0,1)
v(0,0),(0,1) v(0,0),(1,1) v(0,1),(0,1) v(0,1),(1,1)
v(0,1),(0,0) v(0,1),(0,1) v(1,1),(0,0) v(1,1),(0,1)
v(0,1),(0,1) v(0,1),(1,1) v(1,1),(0,1) v(1,1),(1,1)

⎞⎟⎟⎟⎠ .

Moreover, the 3 × 3-minors of the matrix above generate the ideal of the secant
variety σ2(SV2,2), which has the expected dimension 5, while its determinant defines
σ3(SV2,2), which is defective, because its expected dimension was 8 (see again [44]).

Symmetric 24-tensors

Finally, if we want to consider symmetric 24-tensors, those are given by the
subspace, in the space P15 parameterising all tensors, which is made of all points
defined by the equations

xijkl = xσ(ijkl) for all σ ∈ S4.

This subspace is a P4 and, according to Notation 1.3.1, in this P4 we use homoge-
neous coordinates [z0, z1, z2, z3]; clearly this P4 is a subspace of the P8 containing the
(1,1; 2,2)-partially symmetric tensors. The variety parameterising tensor of sym-
metric rank 1 is the Veronese variety V1,4 (a rational normal quartic curve), which
can also be viewed as what we obtain when in the Segre map s1,1,1,1 we identify the
four copies of P1. The tensors we are considering now can be viewed in Figure 3.3
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Figure 3.3: The symmetric 24-tensors, the colours of the dots signal equal coordi-
nates.

As stated by Theorem 1.4.26, the ideal of V1,4 can be obtained by the 2 × 2-minors
of certain catalecticant matrices.

Now let us go back to the 2-square schemes we defined in P1 × P1.

Notation 3.4.2. For every point P = [a0, a1; b0, b1] we denote by QP the scheme
defined by the ideal

IQP
= (a1x1,0 − a0x1,1, b1x2,0 − b0x2,1).

The image under the Segre-Veronese embedding sv2,2 of QP is such that

L(sv2,2(QP )) ∼= P3.

Here we want to consider the variety

q2(SV2,2) :=
⋃︂

P ∈P1×P1

L(sv2,2(QP ))

and to analyse its secant varieties. Before doing that, we understand what L(sv2,2(QP ))
is by using the multigraded apolar action of U on R (see [63] for more details on
multigraded apolarity).

Lemma 3.4.3. Let P = [a0, a1; b0, b1] ∈ P1×P1 and let m1,0 := a0w1,0+a1w1,1 ∈ U1,0
and m0,1 := b0w2,0 + b1w2,1 ∈ U0,1. Then,

(IQP
)⊥

d,d = md−1
1,0 m

d−1
0,1 U1,1
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where the perp is computed with respect to the apolar action of U on R. Moreover,
the point svd,d(QP ) ⊆ SVd,d corresponds to the form (a0y1,0+a1y1,1)d(b0y2,0+b1y2,1)d

and

(a0y1,0 + a1y1,1)d−1(b0y2,0 + b1y2,1)d−1T1,1 = L(svd,d(QP )) ∼= P((IQP
)⊥

2,2)

and the isomorphism is canonical.

Proof Recall that we defined

IQP
= (ℓ2

1,0, ℓ
2
0,1) ⊆ R

where ℓ1,0 = a1x1,0 − a0x1,1 and ℓ0,1 = b1x2,0 − b0x2,1 and note that ℓ1,0 ⊥ m1,0 and
ℓ0,1 ⊥ m0,1. Since

(I(QP ))d,d = ⟨ℓi
1,0ℓ

j
0,1Rd−i,d−j⟩2≤i≤d

2≤j≤d

it is clear that md−1
1,0 m

d−1
0,1 U1,1 ⊆ (IQP

)⊥
d,d. On the other hand, if md−1

1,0 ∤ G ∈ Ud,d

then G ◦ ℓd
1,0 /= 0 and thus md−1

1,0 G /∈ (IQP
)⊥

d,d and similarly if md−1
0,1 ∤ G. Hence

md−1
1,0 m

d−1
0,1 U1,1 = (IQP

)⊥
d,d.

The fact that svd,d(QP ) ⊆ SVd,d corresponds to the form

(a0y1,0 + a1y1,1)d(b0y2,0 + b1y2,1)d

is a trivial check using our identifications. Finally, the second part of the statement
is analogous to the proof of Proposition 1.4.6 and the canonical isomorphism is
given just by changing the name of the variables from wi,j to yi,j.

Example 3.4.4. Let us consider for example P = [0,1; 0,1], then IQP
= (x2

1,0, x
2
2,0)

and
(I⊥

QP
)(2,2) = ⟨w1,0w1,1w2,0w2,1, w1,0w1,1w

2
2,1, w

2
1,1w2,0w2,1, w

2
1,1w

2
2,1⟩

and thus the tensors in any L(sv2,2(QP )) can be written, modulo a bilinear change
of coordinates in P1 × P1, as described in Figure 3.4
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Figure 3.4: Tensors in L(sv2,2(QP ))

Hence, L(sv2,2(QP )) is defined by equations v(i0,i1),(j0,j1) = 0, for all v(i0,i1),(j0,j1)
where either both i’s or both j’s are 0.

In the following, by virtue of Lemma 3.4.3, we will consider the forms m1,0,m0,1
in T , instead of U1,1, with the trivial identifications.

Remark 3.4.5. Using the same notation of Lemma 3.4.3, note that since
L(sv2,2(QP )) = P(m1,0m0,1T1,1) and

τ1,sv2,2(P )(SV2,2) = P(m1,0m0,1(m1,0T0,1 +m0,1T1,0))

we have τ1(SV2,2) ⊆ q2(SV2,2).

Now we consider the secant variety of q2(SV2,2) and we want to prove the fol-
lowing proposition.

Proposition 3.4.6. We have that dim q2(SV2,2) = 5 and σ2(q2(SV2,2)) = P8, as
expected. Hence the generic partially symmetric tensor in P8 can be written as the
sum of two p.s. tensors which depends only on four parameters each (and can be
written, not at the same time, as in Figure 3.4).

Proof Recall that SV2,2 ⊆ P8 and this P8 can be identified with P(T2,2). By
Lemma 3.4.3, to give a point in L(sv2,2(QP )) = P3 ⊆ P8 amounts to choosing a
form m1,0m0,1m1,1, with m1,0 ∈ T1,0, m0,1 ∈ T0,1, m1,1 ∈ T1,1. Hence, in order to
find the tangent space to q2(SV2,2) at the point m1,0m0,1m1,1, we have to consider
another generic point ℓ1,0ℓ0,1ℓ1,1 ∈ q2(SV2,2), and then compute (e.g. see [45], [46]):

lim
λ→0

d

dλ
[(m1,0 + λℓ1,0)(m0,1 + λℓ0,1)(m1,1 + λℓ1,1)] =

= ℓ1,0m0,1m1,1 +m1,0ℓ0,1m1,1 +m1,0m0,1m1,1 ⊆ T2,2.
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3.4 – 2-squares on Segre-Veronese surfaces

As ℓ1,0, ℓ0,1, ℓ1,1 vary, we get that the affine cone on the tangent space that we
considered is

W = m1,0m0,1T1,1 +m1,0m1,1T0,1 +m0,1m1,1T1,0.

The vector dimension of W is 6 and thus dim(q2(SV2,2)) = 5, as expected.
If we consider the ideal

I = (m1,0m0,1,m1,0m1,1,m0,1m1,1)

we have thatW = I2,2, and I is the ideal of three points P1, P2, P3 ∈ P(T (1))×P(T (2)).
Since they can be respectively defined by the ideals (m1,0,m1,1), (m0,1,m1,1) and
(m1,0,mt), the three of them are not contained in a fibre, but P1, P3 and P2, P3 are
(see Figure 3.5 a).

Figure 3.5: (a) P1, P2, P3 in P1 × P1; (b) X ∪ X′ specialised.

Now we want to use Terracini Lemma (see Lemma 1.4.13) to compute the dimension
of σ2(q2(SV2,2)). We have to consider two tangent spaces to q2(SV2,2) at two generic
points of q2(SV2,2) and compute the projective subspace generated by them. Let us
say that the two generic points are given by m1,0m0,1m1,1 and ℓ1,0ℓ0,1ℓ1,1. If their
affine cones are W and W ′, by Terracini Lemma P(W + W ′) is the tangent cone
at a generic point of σ2(q2(SV2,2)). Since W = (IX)2,2 and W ′ = (IX′)2,2, where X
and X′ are given by two configuration of three simple points as in Figure 3.5 a, we
have that

W ∩W ′ = (IX∪X′)2,2.

Now we want to prove that if X = P1 + P2 + P3 and X′ = P ′
1 + P ′

2 + P ′
3 are

two schemes of three points, both positioned as in Figure 3.5 a, then they impose
independent conditions to forms of bidegree (2,2), i.e. dim(IX∪X′)2,2 = 3. To prove
that we can specialise X′ so that the line ℓ1,0 = 0 contains P ′

3, P ′
1 and also a
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point (say P2) of X (see Figure 3.5 b). This forces the forms in (IX∪X′)2,2 to be
of type ℓ1,0F , with F ∈ T1,2; now we have also that since {F = 0} contains P1
and P ′

2, then F has to be of type F = ℓ0,1G, with G ∈ T1,1 and P3 ∈ {G = 0}.
Hence dim(IX∪X′)2,2 = dim(IP3)1,1 = 3. Note that we have, in some sense, used a
multigraded version of the residual exact sequence.
By that we get dim(W ∩W ′) = dim(IX∪X′)2,2 = 3, so

dim(W +W ′) = dimW + dimW ′ − dim(W ∩W ′) = 6 + 6 − 3 = 9

and σ2(q2(SV2,2)) = P8.

3.4.2 The varieties SVd,d and their q2(SVd,d), d ≥ 3.
Now we want to generalise what we did to the case of Segre-Veronese varieties

SVd,d = svd,d(P1×P1) ⊆ P(d+1)2−1, with d ≥ 3. Also in this case SVd,d parameterises
partially symmetric 22d−tensors and we can define a variety q2(SVd,d) as before, that
is

q2(SVd,d) :=
⋃︂

P ∈P1×P1

L(svd,d(QP )).

Proposition 3.4.7. For all d ≥ 3, dim q2(SVd,d) = 5 and dim σ2(q2(SVd,d)) = 11,
as expected.

Proof By Lemma 3.4.3 we know that

L(svd,d(QP )) = md−1
1,0 m

d−1
0,1 T1,1 = (md−1

1,0 m
d−1
0,1 )d,d.

In order to find the tangent space to q2(SVd,d) at the point corresponding to
md−1

1,0 m
d−1
0,1 m1,1 (remember the identification of P(d+1)2−1 with Td,d), we have to con-

sider another generic point ℓd−1
1,0 ℓ

d−1
0,1 ℓ1,1 ∈ q2(SVd,d), and then to compute

lim
λ→0

d

dλ

[︂
(m1,0 + λℓ1,0)d−1(m0,1 + λℓ0,1)d−1(m1,1 + λℓ1,1)

]︂
=

= (d− 1)md−2
1,0 ℓ1,0m

d−1
0,1 m1,1 + (d− 1)md−2

0,1 ℓ0,1m
d−1
1,0 m1,1 +md−1

1,0 m
d−1
0,1 ℓ1,1.

This, as ℓ1,0, ℓ0,1, ℓ1,1 vary, gives the space

W = (md−1
1,0 m

d−1
0,1 ,m

d−1
1,0 m

d−2
0,1 m1,1,m

d−2
1,0 m

d−1
0,1 m1,1)d,d.

If we let X be the scheme of P(T (1)) × P(T (2)) defined by

IX = (md−1
1,0 m

d−1
0,1 ,m

d−2
1,0 m

d−2
0,1 m1,1)

we have W ⊆ (IX)d,d. Note that X is the scheme which is made of the two
lines m1,0 = 0, m0,1 = 0, both with multiplicity d − 2, plus two (d − 1)-jets on
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{m1,1 = 0}, supported at the points respectively defined by the ideals (m1,0,m1,1)
and (m1,1,m0,1) (see Figure 3.6).

Figure 3.6: The scheme given by two (d−2)-ple lines with two (d−1)-jets sprouting
from them.

We have that dimW = 6 and thus dim q2(SVd,d) = 5, as expected, while
dim(IX)d,d = 7: indeed, all forms in (IX)d,d are of type md−2

1,0 m
d−2
0,1 F , where F is a

(2,2)−form passing through the two points where the jets are, hence
dim(IX)d,d = 9 − 2 = 7.
By Terracini Lemma, to compute the dimension of σ2(q2(SVd,d)) we have to consider
two tangent spaces to q2(SVd,d) at two generic points of q2(SVd,d) and we have to
compute the projective subspace generated by them. More precisely, if the affine
cones at the two generic points are W and W ′, the space P(W + W ′) will be the
tangent space to a generic point of σ2(q2(SVd,d)).
Since W ⊆ (IX)d,d and W ′ ⊆ (IX′)d,d, where X and X′ are made as in Figure 3.6,
i.e. two lines of multiplicity d− 2 with two (d− 1)-jets, we have

W ∩W ′ ⊆ (IX)d,d ∩ (IX′)d,d = (IX∪X′)d,d.

We want to check that (IX∪X′)d,d =< 0 >. We set

IX′ = (m′d−1
1,0 m′d−1

0,1 ,m′d−2
1,0 m′d−2

0,1 m′
1,1)

and we distinguish two cases:

• d = 3.
Since the forms in (IX∪X′)3,3 should contain the factor m1,0m0,1m

′
sm

′
t ∈ T2,2, and

no form in T1,1 passes through the four points which are the support of the four
jets, we get (IX∪X′)3,3 =< 0 >.
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• d ≥ 4
The forms in (IX∪X′)d,d should contain the factor md−2

1,0 m
d−2
0,1 m

′d−2
1,0 m′d−2

0,1 , which
is impossible for d ≥ 5, while for d = 4 there would be only this form, which
does not contain the four d − 1 jets at the four points m1,0 ∩ m1,1, m0,1 ∩ m1,1,
m′

s ∩ n′
s,t and m′

t ∩ n′
s,t, hence also in this case (IX∪X′)3,3 = {0}.

Now, from Grassmann equality, we get

dim(W +W ′) = dimW + dimW ′ − dim(W ∩W ′) = 6 + 6 − 0

hence dim(W +W ′) = 12 and dim σ2(q2(V3,3)) = 11.

3.4.3 The cuckoo varieties qq2(SVd,d)
As we have done in the Veronese case, here too we are going to define a “cuckoo

variety” inside q2(SVd,d), which could also have some interest in relation to Quan-
tum Entanglement. If we consider the Hilbert space of a composite quantum sys-
tem, then this is the tensor product of the Hilbert spaces of the constituent systems,
and tensor rank is a natural measure of the entanglement for the corresponding
quantum states. The Hilbert space of a k-body system is obtained as the tensor
product of k copies of the single particle Hilbert space H1. In the case of indistin-
guishable bosonic particles, the totally symmetric states under particle exchange
are physically relevant, which amounts to restricting the attention to the subspace
Hs = SymN(H1) ⊆ H⊗N

1 of symmetric tensors. See [17], [19] and [28] for more
details on this topic.

In case we have k ≥ 2 different species of indistinguishable bosonic particles,
the relevant Hilbert space is

SymN1(H1) ⊗ SymN2(H2) ⊗ . . .⊗ SymNk(Hk).

Of particular interest, in physics literature, are the so-called W -states, i.e. quantum
entangled states that can be expressed in Dirac notation as:

|W⟩ = 1√
n

(|100...0⟩ + |010...0⟩ + ...+ |00...01⟩).

Which, if H1 = C2 with coordinates (x, y), can be written as:

Wd = y ⊗ x⊗ . . .⊗ x+ x⊗ y ⊗ x⊗ . . .⊗ x+ x⊗ x⊗ . . .⊗ y.

When treating with bosonic particles, hence with symmetric tensors, Wd can be
represented simply as a monomial xd−1y, hence in the study of entanglement of
k different d-body systems (made of different species of indistinguishable bosonic
particles, like photons), we can consider the product of k Wd states: Wd ⊗ . . .⊗Wd,
where each Wd

∼= xd−1y ∈ Symd C2 ⊆ (C2)⊗d (e.g. see [16]).
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In [16], Lemma 2.1, it is proved that Wd ⊗ . . . ⊗ Wd ∈ L(sv(1,...,1);(d,...,d)(X)),
where X is a 2−hypercube in P1 × . . .×P1, and this is expressed by saying that the
cactus rank of W⊗k

d is 2k and it is realised by X (the partially symmetric cactus
rank of a tensor T ∈ P(d+1)k−1 is the minimum length of a 0−dimensional scheme
X ⊆ SV(1,...,1);(2,...,2) such that T ∈ L(X)). We can improve a bit that lemma in this
setting (in [16] also the case of Wd1 ⊗ . . .⊗Wdk

is considered, with different di’s).

Corollary 3.4.8. Let T ∈ P(d+1)k−1 parameterise Wd⊗. . .⊗Wd; then the smoothable
rank of T is 2k.

Proof The only difference between smoothable rank and cactus rank is that the
smoothable rank of T is r, if and only if there is a smoothable 0−dimensional
scheme X ⊆ SV(1,...,1);(d,...,d) such that T ∈ L(X) and ℓ(X) = r and there is none
with ℓ(X) < r. Since, by Proposition 3.1.13, any 2−hypercube is smoothable, the
statement is an immediate consequence of this and of Lemma 2.1 of [16], since for
any tensor the smoothable rank is greater or equal than the cactus rank.

Now we focus again on the case k = 2. We know that q2(SVd,d) parameterises
partially symmetric tensors in the spaces

L(svd,d(QP )) = (md−1
1,0 m

d−1
0,1 )d,d

and thus for any partially symmetric tensor of type Wd ⊗ Wd = md−1
1,0 a1,0m

d−1
0,1 bt,

m1,0, a1,0 ∈ T1,0, m0,1, bt ∈ T0,1, we have Wd ⊗ Wd ∈ L(svd,d(QP )), for some
P ∈ P1 × P1. More specifically, let us consider the subvariety which parameterises
exactly the tensors of type Wd ⊗Wd.

Definition 3.4.9. The cuckoo variety qq2(SVd,d) ⊆ q2(SVd,d) is the image of the
morphism

P(T (1)
1 ) × P(T (1)

1 ) × P(T (2)
1 ) × P(T (2)

1 ) → q2(SVd,d) ⊆ P(Td,d)
([m1,0], [n1,0], [m0,1], [n0,1]) → [md−1

1,0 n1,0m
d−1
0,1 n0,1]

.

Clearly the map can also be thought as a map from P1 × P1 × P1 × P1 to
q2(SVd,d) ⊆ P8 through the usual identifications. Note that qq2(SVd,d) has dimen-
sion 4, and, via a multilinear change of coordinates, every form parameterised by
a point in qq2(SVd,d) can be written as a monomial yd−1

1,0 y1,1y
d−1
2,0 y2,1 (for results on

the various ranks of such monomials see [47],[63] and [16]).

Proposition 3.4.10. The cuckoo variety qq2(SVd,d) is such that:

1. ∀ P ∈ P1 × P1, qq2(SVd,d) ∩ L(svd,d(QP )) ∼= QP , where QP is a smooth quadric
in L(svd,d(QP )) ∼= P3.

2. ∀P ∈ P1 × P1, we have τ1,svd,d(P )(QP ) = τ1,svd,d(P )(SVd,d).

111



Superfat points and associated tensors

3. Sing(qq2(SVd,d)) is the locus of forms of type md
1,0m

d−1
0,1 n0,1 or md−1

1,0 n1,0m
d
0,1.

Proof By Lemma 3.4.3, if svd,d(P ) = md
1,0m

d
0,1, then

L(svd,d(QP )) = (md−1
1,0 m

d−1
0,1 )d,d = md−1

1,0 m
d−1
0,1 T1,1.

We chose n1,0, n0,1 such that

T1,0 = ⟨m1,0, n1,0⟩, T0,1 = ⟨m0,1, n0,1⟩, T1,1 = ⟨m1,0m0,1,m1,0n0,1, n1,0m0,1, n1,0n0,1⟩.

and thus, any point in L(svd,d(QP )) is a form of type

md−1
1,0 m

d−1
0,1 (a0m1,0m0,1 + a1m1,0n0,1 + b0n1,0m0,1 + b1n1,0n0,1).

The forms of L(svd,d(QP )) are all and only those such that

a0m1,0m0,1 + a1m1,0n0,1 + b0n1,0m0,1 + b1n1,0n0,1 = ℓ1,0ℓ0,1

for some ℓ1,0 ∈ T1,0 and ℓ0,1 ∈ T0,1. This condition is satisfied if and only if
a0b1 − a1b0 = 0 and this equation defines a quadric QP ⊆ L(svd,d(QP )). This
proves the part 1.
To prove part 2 note that τ1,svd,d(P )(SVd,d) is given by the forms in

md−1
1,0 m

d−1
0,1 (m1,0T0,1 +m0,1T1,0).

It follows that

QP ∩τ1,νd,d(P )(Vd,d) = {md
1,0m

d−1
0,1 (m0,1+α0,1) | α0,1 ∈ T0,1}∪{md−1

1,0 m
d
0,1(m1,0α1,0) | α1,0 ∈ T1,0}.

Thus QP ∩ τ1,νd,d(P )(Vd,d) is the union of two lines in τ1,νd,d(P )(Vd,d) and hence this
is the tangent plane to QP in svd,d(QP ).
In order to prove 3, let us consider the affine cone W over the tangent space of
qq2(SVd,d) at one of its points, say the one associated to md−1

1,0 n1,0m
d−1
0,1 n0,1. If we

consider another point ℓd−1
1,0 r1,0ℓ

d−1
0,1 r0,1 ∈ qq2(SVd,d), and we compute

lim
λ→0

d

dλ

[︂
(m1,0 + λℓ1,0)d−1(n1,0 + λr1,0)(m0,1 + λℓ0,1)d−1(n0,1 + λr0,1)

]︂
=

= (d− 1)md−2
1,0 ℓ1,0n1,0m

d−1
0,1 n0,1 +md−1

1,0 r1,0m
d−1
0,1 n0,1+

+(d− 1)md−1
1,0 n1,0m

d−2
0,1 ℓ0,1n0,1 +md−1

1,0 n1,0m
d−1
0,1 r0,1

we find, as ℓ1,0, r1,0, ℓ0,1, r0,1 vary, that

W = ⟨md−2
1,0 m

d−2
0,1 (m1,0m0,1(n0,1T1,0 + n1,0T0,1) + n1,0n0,1(m0,1T1,0 +m1,0T0,1))⟩ ⊆ Td,d.

Generically, we have dim(a0,1T1,0 + a1,0T0,1) = 3, since they have ⟨a1,0a0,1⟩ in
common, hence W is the sum of two subspaces of vector dimension 3, which
have ⟨md−1

1,0 n1,0m
d−1
0,1 n0,1⟩ in common, so dimW = 5, as expected. The locus

Sing(qq2(SVd,d)) is given by the points where dimW < 5, and it is easy to check
that this happens for either m1,0 = n1,0 or m0,1 = n0,1, and this proves 3.
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Remark 3.4.11. There is another way to view the variety qq2(SVd,d): consider the
embedding svd,d(P1 × P1) as the composition

P1 × P1 → Pd × Pd → Pd2+2d

where the first arrow is ν2,d ×ν2,d and the second is the Segre embedding sd,d. If the
image of the first map is C(1)

d × C(2)
d , where C(1)

d , C(2)
d are the rational normal curves

having as coordinate rings R(1)
d and R(2)

d respectively, we can consider the product
of their tangential varieties τ(C(1)

d ) × τ(C(2)
d ) ⊆ Pd × Pd, parameterising pairs of

forms like (md−1
1,0 a1,0,m

d−1
0,1 a0,1) and we get

sd,d(τ(C(1)
d ) × τ(C(2)

d )) = qq2(SVd,d).

We know that the singular locus of the tangential surface to a rational normal curve
is the rational normal curve itself, hence

Sing(τ(C(1)
d ) × τ(C(2)

d )) = (τ(C(1)
d ) × C(2)

d ) ∪ (C(1)
d × τ(C(2)

d ))

in correspondence with what we saw in Proposition 3.4.10, 3.

Remark 3.4.12. Note that for d = 2, we have

qq2(SV2,2) = s2,2(τ(C(1)
2 ) × τ(C(2)

2 )) = s2,2(P2 × P2)

hence qq2(SV2,2) is just the Segre variety S2,2 ⊆ P8 which is well-known to be
2-defective (it is the variety of 3 × 3 matrices of rank 2), i.e. dim σ2(S2,2) = 7.
We want to check that this does not happen for d ≥ 3.

Proposition 3.4.13. For d ≥ 3, dim σ2(qq2(SV2,2)) = 9, as expected.

Proof By Terracini Lemma, the dimension of the affine tangent cone at a generic
point of σ2(qq2(SVd,d)) will be dimW1 + W2, where W1, W2 are the affine tangent
cones at two generic points of qq2(SVd,d). Thus, in order to prove our statement,
we have to show that dim(W1 + W2) = 10 that is, since dimW1 = dimW2 = 5 by
Proposition 3.4.10, that W1 ∩W2 =< 0 >.
In the proof of Proposition 3.4.10, 3, we have computed the affine tangent cone W
at a generic point of qq2(SV2,2), hence if we pick two generic points given by forms:
md−1

1,0 n1,0m
d−1
0,1 n0,1 and ℓd−1

1,0 r1,0ℓ
d−1
0,1 r0,1, we will have:

W1 = md−2
1,0 m

d−2
0,1 (m1,0m0,1n0,1T1,0 +m1,0n1,0m0,1T0,1 + n1,0m0,1n0,1T1,0 +m1,0n1,0n0,1T0,1)

W2 = ℓd−2
1,0 ℓ

d−2
0,1 (ℓ1,0ℓ0,1r0,1T1,0 + ℓ1,0r1,0ℓ0,1T0,1 + r1,0ℓ0,1r0,1T1,0 + ℓ1,0r1,0r0,1T0,1)

and in particular W1 ⊆ (md−2
1,0 m

d−2
0,1 )T2,2, and W2 ⊆ (ℓd−2

1,0 ℓ
d−2
0,1 )T2,2. When d ≥ 5 it

is immediate to check that W1 ∩W2 = {0}, so we are done.
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If d = 4, then

(md−2
1,0 m

d−2
0,1 )T2,2 ∩ (ℓd−2

1,0 ℓ
d−2
0,1 )T2,2 = ⟨m2

1,0m
2
0,1ℓ

2
1,0ℓ

2
0,1⟩

and it is easy to check that m2
1,0m

2
0,1ℓ

2
1,0ℓ

2
0,1 /∈ W1 ∩ W2 (it suffices to consider

m1,0 = y1,0,m0,1 = y2,0, n1,0 = y1,1, n0,1 = y2,1 and note that y2
1,iy

2
2,j /∈ W1, while

these monomials will appear in ℓ2
1,0ℓ

2
0,1).

Eventually, for d = 3, let

W1 = y1,0y2,0⟨y2
1,0, y1,0y1,1y2,0y2,1, y1,0y1,1y

2
2,0, y

2
1,1y2,0y2,1, y1,0y1,1y

2
2,1⟩.

If there is something not 0 in W1 ∩W2 it should be of the form y1,0y2,0ℓ1,0ℓ0,1m1,1,
with m1,1 ∈ T1,1, but since ℓ1,0, ℓ0,1 are generic, say

ℓ1,0ℓ0,1 = (a1,0y1,0 + a0,1y1,1)(a2,0y2,0 + a2,1y2,1),

in ℓ1,0ℓ0,1m1,1 the monomials y2
1,iy

2
2,j should appear, and this is impossible since they

are not in
⟨y2

1,0, y1,0y1,1y2,0y2,1, y1,0y1,1y
2
2,0, y

2
1,1y2,0y2,1, y1,0y1,1y

2
2,1⟩.

Hence, W1 ∩W2 = {0} also for d = 3 and we are done.
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Chapter 4

Postulation of 2-squares

In this chapter, we prove that a general union of 2-squares in P2 has good
postulation (see Definition 1.6.3). In order to do that, we use the Horace method
and, in one of the lemmata needed for the induction, the differential Horace method
(see §1.6). Note that, for each degree d, it will be enough to prove the good
postulation for a general union of s 2-squares for only two values of s:

• s = s∗(d) :=
⌊︃(d+2

2 )
4

⌋︃
, i.e., the largest number of 2-squares that we expect to

impose independent conditions on the space of degree-d plane curves;

• s = s∗(d) :=
⌈︃(d+2

2 )
4

⌉︃
, i.e., the smallest number of 2-squares that we expect to

admit no degree-d plane curve passing through them.

We will prove the theorem in two different ways: both of them are based on an
Horace type argument, but with different specialisation; in particular, the second
proof avoids the differential Horace.
In order to simplify computations, we would like to use lines as divisors for the
residual exact sequences. Thus, given X = Z1 + Z2 + · · · + Zs a general union
of s 2-squares, a general line r and d ∈ N, we look for a specialisation X′ of X
such that h0(ITrr(X′)) = 0. Unfortunately, as soon as one tries to do that, one
immediately notes that there is an arithmetic obstruction. Indeed, the intersection
of a 2-square with any line r passing through its support has length 2. Therefore,
whenever d ≡ 0 mod 2, in order to get h0(ITrr(X′)), we would need to specialise
the support of d/2 + 1 components of X to lie on the line r, that means that we
put d + 2 conditions on the line r. However, since h0(Or(d)) = d + 1, this is more
than needed. This can cause problems whenever

(︂
d+2

2

)︂
/4 is an integer because if

we “waste” conditions on Trr(X′) then we would be left with too few conditions on
Resr(X′). Indeed, in this case we should prove that dim Ld(X′) = 0, but with such

115



Postulation of 2-squares

a specialisation we would have

ℓ(Resr(X′)) =
(︄
d+ 2

2

)︄
− (d+ 2) = (d+ 2)(d− 1)

2 =
(︄
d+ 1

2

)︄
− 1

and, therefore, dim Ld(X′) = dim Ld−1(Resr(X′)) > 0. The two proofs that we
present will differ only in the way in which this problem is solved; in particular,
they will differ only for d even.

4.1 First proof
In light of the arithmetic obstruction we have noticed, we need to specialise

differently our 2-squares on our line r. We introduce in the following remark two
different kinds of specialisation, which we will use for the first proof.

Remark 4.1.1. We can suppose, without loss of generality, that the line r has
equation r : x1 = 0.

1. Note that we can specialise a 2-square Z on r in two ways:

(a) we can specialise Z in order to have

I(Z) = (x2
0, x

2
1)

(b) we can specialise Z in order to have

I(Z) = ((x0 − x1)2, (x0 + x1)2)

In both cases, Resr(Z) is a 0-dimensional scheme of length 2, and the difference
between the two ways is that:

• in (a), we have (x2
0, x

2
1) : (x1) = (x2

0, x1) so that Resr(Z) ⊆ r and in
particular

ℓ(Trr(Resr(Z))) = 2;

• in (b), we have ((x0 − x1)2, (x0 + x1)2) : (x1) = (x0, x
2
1) so that

ℓ(Trr(Resr(Z))) = 1.

2. Given two 2-squares with different support, we may collapse them together.
Namely, for t ∈ (0,1] let

I(Zt) = (x2
0, x

2
1) ∩ ((x0 + tx2)2, (x1 + tz)2) =(︂

(x0 − x1)3, (x0 − x1)(x0 + x1)(x0 + x1 + 2tx2), x2
1(x1 + tx2)2

)︂
.

Then, we get a 0-dimensional scheme Z0 such that

I(Z0) = lim
t→0

I(Zt) = ((x0 − x1)3, (x0 − x1)(x0 + x1)2, x4
1).
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4.1 – First proof

Here is the key: the deformation (2) produces a 0-dimensional scheme having a
slice of length 3 which should make the arithmetic work. Let us now show more in
detail how the residues of Z0, obtained using successively the line r as divisor, are.
We can write the ideal I(Z0) in the following way

I(Z0) = ((x0 − x1)3, (x2
0 − x0x1)x1, (x0 − x1)2x2

1, (x0 − x1)x3
1, x

4
1)

and thus we have that:

• I(Z0) + (x1) = (x3
0, x1) so that ℓ(Trr(Z0)) = 3 and Z ′

0 := Resr(Z0) is defined
by the ideal

I(Z ′
0) = I(Z0) : (x1) = (x2

0 − x0x1, x0x
2
1, x

3
1);

• I(Z ′
0) + (x1) = (x2

0, x1) so that ℓ(Trr(Z ′
0)) = 2 and Z ′′

0 := Resr(Z ′
0) is defined

by the ideal
I(Z ′′

0 ) = I(Z ′
0) : (x1) = (x0, x1)2

and in particular Z ′′
0 = 2P , where P is the point [0,0,1].

Notation 4.1.2. When in what follows we use a specialisation of one of the types
introduced in Remark 4.1.1, we will refer to them respectively as specialisation of
type (1.a), (1.b) or (2).

Now we can use these specialisations to generate an inductive argument.

Lemma 4.1.3. Let d ∈ N such that d is odd and consider a 0-dimensional scheme
X = X1 + X2 where:

• X1 = Z1 + Z2 + · · · + Z(d+1)/2, where all Zi’s are 2-squares with support on a
line r in such a way that Z1 is specialised as type (1.b) and Z2, Z3, . . . , Zd+1/2
are specialised as type (1.a);

• X2 does not intersect r.

Then
dim Ld(X) = dim Ld−2(X2 + P )

where P is the support of Z1.

Proof We have the residual exact sequence

0 IResr(X)(d− 1) IX(d) ITrr(X),r(d) 0

and
ℓ(Trr(X)) = 2d+ 1

2 = d+ 1
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so that h0(ITrr(X),r(d)) = d + 1 − (d + 1) = 0 and h0(IX(d)) = h0(IResr(X)(d − 1)).
Now we are left with

X′ := Resr(X) = Resr(X1) + Resr(X2) = Z ′
1 + Z ′

2 + · · · + Z ′
(d+1)/2 + X2

where Z ′
i := Resr(Zi) for i = 1, . . . , d+1

2 and we have the residual exact sequence

0 IResr(X′)(d− 2) IX′(d− 1) ITrr(X′),r(d− 1) 0 .

Thanks to the way we have specialised our points we get

ℓ(Trr(X′)) =
(d+1)/2∑︂

i=1
ℓ(Trr(Z ′

i)) = 1 + 2
(︄
d+ 1

2 − 1
)︄

= d

Resr(X′) = X2 + P

where P := Resr(Z ′
1) is a point on r. Thus

h0(ITrr(X′),r(d− 1)) = d− d = 0

and
h0(IX′(d− 1)) = h0(IX2+P (d− 2)).

Hence, we finally have

dim Ld(X) = h0(IX(d)) = h0(IX′(d− 1)) = h0(IX2+P (d− 2)) = dim Ld−2(X2 + P )

and this concludes the proof.

Lemma 4.1.4. Let Z1, Z2, . . . , Zs be general 2-squares in P2, X = Z1 +Z2 + · · ·+Zs

and let d ∈ {2,4}. Then

HX(d) = min
{︄(︄

d+ 2
2

)︄
,4s
}︄

or, equivalently,

dim Ld(X) =
(︄
d+ 2

2

)︄
− min

{︄(︄
d+ 2

2

)︄
,4s
}︄
.

Proof For each degree d, it is enough to prove the Lemma just for s = s∗(d) and
for s = s∗(d) so we have to analyse four cases:

• d = 2 and s = 1

The proof in this case is immediate because we already know that the Hilbert
function of a 2-square X is HX(1) = 3 and HX(d) = 4 for any d ≥ 2.

118



4.1 – First proof

• d = 2 and s = 2

In this case we have X = Z1 + Z2 and, since by Remark 1.6.4 it is enough to
prove the statement for a specialisation of X, we can suppose that X is obtained
by collapsing the two 2-squares Z1 and Z2 as in specialisation (2). At this point
the result follows from the fact that, by Remark 4.1.1, the ideal of X does not
have generators of degree 2.

• d = 4 and s = 3

In this case we have X = Z1 + Z2 + Z3, but again we can suppose that X is
specialised as X=Y+Z3, where Y and Z3 have support on the line r, Y is the
specialisation of Z1 and Z2 as in specialisation (2) and Z3 is specialised as in
specialisation (1.a). We have the residual exact sequence

0 IResr(X)(3) IX(4) ITrr(X),r(4) 0

and
ℓ(Trr(X)) = 3 + 2 = 5

so that h0(ITrr(X),r(4)) = 5 − 5 = 0 and h0(IX(4)) = h0(IResr(X)(3)). At this
point we are left with

X′ := Resr(X) = Y′ + Z ′
3

where Y′ := Resr(Y) and Z ′
3 := Resr(Z3) and we have the exact sequence

0 IResr(X′)(2) IX′(3) ITrr(X′),r(3) 0 .

Because of the way we have specialised our points we get

ℓ(Trr(X′)) = ℓ(Trr(Y′)) + ℓ(Trr(Z ′
3)) = 2 + 2 = 4

Resr(X′) = Resr(Y′) = 2P
where 2P is a double point of P2 whose support is on r. In particular, we get
h0(ITrr(X′),r(3)) = 0 and thus

dim L4(X) = h0(IX(4)) = h0(IX′(3)) = h0(I2P (2)) = 3.

• d = 4 and s = 4 In this case we have X = Z1 + Z2 + Z3 + Z4 and we can
specialise again Z1, Z2 and Z3 on a line r and Z4 away from r. Repeating the
same passages of the previous case, we find that

h0(IX(4)) = h0(I2P +Z4(2)).

If I(Z4) = (ℓ2
1, ℓ

2
2), the only conics that could contain 2P and Z4 would be ℓ2

1
and ℓ2

2 but we can suppose that P does not lie neither on ℓ1 = 0 nor on ℓ2 = 0
so that we get h0(I2P +Z4(2)) = 0.
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Lemma 4.1.5. Let d ∈ N be such that d ≥ 6 and d is even and consider a
0-dimensional scheme X=X1 + X2 + X3 where:

• X1 = Y + Z2 + Z3 + · · · + Zd/2 where all the Zi’s are 2-squares with support
on a general line r in such a way that Z2, . . . , Zd/2 are specialised as type (1.a)
and Y has support on r and it is obtained by collapsing two 2-squares as in
specialisation (2);

• X2 = Zd/2+1 + · · · + Zd−1 where all the Zi’s are 2-squares away from r, with
support on a general line m such that the support of Y is not on m and such
that Zd/2+1 and Zd/2+2 are specialised as type (1.b) and Zd/2+3, . . . , Zd−1 are
specialised as type (1.a);

• X3 is a 0-dimensional scheme not intersecting neither r nor m.

Then
dim Ld(X) = dim Ld−4(X3 + P1 + P2)

where P1, P2 are the supports of Zd/2+1 and of Zd/2+2.

Proof We have the residual exact sequence

0 IResr(X)(d− 1) IX(d) ITrr(X),r(d) 0

and
ℓ(Trr(X)) = 2

(︄
d

2 − 1
)︄

+ 3 = d+ 1

and thus h0(ITrr(X),r(d)) = d+ 1 − (d+ 1) = 0 and h0(IX(d)) = h0(IResr(X)(d− 1)).
Now we are left with

X′ := Resr(X) = Resr(X1) + Resr(X2) + Resr(X3) = Y′ +Z ′
2 + · · · +Z ′

d/2 +X2 +X3

where Y′ := Resr(Y) and Z ′
i := Resr(Zi) for i = 2, . . . , d

2 and we have the residual
exact sequence

0 IResr(X′)(d− 2) IX′(d− 1) ITrr(X′),r(d− 1) 0 .

Thanks to the way we have specialised our points, we get

ℓ(Trr(X′)) = ℓ(Trr(Y′)) +
d/2∑︂
i=2

ℓ(Trr(Z ′
i)) = 2 + 2

(︄
d

2 − 1
)︄

= d

Resr(X′) = X2 + X3 + 2P
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where 2P := Resr(Y′) is a double point whose support is on r but not on m. Thus,
we have

h0(ITrr(X′),r(d− 1)) = d− d = 0
and

h0(IX′(d− 1)) = h0(IX2+X3+2P (d− 2)).
Now we apply the Horace differentiélle using as divisor the line m and specialising
differentially the double point 2P to m. We take

p = (0,0,1)

so that

Trp
m(X2 + X3 + 2P ) = Trm(X2) + Trm(X3) + Tr1

m(2P ) = Trm(X2) + Tr1
m(2P )

and thus

ℓ(Trp
m(X2 + X3 + 2P )) = 2

(︄
d− 1 − d

2 − 1 + 1
)︄

+ 1 = d− 1 = h0(Om(d− 2))

so it is enough to prove the vanishing of h0(Om(d− 2)). Now, keeping in mind that
the only point differentially specialised was 2P , we are left with the differential
residue

X′′ := Resp
m(X2 + X3 + 2P ) = Resm(X2) + X3 + Res1

m(2P ) =
d−1∑︂

i=d/2+1
Z ′′

i + X3 + J

where Z ′′
i := Resm(Zi) for i = d/2 + 1, . . . , d− 1 and J is a 2-jet on the line m and,

by Lemma 1.6.9, we have

h0(IX2+X3+2P (d− 2)) = h0(IX′′(d− 3)).

We can now use the residual exact sequence

0 IResm(X′′)(d− 4) IX′′(d− 3) ITrm(X′′),m(d− 3) 0 .

Thanks to the way we have specialised our points we get

ℓ(Trm(X′′)) =
d−1∑︂

i=d/2+1
ℓ(Z ′′

i ) + ℓ(J) = 1 + 1 + 2
(︄
d− 1 − d

2 − 3 + 1
)︄

+ 2 = d− 2

Resm(X′′) = X3 + P1 + P2

where P1 := Resm(Z ′′
d/2+1) and P2 := Resm(Z ′′

d/2+2) are two points on m. So, we
get h0(ITrm(X′′),m(d− 3)) = d− 2 − (d− 2) = 0 and

h0(IX′′(d− 3)) = h0(IX3+P1+P2(d− 4)).
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Hence, we have
dim Ld(X) = dim Ld−4(X3 + P1 + P2)

and this ends the proof.

We now have all the elements needed to provide the proof of our theorem. For
the sake of clarity, we sketch, in the following remark, the steps of the proof and
we summarise them in the diagram of Figure 4.1.

Remark 4.1.6. Let Y(d) be a general union of s 2-squares, with s, d ≥ 2 and
s ≥ s∗(d). We fix the statement

A(d) = {Y(d) has good postulation in degree d}.

We distinguish two cases:

• If d ≡ 0 mod 2 and d ≥ 6 we specialise Y(d) to

X(d) := X(d)
1 + X(d)

2 + X(d)
3 ,

where X(d)
1 and X(d)

2 are as in Lemma 4.1.5 and X(d)
3 is a general union of s−d+1

2-squares. We denote by X(d−4) the scheme

X(d−4) := X(d)
3 + P1 + P2,

where P1 and P2 are general points.

• If d ≡ 1 mod 2 we specialise Y(d) to

X(d) := X(d)
1 + X(d)

2 ,

where X(d)
1 is as in Lemma 4.1.3 and X(d)

2 is a general union of s− d+1
2 2-squares.

We denote by X(d−2) the scheme

X(d−2) := X(d)
2 + P,

where P is a general point.

B(d) = {X(d) has good postulation in degree d}.
The sketch of the proof is resumed in the following diagram:
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4.1 – First proof

Figure 4.1: Sketch of the proof of Theorem 4.1.7.

Finally, we are ready to give the first proof of our theorem.
Theorem 4.1.7. If X = Z1 +Z2 + · · · +Zs ⊆ P2 is a general union of s 2-squares
then X has good postulation, that is

HX(d) = min{dimRd,4s}

or, equivalently,
dim Ld(X) = dimRd − min{dimRd,4s}.

Proof Remember that, for each degree d, it is enough to prove the theorem for
s = s∗(d) and for s = s∗(d). The proof is by induction on d: we prove that the
statement for d − 2, respectively d − 4, implies the statement for d in case d odd,
respectively d even. The base case d = 1 is trivial, while the base cases d = 2,4 are
true by Lemma 4.1.4.
Now we distinguish four cases, according to the parity of d and s = s∗(d) or
s = s∗(d). Before of analysing each case we note that a straightforward check
shows that for any d ∈ N there exists ε′ ∈ {0,1,2,3} such that

s = s∗(d) =
⎢⎢⎢⎣
(︂

d+2
2

)︂
4

⎥⎥⎥⎦ =
⌊︄

(d+ 2)(d+ 1)
8

⌋︄
= (d+ 2)(d+ 1) − 2ε′

8
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and there exists ε′′ ∈ {0,1,2,3} such that

s = s∗(d) =
⎡⎢⎢⎢
(︂

d+2
2

)︂
4

⎤⎥⎥⎥ =
⌈︄

(d+ 2)(d+ 1)
8

⌉︄
= (d+ 2)(d+ 1) + 2ε′′

8 .

Now we start to prove our theorem in each of the four cases. Note that, by semi-
continuity of h0, it is enough to prove, in each case, the good postulation for a
specialisation of X; see Remark 1.6.4.

• Case 1: d ≡ 1 mod 2 and s = s∗(d)

We have
s = s∗(d) = (d+ 2)(d+ 1) − 2ε

8
and thus we have to prove that

HX(d) = min{dimRd,4s} = min
{︄(︄

d+ 2
2

)︄
,
(d+ 2)(d+ 1) − 2ε

2

}︄
=

min
{︄(︄

d+ 2
2

)︄
,

(︄
d+ 2

2

)︄
− ε

}︄
=
(︄
d+ 2

2

)︄
− ε

or, equivalently, that
dim Ld(X) = ε.

If we suppose that X is specialised as in Lemma 4.1.3 we have that

dim Ld(X) = dim Ld−2(X2 + P )

where X2 is a general union of s− d+1
2 = (d−2)(d+1)−2ε

8 2-squares and P is a general
point. By induction, we have

HX2(d− 2) = min
{︄(︄

d

2

)︄
,4
(︄

(d− 2)(d+ 1) − 2ε
8

)︄}︄
=

min
{︄(︄

d

2

)︄
,

(︄
d

2

)︄
− ε− 1

}︄
=
(︄
d

2

)︄
− ε− 1

and thus
dim Ld−2(X2 + P ) =

(︄
d

2

)︄
−
(︄(︄

d

2

)︄
− ε− 1

)︄
− 1 = ε.

• Case 2: d ≡ 1 mod 2 and s = s∗(d)

We have
s = s∗(d) = (d+ 2)(d+ 1) + 2ε

8
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and, since if ε = 0 then s∗(d) = s∗(d) and the discussion is analogous to Case 1,
in this case we can assume that ε ∈ {1,2,3}. We have to prove that

HX(d) = min{dimSd,4s} = min
{︄(︄

d+ 2
2

)︄
,
(d+ 2)(d+ 1) + 2ε

2

}︄
=

= min
{︄(︄

d+ 2
2

)︄
,

(︄
d+ 2

2

)︄
+ ε

}︄
=
(︄
d+ 2

2

)︄
or, equivalently, that

dim Ld(X) = 0.
If X is specialised as in Lemma 4.1.3 we have that

dim Ld(X) = dim Ld−2(X2 + P )

where X2 is a general union of s− d+1
2 = (d−2)(d+1)+2ε

8 2-squares and P is a general
point. By induction, we have

HX2(d−2) = min
{︄(︄

d

2

)︄
,4
(︄

(d− 2)(d+ 1) + 2ε
8

)︄}︄
= min

{︄(︄
d

2

)︄
,

(︄
d

2

)︄
+ ε− 1

}︄
=
(︄
d

2

)︄

and thus
dim Ld−2(X2 + P ) =

(︄
d

2

)︄
−
(︄
d

2

)︄
= 0.

• Case 3: d ≡ 0 mod 2 and s = s∗(d)

Since the cases d = 2 and d = 4 are already solved by Lemma 4.1.4, we can
suppose d ≥ 6. We have

s = s∗(d) = (d+ 2)(d+ 1) − 2ε
8

and, as in Case 1, we have to prove that

dim Ld(X) = ε.

If X is specialised as in 4.1.5 we have that

dim Ld(X) = dim Ld−4(X3 + P1 + P2)

where X3 is a general union of s−d = d2−5d+2−2ε
8 2-squares and P1, P2 are general

points. By induction, we have

HX3(d− 4) = min
{︄(︄

d− 2
2

)︄
,4
(︄
d2 − 5d+ 2 − 2ε

8

)︄}︄
=
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= min
{︄(︄

d− 2
2

)︄
,

(︄
d− 2

2

)︄
− ε− 2

}︄
=
(︄
d− 2

2

)︄
− ε− 2

and thus

dim Ld−4(X3 + P1 + P2) =
(︄
d− 2

2

)︄
−
(︄(︄

d− 2
2

)︄
− ε− 2

)︄
− 2 = ε.

• Case 4: d ≡ 0 mod 2 and s = s∗(d)

As in the previous case, we can suppose again that d ≥ 6. We have

s = s∗(d) = (d+ 2)(d+ 1) + 2ε
8

and, as in Case 2, we have to prove that

dim Ld(X) = 0.

If X is specialised as in Lemma 4.1.5 we have that

dim Ld(X) = dim Ld−4(X3 + P1 + P2)

where X3 is a general union of s−d = d2−5d+2+2ε
8 2-squares and P1, P2 are general

points. By induction, we have

HX3(d− 4) = min
{︄(︄

d− 2
2

)︄
,4
(︄
d2 − 5d+ 2 + 2ε

8

)︄}︄

= min
{︄(︄

d− 2
2

)︄
,

(︄
d− 2

2

)︄
+ ε− 2

}︄
and thus, keeping in mind that ε ∈ {0,1,2,3}, we get

0 ≤ dim Ld−4(X3) ≤ 2.

Hence, for any ε ∈ {0,1,2,3} we obtain

dim Ld−4(X3 + P1 + P2) = 0

and this concludes the proof of the theorem.
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4.2 Second proof
The second proof is again based on the Horace method and coincides with the

first one when the degree d of the curves we are considering is odd. In fact, the main
difference is in the case in which d is even: indeed, in this case we will use some
specialisations but without collapsing 2-squares. The proof starts by substituting
one of the 2-squares with a double point contained in it, so obtaining a subscheme of
the initial scheme and proving by induction that the number of conditions imposed
on the degree d curves by this new scheme is one less than the expected number of
conditions imposed by the initial scheme. After proving that, we conclude coming
back to the original scheme and proving that when we pass from the double point
to the 2-square, we actually impose one more condition.

Since, like we have just said, the proof is different just for even d’s we will show
it just for even d’s. Moreover, remember that the cases d = 2 and d = 4 are already
proved in Lemma 4.1.4.

Lemma 4.2.1. Let d ∈ N such that d is even and d ≥ 6 and consider a 0-
dimensional scheme X = X1 + X2 + X3 where:

• X1 = Z1 + Z2 + · · · + Zd/2 where Z1, . . . , Z(d/2) are 2-squares with support on a
general line r in such a way that Z1 is specialised as type (1.b) and Z2, . . . , Z(d/2)
are specialised as type (1.a);

• X2 = Z(d/2)+1 + · · · + Zd where Z(d/2)+1, . . . , Zd are 2-squares away from r and
with support on a general line l in such a way that Z(d/2)+1 and Z(d/2)+2 are
specialised as type (1.b) and Z(d/2)+3, . . . , Zd are specialised as type (1.a);

• X3 is a 0-dimensional scheme not intersecting neither r nor l.

Then
dim Ld(X) = dim Ld−4(X3 + P1 + P2)

where P1 and P2 are general points.

Proof In order to prove the lemma, we can prove that

dim Ld(X + P ) = dim Ld−4(X3 + P1 + P2 + P3)

where P = r ∩ l and P3 is a general point. We set Y = X + P and we prove this
second equality. We have the residual exact sequence

0 IResr∪l(Y)(d− 2) IY(d) ITrr∪l(Y),r∪l(d) 0

and we have

ℓ(Trr∪l(Y)) = ℓ(Trr∪l(X1)) + ℓ(Trr∪l(X2)) + ℓ(Trr∪l(X3)) + ℓ(Trr∪l(P )) =
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= d+ d+ 0 + 1 = 2d+ 1
so that

h0(ITrr∪l(Y),r∪l(d)) = 2d+ 1 − (2d+ 1) = 0
and h0(IY(d)) = h0(IResr∪l(Y)(d− 2)) and we are left with
Y′ := Resr∪l(Y) = Resr∪l(X1) + Resr∪l(X2) + Resr∪l(X3) = Z ′

1 + Z ′
2 + . . . Z ′

d + X3

where Z ′
i := Resr∪l(Zi) for i = 1, . . . d. By the way we specialised our scheme, we

have

deg(Trr(Y′)) =
d/2∑︂
i=1

deg(Trr(Z ′
i)) = 1 + 2

(︄
d

2 − 1
)︄

= d− 1

deg(Trl(Y′)) =
d∑︂

i= d
2 +1

deg(Trl(Z ′
i)) = 1 + 1 + 2

(︄
d

2 − 2
)︄

= d− 2

so that using first the residual exact sequence of Y′ with respect to r and then the
residual exact sequence of Resr(Y′) with respect to l we find

h0(IY′(d− 2)) = h0(IY′′(d− 4))
where

Y′′ = Resr(Z ′
1) + Resl(Z ′

(d/2)+1) + Resl(Z ′
(d/2)+2) + X3.

The fact that Resr(Z ′
1),Resl(Z ′

(d/2)+1) and Resl(Z ′
(d/2)+2) are 3 general points ends

the proof.

To give the second proof we need the following lemma.
Lemma 4.2.2. Let d ∈ N with d ≥ 6. Set s ≥ s∗(d) and consider P1, . . . , Ps points
in general position in P2. Then

dim Ld(3P1 + 3P2 + · · · + 3Ps) = 0.
Proof It is known that a general union of triple points in the plane has good
postulation with respect to the degree d curves for any d ≥ 9 and, for d ≤ 6 < 9,
the only exceptions are 5 triple points for d = 6,7 (see [77] and [78]). However, we
have (︂

6+2
2

)︂
4 = 7,

(︂
7+2

2

)︂
4 = 9

so that under our hypothesis the triple points 3P1, . . . ,3Ps always have good pos-
tulation. Thus, if we set X = 3P1 + · · · + 3Ps we have

HX(d) = min
{︄(︄

d+ 2
2

)︄
,6s∗(d)

}︄
=
(︄
d+ 2

2

)︄
and this concludes the proof.

Now we are ready to give an alternative proof of Theorem 4.1.7 for even degrees.
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Proposition 4.2.3. If X = Z1+Z2+· · ·+Zs ⊆ P2 is a general union of s 2-squares
then

HX(d) = min{dimSd,4s}
or, equivalently,

dim Ld(X) = dimSd − min{dimSd,4s}
for any even d ∈ N.

Proof The cases d = 2,4 are already proved in Lemma 4.1.4, so we have to prove
the theorem for d ≥ 6. We use induction on d and, as usual, we have to prove the
theorem only for s = s∗(d) and for s = s∗(d).

• Case 1: s = s∗(d)
As we said in the proof of Theorem 4.1.7, there exists ε ∈ {0,1,2,3} such that

s = s∗(d) = (d+ 2)(d+ 1) − 2ε
8

and we have to prove that

HX(d) =
(︄
d+ 2

2

)︄
− ε

or, equivalently, that
dim Ld(X) = ε.

Set Pi the support of Zi for i = 1, . . . , s and

X′ := Z1 + · · · + Zs−1 + 2Ps.

For d ≥ 6 we have s∗(d) ≥ d+ 1 so that we can apply Lemma 4.2.1 and we get

dim Ld(X′) = dim Ld−4(X′
3 +Q1 +Q2)

where X′
3 is a general union of s − d − 1 2-squares and a double point and

Q1, Q2 are two general points. Since any 2-square contains the double point
with the same support, X′

3 is a subscheme of a scheme of s− d 2-squares which,
by induction, has good postulation in degree d− 4 and thus X′

3 has in turn good
postulation in degree d− 4 and we get

HX′
4

= min
{︄(︄

d− 2
2

)︄
,4(s− d− 1) + 3

}︄
= min

{︄(︄
d− 2

2

)︄
,

(︄
d− 2

2

)︄
− ε− 3

}︄
=

=
(︄
d− 2

2

)︄
− ε− 3.
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As a consequence we have

dim Ld(X′) = dim Ld−4(X′
3 +Q1 +Q2) = ε+ 1.

Now, suppose by contradiction that dim Ld(X) = dim Ld(X′). Since we are con-
sidering general 2-squares, claiming that dim Ld(X) = dim Ld(X′) is equivalent
to claiming that the ε+1 curves passing through X′ also contain all the 2-squares
having support at Ps. In particular, the ε+ 1 curves contain the union of all the
2-squares having support at Ps which, by Theorem 3.2.6, is exactly 3Ps and thus
they have a triple point at Ps. By symmetry, the same argument shows that the
ε+1 curves have a triple point at each of P1, P2, . . . , Ps and this is a contradiction
by Lemma 4.2.2. Hence dim Ld(X) /= dim Ld(X′) and, since ℓ(X) = ℓ(X) + 1, we
get

dim Ld(X) = dim Ld(X′) − 1 = ε+ 1 − 1 = ε.

• Case 2: s = s∗(d)
This time there exists ε ∈ {0,1,2,3} such that

s = s∗(d) = (d+ 2)(d+ 1) + 2ε
8

and we have to prove that

HX(d) =
(︄
d+ 2

2

)︄
or, equivalently, that

dim Ld(X) = 0.
We can suppose ε /= 0 and setting again

X′ := Z1 + · · · + Zs−1 + 2Ps

and proceeding as in the previous case one finds that dim Ld(X′) = 0 and thus
dim Ld(X) = 0.
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Chapter 5

Complete Intersections on
Veronese Surfaces

This chapter is based on a joint work with E. Carlini (see [33]).
Complete intersection subvarieties are both a classical and a modern topic of

study in Algebraic Geometry. Indeed, in [60] Euler asked when a set of points in
the plane is the intersection of two curves, that is, using the modern terminology,
when a set of points in the plane is a complete intersection. In the same period,
Cramer asked similar questions so that this type of questions is presently known
as the Cramer-Euler problem. The Euler solution in the case of nine points in the
plane gave rise to what are now known as the Cayley-Bacharach Theorems, see
[58].

Complete intersections and their algebraic counterpart, regular sequences, play
a central role in Commutative Algebra and in Algebraic geometry. Consider,
for example, the well-known Hartshorne conjecture, stated for the first time by
Hartshorne in [74] and still open, which is probably one of the most studied prob-
lems regarding complete intersections. More recently, complete intersections have
shown to have unexpected applications. For example, in [18] and [25], the strength
and the slice rank of polynomials are studied using complete intersections. See also
[41] for an application in proving the existence of special families of vector bundles
on quartic surfaces of P3. For a more exhaustive overview on complete intersections,
we advise seeing [69].

In this chapter, we consider a generalisation of the Cramer-Euler problem: char-
acterise the possible complete intersections lying on a Veronese surface V2,d, and
more generally on a Veronese variety Vn,d; recall notation and definition in §1.3 and
§1.4. Note that for d = 1 the Veronese surface V2,1 is the plane P2, so that our
problem in this special case is exactly the Cramer-Euler problem. In Theorem 5.3.5
we completely solve the problem showing that for d > 2 the only reduced complete
intersections of PNn,d lying on V2,d are finite sets of either one or two points while,
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for the Veronese surface V2,2 ⊆ P5, one also has plane conics and their intersections
with suitable hypersurfaces. Moreover, in Theorem 5.3.3 we show that, except for
the case d = 2, the only complete intersections lying on rational normal curves V1,d

are the trivial ones, that is one single point or the set of two points. The case V1,2,
that is of a plane conic, is different. In fact, by cutting with any properly chosen
curve, one will produce a complete intersection set of points.

Inspired by these evidences, we formulate Conjecture 5.4.2: the only reduced
complete intersections of Vn,d, d ≥ 3, are finite sets of either one or two points while
for d = 2 one also has plane conics and their intersections with suitable hypersur-
faces. We also checked the validity of the conjecture for V3,2, see Proposition 5.4.1.

In order to prove the main result of this chapter, Theorem 5.3.5, we characterise,
in Theorem 5.1.11, the possible Hilbert functions of reduced subvarieties of Veronese
varieties. In other words, we characterise all possible Hilbert functions of radical
ideals in the Veronese ring C[z0, . . . , zNn,d

]/I(Vn,d), where I(Vn,d) is the defining
ideal of Vn,d. Beyond their application to the proof of our theorem, Hilbert functions
play a central role in Commutative Algebra and in Algebraic Geometry, for example
see [24], [90], and [99]. Indeed, in recent times, Hilbert functions have also been
used as tools in other fields. For example, in the study of Waring rank, that is the
tensor rank for symmetric tensors, in the paper [36]. Another example is the study
of Strassen’s Conjecture, a crucial conjecture in complexity theory, now proved to
be false in general [98], but still open in the relevant case of symmetric tensors, see
[39] and [40]. As a last example, we also mention the study of the identifiability of
tensors, which plays a crucial role in Algebraic Statistic, see [9],[10] and [11].

In this chapter, we first characterise the Hilbert functions of reduced subvarieties
of Vn,d. Thus, we generalise 0-sequences and differentiable 0-sequences introduced
in [67], see Definition 1.1.21 and Definition 1.1.28. Successively, we give a more
effective characterisation for the case of the rational normal curves V1,d in Theorem
5.1.7, so recovering a classical result, and for the case of the surfaces V2,d in The-
orem 5.2.4. In [64], Theorem 4.5, a similar characterisation is given in the case of
subschemes of Vn,d, that is, in the case of any ideal in a Veronese ring. However,
we consider this characterisation not to be enough effective for our purposes. In
fact, given a candidate Hilbert function, one has to solve a kind of interpolation
problem to decide whether the given function is the Hilbert function of a reduced
subvariety, or subscheme, of Vn,d, see Remark 5.2.7.

More precisely, the chapter is structured as follows. In §5.1, we recall some
basic notions needed later on in the chapter and we study the relationship between
I(ν−1

n,d(X)) and I(X), where X ⊆ Vn,d is a reduced subvariety of Vn,d. Using this,
we characterise the Hilbert functions of subvarieties lying on Vn,d and introduce
d-sequences and differentiable d-sequences. Moreover, we use these results to study
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the Hilbert functions of divisors of Vn,d and the Hilbert functions of finite sets of
reduced points lying on a rational normal curve V1,d, recovering the classical results.
In §5.2, we apply Theorem 5.1.4 to the special case of Veronese surfaces, getting
a more explicit characterisation for the Hilbert functions of reduced subvarieties
of Veronese surfaces in Theorem 5.2.4. In §5.3, we use the previously introduced
tools to prove the main theorem of the chapter, characterising all possible complete
intersections lying on Veronese surfaces. In §5.4, we study the reduced complete
intersection lying on V3,2 and we state Conjecture 5.4.2 about reduced complete
intersections lying on Veronese varieties.

5.1 Preliminary results
In this section, we introduce the needed basic notions and some preliminary

results, including a complete characterisation of the possible Hilbert functions of
reduced subvarieties of a Veronese variety; recall definitions and notation in §1.1.
The following lemma will be very useful in the rest of the chapter.
Lemma 5.1.1. Let us consider the graded morphism

φd : S → R
a → a
zi → xαi

for all a ∈ C, and for i ∈ {0, . . . , Nn,d}. Then the following hold:
1. kerφd = I(Vn,d).

2. Imφd = ⨁︁∞
ℓ=0 Rℓd and, in particular, φd(St) = Rtd.

3. If X ⊆ Vn,d, then (I(ν−1
n,d(X)))td = φd(I(X)t). In particular

φd(I(X)) =
∞⨁︂

s=0
(I(ν−1

n,d(X)))sd.

4. If X is a subvariety of Vn,d and we set Y = ν−1
n,d(X), then

HX(t) = HY(td) ∀ t ≥ 0.

Proof The proof of (1) is trivial. To prove (2) it is enough to note that any
monomial of degree td can be written as product of monomials of degree d. The
proof of (3) is a straightforward check of a double inclusion. The proof of (4) follows
from the chain of graded isomorphisms

S/I(X) ∼=
S/I(Vn,d)

I(X)/I(Vn,d)
∼=

ψd(S/I(Vn,d))
ψd(I(X)/I(Vn,d)) =

⨁︁∞
s=0 Rsd

φd(I(X))
where ψd : S/I(Vn,d) → ⨁︁∞

s=0 Rsd is the canonical isomorphism induced by φd.
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Remark 5.1.2. Since φd is a ring homomorphism, φd(I(X)) is an ideal of

Imφd =
∞⨁︂

s=0
Rsd

but it is not an ideal of R. Nevertheless, one has

(φd(I(X))R)td = (φd(I(X)))td.

Remark 5.1.3. In the notations of Lemma 5.1.1, if we choose X = Vn,d then we
have Y = Pn and thus we get that the Hilbert function of Vn,d is HVn,d

(t) =
(︂

n+td
n

)︂
.

The following theorem is an immediate consequence of Lemma 5.1.1.

Theorem 5.1.4. Let h(t) : N → N be the Hilbert function of a projective variety
in PNn,d. Then there exists X ⊆ Vn,d ⊆ PNn,d such that HX(t) = h(t) if and only
there exists k(t) : N → N a Hilbert function of a projective variety in Pn such that
h(t) = k(dt).

Remark 5.1.5. We note that, if a variety X′ ⊆ PNn,d has Hilbert function satisfying
the conditions of Theorem 5.1.4, this does not mean that X′ lies on a Veronese
variety. The theorem only guarantees that there exists some subvariety X of a
Veronese variety having the same Hilbert function of X′. Consider, for example,
seven generic points in P3. By genericity they do not lie on a V1,d, that is they do
not lie on a rational normal curve, but their Hilbert function satisfies the hypothesis
of the theorem.

In the case of divisors of Vn,d we can be more explicit.

Proposition 5.1.6. If X is a divisor of Vn,d with degX = de, then

HX(t) =
⎧⎨⎩
(︂

n+dt
n

)︂
, if t ≤

⌊︂
e−1

d

⌋︂(︂
n+dt

n

)︂
−
(︂

n+dt−e
n

)︂
, if t ≥

⌊︂
e−1

d

⌋︂
+ 1

Proof Since X is a divisor and degX = de, there exists a (unique) hypersurface
Y : F = 0 of degree e in Pn such that νn,d(Y) = X. For each t ∈ N we have the
following short exact sequence

0 R(−e)t Rt (R/(F ))t 0F π

and, as a consequence, we get HY(t) = dim(R/(F ))t = dimRt − dimR(−e)t and
this ends the proof.
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Remark 5.1.7. As a special case of divisor, one can consider X ⊆ V1,d ⊆ Pd a
finite set of s reduced points on the rational normal curve of degree d. Using an
argument similar to the one used in Proposition 5.1.6 one get the well known result:

HX(t) =
⎧⎨⎩dt+ 1, if t ≤

⌊︂
s−2

d

⌋︂
s, if t ≥

⌊︂
s−2

d

⌋︂
+ 1

.

As we have noticed in §1.1.2, the characterisation of Theorem 1.1.29 can be
rephrased: if (ct)t∈Z is a sequence of non-negative integers, then there exists a
reduced C-algebra A such that (ct)t∈Z is the Hilbert function of A if and only if
(ct)t∈Z is a differentiable 0-sequence. Theorem 5.1.4 suggests us to extend Definition
1.1.21 and 1.1.28 as follows.

Definition 5.1.8. A 0-sequence (bt)t∈N is called d-sequence if there exists a 0-
sequence (ct)t∈N such that bt = c(d+1)t.

Definition 5.1.9. A 0-sequence (bt)t∈N is called differentiable d-sequence if there
exists a differentiable 0-sequence (ct)t∈N such that bt = c(d+1)t.

Remark 5.1.10. We note that a differentiable d-sequence is necessarily a differ-
entiable 0-sequence.

We can now rephrase Theorem 5.1.4 as follows:

Theorem 5.1.11. Let (ht)t∈N be a sequence of non-negative integers such that
h0 = 1 and h1 = Nn,d + 1. There exists a projective variety X ⊆ Vn,d ⊆ PNn,d such
that HX(t) = ht if and only if (ht)t∈N is a differentiable (d− 1)-sequence.

It is natural to ask for an effective characterisation of d-sequences similar to
the one of Theorem 1.1.29. The question does not have an answer in general yet,
nevertheless one can give an answer in a special case using our results. In the case
of (d−1)-sequences with h1 =

(︂
d+2

2

)︂
, such a characterisation can be easily produced

using Theorem 5.2.4 in the next section.

5.2 Hilbert functions of points on Veronese sur-
faces

In this section, we focus our attention on the case of Veronese surfaces V2,d.
In particular, we give an effective characterisation of the Hilbert function of any
reduced subvariety of V2,d in Theorem 5.2.4.

Notation 5.2.1. Given d, t, s ∈ N such that s ≥ d2t+ d(d+3)
2 we define the following

two functions:
µ1(d, t, s) := d2t+ d(d+ 3)

2 − s

135



Complete Intersections on Veronese Surfaces

µ2(d, t, s) :=

⎧⎪⎨⎪⎩
⌊︂2d(t+1)+3−

√
1+8µ1(d,t,s)

2

⌋︂
, if 1 ≤ µ1(d, t, s) ≤

(︂
d+1

2

)︂
dt− n, if (d+1

2 )+dn<µ1(d,t,s)≤(d+1
2 )+d(n+1)

0≤n≤dt

We begin with a technical result.

Lemma 5.2.2. Let d, t ∈ N. Consider a function h : {1,2, . . . , d} → N such that
there exists i0 ∈ {1,2, . . . , d} with the properties

1. h(i) = dt+ i+ 1 for each 1 ≤ i ≤ i0 − 1;

2. h(i) ≥ h(i+ 1) for each i0 ≤ i ≤ d− 1.

Then h(d) ≤ µ2(d, t,
∑︁d

i=1 h(i)) and moreover the inequality is sharp.

Proof We distinguish four cases depending on the value of

p := d2t+ d(d+ 3)
2 −

d∑︂
i=1

h(i).

For each of them, we give a function h̃(i) satisfying 1. and 2. and such that

h̃(d) =
⎧⎨⎩
⌊︂

2d(t+1)+3−
√

1+8p
2

⌋︂
, if 1 ≤ p ≤

(︂
d+1

2

)︂
dt− n, if

(︂
d+1

2

)︂
+ dn < p ≤

(︂
d+1

2

)︂
+ d(n+ 1), 0 ≤ n ≤ dt

Then we show that for any function h′(i) satisfying 1. and 2. it holds that
h′(d) ≤ h̃(d). We do this in detail in case p =

(︂
n
2

)︂
and for the remaining cases

we produce the function h̃.

1. p =
(︂

n
2

)︂
, 1 ≤ n ≤ d+ 1

In this case we set

h̃(i) =
⎧⎨⎩dt+ i+ 1, if 1 ≤ i ≤ d− n

d(t+ 1) − n+ 2, if d− n+ 1 ≤ i ≤ d
.

We have
d∑︂

i=1
h̃(i) = d2t+ d(d+ 3)

2 − n(n− 1)
2 = d2t+ d(d+ 3)

2 − p =
d∑︂

i=1
h(i)

and
h̃(d) = d(t+ 1) − n+ 2 =

⌊︄
2d(t+ 1) + 3 −

√
1 + 8p

2

⌋︄
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hence h̃(i) is as we want. Now let us suppose that there exists

h′(i) : {1,2, . . . , d} → N

satisfying 1. and 2. and such that h′(d) > h̃(d), that is

h′(d) = d(t+ 1) − n+ 2 + a, a ≥ 1.

Since n ≤ d + 1, we have h′(d) ≥ dt + 1 + a ≥ dt + 2. As a consequence
(observe that dt+ 2 is the maximum value of h(1)), by 1. and 2., it follows that
h′(i) is increasing at least until reaching the value h′(d). In particular, if we set
i′ = min {1 ≤ i ≤ d | h(i) = d(t+ 1) − n+ 2 + a} we have

dt+ i′ + 1 = d(t+ 1) − n+ 2 + a

so that i′ = d− n+ 1 + a and i0 ≥ i′. Hence, using again 1. and 2., we get

h′(i) = h̃(i) = dt+ i+ 1 if i ≤ d− n

h′(i) > h̃(i) if i ≥ d− n+ 1

Hence:
d∑︂

i=1
h′(i) =

d−n∑︂
i=1

h̃(i) +
d∑︂

i=d−n+1
h′(i)⏞ ⏟⏟ ⏞
>h̃(i)

>
d∑︂

i=1
h̃(i) =

d∑︂
i=1

h(i)

and this is a contradiction.

2.
(︂

n
2

)︂
< p <

(︂
n+1

2

)︂
, 1 ≤ n ≤ d

Let b ∈ Z be such that p =
(︂

n
2

)︂
+ b. In this case we set

h̃(i) =

⎧⎪⎪⎨⎪⎪⎩
dt+ i+ 1, if 1 ≤ i ≤ d− n+ 1
d(t+ 1) − n+ 2, if d− n+ 2 ≤ i ≤ d− b

d(t+ 1) − n+ 1, if d− b+ 1 ≤ i ≤ d

.

3. p =
(︂

d+1
2

)︂
+ d(n+ 1), 0 ≤ n ≤ dt

In this case we set
h̃(i) = dt− n, 1 ≤ i ≤ n.

4.
(︂

d+1
2

)︂
+ nd < p <

(︂
d+1

2

)︂
+ (n+ 1)d, 1 ≤ n ≤ dt

Let b ∈ Z be such that p =
(︂

d+1
2

)︂
+ nd+ b. In this case we set

h̃(i) =
⎧⎨⎩dt+ 1 − n, if 1 ≤ i ≤ d− b

dt− n, if d− b+ 1 ≤ i ≤ d
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In the following proposition we characterise Hilbert functions of reduced points
in P

d(d+3)
2 which arise from Hilbert functions of reduced points in P2 by sampling

with steps of length d.

Proposition 5.2.3. Let us consider a finite set of reduced points X ⊆ P
d(d+3)

2 and
set

t1 = max
{︂
t | HX(t) = HV2,d

(t)
}︂
, t2 = min {t | HX(t) = |X|} .

Then HX(t) is a (d− 1)-sequence if and only if the following conditions hold

1.
µ2(d, t1,∆HX(t1 + 1)) ≥

⌈︄
∆HX(t1 + 2)

d

⌉︄
;

2. For all t1 + 2 ≤ t ≤ t2 − 1⌊︄
∆HX(t)

d

⌋︄
≥
⌈︄

∆HX(t+ 1)
d

⌉︄
.

Proof First, we assume that there exists Y ⊆ P2 such that HY(dt) = HX(t). Let
us set

HX(t) = ht, ∆HX(t) = ∆ht,

and
HY(t) = kt, ∆HY(t) = ∆kt.

Since (kt)t∈N is the Hilbert function of a finite set of reduced points of P2, then by
Dubreil theorem (see Theorem 1.1.35) there exists t′ ∈ N such that the following
conditions hold:

• kt =
(︂

2+t
t

)︂
for all t ≤ t′ and kt <

(︂
2+t

t

)︂
for all t > t′, and thus ∆kt = t+ 1 for

all t ≤ t′;

• ∆kt ≥ ∆kt+1 for all t > t′, and ∆kt is eventually equal to 0.

Note that

∆ht = ht − ht−1 = kdt − kd(t−1) = kdt +
d−1∑︂
i=1

(kdt−i − kdt−i) − kdt−d =

=
d−1∑︂
i=0

(kdt−i − kdt−(i+1)) =
d−1∑︂
i=0

∆kdt−i

and thus
∆ht+1 =

d−1∑︂
i=0

∆kd(t+1)−i =
d∑︂

i=1
∆kdt+i . (5.1)
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5.2 – Hilbert functions of points on Veronese surfaces

Thus, Remark 5.1.3 yields that
d∑︂

i=1
∆kdt+i = ∆ht+1 =

(︄
2 + d(t+ 1)

2

)︄
−
(︄

2 + dt

2

)︄
= d2t+ d(d+ 3)

2 for all t ≤ t1−1 .

Since ∆kt ≤ t+ 1 for all t and
d∑︂

i=1
(dt+ i+ 1) = d2t+ d(d+ 3)

2

it follows that
d∑︂

i=1
∆kdt+i = d2t+ d(d+ 3)

2 for all t ≤ t1 − 1

if and only if
∆kt = t+ 1 for all t ≤ dt1

and thus t′ ≥ dt1. Moreover, since ht <
(︂

2+dt
2

)︂
for t > t1, the same argument shows

that
d∑︂

i=1
∆kdt+i < d2t+ d(d+ 3)

2 for all t ≥ t1

and for t = t1 we have
d∑︂

i=1
∆kdt1+i < d2t1 + d(d+ 3)

2 .

As a consequence, there exists a minimum i0 ∈ {1,2, . . . , d} such that
∆kdt1+i0 < dt1 + i0 + 1 and therefore t′ ≤ dt1 + d − 1 = d(t1 + 1) − 1. It fol-
lows that

∆kdt1+i = dt1 + i+ 1 (5.2)
for 1 ≤ i ≤ i0 − 1 and

∆kdt1+i0 ≥ ∆kdt1+i0+1 ≥ · · · ≥ ∆kdt1+i0+a = 0

for some a ∈ N. Moreover

∆kdt1+i0 ≥ ∆kdt1+i0+1 ≥ · · · ≥ ∆kdt1+d (5.3)

and
∆kdt+1 ≥ ∆kdt+2 ≥ · · · ≥ ∆kdt+d+1⏞ ⏟⏟ ⏞

=∆kd(t+1)+1

(5.4)

for each t ≥ t1 + 1. Now, for a fixed t ≥ t1 + 1, by (5.4) we have

(d− 1)∆kdt+1 ≥
d∑︂

i=2
∆kdt+i,
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and
(d− 1)∆kdt+d ≤

d−1∑︂
i=1

∆kdt+i.

Using formula (5.1), we obtain

∆kdt+1 = ∆ht+1 −
d∑︂

i=2
∆kdt+i ≥ ∆ht+1 − (d− 1)∆kdt+1

and hence
∆kdt+1 ≥ ∆ht+1

d
and similarly

∆kdt+d = ∆ht+1 −
d−1∑︂
i=1

∆kdt+i ≤ ∆ht+1 − (d− 1)∆kdt+d

and hence
∆kdt+d ≤ ∆ht+1

d
.

Moreover, since (ht)t∈N and (kt)t∈N are integer valued, we have that

∆kdt+1 ≥
⌈︄

∆ht+1

d

⌉︄
, ∆kdt+d ≤

⌊︄
∆ht+1

d

⌋︄

for each t ≥ t1 + 1. By (5.2) and (5.3) it follows that the function

∆kdt1+i : {1,2, . . . , d} → N
i → ∆kdt1+i

satisfies the hypothesis of Lemma 5.2.2. Hence, we get that

µ2(d, t1∆ht1+1) ≥ ∆kdt1+d ≥ ∆kd(t1+1)+1 ≥
⌈︄

∆ht1+2

d

⌉︄

thus proving condition (1). Finally, using (5.4) we get that

∆kdt+d ≥ ∆kdt+d+1 = ∆kd(t+1)+1

for each t ≥ t1 + 1, and hence ⌊︄
∆ht+1

d

⌋︄
≥
⌈︄

∆ht+2

d

⌉︄

for each t ≥ t1 + 1. We note that this inequality is always verified for t ≥ t2 since⌈︄
∆ht+1

d

⌉︄
= 0
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5.2 – Hilbert functions of points on Veronese surfaces

for each t ≥ t2. Hence, also condition (2) is proved.
Now we assume that conditions (1) and (2) hold and we prove that there exists
Y ⊆ P2 such that HY(dt) = ht. Since

kt =
t∑︂

i=0
∆kt,

we can construct the Hilbert function (kt)t∈N by its first difference ∆kt. For each t
let et be the unique integer such that

∆ht ≡ et (mod d), 0 ≤ et ≤ d− 1.

We define ∆kt as follows:

• if 0 ≤ t ≤ dt1 we set ∆kt = t+ 1;

• if dt1 + 1 ≤ t ≤ d(t1 + 1) we construct ∆kt according to Lemma 5.2.2;

• if t ≥ d(t1 + 1) + 1 we set

∆kdt+i =
⌈︄

∆ht+1

d

⌉︄
, t ≥ t1 + 1, 1 ≤ i ≤ et+1

∆kdt+i =
⌊︄

∆ht+1

d

⌋︄
, t ≥ t1 + 1, et+1 + 1 ≤ i ≤ d.

Under our assumptions, this choice guarantees that ∆kt is the first difference func-
tion of a set of reduced points in P2 (see [83] Proposition 1.1). Moreover, for
t ≤ t1 − 1, we have

d∑︂
i=1

∆kdt+i =
d∑︂

i=1
(dt+ i+ 1) = d2t+ d(d+ 3)

2 = ∆ht+1,

and, for t = t1 we have by construction

d∑︂
i=1

∆kdt1+1 = ∆ht1+1

while for t ≥ t1 + 1 we have
d∑︂

i=1
∆kdt+i =

et+1∑︂
i=1

∆kdt+i +
d∑︂

i=et+1+1
∆kdt+i = et+1

⌈︄
∆ht+1

d

⌉︄
+ (d− et+1)

⌊︄
∆ht+1

d

⌋︄
=

= et+1

(︄
∆ht+1 − et+1

d
+ 1

)︄
+ (d− et+1)

(︄
∆ht+1 − et+1

d

)︄
= ∆ht+1.
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Hence we have

kdt =
dt∑︂

i=0
∆kt = ∆k0 +

t−1∑︂
i=0

⎛⎝ d∑︂
j=1

∆kdi+j

⎞⎠ = ∆h0 +
t−1∑︂
i=0

∆hi+1 =
t∑︂

i=0
∆ht = ht

for all t. This concludes the proof.

We now give our effective characterisation of the Hilbert functions of reduced
sets of points on Veronese surfaces.

Theorem 5.2.4. Let (ht)t∈N be the Hilbert function of a finite set of m reduced
points in P

d(d+3)
2 and set

t1 = max
{︂
t | h(t) = HV2,d

(t)
}︂

t2 = min {t | h(t) = m} .

Then there exists X ⊆ V2,d ⊆ P
d(d+3)

2 such that HX(t) = ht if and only if the following
conditions hold

1.
µ2(d, t1,∆ht1+1) ≥

⌈︄
∆ht1+2

d

⌉︄
;

2. For all t1 + 2 ≤ t ≤ t2 − 1 ⌊︄
∆ht

d

⌋︄
≥
⌈︄

∆ht+1

d

⌉︄
.

Proof It follows from Theorem 5.1.4 and Proposition 5.2.3.

Let us see now two explicit instances of use of Theorem 5.2.4 in determining
whether a given Hilbert function can be realised as the Hilbert function of a sub-
variety of a Veronese surface.

Example 5.2.5. Let us consider the sequence (ht)t∈N defined as follows

t 0 1 2 3 4 5 6 7 8 9 10 11

ht 1 36 120 253 435 666 946 1256 1531 1744 1956 2022

and ht = 2022 for t ≥ 12. It is easy to check, using Theorem 1.1.29, that this is
the Hilbert function of a set of 2022 reduced points in P35. We ask whether there
exists X ⊆ V2,7 ⊆ P35 such that HX(t) = ht for all t ≥ 0. To answer, we use
Theorem 5.2.4. First we determine t1 and t2. Since the Hilbert function of V2,7 is
HV2,7(t) =

(︂
2+7t

2

)︂
, we have that
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t 0 1 2 3 4 5 6 7 8 9 10 11 12

HV2,7 1 36 120 253 435 666 946 1275 1653 2080 2556 3081 3655

so that t1 = 6 and t2 = 11. To determine µ1(7,6,∆ht1+1) we compute ∆ht1+1. We
have that

t 0 1 2 3 4 5 6 7 8 9 10 11 12

∆ht 1 35 84 133 182 231 280 310 275 213 212 66 0

and thus µ1(7,6,310) = 72 · 6 + 7(7+3)
2 − 310 = 19. Finally, since 19 ≤

(︂
7+1

2

)︂
= 28,

we get

µ2(7,6,310) =
⌊︄

2 · 7(6 + 1) + 3 −
√

1 + 8 · 19
2

⌋︄
= 44.

To check conditions (1) and (2) of Theorem 5.2.4, we compute
⌊︂

∆ht

7

⌋︂
and

⌈︂
∆ht

7

⌉︂
obtaining the following table

t 0 1 2 3 4 5 6 7 8 9 10 11 12
⌈︂

∆ht

7

⌉︂
1 5 12 19 26 33 40 45 40 31 31 10 0

⌊︂
∆ht

7

⌋︂
0 5 12 19 26 33 40 44 39 30 30 9 0

Since µ2(7,6,310) = 44 and
⌈︂

∆h8
7

⌉︂
= 40 condition (1) is satisfied. However, condition

(2) is not satisfied for t = 9 and hence such an X does not exist.

Example 5.2.6. Now, we consider the sequence (ht)t∈N defined as follows

t 0 1 2 3 4 5 6 7 8 9 10 11

ht 1 36 120 253 435 666 946 1256 1531 1744 1915 2022

and ht = 2022 for t ≥ 12; note that this function coincides with the one of the
previous example, but for t = 10. We ask whether there exists X ⊆ V2,7 ⊆ P35 such
that HX(t) = ht for all t ≥ 0. As in the previous example, we have t1 = 6 and
t2 = 11. Moreover, we get
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t 0 1 2 3 4 5 6 7 8 9 10 11 12

∆ht 1 35 84 133 182 231 280 310 275 213 201 107 0
⌈︂

∆ht

7

⌉︂
1 5 12 19 26 33 40 45 40 31 29 16 0

⌊︂
∆ht

7

⌋︂
0 5 12 19 26 33 40 44 39 30 28 15 0

and thus µ1(7,6,310) = 19 and µ2(7,6,310) = 44. Thus, condition (1) is satisfied
and condition (2) is satisfied for t = 8,9,10. Hence, such an X exists.

Remark 5.2.7. One could deal with both the previous examples without using
Theorem 5.2.4, but just using Macaulay’s inequalities for Hilbert functions. How-
ever, this requires a trial and error approach. In fact, since d = 7 one should try to
fill, step by step, six gaps between hi and hi+1 satisfying Macaulay’s inequalities.
Thus, for each possible choice at each step, one should compute the appropriate
binomial expansion. Moreover, one should check also that the first difference func-
tion of the constructed Hilbert function is still a Hilbert function: doing this will
require a very large number of computations.

5.3 Complete intersections
In this section we focus on the study of complete intersection varieties of PNn,d

which lie on some Veronese variety Vn,d for n = 1 and n = 2; the case n = 3 and
d = 2 is treated in Proposition 5.4.1. For generalities on complete intersections,
we refer to [57]. To compare with similar existence and non-existence results for
complete intersection on hypersurfaces and their applications, we refer to [38] and
[94].

Definition 5.3.1. Let X be a projective variety, let I(X) = (f1, f2, . . . , fr) be its
defining ideal with f1, . . . , fr a minimal set of generators, and let ai = deg fi. We
say that X is a complete intersection of type (a1, . . . , ar) if codimX = r.

Proposition 5.3.2. If X ⊆ Vn,d ⊆ PNn,d is a reduced complete intersection of type
(a1, . . . , ar), with a1 ≤ . . . ≤ ar, then a1 = 1. Moreover, either r = Nn,d and
a1 = . . . = aNn,d

= 1 or ai = 2 for some i.

Proof Since X ⊆ Vn,d, we have that I(X) ⊇ I(Vn,d). By Theorem 1.4.26, I(Vn,d)
is generated by the 2 × 2 minors of a catalecticant matrix, thus, either a1 = 1 or
a1 = 2. Assume by contradiction that a1 = 2, that is ai > 1 for all i, and let
I(X) = (f1, . . . , fr). In this case, it is possible to assume that I(Vn,d) = (f1, . . . , fq)
for some q ≤ r and, as a consequence, any syzygy of the generators of I(Vn,d)
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gives a syzygy of the generators of I(X). The determinantal representation of
I(Vn,d) yields that the generators of I(X) have a syzygy of linear forms and this is
a contradiction since f1, . . . , fr are a regular sequence and their syzygies, given by
the Koszul complex, only contain elements of degree at least a1 = 2. In conclusion,
a1 = 1. To complete the proof, we let p be the largest index such that ap = 1.
Assume by contradiction that p < r and ap+1 > 2. Thus, I(Vn,d) ⊆ (f1, . . . , fp)
and the latter is the ideal of a linear space Λ of codimension p such that Λ ⊆ Vn,d.
Hence a contradiction, since no Veronese variety contains a positive dimensional
linear space. In conclusion, either p = r = Nn,d or p < r and ap+1 = 2.

As a straightforward application of this proposition, we get the following result.

Theorem 5.3.3. Let X ⊆ V1,d ⊆ Pd be a reduced complete intersection with d ≥ 3.
Then either X is a point or X is a set of two points.

Proof Since V1,d is not a complete intersection and dim V1,d = 1, it must be
dimX = 0. Since X is a complete intersection, it follows from Proposition 5.3.2
that X is contained in the intersection of a hyperplane and V1,d. In particular, we
have |X| ≤ d and using Remark 5.1.7 we get the Hilbert function of X

t 0 1 2 . . .
HX(t) 1 |X| |X| . . .

∆HX(t) 1 |X| − 1 0 . . .

Finally, since X is a 0-dimensional complete intersection, ∆HX(t) is the Hilbert
function of an artinian Gorenstein ideal. Thus, it is symmetric and hence either
∆HX(1) = 0 or ∆HX(1) = 1, that is |X| = 1 or |X| = 2.

Remark 5.3.4. We note that the proof of Theorem 5.3.3 also shows that any
Gorenstein reduced zero-dimensional subscheme of V1,d must be degenerate.

We can now finally describe reduced complete intersection subvarieties of Veronese
surfaces.

Theorem 5.3.5. If X ⊆ V2,d ⊆ PN2,d is a reduced complete intersection of type
(a1, . . . , ar), with a1 ≤ · · · ≤ ar then one of the following holds:

1. (d, r, (a1, a2, . . . , ar)) = (2,4, (1,1,1,2)), that is X is a conic lying on V2,2;

2. (d, r, (a1, a2, . . . , ar)) = (2,5, (1,1,1,2, a5)), any a5 ∈ N, that is X is a set of
2a5 complete intersection points of a conic lying on V2,2 and a hypersurface
of degree a5;

3. (d, r, (a1, a2, . . . , ar)) = (d,N2,d, (1,1, . . . ,1)) for any d ≥ 2, that is X is a
reduced point;
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4. (d, r, (a1, a2, . . . , ar)) = (d,N2,d, (1,1, . . . ,1,2)) for any d ≥ 2, that is X is a set
of two reduced points.

Proof Let I(X) = (f1, . . . , fr) be the ideal of X and N := N2,d. We can suppose
without loss of generality that a1 ≤ a2 ≤ · · · ≤ ar. Moreover, we let p be the number
of ai equal to 1 and q be the number of ai equal to 2, that is a1 = a2 = · · · = ap = 1,
ap+1 = ap+2 = · · · = ap+q = 2. By Proposition 5.3.2 we have that p ≥ 1. If p = N
we are trivially in case (3) thus from now on we suppose p < N and thus, using
again Proposition 5.3.2, we also have q ≥ 1. Since X ⊆ V2,d, ∆HX(t) must satisfy
conditions (1) and (2) of Theorem 5.2.4. We now use condition (1) to rule out some
cases. We start by computing ∆HX(1) and ∆HX(2). We have that

HX(1) = dimC[z0, . . . , zN ] − dim(f1, . . . , fr)1 = N − p+ 1

∆HX(1) = HX(1) −HX(0) = N − p.

Now, let us consider the map

C[z0, . . . , zN ] → C[z0, . . . , zN ]/(f1, . . . , fp) ∼= C[z0, . . . , zN−p]
f → f̃

.

Since (f1, f2, . . . , fr) is a regular sequence we have that

HX(2) = dim
(︂
C[z0, . . . , zN ]/(f1, . . . , fr)

)︂
2

= dim
(︂
C[z0, . . . , zN−p]/(f̃p+1, . . . , f̃ r)

)︂
2

= dimC[z0, . . . , zN−p]2 − q =
(︄
N − p+ 2

2

)︄
− q

and hence

∆HX(2) =
(︄
N − p+ 2

2

)︄
− q − (N − p+ 1) = (N − p+ 1)(N − p)

2 − q.

Note that HX(1) = N − p + 1 < N + 1 = HV2,d
(1), thus t1 = 0. Since t1 = 0 we

have that
µ2(d,0, N − p) =

⌊︄
2d+ 3 −

√
1 + 8p

2

⌋︄
,

so that by (1) we get⌊︄
2d+ 3 −

√
1 + 8p

2

⌋︄
≥
⌈︄

(N − p+ 1)(N − p)
2d − q

d

⌉︄
. (5.5)

Since q ≤ N − p, if (p, d, q) is a solution of (5.5), then (p, d) is a solution of

2d+ 3 −
√

1 + 8p
2 ≥ (N − p)(N − p− 1)

2d
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and setting α = N − p the previous inequality yields

2d+ 3 −
√︂

(2d+ 3)2 − 8(α + 1)⏞ ⏟⏟ ⏞
f(α)

≥ α(α− 1)
d⏞ ⏟⏟ ⏞

g(α)

. (5.6)

A standard calculus argument on f(α) and g(α) shows that if (α, d) is a solution of
(5.6) then α ≤ 3. As a consequence, if (p, d, q) is a solution of (5.5) then p ≥ N−3,
thus one has to look for solutions (p, d, q) only for p = N − 3, N − 2, N − 1. Since
r ≤ N , one can easily check that the solutions of (5.5) are the following:

• (p, d, q) = (N − 1, d,1) for each d ≥ 2.

In this case X is a complete intersection of type (a1, . . . , aN) with

a1 = · · · = aN−1 = 1

and aN = 2, that is X is a set of two reduced points and we are in case 4.

• (p, d, q) = (3,2,1).

In this case N = 5 and we know that a1 = a2 = a3 = 1 and a4 = 2, thus we
distinguish two subcases:

– If r = 4 then X is a complete intersection of type (1,1,1,2), that is X is a conic
lying on V2,2 and we are in case 1.

– If r = 5 then X is a complete intersection of type (1,1,1,2, a5), that is X is the
intersection of a conic lying on V2,2 with a hypersurface of degree a5 and we
are in case 2.

• (p, d, q) = (3,2,2).

In this case X is a complete intersection of type (1,1,1,2,2), thus this is a special
case of 2.

• (p, d, q) = (6,3,3).

In this case X is a complete intersection of type (1,1,1,1,1,1,2,2,2). We want
to show that such X cannot lie on V2,3. Let us suppose by contradiction that
X ⊆ V2,3 and set Y = ν−1

2,3(X). From Lemma 5.1.1 it follows that

HY(3) = HX(1) = N − p+ 1 = 9 − 6 + 1 = 4.

Thus, the only way to complete the gaps of HY is

t 0 1 2 3 4 5 6 7 8 . . .
HY(t) 1 2 3 4 5 6 7 8 8 . . .
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and this shows that Y lies on a line. As a consequence, X lies on a rational
normal curve. Hence, since X is a complete intersection and |X| = 8, this is a
contradiction by Theorem 5.3.3.

The result is now proved.

5.4 More results and open problems
In this section, we show some more results about complete intersections on

Veronese varieties. A complete characterisation of the Hilbert functions of subvari-
eties of Veronese varieties of dimension larger than two seems, presently, to be out
of reach. Nevertheless, we can deal with the case of the threefold V3,2. This case
leads us to formulate Conjecture 5.4.2.
Proposition 5.4.1. Let X ⊆ V3,2 ⊆ P9 be a reduced subvariety. Then X is a
complete intersection of type (a1, . . . , ar), with a1 ≤ · · · ≤ ar if and only if X is one
of the following

• r = 9,a1 = . . . = a9 = 1, that is X is a reduced point;

• r = 9,a1 = . . . = a8 = 1, a9 = 2, that is X is a set of two reduced points;

• r = 9,a1 = . . . = a7 = 1, a8 = 2, a9 = b, any b ≥ 2, that is X = C ∩ Hb for
C ⊆ V3,2 a conic and Hb a degree b hypersurface;

• r = 8,a1 = . . . = a7 = 1, a8 = 2, that is X is a conic.
Proof First we consider the case dimX = 0. Let X ⊆ V3,2 be a reduced complete
intersection of type (a1, . . . , a9) with a1 ≤ a2 ≤ · · · ≤ a9. Also let p, q ∈ N such
that a1 = · · · = ap = 1 and ap+1 = · · · = ap+q+1 = 2. By Proposition 5.3.2 either
p = 9 or p ≥ 1 and q ≥ 1. If p = 9 then X is just a reduced point, thus from now
on we suppose p, q ≥ 1. By the same argument used in the proof of Theorem 5.3.5
we get

HX(1) = 10 − p, HX(2) =
(︄

11 − p

2

)︄
− q = p2 − 21p+ 110

2 − q.

Since X ⊆ V3,2, by Lemma 5.1.1 there exists Y = ν−1
3,2(X) ⊆ P3 such that

HX(t) = HY(td) for all t ≥ 0. In particular, we have that

HY(2) = 10 − p, HY(4) = p2 − 21p+ 110
2 − q.

Now fix 1 ≤ p ≤ 8. By Macaulay’s theorem for Hilbert functions (see Theorem
1.1.23) it follows that if the 2-binomial expansion of HY(2) is

HY(2) =
(︄
m2

2

)︄
+
(︄
m1

1

)︄
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where m2 > m1, then

HY(4) ≤
(︄
m2 + 2

4

)︄
+
(︄
m1 + 2

3

)︄
= M(p)

On the other hand, since 1 ≤ q ≤ 9 − p, we have that

HY(4) ≥ p2 − 21p+ 110
2 − (9 − p) = m(p).

Thus, if M(p) −m(p) < 0, then X does not exist. Computing we get the following
table

p HY(2) M(p) m(p) M(p) −m(p)
1 9 25 37 -12
2 8 19 29 -10
3 7 16 22 -6
4 6 15 16 -1
5 5 9 11 -2
6 4 6 7 -1
7 3 5 4 1
8 2 2 2 0

Hence, X is either of type (1,1,1,1,1,1,1,2, a9) or of type (1,1,1,1,1,1,1,1,2). In the
first case X is a set of 2a9 reduced points lying on a conic C ⊆ V3,2 and in the sec-
ond case X is a set of 2 reduced points. The discussion for reduced 0-dimensional
complete intersection is now completed. Now let X ⊆ V3,2 be a positive dimen-
sional reduced complete intersection of type (a1, . . . , ar). For any choice of integers
ar+1, . . . , a9, we can choose suitable hypersurfaces Hai

of degree ai in such a way
that

X′ = X ∩Har+1 ∩ . . . ∩Ha9

is a complete intersection of type (a1, . . . , ar, ar+1, . . . , a9). Moreover, we can choose
the degrees ai in a such a way that

ai ≤ ai+1

for all i and 3 ≤ ar+1. Thus X′ ⊆ V3,2 is a zero dimensional complete intersection
of type (a1, . . . , a9). As a consequence, since we can freely choose the degrees ai for
i ≥ r + 1 we have that r = 8 and

(a1, . . . , a8, a9) = (1,1,1,1,1,1,1,2, a9).

Hence, X is of type (1,1,1,1,1,1,2), that is X is a conic.

We can now state the following conjecture, which we already proved for n ≤ 2
any d and for n = 3 and d = 2, see Proposition 5.4.1 and Theorems 5.3.3 and 5.3.5.
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Conjecture 5.4.2. Let X ⊆ Vn,d ⊆ PNn,d be a reduced subvariety with d > 1. Then
X is a complete intersection of type (a1, . . . , ar), with a1 ≤ · · · ≤ ar if and only if

• r = Nn,d, a1 = . . . = aNn,d
= 1, any n, d, that is X is a reduced point;

• r = Nn,d, a1 = . . . = aNn,d−1 = 1, aNn,d
= 2, any n, d, that is X is a set of two

reduced points;

• r = Nn,d, a1 = . . . = aNn,d−2 = 1, aNn,d−1 = 2, aNn,d
= b, any n, d = 2, any

a ≥ 2, that is X = C ∩Hb for C ⊆ Vn,2 a conic and Hb a degree b hypersurface;

• r = Nn,d − 1, a1 = . . . = aNn,d−2 = 1, aNn,d−1 = 2, d = 2, any n, that is X is
a conic.

In the case of the Veronese threefold V3,2, see proof of Proposition 5.4.1, the
complete knowledge of the zero dimensional complete case allows us to complete
the proof. This is true in general, as shown by the following Lemma.

Lemma 5.4.3. If Conjecture 5.4.2 holds for all reduced zero dimensional subvariety
of Vn,d, then it holds for all reduced subvarieties of Vn,d.

Proof Let X ⊆ Vn,d ⊆ PNn,d be a reduced complete intersection of type (a1, . . . , ar)
with r < Nn,d, that is X is positive dimensional. Then, for any choice of integers
ar+1, . . . , aNn,d

, we can choose suitable hypersurfaces Hai
of degree ai in such a way

that
X′ = X ∩Har+1 ∩ . . . ∩HaNn,d

is a complete intersection of type (a1, . . . , ar, ar+1, . . . , aNn,d
). Moreover, we can

choose the degrees ai in a such a way that

ai ≤ ai+1

for all i and 3 ≤ ar+1. Thus, X′ ⊆ Vn,d is a zero dimensional complete intersection
of type (a1, . . . , aNn,d

). Since we are assuming that the conjecture holds for such
an X′ and since we can freely choose the degrees ai for i ≥ r + 1 we have that
r = Nn,d − 1 and

(a1, . . . , aNn,d−1, aNn,d
) = (1, . . . ,1,2, aNn,d

)

and thus d = 2 and X is a conic. Hence the conjecture holds for X.
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