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Contents and Motivation

This thesis focus in two multiphase cases of study for the automotive industry. Both are
fractional slot permanent magnet motors for high power density and high-speed
application, and the objective is maximizing performance and minimize noise emissions.

Fractional slot multiphase applications are not much studied, and there are becoming
popular in racing or very high-density applications like automotive.

1. 12 slot 10 pole asymmetrical six phase permanent magnet machine

2. 20slot 10 pole two phase machine
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Content N° 1: 12 slot 10 pole 6ph vs 3ph

Starting from a 12s10p 3ph machine, a 6ph winding as Fig. 1 is
proposed.

The main theorical findings are: 1
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FEM Simulation

The 6ph machine was thoroughly simulated with a 2D and 3D Altair Flux Model, to quantify the effect on
performance of the solid rotor losses.

Peak performance Comparison: Losses Comparison Cont. Performance Comparison
o 6phincraesed torque >3% o 6ph solid rotor losses < 50% o Cont. Power increase up to 15%
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Analytical Model

To further study the phenomenon an analytical model was developed, which rendered evident the effect of
the first harmonic of the MMF on solid rotor losses.
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Rotor Losses Comparison

Below is presented the different results from FEM and analytical model. Both models show that 6-ph
configuration has an advantage due to milder MMF harmonics. Also, analytical model tends to underestimate
rotor losses with respect to FEM model, however, shows a similar reduction trend.

Solid Rotor Loss @ Analytic % Error
50% of I,,,,, Model

FEM Solid Rotor 1 rms (% of I m.ax)
Loss — [W]

10% 30% 50% 80% 100%
Configuration
Configuration &1 92 W 299 W 693 W 1239 1582
6ph 77TW 112 W 212 W 441 783
% Loss Decrease 16% 63% 69% 64% 51% % Loss Decrease 3ph

vs 6ph

3ph vs 6ph
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Construction and Testing

The 6ph motor was constructed, together with a 6ph
inverter to validate the hypothesis.

Due to components shortage the assembly of the inverter
went very long and testing occurred during all 2023.
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Performance Testing

Good correlation was seen for
3ph and 6ph peak
performance at lower speeds.
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At higher speeds (9krpm), a 5t current harmonic (@3.5kHz) appeared when
commanding the machine, which was detrimental to rotor losses. This
harmonic was not controllable for the available control bandwidth (25kHz).
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Testing — VSD Resonant Control

Resonant control at the z1z2 axis was implemented, having an important reduction in THD but still high level of

harmonics are present. vSD VSD with Resonant z1z2
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Experimental Control Performance

Below a summary of different control performance with respect to THD. In all control configurations, high
harmonic content remained at 9krpm.

Configuration Control Type Distortion Distortion
Attenuation a;,  Factor THD

1000 rpm 6ph Multi Stator -33.5dB 2.1%
6ph Multi Stator -27.9 dB 4%

6ph VSD -29.6 dB 3.3%

4000 tpm- 1 set FOC -36.4 dB 1.5%
3ph FOC -32 dB 2.5%

6ph Multi Stator -17.5 dB 13.3%

6ph VSD -20 dB 10%

2000 pm 6ph VSD - 7172 PIR 23.7dB 6.5%
6ph — 1 set FOC -26.6 dB 4.7%

3ph FOC -25 dB 5.6%
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Continuous Performance Testing

The effect of the controllability influenced rotor losses making the 6ph configuration even worst than the 3ph
for the rotor temperature, the opposite as expected from simulations (with perfect sine currents).

Speed Conf. Control Fsw Voltage Current THD Torque Winding Rotor
Steady Temp. Temp

State

6ph Multi 25 kH= 375V 45Ala 494 257 Nm 56 °C 63 °C
Stator
4000
pm oph VED 25 H= 375V 45Alg 3.6% 258 Nm 56°C 3g°C
3ph FOC 25 kH= 750V 45Ala 2 8% 25 Nm 535 °C 54 °C
oph Mult 25 kH= 375V 45Alg 19 8% 24 3 Nm 71°C 109 2C
Stator
2000
P oph VSD 25 kH= 375V 45Alg 19 .4%; 243 Nm 72eC 108 2C
3ph EQC 25 kH= T30V 45 A g 5.6% 242 Nm 63 °C 73 C
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NVH Testing

The 12s10p machine was tested with an array of microphones to determine the Sound Power Level according
to 1SO 3741. As it can be seen below, SWL achieved 106 dB(A) at no load, which is not compatible with a

commercial application.

Nearfield Microphone Measurement
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Order Analysis
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Content N° 2: 20 slot 10 pole two phase machine

A two phase winding is proposed for high power density automotive applications. The
following assumptions are taken

1. Same external diameter and same rotor for all the machines.

2. The DC bus voltage is 650Vdc and inverter phase current rating is 370Arms.
3. Wire fill factor of 65% (copper + insulation) (strong assumption for 20s10p).
4.  Windings sized for the same Joule loss at peak current.

5. 2ph machine is operated in open winding configuration with 1 additional inverter leg.

Table I — Motor topologies under comparison

Q3 Qs Q6
o Slot / Pole | 9s/10, 125/10 155/10 20s/10
_| I: —| H _| [] —| [l P P P P
VD1 4 P2 Number 3 3 3 2
e PH1 | of phases
pe— e Y Y e
Winding Double Double Double Double
@ o @ Q‘_{ [ Layer Layer Layer Layer Layer
—| [ —l I: —l I: Winding Fractional | Fractional | Fractional
Topol Slot Slot Slot Integer Slot - c :
opelogy 0 0 0 Figure 1. Cross section of the motors under comparison. (a): 9slot — 10 pole.
Winding | | | 2 (b) 12 slot — 10 pole. (c) 15 slot — 10 pole. (d) 20 slot — 10 pole.
Figure 2. 4-leg inverter for the 20s10p electric machine. Throw (overlapped)
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2-ph Peak Performance

Peak power performance is increased by 28% with respect to the 12s10p, and 6% of peak torque because of higher
winding factor. On the other side torque ripple is increased 12X.

Table III — Peak performance summary

140 . . ; ; 250
a0l T Slot / Pole 9s/10p | 12s/10p | 15s/10p | 20s/10p
Y SRR N W - | ;
120 | | 200 Peak Torque (Nm) 129 127 121 135
9510p s ;
110
- = =12s10p
---------- 15510p Peak Power (kW) 140 169 168 217
1 OO N [ 2051 Dp 1 50
5 90 g Corner speed (rpm) 9.600 12.000 12.000 14.400
80 100
A Normalized torque 0.96 0.94 0.90 1
70 '
60 - 50 Normalized power 0.64 0.78 0.77 1
L Pk-pk Torque
50
| | Ripple (Nm) 2.3 1.4 9.2 24
40 : ' ‘ [ ' 0 Torque Ripple
0 ° 10 [kr1p5m] 20 % 30 Frequency vs. Mech. 90x 60x 30x 20x
Frequency

Figure 4. Peak performance results at 650Vdc for all configurations.
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NVH Performance

An analytical NVH model was developed to estimate noise emission from the 2ph

machine. This model shows that for the 12s10p up to 106dB are expected from the 2"
mechanical order, while the 20s10p only delivers 58dB of noise as the lowest radial

force order is much higher.

%103

Stator Radial Space-Time Harmonics

2]

FS

Time Order (tow_ )

Figure 10. Space and time order (time with respect to mechanical
frequency) radial force harmonics
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Table IV — Lowest radial force order for studied machines

Slot / Pole

Combination 9s / 10p 12s /10p 15s/10p 20s/10p

Lowest spatial

radial force order ! 2 3 10
Table V — Sound Power Level

Slot / Pole 9s /10p 12s/10p | 15s/10p | 20s/10p

Open Circuit RMS

sound power. 8000 63 dB 100 dB 45 dB <20dB

rpm

On Load RMS

sound power level 89 dB 106 dB 58 dB 58 dB

at 8000 rpm
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Figure 12. Simulation output for 20s10p configuration. Up: Radial
Pressure Input. Down: Sound Power Amplitude. (X axis: Spatial Order.

Y axis: Time Order w.r.t mech. frequency. Z axis: Sound Power
Amplitude)



DC-link stress comparison

A numerical analysis was conducted to compare DC link capacitor RMS current and voltage ripple for 3ph 12s10p and 2ph 20s10p. Below
is possible to see that RMS current and ripple charge does not change significatively between 3ph and 2ph machines. However, battery
current ripple is much higher mainly due to the high torque ripple of the machine, which can be detrimental for battery aging.
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Conclusions I: 6ph vs 3ph 12s10p

In this part of the study, we can extract the following conclusions:

e The 6ph asymmetrical 12/10 machine presents >3% of peak performance due to a higher winding factor and back-
emf. This assumption was verified experimentally for 3ph and 6ph windings.

e In principle, 6ph asymmetrical 12/10 machine has a better continuous performance due to a milder MMF
harmonics spectrum. This was verified from an analytical model and through FEM simulations. This finding could
not be successfully tested so far due to the incapability of controlling to zero current harmonics which are
detrimental to rotor losses.

e The 6-ph asymmetrical 12s10p machine requires a higher control bandwidth with either DMS and VSD control
approaches, in order to control 6" harmonics on d-g axis (which translates in a 5t harmonic at phase current
level). For the tested setup, limited to 25 kHz, the 5t current harmonic generated high rotor losses which risk to
demagnetize the machine already at 9krpm. Introducing a resonant control in z1z2 space of VSD helps reducing
the 5™ current harmonic, but still remains higher than a 3-ph configuration of the same machine.

e 12s10p machine suffers from high noise emissions for the selected geometry, as the 2nd spatial mode is excited
with the 10th time order. This high noise emission reaches >100dB values already at no-load, which means that
they are independent on the winding configuration. From simplified analytical model, is possible to see that 6-ph

18/14
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configrration on-load has not any relevant influence as well.




Conclusions Il: 2ph 20s10p

Due to high NVH harmonics in the 12/10 machine, a 2ph 20s/10p winding is proposed with the following main benefits.

e Theinverter has 4 legs instead of 3, with open end motor windings. Each phase is allowed full V,;. peak voltage instead of

14 . : : . :
%. This translated into a 15% increase in peak power for the same dc voltage and maximum phase current. In turn, the

inverter cost and complexity increases.

e Due to the high order of the lowest spatial mode (10 for the 20s/10p instead of 2 for the 12s/10p), reduced noise
emissions are expected from this machine.

e The winding factor is improved to unity, as the machine is an integer slot instead of fractional. This is a +7% improvement
with respect to 0.933 of the 12s/10p.

e Higher torque ripple is expected with respect to the 12s/10p case.

e No impact on DC Link capacitor (sized for high frequency PWM current), however high content of AC current drawn from
battery.

Future work shall be devoted to review the electromagnetic design of the two-phase machine to reduce harmonic
contents of voltage and torque ripple, and thus the AC current from the battery, but maintaining its clear advantages in high
power density and low noise emissions
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