
Summary of “Zero-dimensional schemes: curves, singularities and tenors” .

In the wide panorama of Algebraic Geometry, a key role is played by Scheme Theory and a very
noteworthy class of schemes is the one of zero-dimensional schemes. Indeed, apart from their
intrinsic interest, zero-dimensional schemes deserve a particular and careful consideration in light
of their several interactions with other fields of Algebraic Geometry. For instance:

i) many problems concerning secant varieties of projective varieties can be translated, via Ap-
olarity Theory, in problems concerning zero-dimensional schemes; see [24] and [30] for more
details about this topic;

ii) some intensely studied topics regarding plane algebraic curves, such as freeness and computa-
tion of Tjurina and Milnor numbers, are strictly related to the analysis of Jacobian schemes,
which are zero-dimensional schemes encoding all the information about the singularities of the
curve; see [38] and [43] for more details on free curves and [6] for more details on computations
of Tjurina and Milnor number;

iii) zero-dimensional schemes are the constitutive elements of Hilbert schemes of points, a widely
studied branch of Algebraic Geometry; see [35] and [36] for more details on Hilbert schemes.

Zero-dimensional schemes allow to establish deeper connections between these three topics; see
[19], [20], [17],[18] and [36] for connections between i) and iii), and see [22] and [28] for connections
between i) and ii). Also see [26] for a collection of topics about zero-dimensional schemes.

Beyond Algebraic Geometry, some other research fields where zero-dimensional schemes find
applications are:

• Commutative Algebra, where they can be used, for instance, for a geometrical approach to
Artin algebras and Gorenstein rings; see [37] for a recent state of the art;

• Code Theory for error-correcting codes associated to 0-dimensional schemes; see [10] for some
application.

A particularly interesting class of zero-dimensional schemes is represented by fat points, which
have long been, and still are, at the core of many Algebraic Geometry problems. Indeed, they
represent a powerful tool for the study of many problems, such as the computation of the defectivity
of some secant varieties and the study of singular points of projective varieties. These two aspects
are among those that will be addressed in this thesis. Nowadays, our knowledge of fat points is
certainly very rich, but nonetheless, there are still important open problems associated with them,
such as the Gimigliano-Harbourne-Hirschowitz-Segre conjecture and, more in general, the complete
classification of fat point schemes with bad postulation. See [30] for an exhaustive state of the art
on fat points and see [1], [5], [2], [3], [4], [9], [7], [13], [11] for some applications of fat points to the
study of secant varieties.

The main purpose of this thesis is to generalise fat points by introducing a new class of zero-
dimensional schemes. In the literature, there already are some examples of such generalisations
that broaden, for instance, the definition from Pn to Pn1 × · · · × Pnk . An important example can
be found in [25], where fat points in multiprojective spaces are used to study a classical problem
concerning the dimension of certain secant varieties of Segre varieties. However, to our knowledge,
there are no generalisations that, given the ambient space, specifically pertain to the geometry
of the scheme itself. This is the type of generalisation that we are seeking in the thesis. More
specifically we state the following question:
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Question 1 How can one define a new class of schemes in Pn that generalises the class of fat
points?

There are several motivations behind this question, some more related to the topics of this thesis.

The first one sprouts from studying the Jacobian scheme of a plane algebraic curve, which,
in recent years, has proven to be of great interest. The two aspects most carefully considered in
connection with the Jacobian scheme are the study of free divisors and the computation of Tjurina
numbers for isolated singularities; see [27] for more details on the first topic and see [6] for more
details on the second one. However, despite the extensive research on these topics, we are not
aware of any analysis on the geometric structure of the Jacobian scheme. We address this gap and,
carrying on this analysis for ordinary singularities, we note that fat points play an important role,
but are not sophisticated enough to provide a satisfactory geometric analysis. For this reason, it
is necessary to extend the definition of fat point and consider a broader class of schemes. This
concept will be clarified below.

Another motivation comes from the application of algebraic geometry to the study of tensors.
Indeed, zero-dimensional schemes have proven to be very useful tools for studying many problems
in this context. Some important examples in this regard can be found in [9], [13], [11], [12], [19],
[20], [18], [25], [23], [30], where zero-dimensional schemes are used to study and generalise secant
varieties of some classical projective varieties, such as Segre, Veronese and Segre-Veronese varieties.
In particular, new classes of zero-dimensional schemes can give new information on the geometry
of tensors. We will show how to get this information via our new schemes.

This thesis is divided into five chapters. Chapter 1 is totally devoted to present the mathematical
entities which are the objects of our research and to introduce the tools we will use to describe
them. We start by recalling some general definitions and properties of Hilbert functions and fat
points and by giving a quick overview on Apolarity Theory and Inverse Systems. After that,
we introduce Segre, Veronese and Segre-Veronese varieties in the setting of Waring-like problems,
stressing the interchangeability of the algebraic, geometrical and tensorial interpretations of these
varieties. We also present the machinery of secant varieties, showing how zero-dimensional schemes
can be used to study the defectivity of secant varieties. In particular, we briefly describe how the
postulation of zero-dimensional schemes can be studied via the Horace method and the differential
Horace method. Finally, we give some definitions about singularities of plane algebraic curves and
we recall the Jacobian and Milnor schemes related to a plane algebraic curve.

In Chapter 2 we devote our attention to a special type of zero-dimensional schemes: the Jacobian
scheme of a plane algebraic curve. To this purpose we start by proving an algebraic version for
plane curves of the famous Mather-Yau theorem, stated in [40], which allows us to simplify the
next results. After that, we focus on the Jacobian schemes at ordinary singularities, and this study
suggests us the introduction of a new class of schemes answering Question 1: symmetric schemes.
In Chapter 2 we give the definition only for the projective plane. We also provide some examples
of ordinary singularities whose Tjruina number is strictly less than the Milnor number, so partially
recovering, with more algebraic tools, some results of [16] and [39].

In Chapter 3 we give the definition of symmetric scheme for any Pn and we point out how
symmetric schemes are a generalisation of fat points. We also introduce the definition of superfat
points and we study the geometry of these new schemes. Since it is quite difficult to manage
symmetric schemes in Pn, after some general results, we narrow down to symmetric schemes of P2.
After showing some of their properties, we use them to define some new varieties paremeterising
symmetric and partially symmetric tensors. We study the defectivity of these varieties and the
shape of the tensor parameterised by them.
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In Chapter 4 we prove the good postulation of generic unions of 2-squares in P2. To do that, we
use the Horace method ad we provide two different proofs. The two proofs only differ in proving
the good postulation with respect to curves of even degrees, which are the hardest ones: in the first
proof we use the differential Horace method, while in the second one we avoid to use the differential
Horace method and we solve the problem giving an argument based on a particular property of
2-squares.

Finally, in Chapter 5 we deal with the classification of reduced zero-dimensional schemes lying
on Veronese varieties. We show how this problem can be considered as a generalisation of the
Cramer-Euler problem and we completely solve it for the case of Veronese surfaces. The main tool
we use to give our classification is an accurate study of the possible Hilbert functions of reduced
points on Veronese surfaces. We conclude the chapter with a Conjecture on complete intersections
lying on Veronese varieties, inspired by the case of Veronese surfaces and by other experimental
evidences.

From Jacobian schemes to symmetric schemes

The reasons that led us to pose Question 1 arose from studying a particular type of zero-
dimensional schemes: the Jacobian scheme of a plane algebraic curve. However, before bringing
up the “more sophisticated” Jacobian schemes, let us explore the origin of the idea of using zero-
dimensional schemes, in particular fat points, to study the singularities of plane algebraic curves.

The first well-known remark is that if C : F = 0 is a reduced curve of P2 passing through a
point P , then saying that C has a singular point of multiplicity m at P means that C contains the
fat point mP but not the fat point (m + 1)P . This is a very rough information, because it does
not allow to distinguish different analytical classes of singularities having the same multiplicity.
Nevertheless, there are other 0-dimensional schemes contained in C which could characterise the
singularity more carefully. For example, if P is an An singularity, then P is a nodal-type singularity
if and only if for any ℓ ≥ 1 there is a curvilinear scheme supported at P of length ℓ contained in C,
while P is a cuspidal singularity A2r if and only if for any ℓ ≤ 2r + 1 there is a curvilinear scheme
supported at P of length ℓ contained in C, and no curvilinear scheme supported at P of length
> 2r+1 is contained in C (see [31], Theorem 2.3). So, one possible approach to study a singularity
is to understand which kind of “maximal” zero-dimensional schemes supported at P is contained
in C but, since the curve C is 1-dimensional, it might contain curvilinear schemes supported at P of
arbitrary lengths. We can undertake another way by using X(C), the Jacobian scheme of C, which
is defined as the subscheme of P2 associated to the Jacobian ideal

J(C) :=
(
∂F

∂x0
,
∂F

∂x1
,
∂F

∂x2

)
⊆ C[x0, x1, x2].

Indeed, the Jacobian scheme is the zero-dimensional scheme encoding all the information, up to
analytical equivalence, of all the singularities of C.

An analogue of the Jacobian algebra C[x0, x1, x2]/J(C) can be defined, mutatis mutandis, also
in the set of analytic geometry and it is a highly studied topic; see for instance [33] and [34]. As
proved by a famous theorem of J. N. Mather and S. S.-T. Yau in [40], the Jacobian algebras of
two analytical germs at O, both having an isolated singularity at O, are isomorphic as C-algebras
if and only if the two germs are analytically equivalent. Clearly, this result greatly simplifies the
study of singularities up to analytical equivalence. However, it has the disadvantage, in case one
wishes to work in an algebraic context, of requiring a transition from the algebraic setting to the
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analytic one. In order to avoid this transition, we prove, in Chapter 2, an analogue of Mather-Yau
Theorem in a purely algebraic context.

Theorem 1 Let C : f = 0, D : g = 0 be reduced algebraic curves in A2 with a singular point at O.
Then the analytical germs of C and D at O are analytically equivalent if and only if their (algebraic)
Jacobian schemes at O are isomorphic as schemes over C.

After proving this theorem, we focus on the geometry of Jacobian schemes at ordinary singularities
and on their Tjurina and Milnor numbers. In doing so, we remark that these schemes possess a
particular symmetry property: each line passing through their support intersects them with the
same length. Let us be more precise.

Definition 1 Let Y be a 0-dimensional scheme supported at one point P ∈ P2. We say that Y is
k-symmetric if, for every line r passing through P , ℓ(Y ∩ r) = k. We say that Y is a k-symmetric
local complete intersection (k-slci for short) if it is a local complete intersection of two curves D, E
with no tangent in common at P and such that mP (D) = k,mP (E) = k, this implying ℓ(Y ) = k2.

Clearly a k-slci is k-symmetric.

Theorem 2 Let P be a multiple ordinary point of multiplicity m for a plane curve C in P2 and let
ZP be its Milnor scheme at P and XP be its Jacobian scheme at P . Then:

1. the tangent cones of the derivative curves Cx, Cy have no lines in common, hence ZP = (Cx∩Cy)P
is a (m− 1)-slci, so that µ = ℓ(ZP ) = (m− 1)2;

2. XP is a (m− 1)-symmetric scheme and τ = ℓ(XP ) ≤ (m− 1)2;

3. in particular, if C is a union of m distinct lines through P , then XP = ZP , so that ℓ(XP ) =
(m− 1)2.

It is precisely this theorem that has inspired Question 1. In fact, the only case in which the Jacobian
scheme of an ordinary singularity is a fat point is the case of nodes, that is, double points with two
distinct principal tangents. In all other cases, the obtained schemes are not fat points but share
with them the symmetry property stated in Definition 1.

We will shortly discuss how Theorem 2 not only inspired Question 1 but also a possible answer
to it. Before that, however, we want to emphasise that Theorem 2 also suggests another question:

Question 2 Do there exist ordinary singularities whose Tjurina number is strictly less than the
Milnor number?

Questions of this kind date back to Zariski and appear quite often in Algebraic and Analytic
Geometry; see for instance [6] and [44]. In fact, Question 2 already has a complete answer which
can be recovered using some results of [16] and [39]. In Chapter 2, we state the result in the form
of following theorem.

Theorem 3 Let C be a plane algebraic curve and assume that P ∈ Sing C is a multiple ordinary
point of multiplicity m ≥ 2. Then⌊

3m2 − 2m− 4

4

⌋
≤ τP (C) ≤ (m− 1)2.

Moreover, the bounds are sharp and all the values of τP (C) occur.
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Despite Question 2 being fully answered, in Chapter 2 we provide some explicit examples of ordinary
singularities whose Tjruina number is strictly less than the Milnor number. Our examples are special
cases of a more general class of curves given in [16], but there is a main difference: the approach
used in [16] is analytical, while ours is entirely algebraic. We consider the family of curves

Cb,c : xm + ym + xbyc = 0

with b+ c > m, having an ordinary singularity at O and we compute the Tjruina number τO(Cb,c)
using Gröbner basis. In particular, we prove that for m ≥ 5 the curves Cb,c attain the lower bound
in Theorem 3.

Symmetric schemes and tensors

As anticipated, the symmetric schemes inspired by Theorem 2 give a satisfying answer to
Question 1. In Chapter 3 we start by generalising the definition of m-symmetric scheme and
m-symmetric local complete intersection as follows.

Definition 2 A 0-dimensional scheme X supported at one point P ∈ Pn is said to be

• m-symmetric if ℓ(X ∩ L) = m, for every line L passing through P ;

• an m-symmetric local complete intersection (m-slci for short) if it is a local complete inter-
section of n hypersurfaces having multiplicity at P equal to m and whose tangent cones at P
have no line in common.

The reason why m-symmetric schemes are good candidates to generalise fat points, is that m-fat
points are the prime example of m-symmetric schemes and, moreover, any m-symmetric scheme
supported at P ∈ Pn contains the fat point mP . In other words, fat points are the m-symmetric
schemes which are minimal with respect to the schematic inclusion. In light of that, we found quite
natural to ask the following questions:

Question 3 Among all the m-symmetric schemes supported at the same point P , which are the
maximal ones with respect to schematic inclusion?

Question 4 What is the maximum length of an m-symmetric scheme?

Since these points are, in some sense, “fatter” than fat points, we call the maximal m-symmetric
schemes m-superfat points and we answer to both questions thanks to the following theorem.

Theorem 4 A scheme X ⊆ Pn is an m-superfat point supported at P ∈ Pn if and only if it is an
m-slci. Thus, any m-superfat point in Pn has length mn and it is a Gorenstein scheme.

We also stress the existence of a special class of m-superfat points of Pn, that of m-hypercubes, i.e.
m-superfat points defined by an ideal of the form (ℓm1 , ℓm2 , . . . , ℓmn ) for ℓ1, . . . , ℓn ∈ C[x0, . . . , xn]1
linearly independent linear forms. However, even though up to this moment we mentioned just m-
fat points, m-superfat points and m-hypercubes, there are other schemes possessing m-symmetry.

This last remark shows how bad the situation can be in Pn. For this reason, after we have given
some general results on symmetric schemes, we narrow down to the case of P2, where the situation
is easier to manage. The first noteworthy result in this direction is the coincidence of 2-superfat
schemes of P2 with 2-squares, i.e. with the 2-hypercubes of P2.
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Proposition 1 Every 2-superfat scheme X ⊆ P2 is a 2-square, i.e. IX can be written, up to some
projectivity, as IX = (x21, x

2
2).

As we show in some examples, this identification has nothing similar neither in higher dimension
nor in higher degree. The other main result about superfat schemes in P2 is the following theorem,
which allows us to relate fat points and superfat points.

Theorem 5 For every P ∈ P2 and for any m ≥ 1, the schematic union of all m-squares supported
at P is the fat point (2m− 1)P .

A very classical issue when dealing with zero-dimensional schemes is the study of their postulation.
For this reason, after analysing the aforementioned properties of 2-squares, we deemed appropriate
to investigate the postulation of a generic union of 2-squares.

Question 5 What is the postulation of a generic union of 2-squares in P2?

In Chapter 4 we answer this question by showing that a generic union of 2-squares always has good
postulation. The proof strategy we use is the “Horace method”, introduced by J. Alexander and
A. Hirschowitz in several papers, which we briefly recall in Chapter 1. We provide two different
proofs, which agree for odd degrees but differ for the even ones. Indeed, the odd degree case can
be solved using some simple specialisations, while the even one is more challenging.

In the first proof, we solve the problem by introducing a new specialisation: we collapse two
2-squares together, thus finding a new scheme that, with the help of differential Horace method,
allows to bypass the arithmetic obstruction.

The idea of the second proof for even degrees is the following: we start by substituting one of
the 2-squares with a double point contained in it, so obtaining a subscheme of the initial scheme
and proving by induction that the number of conditions imposed on the degree d curves by this new
scheme is one less than the expected number of conditions imposed by the initial scheme. After
proving that, we conclude coming back to the original scheme and proving that when we pass from
the double point to the 2-square we actually impose one more condition.

As we have already mentioned, zero-dimensional schemes have proven to be very useful in the
study of varieties parameterising tensors. For this reason, once enough tools to handle the 2-squares
are obtained, it is quite natural to pose the following question:

Question 6 Is it possible to obtain new information about tensors using our new class of symmetric
schemes? If so, what kind of information?

We partially answer this question for the special case of 2-squares but, as we will recall in the list
of open problems at the end of this introduction, we reckon that a general insight of symmetric
schemes can provide a considerable information about symmetric and partially symmetric tensors.
In our analysis, we consider some embeddings of 2-squares on Veronese and Segre-Veronese varieties,
constructing a “bridge” between 2-squares and (partially) symmetric tensor. By doing so, we define
new varieties, that we briefly describe here.

• Q(V2,d)

We define
Q0(V2,d) :=

⋃
Q⊆P2

L(ν2,d(Q)), Q(V2,d) = Q0(V2,d)
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where the union is taken on all the 2-squares Q of P2. Even though we show that Q(V2,d) =
τ2(V2,d), and thus Q(V2,d) is an already known variety, this new way of defining it gives a more
refined description of the forms in τ2(V2,d). As a consequence, we can show that τ2(V2,d) is always
contained in σ4(V2,d).

• QQ(V2,d)

The description given by Q(V2,d) highlights that the variety τ2(V2,d) contains a 1-codimensional
subvariety parameterising more particular forms, namely the ones that can be written (up to a
projectivity in P2) as yd−2

0 y1y2. Let d ≥ 3 and consider the morphism

Φ : P(T1)× P(T1)× P(T1) → τ2(V2,d) ⊆ P(Td)

([ℓ0], [ℓ1], [ℓ2]) 7→ [ℓd−2
0 ℓ1ℓ2]

.

The cuckoo variety QQ(V2,d) of V2,d is defined to be the scheme theoretic image of Φ, that is

QQ(V2,d) := ImΦ.

We show some geometrical properties of QQ(V2,d) regarding, for instance, its tangent spaces and
their intersections with QQ(V2,d).

• q2(SVd,d)

After considering Veronese varieties, we move on to Segre-Veronese varieties and, more precisely,
we consider the (d, d)-embeddings

P1 × P1 → SVd,d ⊆ Pd2−1.

Clearly, to do that we need to specify what we mean by a 2-square in P1 × P1: given a point
P = [a0, a1; b0, b1] we call 2-square of P1 × P1 supported at P the 0-dimensional subscheme
QP ⊆ P1 × P1 defined by the bihomogeneous ideal (ℓ2s, ℓ

2
t ) ⊆ R, where

ℓs = a1s0 − a0s1, ℓt = b1t0 − b0t1.

The reason why we choose these subschemes is because they allow, in some sense, to recover the
usual 2-squares in P2. At this point we can define, for any d ≥ 2, the following varieties:

q2(SVd,d) :=
⋃

P∈P1×P1

L(svd,d(QP ))

whose points correspond to partially symmetric tensors of the form

(a0s0 + a1s1)
d(b0t0 + b1t1)

d.

We show that q2(SVd,d) and its secant variety σ2(q2(SVd,d)) have the expected dimension for
any d ≥ 2. In particular, for d = 2 the secant variety σ2(q2(SVd,d)) fills the whole P8, thus any
partially symmetric tensor in P8 can be written as the sum of two partially symmetric tensors
which depend only on four parameters each.

• qq2(SV(d,d))

Analogously to the cuckoo varieties QQ(V2,d), we define the cuckoo varieties qq2(SVd,d) as the
image of the morphism

P(R(1)
1 )× P(R(1)

1 )× P(R(2)
1 )× P(R(2)

1 ) → q2(SVd,d) ⊆ P(Rd,d)

([ms], [ns], [mt], [nt]) 7→ [md−1
s nsm

d−1
t nt]

.

For d = 2, qq2(SV2,2) is the Segre Variety S2,2, which is well-known to be 2-defective, i.e.
dimσ2(S2,2) = 7. This does not happen for d ≥ 3, as we show in the thesis.
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Zero-dimensional schemes on Veronese varieties

In Chapter 5, we change a bit our perspective and we consider the following problem related to
the geometry of Veronese varieties:

Question 7 What are the possible complete intersections lying on a Veronese variety Vn,d?

There are several reasons that make this question interesting. Indeed, complete intersections and
their algebraic counterpart, regular sequences, play a central role in Commutative Algebra and in
Algebraic geometry. We have examples ranging from the more classical and still open Hartshorne
conjecture to modern applications in the field of geometry of tensor. In fact, complete intersections
have recently been shown to have unexpected applications. For example, in [8] and [15], the strength
and the slice rank of polynomials are studied using complete intersections. For a more exhaustive
overview on complete intersections we advise to see [32].

Note that, for d = 1 and n = 2, the Veronese surface V2,1 is the plane P2, so that our problem in
this special case is exactly the Cramer-Euler problem, which consists in characterising the sets of
points in P2 that are complete intersections. We answer Question 7 in the case of Veronese surfaces,
showing that for d > 2 the only reduced complete intersections of PNn,d lying on V2,d are finite sets
of either one or two points while, for the Veronese surface V2,2 ⊆ P5, one also has plane conics and
their intersections with suitable hypersurfaces. More precisely, we prove the following theorem.

Theorem 6 If X ⊆ V2,d ⊆ PN2,d is a reduced complete intersection of type (a1, . . . , ar), with
a1 ≤ · · · ≤ ar then one of the following holds:

1. (d, r, (a1, a2, . . . , ar)) = (2, 4, (1, 1, 1, 2)), that is, X is a conic lying on V2,2;

2. (d, r, (a1, a2, . . . , ar)) = (2, 5, (1, 1, 1, 2, a5)), any a5 ∈ N, that is, X is a set of 2a5 complete
intersection points of a conic lying on V2,2 and a hypersurface of degree a5;

3. (d, r, (a1, a2, . . . , ar)) = (d,N2,d, (1, 1, . . . , 1)) for any d ≥ 2, that is, X is a reduced point;

4. (d, r, (a1, a2, . . . , ar)) = (d,N2,d, (1, 1, . . . , 1, 2)) for any d ≥ 2, that is, X is a set of two reduced
points.

In order to prove this theorem, we characterise the possible Hilbert functions of reduced subva-
rieties of Veronese varieties. Beyond their application to the proof of our theorem, Hilbert functions
play a central role in Commutative Algebra and in Algebraic Geometry, for example see [42], [41],
and [14]. In recent times Hilbert functions have also been used as tools in other fields, such as the
study of Waring rank, that is the tensor rank for symmetric tensors, see [21], and the study of the
identifiability of tensors.

In characterising these Hilbert functions, we generalise the notion of 0-sequences and of differ-
entiable 0-sequences introduced in [29]. We give a more effective characterisation for the case of
the rational normal curves V1,d, thus recovering a classical result, and for the case of the surfaces
V2,d.

Moreover, we show that, except for the case d = 2, the only complete intersections lying on
rational normal curves V1,d are the trivial ones, that is one single point or the set of two points. The
case V1,2, that is of a plane conic, is different. In fact, by cutting with any properly chosen curve,
one will produce a complete intersection set of points. Inspired by this evidence we formulate a
conjecture: the only reduced complete intersections of Vn,d, d ≥ 3, are finite sets of either one or two
points, while for d = 2 one also has plane conics and their intersections with suitable hypersurfaces.
We also checked the validity of the conjecture for V3,2.
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Open problems

We list here some open problems related to the topics of this thesis.

1. The Jacobian scheme of a plane curve whose singularities are just double and triple ordinary
points is a zero-dimensional scheme whose components are reduced points and 2-squares.
What can be said about the freeness of the curve?

2. For m = n = 2, all the m-superfat points of Pn have maximal Hilbert function. This is not
true for any other value of m > 2 and n > 2, but there is some evidence that the generic
m-superfat point of Pn has maximal Hilbert function. Is this true?

3. Would it be possible to generalise the varieties Q(V2,d), QQ(V2,d), q2(SVd,d), qq2(SV22) by
considering m-symmetric schemes more general than 2-squares? Clearly, this would require
a deeper study of m-symmetric schemes.

4. Is it true that any generic union of m-hypercubes in Pn has good postulation? We just know
that for m = n = 2.

5. Is it possible to find an “effective” characterisation of the Hilbert functions of subvarieties of
Vn,d for n > 3 similar to the one we found for n = 2?

6. Is it true that the only reduced complete intersections lying on a Veronese variety are the
ones we listed in our conjecture?
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