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Abstract

Edge computing has become increasingly popular for Internet of Things (IoT)
applications powered by Machine Learning (ML) inference. Moving the ML models
directly to the data source can improve privacy, lower the latency, and yield higher
energy efficiency, without requiring a constant internet connection as for a cloud-
centric approach.

Nonetheless, ML models are known to be memory- and energy-hungry, requiring
a significant amount of resources, not available on ultra-low-power edge devices,
such as sensors, often based on Microcontrollers (MCUs).

As a consequence, an increasing research effort has been put into making ML
more efficient, trading off limited accuracy for large savings in terms of energy or
memory. This research branch has taken the name of Edge AI and it is the focus of
this thesis.

In particular, this dissertation focuses on optimizing two popular models for
edge AI: tree ensembles and deep neural networks (DNNs). Tree ensembles reach
high accuracy with a limited memory and energy footprint, making them an ideal
choice to deploy on resource-constrained hardware. Nonetheless, accurate ensembles
often feature many trees, rapidly growing in memory and inference latency. In the
first chapter of this work, I focus on how these models can be further optimized,
reducing the memory footprint thanks to an efficient implementation and other
approaches such as quantization. Moreover, thanks to a dynamic inference approach,
I show a way to reduce the inference latency with little to no accuracy drops. All
approaches detailed in this work concerning the optimization of tree ensembles have
been collected and included in an open-source Python library.

The second chapter of this thesis focuses on deep learning (DL). DL models
often reach state-of-the-art accuracy, coming however at the cost of a high number
of parameters to be stored and computations to be performed. Therefore, I introduce
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a flow to obtain memory-inexpensive yet accurate DNNs that leverage sub-byte
quantization and mixed precision. Then, I introduce three dynamic inference ap-
proaches to lower the average energy and latency per inference of DNNs. The first
slices the network by its width, running only a subset of the channels and neurons
depending on the input complexity. The second leverages the different complexity
of the classes in a dataset, running an easy and inexpensive model to recognize the
simplest classes while leveraging larger DNNs only for the other classes. The last
one introduces an enhanced early-stopping mechanism tailored for datasets with
class frequency imbalance, a common occurrence in edge ML, leading to higher
accuracy and increased energy savings w.r.t. other approaches.

In conclusion, the contributions of this work are twofold. A novel deployment
flow for tree ensembles is introduced, focusing on optimizations both at compile and
run time. Then, multiple optimizations for efficient DNN deployments are proposed,
both in terms of compile-time and run-time approaches, allowing the deployment of
small yet accurate models even on the most constrained edge devices.
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Chapter 1

Introduction

In recent years, Machine Learning (ML) has become increasingly present in our
society, becoming the core component of applications in a wide set of domains, such
as autonomous driving [1], medical analysis [2, 3] and smart manufacturing [4].
Notably, Deep Learning (DL) algorithms for computer vision [5, 6], natural language
processing [7], and speech recognition [8] tasks have achieved outstanding results,
outperforming even humans in some tasks [5]. Commonly, these applications lever-
age a cloud-centric paradigm, deploying the ML model on remote infrastructures,
where both training and inference are performed on powerful hardware.

The recent rise of Internet of Things (IoT) applications has led to a growing
interest in moving ML models to the edge, performing the inference directly on
the resource-constrained embedded devices collecting the data. Edge computing
leads to several benefits, mostly stemming from the reduced reliance on an internet
connection. For instance, applications handling sensitive data (e.g., geographical
position) may cause privacy concerns when transmitting data to the cloud, as a secure
connection is not always available. Real-time applications, such as autonomous
driving ones, have tight latency constraints, nearly impossible to meet if large
amounts of data have to be sent to remote servers. Moreover, transmitting data is an
energy-hungry operation, severely impacting the lifetime of battery-operated devices
expected to run for as long as possible (e.g., sensors). In the aforementioned cases
then, performing the computations locally would be highly beneficial. Moreover,
edge computing brings a reduced operating cost, easing the deployment infrastructure
companies have to manage while also diminishing the carbon footprint [9].
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Modern ML models however are memory and computationally intensive, requir-
ing up to billions of Multiply-And-Accumulate (MACs) operations and thousands of
bytes for storage. For instance, the popular and ”small" network EfficientNet-B0 [6]
requires storing 5.3M parameters and performing 0.39B FLOating-Point OPerations
(FLOPs) per inference for an RGB image of dimension 224x224. On the other hand,
embedded devices, such as Microcontrollers (MCUs), generally present significant
limitations in terms of on-chip memory (≃ 1MiB) and computational power, due to
the need to keep limited costs and long operating times when battery-powered.

Consequently, an increasing effort has been put into enabling ML inferences of
accurate yet tiny models on edge devices. This work goes in this direction, intro-
ducing multiple optimizations at the algorithm level, trading off as little prediction
quality as possible for large savings of resources. In particular, in this dissertation, I
focus on the optimization of tree ensembles (e.g., Random Forests) and Deep Neural
Networks (DNNs), as both are popular options when considering a deployment at
the edge. Tree ensembles feature low memory and energy footprint when deployed,
achieving similar accuracy to resource-intensive DL models for easy tasks, making
them an ideal choice for deployment targets too constrained for DL-based solutions.
For instance, the DL model proposed in [10] for an irregular heartbeat detection
task requires 200k FLOPs and parameters to be stored. On the other hand, the
Random Forest benchmarked in [11] on the same task requires only 1k operations
and 2k parameters, while achieving similar accuracy. Nonetheless, the footprint of
larger and more accurate ensembles grows rapidly, saturating the device memory or
still requiring a significant number of operations. This makes them an ideal target
for optimization, presenting an interesting and open challenge to enable efficient
deployments.

DNNs instead, while reaching state-of-the-art accuracy on several tasks, are
generally too large to be directly deployed at the edge, in particular on constrained
Microcontrollers (MCUs). Their optimization in terms of memory and energy is an
open challenge with new techniques being constantly introduced in the literature.

In this work, I propose a set of optimizations focusing both on reducing the mem-
ory footprint and the inference energy cost, allowing the deployment of increasingly
accurate models and thus enabling even more applications to be performed on edge
devices. The focus in particular is on dynamic inference approaches, changing at
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runtime the computations performed by the model to adapt to changes in external
conditions (e.g., low battery).

This work is organized as follows. Chapter 2 presents the concepts that are crucial
to understanding the contributions detailed in this thesis. Chapter 3 introduces the
datasets and the deployment targets used for benchmarking the effectiveness of the
optimizations introduced. Chapter 4 details the proposed optimizations for tree
ensembles, focusing both on reducing the memory footprint of the models and the
energy required at inference time. Chapter 5 focuses instead on the optimization
for DNNs, first for memory reduction and then for latency optimization. Finally,
Chapter 6 reports the conclusion.



Chapter 2

Background

In this chapter, I introduce the required background for this work. First, I provide
an overview of common applications and tasks in the field of embedded Machine
Learning (ML). Second, I introduce the fundamental concepts about tree ensembles
and Deep Neural Networks (DNNs), as both are the targets for the optimization I
propose in the following chapters. Finally, I provide some details on IoT edge nodes,
describing the main characteristics of the typical deployment target for embedded
ML.

2.1 Target Applications

The proliferation of IoT devices has led to an exponential growth of applications that
can benefit from an on-device execution. For instance, wake-word recognition, object
detection, facial recognition, and anomaly detection are tasks already commonly
executed at the edge [9]. Notably, while a cloud-based approach for such tasks
is often feasible, it would lead to sub-optimal performances in terms of inference
latency, energy efficiency, and security. In the following sections, I introduce the
most common applications for embedded ML.

2.1.1 Computer Vision

Computer Vision (CV) is one of the most explored fields of ML. In particular, DL
solutions have shown outstanding results, being able to outperform even humans
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in some applications [5, 1]. Tasks such as person detection, and surveillance have
become increasingly common in edge computing scenarios , and new and complex
ones, such as autonomous driving, are being tackled. These applications usually
rely on data collection from cameras, that requires immediate processing afterward,
often with tight latency constraints (e.g., person detection in autonomous driving). A
decentralized inference, relying on an internet connection, may then violate these
constraints. Additionally, tasks that collect sensitive data such as face recognition
(e.g., pictures of faces) benefit from an on-device inference both in terms of security,
as data does not leave the device, and in terms of energy efficiency, avoiding an
energy-hungry operation such as transmission. Edge CV has shown promising results
also for video-processing applications, more computationally intensive than simple
image classification tasks, yielding acceptable frame rates at a limited energy cost.

2.1.2 Speech Processing

As for computer vision, Deep Learning has shown outstanding results in the speech
recognition field [5]. In this domain, the prediction latency, while not as critical as
for CV applications, has a huge impact on the user experience. Therefore, cloud-
based solutions, often introducing noticeable latency, lead to sub-optimal products.
On the contrary, edge computing becomes an ideal solution, yielding lower latency
and thus enhancing the user experience. Finally, some applications of speech
recognition, e.g. wake-word recognition for smart speakers, require continuous
inferences to be performed in the background. A cloud-based approach in this case
poses significant limitations, as large amounts of sensitive data (e.g., any audio trace
recorded by the smart speaker) have to be transmitted to servers. Such an approach
would be detrimental for privacy and energy efficiency, while also scaling poorly, as
billions of devices would need to constantly connect to a limited number of remote
servers. For the aforementioned reasons, smart speakers are one of the applications
that leverage edge computing the most, performing the wake word task locally and
offloading to remote models only complex voice commands. In fact, complex speech
recognition models (e.g., translation) are generally too computationally intensive for
on-device deployment, leaving this field an open challenge.
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2.1.3 Time-series processing

Smart devices, such as smartphones and wearables, collect data continuously from
multiple sensors they are equipped with. These time series can be processed for a
wide range of tasks, enhancing the user experience through smart decisions directly
taken from the device. Popular time series applications include data-driven power
optimization [12], audio processing [13], health monitoring [14], and logging [15].

Smart sensors have also become increasingly present in smart factories and smart
cities, continuously collecting data. Popular applications leveraging ML or DL
include load prediction and balancing in smart grids [16], traffic monitoring [17],
predictive maintenance of industrial equipment [4], and soil monitoring in agricul-
ture [18]. In the aforementioned applications, avoiding or limiting data transmission
is even more crucial than for smartphones or wearables for energy efficiency, as these
sensors are often battery-operated and need to be operational for months or years.

2.2 Machine Learning at the edge

The main challenge faced by ML at the edge lies in the severe limitations of re-
sources such as processing power, energy, and memory on IoT devices. Modern ML
models in fact, and in particular DL architectures, are notoriously memory-hungry
and computationally expensive, requiring the storage of hundreds of thousands of
parameters and comparable FLOPs at inference time.

This led to the introduction of efficient and compact ML and DL algorithms, that
paired with optimization techniques such as quantization, enable inferences even on
ultra-low-power devices. Concerning classical ML, in this work I focus on Decision
Trees (DTs) and their ensembles, as they are accurate and lightweight, often matching
the performances of far larger DL architectures for easier tasks. For example, a DL
model for Electrocardiogram anomaly detection can require around 200k FLOPs and
a similar amount of parameters to be stored [19]. On the other hand, a tree ensemble
can reach iso-accuracy with 2k parameters and 1k operations [11]. Then, I introduce
memory and computationally efficient DNNs together with common optimization
techniques that make DL a suitable candidate for edge inferences.
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Fig. 2.1 Overview of a DT for a binary classification problem. Leaves are shown as rectan-
gles, reporting the class probabilities of an input reaching them. Non-terminal nodes are
represented as circles.

2.2.1 Decision Trees and Tree Ensembles

Decision Trees

Decision Trees are non-parametric and shallow Machine Learning algorithms that
can be employed both for regression and classification in supervised tasks.

During the training phase (also known as the “growing” or “fitting” phase), DTs
create piece-wise constant approximations of the target variable in the form of a
set of decision rules. As extracting the optimal rule set is an NP-hard problem,
common training algorithms are based on heuristics, greedily extracting the rules
through a divide-and-conquer approach. Notably, several training algorithms have
been introduced in the literature, each featuring different criteria in the extraction
of the rules and the learning of the thresholds. As this work focuses on inference
optimizations, the training phase details are out of the scope and an interested reader
may refer to [20]. In the following, the details of the inference phase are provided.

Figure 2.1 shows a trained DT for a binary classification task. Nodes are depicted
as circles and leaves as rectangles. Each node stores the index F of the input feature
used for the split and the learned splitting threshold α . Depending on the condition
in the node, either the left branch or the right branch is selected. Specifically, if the
condition is true (false), the right (left) child is reached. Leaves instead store the DT
predictions, i.e. the probability of an input reaching the leaf belonging to each class
for classification or a continuous scalar in case of regression. The level of a node
can be defined as the number of nodes that, starting from the root, have to be visited
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to reach it. The depth (D) of a tree is equivalent to the maximum level, that is, the
longest path from the root node to a leaf node.

Algorithm 1 Decision Tree Inference

n = Root(t)
While n /∈ Leaves(t)

if Feature(n)> α(n):
n = RightChild(n)

else:
n = LeftChild(n)

P = Prediction(n)

Algorithm 1 reports a high-level overview of the DT inference, denoting respec-
tively as Root(T) and Leaves(T) the root node and the leaves of tree T. LeftChild(n)
and RightChild(n) are the left and right children of node n, while Feature(n) and
Alpha(n) denote the input feature and the respective threshold for the comparison.
Lastly, Prediction(n) is a field defined only for leaves and contains either the class
scores or the continuous value predicted.

The memory complexity of DTs grows with O(2D), i.e. proportionally w.r.t the
number of nodes, with the worst case being a perfect tree, a tree with 2D nodes [20].
The time complexity of DTs’ inference is O(D+M), where M is the number of classes
in the leaves. In the worst case, D branching operations are needed, followed by an
argmax operation on M elements to determine the most likely class. Noteworthy,
M=1 for regression tasks.

DTs’ main strength lies in their lightweight operations and limited memory
footprint, making them an ideal candidate for embedded devices. Nonetheless, their
main flaw stems from their tendency to overfit and to introduce a bias towards the
majority class in datasets that are unbalanced [20].

Tree Ensembles

To overcome the limitations of DTs, several types of ensembling techniques have
been introduced in literature [21–23]. These models aggregate multiple DTs, denoted
as “weak learners”, running them on the same input before merging their predictions.
While this comes at the cost of an increased number of computations and a larger
memory footprint, it enhances the model’s resistance against overfitting, improving



2.2 Machine Learning at the edge 9

Fig. 2.2 Overview of an RF with depth and width of 3.

its generalization and prediction quality. In this work, I focus on two popular tree
ensembles for classification tasks: Random Forests (RFs) and Gradient Boosting
Trees (GBTs).

RFs [21] are ensembles of DTs each trained on random subsets of the data (an
approach denoted as boosting) and on random subsets of input features. Thanks to
these training techniques, the DTs composing a forest have low correlation among
each other, leading to improved accuracy and enhancing the model’s resilience
against overfitting.

Figure 2.2 depicts an RF with D=3, M=2 and N=3. N denotes the width of the
ensemble, that is, the number of estimators, equivalent for RFs to the number of
trees.

Algorithm 2 Random Forest Inference

P = 0M // array of 0s of size M
for t ∈ Forest:

P = P+TreeInference(t)
class = argmax(P)

An overview of the inference of an RF is provided by Algorithm 2, where
TreeInference(t) corresponds to Algorithm 1 for tree t. Each DT performs an
inference pass on the same input, with a final aggregation step among the trees’
predictions. This aggregation step can be performed either through a sum or an
average, depending on the RF implementation. Note that older libraries stored only
the most likely class in the trees, computing the final class prediction with a majority
voting among the weak learners. On the other hand, modern implementations
average (or sum) the tree scores, slightly increasing the complexity of the inference
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Fig. 2.3 Overview of a GBT for a 3-class classification task (M=3), with 2 estimators (N=2)
and a depth of 3 (D=3).

but improving the accuracy of the model. In this work, I follow the trend of modern
libraries such as [24], using weak learners that aggregate their output rather than a
simple class vote. Concerning both the time and memory complexity of RFs, they
mirror the ones of the DTs composing them, scaled by a factor N. Therefore, the
time complexity of an RF grows with O(N*D), while the memory complexity with
O(N ∗2D). Note that D denotes the maximum depth among all DTs in the ensembles
and is usually fixed for all trees during the training.

GBTs [22] are ensembles of DTs spawned with the gradient boosting technique,
that is, an iterative optimization algorithm working in a step-wise fashion. At each
step, a new DT is generated to correct the errors of the previous ones, minimizing the
residual errors. Noteworthy, GBTs’ estimators are composed of sets of M regression
DTs, one for each class in the classification task. As a consequence, single weak
learners in GBTs do not have multiple class scores but store instead a scalar value.
An overview of a GBT with M=3, D=3 and N=2 is shown in Figure 2.3.

Algorithm 3 reports the pseudo-code of a GBT inference, where ti denotes the
DT belonging to the estimator e and handling class i. The raw outputs of the GBT
are stored initially in P (Praw in Figure 2.3) and converted at the end of the inference
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Algorithm 3 Gradient Boosting Trees Inference

P = 0M // array of 0s of size M
for e ∈ Estimators: // e array of M trees

for ti ∈ e:
Pi = Pi +TreeInference(ti)

class = argmax(compute_probabilities(P))

with a formula that depends on the training loss. The memory complexity of GBTs
is scaled both by the width of the ensemble and the number of classes of the task,
becoming O(N ∗M ∗ 2D). The same holds for the time complexity, growing with
O(N*M*D).

2.2.2 Compact Deep Neural Networks

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have become increasingly popular for
structured data (e.g., images and time series) in recent years, achieving state-of-the-
art accuracy on several tasks [5]. In particular, 1D CNNs have shown outstanding
results for time-series analysis, while providing significant benefits w.r.t to other
popular architectures such as LSTM [25] and transformers [7]. Specifically, CNNs
are more resilient to vanishing and exploding gradients at training time, while also
being more memory efficient. Moreover, at inference time, CNNs show lower
memory footprints [26], a crucial property for efficient inferences at the edge.

The key components of CNNs are Convolutional (Conv) layers, applying on
the input data multiple sliding window filters. Mathematically, a 1d convolution
(Conv1D) can be computed as follows:

Ok,t =
C

∑
c

F

∑
i

Ic,t+i ∗Wk,c,i (2.1)

with I, W , O denoting input, weights, and output tensor at the output timestep
t and input/output channel c/k. F represents instead the dimension of the filter
weights. The equation assumes a stride (S) of 1 for simplicity. The computational
complexity of a convolution is K ∗C ∗ F ∗ T , where T is the number of output
timesteps and C/K is the number of input/output channels. The memory footprint
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is K ∗C ∗F +K ∗Tin +C ∗Tout , i.e. the elements of the convolutional filter and the
input/output buffers. Noteworthy, one of the main strengths of convolutions lies in
their weight reuse, as the same filter is applied to multiple inputs, making CNNs far
more memory efficient than architectures such as the MultiLayer Perceptron (MLP).

Conv layers are generally followed by a Batch Normalization (BN) layer and
then by an element-wise function, such as ReLU [27].The former applies an affine
transformation to all elements in each channel, improving the training stability
and favoring the applications of optimizations such as quantization. The batch
normalization equation is the following:

O =
I −µBq
σ2

B + ε

γ +β (2.2)

where γ and β are parameters learned at training time and ε is a small constant value
added for numerical stability. The values σ and µ are the standard deviation and the
mean of the input mini-batch during training or of the whole training data during
inference. Notably, at inference time, BN layers can be converted into an affine
transform with equation O = A∗ I +B.

Other layers commonly found in modern CNNs are Pooling (Pool) and Fully-
Connected (FC) layers.

Pooling layers are used to downsample the spatial dimension of the data, usually
through a windowed max (MaxPool) or average (AvgPool) operation, reducing the
time and memory complexity of the network, while retaining the important features.

Fully Connected layers are generally used as the last component of the networks,
converting a flattened version of the input into class probabilities. Mathematically,
a fully connected layer can be computed as follows:

O fo =
Fi

∑
i

I fi ∗Wfo, fi (2.3)

where fo and fi denote respectively the output and input features.



2.2 Machine Learning at the edge 13

Quantization

Design-time (or static) software-level optimizations to enhance the energy efficiency
or reduce the memory footprint of DL models have become increasingly popular in
recent years [28, 29]. One of the most popular techniques is quantization [28], now
implemented even in general-purpose frameworks for DL such as PyTorch [30] and
Tensorflow [31].

Quantization is based on the fact that 32-bit floating-point numbers to represent
the weights and activations tensors of a DNN are redundant at inference time. Several
works have in fact shown that reducing the precision to 8-bit integers introduces little
to no accuracy degradation [32–34]. On the contrary, quantization presents several
benefits, reducing the model’s memory occupation, the inference latency, and the
energy cost. Leveraging a lower bit-width not only requires less storage but reduces
also the memory bandwidth needed to transfer the network’s tensors from and to the
on-chip memory, often a dominant part of the total inference latency and energy [35].
Noteworthy, sub-byte quantization has been also explored [32, 33], however, it often
introduces a non-negligible loss of accuracy, while also causing a latency overhead
due to the packing/unpacking of the data before processing. Therefore, it is effective
only for a reduced number of tasks, as opposed to 8-bit quantization which is rarely
harmful for CNNs.

Several quantization algorithms have been introduced in the literature and can
be categorized depending on the distance they assign to adjacent fixed-point values
(uniform vs non-uniform), and whether the integer distribution is centered around
zero (symmetric or asymmetric). The distance between fixed-point values is denoted
as the quantization step, while the shift of the integer distribution is the zero point.
Uniform quantization, while introducing minimal overheads, underperforms if the
data is not distributed uniformly, a common occurrence for DNNs’ weights and
activations [28]. Non-uniform quantization however has to be carefully implemented
to avoid large overheads, as most HW platforms exploit a uniform number repre-
sentation for integers. A popular non-uniform quantization approach is based on a
base-2 logarithmic scale, as smaller magnitude data is stored with finer granularity, a
desirable property for DNNs. On the actual HW, a base-2 logarithmic quantization
allows multiplications to be implemented as bitwise shifts [36], yielding efficient
inferences.
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Quantization can be applied either during training (quantization-aware training)
or post-training, with the former significantly reducing the accuracy drops w.r.t
the floating point version [28]. Intuitively, quantization-aware training forces the
network to consider the loss of accuracy introduced with quantization, guiding the
training algorithm to make up for it with different weight values.

Finally, different quantization granularities have been proposed. Network-wise
quantization is the simplest approach, assigning a single bit-width to the whole
network. This approach, while the easiest to implement, leads to smaller savings in
terms of memory and latency. Layer-wise quantization (or mixed-precision) assigns
to each layer a different precision, finding better trade-offs in terms of memory versus
accuracy. The training however becomes significantly more complex, as finding the
optimal precision to assign to each weight and activation tensor in a network is a
non-trivial task.

A particular case of sub-byte quantization is binarization, representing the most
aggressive case of quantization, as the precision is reduced to 1-bit [37]. The most
common form of binarization consists of representing -1 and +1 respectively as 0
and 1, obtaining the conversion with a sign() function. Binarized Neural Networks
(BNNs), featuring both activations and weights at 1-bit, gain significant advantages
both in terms of memory (up to 32x less w.r.t. 32-bit floating point) and computations
(up to 32x). In fact, floating-point operations can be eliminated, with all Multiply-
And-Accumulate (MAC) operations being replaced by bit-wise operations [37]. The
dot product then can be implemented with the following equation:

O = 2∗PB
i wi ⊗ xi −B (2.4)

where P, ⊗, and B denote respectively the popcount operator, the bitwise XNOR,
and the length of the vectors. Popcount is the bitwise equivalent of an accumulation,
counting the number of 1s in a vector, while XNOR corresponds to a bit-wise
multiplication. Intuitively, these operations can be performed in 32-bit registers even
on general-purpose hardware, leading to the computation of up to 32 multiplications
in parallel and thus achieving significant speedups [37]. However, binarization
generally comes with large accuracy drops for complex tasks, making it feasible for
a limited set of use cases.
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Fig. 2.4 Overview of dynamic inference methods. Approaches related to the ones introduced
in this work are shown in blue.

2.2.3 Dynamic Inference

The main limitation of optimizations such as quantization [28] for DL and pruning
for tree ensembles [38] lies in their static nature. Once the desired complexity
versus accuracy trade-off has been achieved, the model is fixed and is unable to
change further at runtime. In contrast, adapting depending on external conditions
(e.g. battery lifetime) is a desirable feature given the many deployment scenarios
that IoT nodes have to handle.

A naive implementation of a system that provides different accuracy vs com-
plexity trade-offs consists of deploying multiple independent models on the target
hardware, switching among them at runtime. However, this approach leads to huge
memory overheads, as for each operating mode a distinct ML model has to be
deployed. Dynamic (or adaptive) inference approaches consist of changing at run-
time the computational graph depending on external conditions, providing different
operating modes while keeping the memory overhead minimal [39–41]. Several
variants of adaptive inference have been proposed in the literature [41, 40, 39, 42, 43],
each with different trade-offs in terms of memory overhead, operating modes, and
prediction quality. Dynamic inference approaches can be categorized according to
their granularity, i.e. temporal-wise when operating on the temporal dimension of
time-series data, spatial-wise when operating at pixel-level, and sample-wise on
single input data. Figure 2.4 shows a high-level overview of dynamic inference
approaches, introduced in the following sections. The figure reports in blue methods



16 Background

that are tied to the approaches introduced in this work, falling in the sample-wise
category.

Temporal-wise

Temporal-wise approaches adapt the computations along the temporal dimension of
sequential data, allocating less or no resources to unimportant elements in sequences,
such as consecutive similar frames in videos. Adaptive approaches falling in this
category include updating selectively [44, 45] or skipping entirely [46] the update of
the hidden states in recurrent neural networks (RNNs) or even adaptively discarding
input tokens [47].

Spatial-wise

Spatial-wise approaches are popular in CV tasks, where it has been found that
not all the input regions in CNNs contribute equally to the final prediction [48].
Therefore, correct predictions can be achieved even when only a fraction of the input
is processed. Popular dynamic techniques falling in the spatial-wise category include
dynamic sparse convolution and dynamic additional refinement. Dynamic sparse
convolutions perform the computations on a subset of the pixels, selected at runtime
depending on i) the input sparsity [49], ii) a prediction on where the output pixels
will be zero [50, 51], iii) an estimation of the pixel importance [52–54].

Dynamic additional refinement instead consists of performing an initial set of
cheap computations on the whole input feature maps and additional refinement
operations only on a subset of the input [55].

Noteworthy, pixel-level approaches can lead to sub-optimal performances when
deployed on real hardware, as they force sparse and/or irregular computations. As a
consequence, works proposing region-level spatial-wise granularity (i.e., working on
regions of the input features) have been introduced. For instance, resolution-level
dynamic networks deploy multiple sub-networks in a cascading [56] or parallel [57]
fashion, each performing a forward pass on the same input image rescaled at a
different resolution.



2.2 Machine Learning at the edge 17

Sample-wise

Sample-wise approaches are among the most popular dynamic inference mechanisms,
tuning the computations according to the input sample. They obtain an increased
energy efficiency w.r.t. static architectures thanks to their reduced set of computations
for easy inputs while being close to iso-accuracy for complex ones. The approaches
presented in Chapter 4 and 5 fall into this category.

Fig. 2.5 Big-Little Dynamic Inference for time-series data.

Figure 2.5 shows the first and most popular implementation of sample-wise
dynamic inference, named Big-Little. Two models of increasing complexity and
accuracy are deployed in cascade. The first, the little model Ms, performs an ini-
tial inference pass on the input and uses an early stopping (or adaptive) policy to
determine whether it is safe (in terms of prediction quality) to stop the execution.
If the early stop is triggered, the output of the first model is taken as the final one.
In the opposite case, the big model Ml performs an inference on the same input,
and its output is used as the result. The whole Big-Little approach is based on the
assumption that easy inputs are more frequent than hard ones [39]. Therefore, most
of the time, the less accurate and lightweight model Ms is enough to obtain a correct
classification. On the contrary, the few complex inputs require the execution of both
Ml and Ms, introducing a small overhead, but still obtaining a correct prediction.
Intuitively, this scheme is convenient as long as the big model is rarely activated,
reducing significantly the average energy per inference and yielding iso-accuracy
w.r.t. to a large and accurate model.

The adaptive policy plays a fundamental role in this schema and leverages the
prediction confidence of Ml to determine whether the inference can be stopped. An
inaccurate confidence estimation algorithm would either underuse or overuse the big
model, respectively reducing the accuracy or the energy efficiency of this approach.
Moreover, if the computation of the adaptive policy is too expensive, the introduced



18 Background

overhead may outweigh any gains in terms of energy obtained through the dynamic
approach.

One of the most effective confidence estimation metrics is the Max Score (S),
leveraging as an indicator of confidence the largest probability in the little model
predictions P. Intuitively, a large top probability indicates a class that is far more
likely than the others and a model that is confident in its prediction. The compu-
tational cost of this policy is only O(M), where M is the number of classes, as it
requires M comparison to be performed at runtime. However, this approach has also
significant limitations. For instance, in a 4-class classification task, given an output
P = [0.4,0.4,0.1,0.1], the obtained max score would be S = 0.4. While this value is
far from the random guess, the classifier is not confident, as P0 = P1. Nonetheless, a
policy based on the max score may still trigger the early stopping, thus degrading
the final accuracy.

The Score Margin (SM) [40, 39] is a confidence metric that tries to solve the
aforementioned issue, as it considers also the second most likely probability in P,
computing its value as:

sm = max(P)−max2nd(P) (2.5)

This metric, while requiring twice as many comparisons as the Max Score, is more
robust. In the example above, while S= 0.4, we obtain SM = 0, clearly indicating that
the model is not confident about the prediction. As a consequence, the Score Margin
has rapidly become more popular than the Max Score in the literature [40, 39].

At inference time, the early stopping policy is computed after running Ms and
then compared with a user-defined threshold th. The latter controls the energy versus
accuracy trade-off, as altering its value either increases or decreases the frequency
of activation of Ml and can be changed according to any external conditions (e.g.,
battery lifetime).

Noteworthy, the score margin and the max score are identical in the case of
binary classification, as the largest probability is the complement of the smallest.
Moreover, the big-little mechanism can be easily extended to a cascade of K models,
with K > 2, computing the early stopping mechanism after each model before the
final one.

Another dynamic approach named Early-Exit [58] is shown in Figure 2.6, intro-
ducing additional possible exit points to CNNs, named branches. At the end of each



2.2 Machine Learning at the edge 19

Fig. 2.6 Overview of the early-exiting mechanism

intermediate branch, an adaptive policy is used to determine whether the output of
the branch is reliable enough (e.g., using the score margin). In the positive case, the
output of the branch is taken as the final one. In the negative case, the computations
restart from the last shared branch of the computational graph.

Early-exit mechanisms, while introducing lower memory overhead than cascades
of DNNs, may lead to reduced performances, as some critical features of the input
sample may be extracted only by deeper convolutions.

Fig. 2.7 An example of a layer skipping mechanism.

Lastly, Figure 2.7 shows the layer skipping approach proposed in [41], introduc-
ing a mechanism to skip the computation of a subset of the layers depending on the
input sample. To do so, small DNNs named gates are added before layers, with the
task of determining whether the following layer/s have to be enabled. Noteworthy,
gates are significantly more lightweight than the corresponding set of layers they
control in the main architecture.
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2.3 IoT End Nodes

IoT end-nodes are often based on low-power microcontrollers (MCUs), featuring a
general-purpose CPU based on a RISC instruction set. In particular, the low price
and great flexibility of MCUs make them an ideal candidate for low-cost low-power
edge devices. On the contrary, Application-Specific Integrated Circuits (ASICs) or
Field-ProGrammable Arrays (FPGAs), while significantly more energy efficient,
feature prohibitive costs, making their use feasible only for high-end edge nodes.

To bridge the performance gap w.r.t. ASICs, modern MCUs, and Systems-
on-Chips (SoCs) have started introducing specific architectural features tailored
for efficient executions of ML or DL workloads at the edge while preserving pro-
grammability, generality, and limited cost. An increasingly popular architectural
advancement introduced specifically for ML is the presence of custom instruction
sets, often based on the extensible RISC-V ISA, as for the XPulp extension [59]. The
latter implements vectorial operations such as single-latency dot-products of 4 8-bit
elements, hardware loops, and bit-extraction primitives for sub-byte quantization,
yielding instruction reductions of up to 9x for 8-bit convolutions.

Examples of architectures tailored for ML workloads are already present in the
industry, for instance by STM [60], NXP [61], and GreenWaves [62]. In particular,
GAP8 from GreenWaves is a commercial SoC based on the PULP-paradigm featuring
a single RI5CY core that orchestrates I/O and sensors, and a cluster of 8-core
RI5CY processors that can be used to accelerate computations such as Multiply-
And-ACcumulate (MACs) operations.



Chapter 3

Datasets and Deployment Targets

In this chapter, I introduce the datasets and the deployment platforms used as
benchmarks for the optimization algorithms described in this dissertation.

3.1 Datasets

In this work, I employ 7 state-of-the-art public datasets and a private one, provided
by STMicroelectronics. The aforementioned datasets have been selected because
they feature classification tasks popular in real-world embedded scenarios, they are
well-documented and present enough samples both for training classical ML learning
algorithms and data-hungry DL architectures. Finally, these datasets feature different
types of data (time series, images) and complexity.

3.1.1 Time-series datasets

The first task I consider in my work is Human Activity Recognition (HAR) based
on Inertial Measurement Units (IMU), as it is an increasingly common feature of
smart devices such as wearables. The latter, often based on MCUs, are an ideal target
for the optimizations proposed in this work. The HAR task consists of classifying
the activity performed by a user in a given time window of IMU readings and is
commonly addressed with ML or DL algorithms. In this dissertation, I use 4 HAR
datasets: WALK, WISDM, UCI HAPT, and UniMiB-SHAR.
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WALK, a private dataset from STMicroelectronics, features 2387232 readings
from a tri-axial accelerometer, sampled at 25 Hz. The position of the sensor changes
depending on the sample, ranging from the backpack of the subject to a pocket. The
subjects have been recorded during one out of seven possible activities: sitting in a
car/bus, cycling, riding on a bike, standing still, walking, or running. In this work,
the dataset task is binary, consisting of recognizing whether the subject is walking or
not in a given time window. The test set is 20% of the available data.

WISDM [63] includes 1.098 million sensor readings collected from a tri-axial
accelerometer sensor at 20 Hz. The data was collected by a smartphone located in
the front pant legs pocket of 29 subjects while performing one out of 6 daily life
activities: walking, jogging, sitting, standing, descending stairs, or ascending stairs.
The data pre-processing is left unchanged w.r.t to the one proposed by the authors,
that is, extracting non-overlapping windows of 10s. The test set is composed of 10%
of the total samples.

UCI HAPT [64] features 958500 samples collected from the gyroscope and
accelerometer of an Android phone. The data is collected with a sampling frequency
of 50 Hz, repeating the experiments on 30 subjects. The activities recorded for this
dataset are 12. The pre-processing of the data mirrors the one proposed by the dataset
authors, with the samples divided into windows of 5s with no overlap and per-subject
train-test split, with 1/3 of the subjects being in the test set. Notably, this dataset
represents an interesting benchmark due to the presence of the gyroscope data.

UniMiB-SHAR [65] consists of 11711 samples recorded from the tri-axial ac-
celerometer of an Android phone. The device has been positioned in the front leg
pocket of the 30 subjects while recording one out of 9 daily life activities or one out
of 8 kinds of falls (e.g., falling backward from a standing/sitting position). The data
collected at 50 Hz is provided already pre-processed in windows of 3s, extracted
around accelerations peaks larger than 1.5 g (with g being the gravitational accel-
eration). The authors propose several variant tasks with different complexity (e.g.,
considering/excluding falls, grouping activities, etc.). In this work, only AF-17 is
used, that is the variant that considers all 17 classes. As proposed by the authors, I
use 20% of the data for the test set.

Noteworthy, the aforementioned datasets present noticeable differences both in
terms of input size (from windows of 32 samples to 250, per channel) and complexity
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(from 2 to 17 classes), making the models required to handle them significantly
different and thus providing an interesting comparison.

Besides HAR datasets based on IMU readings, in this work, I also employ
Ninapro DB1, a state-of-the-art dataset for gesture recognition that leverages surface
Electromyography (sEMG) signals. Specifically, this dataset features sEMG data
collected from 27 healthy subjects while performing different hand movements. In
this work, I mirror the pre-processing proposed in [66], limiting the classification
task to 14 hand movements with a 10-channel sEMG signal. The signals are divided
into windows of 150 ms, and collected at 100 Hz, yielding a dataset with around
207000 samples. The training is performed per patient, selecting different sessions
for the training, test, and validation sets.

The last dataset that features time-series data is Backblaze, whose task is anomaly
detection. In particular, Backblaze [67] contains 19 Self-Monitoring Analysis and
Reporting Technology (SMART) features collected daily from hard disks during
their lifetime in a data center, from 2014 to 2019. The goal is to determine whether
a failure will happen in the following 7 days. In this work, the setup from [68] is
mirrored, extracting 90-days windows and thus obtaining around 707k elements.

3.1.2 Image-based datasets

In this dissertation, two state-of-the-art CV datasets are used as benchmarks: Ci-
far10 [69] and German Traffic Sign Recognition Benchmark (GTSRB) [70].

Cifar10 is a popular dataset for image classification algorithms, featuring 60000
32x32 color images divided into 10 classes, each representing a different category
(e.g., animal or transportation method) or object (horses, frogs, trucks, ships, etc.).
The class frequency is balanced, each featuring 6000 images, with 5000 used in the
training set.

GTSRB is a dataset consisting of 50000 images of 43 different real-world traffic
signs. It is a common benchmark for autonomous driving tasks, specifically traffic
sign recognition, featuring RGB images collected with different resolutions (from
35x35 to 100x100 pixels) and different lighting conditions. The class distribution is
unbalanced, with traffic signs such as the 20 km/h speed limit appearing less than
500 times in the training set as opposed to its counterpart of 30 km/h represented
more than 2000 times. Intuitively, the uneven class frequency and the high number
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of classes make the traffic sign classification task significantly more complex than
the one of Cifar10. For this dataset, as CNNs commonly require a fixed-dimension
input, we rescale all the images to 60x60.

3.1.3 Speech Recognition

Wake-word recognition is a common task for embedded devices and it has already
been implemented in several commercial smart speakers. For this reason, in this
work, I benchmark one of the presented optimizations on Google SPeech commands
(GSP) dataset, featuring 65000 one-second-long recordings of 30 words. In this
work, GSP is pre-processed as in [71], reducing the number of classes from 30 to
12, with one being a fallback class for unknown words, and then extracting a 32x32
spectrogram from each audio signal.

3.2 Deployment Targets

In the following paragraphs, I introduce the MCUs and SoCs used as deployment
targets in this work.

3.2.1 STM32H743

STM32H743 [60] is an MCU produced by STMicroelectronics, based on the Arm
Cortex - M7 core, a general-purpose core equipped with an FPU for floating point
computations. This MCU is designed to maximize computing capability for general-
purpose workloads while still having a tight power envelope. It includes two caches to
enhance performances, at the cost of an increased energy consumption. Specifically,
the two caches are used one as an instruction cache and the other as a data cache,
reducing the time required to fetch instruction and move data to registers. DMA
peripherals are available to support moving data from sensors or external memories
to the core rapidly. The M7 core can reach a frequency of up to 480 MHz, with a
power consumption of 234 mW.

The MCU is equipped with several peripheral interfaces, such as UART, I2C,
and USB. While less energy efficient than the PULP family of SoCs for ML and DL



3.2 Deployment Targets 25

workloads, it allows an automatic deployment of models through X-Cube-AI. The
latter allows exporting and deploying the high-level trained model directly on the
device, moving the complexity away from developers.

3.2.2 Pulpissimo

Fig. 3.1 Pulpissimo Block Diagram

Pulpissimo [72] is a 32-bit single-core RISC-V MCU that belongs to the Parallel-
Ultra-Low-Power (PULP) family of architectures. It is based on a RI5CY core with a
4-stage, single-issue, in-order pipeline and implements an RV32IMC ISA enhanced
with domain-specific extensions for DSP, such as hardware loops, loads/stores with
index increment and Single Instruction Multiple Data (SIMD) operations. These
features have been designed to provide significant speedups for ML applications. In
this dissertation, I refer to a 22 nm implementation of Pulpissimo named Quentin [72]
(shown in Figure 3.1), set to run at 205 MHz and equipped with 512 kB L2 memory.
Quentin’s memory layout is organized as 4 114 kB word-level interleaved banks that
minimize the conflicts during accesses performed through the masters. Moreover, it
includes 2 32 kB private banks that can be used to store the program and the stack so
that banking conflicts can be avoided. This System-on-Chip (SoC) includes a full
set of peripherals, ranging from Quad Serial Peripheral Interface (SPI), a parallel
camera interface, UART, GPIOs, JTAGs, and a DDR HyperBus interface. It also
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includes an I/O Direct Memory Access (DMA) that manages data transfers through
peripherals so that the workload on the processor is minimized. All inference cycle
results have been estimated with GVSoC [73], a cycle-accurate virtual platform. The
energy values instead are derived from [74].

3.2.3 GAP8

Fig. 3.2 GAP8 Block Diagram

GAP8 [62] (shown in Figure 3.2) is a commercial System-on-Chip (SoC) from
GreenWaves. It features 9 extended RISC-V cores (one used for I/O and 8 as
cluster), embodying the Parallel-Ultra Low Power (PULP) paradigm, one of the
most advanced architectural advancements to accelerate ML workloads on MCUs.
Each core is a 4-stage single-issue pipeline in-order RI5CY [75] core, exploiting the
custom RISC-V RV32IMCXPulpV2 [59] instruction set architecture. The cluster
cores share the first level of memory, a 64 kB Tightly-Coupled Data Memory (TCDM)
that can be accessed through a single-cycle latency and high-bandwidth logarithmic
interconnect. Data transfers between L1 memory and the second-level memory
of 512 kB (also managed as scratchpad) are handled by the cluster DMA with a
bandwidth of up to 2 GB/s. Optionally, an L3 off-chip memory can be equipped to
further extend the storage capability of the SoC, but it is not employed in this work.
All inference cycle results have been estimated with GVSoC [73].



Chapter 4

Optimization Methods for Tree
Ensembles

Tree ensembles are considered a lightweight alternative to deep learning [76], as on
simple embedded tasks they can achieve comparable accuracy with lower memory
footprint and operations per inference [77]. Nonetheless, accurate ensembles still
deploy hundreds of trees, requiring thousands of cycles per inference on ultra-
low-power IoT devices or worse, saturating the deployment target memory. As a
consequence, even lightweight models such as RFs and GBTs benefit from software
optimizations, whose goal is trading off as little accuracy as possible for large
energy/memory savings.

In this chapter, first, I provide an overview of the current landscape of tree en-
sembles’ optimizations, from static/dynamic techniques to efficient implementation
and deployment libraries. Then, I introduce my contributions on this topic, focusing
on an implementation and related optimizations designed specifically for efficient
inference at the edge.

The work described in this chapter has been published in [11, 78, 79] and has
been made open-source at the link https://github.com/eml-eda/eden.

https://github.com/eml-eda/eden
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4.1 Related Works

4.1.1 Static Optimizations

Statically pruning trees or branches in DTs is among the most common memory
and energy optimization approaches for ensembles. For instance, cost complexity
pruning [21] removes the less meaningful branches (e.g., rarely taken) from DTs,
leading to better generalization and fewer parameters to be stored.

At the ensemble level, pruning approaches consist of removing less accurate [38]
or similar [80] (e.g., in terms of output predictions) trees. In [38, 80], the authors
show that besides reducing the memory footprint of the ensemble, pruning also re-
duces the latency and energy per inference, achieving iso-accuracy w.r.t. an unpruned
ensemble with a reduction of more than 84% of the trees. However, these works
often consider large starting ensembles (e.g. ≃ 300 DTs), obtaining, post-pruning,
around 50-100 trees, that considering an edge AI scenario still lead to cumbersome
inference latency and energy, and large memory requirements. More aggressive
forms of pruning, while further reducing resource utilization, sharply deteriorate
the ensemble’s accuracy, leading to sub-optimal performances. Noteworthy, these
algorithms are orthogonal to the ones I introduce in this work and can be still used to
statically reduce the dimension of the ensemble.

4.1.2 Dynamic Inference

Dynamic inference implementations tailored for tree ensembles have been rarely
proposed in the literature, with most works focusing on deep learning [39, 41, 81, 40].
In [82], the authors introduce an early-stopping criterion that models the prediction
confidence after a multinomial or binomial distribution (according to the number of
classes). Once a suitable subset of DTs of the ensemble has been executed, they halt
the inference. With benchmarks on seven small public datasets and a private one,
the authors show reductions in terms of mean executed trees per inference of up to
63%. Nonetheless, to efficiently compute the distributions at runtime, this approach
requires the storage of large lookup tables, growing in the order of O(N2) w.r.t the
number of estimators.
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The authors of [83] introduce an approach that at runtime determines the optimal
order of execution of the weak learners according to the most likely class predicted by
the already executed trees. Finding the optimal tree ordering takes into consideration
both the accuracy and computational cost of a weak learner, as it may rely on features
that have not yet been computed. Additionally, the authors design a probabilistic
model of the ensemble, based on a mixture of Gaussian distributions, that is used
to determine at runtime whether an early stop can be triggered according to the
posterior probabilities. Even though the authors introduce a dimensionality reduction
technique to limit the computations required to select the next DT to execute, the
additional overhead of such an approach is complex to handle on MCUs. In fact,
according to the authors, this approach is feasible only when relying on complex
feature extractions, a rare occurrence in IoT applications [83].

Finally, the authors of [43] propose a work that is close to the optimizations
I introduce, named Quit When You Can (QWYC). Specifically, two probability
thresholds are extracted for each weak learner after training, named ε+ and ε−,
and are used as boundaries to trigger the early stop in binary classification tasks.
Moreover, a static sorting algorithm for DTs that minimizes the average number of
executed trees is introduced, running first the weak learners that trigger the early
stop more often. Nonetheless, the authors evaluate QWYC only on binary tasks and
provide no deployment results, leaving the effectiveness of this approach unexplored
for IoT devices.

4.1.3 Deployment Libraries for MCUs

Due to the popularity of tree ensembles in ML applications, multiple implementations
have been proposed. Libraries such as [84–86] introduce implementations of tree
ensembles with optimizations specifically tailored for high-end hardware.

The authors of [86] provide an implementation in C++ of the RF algorithm.
DTs support only floating point thresholds (α) and inputs, with leaves storing only
the most likely class instead of an array of class probabilities. Additionally, their
framework supports both training and inference and leverages a complex object-
oriented representation of the trees.

In [85], the authors introduce a C++ implementation of both RFs and GBTs, rep-
resenting the trees with a structure storing pointers to the children, alphas, and other
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additional fields. Their implementation supports threshold quantization, although
only post-training and at 32-bit integers.

Finally, in [84], the authors propose an implementation of the DT data structure
that closely mirrors the one in [24]. That is, storing in arrays the right/left child
indexes, the class values, the alphas, and the feature indexes of each node. No
support for quantization is provided.

The aforementioned libraries, while optimized for efficient inferences, do not
prioritize reducing the model memory footprint, a crucial challenge on IoT devices.
Moreover, as they often support both training and inference, their code size becomes
unnecessarily large. As a consequence, using them for deployment on MCUs, while
feasible, would be sub-optimal.

Libraries specifically tailored for IoT devices are introduced in [76, 87]. The
library introduced in [76] is targeted for GAP8, as the one presented in this work,
and leverages a similar array-based representation. However, it does not support
dynamic inference and it provides no optimal buffer allocation on the different levels
of the memory hierarchy. Moreover, it does not support quantization. Finally, the
authors of [87] benchmark different implementations of the RF inference algorithm,
ranging from recursive to fully unrolled trees, on Pulpissimo. Additionally, they test
several compiler-level optimizations and different tree data structures, obtaining up
to 4x speedups w.r.t. an unoptimized inference. Nonetheless, in this case, as well, no
quantization or dynamic inference is performed.

4.2 EDEN: Efficient Decision tree ENsembles

In this section, I focus on software optimizations for efficient inferences of tree
ensembles, targeted either at reducing the memory or the latency/energy footprints.
Specifically, the experiments focus on GBTs and RFs, introduced in Chapter 2, as
common in several embedded scenarios. Noteworthy, the proposed algorithms are not
strictly tied to these models and can work on other tree ensembles for classification
tasks, such as LightGBM [23].

This section is structured as follows. First, I introduce a lightweight dynamic
inference approach tailored for tree ensembles, extending the one introduced in
Chapter 2.
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Fig. 4.1 EDEN library overview. Starting from the Python model, a C model tailored for
efficient inference on MCU is generated.

Then, I detail the specific optimizations for MCUs, with a focus on multi-core
IoT devices featuring a multi-level hierarchy memory such as GAP8.

Finally, I provide an extensive set of benchmarks, highlighting the effectiveness
of the introduced optimizations and comparing GBTs and RFs in an embedded
scenario.

Noteworthy, I included all the introduced optimizations in an open-source Python
library named EDEN, whose flow is shown in Figure 4.1. Starting from the high-level
tree ensemble trained with a general-purpose library such as [24], my library exports
a set of C files that can be directly compiled on the target MCU, implementing
a target-optimized inference. While the experiments in this section refer only to
GAP8, as it represents the most challenging implementation, EDEN supports both
Pulpissimo and standard x86 targets.

4.2.1 Dynamic Tree Ensembles

Iterative dynamic inference approaches such as the Big-Little mechanism introduced
in Chapter 2 are based on the assumption that the models in the cascade are increas-
ingly accurate [39]. Therefore, given N models, it makes sense to consider only the
prediction of the last one executed Pt to compute the early stopping policy, as its
output is more reliable than P(t−1).

However, this assumption does not hold in tree ensembles, where the weak
learners possess similar accuracy. Therefore, leveraging only Pt , i.e. the last executed
DT or estimator, becomes sub-optimal. As a consequence, I propose an enhanced
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version of the early stopping policies introduced in Section 2.2.3, that is Max Score
(S) and Score Margin (SM), leveraging the accumulated predictions P[1:t] of the trees
already executed.

The strength of this approach lies in the fact that the accumulated probabilities
skew in favor of a class already after running a few trees. In this case, it rapidly
becomes unlikely or mathematically impossible for the leftover trees to overturn the
current predicted class, making their execution pointless and energy-inefficient. The
partial output probabilities of an RF up to the tth weak learner can be defined as
follows:

P[1:t] =
t

∑
i

Pi (4.1)

Then both confidence metrics, Max Score and Score Margin can be redefined using
the aggregated probabilities. Specifically, the Max Score (S) becomes the Aggregated
Max Score (St), defined as follows:

St = max(P[1:t]) (4.2)

and the Aggregated Score Margin (SMt) becomes:

SMt = max(P[1:t])−max2nd(P[1:t]) (4.3)

Noteworthy, GBTs represent a significant difference, as the DTs composing them are
regression trees, whose output is converted into probabilities through a computation-
ally expensive formula. On MCUs, performing this conversion after each estimator
would lead to significant overhead, outweighing any possible energy gain obtained
with the early stopping. Therefore, I exploit the fact that the conversion formula is
monotonically increasing and perform the confidence estimation directly on the raw
predictions.

Figure 4.2 shows an overview of a dynamic inference for an RF with N = 3,
M = 3, and D = 3, where M and D are respectively the number of classes and depth.
The decision path of a hypothetical input in the weak learners is highlighted in red,
while the batch size (B), detailed in the following sections, is set to 1. The confidence
metric used is the Aggregated Score Margin, evaluated on the accumulated output
probabilities after executing a weak learner. When the condition SMt > th is met,
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Fig. 4.2 Dynamic Inference for an RF with M=3, N=3, and D=3 using the Aggregated Score
Margin as early stopping policy.

the early stopping is triggered, and the most likely class C, extracted with an argmax
operation, is used as the final prediction.

Note that the main challenge in deriving an early stopping policy for tree ensem-
bles lies in the time complexity of the approach. Introducing an overhead (i.e., the
policy computation) that is comparable to the execution of the following model in
the cascade may in fact lead to large overheads in terms of latency. Intuitively, this is
rarely an issue when working with a cascade of computationally intensive DNNs,
but can become a bottleneck in a cascade of shallow trees (i.e. M » D). Therefore,
the limited complexity of both the Aggregated Max and Aggregated Score Margin
proves to be extremely beneficial, as opposed to complex policies implemented in
other works in the literature. Noteworthy, the overhead introduced by the policy
is generally not considered in hardware-unaware setups, using metrics such as the
average number of executed trees.

4.2.2 Deploying on MCUs

Ensemble structure

Taking inspiration from the RF implementation proposed in the OpenCV library [86],
I designed a more compact and efficient data structure to store DTs and ensembles
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Fig. 4.3 Data structure of a tree ensemble. The arrows show the inference steps for the first
tree of Figure 4.2.

on MCUs. Specifically, lists are substituted in favor of C arrays, for the improved
data locality and compactness.

Figure 4.3 shows the three main structures used to store an ensemble. The
arrows highlight instead the element visited to run an inference with the first tree of
Figure 4.2.

The core element is the NODES array, composed of C structs that store in
separate fields all the information regarding a DT node. Each struct element in
NODES features the following fields:

• f idx: stores the index of the feature in the input buffer used for the branching
operation. At runtime, the value indicated by fidx is compared with the
threshold α to determine the next node to be visited. Leaf nodes have this field
set to -2, for compatibility with the training library [24].

• α : the threshold to be compared against the element stored at position f idx in
the input buffer. If the latter is smaller or equal to the former, the left child is
selected. In the opposite case, the right child is reached.

• right: the offset in NODES between the index of the current node and the
index of its right child. Leaf nodes reuse this field to store the index of the row
in the LEAVES matrix that stores their class probabilities.

The LEAVES array stores the class probabilities of all the leaves in the ensemble,
while ROOTS stores the index of the root node in NODES for each tree in the
ensemble. The latter is necessary to achieve a fast iteration of all DTs stored at
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inference time. Notably, this implementation does not store the index of the left
child, significantly reducing the memory footprint of the model. Instead, the nodes
of each DT are stored in pre-order, so that the left child of each node is always the
next element in the NODES array.

An additional optimization pass is performed for GBTs and RFs for binary
tasks. As GBTs are composed of regression trees, their leaves store a single scalar
value. Therefore, the LEAVES data structure is removed and the value belonging to
each leaf is stored directly in the α field. The same optimization can be applied to
RFs for binary classification tasks, as leaves store a single class probability (since
P0 = 1−P1).

Algorithm 4 Static multi-class RF inference pseudo-code

1 run_tree(t, P, INPUT , ROOTS , NODES , LEAVES) {
2 if (core_id == (t%C)) {
3 n=NODES[ROOTS[t]];
4 while(n.fidx != -2) {
5 if(INPUT[n.fidx]>n.alpha) n+=n.right;
6 else n=n+1;
7 }
8 lock_in();
9 for(j=0;J<M;j++) P[j]=P[j]+ LEAVES[n.right][j];

10 lock_out();
11 }
12 }
13

14 P = {0};
15 parallel for (t=0; t<N; t++)
16 run_tree(t, P, INPUT , ROOTS , NODES , LEAVES);
17 barrier();
18 if(core_id == 0) res = argmax(P);

Algorithm 4 reports the inference pseudo-code for a single DT of a multi-class
RF (the run_tree function), as implemented by the EDEN library. The function
loops on the tree nodes until the exit condition ( f idx ==−2) is met, meaning that a
leaf has been reached, and then updates the prediction buffer P with the values in
leaves. C denotes the number of cores of the target MCUs and is explained in detail
in Section 4.2.2.
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Quantization

As introduced in Chapter 2, quantization is a common optimization for DNNs when
deployed on edge nodes, often possessing slow or no FPUs. On the other hand,
concerning tree ensembles, quantization is less explored, generally deploying the
models using floating point thresholds or with 32-bit integer quantization in a few
cases. Nonetheless, a more aggressive integer quantization may prove beneficial also
for this kind of model, leading to significant reductions in memory.

In the case of decision trees and ensembles, three elements are feasible targets
for quantization: alphas, inputs, and class probabilities. However, as the first two are
directly compared, they should be quantized using the same precision and format.

As for DL, quantization for inputs/alphas can be applied either post-training or
at training time (through a quantization-aware training). I apply the latter, as it
commonly leads to lower accuracy drops [28]. To do so, the input data is quantized
with a symmetric quantizer (introduced in Chapter 2) before starting the training
process. The integer inputs are then fed to the training library [24], which will still
derive float α values. Nonetheless, as inputs are integers, it is sufficient to truncate
the fractional part of the thresholds, leaving the decision unaltered.

Class probabilities (or leaf values in case of regressions) can be quantized post-
training, similarly to DNNs’ weight tensors, as their range is fixed and known after
fitting.

Memory-Layout Selection

Modern IoT nodes often implement complex multi-level memory hierarchies, provid-
ing developers a direct control of the data transfers between memories. For instance,
GAP8, the target platform for this work, features a small yet fast L1 memory and
a slower but larger L2 memory. Maximizing the L1 usage, while crucial for effi-
cient inferences, is also challenging. For instance, RFs such as the one used as a
benchmark in this work are too large to fit in the small L1 of GAP8 (64 kB).

DL libraries for edge deployments [35] leverage the regularity of DL computa-
tions to load dynamically in L1 only parts of the data, needed to execute a small
part of the computations. Such an approach, named tiling, is effective because it
is a compile-time decision, and even more importantly the data (e.g., convolution
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weights for different parts of the input) once moved in L1 is often re-used multiple
times. On the contrary, tree ensembles feature data-driven computations (the visited
nodes depend on the input data) that cannot be optimized at compile time. Moreover,
the access ratio of the NODES structure is logarithmic, requiring the transfer to L1
of up to 2D elements and accessing at most D elements. The LEAVES data structure
features an even sparser access ratio of its elements, with only 1 row per 2D elements
being accessed per inference. As a consequence, a tiling approach on the tree data
would be sub-optimal, leading to large transfers of unused data and introducing a
significant overhead.

Nonetheless, arrays such as INPUT, P, and ROOTS are accessed multiple times,
and storing them in L1 at deployment time can lead to faster inferences. Selecting
the best data structure to store in L1 becomes then an optimization problem that can
be solved at deployment time. In particular, I tackle this problem with a Knapsack
0/1 algorithm, a dynamic programming algorithm used to efficiently select a subset
of items with given weights and values, subject to a limit on the total weight.

Fig. 4.4 Knapsack 0/1 algorithm applied to the data structure of the ensemble. Each array is
assigned to a memory level (L1,L2) depending on the accesses per inference (val) and size
in memory (weight).

Figure 4.4 shows an overview of the approach, where the total weight is the L1
size and each array possesses a weight equal to its dimension in bytes. The value of
an array is given by the average accesses to the array for an inference on a single
input. Noteworthy, this approach can be scaled to multiple memory levels (e.g. L2
vs L3) and can easily extend additional data structures needed by the tree ensembles,
making it flexible for future extensions. Furthermore, it requires changing only a
constant (the L1 size) to automatically support other deployment targets.

This allocation pass in the deployment leads to significant performance im-
provements w.r.t. to a tree-wise tiling (i.e. moving all the data required by a tree
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Fig. 4.5 Multicore static inference overview. Cores are represented with different colors.

dynamically in L1). Note that this can be entirely avoided when the target SoC
features hardware-controlled caches.

Multicore Inference

In this work, I take inspiration from the implementation of RFs proposed in [76] to
derive the RF and GBT static inference implementation. A high-level overview is
shown in Figure 4.5 for a RF. Trees are statically assigned to a core (each represented
with a different color) according to their index in the ensemble. At inference time,
trees are executed in parallel (see Algorithm 4) while updates to the shared P vector
(Acc. in the Figure) are performed through mutual exclusive access (depicted with a
lock in the Figure and with lock/unlock in Algorithm 4), implemented with a lock.

The final step consists of a synchronization barrier, ensuring that all trees have
been executed. Afterward, only Core0 performs an argmax operation on P. Note-
worthy, in the case of GBTs, trees belonging to different estimators can be run in
parallel. Moreover, as global synchronization is required only at the end, there is no
constraint on the order of execution of the trees.

Concerning dynamic inference, previous works always assume a sequential
execution of the trees [83, 82], evaluating their early stopping policy after each of
them. Intuitively, forcing a sequential inference on a multi-core setup is sub-optimal,
as it would lead to a significant under-utilization of the available resources. For
instance, with C=8, evaluating the policy after 1 or 8 DTs consumes a similar amount
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Fig. 4.6 Multi-core dynamic inference of an ensemble.

of energy, however, with the first option we ignore the output of 7 trees, which leads
to a more accurate decision for the early stopping.

Algorithm 5 Dynamic multi-class RF inference pseudo-code

1 P = {0};
2 t = 0;
3 stop = 0;
4 for(int bt=0; bt < POLICY_CALLS && !stop; bt++) {
5 for (int i = 0; i < B; i++)
6 run_tree(t++, P, INPUT , ROOTS , NODES , LEAVES);
7 barrier();
8 if (core_id == 0)
9 stop = policy(P) > th;

10 barrier();
11 }
12 if (!stop) {
13 while(t<N)
14 run_tree(t++, P, INPUT , ROOTS , NODES , LEAVES);
15 }
16 barrier();
17 if (core_id == 0) res = argmax(P);

As a consequence, I introduce a configurable batching mechanism, represented
in Figure 4.6 and Algorithm 5. Specifically, the early stopping policy is not evaluated
after the execution of each tree, but rather after B trees, where B is the batch.

This is clearly shown in Algorithm 5, where the external loop starting at row
4 corresponds to the execution of a batch (a column in Figure 4.6) and is repeated
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POLICY _CALLS times, a constant statically computed at compile time. The loop at
line 13 computes the leftover DTs when N is not a multiple of B. The policy function
computes either SMt or St .

Compared to a static inference, the dynamic one features an additional synchro-
nization barrier after each B tree, ensuring that all the required updates to P[1 : n]
have been performed before letting Core0 handle the policy evaluation. If the early
stop is triggered, then the final argmax is performed. The second barrier introduced at
line 10 is needed to ensure that all cores have performed the required early exit before
resuming with the new batch execution. Nonetheless, this synchronization overhead
is often minimal, as shown in the results. Concerning GBTs, the early-stopping
policy can be triggered only after executing an estimator, i.e. M trees.

In this work, I set C = B, to ensure that all cores are fully utilized during the
dynamic inference. Nonetheless, setting B to be any multiple of C can lead to
additional tradeoffs, as it balances the policy overhead w.r.t. the execution cost of
the trees. For instance, for ensembles with D < M and C = 1, the evaluation of a
policy such as the SM can take more than the tree execution. Therefore, the gains in
terms of energy may be overshadowed by the additional computations required for
the early stopping policy. Setting B > 1 in this case forces the execution of multiple
trees before evaluating the policy, balancing the overhead.

4.2.3 Experimental Setup

The optimizations introduced in the sections above are benchmarked on 3 datasets:
Ninapro DB1, BackBlaze and UniMIB-SHAR. Noteworthy, these datasets have
been selected because they feature different complexity in terms of the number of
classes. Intuitively, as M grows larger, the overhead to compute a metric such as SMt

increases and becomes comparable to the inference time for a single tree. Therefore,
it makes saving energy with a dynamic approach more challenging.

Regarding the data preprocessing, I apply an initial data augmentation of the
training set to oversample the minority classes, as a way to handle the class imbal-
ance.

Concerning the models, I used a grid search to train all RFs and GBTs with the
following combination of hyperparameters: depth in the range 1,15, input/leaves
quantization to 8/16/32 bits, and a number of estimators in 1,40. This leads to a total



4.2 EDEN: Efficient Decision tree ENsembles 41

of 5400 architectures tested for each dataset and each model type. Since for Ninapro
DB1 the training is performed separately for each subject, the grid search has been
repeated independently 27 times. For this dataset, for the sake of space, I report the
graphs obtained on the first two subjects (S1 and S2), while in the tables I report the
average results over all subjects.

For Backblaze, I use as a reference the model introduced in [68]. Specifically, I
fix the depth to 38 and explore all ensembles with a number of estimators in 1,30.

After performing this hyperparameter exploration, the models not fitting in the
512 kB L2 memory of GAP8 have been excluded and the most accurate one on the
validation set has been selected as the starting point for the dynamic model.

Concerning the metrics, I use the number of visited nodes on average per infer-
ence (#VisitedNodes) to model the time complexity of the ensembles in a hardware-
independent way. For the hardware-dependent results, I obtain the cycles from
GVSoC, stimulating a deployment on GAP8 with a cluster running at 100 MHz.

4.2.4 Hardware-Independent Results

In this section, I report the results obtained from a hardware-agnostic perspective, that
is, reporting the inference time complexity of each ensemble with the #VisitedNodes
metric. Memory results instead refer to the space required to store the ensembles,
not changing depending on the target platform.

In particular, in the first part, I report a comparison between models with different
quantization precisions for inputs and leaves. Then, I compare static GBTs and RFs,
both in terms of memory footprint vs accuracy and time complexity vs accuracy,
exploring if one model is more suitable than the other for edge ML scenarios. Finally,
I introduce the results obtained with a dynamic inference, concluding with a set of
experiments to determine if an optimal execution order of the weak learners can be
found.

Ensemble Quantization

Figure 4.7 shows the memory vs accuracy Pareto fronts extracted from the validation
set for each combination of quantization precisions for inputs/alphas (Binput) and
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Global Pareto
Binput=8/Bleaves=8

Binput=8/Bleaves=16
Binput=8/Bleaves=32

Binput=16/Bleaves=8
Binput=16/Bleaves=16

Binput=16/Bleaves=32
Binput=32/Bleaves=8

Binput=32/Bleaves=16
Binput=32/Bleaves=32

Fig. 4.7 Pareto fronts for ensembles using different quantization precisions for input/alphas
(Binput) and leaves values (Bleaves). Each point denotes an ensemble with different hyperpa-
rameters.

outputs (Bleaves) and scored on the test set. Concerning RFs, due to the narrow
ranges of the probabilities stored in the leaves, 8-bit quantization is often enough,
both for inputs and outputs. Notably, the only exception is Backblaze, where 8-bit
quantization causes sharp drops in accuracy.

Regarding GBTs, the 8-bit Pareto front underperforms instead, causing sharp
drops in accuracy. This is caused by the wider range of the GBT outputs, requiring
more bits than RFs. On Backblaze, the 8-bit Pareto front for GBTs reduces the F1
score significantly and has been omitted from the Figure for the sake of clarity.

For both ensembles, 32-bit models are rarely on the Pareto fronts. The reasons
for this are two-fold and orthogonal to each other. The first and most straightforward
is the sharp increase in memory of these models, rapidly saturating the device’s L2
memory. Only ensembles with a lower number of shallower trees can be deployed
with this precision, enabling the use of far less predictive models. The second reason
is the regularization effect introduced by the quantization, similar to the one already
observed in DNNs [28].

GBT vs RF comparison

Figure 4.8 shows the global Pareto front in terms of accuracy versus memory ex-
tracted from the validation set and scored on the test set. On all datasets, GBTs
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Fig. 4.8 Static Pareto fronts in terms of memory vs prediction scores of GBTs and RFs. Each
point shows an ensemble with different hyperparameters.

outperform RFs for small models (less than 40-150 kB depending on the task),
achieving higher accuracy at iso-memory. On the contrary, RFs become optimal for
less tight memory constraints and additionally, reach the top accuracy within the
constraints of the L2 memory of GAP8 for all datasets. Specifically, on Ninapro
DB1, for the first subject (S1), RFs outperform GBTs by more than 4% balanced
accuracy (77.05% vs 72.64%). The pattern is similar for S2, where RFs score up
to 74.98% balanced accuracy, while GBTs saturate at 69.56%. On Backblaze, the
difference is even sharper, with GBTs achieving up to 66% F1 score and RFs up
to 79%. Finally, on UniMiB-SHAR, RFs achieve 67% balanced accuracy, while
GBTs 65%. Nonetheless, for this dataset, GBTs perform significantly better for
small models, with a memory footprint lower by 4x at 52% accuracy. The reason
for this trend lies in the structure of the classifiers, as GBTs do not need an external
LEAVES matrix, since the scalar values are stored in NODES. This is more evident
for smaller models, where the size of these two data structures is similar.

Figure 4.9 shows the global Pareto front in terms of accuracy versus time com-
plexity, reported as the number of nodes visited per inference averaged over all
input samples. This metric is necessary to compare fairly trees with different depths.
Notably, the Pareto models shown are different from the ones of Figure 4.8. Con-
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Fig. 4.9 Static Pareto fronts in terms of time complexity vs prediction scores of GBTs and
RFs. Each point shows an ensemble with different hyperparameters.

cerning the time complexity, RFs are superior, with GBTs being 2x to 45x slower
at iso-accuracy for Ninapro and from 4x to 30x for UniMiB-SHAR. This is again
caused by the structure of the classifiers. Each GBT estimator is composed of M
regression trees (i.e. one per class), while RFs feature a single classification tree
per estimator. This is different for Backblaze, as for binary classification tasks the
number of trees per estimator is only one for GBTs, hence closely resembling the
RFs algorithm in terms of complexity.

In conclusion, while RFs outperform GBTs in terms of time complexity, they
are less accurate for lower memory budgets. For this reason, I explore dynamic
inference approaches on both models.

Dynamic Inference

In this section, I show the results obtained with the dynamic inference policies
detailed in the previous sections: Agg. Max and Agg. Score-Margin. As the
goal of dynamic inference is minimizing the inference time complexity, I report
the results in terms of accuracy versus number of visited nodes. I compare the
aforementioned policies with a static inference and with other state-of-the-art early-
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stopping approaches such as Max, Score Margin and QWYC. The latter is reported
both with and without the tree re-ordering mechanism proposed by the authors
(respectively QWYC order and QWYC unordered).

Dataset Depth #VisitedNodes #Estimators Binput Bleaves Score [%] Memory [kB]
GBTs

Ninapro 5.9 [±0.7] 3060 [±387] 37[±3.5] 17[±10] 20[±9] 75[±6] 199.5[±65]
Backblaze 15 128.53 9 16 16 66 226
UniMiB-SHAR 8 2987 22 8 16 65 363

RFs
Ninapro 13.8 [±1.28] 348 [±81] 31.8 [±7] 16 [±9.5] 12.4 [±4.5] 77 [±6] 335.83 [±97]
Backblaze 38 155 9 16 32 79 308
UniMiB-SHAR 15 136 10 32 8 67 292

Table 4.1 Hardware agnostic deployment results.

Table 4.1 reports the static models used to derive the dynamic ensembles, cor-
responding to the most accurate points of Figure 4.10, denoted asseed models. For
each model, I report the depth of the ensemble (Depth), the number of estimators
(#Estimators), the average number of visited nodes per inference over the test set
(#VisitedNodes), the score on the test set (balanced accuracy or F1), the bit-width
of the inputs (Binput) and outputs (Bleaves) and the memory footprint of the model
(Memory). Concerning Ninapro, I report the average of each field over all 27 sub-
jects, with its standard deviation in square brackets. Noteworthy, this table shows the
influence of the hyperparameters on the final score, as each dataset presents different
depths and numbers of estimators, highlighting the importance of the initial grid
search.

Static RF
Static GBT

Max
Score-Margin

QWYC ordered
QWYC unordered

Agg. Max
Agg. Score-Margin

Fig. 4.10 Pareto fronts for GBTs and RFs comparing a static inference and a dynamic one.
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Figure 4.10 reports on the first row the results obtained using a static GBT
(blue curve) or the different adaptive policies. The second row reports the same
comparison for RFs, with the green curve representing the static RFs. In both cases,
I report the adaptive Pareto curves obtained by applying the respective policies to the
seed models, i.e. changing the early-stopping threshold th. On the contrary, points
belonging to the static Pareto fronts represent different architectures, obtained with a
distinct set of hyper-parameters. The Max and Score Margin curves show the results
of the two adaptive policies applied in their original form, that is, only using the
predictions of the last executed tree. The Agg.Max (St) and Agg.Score-Margin (SMt)
denote instead the results obtained with the policies I introduced in the previous
sections. Finally, the QWYC approach is only applied to the Backblaze dataset as it
is the only binary task in this benchmark. Notably, in this experiment, the batching
mechanism is not considered (B=1) and the early stopping policy is evaluated after
each estimator.

Concerning the first subject (S1) of Ninapro, dynamic RFs using SMt obtain
a reduction of up to 83% visited nodes at 73% balanced accuracy. On the other
hand, existing policies such as the Score Margin (SM) achieve only 59% maximum
accuracy. For GBTs, we reduce the number of visited nodes by 54% at 71% balanced
accuracy, with again the state-of-the-art policies causing an accuracy drop of 9%.

The same pattern is repeated for S2. Dynamic RFs using SMt achieve a node
reduction of up to 45% at 74% accuracy, with SM instead yielding an accuracy of
only 56%. Concerning GBTs, I achieve a visited node reduction of up to 51% at
65% balanced accuracy, while SM causes a reduction of 14%. When considering
all subjects in the Ninapro, the maximum reduction of visited nodes achieved at
iso-score is 58.8[±1.2]% for RFs and 58.5 [±9]% with GBTs.

Concerning Backblaze, the top gain is 69% for RFs and 88% for GBTs, respec-
tively obtained at 73% and 66% F1 score. In this case, QWYC achieves the best
results due to its double threshold mechanism, increasing its accuracy when few DTs
are employed. As for Ninapro, the previous state-of-the-art policy (Max) leads to
large score drops, respectively 22% for RFs and 6% for GBTs.

Finally, regarding UniMib-SHAR, the number of visited nodes is reduced by up
to 41% by RFs and 58% by GBTs with SMt , respectively at 66% and 63% balanced
accuracy. Again, SM causes sharp score drops, achieving a maximum balanced
accuracy of 52% with RFs and 56% with GBTs.
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Noteworthy, aside from the aforementioned reductions in time complexity, the
strength of dynamic inference lies also in its flexibility, as deploying the entire curves
reported in Figure 4.10 requires only changing the threshold value th. On the other
hand, deploying the corresponding static curve requires storing in memory several
ensembles at the same time, an unfeasible option due to memory constraints.

Dataset Model #VisitedNodes #Estimators Policy
GBTs

Ninapro
S. 3060[387] 37[3.5]
A.-Iso 1805[315] 22 [3.73] Agg.SM
A.-1% 1096[191] 13.4[2.6] Agg.SM

Backblaze
S. 128 9
A.-Iso 14.89 1.01 QWYC o.
A.-1% 14.75 1.003 QWYC o.

UniMiB
S. 2987 22
A.-Iso 1766 13.02 Agg.SM
A.-1% 1286 9.48 Agg.SM

RFs

Ninapro
S. 348[81] 31.8[7]
A.-Iso 175[49] 15[3.9] Agg.SM
A.-1% 104[30] 9[2] Agg.SM

Backblaze
S. 156 9
A.-Iso 55 3.03 Agg.Max
A.-1% 17 1.0005 QWYC o.

UniMiB
S. 136 10
A.-Iso 116 8.46 Agg.SM
A.-1% 73 5.37 Agg.SM

Table 4.2 Hardware agnostic deployment results. Abbreviations: Seed model (S), Iso
accuracy with seed (A.Iso), 1% accuracy drop w.r.t to seed (A.-1%), QWYC ordered (QWYC
o.)

As an additional comparison, Table 4.2 reports the statistics of the seed model
(denoted as S) used as a starting point for the dynamic ensemble and the best dynamic
configurations built on top of them. Specifically, I report the dynamic configuration
able to achieve the largest reduction in terms of visited nodes at iso-score with the
seed (A-Iso) and allowing a 1% score drop (A-1%). As all trees executed by all three
models have identical depth (dynamic ones run a subset of the seed model), I report
as well the average number of estimators executed per inference over the whole test
set and the adaptive policy used.

At iso-accuracy, I achieve a reduction of visited nodes of up to 88% with Back-
blaze, 49% on Ninapro, and 41% with UniMiB-SHAR. The savings increase signifi-
cantly for the last two datasets if we allow a 1% score drop, achieving a reduction
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of up to 70% for Ninapro and 57% for UniMiB-SHAR. On Backblaze, the A-1%
configuration achieves a reduction of 89% in terms of visited nodes.

Overall, the Agg. Score Margin (Agg.SM) is the top-performing policy when
considering multi-class classification tasks. On the binary classification task featured
by Backblaze, the top performing policy is 3 times out of 4, the QWYC with ordering.
The reason is that the former, thanks to the double threshold mechanism implemented,
manages to trigger more early stops when an easy class is predicted.

Finally, both Max and Score Margin cause significant score drops, always failing
to achieve iso-score with the seed model. Intuitively, this is due to the fact all weak
learners are almost equally predictive in an ensemble, thus using only one to trigger
the early stop leads often to wrong decisions. As a consequence, both Max and Score
Margin are sub-optimal in this scenario and are not considered for deployment.

Tree Ordering

Fig. 4.11 Effects of different tree orders on the dynamic inference.

Intuitively, finding the optimal order of execution of DTs of a dynamic ensemble
plays a significant impact on the obtained savings and final accuracy. For instance,
running first the most accurate weak learner could seem the best way to force an
even quicker activation of the early stopping mechanism. Nonetheless, I found that
this is generally not the case. For instance, considering the QWYC algorithm in
Figure 4.14, the performance of the ordered algorithm underperforms w.r.t. the
unordered one. This indicates that sorting the DTs based on the validation score
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does not lead to optimal inferences on the test set. To further investigate this issue, I
performed a benchmark by sorting the trees in the seed static ensembles according
to different metrics, reporting the results in Figure 4.11. Specifically, I benchmark
the same dynamic ensemble using the Agg.Score Margin, sorting its weak learners
according to i) 50 randomly spawned orders (Random), ii) two greedy ordering
algorithms (Score and QWYC-like), or iii) the original training order (Original).
The Score ordering sorts the trees in descending order of score on the validation
set. The QWYC-like sorting algorithm takes inspiration from [43], ordering the
estimators so that the number of visited nodes needed to reach iso-accuracy with the
seed model is minimized. Finally, different points have been obtained by changing
the early-stopping threshold th.

Notably, no smart ordering algorithm outperforms the random one, with the
original training order being the middle of multiple other random curves. However,
selecting the top-performing random curves is unfeasible in practice, as there is no
correlation between the best ordering on the validation set and the one on the test set.

To conclude, using the validation set to determine an ordering on the test set is not
an effective approach to optimize the efficiency of the dynamic inference. Therefore,
I use the training order for the other experiments presented in this dissertation.

4.2.5 Deployment Results

GBT vs RF comparison

Figure 4.12 shows a comparison between static RFs and GBTs deployed on GAP8
with C=8. As opposed to the results obtained in terms of the number of visited
nodes, GBTs gain the edge at lower scores in terms of cycles. This is caused by the
accumulation step of the two models, performed in both cases in a critical section,
i.e. sequentially. RFs aggregate vectors of M values, while GBTs only accumulate
a single value, freeing faster the lock on the output vector. Nonetheless, as already
shown in Figure 4.9, RFs rapidly become more accurate, sharply increasing in terms
of score, while GBTs’ score saturate.
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Fig. 4.12 Score versus average clock cycles per input on GAP8.

Dynamic Inference

In this section, I report the deployment results of the dynamic policies already shown
in Figure 4.10. The number of visited nodes is replaced with the average cycles per
inference on the test set as it provides a proxy for latency and energy consumption. I
report the results obtained with a batch B of 1,2,4 and 8, always setting B =C both
for static and dynamic models.

Figures 4.14 and 4.13 report the dynamic inference results. For batch sizes
up to 4, dynamic solutions are frequently Pareto optimal. The reason is the lower
parallelization, making the overhead of the adaptive policy (computed in a critical
section) lower w.r.t to the static ensemble, yielding consistent savings in terms of
cycles. Considering B = 4, on Ninapro, the largest savings are obtained by an RF at
74% balanced accuracy both for S1 and S2. Specifically, using SMt , for S1 I achieve
a reduction of 71.8% cycles, while for S2 a 27.1% reduction. Concerning Backblaze,
the largest saving is obtained with a GBT at 66.8% F1 score, achieving a reduction
of 36.6% of average cycles per inference. Finally, on UniMib-SHAR, I achieved a
reduction of up to 47.7% cycles compared to a static ensemble at iso-score (63.4%).

When considering B=8, the dynamic inference overhead becomes significant w.r.t
to the highly parallel execution of the static ensemble. As a consequence, only a few
dynamic points are Pareto optimal. This leads to the conclusion that as the number
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Static GBT QWYC ordered QWYC unordered Agg. Max Agg. Score-Margin

Fig. 4.13 Dynamic and static Pareto fronts in terms of accuracy vs cycles for Gradient
Boosting Trees.

of cores increases, the effectiveness of a dynamic inference approach is reduced.
Nonetheless, when compared to the most accurate static models benchmarked, a
dynamic inference approach can yield a large reduction of cycles.
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Static RF QWYC ordered QWYC unordered Agg. Max Agg. Score-Margin

Fig. 4.14 Dynamic and static Pareto fronts in terms of accuracy vs cycles for Random Forests.
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Table 4.3 reports a detailed comparison of cycles, energy, and latency results
obtained by the static seed models and the most efficient dynamic models at iso-score
or with a score drop of up to 1% w.r.t. to the seed. The statistics have been reported
both for the case B =C = 1 and B =C = 8, to provide detailed insights on the effects
of the parallelization on inference. To do so, the profiling has been performed on the
distinct parts composing the ensemble inference, namely the trees’ execution cycles
(Trees C.), the probability accumulation step (Acc. C.) and the policy evaluation
(Policy C.), reporting their average value over the test set. Moreover, latency (Lat.)
and energy (E.) results have been provided for the C = 8 case.

When comparing the sequential execution of the trees (Trees C.) to the parallel
one on 8 cores, the speedup observed ranges from 3.15x to 7.92x. This sub-optimal
speed-up is due mainly to the leftover trees executed in the last batch and the
imbalance between trees. For instance, the seed model used for UniMiB-SHAR
features 10 trees, with the first 8 being run in parallel first and then executing the last
two. The maximum speed-up is then given by 10

2 = 5x.

The speedup shown for the policy computation (Policy C.) is instead due to
the policy being triggered C× fewer times, as we set B =C. In conclusion, when
considering C = 8, a dynamic inference approach can lead to reductions of latency
and energy of up to 41.7% for Ninapro, 35.2% for Backblaze and 37.9% for UniMiB-
SHAR at iso-score. If a 1% drop in score is allowed, then the gains rise respectively
to 60%, 50.6%, and 46.5%.



Chapter 5

Optimization Methods for Deep
Learning

In this chapter, I focus on DNNs. In particular, in the first part of the chapter, I
provide an overview of the current landscape of DL-based solutions for Human
Activity Recognition (HAR). Then, I provide an overview of dynamic inference
methods, focusing mainly on iterative and hierarchical approaches.

In the second part of this chapter, I benchmark the effect of sub-byte quantization
and mixed precision on DNNs for Human Activity Recognition. Finally, I describe
three dynamic inference approaches to reduce the energy footprint of DNNs.

5.1 Related Works

5.1.1 Human Activity Recognition

ML approaches have become increasingly popular for Human Activity Recognition
tasks, as they lead to superior results w.r.t. classical algorithms based on signal
thresholding or filtering.

Commonly, these works exploit shallow ML algorithms, such as RFs, k-Nearest
Neighbors (k-NN), and Support Vector Machines (SVMs). For instance, the authors
of [88] leverage a low-pass filter pre-processing, followed by a feature extraction
phase and one out of six ML classifiers. In particular, they benchmark logistic model
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trees (LMT), logit boost (LB), logistic regression (LR), SVM, RF, and a shallow
Artificial Neural Network (ANN) on the target dataset.

In [89], the authors benchmark an SVM on a multi-class HAR dataset collected
with smartphones. As a further optimization, they quantize the model to reduce the
memory footprint of the classifier, introducing a minimal accuracy drop.

Even more recently, DL approaches for HAR have been able to achieve state-of-
the-art accuracy on several datasets [90]. The authors of [91] propose a hierarchical
model based on a CNN and a Bidirectional LSTM (BiLSTM), benchmarking their
solution on two public datasets, UCI HAPT and MobiAct [92]. Moreover, they
compare other classifiers such as CNNs, SVMs, k-NNs, CNNs-LSTMs. On a
reduced version of UCI HAPT (postural transitions are clustered into 2 groups,
yielding 8 classes instead of 12) they achieve 97.98% accuracy and 96.16% on
MobiAct.

The authors of [93] introduce custom convolutional filters named LEGO, leading
to significant reductions in terms of memory and minimal accuracy drops. With
benchmarks on 5 datasets, they achieve F1 scores up to 97.51% for WISDM and
74.46% for UniMiB-SHAR.

In [94], the authors propose a CNN-based solution to recognize 9 different
activities on a self-collected dataset. On the public dataset UCI HAR, their solution
achieves up to 92.5% accuracy. The authors of [95] propose a partially binarized
CNN that achieves 93.67% accuracy on the PAMAP2 dataset. Their architecture is
then deployed on an FPGA.

Noteworthy, while DL solutions are often more accurate than shallow ML algo-
rithms, they are also more computationally and memory-demanding. For instance,
the authors of [96], using lightweight RNNs, consider as a deployment target a
Raspberry Pi3 equipped with 1 GB of RAM and several Watts of active power
consumption. The deployment platforms considered in this dissertation are instead
MCUs, equipped with less than 1 MB of L1 memory and featuring a power con-
sumption of three orders of magnitude lower. The models proposed in [91, 93]
feature a size of at least 1.2 MB, too large for MCU deployment. Even the model
used in [95], proposing an aggressively optimized CNN, is deployed on FPGA and
not on a general-purpose MCU.
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5.1.2 Dynamic Inference

The main limitation of the Big/Little schema introduced in Chapter 2 lies in the
memory overhead that it introduces, as it requires storing two models instead of a
single one. This overhead may become a significant constraint on MCUs, where the
memory may be barely enough to deploy a single DNN.

The authors of [40] propose to build the little model from the big one, activating
only a portion of the layers’ channels/neurons for easy inputs. Only complex inputs
instead are classified with the original-width model. As a consequence, the weights
of the two models are shared, removing entirely the memory overhead. However,
this approach requires a custom training algorithm, while even pre-trained networks
could be used for the original big/little approach. Furthermore, the weight-sharing
mechanism may lead to slight losses in terms of accuracy.

In [97], the authors propose using multiple versions of the same DNN obtained
through quantization at different precisions. In practice, first, the network is quantized
to the largest bit-width that satisfies a memory vs accuracy constraint. Then, lower
precision versions are obtained by truncating the weights obtained from the largest
configuration. Notably, this approach requires no additional weights to be stored,
while also requiring no retraining.

Another dynamic inference mechanism is hierarchical inference. A task is split
into multiple sub-tasks, with the easiest being the most common. The sub-tasks are
then executed in order of increasing complexity, implementing an early stop to save
energy. The strength of this approach lies in its flexibility, as complex sub-tasks can
be easily offloaded to servers running computationally demanding models. On the
contrary, easy tasks can be still performed locally. Nonetheless, this approach is
task-dependent, as it is not always possible to find easier sub-tasks. For instance,
the authors of [98] split a facial recognition task for devices such as smartphones.
The sub-tasks are: i) whether the input picture contains a face, ii) whether the
face belongs to the phone owner or not, and in the negative case, iii) whether the
face belongs to one of the phone owner’s favorite contacts. The tasks are run by
increasingly complex CNNs deployed on a custom accelerator.

Noteworthy, the limitations of the dynamic inference approaches in the literature
are twofold. First, they benchmark large DNNs, featuring memory and energy
footprints unsuitable for embedded targets such as MCUs. Second, they focus almost
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Fig. 5.1 Overview of the search flow for uniform- and mixed-precision DNNs.

exclusively on computer vision tasks, as opposed to this work where the focus is
time-series, common in embedded scenarios. Therefore, two of the contributions of
this work are the effects of dynamic inference i) for less computationally demanding
models, often being less stable during training or less calibrated, ii) for time-series
data.

5.2 Sub-Byte DNNs for Human Activity Recognition

5.2.1 Introduction

Human Activity Recognition based on IMU is an increasingly popular task for
embedded ML. Nonetheless, due to the high memory requirements of DL models,
most HAR systems are based on classical ML solutions. In this section, I show that it
is possible to find CNNs that are both memory-efficient and accurate, becoming then
a feasible option for deployment on MCUs, benchmarking the results on Pulpissimo.

In detail, I leverage a flow that starting from an extensive parameter search to
find suitable architectures, explores the effects of sub-byte quantization and mixed
precision. The intuition is that aggressive forms of quantization allow finding better
trade-offs in terms of accuracy vs memory than the popular yet limited 8-bit precision.

The proposed flow is shown in Figure 5.1. The first step is named Quantized
Architecture Search and consists of an exhaustive grid search of the hyperparameters
of a template CNN. This search is repeated for all the precisions considered in this
work, namely 1,2,4, and 8 bits.
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Fig. 5.2 CNN templates used as starting point for the grid search.

The second step, named Memory Optimization, leverages a modified version of
a differential Neural Architecture Search (dNAS) for fast exploration of all combina-
tions of precisions of weights and activations, finding an optimal configuration for
each layer in the network.

Finally, I show an extensive set of results on four state-of-the-art HAR datasets,
benchmarking the effects of different quantization precisions on this task.

Note that while previous works have explored mixed precision and sub-byte quan-
tization, they are limited to image data (2D CNNs) and feature large networks. On
the other hand, in this dissertation, I explore the advantages of sub-byte quantization
and mixed precision on a new task and type of network (1D CNNs).

The work presented in this Section has been published in [99, 42].

5.2.2 Quantized Architecture Search

Architecture Search

Figure 5.2 shows the CNN templates used as a starting point for architecture explo-
ration, depicting layers in green or red if their hyperparameters are changed during
the grid search. The structure of the networks has been selected empirically, focus-
ing on models that achieve acceptable accuracy with a low number of parameters.
In particular, I took inspiration from classical CNN models, such as LeNet [100],
that usually feature one or more convolutional blocks terminating in an FC layer,
converting the networks into their 1D counterparts for time-series processing. Note
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that in Figure 5.2, both ReLU activation functions and batch normalization (BN)
layers always follow Conv layers, but are not shown for the sake of simplicity.

Concerning the hyper-parameters search space, I keep it identical for three of
the datasets I target in this work: UCI HAPT, UniMIB-SHAR, and WISDM. In
particular, for the datasets above, I explore all power-of-two values between 2 and
128 for the output channels (K) and either 7 or 15 for the kernel size (F) for Conv1D
layers. MaxPool layers are kept unchanged, using a pooling size and stride of 2.

On the WALK dataset, as the binary task featured is simpler, I benchmark a
smaller template CNN, featuring only two Conv layers. The third Conv layer led
to no noticeable improvement in terms of accuracy and, as a consequence, it was
removed. For the same reason, the Conv output channels explored are limited to
powers of two up to 32. Nonetheless, to avoid shrinking excessively the search
space, I explore for Pool layers a stride/window size (the two values are always kept
identical) of 2 or 4 or removing the layer entirely.

Noteworthy, I selected a grid-search algorithm to explore the search space as the
training duration of each network and its memory footprint is almost negligible when
performing the computations on high-end hardware. Moreover, such an approach
guarantees finding all Pareto-optimal networks in the search space. In case of longer
training time, a possible alternative to a grid-search algorithm would be applying a
more refined NAS tool [101–103].

To obtain the best possible accuracy in each dataset, the interaction of the bit-
width on the training and network hyper-parameters has to be taken into account.
Intuitively, aggressive quantizations, such as the one performed in Binary Neural
Networks (BNNs), may lead to significant drops in accuracy [37], that can be recov-
ered only using a larger number of channels/neurons per layer. As a consequence,
a Pareto-optimal architecture at 8-bit is generally sub-optimal when binarized, and
this may cause specific bit-width to underperform. Following this reasoning, I repeat
the grid search for each bit-width, always performing a Quantization-Aware Train-
ing [34]. In fact, post-training quantization generally leads to large drops in accuracy,
especially when quantizing to sub-byte precision. The quantization algorithm used
in this work is PArametrized Clipping acTivation (PACT) [104], yielding accurate
networks even at low precision. Moreover, PACT quantization is compatible with
the DNNs’ deployment toolchain for the target hardware.
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Pareto Front Extraction

After performing the architecture search, I extract the Pareto-optimal architectures
for each precision. In particular, I extract two fronts, the first in terms of memory
versus accuracy and the second in terms of cycles versus accuracy. Noteworthy,
while for memory occupation a reliable metric is the number of parameters of
the CNN, obtaining an accurate estimate of the inference latency or energy cost
is complex. Relying on metrics such as the number of Multiply-and-Accumulate
(MAC) operations in the network would lead to inaccurate results, favoring sub-byte
quantization as no overhead for packing/unpacking data, needed on general-purpose
MCUs, is modeled. Therefore through a set of C-code templates, I converted and
compiled automatically all the networks found with the architecture search, using
as reference the framework and the C-language DL primitives for the target MCUs
introduced in [105, 106]. Noteworthy, BNNs leverage custom primitives that I
designed specifically for the target MCU [72], and are detailed in the next section.

UltraCompact BNNs

Existing BNN libraries, commonly designed for CV tasks and 2D data, pad the
number of input/output channels (C/K) or neurons to multiples of 32 [37, 107, 108].
This design choice stems from the fact that storing all the elements required to
compute an output element in exactly one or more 32-bit words, simplifies the
implementation of the binarized DL primitives (kernels), as there are no leftovers.
Moreover, common DL architectures for CV have a high number of channels, making
the padding overhead negligible w.r.t. the original computations of the network.

On the other hand, HAR networks are far smaller, possibly needing 2-4 channels
per convolution. Such a large amount of padding would then be sub-optimal, making,
for instance, it pointless to explore all K/C< 25 in the proposed hyperparameter
search, as they would be all padded to 32. Therefore, I introduced a set of DL
primitives for Pulpissimo that avoid the padding entirely, taking inspiration from the
one proposed in [106].

Figure 5.3 shows an overview of the convolution kernel implementation, while
Algorithm 6 shows its pseudo-code. Data is stored in a time-major order, with
all channels belonging to a single timestep being contiguous in memory. This
layout allows accessing all elements required to compute an output element of the
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Fig. 5.3 Ultra-Compact binarized convolution with F=5 and K=C=8. The left part shows the
data alignment step, moving the input data at the beginning of one or more 32-bit words.
The right part shows the convolution computation for the first output channel.

Algorithm 6 Binarized convolution kernel

1 for t in range(0,T-1):
2 I_a = AlignData(I,t)
3 for k in range(0,K-1):
4 W_a = AlignData(W,t)
5 O=Popcount(XNOR(W_a ,I_a))

convolution by loading consecutive words in memory. For instance, for a convolution
with F=5 and C=8, shown in Figure 5.3, all input elements required to compute an
output timestep are stored contiguously in 40 bits and can be loaded in two 32-bit
memory registers. The loop order shown in Algorithm 6 has a significant impact,
as it determines the data reuse pattern. I found that the proposed one led to the best
performance on the target HW, computing output channels tied to the same output
timestep before moving to the following.

The main difference w.r.t to multiples of 32-channel libraries lies in the fact
that the convolution input data (both inputs and weights) may occupy a non-integer
number of words. This is depicted in Figure 5.3, where the input window data
occupies 40 bits, i.e. 1 and 1/4 words for 32-bit processors. Note that padding both
weights and inputs would lead to a computational overhead of more than 33%, an
unacceptable option when energy efficiency and latency are important. It becomes
then necessary to handle the data alignment and the leftover issues, without lowering
excessively the parallelization benefits granted by the binarization.

The left part of Figure 5.3 shows the operations performed to align the input data
buffer for a convolution with F=5 and K=C=8. In particular, the Figure refers to the
moment when the layer has to start computing the second timestep (t +1), shifting
the input by C (i.e., 8 bits in this example). As shown, the input data is stored in two
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consecutive words and as the weights always start from the most significant bits of a
word, it is misaligned. Therefore, through a series of shift and masking operations, I
move the required data so that it starts at the beginning of the first word. Note that
I also mask out the last word, to avoid computing the XNOR operator on bits not
belonging to the considered timesteps. To avoid any destructive operations on the
input/weight tensors, I use an additional intermediate buffer.

The right part of Figure 5.3 shows the convolution on the aligned data. This part
is kept identical to other implementations [37], computing the convolution through
an XNOR operation followed by popcount. Then, the accumulated value is binarized
with a threshold derived from the BN layer. Noteworthy, due to the light overhead
of shift and masking operations, this implementation achieves up to 44% cycle
reductions w.r.t. to a padded binarized convolution when considering C = 2 and
K = 32.

To further improve the throughput, I take inspiration from the kernels proposed
in [109], manually unrolling parts of the loops of the convolution. That is, I compute
multiple output timesteps and channels at each iteration of Algorithm 6. The goal is
to increase the arithmetic intensity of the kernel, that is the number of XNOR/Pop-
count per operation per memory load. By profiling the performance of different
convolutions on the target hardware, I found that the best performances are achieved
with a 2x2 kernel, computing at each iteration 2 output channels of 2 consecutive
timesteps. Further unrolling leads to register spilling, leading to sharp decreases in
performances.

A further optimization consists of fusing the MaxPool operator with the con-
volutional kernel. Intuitively, a max operation can be implemented with a bitwise
OR. By modifying how the convolution selects the output bit to write, this operation
can be implemented directly in the kernel, reducing input/output write operations.
Moreover, no custom implementation for MaxPool is necessary, reducing the code
size when deploying the model.

5.2.3 Memory Optimization with Mixed Precision Quantization

Previous works [32, 33] have shown that an optimal trade-off between accuracy
and memory is not always found through a network-level quantization. On the
contrary, mixed-precision approaches, where a different precision is assigned to
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Fig. 5.4 Overview of how EdMIPS searches for the most suitable bit-width for activations
and weights.

each set of weights and activations, allow greater flexibility, leading to improved
results. Intuitively, a mixed-precision approach can assign greater precision to layers
having a major impact on the accuracy (e.g., the first and last one in DNNs), while
quantizing aggressively the others.

Following this intuition, I apply the mixed-precision approach to HAR. The key
problem for mixed-precision quantization is assigning a bit-width to each tensor,
as an exhaustive search is unfeasible even for small DNNs. For instance, for the
template CNNs shown in Figure 5.2 featuring 3 convolutions, exploring all possible
combinations of precisions for 1,2,4, and 8 bits would require performing 216 training
runs. Moreover, the training runs should be repeated for each Pareto model found in
the architecture exploration grid-search, as they refer to a single architecture.

As a consequence, I leverage an open-source dNAS named EdMIPS [110] that
searches for the optimal bit-width of each tensor at training time, that is, while
optimizing the network weights. When compared to other tools for mixed-precision
search leveraging evolutionary or reinforcement learning algorithms, EdMIPS per-
forms significantly faster, terminating the search in a time comparable to the one
required for standard network training. Figure 5.4 shows an overview of how Ed-
MIPS makes precision assignment differentiable, allowing a gradient-based optimizer
to determine the optimal precision for each tensor.

In particular, the NAS introduces into the standard network parameters two sets
of trainable coefficients named η and θ . During the training phase of the network,
the quantization of both output activations y and weights W is simulated for all the
explored precisions in the forward step.
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Taking as reference the output activations, a different quantized version for
each precision is created starting from the original floating point value y f p. These
quantized versions, i.e y1, y2, y4, y8 respectively for 1-,2-,4- and 8- bits precisions
are only simulated, as the original value is still stored in floating point. However, the
values are quantized according to the selected quantization algorithm, simulating the
effect of the integer representation.

The θ coefficients are obtained with a SoftMax operation (summing to 1) and
are used to combine the different precision activations with the following equation:

ŷ = y1 ∗θ1 + y2 ∗θ2 + y4 ∗θ4 + y8 ∗θ8 (5.1)

Finally, ŷ is used as output activation of the corresponding FC or Convolutional
Layer. The same procedure is applied to the weights W using the η coefficients.

At training time, the loss is changed to:

L = Ltask(W,η ,θ)+λ ∗Lcost(η ,θ) (5.2)

adding to the normal task loss Ltask (e.g., cross-entropy for multi-class classification
problems) an additional loss Lcost , measuring the deployment cost of the networks,
based on the current values of η and θ . As an example, the estimated cost for storing
the weights of a layer can be computed as follows:

cost = (1∗η1 +2∗η2 +4∗η4 +8∗η8)∗Wsize (5.3)

where Wsize denotes the number of elements in Wf p.

Thanks to the combined loss, both η and θ converge to the values that better
balance the accuracy drop caused by quantization and the accuracy cost. Then, the
best network configuration can be extracted by selecting the precisions with the
highest η and θ coefficients.

Intuitively, changing the value of λ changes the importance of the accuracy w.r.t
to the network cost and can be used to obtain several trade-off points, giving high
flexibility while significantly reducing the search cost w.r.t to a grid search. In my
work, I adapted EdMIPS to handle Conv1D networks, as it was originally designed
for 2D networks. Moreover, I introduced the PACT [104] algorithm simulation,
substituting the original one proposed in [110], as it was less hardware-friendly.
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5.2.4 Results

Experimental Setup

All the networks have been trained using Python 3.8 and PyTorch [30] using an Adam
optimizer with an LR scheduler that multiplies the LR by 0.1 when the training loss
is stale for three consecutive epochs. Moreover, I added an early-stop mechanism to
the training, setting the patience to 5 epochs.

The datasets used are UniMIB-SHAR, WISDM, WALK, and UCI HAPT, with
the preprocessing detailed in Chapter 3. I set the LR to 0.001 for UniMiB-SHAR and
WALK, and 0.01 for UCI HAPT and WISDM. The batch size is 32 for all datasets
but UCI HAPT, where it is set to 128.

The random forests used in the state-of-the-art comparison are taken directly
from the original papers and I use the same metric of those works to report the
classification score of the models.

The C-language deep learning primitives used to deploy DNNs are taken and
adapted from [106] concerning bit-widths 2, 4, and 8. The mixed precision models
have been obtained by repeating the search with 10 different λ values, ranging from
10−4 to 10−3. Values outside this range yielded networks either fully binarized or
fully quantized at 8 bits.

The deployment target is Pulpissimo, with cycles and energy results obtained as
detailed in Chapter 3.

Uniform vs Mixed Precision quantization

Memory occupation: Figure 5.5 shows the CNNs obtained with the detailed de-
ployment flow. Specifically, for each dataset, the graph shows the Pareto fronts in
terms of prediction quality (B.Accuracy, Accuracy, or F1) versus memory of the
DNNs obtained with the grid search and mixed precision exploration. The precision
used is depicted with different colors (e.g., network-level quantization at 8-bit in
red), with each point representing a different architecture (e.g., different number of
channels). The graph uses logarithmic axes and the global Pareto front is represented
as a dashed black line. The top-scoring models quantized at 8-bit and using sub-byte
quantization (mixed or network-level) have been highlighted with black cycles.
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Fig. 5.5 Pareto fronts in terms of score vs memory of the models found with the architecture
exploration. Each point shows a different architecture with distinct hyper-parameters.

The figure shows a similar trend for UniMiB-SHAR, WISDM, and UCI HAPT.
On UniMiB-SHAR, 1-bit, 4-bit network-level quantization, and mixed precision
yield the best results respectively at low (<45%), mid, and high (>75%) balanced
accuracy. When comparing mixed-precision to the standard 8-bit quantization, I
obtain a memory reduction of up to 72% at iso-accuracy. Moreover, thanks to
the regularizing effect of the quantization [28], the top-performing model is 4-bit
quantized, improving w.r.t to the most accurate 8-bit one by 1.23%.

Similar considerations can be applied to UCI HAPT, where 4-bit quantization
is on the Pareto front for intermediate sizes, while mixed precision gains the edge
for higher accuracy (>80%). Concerning the most accurate 8-bit model, a mixed-
precision one achieves +1.4% additional accuracy (85.63% vs 84.23%), while requir-
ing 77% less memory. When considering a reduced accuracy (<60%), BNNs gain
the edge, performing well considering the complexity of the task.

Concerning the WISDM dataset, due to the simpler classification task, all sub-
byte quantizations perform similarly, obtaining improved trade-offs w.r.t to 8-bit
quantization. In particular, a mixed precision CNN can reduce the memory occupa-
tion by up to 66% w.r.t. to 8-bit quantization at iso-score.

Differently from the other datasets, BNNs occupy most of the Pareto front for
WALK. Due to the task being only a binary classification, smaller and more compact
models outperform the others, with the top balanced accuracy being achieved by
4-bit quantization at 95.74% while reducing the memory footprint by 91% w.r.t. the
most accurate 8-bit model.
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Fig. 5.6 Pareto fronts in terms of score vs cycles of the models found with the architecture
exploration.

Execution Cycles: Figure 5.6 shows the Pareto optimal models in terms of
classification score versus inference clock cycles on Pulpissimo. Noteworthy, while
points and colors have been kept identical in meaning w.r.t. Figure 5.5, the Pareto
models represented are different, as an optimal architecture in terms of accuracy
vs memory does not necessarily perform as well in terms of accuracy vs cycles. In
fact, sub-byte quantization introduces an overhead in terms of packing/unpacking
operations, needed before performing any computations on general-purpose MCUs
such as Pulpissimo. This is clearly shown in Figure 5.6, where models with 8-
bit quantization are generally Pareto optimal for high accuracy. Notably, BNNs
implemented using the kernels introduced in this work, are still Pareto optimal in
terms of cycles for the WALK dataset, as the overhead is generally minimal. Mixed-
precision solutions can be Pareto optimal, as the overhead due to packing/unpacking
is minimal and they may feature improved accuracy w.r.t. 8-bit quantization.

Dataset Score Range [%] Memory Range [kB] Cycles Range [·103]
UNIMIB-SHAR 26.24:86.24 [BAcc.] 0.41:23.17 18.4:3316
UCI HAPT 44.53:85.63 [Acc.] 0.42:7.54 24:1253
WISDM 67.6:98.9 [F1] 0.22:6.22 16:859
WALK 78.13:95.74 [BAcc.] 0.05:1.65 0.9:36.4
Table 5.1 Summary of the characteristics of the Pareto optimal models for each dataset.

Table 5.1 summarizes the characteristics of the models found with the proposed
exploration. Specifically, it reports the ranges of classification score, memory, and
cycles of the models on the Pareto front of each dataset. Notably, CNNs on the
Pareto fronts spawn up to two orders of magnitude both in memory and cycles and
± 60% in terms of classification metrics.
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Comparison with state-of-the-art

Ours (Best) Previous DL Works Baseline RF
Dataset Score [%] Mem. [kB] Paper Score [%] Mem. [kB] Score [%] Mem. [kB]
UniMiB 86.24/90.66 [BAcc./F1] 23.16 [93] n.a./77.8 [BAcc./F1] 5800 58.05/65.61 [BAcc./F1] 202.17
UCI HAPT 85.63 [Acc.] 7.53 [91]* 97.98 [Acc.] 17939 74.16 [Acc.] 51.71
WISDM 98.9/98.81 [F1/Acc.] 6.21 [93] 98.8/n.a. [F1/Acc.] 1640 93.91/94.16 [F1/Acc.] 255.74
WALK 95.74 [BAcc.] 1.64 n.a n.a n.a 91.86 [BAcc.] 8.26

Table 5.2 Comparison with state-of-the art. *8 class classification task.

Table 5.2 reports a comparison between the most accurate quantized DNNs found
in this work, other DL solutions and Random Forest found in the literature both in
terms of memory and classification accuracy. Notably, I refer to the state-of-the-art
results both for DNNs and RFs, reporting their accuracy and when available, the
model size. As the WALK dataset was introduced in this work, no comparison is
provided. Note that, as state-of-the-art papers implementing classic ML algorithms
provide the actual memory footprint of the models, I compare my results only in
terms of score. To provide a comparison in terms of memory, I perform a grid search
on the depth (1,20) and number of trees (1,20) of an RF trained on each dataset,
both using the raw data and the features proposed in [111, 112, 65] and reporting the
memory footprint of the most accurate model.

The CNNs introduced in this work outperform the other solutions for three
datasets out of four (UniMIB-SHAR, WISDM and WALK). Concerning UCI HAPT,
the reference work focuses on a simplified version of the classification task, featuring
only 8 classes instead of 12, making a direct comparison meaningless. However, the
proposed CNNs still perform well in this case, featuring far fewer parameters than
the comparison models.

In particular, the proposed CNNs achieve reductions in terms of model size by up
to 2400x for UCI HAPT and 250x for UniMIB-SHAR and WISDM, obtaining also
better performances in terms of prediction quality. More importantly, all the models
introduced in this work fit in less than 256 kB of memory, 50% of the available size
on Pulpissimo. On the contrary, previous DL solutions would not be deployable.
Moreover, while Table 5.2 reports only the top-scoring sota models, even the less
accurate architectures found in those works are too large, showing how this work is
crucial for improving the state-of-the-art for HAR models deployed on cheap and
low-power MCUs. Notably, this work is still relevant for less constrained devices,
such as smartwatches, as the accurate yet small models proposed can be deployed
for inexpensive inferences.
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When compared to RFs, the proposed CNNs are more accurate and require lower
memory (ranging from a 5x to a 41x reduction). Note that for UniMiB-SHAR and
WISDM, the reference work [65] achieves up to 82.86% balanced accuracy with a
k-NN and 81.48% with an RF. However, k-NNs require the on-device storage of the
training data (≥7 MB based on the feature reported by the paper and assuming a
float representation), an unfeasible option for deployment on MCUs. The RF instead
features 300 trees and since the number of nodes is not reported, estimating the
memory is impossible. Nonetheless, even with 5 trees at depth 16, the memory
becomes immediately higher than 23.16 kB. On WISDM, the reference work [112]
achieves 99.8% accuracy with a k-NN. Nonetheless, accuracy is not a reliable metric
for imbalanced datasets. Moreover, the memory requirements of a k-NN for WISDM
would be of at least 12.6 MB. Concerning UCI HAPT, the reference work [111]
achieves 88% accuracy on the 12-classes datasets with an RF. However, the authors
provide no details on the hyperparameters of the RF, making the estimation of the
memory unfeasible.

Detailed Deployment Results

Dataset Config Score [%] Metric Memory [kB] Energy [µJ] Latency [ms]

UniMiB-SHAR
Min 26.24

B.Acc.
0.41 0.34 0.09

Max - 5% 81.56 9.28 29.33 7.7
Max 86.24 23.17 61.59 16.2

UCI HAPT
Min 44.53

Acc.
0.42 0.44 0.12

Max - 5% 83.18 4.6 30.52 8.01
Max 85.63 7.54 23.27 6.11

WISDM
Min 67.6

F1
0.22 0.3 0.08

Max - 5% 94.74 1.27 4.09 1.07
Max 98.9 6.22 15.94 4.19

WALK
Min 78.13

B.Acc.
0.05 0.03 0.009

Max - 5% 91.81 0.18 0.05 0.016
Max 95.74 1.65 0.67 0.18

Table 5.3 Deployment results at different trade-off points in terms of score vs memory.

Table 5.3 reports the detailed metrics of some of the Pareto optimal CNNs found
with the proposed search. Specifically, for each dataset, I report the most (Max)
and least (Min) accurate models found with the exploration, and additionally, an
intermediate one, i.e., the smallest model with a maximum drop of classification
accuracy of 5% w.r.t to Max.
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Fig. 5.7 Dynamic Inference with a variable width network.

Thanks to the proposed exploration, the models found spawn not only different
orders of magnitude in terms of memory but also in terms of energy and latency.
Notably, even the most accurate model is suitable for real-time inference, as its total
latency is only 16 ms, a far shorter time than the one required to collect an entire
window of samples for UniMiB-SHAR (1.28 s).

The Max−5% CNNs often offer interesting trade-offs, significantly reducing
the latency at the cost of a small accuracy drop. The most notable example is for
WALK, where the Max-5% model is more energy and memory-efficient by an order
of magnitude w.r.t to the Max model, while still achieving 91.8% accuracy.

5.3 Dynamic Slimmable Inference

5.3.1 Introduction

In this Section, I extend the results obtained from the previous flow (shown in
Figure 5.1), introducing a dynamic inference mechanism for HAR networks.

5.3.2 Methodology

Figure 5.7 shows an overview of the proposed adaptive mechanism, based on [40]
for 2D CNNs. For the sake of clarity, the image shows only FC layers, even if, in
practice, we apply this approach to CNNs.

The main idea is to run a first inference using a subset of the channels/neurons of
the whole network, that should be enough for easy inputs, thus saving computations.
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In case of uncertain predictions, the whole network is run, still maintaining high
accuracy on complex inputs.

The advantage of this approach is that parameters are shared between the adaptive
models, resulting in no overhead in terms of memory. To train the networks, I refer
to the procedure introduced in [113], as opposed to the original one introduced in
[40], extending it to work for 1D CNNs. Specifically, at training time, the forward
step is repeated for each supported width (i.e., the number of channels used by the
reduced-size models) for each batch of inputs.

The optimization step is then performed after accumulating all the gradients from
the forward steps. On the contrary, the original training algorithm introduced in [40],
required performing incremental training on the network, starting from the smallest
to the largest. Specifically, after training a network, its weights are frozen and the
following one is trained.

Following the mechanism proposed in [113], I relaxed the constraints on the
shared parameters, introducing the Switchable Batch Norm. Intuitively, using a
subset of the channels of a convolution changes the mean and the standard deviation
collected at training time by the batch norm, causing a degradation of accuracy as
these statistics are misleading. Therefore, in [113] the authors add a BN layer per
width after each convolution. Notably, these networks take the name of slimmable
and they are not dynamic, as the user has to manually select which model should be
run.

Concerning the adaptive policy to use, I selected the Score Margin mechanism,
as it is lightweight yet accurate in estimating the prediction confidence.

A crucial point when deploying an adaptive model is selecting the best static
architecture to be used as a baseline. For variable-width models, as the one proposed,
this includes choosing the optimal hyperparameters for Ml and the number of chan-
nels to be used by reduced-width architecture Ms. Nonetheless, this design choice is
generally not explored in the literature and is often assumed as a given.

In this work, I introduce a systematic way to select a promising architecture for
dynamic inference. Importantly, selecting the most accurate model from the search
space shown in Figure 5.6 is not ideal, as large CNNs often gain small amounts of
accuracy but explode in terms of parameters. As a consequence, starting from such
a model would lead to sub-optimal results, as even at reduced width, the obtained
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architecture would still be complex, achieving almost iso-accuracy w.r.t to the full-
width model and nullifying the results obtained with the adaptive inference. On the
other hand, starting from a model too small causes the reduced-width network to
perform poorly, severely degrading the accuracy and forcing an almost constant use
of the full-width architecture.

Therefore, in this work, I use the following metric to score the models on the
Pareto front:

Gi =
P(Mi)−P(Mi−1)

C(Mi)−C(Mi−1
(5.4)

where C(Mi) and P(Mi) are respectively the inference cost and classification score
of the ith model of the Pareto architectures sorted by classification score. Ml is then
selected using the architecture with the largest gain Gi and with at most an accuracy
drop of 5% w.r.t to the most accurate Pareto-optimal model. The width used to run
Ms is empirically selected between 25% and 50%.

5.3.3 Results

Experimental Setup

The experimental setup is kept identical to the one detailed in the previous section,
with benchmarks on UniMiB-SHAR, UCI HAPT, WISDM and WALK. For UniMiB-
SHAR and WALK, the width selected for Ms is 50%, while for WISDM and UCI
HAPT is 25%.

Adaptive Inference

Figure 5.8 shows the results obtained when converting the model taken from Fig-
ure 5.6 that maximizes the gain from Equation 5.3.2 into its variable-width counter-
part.

The x-axis reports the mean cycles per input over the whole test set. The gray line
is the global Pareto front of Figure 5.6, with the starting static model highlighted in a
black circle. The static Pareto front has been zoomed in the zone where the adaptive
points lie for better visualization. The yellow points are obtained by the adaptive
model varying the values of the confidence threshold th and represent different
execution modes favoring either accuracy or energy efficiency.
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Fig. 5.8 Dynamic inference results. Gray points are different static models while yellow
points belong to the same dynamic model.

Concerning UniMiB-SHAR and WISDM, the adaptive Pareto front lies close
to the static one, except for the points featuring the largest value for th, as in that
case, the overhead of performing an inference both with Ml and Ms is at its peak.
Importantly, the class distribution of the test set of UniMiB-SHAR is significantly
skewed towards the most complex tasks, with rare movements (e.g., falling backward)
being more frequent than the samples of the walking class. With a more realistic
class distribution (e.g., easier classes are generally far more frequent than complex
ones), an adaptive approach would perform significantly better.

This is clearly shown for UCI HAPT, where the adaptive curve significantly
outperforms its static counterpart. In this case, the adaptive approach reduces the
average cycles per inference by up to 60% with no accuracy drops. To further explore
how an adaptive approach improves when the frequency of the easy classes changes,
I scored the adaptive model on two augmented versions of the test set of UCI HAPT,
where the laying class (that is normally 15% of the test set) becomes 10x or 20x times
more frequent. Notably, the augmented dataset matches more closely real-world
scenarios, where easy classes such as laying are recorded for hours (e.g. while
sleeping) and complex classes are rare (e.g. falling backward).

Figure 5.9 shows the obtained adaptive curves, clearly demonstrating that the
input-dependent approach proposed becomes even more advantageous.

WALK represents the only dataset where variable-width networks did not achieve
satisfying results. The reason is that the starting model for this dataset is a BNN
having as the final layer a 1-bit FC layer. BNNs, while small and quite accurate, are
generally not well calibrated [114], making a policy based on logits ineffective. On
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Fig. 5.9 Dynamic Inference scored on the original (Normal) and augmented (10x and 20x)
versions of the UCI HAPT dataset.

the other hand, an adaptive model spawned from a higher precision architecture is
not competitive, as it would be too far from the static Pareto curve.

Nonetheless, the main purpose of adaptive inference is not to outperform the
static curve, but rather to offer multiple trade-off points in terms of accuracy versus
cycles while deploying a single model.

Dataset Score Range [%] Approach Cycles Range [·105] N. of Points Tot. Memory [kB]

UniMiB-SHAR 71:81 [BAcc.] Static 1.6:3.1 5 50.6
Adaptive 1.5:5.4 47 26.34

UCI HAPT 78:83 [Acc.] Static 3.06:6.71 4 39.4
Adaptive 1.38:3.75 34 14.63

WISDM 95:98 [F1] Static 1.03:1.81 5 14.5
Adaptive 1.05:5.44 21 11.96

Table 5.4 Detailed deployment results

Table 5.4 reports the memory requirements of a naive implementation of a
runtime-dependent execution, that is deploying all the networks in the adaptive
solution range. As shown, a static deployment would require up to 2.7x more
memory, while providing significantly fewer trade-off points.
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Fig. 5.10 Dynamic Hierarchical model composed by a DT and CNN. Easy classes are
classified by the DT (left) and complex ones by the CNN (right).

5.4 Multi-Model Adaptive Hierarchical Inference

5.4.1 Introduction

In this section, I introduce a dynamic inference approach based on hierarchical
classifiers, that leverages the different complexity of the activities commonly present
in HAR applications. As for the other dynamic inference approaches, the goal
is to reduce the average energy/latency per inference by running a reduced set of
computations for easy classes. The approach illustrated in this section has been
published in [115].

5.4.2 Dynamic Hierarchical Inference

Figure 5.10 shows an overview of the proposed flow, mixing a DT with a CNN, both
working on different sub-tasks, i.e. recognizing a different set of activities. The
DT is trained to recognize only the easy activities in the HAR dataset and on an
additional fallback class. Only when predicting the latter, the CNN, trained only on
the complex activities, is enabled. Intuitively, as easy activities such as laying and
walking are more frequent in real-life scenarios, the CNN is rarely enabled.

Notably, this approach presents two main strengths w.r.t the dynamic inference
introduced in Section 5.3. The reduced complexity of the sub-task enables the
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Fig. 5.11 Hierarchical training flow.

deployment of a small initial model (as opposed to a reduced-width CNN) such as
a DT. Moreover, as the CNN used to determine the complex activity operates on a
limited number of classes, it generally becomes more accurate at iso-memory/latency
than its counterpart trained on the whole set of activities.

Finally, there is no need to design and test the effectiveness of an early-stopping
policy, such as the Score Margin, as this is handled automatically by the DT and the
fallback class.

On the other hand, the complexity of this approach is moved to selecting the
correct easy activities/classes to be recognized, a process detailed in the following
Section.

5.4.3 Training a hierarchical classifier

Figure 5.11 shows an overview of the training and deployment flow proposed. It
can be divided into five steps: DT-Based Task decomposition, Sub-task training set
generation, Final DT Selection and Training, CNN Pareto Exploration, and MCU
deployment.

DT-Based Task decomposition

Determining the activities to be handled by the DT, i.e. the easy classes Measy, plays a
fundamental role. Intuitively, a misclassification caused by the DT leads immediately
to an error, as the CNN is not trained on the easy classes. On the contrary, the big
model in a big/little approach can still correct a wrong output of the little model,
as long as it is enabled (e.g. the little model outputs the wrong class but with low
confidence).
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Therefore, to determine the easy classes, I train several DTs featuring different
hyper-parameters on the whole dataset, i.e. the original HAR task with all classes.
In this case, I explore all DTs with depth in the interval 2,10. Then, I select as easy
classes Measy, the two activities featuring the highest F1 score. Notably, in this work,
I explore only Measy = 2, but this value becomes a hyperparameter that should be
explored, as the concept of easy class changes with the dataset/task. The classes not
selected with the aforementioned approach are considered hard.

Sub-task training sets generation

The training set for the DT is generated leaving the samples belonging to the easy
classes unchanged. Samples belonging to hard classes are instead clustered into a
single fallback class. Concerning the training set for the CNN, the easy classes and
samples are entirely removed from the training data, as they are not considered in
the second step of the inference.

Final DT Selection and Training

The final step consists of an additional grid search of the DT hyperparameters (i.e.,
depth) using the modified training set and then selecting the most accurate model.

CNN Pareto Exploration

Concerning the CNN, I extract the entire Pareto front in terms of accuracy vs energy
of the hyperparameter search performed. The reason is that, as the CNN is the most
computationally demanding part of the dynamic inference, starting from different
architectures is the easiest model to obtain different trade-off points in terms of
accuracy vs energy. Specifically, the architecture exploration is performed starting
from the template shown in Figure 5.11, designed after LeNet [100]. It features
three consecutive ConvBlocks (each composed of a Conv1D layer, a BN layer, and
a MaxPooling layer) and a final FC layer. I explore all variants of the template by
varying the number of output channels (K) and kernel size (F) of the convolutional
layers. Both MaxPool’s window and stride are equal to 2 and are kept fixed during
the search. Networks are quantized at 8 bits with QAT [34].
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Fig. 5.12 Average energy vs accuracy and total memory vs accuracy results for the dynamic
model (Dynamic) and the static CNN.

MCU Deployment

The CNNs and the DT obtained are deployed using the optimized libraries [109] for
the target MCUs.

5.4.4 Results

Experimental Setup

I deploy the models on Pulpissimo using as a benchmark the UCI HAPT dataset.
The easy classes are sitting and laying, having an F1-score above 85%. The samples
belonging to these two activities are 30% of the total training and test set.

Deployment on MCU

Figure 5.12 shows the results in terms of memory and energy obtained when deploy-
ing the proposed hierarchical architecture. Each blue triangle represents a different
dynamic model, composed of the same DT and a different Pareto-optimal CNN
obtained from the architecture search (both shown in Figure 5.11). For comparison,
I report also the Pareto fronts of the static CNNs, trained on the original task (i.e.,
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Fig. 5.13 Accuracy vs memory and accuracy vs average energy consumption for the dynamic
model and a RF.

using all classes). The dashed line highlights the global Pareto front. Energy results
refer to the average consumption per inference, over the entire test set.

Concerning energy consumption, the proposed approach is almost always Pareto
optimal, aside from a single architecture at 85% accuracy. In particular, the hierar-
chical dynamic inference can improve the accuracy by up to 12.34% for the same
energy, or reduce the energy per inference by up to 67.7% at iso-accuracy. Moreover,
as detailed in the previous section, the simplification of the task performed by the
CNN allows the proposed architecture to outperform by up to 3% accuracy the most
accurate static model. Notably, the DT is also very accurate, yielding 92% accuracy
on the easy task, while requiring 341x less energy per inference than the smallest
CNN.

Regarding the memory, the size of the DT is 200 B. However, the deployed CNN
in the hierarchical setup needs only Mhard output neurons. Therefore, the entire
DT+CNN architecture introduces minimal overhead (9%) in the case of small CNNs
(≤ 3kB). For large CNNs instead, the memory saved by reducing the size of the last
FC layer outweighs the DT footprint. For this reason, together with the increased
accuracy of the dynamic model, I achieve a reduction of up to 64% memory for the
same accuracy.
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Mode Acc. Memory[kB] Energy[µj] Latency[ms]

Base
Ours 0.87 37.2 17.9 4.7
Static 0.84 37.8 26.2 6.9

10x
Ours 0.89 37.2 6.2 1.6
Static 0.85 37.8 26.2 6.9

20x
Ours 0.90 37.2 4.4 1.2
Static 0.86 37.8 26.2 6.9

Table 5.5 Deployment results on the original and the synthetically augmented test set.

Figure 5.13 shows a comparison of an RF with the proposed approach both in
terms of memory and energy. The RFs shown are the models with estimators in the
interval 1,15 and depth in 2,20. As expected, the DL-based approach is far more
accurate, rapidly becoming Pareto optimal in terms of memory. On the other hand,
RFs are significantly more energy efficient at lower accuracy.

Finally, Table 5.5 reports the deployment details of the most accurate static CNN
and dynamic architecture shown in Figure 5.12. Mirroring the idea of the synthetic
augmentation shown in Section 5.3, I augment the test set by over-sampling the easy
classes either by 10x or 20x. The reason for such an experiment is again to show
the effectiveness of the proposed approach in a scenario closer to the real world,
where activities like laying and sitting are far more frequent than the rest. Notably,
compared to static CNNs, I reach an improved accuracy of up to 4%, while saving
up to 76% or 83% energy/latency at iso-accuracy respectively with a 10x and 20x
augmentation.

5.5 Dynamic Inference with Class-Dependent Confi-
dence

5.5.1 Introduction

The standard Score Margin applies the same threshold independently on the class
predicted. However, such an approach assumes that all the classes are equally
complex to predict, a rare occurrence in embedded scenarios. Starting from this
intuition, I propose an enhanced version of the Score Margin, that leverages a
threshold for each class. Furthermore, I provide an automated approach to compute
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Fig. 5.14 Distribution of the SM depending on the class.

the optimal set of thresholds given a user-defined trade-off in terms of accuracy
versus energy. This work has been published in [116].

5.5.2 Multi-threshold Score Margin

Single-threshold policies such as Score Margin, implicitly assume that the small
model Ms in approaches such as the Big/Little is equally accurate on all the inputs.
Nonetheless, this assumption rarely holds.

Figure 5.14 shows the SM distribution of all the samples belonging to classes
3 and 7 of the GTSRB validation set, obtained when using a single FC layer (i.e.,
a logistic regressor). Red bars in the histogram denote the samples misclassified
by the model, while the blue ones denote the correct ones. If we considered only
class 7 (right plot), we would have selected for the SM a th of 0.15, as it forces
the activation of the big model Ml for almost all wrong samples. Nonetheless,
considering class 3, we see that if we set th = 0.15 we enable Ml too few times,
introducing a significant accuracy degradation. The insight is that when Ms predicts
that an input belongs to class 3, the dynamic inference should treat the value with high
skepticism, significantly raising th. On the other hand, when class 7 is predicted,
a low th is sufficient to achieve high accuracy and should be selected to avoid
unnecessary inferences with Ml .
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As a consequence, I introduce a policy named Class Score Margin that features a
threshold for each class, assigned depending on the class complexity on the validation
set.

Specifically, I find the optimal class threshold thc with the following equation:

thc = argminthc(FPc(thc)+λEc(thc)) (5.5)

Equation 5.5.2 features two contributions, the first depending on the classification
accuracy and the second on the energy cost of the dynamic inference. Specifically,
FPc(thc) is the number of false positives generated per class and is computed as
follows:

FPc(thc) =
Mc

s

∑
j:true( j)̸=c

(SMs( j)> thc ∨Ml( j) ̸= true( j)) (5.6)

where Mc
s is the number of inputs that Ms predicts as belonging to class c, true( j)

is the true label of input j and SMs( j) is the score margin of Ms for j. The second
contribution of Equation 5.5.2 instead can be computed as:

Ec(thc) =
Mc

s

∑
j=1

SMs( j)≤ thc (5.7)

that is the number of times the big model is enabled. Noteworthy, the factor λ in
Equation 5.5.2 balances the two contributions, giving more importance either to the
accuracy or the energy.

The sets of thresholds obtained with a specific λ can be pre-computed offline and
switched at runtime by the user. Intuitively, storing them on the device introduces a
minimal overhead, as the number of classes in embedded tasks is generally limited.

Figure 5.15 shows the objective function of the two addends of Equation 5.5.2,
with the minimum being highlighted with a black dot. Specifically, the plots depict
two values of λ , showing that increasing it causes both an energy reduction and a
small decrease in accuracy. Note that the minimization of Equation 5.5.2 requires a
single inference pass on the validation set, storing the output logits of the network.
Then, the desired thc can be obtained with any minimization method, with no further
executions of the models needed.
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Fig. 5.15 Objective function for a LeNet5-like model for two values of alpha and two classes
of the GTSRB dataset.

To conclude, the class score margin is an enhanced version of the Score Margin
tailored for datasets presenting class imbalance. Computing several thresholds for
each class requires a single offline inference on the validation set, storing then
them on the device. Therefore, at runtime, a user can select the most suitable
operating mode with little to no overhead. Moreover, this approach becomes identical
to the classical Score Margin for datasets with identical class complexity, being
outperformed by the latter only in case of mismatches between the test and validation
set. Note also that this adaptive policy is orthogonal to the dynamic inference type,
and can be used in other works with no modifications.

5.5.3 Results

Experimental Setup

I benchmark the class score margin on three datasets: CIFAR10, GTSRB, and GSP.
For CIFAR10 and GSP, I used as little model a Lenet-5 [100] and as big model a
MobilenetV1 [117]. On GTSRB, the little model is a logistic regressor, while the
big model is a LeNet-5. The deployment platform is the STM32H743 MCU by
STMicroelectronics, featuring an ARM Cortex-M7. Results have been obtained by
deploying the floating-point models with X-CUBE-AI.
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Fig. 5.16 Energy vs Accuracy results of the proposed methods.

Energy versus Accuracy Trade-off

Figure 5.16 shows the trade-offs between the average energy per input and accuracy
obtained for the three datasets when using the proposed policy. Curves are obtained
by changing the values of λ , with the dots representing the accuracy and energy of
the small and big models when used statically.

Accuracy [%] Energy [mJ]
CIFAR10 [15] 79.46 [+0.22] 98.76 [- 11.4%]
GTSRB [17] 84.54 [+0.76] 10.98 [- 56.0%]
GSP [16] 90.43 [-1.01] 40.01 [- 64.4%]

Table 5.6 Maximum accuracy and energy of the proposed methods. Relative differences w.r.t.
Ml are reported in brackets.

Table 5.6 reports the maximum accuracy achieved on each dataset, together with
the energy required to obtain it. In square brackets, I report the relative difference
w.r.t. an execution of Ml . Specifically, I obtain up to 0.76% additional accuracy,
while reducing the energy by up to 56%. Even on GSP, where the dynamic approach
introduced a minimal accuracy degradation w.r.t. the big model (-1.01%), the energy
savings are outstanding, reducing the inference cost by up to 64.4%.

Comparison with state-of-the-art

Table 5.7 reports a comparison between the proposed policy and the classical SM.
Specifically, I report the mean energy cost per inference at different trade-off points in
terms of accuracy gained w.r.t. to Ms. The difference between the proposed approach
and the SM is reported in square brackets. For instance, the column named 25%
reports the energy required to reach the accuracy of Ms plus 25% of the difference
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Energy [mJ] @ Normalized accuracy gain w.r.t. Ms Max. reduction
25% 50% 75% 100% Acc/Energy

CIFAR10 12.37 [-9.6%] 27.46 [-4.5%] 46.76 [-2.0%] 94.26 [-3.2%] 63.00/8.98 [-14.1%]
GTSRB 2.85 [-4.4%] 4.08 [+1.0%] 5.70 [+6.6%] 8.98 [-26.4%] 84.40/10.05 [-59.3%]
GSP 5.44 [-24.1%] 10.81 [-14.88%] 17.95 [-12.53%] 34.51 [-17.28%] 79.8/5.44 [-24.1%]

Table 5.7 Energy consumption at different accuracy configurations. In brackets the difference
w.r.t single-threshold SM.

Fig. 5.17 An example of easy and complex classes for the GTSRB dataset. % of M2 calls
and thc are for λ=0.05.

between the accuracy of Ml and Ms. The column named 100% reports the energy
value required to reach iso-accuracy with Ml , and so on. Finally, in the column Max.
reduction I report the accuracy and the energy consumption of the point that yields
the maximum gain in terms of energy w.r.t the classical SM. The class score margin
policy outperforms the SM on almost all reported settings, achieving gains of up
to 60% in terms of energy reduction. The few cases where the SM performs better
can be attributed to mismatches between the validation and test set, leading to the
derivation of slightly sub-optimal class thresholds. Moreover, the results obtained on
CIFAR10 are the least impressive as the balanced nature of the task featured in this
dataset makes the proposed approach less effective (i.e., closer to a classical SM).

Finally, in Figure 5.17, I report an example extracted from GTSRB, showing
how the proposed approach assigns larger thc to similar classes. The two speed-limit
signs are similar to each other, confusing Ms, and thus are assigned a high threshold.
On the other hand, the easily recognizable stop sign is assigned a lower thc, as it is
significantly different from other traffic signs present in the dataset.

Effects on imbalanced datasets

The proposed approach is effective not only when classes of different complexity
are present in the dataset, but also when the class distribution is different between
training and validation/test sets. This is a common occurrence when employing a
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Fig. 5.18 Energy gains on the unbalanced and standard CIFAR10 dataset obtained with the
class score margin.

pre-trained model on a different task and has a negative impact on the SM, as the
model is not well calibrated.

The class score margin handles this imbalance, assigning the class threshold
not according to the training data, but to the validation data. Differently from other
approaches, it requires no time-consuming operations (e.g., retraining, fine-tuning),
needing only an inference pass on the validation set.

To prove this, I artificially unbalanced the training set of CIFAR10, undersam-
pling 8 random classes to 1/5 of the original images. After performing the training
on the unbalanced training set, I computed the class thresholds on the (still balanced)
validation set, finally evaluating the class score margin on the test set.

Figure 5.18 reports the gain in terms of energy obtained at different accuracy
points (w.r.t. Ml) both for the Score Margin and the Class Score Margin. As shown,
the proposed method becomes significantly dominant in an unbalanced setting (even
if it was already performing well in the standard version of CIFAR10), with energy
reductions of more than 40%.



Chapter 6

Conclusions

This dissertation introduced several optimization algorithms and approaches tailored
for efficient deployments of Machine Learning models on MCUs. These techniques
trade-off little to no accuracy to significantly reduce the memory footprint or the
energy consumption of the models. Moreover, they are often orthogonal to each
other, making them a suitable option for multiple deployment scenarios where other
optimizations have been already introduced.

In Chapter 4, I focused on tree ensembles, a popular type of ML model for
constrained IoT devices. In particular, I show that with a compact representation of
the ensemble paired with quantization, the memory requirements can be reduced
by more than 2x with almost no accuracy drops. Noteworthy, quantization, while
widely explored in DL applications, has been far less explored in classical ML
algorithms. Then, thanks to a dynamic inference mechanism, I showed that I can
reduce the average inference cost in terms of energy/latency by up to 60%, with
an accuracy drop lower than 1%. Differently from previous works providing only
theoretical energy savings, I benchmarked the dynamic tree ensembles on multi-core
IoT devices. The parallel execution of the decision trees is a challenging problem,
that has not yet been tackled for dynamic inference in the literature. Noteworthy, the
optimizations introduced have been collected and included in an open-source library,
automatically exporting tree ensembles into optimized C code for MCUs.

In Chapter 5, I focused on optimizations for deep learning models. First, I intro-
duced an automated flow for deploying small yet accurate DNNs for Human Activity
Recognition at the edge, thanks to sub-byte and mixed-precision quantization. The
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compressed DNNs achieve up to 98.9% accuracy and require at most 23.16 kB of
memory, while also satisfying real-time latency constraints. Then, I focused on
dynamic inference techniques to further improve the energy efficiency of DNNs.
First, I introduce a single DNN architecture for HAR that is run dynamically at
variable widths. That is, depending on the input complexity, only a subset of the
channels/neurons in the DNN is executed. This approach leads to savings of up to
60% in terms of average energy per inference, with only an overhead in terms of
memory of up to 9% and negligible loss of accuracy. Then, I introduce a dynamic
hierarchical inference mechanism that exploits the different complexities of the
classes in a dataset. The first model, a lightweight DT, recognizes only easy classes,
while the second, an accurate CNN, only the complex classes. As easy classes are
the most common, often we need only to perform an inference with the DT. This
approach saves up to 67.7% energy on average per inference, with no accuracy drops
w.r.t. deploying a single DNN trained on all the classes. Finally, I show a dynamic
inference approach tailored for datasets featuring classes of different complexity,
where state-of-the-art approaches for early stopping generally underperform. In this
case, the savings in terms of energy range from 10-60%, with negligible accuracy
drops.

In summary, this work pushes the boundary of lightweight yet accurate models
that can be deployed on edge devices, enabling increasingly complex applications
to be moved on ultra-low power devices. Furthermore, it highlights the effective-
ness of dynamic inference approaches, showing their flexibility and outstanding
performances even in the most resource-constrained deployment scenarios.
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