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Chapter 1

Introduction

A fundamental challenge in project monitoring and control is the significant influence of human
factors in decision-making processes. Control actions are developed based on the perceived
risk and risk appetite. Estimates at completion depend on the forecasting method adopted and
assumptions about future events. Assessing current performance depends on the assessment
method and the significant factors for explaining and forecasting the project cost and schedule
behaviors.

Both academic and professional worlds have recognized the effectiveness of the Earned
Value Management methodology for project monitoring and control (Santos et al., 2023).

The EVM methodology is based on three key metrics: Earned Value (𝐸𝑉), Planned Value
(𝑃𝑉), and Actual Cost (𝐴𝐶). While 𝑃𝑉 denotes the budgeted cost of work scheduled, determined
per the PMB, 𝐸𝑉 and 𝐴𝐶 denote the budgeted and actual cost of work performed, respectively,
recorded throughout project execution.

Performance indexes include the Cost Performance Index (𝐶𝑃𝐼) and the EVM Schedule
Performance Index (𝑆𝑃𝐼EVM). The former is determined by the ratio of 𝐸𝑉 to 𝐴𝐶, as per Eq. 1.1.

𝐶𝑃𝐼 (𝑡) = 𝐸𝑉 (𝑡)
𝐴𝐶 (𝑡) (1.1)

The latter is determined by the ratio of 𝐸𝑉 to 𝑃𝑉 , as per Eq. 1.2.

𝑆𝑃𝐼EVM(𝑡) = 𝐸𝑉 (𝑡)
𝑃𝑉 (𝑡) (1.2)

With regard to forecasting methods, EVM employs two different approaches to forecast the
project Cost Estimate at Completion (𝑐𝐸𝐴𝐶) and Time Estimate at Completion (𝑡𝐸 𝐴𝐶EVM).
The former is calculated as the sum of 𝐴𝐶 and the Cost Estimate to Complete (𝑐𝐸𝑇𝐶), which is
defined as the ratio of the budgeted cost of remaining work (BAC−𝐸𝑉) to the Cost Performance
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Factor (𝑐𝑃𝐹), as per Eq. 1.3.

𝑐𝐸𝐴𝐶 (𝑡) = 𝐴𝐶 (𝑡) + 𝑐𝐸𝑇𝐶 (𝑡)

= 𝐴𝐶 (𝑡) + BAC−𝐸𝑉 (𝑡)
𝑐𝑃𝐹 (𝑡)

(1.3)

The latter is determined by the ratio of PD to the Schedule Performance Factor (𝑠𝑃𝐹), as per
Eq. 1.4.

𝑡𝐸 𝐴𝐶EVM(𝑡) = PD
𝑠𝑃𝐹 (𝑡) (1.4)

Literature has provided consistent results regarding the best-performing 𝑐𝑃𝐹 and 𝑠𝑃𝐹.
Concerning cost forecasting, studies have confirmed that 𝐶𝑃𝐼 provides adequate results as
𝑐𝑃𝐹 (Ballesteros-Pérez et al., 2019; Batselier and Vanhoucke, 2015b; Kim, 2019). Regarding
duration forecasting, 𝑆𝑃𝐼 has faced criticism due to relying on cost metrics (i.e., 𝐸𝑉 and
𝑃𝑉) for quantifying schedule delay (Borges and Mário, 2017). This assumption can lead to
unreliable forecasts when the relationship between cost and schedule is not linear (Khamooshi
and Golafshani, 2014; Warburton et al., 2017), and as the project approaches completion, since
the index converges to one, hinting at no delay (Chang et al., 2020; De Marco et al., 2017).

To address the issues of 𝑆𝑃𝐼, Lipke (2003) developed the Earned Schedule (ES) methodology.
ES relies on the homonym metric (Earned Schedule, 𝐸𝑆), representing the status date 𝐸𝑉 should
have been reached according to PMB, assuming linear progress between consecutive tracking
periods, as per Eq. 1.5.

𝐸𝑆(𝑡) = 𝑧+ 𝐸𝑉 (𝑡) −𝑃𝑉 (𝑧)
𝑃𝑉 (𝑧+1) −𝑃𝑉 (𝑧)

𝑃𝑉 (𝑧) ≤ 𝐸𝑉 (𝑡) ≤ 𝑃𝑉 (𝑧+1)
(1.5)

As EVM, ES comes with the Schedule Variance (𝑆𝑉ES) and ES Schedule Performance Index
(𝑆𝑃𝐼ES). The latter is determined by the ratio of 𝐸𝑆 to 𝑡, as per Eq. 1.6.

𝑆𝑃𝐼ES(𝑡) = 𝐸𝑆(𝑡)
𝑡

(1.6)

The same considerations for EVM variance indicators and performance indexes apply.
Despite their widespread use among practitioners, EVM and ES have several limitations.

• Rely on the correct breakdown of the scope of work defining the PMB (National Defense
Industrial Association, 2021).

• Overlook performance trends (Du et al., 2016) and the possible impact of control actions
on them (Narbaev and De Marco, 2011; Willems and Vanhoucke, 2015).

• Do not yield reliable forecasts during early project stages because of no adequate data for
reliable performance assessment (Barrientos-Orellana et al., 2022).

• Do not consider any correlation between cost and schedule performances (Khamooshi and
Golafshani, 2014), whereas both factors should be analyzed together (Karimi et al., 2018;
Khamooshi et al., 2021).
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• Do not account for the current phase (Ottaviani and De Marco, 2021), whereas project
must have reached stability to obtain reliable forecasts (Ballesteros-Pérez et al., 2019;
Barrientos-Orellana et al., 2022, 2023; De Koning and Vanhoucke, 2016; Kim et al., 2016).

• Do not account for project network features, such as subcritical paths (Narbaev and
De Marco, 2011; Vanhoucke, 2010), level of parallelism between paths (Gálvez et al.,
2015, 2017), and other relationships between activities (Elshaer, 2013; Vanhoucke, 2012).

Ignoring the EVM and ES issues compromises project performance assessment, leading to
incorrect forecasts and, in turn, to sub-optimal response actions.

This thesis aims to improve project monitoring and control processes by identifying,
analyzing, modeling, and exploiting qualitative factors influencing them. This will be done
through three related yet independent studies addressing the project at the descriptive, predictive,
and prescriptive analytics levels. All three studies share the assumption that only EVM and ES
metrics will be used.



Chapter 2

Work Rate Indicators for Project
Performance Analysis and Forecasting

2.1 Introduction

This study aims to verify that work rate factors are significant to project performance analysis and
forecasting. To accomplish this, the study quantifies work rate factors through three indicators
describing the project relative phase, work rate, and work rate acceleration. The study verifies
the significance of the indicators using eight artificial neural network (ANN) models, each
incorporating a different combination of the proposed indicators. This approach allows for
determining whether the indicators influence the ANNs’ forecasting performance and, if so, in
what sense. In addition, the study benchmarks the performance of the ANNs against the EVM
and ES methods under the accuracy, precision, timeliness, and goodness of fit criteria.

2.2 Research Methodology

This section describes the framework followed to develop and verify the significance of the work
rate indicators to project performance forecasting.

2.2.1 Data Collection

Data collection involves selecting completed projects and retrieving their PMB — i.e., 𝑡, and 𝑃𝑉

— and monitoring data — i.e., 𝐸𝑉 (𝑡), 𝐴𝐶 (𝑡), and 𝐸𝑆(𝑡).

2.2.2 Feature Scaling

Feature scaling involves dividing time features (i.e., 𝑡, and 𝐸𝑆) by PD and cost features (i.e., 𝑃𝑉 ,
𝐸𝑉 , and 𝐴𝐶) by BAC.
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2.2.3 Feature Evaluation

Feature evaluation involves calculating the work rate indicators to provide as input, along with
the scaled features, for regression analysis.

The first indicator (𝐹1) quantifies the project “relative phase” by comparing the current 𝑊𝑃

with the flex in 𝑊𝑆. The indicator is calculated as per Eq. 2.1.

𝐹1(𝑡) =𝑊𝑆∗−𝑊𝑃(𝑡) =𝑊𝑆 [argmax𝑊𝑆′(𝑡)] −𝑊𝑃(𝑡) (2.1)

The 𝐹1 indicator is predicated on the assumption that a project’s most work-intensive phase
occurs when the work rate reaches its peak (Liao et al., 2011; Putnam, 1978; Warburton, 1983).
Therefore, 𝐹1 is most significant in projects with a clear and distinct work-intensive phase,
indicated by an S-shaped cumulative work profile and amplitude in work rate oscillations
(S-shape curvature). The sign of 𝐹1 indicates whether the project has already passed through
the peak phase (𝐹1 < 0) or not (𝐹1 > 0), while its absolute value (|𝐹1 |) measures the “distance”
between the peak phase and the current phase.

The second indicator (𝐹2) quantifies the project’s “relative work rate” by comparing 𝑊𝑃′

with the peak in 𝑊𝑆′. The indicator is calculated as per Eq. 2.2.

𝐹2(𝑡) = max {𝑊𝑆′(𝑡) : 𝑡 = 1 . . .PD} −𝑊𝑃′(𝑡) (2.2)

The indicator estimates the effort required by project resources (i.e., pressure put on the resources)
compared to the planned maximum. The sign of 𝐹2 indicates whether the current work rate is
higher (𝐹2 < 0) or lower (𝐹2 > 0) than the planned maximum work rate. The absolute value
(|𝐹2 |) represents the difference between the actual and planned maximum work rates.

No specific range of values for 𝐹2 is considered optimal, depending on the project’s unique
characteristics and requirements. However, a positive value of 𝐹2 indicates that the project is
progressing according to plan and is not placing undue pressure on project resources. Conversely,
a negative value of 𝐹2 suggests that the project is experiencing a higher work rate than planned,
which could increase the risk of delays, cost overruns, and resource burnout.

The third indicator (𝐹3) is similar to 𝐹2 but concerns work rate acceleration, as it compares
the current 𝑊𝑃′′ to the peak in 𝑊𝑆′′(𝑡). The indicator is calculated as per Eq. 2.3.

𝐹3(𝑡) = max {𝑊𝑆′′(𝑡) : 𝑡 = 1 . . .PD} −𝑊𝑃′′(𝑡) (2.3)

The indicator is a proxy for how frequently and significantly the work rate changes. The sign of
𝐹3 indicates whether the current work rate acceleration exceeds the planned maximum (𝐹3 < 0)
or not (𝐹3 > 0). The absolute value (|𝐹3 |) represents the difference in work rate acceleration
between the actual and planned maximum values.

Both 𝐹2 and 𝐹3 indicators are determined through the difference operation rather than the
ratio, preserving the indicators’ sign, which conveys additional information for regression model
development. Furthermore, the difference between the two values does not constrain the range
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of values the indicators could assume, whereas the ratio would do. The indicator equals zero
when the work rate or work rate acceleration equals its respective maximum planned value. If
either indicator is negative, it suggests that the project entropy is high, increasing the likelihood
of cost or schedule overruns (Vanhoucke, 2019).

Table 2.1 summarizes the features provided as input for regression analysis, including their
ID, formula, and name.

Table 2.1 Regression analysis input features

ID Feature Formula Name

1 𝑡s 𝑡/PD Time
2 𝑊𝑆 𝑃𝑉/BAC Work Scheduled
3 𝑊𝑃 𝐸𝑉/BAC Work Performed
4 𝐴𝐶s 𝐴𝐶/BAC Actual Cost
5 𝐸𝑆s 𝐸𝑆/PD ES Metric
6 𝐹1 𝑊𝑆∗−𝑊𝑃 Relative Phase
7 𝐹2 max𝑊𝑆′−𝑊𝑃′ Relative Work Rate
8 𝐹3 max𝑊𝑆′′−𝑊𝑃′′ Relative Work Rate Acceleration

2.2.4 Regression Analysis

Regression analysis is a statistical technique for estimating the true relationship ( 𝑓 ) between
a target variable (𝒚) and a set of independent features (X) through a fitted model ( 𝑓 ). The
fitted model serves both inferential and predictive purposes: inference refers to the degree of
understanding of the association between the variables being analyzed, while prediction refers to
forecasting the target variable.

This study utilizes ANNs to evaluate 𝑓 . An ANN comprises interconnected neurons
organized into input (𝐼), hidden (𝐻), and output (𝑂) layers. The input layer corresponds to X.
The hidden layers apply a nonlinear function to the values they receive as input. Finally, the
output layer receives the values from the last hidden layer and generates the forecasts (�̂�).

Verifying the significance of the work rate indicators requires comparing the performance of
the ANNs with and without them. Table 2.2 provides the eight ANNs tested in the study. ANN
0 contains only EVM and ES features (with ID from 1 to 5 as per Table 2.1). ANNs 1, 2, and 3
implement 𝐹1, 𝐹2, and 𝐹3 into ANN 0, respectively. ANNs 12, 13, and 23 implement 𝐹1 and
𝐹2, 𝐹1 and 𝐹3, and 𝐹2 and 𝐹3, respectively. Lastly, ANN 123 implements all three proposed
indicators.
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Table 2.2 ANN models architecture summary

ANN Additional Variables Input Neurons Hidden Neurons

0 5 3
1 𝐹1 6 4
2 𝐹2 6 4
3 𝐹3 6 4
12 𝐹1, 𝐹2 7 5
13 𝐹1, 𝐹3 7 5
23 𝐹2, 𝐹3 7 5
123 𝐹1, 𝐹2, 𝐹3 8 5

2.2.5 EVM, ES, and ANN Forecasts

Forecasts involve using the EVM, ES, and ANN 𝑐𝐸𝐴𝐶 and 𝑡𝐸 𝐴𝐶 models to generate the
forecasts of the target variables.

Concerning cost, EVM forecasts are determined as per Eq. 2.4.

�̂�𝑖 =
𝑐𝐸𝐴𝐶𝑖

BAC𝑖

= 𝐴𝐶s𝑖 +
1−𝑊𝑃𝑖

𝐶𝑃𝐼𝑖
(2.4)

Instead, ANN forecasts are determined through the fitted 𝑐𝐸𝐴𝐶 ANN models.
Concerning duration, EVM forecasts are determined as per Eq. 2.5.

�̂�𝑖 =
𝑡𝐸 𝐴𝐶EVM

𝑖

PD𝑖

=
1

𝑆𝑃𝐼EVM
𝑖

(2.5)

ES forecasts are determined through Eq. 2.6.

�̂�𝑖 =
𝑡𝐸 𝐴𝐶ES

𝑖

PD𝑖

= 𝑡s𝑖 +
1−𝐸𝑆s𝑖

𝑆𝑃𝐼ES
𝑖

(2.6)

ANN forecasts are determined through the fitted 𝑡𝐸 𝐴𝐶 ANN models.

2.3 Results

2.3.1 Data Collection

The project monitoring dataset used consists of 80 construction projects data, selected from the
OR&S database (Batselier and Vanhoucke, 2015a; Vanhoucke et al., 2016), publicly available at
projectmanagement.ugent.be/research/data/realdata.
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Table 2.3 𝑐𝐸𝐴𝐶 models performance results

𝐴𝐸 𝑆𝐸

Model 𝑀𝐴𝐸 𝑆𝐴𝐸 𝑤𝑀𝐴𝐸 𝑤𝑆𝐴𝐸 𝑅𝑀𝑆𝐸 𝑆𝑆𝐸 𝑤𝑅𝑀𝑆𝐸 𝑤𝑆𝑆𝐸 𝑅2
adj

EVM 0.1070 0.1796 0.0310 0.0788 0.2090 0.1450 0.1168 0.0601 -1.70
ANN 0 0.0511 0.0634 0.0212 0.0326 0.0814 0.0176 0.0494 0.0074 0.59
ANN 1 0.0414 0.0533 0.0155 0.0223 0.0675 0.0140 0.0377 0.0050 0.72
ANN 2 0.0466 0.0553 0.0181 0.0262 0.0723 0.0152 0.0417 0.0065 0.68
ANN 3 0.0484 0.0556 0.0191 0.0274 0.0737 0.0148 0.0431 0.0066 0.66
ANN 12 0.0398 0.0512 0.0156 0.0213 0.0649 0.0142 0.0367 0.0044 0.74
ANN 13 0.0404 0.0533 0.0156 0.0223 0.0669 0.0146 0.0375 0.0049 0.72
ANN 23 0.0498 0.0589 0.0185 0.0285 0.0771 0.0163 0.0440 0.0071 0.63
ANN 123 0.0392 0.0514 0.0155 0.0218 0.0647 0.0138 0.0368 0.0043 0.74

Table 2.4 𝑡𝐸 𝐴𝐶 models performance results

𝐴𝐸 𝑆𝐸

Model 𝑀𝐴𝐸 𝑆𝐴𝐸 𝑤𝑀𝐴𝐸 𝑤𝑆𝐴𝐸 𝑅𝑀𝑆𝐸 𝑆𝑆𝐸 𝑤𝑅𝑀𝑆𝐸 𝑤𝑆𝑆𝐸 𝑅2
adj

EVM 0.3259 1.3243 0.0845 0.1081 1.3638 44.5161 0.2480 0.3637 -61.28
ES 0.2970 1.5866 0.0735 0.1340 1.6142 69.0170 0.2708 0.5937 -86.25
ANN 0 0.0949 0.0883 0.0410 0.0495 0.1296 0.0308 0.0820 0.0152 0.44
ANN 1 0.0881 0.0817 0.0369 0.0460 0.1202 0.0263 0.0752 0.0126 0.52
ANN 2 0.0908 0.0846 0.0390 0.0472 0.1241 0.0292 0.0784 0.0146 0.49
ANN 3 0.0901 0.0864 0.0387 0.0485 0.1248 0.0294 0.0790 0.0156 0.48
ANN 12 0.0820 0.0830 0.0353 0.0449 0.1167 0.0263 0.0730 0.0123 0.54
ANN 13 0.0866 0.0839 0.0377 0.0474 0.1206 0.0277 0.0765 0.0134 0.51
ANN 23 0.0908 0.0856 0.0389 0.0481 0.1248 0.0289 0.0788 0.0143 0.48
ANN 123 0.0842 0.0835 0.0364 0.0446 0.1186 0.0283 0.0739 0.0129 0.53

2.4 Conclusions

The results confirmed that the indicators were significant and able to improve the ANN
models. The maximum improvement was achieved when all three indicators were used as input.
Furthermore, the study proved that even a simple ANN with MLP architecture could benefit
from implementing the indicators, leading to more accurate, precise, and timely forecasts than
the EVM and ES methodologies. This confirms ANNs’ capability to analyze the relationship
between project performance and work rate indicators, as well as the ability of work rate
indicators to anticipate or assist in evaluating performance variations.



Chapter 3

Robust Machine Learning Pipeline for
Project Performance Forecasting

3.1 Introduction

This chapter aims to improve project monitoring by providing solutions, structured in an ML
pipeline, that address the problems of underfitting and overfitting in ML project performance
forecasting models. The study tests the pipeline on a subset of the project monitoring dataset
from Chapter 2 by evaluating 30 ML models and benchmarking their performance against that
of EVM and ES.

3.2 Research Methodology

This section outlines the ML pipeline and the criteria for assessing the performance of ML
models evaluated through it. The ML pipeline consists of seven phases: data collection, data
preprocessing, feature engineering, model preselection, feature selection, model training and
evaluation, and model selection. Each phase includes several steps that implement procedures to
reduce underfitting and overfitting.

For clarity, the terms procedure and technique are used interchangeably; the same applies to
variable and feature.

3.2.1 Data Collection

Data collection involves assembling raw monitoring data from completed projects into a structured
dataset.

Raw monitoring data include 𝑡, BAC, PD, 𝑃𝑉 (𝑡), 𝐸𝑉 (𝑡), 𝐴𝐶 (𝑡), and 𝐴𝐷.
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3.2.2 Data Preprocessing

Data preprocessing involves transforming raw monitoring data into a format suitable for
subsequent analysis. This phase includes four steps: handling missing values, data cleaning,
data transformation, and data balancing and augmentation.

3.2.2.1 Handling Missing Values

Handling missing values involves identifying incomplete records and either removing or filling
them in.

3.2.2.2 Data Cleaning

Data cleaning involves identifying and removing inappropriate records from the dataset.

3.2.2.3 Data Transformation

Data transformation involves normalizing, standardizing, or scaling monitoring data.

3.2.2.4 Data Balancing and Augmentation

Data balancing involves equalizing the number of observations per project. Instead, data
augmentation involves undersampling (i.e., reducing the number of records) or oversampling
(i.e., increasing the number of records).

Data augmentation procedures include linear and nonlinear interpolation. The former assumes
a constant rate between successive records, resulting in multiple straight lines connecting adjacent
data points. The latter assumes the rate varies according to a theoretical model with a non-uniform
growth rate, preserving the monotonicity and cumulative nature of 𝑡, 𝑃𝑉 , 𝐸𝑉 , and 𝐴𝐶.

This pipeline implements balancing using synthetic records generated by linear interpolation
at 5% increments, as per Eq. 3.1.

𝑥 [𝑊𝑃(𝑡s) = 𝑧] = {𝑥(𝑡s) : 𝑊𝑃(𝑡s) = 𝑧} ∀𝑧 ∈ [0, .05, . . . ,1.00] (3.1)

where 𝑥 denotes the metric to interpolate, and 𝑧 denotes the specific value of 𝑊𝑃 at 𝑡s. The
choice of 5% is arbitrary and allows the generation of 20 synthetic records per project.

3.2.3 Feature Engineering

Feature engineering involves combining project metrics to evaluate new features. These features
will be used as input features, which serve as independent regression variables, and target
features, representing the dependent variables to forecast. This step improves the ML inferential
process by guiding the analysis of significant features for assessing project performance while
reducing underfitting and overfitting.
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3.2.3.1 Input Features

Input features comprise both project metrics and indicators. Project metrics include the synthetic
values of 𝑡s, 𝑊𝑆, 𝑊𝑃, 𝐴𝐶s, and BACs (for cost forecasting) or PDs (for duration forecasting).
Instead, monitoring indicators consist of different combinations of project metrics.

The first set of indicators is based on the EVM methodology and includes both cost and
schedule indicators.

The second set of indicators is based on the ES methodology.

3.2.3.2 Target Variable

Selecting the target variable depends on the forecasting target and the regression method used.
The forecasting target can be cost or duration, and the regression method can be direct or indirect.

Direct regression (DR) involves setting the target variable to the regression target. In this
approach, records within the same project have identical values for the target variable. As a
result, analysis of the relationships between input features is limited, reducing model complexity.
Therefore, DR prioritizes the reduction of underfitting over the reduction of overfitting.

Indirect regression (IR) involves setting the target variable to an intermediate variable and
using it within a specific formula to calculate the regression target. In this approach, data
sets from the same project have different values for the target variable, allowing for a more
flexible analysis of the relationships between input features. As a result, IR prioritizes overfitting
reduction over overfitting.

This pipeline implements both regression methods for both forecasting targets.

3.2.4 Feature Selection

Feature selection involves identifying a subset of the input features to build the model.
This pipeline employs the forward Sequential Feature Selection (fSFS) procedure with a

tolerance-based stopping criterion.

3.2.5 Model Preselection

Model preselection involves identifying candidate models to be tested in forecasting project
performance. This approach makes it possible to select, from the various models tested, the one
that best fits the needs of the case.

This pipeline tests 30 models selected based on their extensive presence in the project
performance forecasting literature and their open-source availability.
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3.2.6 Model Training and Evaluation

Model training involves evaluating the coefficients of the parameters of the model built using
the features selected through the fSFS procedure. Instead, model evaluation involves using the
trained model to compute the forecasts and evaluate its performance.

This pipeline implements the Group 𝑘-fold CV technique in training the models to evaluate
their performance, to reduce overfitting.

Within each iteration of the Group 𝑘-Fold CV procedure, the pipeline uses the Grid Search
CV procedure to tune the model hyperparameters and balance underfitting and overfitting. The
procedure tests all possible combinations of predefined values of the hyperparameters, identifying
the combination that minimizes a regression scorer evaluated over the 𝑘 folds.

3.2.7 Model Selection

Model selection involves choosing the best-performing ML model for cost and duration
forecasting.

3.2.8 Results Comparison

The study compares the performance of the ML models with the EVM and ES ones under three
criteria in two steps.

In cost forecasting, the EVM model consists of EVM(𝐶𝑃𝐼), based on Eq. 2.4. In duration
forecasting, the EVM model consists of EVM(𝑆𝑃𝐼EVM), based on Eq. 2.5, and Instead, the ES
model consists of ES(𝑆𝑃𝐼ES), based on Eq. 2.6.

The performance criteria are accuracy, precision, and timeliness.
Table 3.1 shows the 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 values associated with the EVM, ES, DR, and IR

models .

Table 3.1 EVM, ES, and best ML models overall scores

Target Method Model 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸

Cost EVM EVM(𝐶𝑃𝐼) 0.0690 0.1508
DR SVR 0.0530 0.0976
IR Huber 0.0529 0.1059

Duration EVM EVM(𝑆𝑃𝐼EVM) 0.2249 0.5079
ES ES(𝑆𝑃𝐼ES) 0.2116 0.5453
DR Huber 0.1001 0.1521
IR SGD1cSVM 0.0990 0.1522
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3.3 Conclusions

The study tested the pipeline on 80 construction engineering projects. The results demonstrate
that the ML models exhibit higher accuracy and precision than EVM and ES. Furthermore, some
ML models show greater accuracy when developed by IR rather than DR.



Chapter 4

Risk Perception-Based Project Contingency
Management Framework

4.1 Introduction

This study’s objective is twofold. Firstly, it explains the relationship between short- and long-term
cost overruns, how project managers perceive them, and how they can react. Secondly, it aims
to model risk perception, provide the criteria for developing risk responses, and implement
both within a contingency management framework (CMF) to minimize short- and long-term
concerns for cost overruns throughout project execution while ensuring the complete depletion
of the CR. The CMF applies the Monte Carlo (MC) method to a stochastic, discrete-event,
finite-horizon, dynamic project simulation model for evaluating the combinations of initial CR
level and response thresholds that optimize contingency spending. In the CMF, risk responses
consist of using part of the CR to reduce the increase in the project’s actual cost, thereby reducing
both the perceived overrun and the cost variance at project completion.

4.2 Research Methodology

The study developed the CMF, more specifically, the project execution simulation model,
following a simplified version of the methodologies of Law (2003) and Banks et al. (2009),
consisting of the following steps:

• Problem formulation and system configurations;
• Model definition;
• Model translation;
• Pilot runs;
• Model validation;
• Output data analysis;
• Discussion of results.
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4.2.1 Problem Formulation and System Configurations

4.2.1.1 Problem Formulation

The CMF is intended as a prescriptive tool for driving CM while minimizing project managers’
exposure to risk perception. The CMF should determine, for each initial level of CR, the
frequency and entity of risk responses.

4.2.1.2 System Configurations

Model verification depends on the mathematical properties of the project execution simulation
model. On the other hand, model validation requires testing it in several projects, which is not
feasible because of the infinite number of possible project configurations. Hence, for the purpose
of validation, this study employs synthetic data representing extreme project configurations.
Suppose the CMF works in such extreme configurations. In this case, the CMF can be applied in
any real project that has a configuration that falls between the extreme ones. This study defines
project configurations based on the schedule, cost deviation, and correlation of the tasks.

Task schedule refers to the tasks’ start and end dates. Following the activity-based costing
method (Lance Stephenson, 2015), the task schedule determines the cumulative cost curve,
which represents the total project cost as a function of time.

A task’s cost deviation is expressed using a probability density function (PDF) to account
for potential risks Du et al. (2016). This function is derived by fitting a theoretical distribution
to historical cost overrun data or by selecting an estimation method and gathering uncertainty
factors for a sensitivity analysis. The resulting PDF values can be adjusted to accommodate
additional risks that would substantially alter the task cost or incorporate subjective assumptions.

Ideally, each task should have its cost deviation PDF. However, for verification and validation
purposes, this study assumed all tasks’ cost deviation PDFs to be the same (in relative terms)
(Barraza and Bueno, 2007; Eldosouky et al., 2014). Specifically, this study adopted the PERT
distribution as PDF, i.e., a beta distribution extended to the domain [min,max] (Vose, 2008).

Let 𝑥 denote the task cost deviation. Then, Eq. 4.1 provides the PDF of the PERT distribution:

𝑓 (𝑥) = (𝑥−min)𝛼−1(max−𝑥)𝛽−1

Beta(𝛼, 𝛽) (max−min)𝛼+𝛽−1 , (4.1)

where min is the 𝑥 lower bound, max is the 𝑥 upper bound, 𝛼 and 𝛽 are the shape parameters,
and Beta is the beta function described by Eq. 4.2,

Beta(𝛼, 𝛽) =
∫ 1

0
𝑢𝛼−1 (1−𝑢)𝛽−1 d𝑢. (4.2)

Eq. 4.3 provides the cumulative density function (CDF) of the PERT distribution:

𝐹 (𝑥) = Beta𝑧 (𝛼, 𝛽)
Beta(𝛼, 𝛽) , (4.3)
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where Beta𝑧 is the incomplete beta function and 𝑧 is evaluated as per Eq. 4.4,

𝑧 =
𝑥−min

max−min
. (4.4)

A task’s cost deviation correlation affects its cost deviation PDF. This study involves two
correlation scenarios, namely, A and B. In Scenario A, all tasks are assumed to not be correlated.
In scenario B, all tasks executed in the same time frame show the same relative cost deviation.

4.2.2 Model Definition

Let N denote the total number of tasks, each contributing equally to the project’s progress, and
let 𝑖 indicate the 𝑖th task. Then, Eq. 4.5 holds.

𝑑𝑊𝑃𝑖 =
100%

N

=
1
N

(4.5)

Following EVM, progress is determined by assuming 𝑑𝐸𝑉 (𝑡) = 𝑑𝑊𝑃(𝑡) ·BAC. Then, Eq. 4.6
holds.

𝑑𝐸𝑉𝑖 =
BAC

N
(4.6)

Let 𝑛(𝑡) denote the number of tasks completed at time 𝑡, determined by the profiles displayed
in Fig. ??. Then, 𝑑𝐸𝑉 is determined using Eq. 4.7.

𝑑𝐸𝑉 (𝑡) = 𝑛(𝑡) · 𝑑𝐸𝑉𝑖

= 𝑛(𝑡) · BAC
N

(4.7)

In contrast, 𝑑𝐴𝐶 depends on both the task correlation and 𝑥𝑖, which can be randomized by
applying the inverse of Eq. 4.3 to a random value generated through the uniform distribution, as
in Eq. 4.8.

𝑥𝑖 (𝑡) ∼ 𝐹−1(𝑡) ∀𝑖 ∈ [0 . . . 𝑛(𝑡)] (4.8)

In Scenario A, all project tasks are assumed to be independent; hence, 𝑑𝐴𝐶 is randomized as
per Eq. 4.9.

𝑑𝐴𝐶 (𝑡) =
𝑛(𝑡)∑︁
𝑖=1

BAC
N
· 𝑥𝑖 (𝑡) (4.9)

In Scenario B, all tasks executed in the same 𝑡 are assumed to show the same relative cost
deviation. Therefore, 𝑑𝐴𝐶 is randomized per Eq. 4.10.

𝑑𝐴𝐶 (𝑡) = 𝑑𝐸𝑉 (𝑡) · 𝑥(𝑡) (4.10)
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The project analytical model is fit within Algorithm 1, which evaluates all combinations of
𝐶0, 𝑇ℎST, and 𝑇ℎLT optimizing CM. The algorithm is defined as follows. The parameter 𝐶0

denotes the initial level of CR, i.e., 𝐶 (0) = 𝐶0. The parameters 𝛿𝐶0 , 𝛿𝑇ℎST , and 𝛿𝑇ℎLT denote the
increment in 𝐶0, 𝑇ℎST, and 𝑇ℎLT, respectively. An upper bound corresponds each parameter
(max𝐶0 for 𝐶0, max𝑇ℎST for 𝑇ℎST, and max𝑇ℎLT for 𝑇ℎLT). Iterations over 𝐶0 are repeated until it
reaches max𝐶0 or until 𝑇ℎST = 𝑇ℎLT = 0, triggering the first stop criterion (𝑠𝑡𝑜𝑝𝐶0 ← 1). Next,
iterations over 𝑇ℎST are repeated until it reaches max𝑇ℎST . Finally, iterations over 𝑇ℎLT are
repeated until it reaches max𝑇ℎLT or until the mean value of the residual 𝐶 amount over the S
simulations (𝐶) is reduced to almost zero (𝜖 l ≤ 𝐶 ≤ 𝜖h), triggering the second stop criterion
(𝑠𝑡𝑜𝑝𝑇ℎLT ← 1).
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Algorithm 1: Contingency management framework optimization algorithm
Data: 𝒏, 𝜇, 𝜎
Parameters: S, BAC, PD, max𝐶0 , 𝛿𝐶0 , max𝑇ℎST , 𝛿𝑇ℎST , max𝑇ℎLT , 𝛿𝑇ℎLT

Result: Determine (𝐶0,𝑇ℎST,𝑇ℎLT) combinations that minimize 𝐶𝐶
𝐶0, 𝑠𝑡𝑜𝑝

𝐶0 ← 0,0
while 𝐶0 ≤ max𝐶0 and 𝑠𝑡𝑜𝑝𝐶0 = 0 do

𝑇ℎST, 𝑠𝑡𝑜𝑝
𝑇ℎST ← 0,0

while 𝑇ℎST ≤ max𝑇ℎST and 𝑠𝑡𝑜𝑝𝑇ℎST = 0 do
𝑇ℎLT, 𝑠𝑡𝑜𝑝

𝑇ℎLT ← 0,0
𝑠𝑜𝑙← (𝐶0,𝑇ℎST,𝑇ℎLT)
𝐶𝐶𝑠𝑜𝑙 ←∞
while 𝑇ℎLT ≤ max𝑇ℎLT and 𝑠𝑡𝑜𝑝𝑇ℎLT = 0 do

for 𝑠← 1 to S do
𝑡← 0
while 𝑡 < PD do

𝑡← 𝑡 +1
𝐶 (𝑠, 𝑡) ← 𝐶 (𝑡 −1)
𝑑𝐸𝑉 (𝑠, 𝑡) ← 𝑛(𝑠, 𝑡) · BAC

N
𝐸𝑉 (𝑠, 𝑡) ← 𝐸𝑉 (𝑡 −1) + 𝑑𝐸𝑉 (𝑠, 𝑡)

𝑑𝐴𝐶 (𝑠, 𝑡) ←
{∑𝑛(𝑠,𝑡)

𝑖=1
BAC

N · 𝑥𝑖 (𝑠, 𝑡) Scenario = A
𝑑𝐸𝑉 (𝑠, 𝑡) · 𝑥(𝑠, 𝑡) Scenario = B

𝐴𝐶 (𝑠, 𝑡) ← 𝐴𝐶 (𝑡 −1) + 𝑑𝐴𝐶 (𝑠, 𝑡)
𝐶𝐶ST(𝑠, 𝑡) = max {0, 𝑑𝐴𝐶 (𝑠, 𝑡) − 𝑑𝐸𝑉 (𝑠, 𝑡) · (1+𝑇ℎST)}
𝑅𝐶 (𝑠, 𝑡) ←min{𝐶 (𝑠, 𝑡),𝐶𝐶ST(𝑠, 𝑡)}
𝐴𝐶 (𝑠, 𝑡) ← 𝐴𝐶 (𝑠, 𝑡) −𝑅𝐶ST(𝑠, 𝑡)
𝐶 (𝑠, 𝑡) ← 𝐶 (𝑠, 𝑡) −𝑅𝐶ST(𝑠, 𝑡)
𝐶𝐶ST(𝑠, 𝑡) ← 𝐶𝐶ST(𝑠, 𝑡) −𝑅𝐶ST(𝑠, 𝑡)
𝐶𝑃𝐼 (𝑠, 𝑡) ← 𝐸𝑉 (𝑠, 𝑡)/𝐴𝐶 (𝑠, 𝑡)
𝐸𝐴𝐶 (𝑠, 𝑡) ← BAC/𝐶𝑃𝐼 (𝑠, 𝑡)
𝐶𝐶LT(𝑠, 𝑡) = max{0, 𝐸 𝐴𝐶 (𝑠, 𝑡) −BAC−𝐶 (𝑠, 𝑡) · (1+𝑇ℎLT)}
𝑅𝐶LT(𝑠, 𝑡) ←
min

{
𝐶 (𝑠, 𝑡),max

{
0, BAC[𝐸𝑉 (𝑠,𝑡)−𝐴𝐶 (𝑠,𝑡)]+𝐶 (𝑠,𝑡)·𝐸𝑉 (𝑠,𝑡)·(1+𝑇ℎLT)

𝐸𝑉 (𝑠,𝑡)·(1+𝑇ℎLT)−BAC

}}
𝐴𝐶 (𝑠, 𝑡) ← 𝐴𝐶 (𝑠, 𝑡) −𝑅𝐶LT(𝑠, 𝑡)
𝐶 (𝑠, 𝑡) ← 𝐶 (𝑠, 𝑡) −𝑅𝐶LT(𝑠, 𝑡)
𝐶𝑃𝐼 (𝑠, 𝑡) ← 𝐸𝑉 (𝑠, 𝑡)/𝐴𝐶 (𝑠, 𝑡)
𝐸𝐴𝐶 (𝑠, 𝑡) ← BAC/𝐶𝑃𝐼 (𝑠, 𝑡)
𝐶𝐶LT(𝑠, 𝑡) = max {0, 𝐸 𝐴𝐶 (𝑠, 𝑡) −BAC−𝐶 (𝑠, 𝑡) · (1+𝑇ℎLT)}
𝐶𝐶 (𝑠, 𝑡) ← 𝐶𝐶ST(𝑠, 𝑡) +𝐶𝐶LT(𝑠, 𝑡)

𝐶𝐶 (𝑠) ← 1
PD

∑PD
𝑡=0𝐶𝐶 (𝑠, 𝑡)

𝐶← 1
S
∑S

𝑠=1𝐶 (𝑠,PD)
𝐶𝐶← 1

S
∑S

𝑠=1𝐶𝐶 (𝑠)
if 0 ≤ 𝐶 ≤ 𝜖h and 𝐶𝐶 ≤ 𝐶𝐶𝑠𝑜𝑙 then

𝑠𝑡𝑜𝑝𝑇ℎLT ← 1
𝐶𝐶𝑠𝑜𝑙 ← 𝐶𝐶
𝑠𝑜𝑙← (𝐶0,𝑇ℎST,𝑇ℎLT)

else
𝑇ℎLT← 𝑇ℎLT + 𝛿𝑇ℎLT

𝑇ℎST← 𝑇ℎST + 𝛿𝑇ℎST

if 𝑇ℎST = 𝑇ℎLT = 0 then
𝑠𝑡𝑜𝑝𝐶0 ← 1

else
𝐶0← 𝐶0 + 𝛿𝐶0
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4.2.3 Pilot Runs

The algorithm was programmed from scratch in the Julia 1.8.1 programming language. Pilot
runs (and later validation runs) were performed on an Intel(R) Core(TM) i7-10750H CPU; the
run time was negligible.

The simulation model can be considered verified if it satisfies the central limit theorem (CLT)
(Everitt and Skrondal, 2010). According to the CLT, the PDF of the project’s total cost deviation
should conform to a normal distribution to which mean and variance correspond to Eq. 4.11 and
4.12, respectively.

𝜇 = 𝜇𝐴𝐶 (PD)

= N · 𝜇𝑥 ·
BAC

N
= 𝜇𝑥 ·BAC

= 𝜇𝑥

(4.11)

𝜎2 = 𝜎2
𝐴𝐶 (PD)

= N ·𝜎2
𝑥 ·

BAC2

N2

= 𝜎2
𝑥 ·

BAC2

N

=
𝜎2
𝑥

N

(4.12)

The CLT holds only if the random variables are iid (i.e., independent and identically distributed).
In the simulation model, the random variables correspond to the tasks’ cost deviation PDFs and
are iid only in the A configurations. However, if the only difference between Scenarios A and B
is in the randomization of 𝑑𝐴𝐶 and the simulation model verifies the CLT in the A scenarios,
then the B configurations should also be verified.

4.2.4 Model Validation

Prior to conducting validation runs, the CR was bounded below zero (min𝐶0 = 0) and above by
0.8 (max𝐶0 = 0.8). Following the pilot runs, the CLT could be applied to narrow the range of 𝐶0

further to 𝜇−3𝜎−BAC ≤ 𝐶0 ≤ 𝜇+3𝜎−BAC. This range is derived from the observation that a
six-sigma interval covers approximately 99.7% of the possible outcomes. Based on this refined
range of 𝐶0, it can be predicted that the model may not provide an optimal solution for values of
𝐶0 below 𝜇−3𝜎−BAC. Conversely, the CMF ensures that risks will always be mitigated for
values of 𝐶0 above 𝜇+3𝜎−BAC.

For the validation runs, we set the following:

• S = 6.4×103;
• 𝛿𝑇ℎST = 𝛿𝑇ℎLT = 0.05;
• 𝜖h = 1×10−2.
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4.3 Conclusions

The CMF determines three intervals of initial CR based on the probability density function
(PDF) of task cost deviation and their degree of correlation. The optimization algorithm then
determines the thresholds for drawing on the CR in response to risk events that cause task cost
overrun for each interval. Risk responses are developed based on matching two thresholds: one
related to cost overruns in the ST and the other related to cost overruns in the LT. The project
execution is simulated multiple times, changing the threshold levels. Given an initial CR level,
the CMF optimizes the threshold levels to minimize the risk of cost overruns while ensuring the
CR is used efficiently. This reduces the possibility that project managers develop suboptimal risk
responses that could undermine a project’s cost and schedule performance. The CMF considers
the statistical properties of task cost distributions and their correlation with other tasks, providing
a more realistic approach to contingency management optimization. The ability to optimize the
allocation of CRs based on statistical analysis and simulation can lead to better decision-making
and cost control during project execution.
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