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Abstract

In recent years, the number of Critical Raw Materials (CRMs) has expanded and,
among others, magnesium was included. Often dismissed as waste, brines and
bitterns are found to contain high magnesium levels. Consequently, innovative
circular economy-based processes have been devised to harness magnesium recovery.
A sustainable alternative is the precipitation as magnesium hydroxide employing a
reaction with an alkaline solution. The focus of the doctoral research is dedicated
to the development of a computational modelling framework aimed at accurately
describing the precipitation of magnesium hydroxide. The initial phase of the study
involved characterizing mixing in both square and circular cross-sectional T-mixers.
Experimental data describing the mixing of food dyes were acquired through image
analysis and subsequently modelled using Computational Fluid Dynamics (CFD)
with the β -Probability Density Function (β -PDF). This approach enabled tuning and
validating the flow field and turbulent properties, which were critical for accurately
describing the precipitation process.

Following the validation of the mixing characteristics, precipitation tests were
conducted to gather experimental Particle Size Distribution (PSD) data under various
operating conditions and reactor configurations. A T-mixer with a circular cross-
section and constant diameter was employed to assess the impact of (i) initial
magnesium concentration and (ii) flow rates. Additionally, a Y-mixer, featuring two
diverging channels and a final pipe of constant diameter, was used to investigate
the effects of extending (iii) the initial magnesium concentration range, specifically
expanding it towards smaller concentrations.

Parametric identification was conducted following two approaches: (i) the first
involved the use of traditional algorithms such as the Conjugate Gradient (CG) and
the Particle Swarm Optimization (PSO) and (ii) the second involved the develop-
ment of an innovative methodology involving the use of deep-learning algorithms.
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Specifically, the second approach adopts the following procedure. Leveraging a
Population Balance Model (PBM) coupled with Computational Fluid Dynamics
(CFD) simulations of T- and Y-mixers, a numerical dataset was created to train a
Neural Network (NN), referred to as the ‘mirror model,’ which predicts kinetics
parameters based on experimental sizes. Notably, the PBM, fitted with the dataset
(i), excels at describing changes in flow rate (dataset (ii)) and substantial reductions
in reactant concentrations in the Y-mixer (dataset (iii)), even though these conditions
were not encountered during the fitting step. Key Performance Indicators (KPIs)
reveal that the mirror model consistently outperforms the CG and PSO, highlighting
its remarkable potential for practical applications.

Finally, a three-dimensional one-way coupled CFD-PBM model was imple-
mented to conduct the optimization of a prototype for the precipitation of magnesium
hydroxide. In this regard, a collaboration between ResourSEAs and the University of
Palermo resulted in the design of a pilot-scale prototype for magnesium hydroxide
precipitation, patented by ResourSEAs S.r.l. The initial design process, based on
trial and error, lacked a specific optimization tool. Addressing this gap, the research
emphasizes the practical applications of modelling tools to support the circular
economy and prototype optimization. The research navigates through analytical
insights guiding the prototype’s optimization, considering constraints imposed by the
patent. This exploration offers a comprehensive understanding of considerations and
decisions crucial to enhancing the innovative solution, aiming to bridge theoretical
foundations with tangible outcomes and contribute to the advancement of magnesium
hydroxide precipitation technologies.
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Chapter 1

Introduction

1.1 Importance and Applications of Critical Raw Ma-
terials

Raw materials form the backbone of economies, serving as the fundamental building
blocks for industrial production and innovation. However, reliable and uninterrupted
access to certain raw materials has emerged as a growing concern both within the
European Union (EU) and worldwide. In response to this challenge, the European
Commission has developed a list of critical raw materials (CRMs) specific to the
EU, which undergoes regular review and updates [1, 2]. These CRMs encompass
raw materials of utmost importance to the EU economy, while also carrying risks
associated with their supply chains. CRMs hold significant importance in various
aspects of our society, contributing to industry, technological advancements, and
environmental sustainability [3–5]. For instance, raw materials enable the minia-
turization, durability, and efficiency that we expect from our electronic devices,
making them indispensable to modern technology. Raw materials also play a crucial
role in promoting environmental sustainability through the development of clean
technologies [6]. They are irreplaceable components in solar panels, wind turbines,
electric vehicles, and energy-efficient lighting systems. By harnessing renewable
energy sources and reducing greenhouse gas emissions, these clean technologies help
mitigate the environmental impact of traditional energy production methods. Special
attention is dedicated to the management of mineral resources, particularly in light
of the European Green Deal’s focus on achieving economic growth that is decoupled
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from resource consumption. The ambitious goal of the European Green Deal, aimed
at fostering sustainable development and environmental protection while ensuring
economic prosperity, can be realized through the adoption of a circular economy
(CE) approach [7–9]. In an era marked by growing environmental concerns and the
need for sustainable development, mineral extraction processes have come under
scrutiny for their significant impact on the environment and natural resources. This
thesis aims to address these challenges and does so within the framework of the
SEArcularMINE European Project. This project undertakes a transformative journey,
focusing on the development of a sustainable circular approach to mineral extraction.
SEArcularMINE project is centered around building upon the traditional saltworks
process, wherein seawater undergoes natural evaporation and crystallization in shal-
low basins. This brine contains high concentrations of valuable trace elements. The
primary goal of the project is to develop sustainable and cost-effective technologies
that will play a critical role in securing European access to CRMs through a circular
processing approach, utilizing abundant brine resources. The project focuses on
several key areas:

• Development of three innovative technologies targeting the extraction of Mag-
nesium (Mg), Lithium (Li), and other trace elements (Rb, Sr, Cs, Ga, Ge, Co)
[10–14].

• Establishment of multiple auxiliary processes to ensure complete circularity
during the production process.

• Utilization of salinity gradient power and on-site solar and wind energy to
meet energy needs [15].

• Creation of advanced modelling tools to simulate, size, and evaluate processes,
optimizing resource usage under various framework conditions.

• Characterization of brine availability across Europe and the entire Mediter-
ranean basin.

This opens the way for further development, widespread adoption, and acceptance
of the circular processing approach. SEArcularMINE aims to transform mineral
extraction in the EU by creating innovative technologies that unlock new resources,
support economic growth, and protect the environment. The project’s circular ap-
proach, using only seawater as an input, reduces the need for external chemicals
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and minimizes energy and freshwater usage, promoting sustainability. Additionally,
SEArcularMINE explores integrating its technologies with seawater desalination, of-
fering a cost-effective solution to address freshwater scarcity and support sustainable
water management. The focus of this thesis is to exclusively analyze, characterize,
and model the recovery of magnesium.

1.2 Research Objectives and Motivation

Motivated by the EU’s emphasis on achieving circular economy principles and
resource independence, this research has been driven by the vision to extract mag-
nesium efficiently and sustainably from highly concentrated solutions, specifically
brines. Magnesium concentrations in seawater typically range from 1.1 to 1.7 g/L,
while in brines, it can reach levels as high as 60 g/L. Recent years have witnessed
a sharp rise in the magnesium market, and further substantial growth is anticipated
in the future. The strategic importance of magnesium is highlighted by its inclu-
sion among the 30 CRMs for the EU. This recognition is primarily attributed to
the geographical distribution of magnesium producers, mainly situated in the USA,
China, and Russia [16]. Magnesium finds widespread application in the form of
magnesium hydroxide (Mg(OH)2) and magnesium oxide (MgO). Both Mg(OH)2

and MgO belong to a group of compounds known for their numerous favorable prop-
erties and potential practical applications [17]. Mg(OH)2, owing to its remarkable
properties, serves as a versatile compound with a multitude of practical applications.
It acts as a flame-retardant filler in composite materials, exhibiting endothermic
dehydration at high temperatures. Additionally, Mg(OH)2 functions as an effective
acidic waste neutralizer and finds utility as a pharmaceutical excipient. In the pulp
and paper industry, it serves as a preservative, while in the realm of fertilizers, it acts
as an additive. Moreover, Mg(OH)2 plays a crucial role as a component in ethanol
chemical sensors. Notably, it serves as the most vital precursor for the preparation of
MgO, a catalyst widely employed in various industrial processes [18]. Numerous
methods have been employed to obtain Mg(OH)2 nanostructures. These methods
include microwave or ultrasonic/hydrothermal treatment [19, 20], precipitation [21–
25], precipitation with the aid of additives [26], hydrothermal process [27] and an
innovative ionic exchange membrane crystallizer [28, 29]. These diverse approaches
offer exciting possibilities for tailoring Mg(OH)2 crystalline structures to suit spe-
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cific applications, enhancing its potential for various technological advancements.
The extraction of magnesium from highly concentrated solutions presents a highly
intricate task. Several research studies have explored innovative approaches to tackle
this challenge effectively.

A widely used route in large-scale processes is the hydrothermal method. In this
approach, a magnesium precursor, such as Mg(NO3)2 ·6H2O, reacts with an alkaline
solution in a stirred reactor at room temperature. It is then transferred to an autoclave
system for hydrothermal treatment at a constant temperature (150-180 °C), followed
by cooling back to room temperature. The resulting mixture is separated using a
centrifuge, washed with water to remove impurities, and then washed with ethanol
to prevent agglomeration. Finally, the product is dried in an inert gas atmosphere.
Additionally, the solvothermal method is worth mentioning briefly. It shares many
similarities with the hydrothermal method but can serve as a replacement when a
high-purity product is required. By employing solutions under critical conditions
instead of aqueous solutions, the solvothermal method can yield a product with much
higher purity [30]. However, both the hydrothermal and solvothermal methods are
relatively expensive in terms of energy and equipment requirements. As a result,
the precipitation process has been favored as a simpler and more cost-effective
alternative.

Turek and Gnot [25] achieved success by effectively extracting Mg(OH)2 through
a precipitation process from hard coal mine brine containing 2.84 g/L of magnesium.
Similarly, Cipollina et al. [21] demonstrated their prowess in producing high-purity
Mg(OH)2 using real brines. Meanwhile, Yousefi et al. [24] utilized a surfactant,
poly(ethylene glycol, PEG 4000), to synthesize Mg(OH)2, employing a chemical
precipitation method on an impure brine. These diverse investigations showcase the
intricate nature of magnesium recovery from concentrated solutions and the ingenu-
ity required to overcome this scientific challenge. The precipitation mechanism of
Mg(OH)2 involves a complex interplay of various phenomena, spanning different
scales, including the molecular-level (micro-scale) and geometry-level (macro-scale)
aspects. This complexity arises from chemical reactions, homogeneous and hetero-
geneous nucleation, molecular growth, aggregation, and agglomeration. When the
precipitation kinetics are remarkably fast, as observed in the production of Mg(OH)2

from concentrated solutions, the role of mixing becomes crucial in determining
the final particle size distribution (PSD). Numerous investigations have been con-
ducted to explore and characterize the precipitation kinetics of Mg(OH)2 [31–35].
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Researchers have employed various experimental setups, including T-shaped static
mixers and stirred reactors. These studies have revealed that the induction time,
representing the duration between the formation of supersaturated solutions and the
appearance of precipitates, is extremely short, often on the order of a few seconds,
even at low magnesium concentrations, such as ∼ 0.03 g/L. Such rapid precipitation
highlights the intricacy of the process and underscores the significance of compre-
hending and optimizing the mixing conditions to achieve desired particle attributes
during the production of Mg(OH)2. Only a restricted number of investigations have
addressed the impact of mixing on the precipitation processes of Mg(OH)2 from
concentrated solutions. For instance, Shirure et al. [36] examined the precipitation of
Mg(OH)2 from MgCl2 solutions (up to 24 g/L) using T and Y-shaped static mixers.
The researchers observed that higher reactant flow rates resulted in the production of
smaller Mg(OH)2 particles. To measure the PSDs, they introduced the surfactant
Tween 20 to the Mg(OH)2 suspensions, and the volume-average particle size was
found to range from 5 µm to 30 µm. Similarly, Song et al. [37] successfully synthe-
sized pure Mg(OH)2 particles by employing MgCl2 solutions (∼ 40 g/L) with NaCl
as an assistant additive in a glass reactor under vigorous stirring. The PSDs were
measured using static light scattering (SLS) granulometry analysis without the use
of surfactants, and particles in the micrometer range were reported. Moreover, SEM
images revealed significant aggregates/agglomerates. Furthermore, Tai et al. [38]
researched the precipitation of Mg(OH)2 nanoparticles from highly concentrated
MgCl2 solutions (up to 20 g/L) utilizing a spinning disk reactor. The spinning
disk reactor enabled an excellent degree of mixing, with a mixing time below 1
ms, which facilitated the synthesis of lamellar Mg(OH)2 particles. These particles
exhibited a length ranging from 50 to 80 nm and a thickness of approximately 10
nm. To aid in dispersion, the authors utilized a sonicator along with poly(acrylic
acid, sodium salt) (PAA) and sodium hexametaphosphate as dispersants. Particle
measurements were performed using dynamic light scattering (DLS) technology,
yielding a number-average particle size ranging from 40.0 to 47.5 nm. Shen et al.
[39] introduced a novel impinging stream-rotating packed bed reactor. To assess
the particle size and distribution, the prepared samples were dispersed in distilled
water through sonication for 10 minutes, utilizing a 2% sodium hexametaphosphate
solution as a dispersant. Wide size distributions were observed at low liquid flow
rates and rotating packed bed speeds. Furthermore, the PSDs became narrower as
both the liquid flow rates and the rotating packed bed speeds increased. Beyond
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spinning disk reactors, some other high-mixing efficiency devices can be utilized in
the context of precipitation processes. For instance, T- or Y-shaped static mixers are
chosen for their ability to feed reactants from opposite sides, causing them to collide
and react within the mixing channel. Schikarski et al. [40] investigated such systems
and found considerably high mixing efficiencies due to the extremely high turbulence
generated. Similarly, Orlewski and Mazzotti [41] utilized a Y-mixer reactor to inves-
tigate the precipitation process of barium sulfate, conducting both experimental and
computational studies. However, the literature review of Mg(OH)2 precipitation has
mainly focused on batch or semi-batch experimental tests. For instance, Alamdari
et al. [23] investigated Mg(OH)2 precipitation in both configurations to study the
process and derive kinetics parameters. They performed preliminary experimental
tests to identify operative conditions where primary nucleation could be neglected.
The batch experiments led to rapid supersaturation and the formation of numerous
fine particles due to primary nucleation. On the other hand, the semi-batch con-
figuration resulted in a coarser product size due to the gradual addition of alkaline
reactant to the magnesium precursor solution. As a result, the semi-batch approach
was adopted, considering only secondary nucleation, growth rates, and aggregation,
while neglecting the micro-mixing effect. Additionally, Yuan et al. [33] investigated
primary nucleation and growth rates within a batch system with low concentrations
using the electrical conductivity method, which is related to ion concentrations. This
measurement allowed the determination of the induction time of nucleation, enabling
the inference of certain kinetics parameters. Indeed, the identification of precipitation
kinetics is of utmost importance in controlling the shape and size distribution of
crystals during the precipitation process. Understanding the underlying kinetics
allows for precise manipulation of various parameters, such as reaction conditions,
which directly influence the final product’s characteristics. By gaining insights
into kinetics, the process can be optimized to achieve desired particles’ properties,
leading to better performance and applicability in various industrial applications.
This thesis aims to achieve two main objectives: (i) identify the precipitation kinetics
set of magnesium hydroxide that is independent of a specific system and operating
conditions, and (ii) develop a robust framework for modelling and predicting particle
outcomes. Despite extensive efforts in characterizing the precipitation of magnesium
hydroxide, existing literature lacks a comprehensive model capable of describing its
precipitation under varying conditions.
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1.3 A Roadmap to Chapters 2-8

This doctoral thesis delves into a comprehensive exploration of various phenomena
and processes relevant to reactive crystallization systems, focusing on computational
modelling, mixing dynamics, precipitation kinetics, and 3D modelling techniques.
The thesis is organized into several chapters, each contributing uniquely to our
understanding of the subject matter.

Chapter 2: Computational Fluid Dynamics (CFD) Modeling This chapter
introduces the fundamental aspects of modelling critical phenomena such as turbu-
lent mixing, fast irreversible reactions, nucleation, growth, and aggregation using
Computational Fluid Dynamics (CFD) techniques. The chapter aims to establish a
theoretical foundation for understanding the complex dynamics governing reactive
crystallization systems.

Chapter 3: Mixing Dynamics and Precipitation Processes The third chapter
centers on the pivotal role of mixing in influencing the outcomes of precipitation
processes within fluid systems. Static mixers, particularly T-shaped mixers, are
extensively explored through numerical simulations and experimental investigations.
This chapter lays the groundwork for understanding how mixing parameters affect
the kinetics of reactive crystallization. In this chapter, the candidate has entirely
taken care of the modelling side.

Chapter 4: Experimental Study on Precipitation Dynamics In this experimental
chapter, a comprehensive study is presented on the precipitation of magnesium
hydroxide (Mg(OH)2) from highly concentrated synthetic MgCl2 solutions. Circular
cross-sectional T-shaped mixers are employed to control reactant homogenization,
providing insights into particle size distribution and aggregation/agglomeration
dynamics. In this chapter, the candidate collaborated in the experimental campaign,
conducting replicates of some tests and measuring the zeta potential.

Chapter 5: Kinetic Parameters Inference and Modeling The fifth chapter aims
to develop a comprehensive model for inferring kinetic parameters related to primary
nucleation, molecular growth, and aggregate strength in reactive crystallization
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systems. Through a combination of theoretical modelling and experimental data,
this chapter contributes to enhancing our understanding of precipitation kinetics. In
this chapter, the candidate has done all the work

Chapter 6: Machine Learning Optimization Approach In this innovative chap-
ter, a machine-learning-based optimization approach is introduced for optimizing
precipitation kinetics parameters. The integration of artificial intelligence with ex-
perimental data and mechanistic models provides a robust framework for optimizing
complex engineering processes. In this chapter, the candidate has done all the work

Chapter 7: 3D Modeling for Precipitation System Design The final chapter
leverages 3D modelling techniques to calibrate and validate a precipitation model for
magnesium hydroxide synthesis. The calibrated model serves as a powerful tool for
designing and optimizing prototype precipitation systems, showcasing the practical
applications of the research findings. In this chapter, the candidate has done all the
work

Chapter 8: Comprehensive Overview and Practical Applications Chapter 8
represents a culmination and synthesis of the research efforts undertaken throughout
this doctoral thesis, bridging theoretical insights with tangible applications in mag-
nesium recovery from brines and bitterns, with a specific emphasis on critical raw
materials (CRMs) and circular economy principles.



Chapter 2

Fundamentals and Theoretical
Background

The focus of this chapter is the description of the modelling of the main phenomena
involved: Computational Fluid Dynamics (CFD), turbulent mixing, fast irreversible
reaction, nucleation, growth, and aggregation.

2.1 Modelling of Turbulent Mixing

In the field of fluid mechanics, the study involves categorizing flows into distinct
types: laminar and turbulent flow. This classification relies on the characteristics
observed in streamlines and velocity levels. Turbulence characterizes the unpre-
dictable motion that envelops fluid as it swiftly traverses a surface or navigates
through confined spaces. The distinctive nature of turbulence is shaped by its intri-
cate, multi-layered structure, unfolding as a cascade of swirling eddies or vortices.
These intriguing eddies organize themselves in a hierarchical structure, encompass-
ing a range of scales that extend from substantial dimensions down to incredibly
small sizes, measuring a few micrometers. The exploration of turbulence drives
the development of mathematical frameworks and empirical approaches, all aimed
at comprehending the intricate dynamics. The mathematical framework finds ex-
pression through diverse methodologies, encompassing approaches such as Direct
Numerical Simulation (DNS), Large Eddy Simulation (LES), and the modelling
techniques embodied by Reynolds-Averaged Navier-Stokes (RANS). These models
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solve and model the scales involved differently (Figure 2.1) and, as a result, have
different computational costs:

• DNS: Complete Resolving of Flow (No Modeling)
DNS models simulate the entire range of turbulent scales without modelling, of-
fering unparalleled accuracy but requiring significant computational resources.

• LES: Partial Modeling of Flow
LES models simulate larger turbulent structures directly while modelling
smaller scales. This strikes a balance between accuracy and computational
efficiency.

• RANS: Complete Modelling of Flow
RANS models are based on time-averaged equations and treat turbulent fluctu-
ations as a separate term. This approach provides a comprehensive representa-
tion of turbulence.
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Figure 2.1 Comparison of three turbulence models: (i) DNS (solid black line), (ii) LES
(dashed red line) and RANS (dot-dashed green line)

In the current pursuit, the attention is directed toward the utilization of RANS
models. RANS equations describe the time-averaged behaviour of fluid flow and
account for the effects of turbulence. RANS equations for Newtonian, single-phase,
incompressible flow are as follows:



2.1 Modelling of Turbulent Mixing 11

Continuity Equation:
∂ ūi

∂xi
= 0 (2.1)

The continuity equation ensures that the rate of change of mass within a region
is balanced by the net flow of mass across its boundaries. Here, u = (ux,uy,uz)

represents the velocity vector.

Momentum Equations (Navier-Stokes Equations):

∂ ūi

∂ t
+ ū j

∂ ūi

∂x j
=

∂

∂x j

(
ν

(
∂ ūi

∂x j
+

∂ ū j

∂xi

)
−u′iu

′
j

)
− 1

ρ

∂ p̄
∂xi

+gi (2.2)

These equations govern the momentum conservation for each coordinate direction
i (where i can be x, y, or z). They describe how the velocity changes due to pressure
gradients, viscous forces, and Reynolds stresses. Here, p is pressure, ρ is density,
g is the gravitational acceleration, µ is dynamic viscosity, and u′iu

′
j represents the

Reynolds stress tensor, which characterizes turbulent fluctuations and it can be closed
as follows:

u′iu
′
j = νt

(
∂ ūi

∂x j
+

∂ ū j

∂xi

)
(2.3)

Here, νt is the turbulent viscosity. The RANS equations are based on the concept of
Reynolds averaging, which separates the flow variables into mean and fluctuating
components. Turbulence models provide additional closure by relating the Reynolds
stresses to flow properties, enabling the prediction of turbulent behavior in various
engineering simulations.

k− ε model

The k− ε model is one of the simplest turbulence models. It predicts the turbulent
kinetic energy (k) and the rate of dissipation of k (ε) through transport equations.
Turbulent kinetic energy equation:

∂k
∂ t

+
∂ (ūik)

∂xi
=

∂

∂xi

(
(ν +σkνt)

∂k
∂xi

)
+Pε − ε (2.4)
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Turbulent kinetic energy dissipation rate equation:

∂ε

∂ t
+

∂ (ūiε)

∂xi
=

∂

∂xi

(
(ν +σενt)

∂ε

∂xi

)
+Cε1

ε

k
Pε −Cε2

ε2

k
(2.5)

νt =Cµ

k2

ε
(2.6)

Here, Pε represents turbulent production, νt is the turbulent viscosity from Launder
and Spalding [42] and σk, σε , Cε1, Cε2 and Cµ are model parameters and their value
is reported in Table 2.1 [43].

Table 2.1 k− ε model parameters

Parameter σk σε Cε1 Cε2 Cµ

Typical Value 1.0 1.3 1.44 1.92 0.09

k−ω SST model

The k−ω SST model employs two transport equations: one for turbulent kinetic
energy (k) and another for the specific dissipation rate of turbulence (ω) [44, 45].

Turbulent kinetic energy equation:

∂k
∂ t

+
∂ (ūik)

∂xi
=

∂

∂xi

(
(ν +σkνt)

∂k
∂xi

)
+Pω −β

∗
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Specific dissipation rate equation:
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+2(1−F1)
σω2

ω

∂k
∂xi

∂ω

∂xi

νt =
a1k

max(a1ω,b1F23S)
(2.9)

Here, Pω represents turbulent production, F1 is a blending function and σk, σω ,
γ , β , σω2, a1 and b1 are model parameters and the procedure to compute their value
is reported in Menter [46] Appendix.
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RNG k− ε model

The RNG k− ε model employs transport equations for turbulent kinetic energy (k)
and the rate of dissipation of turbulence (ε). The turbulent kinetic energy equation
for RNG k− ε is equal to standard k− ε (see Eq. (2.4)). Dissipation rate equation:

∂ε

∂ t
+

∂ (ρ ūiε)

∂xi
=

∂

∂xi

(
(ν +σενt)

∂ε

∂xi

)
+Cε

ε

k
Pε −C∗

ε2
ε2

k
(2.10)

Here, Pε represents turbulent production, νt is equal to Eq. (2.6) and σk, σε , Cε1, C∗
ε2

and Cµ are model parameters and their value can be calculated following Yakhot et al.
[47]. The difference between the standard k− ε model and the RNG k− ε model
lies in the calculation of some of the parameters, including C∗

ε2. While small, this
difference demonstrates the impact that parameters have on the quality of turbulence
description.

2.2 Reactive Turbulent Flows

Turbulent reacting flows are complex fluid dynamics phenomena that involve the in-
teraction between turbulence and chemical reactions [48]. This intricate coupling of
fluid motion and chemical processes occurs in a wide range of natural and engineered
systems, such as atmospheric chemistry [49], and industrial combustion processes
[50]. Turbulence itself refers to the irregular and chaotic motion of a fluid, character-
ized by the presence of eddies and vortices at different scales. These turbulent eddies
enhance the mixing of different fluid components, leading to an efficient exchange of
heat, mass, and momentum. In the context of reactive flows, this enhanced mixing is
crucial as it enables the reactants to come into close proximity, promoting chemical
reactions and influencing the overall kinetics [51–53].

The behaviour of turbulent reacting flows is determined by several key factors.
First, the initial conditions, such as the temperature, pressure, and concentrations of
the reactants, significantly influence the reaction pathways and their rates. Second,
the specific characteristics of the turbulent flow, including turbulence intensity, length
scales, and Reynolds number, dictate the level of mixing and thus affect the reaction
rates. The coupling between turbulence and chemistry is often described using
two main approaches: the Reynolds-Averaged Navier-Stokes equations and Large
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Eddy Simulation [54–58]. RANS equations average the turbulent flow properties
over time, providing a computationally efficient method, but they might miss some
important small-scale turbulent structures that are crucial for accurate predictions
of the reaction rates [59]. On the other hand, LES directly simulates the large-scale
turbulent structures while modelling the smaller ones, offering a more detailed
representation of the flow, but at a higher computational cost.

Researchers in the field of turbulent reacting flows face numerous challenges.
The non-linear nature of turbulence and the complex interactions between chemical
reactions and fluid dynamics necessitate sophisticated mathematical and numerical
methods. Additionally, the wide range of length and time scales involved requires
resolving a significant span of scales, which can be computationally demanding
[40, 60].

Governing Equations

Modelling chemical reactions in the turbulent regime begins with solving the con-
tinuity (Eq. (2.1)), the flow field (Eqs. (2.2)) and turbulence (e.g., Eqs. (2.4), (2.5)
and (2.6)). Since the fluid comprises a blend of C interactive chemical species, it
becomes essential to establish the measure of each species’s concentration, denoted
as c̄i. In this context, the index α = 1, 2, 3, . . ., C is used to distinguish between
various constituents. In light of chemical dynamics, the concentrations of individual
constituents within the fluid vary in space and time, as governed by the ensuing
scalar transport equation:

∂ c̄α

∂ t
+ ū j

∂ c̄α

∂x j
=

∂

∂x j

(
Dα

∂ c̄α

∂x j

)
+Rα(c) (2.11)

Here Dα is the diffusion coefficient of the ith component in the fluid phase and
Ri(c) represents the sink term. It is possible to make the Eqs. (2.2) and (2.11)
dimensionless to obtain dimensionless groups based on the molecular properties
of fluids that allow a-priori understanding of what the controlling resistance of the
process is [61]. Therefore, it is necessary to identify a characteristic length, L, of the
system, and a characteristic velocity, U . The dimensionless groups are:

• Reynold number, Re = LU/ν is defined as the ratio of the inertial and viscous
forces
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• Schmidt number, Sc̄i = ν/Di is defined as the ratio of the momentum transport
rate to the molecular diffusion rate

• Damkhöler number, Da = τ f /τr is defined as the ratio of the time scale of
fluid flow to the reaction time

It is worth mentioning that each of these groups was obtained from the molecular
transport properties of the fluid and accounts for the system studied (e.g., the Re
changes when the system changes) and consequently are dimensionless system-
dependent groups. Conversely, one can define the same dimensionless groups
based on the turbulent properties of the system (e.g. k and ε) by making these
turbulent dimensionless groups independent of the system and dependent only on
the momentum conditions.

Premixed and Non-Premixed Reactive Flow Configura-
tions

When studying reacting flows, it is important to differentiate between premixed
and non-premixed configurations, as they exhibit distinct reactive characteristics.
In premixed flows, the reacting species are intimately mixed before entering the
combustion zone. This creates a uniform mixture with a defined reacting species
ratio. The reaction occurs uniformly throughout the mixture. An example of a
premixed configuration is found in combustion processes [62, 63] In contrast, non-
premixed flows involve the separate injection of reacting species into the reaction
zone [64, 65]. This leads to a region where the reacting species exist in distinct
spatial domains. Non-premixed reacting species often exhibit complex structures
and are more sensitive to changes in the flow conditions. Examples of non-premixed
flows are (i) fast reaction in diffusion flames [66] or (ii) acid-base reaction in a liquid
[67].

Slow, Finite-rate and Fast Chemical Reactions

In the world of chemical reactions, there’s a spectrum that shows how fast these
reactions happen compared to the flow of fluids. This spectrum has two ends that
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help us understand how reacting systems work. The Damkhöler number is the key
player in defining this spectrum. A schematic representation is provided in Figure
2.2:

Figure 2.2 Schematic representation of the reaction time scale (tR) compared with the flow
time scale (tF) and the corresponding Damkhöler number

On one side of the spectrum, when the Damkhöler number is way less than one,
it tells us that fluids are flowing much faster than chemical reactions are taking place.
This means that chemical reactions are happening slowly compared to the quick
mixing in the system. We call this ‘slow’ chemical reactions. But if the Damkhöler
number is way bigger than one, it means that chemical reactions are happening
quickly compared to the flow of fluids. This is what we mean by ‘fast’ chemical
reactions. When the Damkhöler number is around one, it’s a balance point between
chemical reactions and fluid flow. This is called ‘finite-rate’ chemical reactions. In
this situation, the timescales for both processes are comparable. This study primarily
revolves around non-premixed turbulent reacting flows, with a special emphasis on
swift chemical reactions occurring within a liquid phase.
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Computational Modelling of fast, irreversible reactions

The multi-scale nature of turbulence presents a significant challenge in its modelling,
particularly when chemical reactions are involved. In such situations, the chemical
reaction itself cannot occur unless the reactants are thoroughly mixed both at the
largest scales (macro-mixing) and at the smallest scales, (micro-mixing). Addressing
this complex interaction between mixing and reactions has been a subject of research
for many years, leading to the development of various approaches to account for
their interference. Several studies have proposed different methodologies to model
the interplay between mixing and reactions. Notable examples include the works by
Pohorecki and Baldyga [68] and Fox [69]. These approaches aimed to capture the
intricate dynamics of turbulence-chemistry interaction, where mixing plays a crucial
role in determining the reaction rates and species distributions. In this thesis, we
adopt the approach utilized by Baldyga et al. [70] and elaborated upon by Marchisio
and Fox [53] specifically for fast irreversible reactions. This approach aims to address
the challenges posed by fast, irreversible reactions occurring in turbulent flows.
The rapid nature of such reactions necessitates a detailed understanding of mixing
effects, as they directly impact the reaction kinetics and overall reaction behaviour.
By incorporating the mixing effects into the modelling approach, researchers can
gain valuable insights into the interaction between turbulent mixing and chemical
reactions.

In reactive turbulent flow modelling, it is crucial to properly tune the governing
equations to decouple macro-mixing and micro-mixing processes. Macro-mixing is
described through the mixture fraction equation, while the variance of the mixture
fraction represents micro-mixing. The mixture fraction equation can be written as
follows:

∂ ᾱ

∂ t
+ ū j

∂ ᾱ

∂x j
=

∂

∂x j

(
Dt

∂ ᾱ

∂x j

)
(2.12)

where ᾱ is the Reynolds-averaged mixture fraction and Dt is the turbulent diffusion
coefficient defined as:

Dt =
νt

Sct
(2.13)

Here Sct is the turbulent Schmidt number. The diffusive term in Eq. (2.12) is
responsible for gradient flattening, which depends on the turbulence conditions and
can be tuned by changing parameters like Sct or Cµ . In high turbulent conditions, a
smaller Sct leads to reduced gradients, indicating more effective turbulent mixing.
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The mixture fraction, ᾱ , is physically linked to the relative amount of two fluids in
a known control volume. Specifically, ᾱ will be 0 (1) when only A solution (B) is
present and 0.5 when both A and B solutions are equally present. The variance of
the mixture fraction, α

′2, is described by the following equation:

∂α
′2

∂ t
+ ū j

∂α
′2

∂x j
=

∂

∂x j

(
Dt

∂α
′2

∂x j

)
+2Dt

(
∂ ᾱ

∂x j
· ∂ ᾱ

∂x j

)
︸ ︷︷ ︸

Production

− ε
α
′2︸︷︷︸

Dissipation

(2.14)

Besides the terms previously explained, the second and third terms on the right-
hand side of Eq. (2.14) represent, respectively, the production and dissipation of
the variance. Notably, the production term occurs at a larger scale, involving the
mixture fraction, while the dissipation term takes place at a smaller scale, reflecting
the Batchelor micro-scale. This observation emphasises the multi-scale nature of
mixing phenomena. Unlike the mixture fraction equation, the variance equation
is not fully mathematically closed. The dissipation term in the variance equation
requires a closure expression to account for the variance dissipation rate, denoted as
γ . Marchisio et al. [71] proposed the following equation to calculate γ:

γ =C f
Cφ

2
ε

k
(2.15)

ε
α
′2 = γα

′2 (2.16)

Here, k/ε represents the micro-mixing characteristic time. C f and Cφ are model
parameters. The parameter C f can be easily tuned with known experimental data to
accurately describe the variance dissipation rate [72]. Regarding Cφ , two approaches
can be adopted. For high-Reynolds flows, it can be assumed constant and equal to 2
[53]. Alternatively, it can be calculated based on the local turbulence characteristics.
Liu and Fox [73] provided a correlation for Cφ as a function of k and ε:

Cφ =
6

∑
n=1

an (log10 Rel)
n (2.17)

Here, an are fitting parameters reported in Liu and Fox [73] and Rel is the local
Reynolds number, Rel = k/

√
εν , which depends on the turbulent properties and the

fluid kinematic viscosity, ν .
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Probability Density Function

A well-established approach to describing chemical reactions in turbulent flows is
to use the presumed Probability density function (PDF). The PDF represents the
probability of finding the monitored property of interest in an infinitesimal spatial
interval [74, 75]. One can, therefore, use the PDF f (α) to derive the mixing fraction
and its variance, as follows:∫ 1

0
f (α)dα = 1 (2.18)∫ 1

0
f (α)αdα = ᾱ (2.19)∫ 1

0
f (α)(α − ᾱ)2dα = α

′2 (2.20)

The benefit of this approach is that one can use an a priori chosen functional form for
the PDF and reconstruct it using only low-order moments (i.e., the mixing fraction
and its variance). In this way, it is not necessary to solve a transport equation of the
PDF. Several types of PDF have been studied, however, in this paper the focus is on
the fβ PDF (i.e., β probability density function):

fβ (α) =
αn−1(1−α)m−1∫ 1

0 αn−1(1−α)m−1dα
(2.21)

Here, n = ᾱ

(
1
Is
−1
)

and m = (1− ᾱ)
(

1
Is
−1
)

and Is =
α
′2

ᾱ(1−ᾱ)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

f

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.3 fβ (α) for two values of Is and a constant value of ᾱ = 0.5. Is = 0.1 on the left
and Is = 1 on the right
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Figure 2.3 shows the shape that the fβ PDF assumes in the two boundary cases
(ᾱ = 0.5, Is = 0.1 (left) and (ii) Is = 1 (right)). When the Is is low (0.1 in Figure
2.3-left), fβ assumes higher values at mixing fractions equal to the imposed ᾱ value
(0.5 in this case). In other words, the probability of finding regions in the reaction
domain where the two fluids are mixed is higher. Conversely, when the Is is high (1
in Figure 2.3-right) the probability of finding regions in the reaction domain where
only the two pure liquids exist (corresponding to α = 0 and 1) is higher.

Instantaneous, irreversible reactions

In the case of instantaneous and irreversible reactions, algebraic relationships can
be obtained that link the concentration φi(α) of the ith chemical species involved to
the local mixture fraction. In the case of reactions in which only two reactants are
involved, for example, an acid A and a base B forming a product P (A+ rB → P),
the equations become:

φA(α)

φ
(0)
A

= 1− α

αs
,

φB(α)

φ
(0)
B

= 0, if α ∈ [0,αs] (2.22)

φA(α)

φ
(0)
A

= 0,
φB(α)

φ
(0)
B

=
α −αs

1−αs
, if α ∈ [αs,1] (2.23)

where αs is the stoichiometric mixture fraction defined as follows:

αs =
rφ

(0)
A

rφ
(0)
A +φ

(0)
B

(2.24)

Here φ
(0)
A and φ

(0)
B represent the reactant concentrations fed to the reaction volume.

Eqs. (2.22), (2.23) and (2.24) are derived assuming that a mixture fraction of 0
corresponds to pure A and a mixture fraction of 1 corresponds to pure B. Similarly,
algebraic equations can be derived for the P product:

φP

φ
(0)
B

=
α

αsr
, if α ∈ [0,αs] (2.25)

φP

φ
(0)
B

=
1
r

(
1−α

1−αs

)
, if α ∈ [αs,1] (2.26)
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Figure 2.4 A, B and P dimensionless concentrations when Is = 0. A and B reactants on the
left and P product on the right

For simplicity, let’s consider the case where r = 1 and αs = 0.5 to plot A, B and P
dimensionless concentrations. Figure 2.4-left shows the dimensionless concentration
in terms of reactants while Figure 2.4-right shows the product concentration. These
profiles refer to an Is = 0. It means that the reactants are perfectly micro-mixed. In
this case, since the reaction is instantaneous and irreversible, the two reactants cannot
coexist and, depending on the α value, a certain amount of A (B) will react to form
P while any excess will remain unreacted. When, however, the mixing conditions
do not correspond to perfect micro-mixing one has to weigh the concentration that
can react at the micro-scale with the fβ . Therefore, assuming a functional form for
the PDF, concentrations can be calculated for any value of ᾱ and α

′2 (i.e., for any
mixing condition) as follows:

φ̄A =
∫ 1

0

(
φA fβ

)
(α)dα (2.27)

φ̄B =
∫ 1

0

(
φB fβ

)
(α)dα (2.28)

φ̄P =
∫ 1

0

(
φP fβ

)
(α)dα (2.29)
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Figure 2.5 Representation of the product φB fβ . It is valid for all the products in Eqs. (2.27),
(2.28) and (2.29) and for any value of ᾱ and Is.

The central idea of this approach lies in encapsulating the impact of turbulence
on the chemistry through the functional expression, fβ . This is because the chemical
reactions happen so rapidly compared to the mixing timescale. Figure 2.5 shows
that when Is is low but other than zero, the mixing ( fβ ) plays a role and it can
be mathematically accounted for by multiplying the fβ with the concentration in
perfectly micro-mixed conditions resulting in the red area. Moreover, in CFD
applications, tackling the integrals described in Eqs. (2.27), (2.28) and (2.29) can
be quite time-intensive, especially for equilibrium and non-isothermal reactions.
Consequently, to mitigate this, the values of these integrals are computed beforehand.
This pre-computation involves evaluating the integrals only for a limited set of mean
mixture fraction values ranging from 0 to 1, and variance of the mixture fraction
values from 0 to ᾱ(1− ᾱ). This collected data is then organized into a lookup table.
The integral values (computed only once) are stored at specific points (nodes) in this
table, and to estimate integral values between these nodes, bi-linear interpolation is
employed. Moreover, Eqs. (2.27), (2.28) and (2.29), to compute the nodes’ values,
have been solved analytically, and the integration procedure is given in the appendix
A.1.
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2.3 Precipitation Modelling

Precipitation is a special type of crystallization, also known as reactive crystallization,
in which the time scales of solid formation are much smaller than the supersaturation
generation (i.e., the time required for the reaction to occur). The typical phenomena
of precipitation processes can be divided into primary and secondary [76]. Primary or
molecular processes include primary nucleation (homogeneous and heterogeneous)
and growth. These processes are called primary or molecular because they are
responsible for the transfer of solid from the aqueous phase (solute molecules) to
the solid phase (precipitated solid). In this thesis, solids formed as a consequence
of primary processes will be called ‘primary particles’. Secondary processes, on
the other hand, include aggregation and agglomeration. These processes are termed
secondary because they refer to the interaction between primary particles which may
aggregate or agglomerate to form secondary particles. The term secondary particles
is, subsequently, also extended to the interaction between primary particles with
newborn secondary particles or between secondary particles and secondary particles.
The description of the particle assemblage and interaction encounters challenges
due to conflicting definitions of “agglomerates” and “aggregates” among different
authors and sources [77, 78]. To summarize, the following terminologies will be
employed:

• Primary particles refer to individual crystals or crystals composed of crystal-
lites (or grains).

• Aggregates consist of primary and/or secondary particles that are bound to-
gether by strong chemical bonds, resulting in resistance to disruption from
fluid shear stresses and sonication.

• Agglomerates, on the other hand, involve relatively loose arrangements of
primary particles primary and/or secondary, held together by weak crystalline
bridges, soaked liquid or electrostatic forces. Agglomerates are weaker than
aggregates and can be separated through physical treatments such as sonication
and stabilized through anti-agglomeration agents.

Moreover, in precipitation processes, the effect of secondary nucleation is usually
neglected, since it is peculiar to those systems in which supersaturation is low,
namely close to the metastable region [79].
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Supersaturation

The driving force in precipitation processes is represented by supersaturation, S,
which indicates the excess of solute in the aqueous phase with respect of its solubility
limit represented instead by the solubility product ksp. In rigorous terms, the driving
force can be expressed as the difference between two chemical potentials, ∆µcp. The
first is that of the molecules in solution, µ

cp
s , while the second is that in the bulk of

the solid particle, µ
cp
p :

∆µ
cp = µ

cp
s −µ

cp
p (2.30)

It can be assumed that the chemical potential of the molecules in the bulk of
the particle coincides with the equilibrium potential between the particle and the
solution, µ

cp
eq :

µ
cp
p = µ

cp
eq (2.31)

The chemical potential of the molecule in solution, on the other hand, is expressed
as:

µ
cp
s = µ

cp
eq + kBT ln(a/aeq) (2.32)

Here, kB is the Boltzmann constant, T is the temperature, a and aeq are the actual
molecules’ activity in the solution and the equilibrium one. For ionic compounds
that dissociate completely in solution, the chemical potential can be written as:

µ
cp
s = n1µ

cp
s,1 +n2µ

cp
s,2 + . . .+nmµ

cp
s,m (2.33)

Here, ni is the number of moles of the ith ion in the molecule and µ
cp
s,i is its corre-

sponding chemical potential. In the case of magnesium hydroxide, supersaturation is
generated when the concentration of Mg2+ and OH− increases and, subsequently,
Mg(OH)2 is formed, following the reaction:

Mg2+
(aq)+2OH−

(aq) → Mg(OH)2(s) ↓ (2.34)

Therefore the ∆µcp can be expressed combining Eqs. (2.30), (2.31), (2.32), (2.33):

∆µ
cp = kBT ln

(
aMg2+ aOH−

aMg2+,eq aOH−,eq

)
(2.35)
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Therefore, it follows that:

S =
aMg2+ aOH−

aMg2+,eq aOH−,eq
−1 (2.36)

Primary Nucleation

The term primary nucleation includes both homogeneous and heterogeneous nucle-
ation, which involves the formation of stable nuclei without the presence of solute
crystals. Following Classical Nucleation Theory (CNT), it is assumed that when
the driving force is sufficiently high, the collisions between solute molecules are
such that they form molecular clusters. If the molecular clusters exceed a certain
critical size (Lc), the Gibbs free energy (∆G) associated with the cluster is such that
the cluster is stable and a new nucleus is formed. The primary nucleation rate, J, is
usually expressed as follows [80–85]:

J = A1e

(
− B1

ln2 (S+1)

)
︸ ︷︷ ︸

Homogeneous

+A2e

(
− B2

ln2(S+1)

)
︸ ︷︷ ︸

Heterogeneous

(2.37)

Here A1 and A2
(
particle no. m−3s−1) represent the maximum value of homoge-

neous and heterogeneous nucleation rates, respectively. B1 and B2 (dimensionless),
on the other hand, are related to properties that relate the liquid and solid phases,
such as the interfacial tension γsl. The value of B1 is proportional to the value of γsl

1 ,
representing the value of the interfacial tension between the liquid and the solid under
study (i.e., liquid-Mg(OH)2). On the other hand, the value of B2 is proportional to
the value of γsl

2 , which represents the value of the interfacial tension between the
liquid and any foreign solid (i.e., liquid-foreign solid), such as impurities.

Molecular Growth

The growth of a primary particle is a two-stage process. The first involves the
diffusion of solute molecules from the bulk of the liquid phase to the particle surface
(diffusion step). The second consists of the incorporation of solute molecules into
the particle lattice (integration step). Depending on the operating conditions that
result, therefore, in a supersaturation profile, the growth mechanism can be either
diffusion- or integration-controlled. A common expression to describe molecular
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growth is the power-law [41, 72]:

G = kgSg (2.38)

Here, kg
(
ms−1) modulates the growth rate while the exponent g (dimensionless)

describes the mechanism. For example, when g equals 1, the growth process is
controlled by diffusion, and the term kg coincides with the mass exchange coefficient,
kd, between the liquid bulk and the solid interface. In that case, the following
equalities can be easily derived:

G =
ShDMp

Lρpkv

(
a−aeq

)
=

ShDMp

Lρpkv
aeqS (2.39)

kg = kd =
ShDMpaeq

Lρpkv
, g = 1 (2.40)

Here, D is the diffusion coefficient of the ion in the solution, Mp is the molecular
weight of the particle, L is the particle size, ρp is the particle density, kv is the shape
factor and Sh is the Sherwood number. The Sherwood number can be calculated
using some semi-empirical correlations [76, 86]:

Sh = 2+0.52Re0.52
p Sc1/3 (2.41)

Rep =

(
εL4

ν3

)1/3

(2.42)

Sc =
ν

D
(2.43)

Here, Rep is the Reynolds number for colloidal particles and Sc is the Schmidt
number. Although in Eq. (2.39) there are no parameters to be experimentally fit, it is
not possible to use this expression because the growth mechanism is not known a
priori. One can, therefore, use a general expression (Eq. (2.38)), and if parameters
fitting results in g equal to 1, it could be inferred that the growth mechanism is
diffusion-controlled.

Secondary processes

In addition to the primary processes, particles are subject to the action of secondary
processes such as aggregation, agglomeration and breakage. Although the focus
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will be on aggregation, a brief explanation of agglomeration and breakage is also
reported in this section. The term agglomeration refers to that process whereby, as a
result of the collision between particles, weak interaction bonds are formed such as:

• Van der Waals forces or weak electrostatic forces

• Weak forces due to the surrounding liquid

This process, therefore, is completely reversible because the forces involved are such
that they can be overcome by chemical and/or physical treatments. It is possible,
for example, to stabilize the particle suspension by appropriately changing its ionic
strength, or by adding stabilizing agents known as anti-agglomeration agents (chemi-
cal treatments). Otherwise, suspended particles can be de-agglomerated by sonication
(physical treatment). Regardless of the treatment used, it is therefore always possible
to change the state of agglomerates by separating the primary/secondary particles
from which they are formed. For this reason, agglomeration is also known as re-
versible aggregation [87]. The second secondary process discussed is aggregation.
In this case, the interaction forces holding primary/secondary particles together are
extremely strong [81] such as strong crystalline bonds. These forces cannot be
overcome through either physical or chemical treatments. For this reason, therefore,
we speak of irreversible aggregation. The last secondary process is breakage. Cluster
breakage occurs when forces, that act on the particle, can overcome the strength of
the material. The mechanical forces such as to overcome the strength of the material
inducing its failure are:

• Combination of normal and shear stress

• Forces arising as a result of cluster collisions

• Forces arising as a result of cluster-wall collision

• Forces arising as a result of the interaction between clusters and moving and/or
rotating mechanical components

It is also worth noting that the breakage of clusters such as aggregation and agglom-
eration are particularly affected by the operating conditions and the material under
consideration. It is, therefore, difficult to model and predict their mechanism in an
absolute sense. Consider, for example, the breakage. It might be the case that high
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loads, above the breaking limit of the material, acting however few times do not
induce cluster breakage. Conversely, it might be the case that loads much lower than
the breaking limit of the material acting, however, for long times or in a cyclic man-
ner lead to cluster failure [88]. It is easy to see, then, how dependent these processes
are on the system under investigation. Ultimately, as anticipated at the beginning of
the section, only aggregation will be deepened of all the secondary processes. This
choice is dictated by the fact that agglomeration can easily be decoupled from the
other phenomena by being reversible whereas the breakage of nanometric particles
would require such high forces or long cycles that it can be neglected.

Aggregation

Particle aggregation is a two-step process, analogous to the process of molecular
growth with the difference that during growth a molecule is ideally integrated into
the particle structure and, instead, during aggregation another particle is integrated
through the formation of a solid crystalline bridge. For aggregation to occur, two
conditions must be met:

1. Collision event. Two particles (primary and/or secondary) must approach
each other through a transport mechanism to the point of collision.

2. Aggregation efficiency. As a consequence of the collision and, therefore,
contact, there must be enough time for a solid crystalline bridge to form
between the two particles such that it cannot be broken.

The aggregation rate, βagg, therefore, will be proportional to the product of collision
frequency, βcol, and aggregation efficiency, ηagg, being the two steps in series:

βagg = βcolηagg (2.44)

The collision frequency represents the sum of collision events (step 1.) in the unit
of time. The mechanisms as a result of which collision events can occur are (i) the
solution thermal agitation and (ii) the fluid velocity fluctuations due to turbulence.
The first mechanism, due to Brownian motion, is named Brownian or perikinetic
aggregation while the second, due to turbulence in the system, is known as turbulent
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or orthokinetic aggregation. Brownian aggregation rate, βbr, is defined as [89]:

βbr =
2kBT
3µ

(L+λ )2

Lλ
(2.45)

Here, kB is the Boltzmann constant, T is the temperature, µ is the fluid dynamic
viscosity, L and λ are the sizes of the colliding particles. Turbulent aggregation
rate, on the other hand, depends on turbulent fluctuations. In the turbulent regime,
the energy supplied to the system results in the formation of larger eddies that
transfer their energy to smaller eddies at the level of which it is dissipated through
viscous interactions. The characteristic size of the smallest eddies is the size of the
Kolmogorov micro-scale ηk:

ηk =

(
ν3

ε

)1/4

(2.46)

Here, ν is the kinematic viscosity and ε is the turbulent kinetic energy dissipation
rate. Turbulent aggregation rate, βtr, is in turn divided into two mechanisms:

• Viscous sub-range mechanism: this mechanism affects the aggregation of
particles with sizes smaller than the Kolmogorov micro-scale.

• Inertial sub-range mechanism: this mechanism influences the aggregation
of particles with sizes larger than the Kolmogorov micro-scale.

The turbulent aggregation rate for particles subject to the viscous sub-range mecha-
nism was studied by Saffman and Turner [90]. Based on their work, the collision
frequency can be expressed as:

β
vis
tr =

√
8π

15

√
ε

ν

(L+λ )3

2
(2.47)

On the other hand, the turbulent aggregation rate for particles subject to the inertial
sub-range mechanism was studied by Abrahamson [91]. In this case, the collision
frequency can be expressed as:

β
inr
tr = 23/2√

π
(L+λ )2

4

√(
u2

L +u2
λ

)
(2.48)

Here, uL and uλ are the velocities of colliding particles. To understand, therefore,
which of the two mechanisms the particles will be subject to, it is sufficient to look
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at the Stokes number, St, of the particle defined as the ratio of the particle time scale,(
ρpL2

18ρsν

)
, to the characteristic time,

√
ν

ε
, of the Kolmogorov micro-scale. If the

Stokes number is less than or, at most, of the order of magnitude of 1 then it can be
assumed that the particles will have the same velocity as the fluid and, therefore, will
be subjected only to the viscous sub-range mechanism. For Stokes numbers greater
than 1, however, particle inertia will not be negligible. The particles, therefore, will
move with a velocity different from that of the fluid, and the dominant aggregation
mechanism will be that of the inertial sub-range. In precipitation, it is easily verified
that the Stokes number is less than 1. Under these conditions, as mentioned, it can be
assumed that the only turbulent aggregation mechanism is that of viscous sub-range,
and if the particle sizes are small enough (i.e., roughly for sizes from a few tens
of nanometers up to the order of 1-10 µm). In addition, it can be assumed that the
Brownian and turbulent mechanisms act in parallel on the particles, and as a result,
the two contributions can be summed [92]:

βcol = 10CT (βbr +βtr) (2.49)

Here, the parameter CT represents a correction factor to consider any deviation
from the condition in which the aggregation kernels were derived [72, 93]. The
second step for aggregation to occur is for the impact to be effective. It is necessary,
therefore, that the particles actually have time to form a solid crystalline bridge [94].
This contribution is represented by aggregation efficiency. Two functional forms
have been developed depending on the system [95, 96]:

ηagg = e−θ (2.50)

ηagg = (1+θ)−1 (2.51)

Here, θ represents the ratio between the cementation time, tcem, and the interaction
time, tint. The interaction time is equal to the characteristic time of the Kolmogorov
micro-scale:

tint =

√
ν

ε
(2.52)
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and represents the time during which the two particles are close enough to interact
while the cementation time is defined as:

tcem =
Db

f (δ )G
(2.53)

Db =
Leqvρ0.5

p (εν)0.25

A0.5
p

(2.54)

Leqv =
Lλ

(L2 +λ 2 −Lλ )
0.5 (2.55)

It represents the time required for the irreversible formation of a solid crystalline
bridge to occur. Here, Ap is a tuning parameter that refers to the solid crystalline
bridge strength and f (δ ) is a shape function defined as follows [97]:

f (δ ) =
4
(

1+δ −δ
′
)

1/3+δ −δ
′ −
(
δ −δ

′)2 (2δ/3+δ
′
/3
) (2.56)

δ = L/λ (2.57)

δ
′
=
√

δ 2 −1 (2.58)

Both Eqs. (2.50) and (2.51) describe the probability of an impact being effective by
comparing precipitation and hydrodynamic conditions. Cementation time indicates
the time required for a solid crystalline bridge to form irreversibly. If this time is
of the same order or less than the interaction time then the collision between the
particles will be effective (i.e., ηagg → 1). In the case where, on the other hand, the
time required to cement two particles together is longer than the interaction time
then the impact will not be effective (i.e., ηagg → 0).

Population Balance Model

The evolution of particle size is a critical parameter that significantly influences
product quality, process efficiency, and resource utilization. Understanding and
predicting how particles change in size over time is essential for designing and
optimizing processes. A powerful tool for addressing this challenge is the Population
Balance Model (PBM). A PBM is based on the resolution of a Population Balance
Equation (PBE) [98]. In this section, therefore, PBE and the techniques most
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commonly used for its resolution are presented. Although crystallization is a unitary
operation in chemical engineering widely used and established, PBE was initially
applied starting from ideal systems and then extended. For example, the ideal system
most widely considered is the mixed-suspension mixed-product removal (MSMPR)
[99]. In the case of MSMPR, PBE’s solution is valid for a perfectly mixed and
homogeneous system. This results in considerable simplification, to the point that, in
some cases, there is an analytical solution to the PBE. Obviously, in real crystallizers,
these simplifications do not apply, especially when considering the inhomogeneity of
turbulent properties within the reactor. For this reason, therefore, there was a move
to gradually more sophisticated models that, for example, also considered the fluid
dynamics of the coupling system CFD with PBE. Given, therefore, the increasing
computational demands, methods were developed to achieve an optimal trade-off
between reliable solutions and computational time. Up to date, PBE integration
methods can be divided into four main categories: (i) stochastic methods, Multi-
Class Methods (MCM) (ii), Weighted Residual Methods (WRM) (iii) and (iv) the
methods of moments [100]. Among all the methods mentioned, only the methods of
moments will be referred to in this thesis with a focus on the Quadrature Method of
Moments (QMOM).

Population Balance Equation

The PBE for a system in which PSD varies in time and space is given below:

∂ n̄
∂ t

+
∂

∂xi
(ūin̄)+

∂

∂L
(Gn̄) = h (2.59)

Here:

• n̄(t,x,L) represents the Reynolds-Averaged Particle Size Distribution (PSD),
describing the distribution of particles over time (t), spatial coordinates (x),
and a characteristic property (typically size, denoted as L).

• ∂ n̄(t,x,L)
∂ t represents the rate of change of the population density concerning

time.

• ∂

∂xi
(ūin̄(t,x,L)) involves the divergence of the flux (ūn̄(t,x,L)), representing

the change in population within a region due to the flow.
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• ∂ (Gn̄(t,x,L))
∂L denotes the change in population density, with G often representing

a growth or dissolution term.

• h(t,x,L) accounts for additional sources or sinks in the population, such as
aggregation and/or breakage.

The term on the right-hand side of Eq. 2.59 can be mathematically closed. Let’s
consider a scenario where the only relevant phenomena are aggregation and breakage.
Consequently, the source term is then expressed as:

h =
1
2

∫ L

0
βagg(L−L′)n(L−L′)n(L)dL′+

∫
∞

L
βbrk(L′)βdgt(L|L′)n(L′)dL′

−n(L)
∫

∞

0
βagg(L,L′)n(L′)dL′−βbrk(L)n(L) (2.60)

Here βagg denotes the aggregation rate between two particles of sizes L and L′,
βbrk signifies the breakage rate between particles with sizes L and L′, and βdgt

characterizes the daughter distribution. The daughter distribution reflects the resultant
distribution emerging after a particle breakage [101].

Quadrature Method of Moments

A widely used method, especially in the framework of RANS simulations, is the
QMOM [102–104]. This method exploits the quadrature approximation of moments
as follows:

mk =
∫

∞

0
n(t,x,L)LkdL ≃ ∑

i
wiLk

i (2.61)

Here wi are the weights and Li are the abscissas. The Gauss quadrature method
calculates the integral of a function by defining N weights and abscissas, resulting
in an order of 2N −1. The abscissas and weights can be fully specified in terms of
low-order moments. For example, to obtain a quadrature method of order N = 3,
it is sufficient to know the first 2N = 6 moments. The weights and abscissas can
be calculated by exploiting the product-difference (PD) or the adaptative Wheeler
algorithms (see Appendix A.1). Once the values of weights and integration nodes
are obtained, it is possible to solve the equations that approximate the moments.
Starting from Eq. (2.59), for the first 6 moments of the distribution, the following set
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of differential equations is obtained:

∂ m̄k

∂ t
+ui

∂ m̄k

∂xi
=

∂

∂xi

(
Dt

∂ m̄k

∂xi

)
+hk (2.62)

hk = JkLk
c + k

N

∑
i=1

GLk−1
i wi +

1
2

N

∑
i=1

wi

N

∑
j=1

w jβagg(L3
i +L3

j)
k
3 −

N

∑
i=1

wiLk
i

N

∑
j=1

w jβagg

(2.63)

where Lc is the critical size of nuclei [105]. From left to right in Eq. 2.63, we
find terms associated with nucleation, growth, and aggregation, which modify the
moments of the PSD.

Mass Balance

The chemical reaction induces supersaturation, prompting the precipitation of the
product as it shifts from the aqueous matrix to a solid state. The rate of this transition
is predominantly influenced by the specific chemical species undergoing precipitation
and the operating conditions, such as the temperature. Therefore, a mass balance is
necessary to account for this mass transfer. The concentration of the i-th reactive ion
changes as follows:

∂ c̄i

∂ t
+

∂

∂xi
(ūi ¯̄ic) =

∂

∂xi

(
Dt

∂ c̄i

∂xi

)
+Qi (2.64)

Here Qi is the sink term associated with the precipitation. It can be further expanded
as follows:

Qi =−
νiρpkv

Mp

∂m3

∂ t
(2.65)

Here νi is the stoichiometric coefficient in the precipitation reaction, ρp is the particle
density, kv is the shape factor (π/6 for spheres) and Mp is the molecular weight of
the precipitating species.
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Equations Summary

In this paragraph, a summary of the presented equations is reported.

Navier-Stokes Equation:
∂ ūi

∂ t
+ ū j

∂ ūi

∂x j
=

∂

∂x j

(
ν

(
∂ ūi

∂x j
+

∂ ū j

∂xi

)
−u′iu

′
j

)
− 1

ρ

∂ p̄
∂xi

+gi

Turbulent Kinetic Energy Equation:
∂k
∂ t

+ ūi
∂k
∂xi

=
∂

∂xi

(
(ν +σkνt)

∂k
∂xi

)
+Pε − ε

Turbulent Dissipation Rate Equation:

∂ε

∂ t
+ ūi

∂ε

∂xi
=

∂

∂xi

(
(ν +σενt)

∂ε

∂xi

)
+Cε1

ε

k
Pε −Cε2

ε2

k

Transport Equation for ᾱ:
∂ ᾱ

∂ t
+ ūi

∂ ᾱ

∂xi
=

∂

∂xi

(
Dt

∂ ᾱ

∂xi

)

Transport Equation for α
′2:

∂α
′2

∂ t
+ ūi

∂α
′2

∂xi
=

∂

∂xi

(
Dt

∂α
′2

∂xi

)
+2Dt

(
∂ ᾱ

∂xi
· ∂ ᾱ

∂xi

)
−C f

Cφ

2
ε

k
α

′2

Transport Equation for mk:
∂ m̄k

∂ t
+ui

∂ m̄k

∂xi
=

∂

∂xi

(
Dt

∂ m̄k

∂xi

)
+ JLk

c + kGmk−1 +Bk −Dk

Transport Equation for c̄i (reacting ions):
∂ c̄i

∂ t
+ ūi

∂ c̄i

∂xi
=

∂

∂xi

(
Dt

∂ c̄i

∂xi

)
−

νiρpkv

Mp

∂m3

∂ t



Chapter 3

Mixing and Reaction in T-Mixers

Some of the work described in this chapter has also been previously published
in Battaglia et al. [106] (Experimental activities were done in collaboration with
the University of Palermo).

Mixing serves as a cornerstone process that actively reduces gradients in composi-
tion, properties, and temperature within fluid systems, thereby influencing the dynam-
ics and outcomes of the final products. Mixing has immense significance in industries
such as biotechnology, pharmaceuticals, and food processing [107], as well as nu-
clear engineering [59, 108–111] and chemical engineering fields [11, 70, 112, 113].
This chapter embarks on a comprehensive exploration of mixing in static mixers,
laying the groundwork for understanding how mixing influences precipitation pro-
cesses. Over the past few decades, there has been considerable exploration into
micro- and millimeter-sized static mixers through both numerical simulations and
experiments [114, 115]. Particular attention has been drawn to Confined Imping Jets
(CIJs) [116, 117] and T- or Y-shaped mixers [40, 118].

In the last 40 years, micro- and millimetre-sized static mixers have been exten-
sively investigated both numerically and experimentally [115, 114]. Much attention
has been drawn by Confined Imping Jets (CIJs) [116, 117] and T- or Y- shaped
mixers [40, 118].

The relevance of mixing in these devices is still a hot topic in the scientific
panorama. Recently, Bie et al. [119] analysed mixing phenomena in a novel T-T
jet reactor made of two consecutive T-impinging configurations. The T-T design
exhibited better mixing performance compared to classical T-jet configurations.
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Mariotti et al. [120] assessed the influence of lateral inclined walls cross-sectional
T-mixers. Mixing was moderately improved depending on the wall inclination angle
and the fluid flow regime. Li et al. [121] investigated the influence of induced
swirling flow on mixing properties in a circular cross-sectional T-mixer. Swirling
motion was found to considerably enhance mixing in the device. The vivid research
interest in CIJs and T- or Y- shaped mixers is due to the high mixing degree control
and short mixing times attained in these devices.

In reactive crystallization systems, short mixing times are required to tune and
control the final product characteristics. Most often, circular cross-sectional mixers
are adopted since they are easy to build and edge-free. In addition, unbalanced
reactants volumetric fluid flow rates can be desired to employ low concentrated
reactants, guaranteeing, at the same time, the required molar or mass flow rates. In
this context, few works have dealt with the study of mixing phenomena in cross-
sectional T- or Y- mixers and even fewer with unbalanced fluid flow rate conditions.
Mixing in circular cross-sectional mixers has been characterized experimentally
by parallel/competitive consecutive reaction systems Gillian and Kirwan [122],
Lindenberg et al. [123], Wojtas et al. [118]. Laminar and turbulent regimes have
also been numerically investigated by Direct Numerical Simulations (DNS) [124,
125], Reynolds Averaged Navier-Stokes Equations (RANS) [123] and Large Eddy
Simulations (LES) [118]. However, to the best of the authors’ knowledge, there is
little knowledge available in the literature about experimental spatial information on
the mixing phenomena inside circular T- or Y- cross-sectional devices. Furthermore,
unbalanced fluid flow rates have mainly been investigated in T- square cross-sectional
micro-mixers at Reynolds numbers lower than 1400Roudgar et al. [126], Wong et al.
[107], and Confined Imping Jet reactors [127].

The present work aims at filling these gaps. Specifically, the pure dilution of
non-reacting species (blue and yellow food dyes) and the chemical reaction of two-
coloured reacting species (i.e., sodium hydroxide, NaOH, and hydrochloric acid, HCl,
in the presence of an indicator) were experimentally and numerically investigated in
two 3 mm hydraulic diameter square and circular cross-sectional T-mixers. A digital
image analysis technique was adopted. The pure dilution of non-reacting species in
the mixers under unbalanced fluid flow rates condition was assessed for a blue colour
fluid flow rate ratio of 2 and 3 with respect to that of the yellow one at Reynolds
number of ∼ 4000. In the study, instantaneous quantities were considered to better
quantify mixing in these devices, which is mainly evaluated based on statistical time
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average information. Specifically, the time standard deviation of the mixture fraction
along the mixing channel was assessed to thoroughly describe mixing.

The RANS k − ε model was accurately tuned to well describe turbulence in
the devices. Macro- and micro-mixing was described by tracking the mixture
fraction and its variance. Macro-mixing occurs at the bulk level via dispersion. It
evolves from the characteristic length of a system down to the Kolmogorov scale.
Conversely, micro-mixing occurs at the molecular level via shearing or diffusion
from the Kolmogorov scale to the Batchelor one. The mixture fraction accounts for
a non-reactive scalar transport (i.e., pure species dilution) whereas its variance is
related to the reactive scalar transport (i.e., reacting ions, OH-, consumed along the
mixing channel coordinate).

To improve the k− ε model simulations, a new tuning approach was performed
involving fitting the parameters in the ε equation according to the theory provided
in Pope [128]. In this perspective, k− ε based models can be tuned to artificially
increase the (i) turbulent transport or (ii) the turbulent mixing. In the first case,
hydrodynamics constants are varied such as the parameters. In the second case,
the turbulent Schmidt number is typically reduced. Note that, the variation of the
turbulent Schmidt number does not affect the turbulent transport, but only the scalar
transport. Kok and van der Wal [109] reported that the k− ε model underestimated
turbulence in T-junctions. A better prediction of turbulent mixing was obtained when
the turbulent Schmidt number (commonly 0.8–0.9) was made to decrease down
to 0.2. Similar findings were also reported by Frank et al. [108], who identified a
considerable turbulence underestimation in T-junctions by using the k− ε model.
However, Walker et al. [59] observed inaccurate prediction of velocity distributions,
although the large difference between the experimental and numerical turbulent
dispersion was reduced by decreasing the turbulent Schmidt number. A much
more satisfactory experimental and numerical data agreement, in terms of velocity
profiles and turbulent dispersion, was achieved by increasing the Cµ parameters, thus
increasing the turbulent transport.

In the present work, in addition, in the variance equation, also the Cφ parameter
was tuned [72]. The tuned undemanding k− ε model can considerably reduce com-
putational time and costs, compared to more computationally intensive techniques
such as DNS [40], LES [118] and unsteady RANS [129]. This can be advantageous
in parametric studies that require the characterization of different T-mixer geometries
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under several operating conditions, as in the study of the precipitation process of
hydroxides in these devices.

3.1 Material and Methods

Experimental setup

The investigation focused on two scenarios: the non-reactive dilution of colourant
species, represented by blue and yellow food dyes, and the chemical interaction
between dual-hued reactive compounds (i.e., sodium hydroxide, NaOH, hydrochloric
acid, HCl). This investigation occurred within the confines of millimetre-scale T-
shaped mixers, distinguished by their cross-sectional profiles - either square or
circular. For the square configuration, the apparatus was carved into a sheet of
plexiglass, complemented by a superimposed lid secured by screws. Conversely, the
circular mixer found its form through precise drilling into a solid block. The selection
of plexiglass as the fabrication material stemmed from its refractive index (1.49), an
approximation to that of glass (1.52). Additionally, to minimize optical distortions,
Plexiglas plates, measuring 2 cm in thickness, were employed, with the square mixer
utilizing two slabs of 1 cm each. The T-shaped mixers were composed of dual inlet
branches oriented horizontally, converging at a focal juncture. Subsequent fluid
motion transpired along a central conduit, denoted as the "mixing channel." Key
dimensions of these mixers comprised (i) a hydraulic diameter, Dh, measuring 3
mm, (ii) inlet branches - 25 times the hydraulic diameter for the square variant and
15 times for the circular one - and (iii) the mixing channel - 50 times the hydraulic
diameter for the square design and 30 times for the circular configuration. Refer to
Figure 3.1 for visual representations of the mixer geometries.
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Figure 3.1 Drawings of the square (left) and circular (right) cross-sectional T-shaped mixers

An experimental rig was designed and assembled for this study. To elaborate,
the setup encompassed the following components:

• Two distinct weir contraptions were meticulously fabricated to manage solu-
tions, thereby mitigating any potential influence stemming from fluid flow rate
fluctuations, which could potentially arise from the utilization of pumps [130]

• The illumination of the mixers was achieved through the application of four
halogen bulbs with a temperature of 4000 K. These bulbs served to provide a
consistent backlighting effect for the mixers

• For the purpose of capturing images, a Nikon D3300 digital camera was
employed, boasting a 24.2-megapixel CCD sensor and a 35 mm F1.8 lens.
This camera served as a tool for acquiring visual data.

The entire setup was situated within a controlled dark environment, thus effectively
minimizing the impact of external sources of light. A visual representation of the
experimental arrangement is depicted in Figure 2.
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Figure 3.2 Drawing of the experimental setup

The research focused on investigating both macro-mixing and micro-mixing
phenomena. The macro-mixing aspect involved studying the dilution process using
non-reacting blue and yellow food dyes. In parallel, the micro-mixing phenomenon
was explored by observing the neutralization reaction between NaOH and HCl
solutions, facilitated by a pH indicator. To create the food dye solutions, 5.79 g
of a yellow E102 food-grade dye (with 75% sodium sulfate) and 1.79 g of a blue
E131 food-grade dye (containing 97% sodium sulfate) were dissolved in 1 liter of
demineralized water. For the neutralization tests, 1 g of Alizarin Yellow R sodium
salt pH indicator from Thermo Fisher (Kandel, GmbH) was dissolved in another liter
of demineralized water. Next, 7 mL of the Alizarin solution was mixed separately
with 500 mL portions of both the HCl and NaOH solutions. The Alizarin yellow R
pH indicator undergoes a color change from yellow to deep orange within the pH
range of 10 to 12, respectively. This range was particularly suitable for observing
the precipitation process of hydroxide compounds. The HCl solution was obtained
by diluting a concentrated 37% fuming HCl solution (EMSURE®), while the NaOH
solution was created by dissolving NaOH pellets (Honeywell FlukaTM, with an assay
exceeding 98%). The concentrations were adjusted to 0.010 M for HCl and 0.011 M
for NaOH, and their compositions were verified through titration. Experiments were
conducted within square and circular cross-sectional T-mixers at Reynolds numbers
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of approximately 3900, 5350, and 6600. The Reynolds numbers for these tests were
determined within the mixing channel using the following formula:

Re =
ρ|u|Dh

µ
(3.1)

Unbalanced fluid flow rates were examined exclusively in instances involving the
pure dilution of non-reacting food dyes. The fluid flow rate of the blue dye was
set at 2 and 3 times the rate of the yellow dye. To ensure meaningful comparisons,
all the experiments involving Unbalanced flow rates were carried out under similar
Reynolds numbers, approximately 3900. All the tested conditions, both for the
square (#S) and circular (#C) cross-sectional T-mixers, are comprehensively outlined
in Table 3.1 and Table 3.2, respectively. Both tables show, respectively, the condition
number studied, the phenomenon considered (D for dilution, N for neutralization,
and D/N for both), the average flow rate processed, the average velocity, and the
Reynolds number in the mixing channel.

Table 3.1 Investigated cases in the square cross-sectional T-mixer

Case
Investigated
phenomenon

Average Flow
Rate, [ml/min]

Average
Velocity, [m/s]

Re

#S1 D 700 1.30 3900
#S2 D / N 960 1.78 5350
#S3 D 1185 2.19 6660
#S4 D (1:2) 720 1.33 4000
#S5 D (1:3) 670 1.24 3700

Table 3.2 Investigated cases in the circular cross-sectional T-mixer

Case
Investigated
phenomenon

Average Flow
Rate, [ml/min]

Average
Velocity, [m/s]

Re

#C1 D 560 1.32 4000
#C2 D / N 750 1.77 5300
#C3 D 930 2.19 6600
#C4 D (1:2) 580 1.37 4100
#C5 D (1:3) 520 1.24 3700
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Performance parameters

In the context of the food dye dilution process, the mixture fraction of the blue dye,
denoted as ϕ , is monitored as it evolves over both time (across multiple images)
and along the dimensions of the mixing channel, encompassing both its length and
width. As such, ϕ emerges as a variable that is inherently dependent on both spatial
coordinates and time. The range of variation for ϕ spans from 0, which corresponds
to the pure yellow colour, to 1, signifying the pure blue colour. For a given point in
the mixing channel characterized by specific length (y) and width (x) coordinates, an
averaged mixture fraction ϕ̄ (x,y) can be computed. This averaged value represents
the mean of ϕ taken over the ensemble of acquired images:

ϕ̄ (x,y) =
∑

Np
i=1 ϕ (x,y, ti)

Np
(3.2)

Here, i is the ith processed picture and Np is the total number of processed pictures.
The field ϕ̄ (x,y) can further undergo an additional averaging procedure across
the width (x-coordinate) of the T-mixers. This averaging is performed for a fixed
y-coordinate, resulting in a profile that varies as a function of y:

ˆ̄ϕ (y) =
∑

Nx−pixel
i=1 ϕ̄ (xi,y)

Nx−pixel
(3.3)

Here, Nx−pixel represents the total number of pixels along the x-coordinate, namely
57 and 41 for the square and circular cross-sectional mixers. ˆ̄ϕ (y) is equal to 0.5
if equal flow rates for both solutions are employed; or 0.667 and 0.75 if the blue
mixture fraction flow rate is 2 or 3 times that of the yellow colour, respectively. The
degree of homogenization, namely the mixing efficiency in the mixers, between blue
and yellow solutions can be quantified by adopting different performance parameters
presented in the literature. Among the others, the segregation index Is [40, 121] is
defined as follows:

Is =
σy

σmax
(3.4)
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σy is the mean square spatial deviation of the time average blue mixture fraction at a
certain channel length y:

σy =

√√√√[∑Nx−pixel
x=1

(
ϕ̄ (x,y)− ˆ̄ϕ (y)

)2
]

Nx−pixel
(3.5)

σmax is the mean square spatial deviation occurring for segregated solutions:√
ˆ̄ϕ
(
1− ˆ̄ϕ

)
(3.6)

Is is equal to 0 (1) if solutions are perfectly mixed (completely segregated). Luo et al.
[117] argued that when Is becomes lower than 0.1, a good mixing degree, namely 90
% of the mixing uniformity, is attained and the mixing time can be calculated as:

τ90 = L90/u (3.7)

Here, L90 is the distance from the impinging zone to the channel mixing length at
which Is becomes 0.1. Roelands et al. [131] arbitrarily defined the mixing time in
T-mixers, tr, as:

tr = 12Dh/u (3.8)

The degree of homogenization can be also studied considering the time standard
deviation, σ time

x,y , of the mixture fraction at a certain location x, y in the mixing
channel:

σ
time
x,y =

√√√√[∑N
x=1 (ϕ (x,y, ti)− ϕ̄ (x,y))2

]
N

(3.9)

A null time standard deviation indicates that the same mixture fraction value is
attained at a certain location in the channel at all times. If the local time average
mixture fraction value is also equal to that of the perfect mixed solutions

(
ˆ̄ϕ (y)

)
, then

a total homogenization of two species is accomplished. To visualize the evolution
of the time standard deviation along the mixing channel, in the result section, σ time

x,y

was averaged over the channel width at a certain channel length y, thus yielding:

σ̂
time
x,y =

√√√√[∑Nx−pixel
x=1

(
σ time

x,y
)2
]

Nx−pixel
(3.10)
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3.2 Modelling and simulations

The multi-scale nature of turbulence represents a challenge in its modelling, specially
when chemical reactions are involved. Reactions only occur when reactants are
mixed at the smallest scale (i.e., Batchelor scale, micro-mixing phenomena). In the
past years, different approaches have been proposed to account for the interaction
between mixing and reactions [68, 69]. The approach introduced by Marchisio and
Fox [53] and Baldyga et al. [70] for fast irreversible reactions was followed.

Flow field and turbulence equations

The flow field of a Newtonian, incompressible, fluid is described by the Navier-
Stokes and the continuity equations (Eqs. (2.2), (2.1)). Then RANS k − ε is a
two-equation model that solves transport equations for the turbulent kinetic energy,
k, and the turbulent kinetic energy dissipation rate, ε (Eqs. (2.4), (2.5)). Pope [128]
identified a relation between Pε and ε:

Pε

ε
=

Cε2 −1
Cε1 −1

(3.11)

The Pε/ε is about 2.1 if default Cε1 and Cε2 values are adopted, namely 1.44 and 1.92.
This ratio can differ in real systems [40]. To increase the reliability of RANS k− ε

model for T-mixers investigations, the Cε2 parameter was tuned against experimental
data, thus increasing the turbulent transport in the devices. It is worth noticing that
the same results can be obtained by reducing Cε1. For convenience, however, only
the Cε2 parameter was made to vary.

Mixing equations

Macro-mixing in the devices can be described through the mixture fraction equation.
The mixture fraction is the relative amount of two fluids in a known control volume.
In other words, mixture fraction is 0 (or 1) when only A solution (or B) is present
and 0.5 when both A and B solutions are equally present. The mixture fraction
transport is described by Eq. (2.12). It is worth noticing that the mixture fraction
transport is influenced only by the advection and diffusion terms. The diffusive term
is responsible for gradients flattening, depending on turbulence conditions, and can
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be tuned by varying either Sct or Cµ the latter affecting νt in Eq. (2.6) [59]. As far
as micro-mixing is concerned, it is described through the variance of the mixture
fraction transport equation (Eq. (2.14)).

Computational Fluid Dynamics details

CFD simulations were carried out using the open-source OpenFOAM (v8) software.
The twoLiquidMixingFoam solver was adopted for food dye pure dilution analysis.
The variance equation and a user-defined “reaction class" were added to the solver
to describe neutralization phenomena. In this regard, an a priori look-up table with
121 nodes was calculated following the theory introduced by Marchisio and Fox
[53] (see Appendix A.1). No-slip boundary conditions, scalable wall functions for
turbulent properties and zero gradient for the mixture fraction and its variance were
set at the walls of the mixers. Normal velocity values, zero gradient for pressure,
and initial estimated k and ε values were set at the inlet regions. At the inlets, a null
variance was also imposed (pure fluids), while 0 and 1 mixture fractions were set at
the opposite inlets. Zero gradient was applied for all quantities at the outlet, with
an exception for the pressure that was set to be 0. For the neutralization cases, 0.01
M and 0.011 M concentration values were set for HCl and NaOH concentrations
at the inlets. 3 and 1.35 million volumes (>99.9 % hexahedral cells) grids were
employed for the square and circular cross-sectional T-mixers. As a preliminary
analysis, the flow field was solved by resorting to different turbulence models: k− ε ,
RNG k − ε , k −ω , k −ω SST. Since the flow fields solved through the various
models were similar, as well as the turbulent properties, the k− ε model was chosen
since it was the least computationally expensive. To conclude numerical average
mixture fraction and OH− concentration profiles were calculated as follows: (i)
equispaced cross-sections were considered along the mixing channel length; (ii) at
each cross-section, computed mixture fraction or OH− values were averaged over
the channel depth (z-direction in Figure 3.1, thus obtaining profiles along the channel
width); (iii) the resulting values were further averaged over the channel width to
provide a profile along the mixing channel length. The segregation index was then
determined by adopting Eq. (3.4)
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3.3 Results and discussion

Pure dilution in the square cross-sectional T-mixer: equal flow
rates

RANS simulations are computationally undemanding, but they may require tuning
the model parameters. Sct , Cµ and Cε2 were made to vary in the range of 0.1-1, 0.09-
0.36 and 1.92-8.36, respectively. Model predictions were compared to experimental
data collected for Case #S1. The default values for Sct , Cµ , and Cε2 are 1, 0.09 and
1.92, respectively.
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Figure 3.3 Model parameters variation: Sct (left), Cµ (center), Cε2 (right).

Figure 3.3 shows numerical segregation index profiles along the mixing channel
length evaluated for (i) four different Sct of 1, 0.5, 0.25, 0.1 (Figure 3.3 - left);
(ii) three Cµ parameter values of 0.09 (standard value), 0.18 and 0.36 (Figure 3.3
- center); and (iii) five Cε2 values of 1.92 (reference value), 2.84, 4.68, 6.54 and
8.36 (Figure 3.3 - right). In all cases, Cε1 was always kept equal to 1.44 (default
value). As expected, the smaller the Sct number, the faster the macro-mixing (pure
dilution phenomenon), see Figure 3.3 - left. A good match between numerical and
experimental trends is observed for a Sct number of 0.25. Conversely, the model
overestimates the experimental data for a Sct number of 0.1. Although the fitting
is accurate for a Sct number of 0.25, values smaller than 0.7 are typically unusual
[108, 109]. A better reactants homogenization is attained by increasing the Cµ value,
Figure 3.3 - center. However, the model underestimates the mixing phenomenon in
the device even adopting a Cµ value four times higher than the standard one, namely
equal to 0.36. This result is due to the damping effect of the Cµ parameter. While Sct
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directly influences only Dt (Eq. (2.13)), Cµ directly influences νt (Eq. (2.6)). This
latter is used to calculate Dt and solve the transport equations of k and ε (Eqs. (2.4)
and (2.5)). Figure 3.3 - right shows a very good agreement between numerical and
experimental data only for Cε2 values higher than 6.54. This confirms that the k− ε

turbulence model with standard constants underestimates turbulent mixing within
static mixers. All the following numerical simulations were then run setting Cε equal
to 6.54. The performances of the tuned k− ε model were also tested by comparing
the numerical and experimental segregation index profiles along the channel length
for cases #S2 and #S3, as presented in Figure 3.4. An excellent agreement between
numerical and experimental data was obtained.

0 10 20 30 40 50
y/Dh, -

0.0

0.2

0.4

0.6

0.8

1.0

I s,
 -

0 10 20 30 40 50
y/Dh, -

Figure 3.4 Model predictions: Re equal to 5350 (case #S2, left) and Re equal to 6660 (case
#S3, right).

Pure dilution in the square cross-sectional T-mixer: unbalanced
flow rates

In reaction engineering or precipitation, unbalanced flow rates can be desirable.
Figure 3.5 reports experimental and numerical time average mixture fraction profiles
along the channel width at normalized axial locations, y/Dh, of 1.5, 12 and 24 for
case #S1 and for the unbalanced cases #S4 and #S5, see Table 3.1. Vertical bars
refer to the experimental time standard deviation of the mixture fraction at a certain
location in the mixing channel width. Cases #S1, #S4 and #S5 are characterized by
Reynolds numbers of ∼ 3900, 4000 (blue food dye flow rate 2 times higher than the
yellow one) and 3700 (blue food dye flow rate 3 times higher than the yellow one).
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Figure 3.5 Experimental (solid lines) and numerical (dashed lines) time average mixture
fraction profiles along the channel width at normalized axial locations, y/Dh, equal to 1.5
(left), 12 (center) and 24 (right) for cases #S1 and the unbalanced operating conditions #S4
and #S5. The vertical bars refer to the time standard deviation of the mixture fraction values.

Food dyes are segregated at y/Dh ∼ 1.5, while a good degree of mixing is
attained at y/Dh ∼ 12. An even better homogenization degree is reached at y/Dh

∼ 24. Mixture fraction values variation over time decrease from ∼ 30 % to ∼ 5
% from y/Dh ∼ 1.5 to 24. The higher the blue dye flow rate (higher unbalanced
condition), the higher the time average mixture fraction values in the left region of
the mixer. This suggests that a faster mixing process already occurs in the impinging
zone. Numerical predictions agree very well with experimental data. In addition, the
experimental technique detects well the final expected mixture fraction values for the
unbalanced cases under perfectly mixed solutions, namely 0.667 and 0.75 (Figures
3.5 center vs. right), proving the reliability of the technique. Segregation index
profiles decrease faster in the unbalanced fluid flow rate cases. Segregation index
values reach a value lower than 0.1 at a y/Dh ∼ 4.4 in the unbalanced cases, while a
value y/Dh ∼ 5.7 is requested for the balanced flow rate case. The corresponding
mixing times calculated through Eq. (3.7) are ∼ 13, ∼ 11 and ∼ 10.8 ms for cases
#S1, #S4 and #S5, respectively. Conversely, a similar mixing time of ∼ 28 ms is
estimated for all three cases via Eq. (3.8). Numerical segregation index profiles
are in excellent agreement with experimental ones for these operative conditions.
In the unbalanced flow rate conditions, the impinging region moves toward the
inlet of the slowest solution. The higher the blue dye flow rate, the closer is the
impinging region to the yellow dye entrance. This is in accordance with the same
phenomenon observed by Fonte et al. [127] in confined imping jet mixers. Profiles of
the time standard deviation of the mixture fraction decrease faster in unbalanced cases
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indicating a faster homogenization of the solutions, in accordance with literature
findings [107, 126].

Pure dilution in the circular cross-sectional T-mixer: equal flow
rates

Figure 3.6 reports experimental (solid lines) and numerical (dashed lines) time
average mixture fraction profiles for the pure dilution of food dyes, along the mixing
channel width at normalized axial locations y/Dh of 1.5, 12 and 24 in the 3 mm
diameter circular cross-sectional T-mixer (cases #C1, #C2 and #C3), see Table
3.2. Vertical bars refer to the time standard deviation of mixture fraction values.
Numerical simulations were carried out by setting the Cε2 value equal to 6.54. For
the sake of comparison, the segregation index computed employing the standard
values of k− ε model parameters is added in Figure 3.6.
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Figure 3.6 Experimental (solid lines) and numerical (dashed lines) time average mixture
fraction profiles along the channel width at normalized axial locations, y/Dh, equal to 1.5
(left), 12 (center) and 24 (right) for cases #C1, #C2 and #C3, respectively. The vertical bars
refer to the time standard deviation of the mixture fraction values.

As for the square cross-sectional T-mixer, solutions are considerably segregated
at y/Dh ∼ 1.5. Numerical segregation index profiles overestimate the mixing phe-
nomena in the device, suggesting that a lower Cε2 would be more suitable for
the simulation of the circular cross-sectional mixer. The homogenization further
proceeds along the mixing channel length. Mixture fraction values time variation
concerning their time average values are ∼20% at a y/Dh of 12, while they reduce
to ∼5% at a y/Dh of 24. Segregation index profiles, Figure 3.6 - bottom, attain
values lower than 0.1 at normalized axial locations of ∼5.9, ∼4.9 and ∼4.6, for
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cases #C1, #C2 and #C3, respectively. The estimated experimental mixing times
by adopting Eqs. (3.7) and (3.8) are ∼13, ∼8 and ∼6 ms, and ∼27, ∼20 and ∼16
ms, respectively. Mixing times are comparable, although slightly lower, than those
obtained for the square cases, suggesting a better mixing efficiency provided by
the circular mixer concerning the square one. Numerical segregation index profiles
slightly overestimate mixing phenomena with respect to experimental data. However,
the tuned model predicts considerably better the experimental data with respect to
the standard model, see the black dotted-dashed line in Figure 3.6.

Pure dilution in the circular cross-sectional T-mixer: unbalanced
flow rates

Numerical (dashed lines) and experimental (solid lines) time average mixture fraction
profiles along the channel width at normalized axial locations, y/Dh of 1.5, 12 and
24, evaluated in the 3 mm diameter circular cross-sectional T-mixer for the case
#C1 (Re=4000), and the unbalance cases #C4 (Re=4100) and #C5 (Re=3700), are
reported in Figure 3.7. Vertical lines indicate the time standard deviation of the
mixture fraction values. Figure 3.7 - bottom reports the numerical and experimental
segregation index profile along the channel length. All numerical simulations were
carried out using a Cε2 value equal to 6.54.

Figure 3.7 Experimental (solid lines) and numerical (dashed lines) time average mixture
fraction profiles along the channel width at normalized axial locations, y/Dh, equal to 1.5
(left), 12 (center) and 24 (right) for cases #C1, #C4 and #C5, respectively. The vertical bars
refer to the time standard deviation of the mixture fraction values.

A marked influence of the unbalanced flow rate condition can be observed.
Specifically, the higher the flow rate of the blue food dye, the faster the dilution
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process (less segregated profiles) at y/Dh, of 1.5, see Figure 3.7. In addition, the time
standard deviation decreases faster at highly unbalanced conditions. Mixture fraction
values vary less than 5% at y/Dh of 24. The mixing improvement also affects the
segregation index, Figure 3.7 - bottom. The segregation index profiles are lower than
0.1 at normalized axial locations of ∼5.9, ∼2.8 and ∼1.44 in cases #C1, #C4 and
#C5, respectively, showing a marked influence of the unbalanced flow rate condition
on mixing performance in the device. The corresponding mixing times are ∼13, ∼6
and ∼4 ms by adopting Eq. (3.7). On the contrary, mixing times are always ∼28 ms
in all cases using Eq. (3.8). Results highlight the limit of Eq. (3.8) in identifying
the mixing times under different operating conditions. Mixing times from Eq. (3.7)
are considerably lower than those observed in the square cross-sectional mixer,
thus, again, marking the higher mixing efficiency of the circular mixer. Numerical
predictions overestimate mixing in the device for case #C1, while they underestimate
it for cases #C4 and #C5, confirming the higher mixing effectiveness attained in
unbalanced conditions.

Neutralization phenomena in square and circular cross-sectional
T-mixers

As discussed in the introduction, circular and square cross-sectional T-mixers are
extensively employed in the precipitation field. In the following, the performance of
the tuned k−ε model was analysed for the description of reacting processes, namely
the neutralization phenomena occurring between NaOH and HCl. Figures 3.8 and 3.9
show the numerical and experimental hydroxyl ions, OH−, concentrations profiles
in the square and circular cross-sectional T-mixers at Reynolds numbers of ∼5300
(cases #S2-N and #C2-N). OH− profiles were evaluated along the mixing channel
width at normalized axial locations of 1.5 (Figures 3.8 and 3.9 - left) and 12 (Figures
3.8 and 3.9 - center). OH− profiles are also reported along the normalized mixing
channel locations in Figures 3.8 and 3.9 - right.
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Figure 3.8 Experimental and numerical
[
OH−] concentration profiles along the channel

width at y/Dh of 1.5 (left), 12 (right). Data refer to the investigation in the square cross-
sectional T-mixer.

The standard k− ε model considerably underestimates OH− profiles. NaOH
and HCl solutions are predicted to be completely segregated at a y/Dh of 1.5 and
only a mild homogenization is shown at a y/Dh of 12. The tuned k− ε model better
describes the phenomenon in the reactor. Furthermore, by increasing the Cf param-
eter, even more accurate OH− profile estimations can be obtained. Experimental
data are lower than the expected final OH− concentration. This can be attributed
to (i) the logarithm law relation between pH values and OH− concentrations that
enlarges the experimental technique uncertainty when OH− concentrations values
are calculated; (ii) the experimental difficulties in preparing and obtaining precise
solution concentrations and fluid flow rates. Slight flow rate imbalance or not exact
concentration values can significantly influence the results.
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Figure 3.9 Experimental and numerical
[
OH−] concentration profiles along the channel

width at y/Dh of 1.5 (left), 12 (right). Data refer to the investigation in the circular cross-
sectional T-mixer.

Similar OH− profile estimation is obtained also for the circular cross-shaped T-
mixer, see Figure 3.9. The modified Cf model with a Cf parameter equal to 2 provides
more accurate predictions concerning the standard k− ε model. The modified k− ε

model can be then applied for fast and reliable simulations of reacting processes in
T-mixers as in the case of the precipitation process of Mg(OH)2 from brines [132].

3.4 Conclusions

In this study, mixing phenomena in two 3 mm hydraulic diameter T-mixers were
analysed and compared. The T-mixers consisted of different cross-sectional geome-
tries, with one featuring a square cross-section and the other possessing a circular
cross-section. The aim was to assess the influence of the two geometrical designs on
mixing performances. A colorimetric digital image analysis technique was adopted
to capture the evolution of the pure dilution between two food dyes (blue and yellow)
and the neutralization reaction between NaOH and HCl solutions. Phenomena were
accurately predicted by RANS k− ε simulations, after a model parameter tuning.
Specifically, it was demonstrated that by increasing the Cε2 and Cf parameters from
their standard values of 1.92 and 1 to 6.54 and 2, respectively, it was possible to
effectively predict turbulence and reactive processes occurring within the T-mixers.
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Consequently, the tuning of the model parameters enables the utilization of fast and
less computationally demanding simulations, facilitating accurate investigations of
T-mixers and their applications in reaction or precipitation processes. A slightly
higher mixing degree was exhibited by the circular cross-sectional T-mixer. Mixing
times, based on segregation index profiles, were ∼13±5%, ∼10.9±5% and ∼9±5%
ms in the square mixer and ∼13±5%, ∼8±5% and ∼6±5% ms in the circular mixer,
for Reynolds numbers of 3900, 5300, 6600, respectively. However, mixture fraction
time variation suggested that longer mixing channel lengths are required to achieve
a better homogenization degree between solutions, marking the need for both time
statistical average and instantaneous quantities analysis to better quantify mixing in
these devices. Mixing times were found to decrease when adopting unbalanced fluid
flow conditions, especially in the circular cross-sectional T-mixer. In the square T
mixer, mixing times slightly decreased from 13 ms (equal flow rate condition) to 11
ms (unbalanced fluid flow rate condition). Conversely, in the circular one, mixing
times decrease up to three times for the balanced flow rate case. Results mark the
reliability of adopting a low-cost, easy-to-use, yet accurate, experimental technique
and the undemanding k− ε model-based numerical simulations to accurately study
mixing inside T-mixers. This can considerably reduce the cost and the computational
effort of the study of such devices that would be requested by more accurate tech-
niques, especially if different T-mixer geometries or several operating conditions
must be investigated. Building upon this foundation of efficient mixing analysis,
the next chapter introduces experimental tests designed specifically to investigate
precipitation phenomena. These experiments will provide valuable insights into
the dynamic processes governing precipitation, offering practical observations that
complement theoretical models and computational simulations.



Chapter 4

Experimental Characterization of
Suspensions

Some of the work described in this chapter has also been previously published
in Battaglia et al. [11] (Experimental activities were done in collaboration with
the University of Palermo and ETH - Zurich).

In this chapter, a comprehensive experimental study is presented on the Mg(OH)2

precipitation from highly concentrated synthetic MgCl2 solutions (Mg2+ 24 g/L).
Three experimental rigs were employed. First, two circular cross-sectional T-shaped
mixers, having a diameter of 2 mm (T2mm) or 3 mm (T3mm), were employed to tune
and control the degree of reactant homogenization. Then, a Y-mixer followed by
two diverging channels and a final coil of constant diameter. PSDs were accessed
using the DLS technique, with ultrasound treatment and the addition of poly(acrylic
acid, sodium salt) (PAA) as a dispersant. In addition, zeta potential measurements
were conducted at different pH values to better investigate the tendency of particles
to agglomerate.

4.1 Experimental setups

A schematic representation of the employed experimental setup is shown in Figure
4.1. Mg(OH)2 precipitation was carried out employing two circular cross-sectional
T-mixers with a diameter of 2 and 3 mm, and a Y-mixer followed by two diverging
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channels and a final coil of constant diameter. The T-mixers were drilled in poly-
methyl methacrylate (PMMA) blocks and are constituted by two horizontal tracts
(inlet channels) which merge into a vertical one (mixing channel). In both T-mixers,
the inlet and mixing channels were of the same diameter (2 and 3 mm, respectively).
The inlet channels were 10 times longer than the mixer diameter, i.e. 20 and 30 mm,
while the vertical channels were twenty times longer than the mixer diameter, i.e. 40
and 60 mm, respectively. The two T-mixers were employed to investigate the effect
of mixing performance in the reactors on the precipitated Mg(OH)2 particles. In
particular, it is expected that narrower channels offer better mixing performance with
respect to larger ones [131]. Magnesium chloride (MgCl2) and sodium hydroxide
(NaOH) solutions were pumped using two gear pumps (Fluid-o-Tech® FG series)
controlled by dedicated software developed on LabView 2015.
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Figure 4.1 Experimental apparatuses used for the particle synthesis: T-mixer (top) and
Y-mixer (bottom)

The Y-mixer setup, described by Orlewski and Mazzotti [41], consists of two
arms with a diameter of 0.5 mm, a mixing channel diameter of 1 mm and a length
of 3 mm. The angle between the two arms is 120°. Following the mixing channel,
there are two consecutive diverging channels: the former of final diameter equal to
1.5 mm and a total length of 3.5 mm; the latter of final diameter equal to 4 mm and
a total length equal to 5 mm. The setup ends with a constant diameter pipe. This
fourth section was changed according to the reactant concentrations. For higher
reactant concentrations (i.e., 0.125 up to 1 M), a shorter straight pipe of 40 cm was
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used, whereas for lower reactant concentrations (down to 0.01 M), a coil of a total
length of 10 m was used to ensure the completion of the reaction. The reactants
were fed to each arm using two micro-gear pumps (mzr-11508X1, HNP Germany),
assuring a pulsation-free flow. The setup was controlled using a LabView program.
Two Coriolis mass flow meters (M15, Bronkhorst, The Netherlands) were used
to send the set point signal to the pumps. MgCl2 hexahydrate powder (> 99.0%,
Sigma-Aldrich) and NaOH pellets (> 98.0%, Sigma-Aldrich, ACS reagent) were
used to prepare the corresponding aqueous solutions at each concentration. The
solutions were separately pumped through each arm and impinge in the mixing
channel, where the precipitation of Mg(OH)2 occurred. In Table 4.1, the operating
conditions for the T- and Y- mixers are reported. The NaOH concentration obeys the
stoichiometry of the reaction for all the operating conditions:

Table 4.1 Operating conditions adopted for the T- and Y-mixer

Dataset Mixer
Operating conditions

Concentration Flow rate Residence Estimate
MgCl2 (M) (mL/min) time (ms) mixing time (ms)

#1 T2mm

0.125 2320 ∼ 3 2
0.25 2320 ∼ 3 2
0.5 2320 ∼ 3 2
0.75 2320 ∼ 3 2

1 2320 ∼ 3 2

#2 T2mm
1 1602 ∼ 5 2.8
1 773 ∼ 10 5.9

#3 T3mm 1 2714 ∼ 9 5.6

#4 Y

0.01 835 ∼ 9 ·103 0.6
0.025 835 ∼ 9 ·103 0.6
0.05 835 ∼ 9 ·103 0.6

0.125 835 ∼ 3.6 ·102 0.6
0.5 835 ∼ 3.6 ·102 0.6
1 835 ∼ 3.6 ·102 0.6
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Eight tests were conducted in the T-mixers to allow three effects to be studied: (i)
the effect of the concentration (dataset #1), (ii) the effect of the flow rate (dataset #2),
and (iii) the effect of a change in T-mixer diameter (dataset #3). Concerning the effect
of the concentration, the chosen flow rate was 1160 mL/min for each inlet solution to
have a total flow rate of 2320 mL/min in the mixing channel, as shown in Table 4.1.
For a mean fluid velocity of 12.3 m/s, corresponding to the aforementioned flow rate,
the effect of the initial MgCl2 and NaOH concentrations on the produced Mg(OH)2

particles was investigated; MgCl2 solutions ranged from 0.125M to 1M (to mimic
the magnesium content of real brines) and stoichiometric NaOH solutions were used,
as reported in Table 4.1. The effect of reactant concentrations on Mg(OH)2 particle
sizes formed in the mixing channel was investigated at a Reynolds number of 27251.
The effect of the flow rate was studied by keeping the concentration constant and
equal to the highest value (MgCl2 1 M, NaOH 2 M). Taking case 5 of dataset #1
as a reference, the flow rate was decreased by 30% for case 1 of dataset #2 and
67% for case 2 of the same dataset resulting in different mixing times (Table 4.1).
Using the T3mm-mixer, the effect of changing geometry was studied. In the case
of the Y-mixer (dataset #4), the MgCl2 concentration range investigated initially
in dataset #1 was extended towards smaller concentration levels. A sample of the
suspension exiting the mixing channel was collected, and the PSDs were measured
using the DLS (Zetasizer Nano ZS, Malvern Instruments, UK) technique. For this,
the following procedure was followed: (i) the suspension was diluted, if necessary, to
ensure that the same solid mass of 0.3 g/L per unit suspension volume was reached,
(ii) an anti-agglomeration agent (poly-acrylic acid, sodium salt) was added (4.9
g/kg) to suppress agglomeration and, in the end, (iii) the sample was left in an
ultrasound bath (Elmasonic S 40 (H), Singen, Germany) for 5 min. The protocol
makes it possible not only to neglect agglomeration but also to stabilize suspension
by arresting possible changes in PSDs [132]. From the experimentally measured
PSD, moments were calculated according to the following definition:

m j =
∫

∞

0
L j f (L)dL (4.1)

where L is the particle size and f (L) is the PSD. Correspondingly, the moment ratios
di j are defined as:

di j =
mi

m j
(4.2)
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Since these characteristic sizes (such as d10,d21,d32,d43) are calculated from integral
properties (i.e., the moments of the PSD) tracing their evolution means tracing
the evolution of the whole PSD. Therefore, although all characteristic sizes are
monitored, we chose to focus the discussion only on d10 for the sake of discussion.
This choice is also supported by the observation that the distributions that the
DLS can provide are generally poorly poly-disperse. It means, therefore, that the
characteristic sizes always exhibit the same qualitative trend, and the absolute value
of the dimensions increases as the monitored size increases (i.e., d10 < d21 < d32 <

d43).
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Figure 4.2 Experimental datasets: #1 (left), #2 (center), #4 (right)

The measured d10 shows an increase in particle size as the initial reactant concen-
tration is increased (dataset #1). An approximately linear trend is observed. Figure
4.2 - center shows that for a mean velocity (i.e., flow rate) range in the mixing channel
between 4 and 12 m/s, no significant changes in the mean particle size are detected
as well as for the change in the geometry. Finally, the Y-mixer showed an increasing
monotonic trend in terms of d10 in the same range of concentrations of dataset #1
whereas a minimum was detected at lower concentrations. Experiments at lower
concentrations in the T-mixer were also carried out and showed good agreement
with simulations. However, the results from these experiments are not reported in
this study due to the presence of experimental uncertainty that is difficult to quantify.
This uncertainty is primarily related to the impossibility of controlling where the end
of the reaction occurs, particularly at low concentrations. In this scenario, there is
a possibility of some unconsumed supersaturation remaining at the T-mixer outlet,
which could lead to further particle evolution within the collection flask. While it
is reasonable to assume that this variation is not significant, as the supersaturation
at the outlet will have been consumed in large amounts and further gets diluted in
the collection flask, it remains challenging to precisely estimate the uncertainty in
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particle sizes. In contrast, the Y-mixer experiments benefited from the possibility of
guaranteeing adequate residence times by extending the final section of the mixer.
Unfortunately, a similar extension was not feasible in the T-mixer, making it difficult
to determine conclusively whether the reaction was completed inside the T-mixer or
within the collection flask.

4.2 Zeta potential measurements

To better understand the stability of Mg(OH)2 colloids (the ability to stay in the
colloidal form without particle agglomeration through flocculation [133]) and its
implications on the obtained PSD, zeta potential measurements were conducted
analysing Mg(OH)2 suspensions produced: (i) after 2 h from the precipitation for
case 1 - dataset #1 and case 2 - dataset #2 without PAA; (ii) after 1 month of ageing for
suspensions of case 2 - dataset #2 without PAA; (iii) after 2 h from the precipitation
for case 2 - dataset #2 with PAA. The 2 h samples were analysed using a Malvern®
Zetasizer Nano ZSP (analysis conducted at the Advanced Technologies Network
Center of the University of Palermo), while the 1 month samples were analysed using
a Malvern® Zetasizer Nano ZS90 (analysis conducted at Politecnico di Torino). All
samples were diluted to a Mg(OH)2 concentration of 0.3 g/L and drops of 1 M NaOH
solution were added to adjust the suspensions’ pH to the desired one. It is worth
mentioning that the value obtained for each measurement is the result of at least 12
repeated internal measurements of the Zetasizer, which eventually returns an average
value with a standard deviation. Moreover, each experiment was repeated at least
twice for reproducibility purposes. This allows us to estimate the error bars reported
in the results, by statistically combining the dispersion between different trials
(reproducibility error) and the measurement error, provided for each individual trial
by the device employed (Malvern Zetasizer). The stability of Mg(OH)2 suspensions
was also investigated over time performing the analysis (i) after 2 h and (ii) after
1 month of ageing from the precipitation. Zeta-potential depends on the particle
properties, the suspension conditions (e.g. pH), and the theoretical model applied,
e.g. the Smoluchowski approximation employed here to derive Zeta-potential values
from the electrophoretic mobility of particles [134].
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Figure 4.3 Zeta potential trend for two samples (not- and aged) compared with the literature
trend

Figure 4.3 presents Zeta-potential values measured for case 2 of dataset #2 (see
Table 4.1) downstream the precipitation (red dashed line) and after 1 month (blue
dotted-dash line) from precipitation for suspension pH ranging from 10 to 13. The
experimental data collected in this study was compared with those presented by Lin
and Wang [135]. The latter authors employed an electro-acoustic technique, while
the data reported here were obtained using Malvern® Zetasizers, which are based on
the electrophoretic mobility technique, i.e. on measuring the limiting velocity of the
particles in an electric field. At solution pH between 10 and 11, a good agreement is
observed between Lin and Wang [135] data and Zeta-potential values. Aged samples
showed an even better agreement with the measurements of Lin and Wang [135].
Specifically, Zeta-potential values measured without ageing were found to vary from
∼19 mV to ∼18 mV as pH values varied from 10 to 11, while Zeta-potential values
reported by Lin and Wang [135] and those measured for the aged samples varied
from ∼22 mV to ∼20 mV. Some difficulties were encountered for measurements in
high pH suspensions due to their high conductivity values so pH values higher than
12.5 could not be investigated. Lin and Wang [135], however, reported Zeta-potential
values of ∼-15 mV at pH ∼12.5 and ∼-20 mV at pH∼13. The isoelectric point (the
point of zero Zeta-potential, where colloids have the largest tendency to agglomerate)
of Mg(OH)2 particles is detected at a pH value of ∼12 for both samples, in good
agreement with Lin and Wang [135] and with values reported in literature [136–
138]. Zeta-potential values measured for samples with and without ageing show that
Mg(OH)2 suspensions are characterized by the same stability characteristics over
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time and similar Zeta potential values. Therefore, no influence on the Zeta potential
value can be observed at different mixing conditions. Figure 4.3 shows that the Zeta-
potential of the Mg(OH)2 particles lies in the range of ±30 mV, which represents a
zeta potential region where particles are not stable and tend to agglomerate rather
than staying apart [134]. Specifically, in the absence of PAA, Mg(OH)2 particles
agglomerate due to their low zeta potential values. On the other hand, the presence
of PAA stabilizes the Mg(OH)2 suspension [133, 139]. Specifically, the addition of
the PAA causes an increase of the Zeta-potential that reaches values of 35–40, in
absolute value, away from the ±30 mV unstable Zeta-potential region, which is the
expected effect of PAA surrounding the particles and modifying their Zeta-potential
and agglomeration tendency. The thermodynamically stable coiled structure of PA-
can entrap Mg(OH)2 nanoparticles preventing their agglomeration [133].

4.3 SEM analysis

To investigate whether and how particles’ morphology can be affected by precipita-
tion conditions and post-treatment handling, Mg(OH)2 particles morphology was
analysed via Scanning Electron Microscopy (SEM FEI Quanta 200 FEG). Morpholo-
gies were compared for case 1 - dataset #1 and case 2 - dataset #2 after performing
two different particle preparation processes aiming at removing non-Mg(OH)2 salts
from the sample:

• Mg(OH)2 suspensions were filtered by using a Büchner system and a vacuum
pump; the cake was washed to remove the reaction-produced NaCl that re-
mained trapped in the wet cake, then dried for 24 h in an oven at 120 °C and
finally crashed by mortar & pestle

• 7 mL of Mg(OH)2 suspension was added to 700 mL distilled water in the
HydroMU 2000 beaker; 30 drops of PAA were added and 5 min of ultrasound
treatment was applied; a drop of the diluted suspension was then withdrawn
close to the impeller, positioned on an SEM stub and dried in a vacuum vessel
for 48 h.

Having explored the experimental procedures used for the production and charac-
terization of globular Mg(OH)2 nanoparticles, as evidenced by the SEM images in
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(a) T-mixer

(b) Y-mixer

Figure 4.4 T- and Y- mixer SEM analysis
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Figure 4.4, we now shift our focus to modelling strategies and methodology in the
subsequent chapter. The detailed experimental insights gained from these procedures
provide a solid foundation for developing effective modelling approaches aimed
at understanding the behaviour and properties of such nanometric structures. In
the upcoming chapter, we delve into the theoretical frameworks and computational
methods employed to simulate and analyze the formation, stability, and interactions
of Mg(OH)2 nanoparticles. This transition allows us to bridge experimental observa-
tions with theoretical modelling, offering a comprehensive exploration of Mg(OH)2

nanoparticles from both empirical and computational perspectives.



Chapter 5

Modelling Strategies and
Methodology

Some of the work described in this chapter has also been previously published
in Raponi et al. [132] and Raponi et al. [140].

In this chapter, we aim to develop a comprehensive model to infer kinetic param-
eters for primary nucleation, molecular growth, and bridge strength of aggregates.
For the sake of clarity, throughout all sections, the following terminology will be
used: (i) ‘primary particles’ to refer to single crystals formed by primary nucleation
and enlarged by growth (ii) aggregation to refer to the formation of primary particles
clusters (or secondary particles), where primary particles stick together forming
stable bridges due to supersaturation depletion (iii) agglomeration to refer to the
formation of groups of primary particles and their clusters, which come close each
other and hold that configuration due to weak interaction forces.

5.1 Computational Modelling

A simplified mono-dimensional model (1D) has been developed and implemented.
In this model, several aspects are integrated to accurately reproduce the real physical
behaviour presented by the experimental evidence: (i) chemical reaction, (ii) solution
non-ideality (activity coefficients), (iii) particle size evolution, and (iv) micro-mixing.
The 1D model aims to describe static mixers (T2mm, T3mm and Y), assumed to behave
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like a Plug Flow Reactor (PFR), but still incorporating information concerning the
turbulent fields to account for micro-mixing. It is then employed to determine the
Mg(OH)2 precipitation kinetics. In Figure 5.1 the flow chart describing the code
implementing the model is presented.

Start
Setting operative

conditions

Activity coefficients
γ (t)

Micro-mixing
f (t)

Supersaturation is
evaluated and

mk (t) are solved

Concentrations
are solved

Converged?

Stop

no

yes

Figure 5.1 Model flowchart

Initially, ion concentrations, Mg2+ and OH- are set equal to the experimental
values at the inlet streams (see Table 4.1). The moments of the PSD, of order ranging
from 0 to 2N-1 (where N is the number of nodes used in the QMOM [102]), are
set equal to zero because no precipitated solid is present at the inlets. Given these
initial conditions, the algorithm evaluates the activity coefficients to be used in the
supersaturation expression and, in parallel, the truly available concentration of Mg+2

and OH- which can precipitate due to the chemical reaction between MgCl2 and
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NaOH. Therefore, supersaturation is evaluated. This variable within the model
is one of the most important because it represents the driving force, of all the
phenomena involved, namely primary nucleation, molecular growth, and aggregation.
As mentioned, the PBM is solved in terms of the moments of the PSD by using
the QMOM. Once the PBM is solved for the current time step, moments (and their
rates) are calculated and used to calculate the precipitated amount of ions from
the solution in the solid lattice. Calculations proceed until the simulation length
(input data) is reached. The mono-dimensional model is implemented in MatLab®

and the ODE integration algorithm used is ode15s (ode45 was also used to check
whether the same solution was obtained). This latter was chosen for numerical
stability reasons, being the problem stiff. As mixing and reaction times are fast,
many physical quantities (such as the particle number, for instance) increase rapidly
by several orders of magnitude in a very short time. It is important to emphasize
that the mono-dimensional framework is used to identify precipitation kinetics upon
comparison with experimental PSDs through a multivariate constrained optimization.
One can therefore understand the need to use a fast-running model that can provide
a rapid response, as many function evaluations might be necessary. In addition to
this fundamental study, the choice of an easy-to-tune model is reinforced by the
final application: the design of a prototype for magnesium hydroxide precipitation
at the pilot scale. Therefore, the model can be employed to infer precipitation
kinetics. Once the order of magnitude is known, a higher dimensional model
(e.g., 3D model) can be used to assess the influence of operating conditions (e.g.,
concentration, flow rate) and process parameters (e.g., reaction volume) on the PSDs.
At the industrial level, specific granulometric characteristics are required depending
on the field of application. Having a simplified, computationally cheap tool for
numerical investigations allows one to change the input parameters until the desired
commercial target is obtained. Once the influence of the parameters on the PSDs
has been assessed, a computationally less cheap but physically more complex model
can be used for a fine-tuning study. This more complex model can be based for
example on the idea of solving the PBM (with QMOM) directly within the CFD
code. With the latter, the influence of flow field gradients (e.g., radial dispersion) can
be studied. Once the turbulence is solved, this model can be used in two steps: (i) to
assess the mixing of the reactants and thus solve the supersaturation field and (ii) to
solve PBM. Performing these two steps consequentially will optimize computing
resources. The supersaturation distribution makes it possible to assess, for example,
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whether radial dispersion is pronounced. If it were, the 1D model could be used
for a first qualitative study but it would certainly lead to a quantitative error and the
more detailed model should be employed. Moreover, the associated computational
costs are reported. The used computational power refers to a CPU clock frequency
of 2300 MHz with 65 Gb RAM. The 1D model is run on a single core whereas the
more complex model is on multi-cores. The 1D model has an execution time of
a few seconds, whereas the supersaturation solution for the more complex solver
requires about 9500 times as much (i.e., about 8 h). The solution of the PBM within
the CFD code reaches some days of computing.

Computational Fluid Dynamics Integration

Since many of the phenomena involved are related to both the turbulent energy
dissipation rate (TDR), ε , and the turbulent kinetic energy (TKE), k, an accurate
description of these quantities is required. Various valid approaches can be used
to obtain ε values, such as calculating them using experimental pressure drops
(if known) or through CFD simulations. Table 5.1 provides both the boundary
conditions used for the CFD simulation settings and the initial conditions for all the
solved fields.

Table 5.1 Boundary Conditions and Initial Conditions

Inlet Outlet Walls Initial Conditions

TKE, k 3
2

(
Iumag

) Neumann Scalable 3
2

(
Iumag

)
condition wall-function

TDR, ε
C0.75

µ k1.5

Ls

Neumann Scalable C0.75
µ k1.5

Lscondition wall-function

Turbulent viscosity
Cµ

k2

ε
Neumann Scalable

0
condition wall-function

Velocity (m/s)
u(inl)

mag Neumann No
(0,0,0)

condition slip

Where the Neumann condition refers to the gradient of the solved property
equal to zero, no-slip refers to the velocity equality between fluid and wall, and
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the wall functions for the near-wall treatment can be found in the literature [141].
Simulations were run in OpenFOAM exploiting the twoLiquidMixingFoam solver
within the RANS approach, computed exploiting the ‘PIMPLE’ coupling algorithm.
Scalable wall functions (already implemented in OpenFOAM) were used for the
near-wall treatment, as suggested in the literature [128]. A grid convergence study
was performed, resulting in a final grid of ∼ 130000 cells.

Figure 5.2 T-mixer geometry and spatial profiles
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As a result, spatial profiles for the properties of interest were extracted from
CFD simulations and employed in the 1D model, as shown in Figure 5.2. The
trend reported is in accordance with the known literature. T-mixers develop massive
turbulence as described both through experimental tests [142] and DNS [40]. NaOH
and MgCl2 solutions (with slightly different solution densities and viscosity within
the CFD simulations) come from the two inlets impinging along a plane where most
of the turbulent kinetic energy is transported for convection and dissipated. Keep
going along the y-coordinate, namely approaching the outlet, since most of the fluid
energy is dissipated, these profiles tend to an asymptotic value. Analogous behaviour
was found for the other geometry (Y-mixer) with similar operating conditions [41].
Figure 5.2 reports the evolution of turbulent profiles for the flow rate of dataset #1
and case 2 of dataset #2. It should be noted that the flow rate of case 2 of dataset
#2 is one-third of the flow rate of dataset #1. Turbulent properties, however, scale
one order of magnitude. An analogous trend can be found when the T- and Y-mixer
turbulent profiles are compared as shown in Figure 5.3.
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Figure 5.3 The averaged k− ε profiles extracted from CFD simulations are shown for the
T-mixer setup (top) and the Y-mixer setup (bottom).
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The turbulent properties in the T-mixer are one order of magnitude lower than those
in the Y-mixer. Indeed, this justifies that the dissipation of variance is slower in the
T-mixer than in the Y-mixer. Note that the flow and turbulent fields affect both the
molecular processes (i.e., nucleation and growth) as well as the secondary process
(i.e., aggregation) considered here. Thus, by comparing different systems, one can
investigate the effect of the fluid flow and compare the T-mixer with the Y-mixer.

Micro-mixing and Chemical reaction

Our study employs a micro-mixing model to account for the molecular-scale mixing
of ions required for the formation of Mg(OH)2. In very fast processes, micro-mixing
can become the rate-determining step. As reported in Appendix B.2, accurate
predictions of both the trend and experimental data values cannot be achieved
without accounting for the micro-mixing. When the micro-mixing model is turned
off, predictions for the mean particle sizes are significantly inaccurate and unphysical.
Therefore, neglecting micro-mixing would result in an inaccurate description of the
experimental data. Micro-mixing is described via the variance of a non-reacting
scalar, the mixture fraction, obeying the following ordinary differential equation:

d
(

ūᾱ
′2
)

dy
=−

Cφ

2
ε(y)
k(y)

ᾱ
′2 (5.1)

where y is the axial coordinate of the T-mixers and ū is the average fluid velocity in
the axial direction, Cφ was set equal to 2 as reported by Marchisio and Fox [53].
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Figure 5.4 Variance evolution was obtained using the turbulent dissipation rate and kinetic
energy from CFD simulations as a function of the residence time (s) for three flow rates
(case 5 of dataset #1 and cases of dataset #2). The solid line refers to case 5 of dataset #1,
the dashed line refers to case 1 of dataset #2 and the dotted line refers to case 2 of dataset #2

The profiles in Figure 5.4 are obtained by solving Eq. (5.1) by using the turbulent
profiles extracted from CFD simulations to estimate the mixing time proportional
to the k− ε ratio. However, an empirical value for the mixing time, such as the
one reported in Table 4.1, could also be used. In that case, a similar result would
have been obtained. The variance evolution, besides the goal for what is used, has
important physical implications that can be analyzed; it tells how fast two reactants
can reach the Batchelor (or purely diffusive) scale and, therefore, react. Hence, it is
assumed that in the T-mixers the solution starts with a perfectly micro-segregated
condition

(
ᾱ

′2 = 0.25
)

for which ions are perfectly macro-mixed (ᾱ = 0.5) but
cannot precipitate (neither nucleate nor grow) because not available at the molecular
level. To compare variance profiles at different flow rates (Figure 5.4), the generic
y-coordinate within the mixing channel was divided by the velocity corresponding
to the investigated flow rate (Table 4.1) to obtain the profiles as a function of the
residence time. All the variance profiles suggest that ions available for the precip-
itation are micro-mixed within a short period and this is in accordance with the
T-mixers theory [40]. One can note that the time at which variance nulls (Figure
5.4) is equal to the one experimentally estimated (Table 4.1). The more the flow
rate decreases, the more turbulence decreases (Figure 5.2). Therefore, reagents take
longer to micro-mix resulting in longer mixing times. The variance decay is used
together with the presumed beta probability density function (β -PDF) approach [53]
to evaluate the actual ions concentration available for building up supersaturation, un-
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der the assumption of an infinitely fast chemical reaction. Additionally, a comparison
between the T- and Y-mixer variance evolution is reported in Figure 5.5:

Figure 5.5 Mixture fraction variance evolution as a function of the residence time for the T-
and Y- mixers setups obtained solving Eq. (5.1). Dashed line refers to the T-mixer and solid
line refers to the Y-mixer.

In Figure 5.5, the mixture fraction variance evolution is shown for the T- and
Y- mixers, and a characteristic time for its dissipation can be identified. One can
see that in the Y-mixer, the mixing efficiency is higher than in the T-mixer. In fact,
Battaglia et al. [11] empirically estimated that for the T-mixer (referring to a velocity
in the mixing channel of 12.3 m/s), the characteristic mixing time was about 2 ms
(using the expression provided by Schikarski et al. [40], namely Eq. (6) in their
paper) which is one order of magnitude higher than that of the Y-mixer (assuming
10−4 s to be the time when variance becomes practically zero).

Supersaturation and Activity Coefficient

The computational model accounts for (i) primary nucleation (homogeneous and
heterogeneous), (ii) molecular growth, and (iii) aggregation (hydro-dynamic and
Brownian). In this regard, a PBE was solved considering all these phenomena, as
source terms in the evolution equations for the moments of the PSD. Kinetics param-
eters related to the source terms were tuned to fit experimentally measured PSDs.
The driving force in the precipitation processes is represented by the excess of ions
in the liquid compared to the thermodynamic solubility

(
ksp
)

of its solid. Therefore,
a dimensionless variable, the supersaturation ratio, or shortly supersaturation, is used
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to quantify this driving force throughout the process. For magnesium hydroxide,
according to Yuan et al. [33], supersaturation can be defined as:

S =
γ3
±

(
c̄Mg2+ c̄2

OH−

)
ksp

−1 (5.2)

ksp = aMg2+,eq a2
OH−,eq (5.3)

Here c̄Mg2+ and c̄OH− are computed through the β -PDF approach. It is important
to note that these two concentrations are different from the total Mg2+ and OH-

concentrations that enter the system. These two concentrations are a fraction of
the total concentrations entering the system. This fraction initially increases as the
system evolves toward a perfect micro-mixing condition and then decreases due to
precipitation. γ± is the ions activity coefficient [143]. Details of the coefficients and
equations used for the activity coefficient model are given in Appendix B.1

Figure 5.6 The supersaturation profile reconstructed from the ion concentrations calculated
through the model for different flow rates as a function of the residence time (s) for three
flow rates (case 5 of dataset #1 and cases of dataset #2). The solid line refers to case 5 of
dataset #1, the dashed line refers to case 1 of dataset #2 and the dotted line refers to case 2 of
dataset #2

The trend underlines that competitive phenomena occur. At the beginning of
the process, supersaturation starts increasing due to ions’ molecular contact (micro-
segregation decreases due to high turbulence), and the driving force for precipitation
increases. Since supersaturation increases, nucleation and molecular growth occur,
resulting in the formation of the precipitate with consequent ions depletion from
the liquid phase. The flow rate effect, already introduced with variance profiles,
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is reinforced by explaining the influence on the supersaturation (Figure 5.6). By
changing the flow rate and consequently the turbulence, mixing gets worse and the
times within which supersaturation occurs increase (profiles shift to the right, as well
as variance). In addition, the maximum local supersaturation value decreases (from
solid to dotted line) as the flow rate decreases. Worse mixing produces a lower con-
centration of reactants available at the molecular scale to react. Lastly, it is necessary
to underline the importance of activity coefficients, whose usage is needed to correct
the effectively “active” concentration of ions in solution. When ion concentration
increases, mobility resistance of ions themselves can arise. Counter-ions can form a
cloud around co-ions which leads to a shield effect able to reduce their mobility and
electrostatic interaction. To consider this effect and to correct analytical concentra-
tions, Bromley activity coefficients for multi-component solutions were used [143].
Bromley’s theory is semi-empirical, based on ions’ electrostatic interactions, and
ions were considered: Mg+2-OH-, Mg+2-Cl-, Na+-OH-, Na+-Cl-. Bromley’s theory
neglects co-ions interactions which may be relevant in some cases. However, since
this theory was developed using concentrated seawater as a test solution, Bromley’s
theory can be used for magnesium hydroxide. This model was implemented for the
multi-component solution because parameters are available in the literature and each
of the presented operative conditions is below 6 M in terms of ionic strength (upper
validity limit for Bromley’s theory).

5.2 Kinetics Parameters Identification and Optimiza-
tion

Primary nucleation (both homogeneous and heterogeneous) was described with the
Volmer-Weber expression (Eq. (2.37)). The molecular growth rate was described
through a power-law expression (Eq. (2.38)). The aggregation rate includes both
the Brownian and turbulent contribution (Eqs. (2.45), (2.47)). Moreover, since not
all impacts lead to aggregation, Smoluchoski’s collisions theory has been corrected
[89] using an aggregation efficiency or sticking probability (Eq. (2.44)). The
aggregation efficiency is greater than zero (i.e., two particles can aggregate) only if
the cementation time is of the same order of magnitude as the interaction time or
lower. In other words, two particles could stick together only if the time required for
the stable bridge to be formed is at most the one between two rupture events. A key
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point to consider is the sensitivity of aggregation to the values of the TDR, ε [112].
This is because the turbulent contribution to the aggregation rate is directly related to
the ε value (Eq. (2.47)). Additionally, ε is used to calculate both the interaction time
(Eq. (2.52)) and the cementing time (Eq. (2.53)), and the ratio of these values allows
the aggregation efficiency to be determined. A sensitivity analysis for constant ε

values is provided in Appendix B.3 and it proves that it is important to carefully
evaluate the ε value when modelling the aggregation process. The above equations
are solved in the PBM using the QMOM [102, 103] approach:

d
(
ūm j

)
dy

= JkLk
c + k

N

∑
i=1

GLk−1
i wi +

1
2

N
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i=1

wi

N
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j=1

w jβagg(L3
i +L3

j)
k
3 −

N

∑
i=1

wiLk
i

N

∑
j=1

w j

(5.4)
Here, Lc is the critical size (1 nm) of a stable nucleus, whereas B̄ j and D̄ j model
the birth and the death term linked to a net aggregation rate. In the present work, 3
quadrature nodes (or, consequently, 6 moments) were used. Ultimately, the PBM is
closed by resorting to a mass balance for ions that, upon reacting, disappear from the
liquid phase to form the solid:

d
[
Mg2+]
dy

=−ρckv

Mp

dm3

dy
(5.5)

d [OH−]

dy
=−2

ρckv

Mp

dm3

dy
(5.6)

Here, ρc, and Mc are the density and molecular weight of the solid
(
2.34 g/cm3

and 58.32 g/mol) respectively, and kv is the shape factor (π/6 for spheres). The
PBM is implemented in MatLab and the equations system (namely, Eqs. (5.4),
(5.5), (5.6)) is solved using the ‘ode15s’ algorithm. There are a total of eight
model parameters to estimate: four stemming from the nucleation rate equation J
(A1, A2, B1, B2), two from the growth rate equation G (kg, g), and two, C1 and Ap,
from the aggregation rate equation. The estimation of these model parameters is
crucial for accurately representing particle dynamics. The optimization routine aims
at estimating kinetics parameters for the precipitation process identifying the best
fitting between model predictions and collected experimental data. In this regard, a
multivariate optimization was performed. Initially, the dataset was split for tuning
and validating the model. Concerning Table 4.1, dataset #1 was used for model
tuning, and cases from dataset #2 for validation. Each experimental test led to a



5.2 Kinetics Parameters Identification and Optimization 79

PSD from which four moment ratios were computed. Therefore, the model tuning,
which involved 8 unknown parameters, ended up with 20 experimental values (i.e.,
d10,d21,d32,d43) to be used in the optimization. A target function, exploiting the
built model, was used through the fmincon MatLab function in which the global
error had to be minimized. The error can be formulated as follows:

e = ∑
i

∑
j

√√√√(dsim
j −dexp

j

dexp
j

)2

i

(5.7)

Eq. (5.7) minimizes for each of the five concentrations (index i) the four character-
istic sizes (index j). Since unphysical sets could arise from optimization, proper
parameters range, within the fmincon MatLab function, were imposed:

Table 5.2 Parameter constraints and Units

A1 A2 B1 B2 kg g C1 Ap

Lower bound (lb) 1019 1010 200 10 10−15 1 0 100

Upper bound (ub) 1029 1018 400 102 10−9 2 1 107

Units
particle no. m N

m3s1 s m2

The parameter ranges can be established through references to the scientific
literature [81]. For instance, in the case of poorly soluble compounds such as
Mg(OH)2 or barium sulfate (BaSO4) [144], the literature presents clear guidelines.
Karpiński and Bałdyga [145] reported for these systems a solution particle density(
particle no. m−3) ranging from 1017 to 1022 from which the lower and upper bounds

for parameter A1 can be derived accordingly. In line with CNT, A1 and A2 can vary
by several orders of magnitude. Once the range for A1 is chosen, the range for A2

follows. The range values of B1 and B2, on the other hand, can be chosen knowing
some physical properties of the system such as the interfacial tension [31]. The
growth rate, whose intensity is modulated by kg, cannot be higher than it would be
in the diffusion-controlled regime and g varies between 1 and 2 depending on the
mechanism by which the particles grow (diffusion- or surface integration-controlled
respectively) [41]. Ultimately, C1 corrects any deviation from ideality (namely
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C1 = 0 ) up to a correction of one order of magnitude (namely C1 = 1 )[72, 132],
while Ap range is tabulated [81].

Equations Summary

In this paragraph, a summary of the presented equations is reported for a PFR system.

Transport Equation for ᾱ:
dᾱ

dt
= 0

Transport Equation for α
′2:

dα
′2

dt
=−C f

Cφ

2
ε

k
α

′2

Transport Equation for mk:
dm̄k

dt
= JLk

c + kGmk−1 +Bk −Dk

Transport Equation for c̄i (reacting ions):
dc̄i

dt
=−

νiρpkv

Mp

dm3

dt

5.3 Results and Discussion

Since constrained optimization algorithms generally exploit methods for the local
minimum research, different attempts were necessary to land in a local minimum,
which could be considered the global one for the actual multi-objective function.
The best parameters fitting is reported:
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Parameter A1 A2 B1 B2 kg g C1 Ap

Set #1 1026 1014 301 30 10−10 1 0.86 5.9
Table 5.3 Kinetic parameters set

Examining the different rates makes it possible to further assess whether the
obtained parameters are physically realistic, as well as the estimation of the con-
fidence interval (see Appendix B.5). These kinetic parameters play a crucial role
in determining the change in the total particle number (zeroth-order moment). In
Figure 5.7, the calculated values of d10 (black solid line) are plotted together with the
experimental data (red squares) obtained in the T-mixer, thus showing quite a good
agreement between the two. It is worth noting that the simulations were extended to
include initial MgCl2 concentration levels lower than in the experiments, showing
that the particle size decreases when the concentration is decreased. In conclusion,
the overall trend of d10 is that it increases monotonically with the initial MgCl2
concentration.
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Figure 5.7 Experimental data (d10) collected using the T-mixer for different initial concentra-
tions of MgCl2 (red squares). The inferred parameters are used to fit the data and extrapolate
the sizes trend for lower initial MgCl2 concentrations (black solid line).

Y-mixer model validation

We utilized the parameters obtained from the T-mixer to predict the values of d10

for the Mg(OH)2 particles obtained in the Y-mixer. While the structure of the PBM
remained identical, it was essential to consider the significant differences in flow



82 Modelling Strategies and Methodology

dynamics and turbulent fields between the two mixers (see Appendix B.7). We
incorporated the k and ε profiles obtained through CFD simulations specific for the
Y-mixer to account for these variations.

0 0.25 0.5 0.75 1

0

25

50

75

100

Figure 5.8 Experimental data (d10) collected using the Y-mixer for different initial con-
centrations of MgCl2 (red squares). Simulation results are shown with three black curves.
PBM without modification (solid line), PBM with modified A1 = 1026 particle no

(
m−3s−1

)
(dashed lined), PBM with constant γ± = 1 (dash-dotted line).

In Figure 5.8, the dependence of d10 on the initial concentration of MgCl2 is shown
for the case of the Y-mixer. The experimental data, red boxes, are plotted together
with three curves calculated by using the model. The first curve (solid line) corre-
sponds to the trend predicted by the model keeping the same set of kinetic parameters
obtained for the T-mixer, while considering the fluid dynamics characterizing the
new Y-mixer system. The second curve (dashed line) represents the trend that
would occur if the parameter A1 were reduced by one order of magnitude. The third
curve (dash-dotted line) shows the behavior that would be observed if the activity
coefficient had a value of one regardless of the operating conditions.

5.4 Modelling insights

After proving its accuracy, we can utilize the model to better understand the under-
lying phenomena. Particular attention will be paid to the minimum in d10 when
varying the initial MgCl2 concentration, experimentally observed in the Y-mixer
(Figure 5.8). To this aim, the evolution of the relevant properties of the systems as
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a function of the residence time will be analyzed in detail for three concentrations:
one on the left of the minimum (i.e., 0.025 M), one at the minimum (i.e., 0.1 M,
as obtained through simulations) and one on its right (i.e., 1 M). The zeroth-order
moment, m0, was chosen among all physical quantities to explain the phenomena
observed. Indeed, if only molecular processes (i.e., nucleation and growth) are
considered, the zeroth-order moment exhibits a sigmoidal shape: it starts from zero
(for non-seeded systems) and reaches the upper asymptotic value due to nucleation
(growth does not change m0). Therefore, the zeroth-order moment reaches a plateau
for a system where aggregation does not occur. When aggregation is considered, as
soon as particles collide and stick together, the zeroth-order moment decreases.
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Figure 5.9 m0 (left) and supersaturation (right) profiles plotted as a function of the T-mixer
residence time for three different initial MgCl2 concentrations.

Let us first examine the observations from the T-mixer configuration. Figure 5.9-left
reports the evolution of the zeroth-order moment along the mixing channel, i.e., in
terms of residence time; it showcases the combined impact of nucleation, growth,
and aggregation for the T-mixer. The final residence time in the T-mixer corresponds
to the duration required for the fluid to flow through the mixing channel, which, as
mentioned, could not be adequately extended. The results obtained from the T-mixer
reveal a distinct trend. As depicted in Figure 5.9-right, supersaturation gradually
builds up, triggering nucleation and subsequent particle growth. Consequently, the
zeroth-order moment (m0) initially exhibits an upward trend, due to the formation
of particles. However, particle aggregation eventually decreases the value of m0.
Notably, lower initial MgCl2 concentrations result in lower maximum supersaturation
levels, thereby delaying nucleation’s inception and leading to fewer particles.
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Figure 5.10 m0 (left) and supersaturation (right) profiles plotted as a function of the Y-mixer
residence time for three different initial MgCl2 concentrations.

Next, let us consider the Y-mixer configuration. The final coil length in the Y-mixer
(hence the residence time) was varied based on the concentrations employed in the
corresponding experiments (Table 4.1). Specifically, to ensure the completion of the
reaction as the concentration range was extended towards smaller concentrations,
the final coil length in the Y-mixer was increased accordingly. In Figure 5.10, the
reported residence time corresponds to the duration required to achieve complete
conversion of the reactants in the least concentrated solution, although the total
simulation time is always equal to the residence time at a given operating condition
(see Table 4.1). It is worth noticing that this residence time suffices for all other cases,
as the driving force amplifies with an increase in the initial MgCl2 concentration. For
the Y-mixer (Figure 5.10-left), a distinct monotonic trend similar to that observed in
the T-mixer configuration is not evident, even though the supersaturation profiles for
both setups (Figures 5.9-right and 5.10-right) exhibit similar trends. One plausible
explanation for this trend in the Y-mixer is based on the selectivity of supersaturation.
In our investigation, we have explored how the depletion of supersaturation occurs as
a direct result of changing the concentration of MgCl2. It is worth recognizing that
the dominant mechanism by which supersaturation is depleted varies for different
operating conditions. This is further elaborated with the help of Figure 5.11, which
shows the relationship between the nucleation rate (J) and the molecular growth rate
(G) at different levels of supersaturation.
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Figure 5.11 Primary nucleation rate as a function of the molecular growth rate for Mg(OH)2.
Three regions are identified: (i) the metastable region (S from 0 to ∼ 103), (ii) a nucleation-
dominant region (S from ∼ 103 to ∼ 105), and (iii) a growth-dominant region at higher
supersaturation levels (S from ∼ 105 onward).

In Figure 5.11 J is plotted against G for increasing supersaturation levels. Due to
the highly non-linear nucleation rate the plot is divided into two parts: on the left J
is plotted versus G for lower supersaturation levels, whereas on the right the same
quantities are plotted for higher supersaturation levels. It is important to notice that
Figure 5.11 is based on the kinetics of the specific compound under study (Eq. (2.37)
and (2.38)). Three distinct regions can be observed: (i) a metastable region where the
nucleation rate variation with the growth rate (dJ/dG) is almost zero, (ii) a second
region where dJ/dG → ∞ (indicating a significant increase in the nucleation rate),
and (iii) a third region exhibiting a similar trend of the metastable one but at much
higher rates (as supersaturation approaches infinity). This behavior, observed in both
crystallization and precipitation processes, was explained by Kubota and co-workers
[146, 144] and supports the concept of supersaturation selectivity. Particle growth
is favored over nucleation in the metastable region (i). Understanding this concept
helps explain the behavior in region (iii), where the nucleation rate is hindered by the
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growth of existing particles, resulting in fewer particles that grow larger. Conversely,
in region (ii), the nucleation rate increases significantly, depleting supersaturation to
form more particles that grow slower. It is worth noticing that the metastable region
(i) is hardly accessible in precipitation processes, due to the high supersaturation
levels generated even at low concentrations. Therefore, considering regions (ii)
and (iii) allows for a better explanation of the trends observed in m0 at different
concentrations (Figure 5.10 left) and it helps explain the presence of the minimum
in the d10 trend (Figure 4.2 - right). To assess the influence of each phenomenon,
we numerically decoupled molecular processes and secondary processes. We begin
by considering a hypothetical scenario where only molecular processes are enabled,
and only subsequently, the contribution of aggregation is introduced.
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Figure 5.12 m0 evolution in the Y-mixer considering only molecular processes (left); d10
trends as a function of the initial MgCl2 concentration (right).

The left panel of Figure 5.12 focuses on the m0 evolution for three concentrations
as a function of the residence time when solely molecular processes are considered.
The right panel of Figure 5.12, instead, shows three trends of the d10 as a function of
the initial concentration of MgCl2. The blue line represents the d10 trend when all
processes are accounted for. The green line represents the d10 trend when nucleation,
growth, and Brownian aggregation are considered. Lastly, the red line represents
the d10 trend when only nucleation and growth processes are considered. For the
sake of clarity, let us call ‘primary particles’ the particles that would potentially
occur if aggregation could be prevented (red line), while ‘particles’ are those that
actually result considering aggregation as well (green and blue lines). Moreover, it
is worth noticing that molecular and secondary processes do not occur in series but
in parallel. Therefore, decoupling the phenomena is merely a numerical expedient
through which the discussion can be facilitated. It is evident from the right panel that
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when only nucleation and growth are considered (Figure 5.12-right, red line), the d10

exhibits a monotonically increasing trend with increasing initial MgCl2 concentration.
This observation is consistent with the findings in Figure 5.11. Specifically, as
the concentration increases, the system moves towards the region (iii), indicating
that growth is favored over nucleation. Hence, the number of ‘primary particles’
decreases (Figure 5.12-left), implying that the collision frequency decreases and
so does the ‘particles’ size. As it can be seen by comparing the blue and green
lines in Figure 5.12-right, the Brownian contribution alone in Eq (2.44) produces
the minimum, due to the interplay between the collision frequency, βcoll, and the
aggregation efficiency, ψ , (Eq. (2.44)). Indeed, as the concentration increases,
the cementation time (Eq. (2.53)) decreases since it is inversely proportional to G.
The interaction time (Eq. (2.52)) is constant since the flow rate is the same (and
consequently so are the flow field and the turbulence fields). A decrease in the
cementation time, for the same interaction time, results, on average, in an increase
in the aggregation efficiency. Therefore, the minimum observed in Figure 5.8 for
the Y-mixer is a consequence of the opposite trends of the collision frequency and
aggregation efficiency with the initial MgCl2 concentration. It is worth noting that the
aggregation efficiency (Eq. (2.51)) depends on fluid dynamics, local supersaturation,
and particle sizes and, due to the highly intricate dependencies among these factors, a
detailed analysis cannot be performed independently (see Appendix B.6). Moreover,
the contribution of turbulent aggregation to d10 is negligible except for high initial
MgCl2 concentrations, as depicted in (Figure 5.10-right) by comparing the blue and
green lines. This could be due to the faster desupersaturation process, resulting in
a broader particle size distribution where the bigger ‘particles’ undergo turbulent
aggregation, resulting in an increase of

5.5 Improvements in the aggregation kernel

Let us now investigate the role of the correction factor, 10C1 , contained in Eq. (2.49).
As mentioned this correction accounts for deviations from the simplification hypothe-
ses under which the aggregation kernels are derived, notably a sufficiently low total
particle concentration. By using an empirical approach it is therefore reasonable
to link this correction to the total mass of the precipitated solid, proportional to the
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third-order moment of the PSD:

10C1 = 10C′
1m3(t) (5.8)

The third-order moment, m3, is calculated accounting for the increasing mass of
the precipitated solid. This modification enables us to track the history of solid
generation throughout the process at each operating condition. At the beginning of
the precipitation process, there is minimal precipitated solid (m3 → 0) and 10C′

1m3→0

approximates 1. As the precipitation process unfolds, the amount of the precipi-
tated solid increases, and consequently, m3 rises, leading to an increase in 10C′

1m3 .
Additionally, while m3 starts at zero for all operating conditions, its final value
significantly differs with varying initial concentrations of the reactants. This means
that 10C′

1m3 not only increases with the precipitation process advance but also scales
proportionally with the initial concentration of the reactants introduced into the
reactor, implying a heightened contribution from aggregation. This modification
thus reinforces the already existing correlation between the number of particles and
the collision frequency for which the collision frequency increases as the number
of particles increases. The choice of the third-order moment is deliberate, as it
remains independent of the aggregation source term itself. It is noteworthy that this
change in the kernel does not increase the number of parameters. A new parameter
identification was therefore conducted on this modified model by using the T-mixer
experimental data (Figure 5.13 left), with subsequent validation and comparison of
simulation predictions against experiments conducted on the Y-mixer (Figure 5.13
right).
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Figure 5.13 Numerical simulations run for the T- (left) and Y- (right) mixer accounting for
the new correction factor shown in Eq. (5.8). The numerical results (solid line) are plotted
together with the experimental data (red squares).
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One can see that the experimental T-mixer trend is better represented because the
model can assure a change in the second derivative (i.e., initially concave and then
convex) for the d10 as a function of the initial reactant concentration instead of a
linear trend. The enhanced predictive capabilities of the model are evident also for
the Y-mixer configuration.
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Figure 5.14 m0 evolution in the Y-mixer considering only molecular processes (left); d10
trends as a function of the initial MgCl2 concentration (right). Simulations are run using Eq.
(5.8)

It should also be noted in Figure 5.14 that the introduction of this new correction
factor only affects the accuracy of the predictions but not the interaction between the
various processes. The comparison between Figure 5.12 and Figure 5.14 shows that
the trend of m0 and d10 remains unchanged qualitatively but changes quantitatively.
It follows that the model can adequately describe the (intricate) interaction of the
phenomena involved and that the introduction of the new correction factor better
approximates the particle collision mechanism. The parameters set found through
this second optimization is reported in Table 5.4 and can be compared with the initial
parameters set (see Appendix B.5). As it is seen most of the identified parameters do
not change significantly and only the correction factor is tuned accordingly.

Parameter A1 A2 B1 B2 kg g C
′
1 Ap

Set #2 1025.8 1013.9 301 34 10−10.4 1.45 29.39 6.37
Table 5.4 Model parameters for aggregation kernel as a function of m3 (#2).
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To summarize, using the new functional form for the correction factor multiplying
the aggregation rate, as expressed by Eq. (5.8), leads to a significant improvement
in the numerical predictions for both the T-mixer and the Y-mixer. Indeed, set #2
can describe both datasets (Figure 5.13) simply by considering the change of fluid
dynamics from the T- to the Y-mixer without further change.

5.6 Conclusions

This chapter focuses on the numerical predictions of Mg(OH)2 precipitation when
quite different systems (T- and Y- mixer) are involved. A mono-dimensional model
was used to model the Mg(OH)2 precipitation in both T- and Y- mixers. Using an
identical set of kinetic parameters, we carefully considered the different fluid dynam-
ics and turbulence features that characterized the two configurations by conducting
CFD simulations. The numerical framework demonstrated its capability to accurately
predict and describe the precipitation phenomena when transitioning from a T- to a
Y-mixer. The model was tuned for a T-mixer system and its prediction capability was
assessed when a Y-mixer with two divergent channels and a final coil system was
used, by only numerically accounting for the new hydrodynamics with no further
adjustments. Furthermore, we provided a comprehensive physical interpretation of
the dominant precipitation phenomena. Finally, a novel semi-empirical correction
factor based on the third-order moment of the particle size distribution, m3, was
proposed for the aggregation rate. This last correction factor has provided the best
quantitative trend compared with the experimental values. It is worth underlining
that the ultimate purpose of this novel predictive model (and framework), which has
been tuned and validated in this work, will be used for the design of a crystallizer
prototype aimed at controlling the granulometry of Magnesium Hydroxide precipi-
tates [147]. Building upon these computational foundations, the subsequent chapter
introduces an innovative methodological approach to address classical optimization
challenges. This novel approach leverages deep learning techniques to overcome
limitations in multi-variate optimization, offering promising avenues for refining
and enhancing design processes in complex engineering systems. By seamlessly
transitioning from predictive modelling to advanced optimization strategies, we
continue to explore cutting-edge methodologies aimed at pushing the boundaries of
precision and efficiency in materials engineering and process design.



Chapter 6

Deep Learning Novel Approach for
Multi-Objective Optimization

Some of the work described in this chapter has also been previously published
in Raponi and Marchisio [148].

6.1 Introduction

A novel machine-learning approach for optimization is presented in this chapter. In
line with numerous chemical engineering processes [121, 149, 150], the precipitation
kinetics set can be identified by comparison between the PBM outcomes and experi-
mental data through an optimization algorithm as presented in the previous Chapter
(see Section 5.2). The effectiveness of optimization algorithms has grown over the
years, driven by the increasing computational power available. These advancements
are particularly significant in various engineering domains, including process engi-
neering, where researchers frequently encounter large-scale multi-objective problems
(LSMOPs) [151]. LSMOPs are typically characterized by extensive search spaces
where classical optimization algorithms, such as the conjugate gradient (CG), might
not be able to fully explore. An alternative approach involves modifying the CG
method by tailoring the line search [152, 153]. While these modified methods are
more robust and reliable, they may still be inefficient for multi-objective optimiza-
tions [154], where the optimized solution strongly depends on the first-attempt value.
A viable alternative that has found widespread use in recent years is the employ-



92 Deep Learning Novel Approach for Multi-Objective Optimization

ment of heuristic [155] and meta-heuristic methods[156]. Heuristic optimization
is a technique that aims to find the optimal solution to a problem in a search space
too large to explore by classical methods [157]. Meta-heuristic optimization is a
higher-level procedure that aims to find, select, and calibrate a heuristic algorithm
that can provide the optimal solution for a specific LSMOP [158]. The former
includes Particle Swarm Optimization (PSO) [159], while the latter includes Crow
Search Optimization (CSO) [160]. These methods offer significant improvements
over classical optimization but may require a high number of iterations for precise
solutions. A promising compromise between accuracy and computational time
involves leveraging artificial intelligence [161]. Hybrid models that integrate first
principles models with experimental data through artificial intelligence have shown
effectiveness in recent studies[162]. These models combine mechanistic equations
that describe physical phenomena with experimental evidence to create a comprehen-
sive understanding of the system. In this chapter, the PBM is employed along with
three experimental datasets (one for PBM fitting and two for validation) presented in
Section 4.1. The PBM describes particle size evolution due to primary nucleation
(homogeneous and heterogeneous), molecular growth, and irreversible aggregation
resulting from cementation between particles. The PBM is solved through the
Quadrature Method of Moments (QMOM) [102, 103]. It generates numerical data
for training a deep-learning fully connected neural network (NN), which is guided
by experimental data to identify unknown PBM parameters.

6.2 Parameters Identification

Figure 6.1 presents the flowchart of the PBM framework, with a focus on inputs and
outputs.
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Figure 6.1 Model flowchart

Initially, CFD simulations are conducted for a specified flow rate in the mixing
channel, corresponding to a velocity ūmc, and turbulent fields (k− ε) are integrated
into the PBM. Operating conditions, including MgCl2 and NaOH concentrations,
are set. Different sizes (d10, d21, d32, d43) are obtained as PBM output depending on
the kinetics parameter set. Parameter identification through optimization loops is the
initial step in fine-tuning model parameters for process description. In this case, it
is applied to determine the parameters that describe the precipitation of Mg(OH)2.
Generally, the traditional optimization loop can be represented as shown in Figure
6.2:

Define Objective
Function

Define Constraints

Optimization
Method

Evaluate Objective
Function

Check Convergence
(experimental data)

end

no

yes

Figure 6.2 Traditional optimization loop scheme
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The traditional optimization loop aims to optimize the model’s outputs by com-
parison with experimental data. The PBM, for instance, takes as inputs the kinetics
parameters. These latter are identified by comparing the PBM outputs with exper-
imental sizes at various operating conditions. Let −→ϕ be the vector representing
the eight unknown parameters

(−→
ϕ = ϕ

(
A1,A2,B1,B2,kg,g,C1,Ap

))
, and

−→
d be the

vector containing the model’s outputs
(−→

d = d (d10,d21,d32,d43)
)

, namely the four
characteristic sizes. After implementing the model and identifying the parameters
to be tuned, physical limits are defined for each parameter (see Table 5.2). The
core of the optimization loop is the optimization algorithm. Various algorithms are
available, depending on the task and problem size, namely the number of parameters
to be identified. Once the optimization algorithm is chosen, it is initialized with
a first-attempt value

(−→
ϕ I , either random or user−defined

)
. The PBM uses this

value to calculate a first-attempt output
(−→

d I
)

, which is compared with experimental
data. The goodness of the PBM output is quantified through an error that settles the
distance from the experimental values. Since the first-attempt values often return the
wrong solution, the optimization algorithm iteratively adjusts the input parameters
until the model and experimental data (ideally) align. However, there are limitations
to traditional optimization methods, despite their robustness. Firstly, the choice of the
initial first-attempt value can heavily influence the optimization process, particularly
when expert guidance is lacking. Algorithms like the CG method are susceptible to
this limitation. An alternative approach to address this issue is to assume a population
of first-attempt values, as in the case of the PSO. Yet, this increases computational
costs as the PBM must be evaluated for a larger number of points. The second
limitation pertains to the definition of the error, which is user-dependent. Moreover,
traditional optimization algorithms can lead to a local minimum, necessitating a
large number of runs to explore the entire search space. Lastly, these algorithms
require simplified models (e.g., mono-dimensional) that can quickly return outputs
when they are called.

Deep learning aided optimization: the Mirror Model In this paragraph, we
introduce a novel methodology for multi-objective optimization that leverages NNs.
This innovative approach addresses the limitations discussed earlier and substantially
reduces computational costs. The initial step involves creating a suitable numerical
dataset using the PBM, which takes eight kinetics parameters (−→ϕ ) and the con-
centration of Mg2+ as inputs (Figure 6.1). For the simulations, kinetics parameter
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values
(−→

ϕ (i)
)

were randomly selected within their physical variability range, as
outlined in Table 5.2. Thus, a large search space could be covered. Since it was used
for fitting, the five concentrations from experimental dataset #1 were used in the
simulations. The primary objective of the NN is to replace the whole optimization
loop by creating a surrogate optimization algorithm capable of identifying precip-
itation kinetics (NN outputs) starting from experimental sizes (NN inputs). This
NN, which mirrors the PBM inputs and outputs, is referred to as the ‘mirror model’
and represents a data-driven optimization algorithm. Therefore, the mirror model
was trained using the four characteristic sizes at an initial Mg2+ concentration (five
inputs) from simulations run with kinetics parameters that now serve as the mirror
model outputs (eight outputs). The mirror model is schematically represented in
Figure 6.3.
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Figure 6.3 Schematic representation of the mirror model focusing on inputs and outputs

Through a preliminary study, we aimed to determine the size of the numerical
dataset for effective generalization of patterns between characteristic sizes and kinetic
parameter sets within the mirror model. We explored four dataset sizes (100, 200,
300, and 400 simulations) and found that 200 simulations were sufficient. Among
these, 160 simulations were allocated for mirror model training, and the remaining
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40 were used for testing. For each dataset size, we tested four architectures: (i) 32
- 32, (ii) 32 - 64 - 32, (iii) 64 - 128 - 64, and (iv) 64 - 128 - 128 - 64. Following
these architectural evaluations, we investigated the impact of learning rate variation
by considering two orders of magnitude (from 10−5 to 10−3). The selected mirror
model architecture consisted of three hidden layers with 64, 128, and 64 neurons,
using a learning rate of 10−4. To prevent overfitting, the ‘early-stopping’ method
was employed. Details are available in the Appendix B.8.

6.3 Results and discussion

The mirror model serves as a valuable tool for identifying kinetics parameters. It
operates as a data-driven model, leveraging experimental data. To illustrate its utility,
let’s assume to provide the four experimental characteristic sizes at a concentration of
0.125 M (corresponding to the first experimental condition in dataset #1, as detailed
in Table 4.1) as inputs to the trained mirror model. In response, the mirror model will
generate a kinetic parameter set as output. By repeating this process for the following
four concentrations in dataset #1 (i.e., 0.25, 0.5, 0.75, and 1 M), four additional −→ϕ
predictions are obtained. The five vectors −→ϕ obtained using the data-driven mirror
model are ideally expected to be identical since the precipitation kinetics are solely
related to the compound (Mg(OH)2). However, in practice, achieving a perfect
identity is challenging due to various sources of error both experimental and model-
related. The first category includes errors, which relate to (i) the device used for
characterization, (ii) the method used for quenching to stabilize the suspension, and
(iii) the time elapsed between particle synthesis and their stabilization. The second
category encompasses model-related errors, which consist of (i) intrinsic numerical
errors, (ii) assumptions and simplifications made during the modelling process,
and (iii) stochasticity introduced during the neural network training. Considering
these factors, it becomes evident that the five parameter vectors −→ϕ obtained using
the data-driven mirror model will not be identical but will exhibit slight variations
influenced by the error magnitudes. Nevertheless, this novel methodology provides
a way to quantify this deviation. It can be accomplished by calculating, for each
parameter, the mean of the five predictions and their standard deviation. The average
values, denoted concisely as

−→̄
ϕ , serve as a measure to evaluate the overall average

performance of the PBM. On the other hand, the confidence interval for precipitation



6.3 Results and discussion 97

kinetics, proportional to the standard deviation for each parameter
−→
ϕ̄

′2, is employed
to quantify the uncertainty associated with the PBM trend. Let’s assume, therefore,
to run a statistically significant number of PBM simulations for each concentration
(see ‘supporting information’). These PBM simulations have inputs in the form of
vectors −→ϕ chosen as follows: a random vector that falls within the range between
−→̄
ϕ −

−→
ϕ̄

′2 and
−→̄
ϕ +

−→
ϕ̄

′2 is selected. This procedure allows for quantifying, through the
PBM, the average trend and the confidence interval as the operating conditions vary.
The kinetics set and its confidence interval are, then, tested for datasets #2 and #3 as
shown in Figure 6.4:
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Figure 6.4 PBM outcomes vs experimental datasets. Dataset #1 (left) is used for fitting,
datasets #2 (center) and #3 (right) are used for validation

While we have previously discussed average trends, the proposed methodology
allows for a more detailed analysis. To begin, we briefly outline the interpretation
of average trends. Comparing the PBM outcomes for dataset #1 (Figure 6.4-left),
we observe that in the T-mixer there is a monotonically increasing trend in particle
size as the concentration increases. On the other hand, when we analyze the PBM
trend with dataset #2 (Figure 6.4-center), we find no significant changes in particle
sizes with decreasing flow rate within the mixing channel (or equivalently, as ūmc

decreases). Finally, when the system transitions from a simple T-mixer to a more
complex Y-mixer with diverging channels and a final pipe, the PBM continues
to accurately predict the particle size trend, including the minimum (Figure 6.4-
right). This shifting from the T- to the Y-mixer is accounted for in the PBM by
running additional CFD simulations to characterize the new flow and turbulent
fields (see Figure 6.1, ‘CFD simulations’ box). It is worth emphasising that the
PBM consistently and correctly predicted particle size trends under entirely different
conditions, even though these conditions were not originally part of the fitting
stage. Moreover, this new methodology enables a quantitative assessment of the



98 Deep Learning Novel Approach for Multi-Objective Optimization

deviation in particle size, represented as a confidence interval. As the concentration
increases, the confidence interval expands for both datasets #1 and #3. The rising
concentration amplifies the significance of turbulence-related contributions (e.g.,
turbulent aggregation), making the sizes more prone to variations. Conversely, for
dataset #2, the confidence interval widens as the flow rate decreases. When velocity
decreases, the uncertainty associated with the RANS turbulent model increases when
transitioning from a fully developed turbulent regime to a regime with reduced
turbulence [59]. Furthermore, although certain combinations of kinetics parameters
have successfully replicated dataset #2 experimental trend, particularly at the lower
end of the confidence interval (Figure 6.4-center), these results should be carefully
considered. It’s important to acknowledge the potential influence of quenching times
on the measurements, which may have led to slight deviations from what is typically
reported in the literature. Generally, as the flow rate decreases or, equivalently, as
mixing time increases, one can anticipate larger particle sizes [11], which aligns
with the upper end of the confidence interval. In the end, it’s important to emphasize
the potential applications of the mirror model. Since no assumptions were made
about the model, the numerical dataset could consist of modelling approaches more
complex than the one employed here. For example, instead of decoupling the flow
and turbulent fields, by using a simplified PBE, as done in this work, the model could
be based on three-dimensional fully-coupled CFD-PBM simulations. As a result, the
proposed methodology allows for precise adjustments, if required, for any model,
regardless of its complexity. Notably, this flexibility is not available with CG and
PSO.

Key Performance Indicators This section compares the performance of two
conventional optimization methods, CG and PSO, with the mirror model. Although
CG and PSO are components within the optimization loop as illustrated in Figure 6.2
(‘Optimization Method’ box), both methods are referred to as if they represent the
entire optimization loop. The analysis focuses on two Key Performance Indicators
(KPIs): (i) the number of times the PBM is called and (ii) the time required to reach
a solution. The mirror model generates a kinetic parameter set for each operating
condition, specifically the five concentrations of dataset #1 in the fitting dataset. In
contrast, classical optimization methods optimize all operating conditions in the
fitting dataset simultaneously. Consequently, each optimization cycle yields only
one kinetic parameter set. To conduct a thorough comparative performance analysis,
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classical optimization methods were executed five times. The resulting five kinetic
parameter sets allowed for the calculation of the mean values and their standard
deviation for the parameters. Considering the substantial variations in the ranges of
each parameter, often spanning orders of magnitude, a radar plot (Figure 6.5) has
been included for visualization. In this plot, each parameter range was normalized
between zero and one using the respective minimum and maximum values detailed
in Table 5.2.
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The data in Figure 6.5-left indicates that five optimization cycles are insufficient
for CG to generate reliable kinetic parameters with a small standard deviation. This
outcome is due to the practice of initializing CG with a completely random initial
guess in each cycle. This measure was implemented to ensure that user experience
did not influence the optimization process and subsequent performance comparison.
PSO, instead, is acknowledged for its robustness in overcoming the initial guess
limitations of CG, consistently yielding more reliable results. As highlighted in
Figure 6.5-center, PSO provides an average kinetic parameter set closer to the one
offered by the mirror model (Figure 6.5-right) and with a smaller standard deviation
than the one provided by CG. However, it proves to be more computationally
consuming, particularly when dealing with large optimization problems, as depicted
in Figure 6.6.
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Figure 6.6 KPIs for CG (green), PSO (blue) and NN (red)

On the left of Figure 6.6, the iteration number indicates the number of times
the PBM is called. On the right, the cumulative execution time is reported. For
CG and PSO, both the iteration number and the execution time represent the total,
which is the sum of all five cycles. For the mirror model, the iteration number
corresponds to the size of the numerical dataset, which includes 200 simulations
(red bar on the left). The execution time, instead, covers the dataset generation time,
approximately 3 minutes, and the training time, roughly 5 minutes (red bar on the
right). The contrast between the CG-PSO and the mirror model is striking. CG and
PSO respectively make roughly 2000 PBM calls (depicted by the green-blue bars on
the left), a stark contrast to the mirror model’s 200 PBM calls. However, the real
standout is evident in the execution time. The mirror model accomplishes its tasks
in under 10 minutes, whereas CG and PSO demand nearly 4 hours (green-blue vs
red bars on the right). Additionally, it’s important to note that CG and PSO would
still need more cycles to narrow down the confidence interval, and expert knowledge
would remain invaluable in such cases. Classical methods can get trapped in minima
that meet the stopping criteria locally but may not be the optimal solution. Eventually,
the kinetics parameters set found through the mirror model is reported in Table 6.1:

Parameter A1 A2 B1 B2 kg g C1 Ap

Set #3 1025.45 1015.4 301 57 10−11.15 1.5 0.79 5.3
Table 6.1 Kinetic parameters set
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6.4 Conclusion

In this chapter, an innovative deep learning-based approach for multi-objective opti-
mization is presented, with a primary focus on characterizing Mg(OH)2 precipitation
kinetics using experimental data. This research leveraged three distinct datasets:
one for PBM fitting and two for PBM validation. The first dataset explored the
influence of increasing initial Mg2+ concentrations on particle sizes within a T-mixer.
In contrast, the second dataset delved into the effects of reduced flow rates in the
same system. The third dataset examined the impact of increasing initial Mg2+

concentrations on particle sizes in a more complex system, featuring a Y-mixer,
two divergent channels, and a final pipe. The presented methodology exploited a
mono-dimensional PBM. This model takes kinetics parameters and concentration
as inputs, yielding four characteristic sizes as outputs. The PBM was harnessed to
generate a numerical dataset, which was used to train an NN which mirrored the
PBM inputs and outputs (consequently called the ‘mirror model’). The mirror model
took characteristic sizes and Mg2+ concentrations as inputs and returned kinetics
parameters as outputs. The mirror model played a crucial role in predicting kinetics
parameters from experimental sizes from the first dataset. These predictions were
used to compute an average set and standard deviation. Surprisingly, the PBM proved
highly adept at describing changes in flow rates and substantial reductions in Mg2+

concentrations within the new Y-mixer system, even when these conditions were
unprecedented. To further evaluate the mirror model’s performance, we assessed
two KPIs: (i) the iteration number and (ii) the execution time. These KPIs were
then compared with those provided by two widely used algorithms, CG and PSO.
The outcome of this comparison underscores the enormous potential of the mirror
model, with KPIs consistently at least an order of magnitude lower than those of CG
and PSO. It should be, finally, emphasized that the synergy between first principal
models and experimental data-driven optimization can be exploited for the tuning
of more sophisticated models when, for example, experimental data are deficient,
time-consuming, or expensive to obtain. In this regard, a 3D model for optimizing
the precipitation of magnesium hydroxide is shown in the next chapter.



Chapter 7

Towards the optimization of a
pilot-scale prototype

7.1 Introduction

Magnesium hydroxide precipitation is a complex process influenced by multiple
factors. Throughout this thesis, 3D modelling techniques are leveraged to calibrate a
precipitation model, aiming to enhance our understanding of the intricate dynamics
governing the synthesis of magnesium hydroxide particles. The calibrated model is
a powerful tool for designing and optimising a prototype precipitation system. This
final chapter aims to demonstrate the efficacy of the tuned 3D precipitation model in
guiding the development of a prototype for magnesium hydroxide precipitation.

A brief overview of the workflow used for parametric identification is as follows:
simulation runs using the CFD-PBM model with the 3D geometry were initiated.
These simulations served as the foundation for training a neural network, acting as a
surrogate for the 3D model. The surrogate model, in turn, was employed to generate
a numerical dataset used to train the mirror model for kinetic parameter identifi-
cation, aligning with experimental data. The calibration process became feasible
through experiments conducted in the T-mixer, allowing the calibrated model to be
applied for the optimization of the prototype. This integrated approach, leveraging
both computational simulations and experimental data, facilitated a comprehensive
understanding of the system dynamics and parameters, culminating in an effective
calibration and subsequent optimization of the pilot-scale prototype.
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7.2 Materials and Methods

In the last few years, ResourSEAs and the University of Palermo have designed and
built a pilot-scale prototype for magnesium hydroxide precipitation from different
kinds of brines [29, 147]. The resulting prototype is now patented by ResourSEAs
S.r.l [163]. At first, however, the design process was led by trial and error rather than
a specific tool for the maximization of the sought effect. This research endeavours
have addressed the imperative need to fill this gap, standing as a testament to the
practical applications of modelling tools. This chapter unfolds as a journey into
the analytical insights that have steered the optimization of the prototype. While
respecting the constraints imposed by the patent, this chapter delves into the analysis
that will eventually inform the prototype’s optimization, offering a comprehensive
understanding of the considerations and decisions that can underpin this innovative
solution enhancement. Through this exploration, this thesis aims to bridge the theo-
retical foundations with tangible outcomes. The reactor is tubular with multiple feeds
and can be modelled as a Multi-Feed Plug Flow Reactor (MF-PFR). A schematic
representation of the MF-PFR is presented in Figure 7.1

Figure 7.1 Multi-Feed Plug Flow Reactor sketch

As evident from Figure 7.1, the reactor comprises an external circular crown
for the alkaline solution feed, while the saline solution is introduced through the
internal tube. The two sections are connected through a series of nozzles, compelling
the internally fed fluid to pass through them, as the only outlet from the reactor is
located on the external circular crown. Additionally, within the reactor, there are
fixed impellers designed to induce a rotational motion, thereby enhancing mixing
conditions before the injection zones of the second fluid. For the sake of confiden-
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tiality, all patent-covered parameters are reported in dimensionless form, including
the reactor’s dimensions in Figure 7.2

(a) MF-PFR longitudinal (xy) view

(b) MF-PFR sectional (yz) view

Figure 7.2 MF-PFR sectional and longitudinal views

Selecting the turbulence model

As demonstrated, precipitation phenomena are closely tied to mixing processes,
hence the fluid dynamics of the system. Given the high Re number, different choices
of turbulence models can lead to significant variations in fluid dynamics and, con-
sequently, precipitation. In the absence of experimental data to determine the most
suitable turbulence model, LES simulations were conducted, offering higher accuracy
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compared to RANS models among which the choice was to be made. Consideration
was given to two-equation RANS models to cover a wide range of situations for accu-
rately simulating the system’s critical aspects. The selected RANS models included
the standard k− ε , k− ε RNG, and k−ω SST. Among the LES models, two were
applied: the Smagorinsky model, a zero-equation model, and the k-equation model,
a one-equation model. The comparison was based on the developed fluid dynamic
characteristics, with a detailed analysis of the velocity field around the blades. In
particular, the vortex size in the rear zone of the blades was compared. Another
comparison aspect focused on the difference in turbulent kinetic energy fields. A
quantitative comparison was conducted by calculating the error associated with each
cell, defining the error as:

er1 =
|kRANS − kLES|

max(kRANS,kLES)
(7.1)

Regarding the execution of LES simulations, to promote rapid convergence and
greater stability, they were initialized with the solution obtained using the standard
k− ε model. The simulations were run for a sufficiently long time to achieve a
solution statistically independent of initial conditions (10 residence times). However,
since LES simulations capture fluctuations not described by RANS models, a time
averaging of the solution was necessary for comparison. The averaging continued
until the mean value became time-independent (5 residence times), indicating no
significant variations. A second simulation was conducted using the k−ω SST
model as an initial guess to verify whether the hypothesis of independence from
initial conditions was confirmed. The grid used for these simulations was chosen to
resolve at least 80% of the turbulent kinetic energy. To determine the characteristic
size of the first grid to use, the minimum size was calculated according to equation
7.2:

max(∆) =
1
5

min(l0) (7.2)

Here, l0 is obtained from the RANS simulations and represents the integral length
scale defined as:

l0 =

(
k3/2

ε

)1/4

=
k

1
2

ω C
1
4
µ

(7.3)

As described in Section 2.1, LES simulations are characterized by explicitly solving
part of the flow field and modelling the remaining part. To evaluate the turbulent
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kinetic energy of both contributions, it was necessary to assess them separately
(Figure 7.3).

LES
Simulation

Post-process
Results

Extract Resolved
Contributions, k(GS)

Extract Sub-grid
Contributions, k(SGS)

Calculate Turbulent
Kinetic Energy (sum)

End

Figure 7.3 Flowchart for turbulent kinetic energy calculation in LES simulations

Indeed, it was necessary to compute the time-averaged velocity to derive the
fluctuating velocity of the resolved part of the flow field based on the difference with
its instantaneous values. Subsequently, the k(GS) was calculated as the mean of the
squares of the fluctuating velocities.
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Figure 7.4 Average flow field obtained through LES simulations

Analyzing the flow field depicted in Figure 7.4, it becomes evident that the
presence of the vortex following the blade plays a critical role. This vortex represents
a portion of the fluid with high residence times. Examining the dimensions of the
vortex, it is immediately evident that the k− ε standard model deviates widely from
the solution of all the other models. In the case of the k− ε standard model, the
vortex does not extend far beyond the impeller, whereas all the other models lead
to the generation of vortices extending approximately 0.2 (dimensionless x-length).
This result is of considerable interest due to the proximity of the vortex to the feeding
zone. As a quantitative analysis, the distribution functions of the error on the k field
were evaluated. The distribution function was defined as follows:

fi(ϕ) =
1

ϕi+1 −ϕi

∑ j Vj

Vtot
(7.4)

∑
i
[ fi(ϕ)(ϕi+1 −ϕi)] = 1 (7.5)
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Figure 7.5 Error distribution function comparing Smagorinsky with RANS simulations (left)
and k-eq with RANS (right). k− ε (solid line), k− ε RNG (dotted line) and k−ω SST
(dashed line)

Figure 7.5 compares the error distribution functions for the three RANS models
and the Smagorinsky one (left) and for the three RANS models and the k-Eq one
(right). The result shows a significant overestimation of k when applying the k− ε

standard model. This leads to an average error approaching almost four orders of
magnitude compared to the Smagorinsky model. However, it is important to note
that the Smagorinsky model exhibits differences of several orders of magnitude
lower than all the studied models, including the LES k-Eq model. This discrepancy
occurs only in the reactor region preceding the impellers, a location not reached by
the reactants and having little influence on the flow field on the opposite side of the
impellers. The reason for this difference can be attributed to the fact that before the
blades there is no vortex formation. This results in a solution with small percentages
of explicitly resolved solutions (i.e., less intense turbulence), highlighting the impact
between the zero-equations model (Smagorinsky) and the one-equation one (k-Eq).
As shown in Figure 7.5, the k− ε RNG and k−ω SST models present large areas
where the turbulence kinetic energy has values of similar magnitude compared with
the LES simulations. Therefore, based on the flow fields and turbulent kinetic energy,
the k−ε standard model yields a solution that greatly deviates from the other models,
which, instead, agree with each other. A comparison was made between the k−ω

SST and the k− ε RNG turbulence models, through the error:

er2 =
|kk−ε RNG − kk−ω SST|

kk−ω SST
(7.6)
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Here, kk−ε RNG and kk−ω SST represent the turbulent kinetic energy values returned
from the k− ε RNG and k−ω SST models, respectively. The distribution function
for the error computed according to Eq. 7.6 is shown in Figure 7.6:
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Figure 7.6 Error distribution function comparing the k− ε RNG and k−ω SST models

By examining the distribution function, it can be affirmed that the turbulence
models predict similar values. The average error is 0.3. In conclusion, the k− ε

standard model was excluded for the reasons mentioned earlier and the k−ω SST
model was selected. Similar to the k−ω SST model, the k− ε RNG leads to a
solution resembling those proposed by LES simulations. However, the k−ω SST
was preferred on the k− ε RNG as it requires lower computational times.

7.3 Results and Discussion

In this paragraph, the focus lies on simulations to explore the impact of both the
reactant concentrations and the nozzle position and number on reactant mixing.
The goal is to maximize prototype performance by optimizing swirling flow in the
circular crown. For this purpose, the effect of fluid dynamics on reactant mixing has
been analyzed, by primarily monitoring the supersaturation. Finally, the precipitation
process has been examined to understand how the solid product is spatially distributed
and the characteristic sizes of the formed Mg(OH)2 particles.
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Effect of the reactant concentrations

Initially, the effect of reactant concentration was studied. Three concentrations were
considered for Mg2+ and three for OH− resulting in a matrix of nine elements:

[
Mg2+](in) , M

[OH−](in) , M

0.005 0.01 0.02

0.1 (a) (b) (c)
0.3 (d) (e) (f)
0.6 (g) (h) (i)

Table 7.1 The nine concentration combinations used in the simulations

The study was conducted with the same flow field and turbulent properties. This
means that the mixture fraction and its variance are also the same for all operating
conditions. Figure 7.7 shows the mixture fraction and its variance on the streamlines
the particles would follow if they started from the two nozzles (the model assumes a
one-way coupling approach).
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Figure 7.7 Mixture fraction (top) and its variance (bottom) for the configuration with the two
nozzles

Figure 7.7 shows that all precipitation dynamics occur at the two nozzles. The
Mg2+ jet entering the circular crown changes the mixing fraction locally (corre-
sponding to light blue in Figure 7.7-top). Consequently, mixing at the macro-scale
generates segregation at the micro-scale as indicated by the red lines at the nozzles
in Figure 7.7-bottom. Although the flow field, mixture fraction and variance are the
same for all the simulations, this does not mean working under the same mixing
conditions. It should be recalled that supersaturation is calculated based on the
magnesium hydroxide formed in the aqueous phase:

c̄Mg2+ = min
([

Mg2+] , [OH−]

2

)
f
(

ᾱ, ᾱ
′2, ᾱs

)
(7.7)

αs =
2
[
Mg2+](in)

2 [Mg2+]
(in)

+[OH−](in)
(7.8)

(7.9)
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Here, f
(

ᾱ, ᾱ
′2, ᾱs

)
is a weight function that defines the contribution of mixing,[

Mg2+](in) and [OH−](in) are the reactant concentrations entering the control volume
and

[
Mg2+] and [OH−] are the concentrations in the fluid domain. It is worth noting

that the weight function f (Eq. 7.8) is related to the stoichiometric mixture fraction
ᾱs (Eq. 7.9) through the concentrations. It follows that an increase in concentration
always leads to an increase in the first term in Eq. 7.8 (min

([
Mg2+] ,2 [OH−]

)
),

while the effect on the second term ( f ) is not unique but depends on the local value
of ᾱ with respect of ᾱs. The ᾱs values for all nine simulations are reported:

[
Mg2+](in) , M

[OH−](in) , M

0.005 0.01 0.02

0.1 0.976 0.952 0.909
0.3 0.992 0.984 0.968
0.6 0.996 0.992 0.984

Table 7.2 αs values used in the simulations

Lastly, it is worth mentioning that, on average, the mixing fraction in the reactor
is close to 1 (as the flow rate of MgCl2 is low). Therefore, the farther the value of αs

is from 1 the worse the mixing is. The monitored variables, used for comparison,
are the supersaturation, S, and the zeroth-order moment, m0. Figure 7.8 shows the
simulation results for the supersaturation whereas Figure 7.9 shows the simulation
results for the m0.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.8 Supersaturation fields for nine combinations of reactant concentration

Figure 7.8 shows the supersaturation levels reached within the system. The areas
represented correspond to cells with supersaturation values greater than 1000 (the
legend has been adapted for the sake of visualization). It is evident from Eq. 7.8
that local supersaturation is controlled by the concentration of OH−. When αs varies
little with increasing Mg2+ concentration (Table 7.2, first column), at the same OH−

concentration, the final supersaturation profile also slightly varies (cases 7.8a, 7.8d,
7.8g). The same happens when the second column in the Table 7.2 is considered
(cases 7.8b, 7.8e, 7.8h). However, if one row in Table 7.2 is considered, the variation
is much more significant. Let’s take the first line as an example. The value of
ᾱs decreases along the line, thus implying a worsening of mixing. Instead, OH−

concentration increases, leading to higher supersaturation values. Since the first row
has the most pronounced decrease in the value of ᾱs, these two effects compete with
each other. It is seen that between cases 7.8a and 7.8b, the supersaturation increases
both in value and volume. Indeed, in these two cases, the increase (doubling) in OH−

concentration has a much greater effect than the decrease in ᾱs (almost negligible).
When, however, the OH− concentration is further increased (doubled again), but the
ᾱs decreases more significantly, the supersaturation volume decreases as shown in
cases 7.8b and 7.8c. In this case, mixing becomes controlling. Finally, the simulation
matrix was constructed in such a way that a fair comparison could be made between
cases where mixing was identical. In this regard, the following two pairs in Table
7.2 can be considered: cases 7.8d and 7.8h and cases 7.8e and 7.8i. Both pairs
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have the same value of ᾱs (0.992 for the former and 0.984 for the latter). This
means that f in Eq. 7.8 is the same and, therefore, the only effect studied is the
increase in the concentration of both reactants. As one would expect, an increase
in concentration results in an increase in supersaturation and the volume of fluid
affected by precipitation. Therefore, it can be concluded that, unless extremely high
supersaturation levels and precipitation volumes are needed (cases 7.8f and 7.8i), low
OH− concentrations can be preferred. By employing a smaller amount of reactant
(therefore, smaller costs), almost the same supersaturation profiles are obtained. In
addition, the m0 is reported:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.9 The ε field plotted on the streamlines and m0 fields for nine combinations of
reactant concentration

In Figure 7.9 the streamlines, on the other hand, represent the path a particle takes
in the fluid, and the field reported on the streamlines is the epsilon field. The region
in each subplot represents cells where m0 has a value higher than 1019. Similar
considerations to those for supersaturation can be made for m0. The qualitative
discussion remains unchanged, while more quantitative changes between the different
profiles can be appreciated.

Effect of the nozzle number and position

Since the system is characterized by an instantaneous reaction, the mixing of reactants
plays a crucial role. Therefore, it is essential to consider the flow field developed in
the reactive section of the prototype. Once the positions of interest for the analysis
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were identified, simulations were conducted under identical operating conditions
to compare results influenced solely by the effect of nozzle position. A total of six
simulations were conducted at the same flow rate and concentrations. Three nozzles,
respecting flow symmetry, were used. The mutual position of the three nozzles
was not changed. In fact, for the same axial coordinate (x), the three nozzles were
rotated so that two cases were considered. The first case (I) refers to the injection of
Mg2+ into the low fluid velocity zones of the fluid. The second case (II) refers to the
injection of Mg2+ into the high-velocity zones. These two conditions were repeated
in three sections (different values of the x-coordinate) resulting in six simulations.
Figure 7.10 shows the six different simulation setups reporting the velocity fields
when the nozzles’ rotation is varied and the epsilon field:
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(a) (I) - 0.1: fluid velocity
at 0.1 of the dimension-
less x-coordinate

(b) (II) - 0.1: fluid veloc-
ity at 0.1 of the dimen-
sionless x-coordinate

(c) epsilon field at 0.1
of the dimensionless x-
coordinate

(d) (I) - 0.2: low fluid ve-
locity at 0.2 of the dimen-
sionless x-coordinate

(e) (II) - 0.1: low fluid ve-
locity at 0.2 of the dimen-
sionless x-coordinate

(f) epsilon field at 0.2
of the dimensionless x-
coordinate

(g) (I) - 0.6: low fluid ve-
locity at 0.1 of the dimen-
sionless x-coordinate

(h) (II) - 0.6: low fluid ve-
locity at 0.1 of the dimen-
sionless x-coordinate

(i) epsilon field at 0.6
of the dimensionless x-
coordinate

(j) (k)

Figure 7.10 Hole Placement: Representation of the velocity magnitude in the feed sections
in the proposed simulations

To ensure a fair comparison across all the proposed reactor configurations, simu-
lations were conducted on a geometry comprising the examined block and a portion
of the subsequent block, extending to the next feed.
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(a) (I) - 0.1

(b) (II) - 0.1

(c) (I) - 0.2

(d) (II) - 0.2

(e) (I) - 0.6

(f) (II) - 0.6

(g)

Figure 7.11 m0 fields for the six simulations. The cells correspond to a region in which m0
has values greater than 1018 particle no./m3

Figures 7.10 and 7.11 provide interesting results. The rotation of the nozzles has
a substantial impact in the two cases (Figures 7.11a and 7.11b) where the nozzles are
located at a distance of 0.1 of the dimensionless coordinate. Figures 7.10a, 7.10b and
7.10c show that the turbulence is locally very different, resulting in two effects. The
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former is an increase in macro- and micro-mixing and the latter is an increase in the
aggregation contribution. At a length of 0.2 the dimensionless coordinate, the effect
is already less intense as shown in Figures 7.11c, 7.11d. Figures 7.10d and 7.10e
show that the vortex is no longer adjacent to the inner tube and, consequently, the
local turbulence found in both cases is similar (Figure 7.10f). The main change in m0

profiles depends on the vortex the three Mg2+ jets encounter. The scenario depicted
in Figure 7.10d indicates that the vortex is not promptly encountered, resulting
in a slight backward motion of the particles. In contrast, the situation illustrated
in Figure 7.10e showcases an immediate interaction with the vortex. Finally, the
effect of rotating the holes to a position equal to 0.6 (Figures 7.11e and 7.11f) of
the dimensionless coordinate has practically no effect on the m0. This is because
the flow fields (Figures 7.10g and 7.10h) and, consequently, the turbulence (Figure
7.10i) have been dampened (and homogenised) by the fluid motion itself. Therefore,
regardless of the rotation, the three nozzles see similar turbulence and the trend of
m0 is nearly the same.

7.4 Conclusions

This chapter focused on introducing a pilot-scale prototype and exploring the possi-
bility of optimization using a previously calibrated 3D model. After presenting the
geometry, the impact of various operational conditions on the products was inves-
tigated. The study began by examining the influence of reagent concentrations at
constant flow rates. Subsequently, we assessed the effects of the number of needles,
their rotation, and their positions within the control volume. The 3D model provided
valuable insights. Interestingly, an increase in the concentration of OH− did not
directly increase supersaturation. If the concentration of OH− rises significantly
compared to that of Mg2+, the stoichiometric mixing fraction decreases, limiting
the prototype’s performance due to mixing constraints. This implies the potential to
operate at lower concentrations and, consequently, at reduced costs. Furthermore, the
rotation of the needles and their distance from the blade also significantly influenced
particle formation. This indicates that utilizing a 3D model can aid in optimizing the
prototype based on specific product requirements. In summary, this chapter provides
crucial insights into the operational parameters affecting the performance of the
pilot-scale prototype. The use of a 3D model not only enhances our understanding
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but also offers a pathway for optimizing the prototype to meet the desired product
specifications.



Chapter 8

Conclusions

This research aimed to advance the understanding and application of magnesium
recovery processes from brines and bitterns, particularly within the context of CRMs.
A computational modelling framework was developed, focusing on the precipitation
of magnesium hydroxide, aligning with circular economy principles as described in
Chapter 1.

The initial phase involved the characterization of mixing dynamics in T-mixers
with square and circular cross-sectional geometries, as reported in Chapter 3. Ex-
perimental data, coupled with CFD (RANS simulations) using the β -PDF approach,
facilitated the tuning and validation of the flow field and turbulent properties, essen-
tial for subsequent accurate modelling of the precipitation process.

Following the validation of mixing characteristics, precipitation tests, presented
in Chapter 4, were conducted under varied operating conditions and reactor con-
figurations. The PSD data provided insights into the impact of initial magnesium
concentration and flow rates, assessed using a T-mixer with a circular cross-section.
Additionally, a Y-mixer configuration, followed by two diverging channels and a
final pipe of constant diameter allowed to extend the investigation towards smaller
concentrations, offering a comprehensive understanding of parameter sensitivity.

Parametric identification, a pivotal aspect of the research, employed two distinct
approaches. Traditional algorithms such as Conjugate Gradient (CG) and Particle
Swarm Optimization (PSO) were compared against an innovative methodology
integrating deep-learning algorithms. This involved the development of an NN,
referred to as the ‘mirror model,’ trained on a numerical dataset derived from the
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PBM coupled with CFD simulations. Both the CFD-PBM and NN are introduced and
detailed in Chapters 5 and 6. The mirror model demonstrated superior performance
in predicting kinetics parameters, highlighting its potential for practical applications.

In Chapter 7, a three-dimensional one-way coupled CFD-PBM model was im-
plemented for the optimization of a pilot-scale prototype for magnesium hydroxide
precipitation. Collaboration between ResourSEAs and the University of Palermo
resulted in a patented design, marking a significant contribution to practical ap-
plications in circular economy initiatives. The exploration of analytical insights
guiding prototype optimization, while considering constraints imposed by the patent,
provides valuable understanding for enhancing innovative solutions.

This research has navigated the interface between theoretical foundations and
tangible outcomes. By emphasizing practical applications of modelling tools, this
work contributes substantively to advancing magnesium hydroxide precipitation
technologies within the broader framework of sustainable resource utilization. The
optimized prototype, a product of collaborative efforts, stands as a testament to the
efficacy of computational modelling in driving innovations aligned with circular
economy principles. As this chapter concludes, it underscores the importance of
ongoing exploration and collaboration in advancing sustainable solutions for critical
material recovery.
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Appendix A

A.1 Modelling of fast and irreversible reactions

The description of a fast and irreversible reaction can be addressed by combining
the mixture fraction and its variance through a Probability Density Function (PDF).
Once a PDF is assumed (for this thesis a β -PDF was used), it is easy to compute the
corresponding reactant concentration given certain mixture fractions and variance
values (calculated through their transport equations [Eqs. 2.12 and 2.14]). For a
reaction of type A + B → P, assuming a Reynolds-averaged mixture fraction equal
to 0 (1) for pure A (B), the concentrations can be expressed as follows:

c̄A =
∫ 1

0
(cAβ )(α)dα

=
c(in)A

B(n,w)αs

[
αs

∫
αs

0
α

n−1(1−α)w−1dα −
∫

αs

0
α

n(1−α)w−1dα

]
=

c(in)A
B(n,w)αs

[αsI(n,w)B(n,w)− I(n+1,w)B(n+1,w)] (A.1)
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c̄B =
∫ 1

0
(cBβ )(α)dα

=
c(in)B

B(n,w)(1−αs)

[∫ 1

αs

α
n−1(1−α)w−1dα −αs

∫ 1

αs

α
n−1(1−α)w−1dα

]
=

c(in)B
B(n,w)(1−αs)

[B(n+1,w)(1− I(n+1,w))−αsB(n,w)(1− I(n,w))] (A.2)

c̄P =
∫ 1

0
(cPβ )(α)dα

=
∫

αs

0
c(in)B α

αn−1(1−α)w−1

B(n,w)
dα +

∫ 1

αs

c(in)B αs
(α −1)αn−1(1−α)w−1

B(n,w)
dα

=
c(in)B αs

B(n,w)(αs −1)

[∫ 1

αs

α
n(1−α)w−1dα −

∫ 1

αs

α
n−1(1−α)w−1dα

]
+

c(in)B
B(n,w)

∫
αs

0
α

n(1−α)w−1dα

=
c(in)B

B(n,w)
I(n+1,w)B(n+1,w)

+
c(in)B αs

B(n,w)(αs −1)
[B(n+1,w)(1− I(n+1,w))−B(n,w)(1− I(n,w))] (A.3)

A.2 Product Difference algorithm

To explain the PD algorithm the definition of the matrix P is provided:

Pi,1 = δi1 i ∈ [1, ...,2N +1] , (A.4)

Pi,2 = (−1)i−1mi−1 i ∈ [1, ...,2N +1] . (A.5)

The other components are calculated as:

Pi, j = P1, j−1Pi+1, j−2 −Pi, j−2Pi+1, j−1 i ∈ [1, ...,2N +2− j]

j ∈ [3, ...,2N +1]
(A.6)
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At this point, we define a vector gi starting from P, where g1 = 0 and

gi =
P1,i+1

P1,iP1,i−1
i ∈ [2, ...,2N] (A.7)

from which a symmetric tridiagonal matrix is defined. The elements on the diagonal
are defined as:

ai = g2i +g2i−1 i ∈ [1, ...,2N −1] (A.8)

while the off-diagonal elements are defined as:

bi =−
√

g2i+1 +g2i−1 i ∈ [1, ...,2N −2] . (A.9)

This procedure transforms an ill-conditioned problem (finding the roots of a polyno-
mial expression) into a well-conditioned one: finding the coordinates of interpolation
points from the eigenvalues of this matrix and the weights from the eigenvectors v j:

w j = m0v2
j1 . (A.10)

A.3 Adaptive Wheeler Algorithm

The coefficients, in the case of the Wheeler algorithm, are calculated based on the
definition of modified moments:

νk =
∫

πk(ξ )n(ξ )dξ , k = 0,1, . . .2N −1 . (A.11)

It is also assumed that πk(ξ ) satisfies the following relation:

π−1(ξ ) = 0 (A.12)

π0(ξ ) = 1 (A.13)

πα+1(ξ ) = (ξ −a′α)πα(ξ )−b′απα−1(ξ ) (A.14)

where a′α and b′α are known. Wheeler thus developed an algorithm for calculating
the coefficients of the Jacobian matrix based on the definition of σα,β :

σα,β =
∫

n(ξ )πα(ξ )πβ (ξ )dξ , α,β ≥ 1 . (A.15)
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These quantities are calculated starting from the following initialization:

σ−1,α = 0 α = 1,2, · · ·2Nq −2 (A.16)

σ0,α = να α = 0,1, · · ·2Nq −1 (A.17)

α0 = α
′
0 +

ν1

ν0
(A.18)

b0 = 0 (A.19)

Finally, the coefficients of the Jacobian matrix are calculated as follows:

aα = a′α −
σα−1,α

σα−1,α−1
+

σα,α+1

σα,α
(A.20)

bα =
σα,α

σα−1,α−1
. (A.21)

From this matrix, it is possible to calculate the weights and nodes of the quadrature
formula.



Appendix B

B.1 Bromley’s activity coefficient

At the beginning of the activity calculation for a solute in multi-component solution
indexes must be fixed and used for related equations. In this regard, since and OH-

ions are needed for supersaturation, the following indexes were given:

• Mg2+ index: 1

• Na+ index: 3

• OH− index: 2

• Cl− index: 4

Thus, following the above-mentioned steps, multi-component solution parameters
were calculated using these equations:

F1 = Y21 log
(
γ

0
12
)
+Y41 log

(
γ

0
14
)
+

Aγ I0.5

1+ I0.5 [Z1Z2Y21 +Z1Z4Y41] (B.1)

F2 = X12 log
(
γ

0
12
)
+X32 log

(
γ

0
32
)
+

Aγ I0.5

1+ I0.5 [Z1Z2X12 +Z3Z2X32] (B.2)

where odd indexes refer to cations and even ones to anions, Aγ = 0.511
√

kg
mol and I

is the solution ionic strength calculated as:

I =
1
2 ∑

i
ciZ2

i (B.3)
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Here, ci is the concentration of the ith ions in the solution. Moreover, the parameters
needed have this form:

Yi1 =

(
Zi +Z1

2

)2 mi

I
(B.4)

X j2 =

(
Z2 +Z j

2

)2 m j

I
(B.5)

mi represents the molality of the ith ion, and log(γ0
i j) is the ten-based logarithm of

the activity coefficient of the pseudo-solution. This pseudo-solution has the same
ionic strength as the multi-component one but considers only the i-j ions pair.

log(γ0
i j) =−

Aγ |ZiZ j|I0.5

1+ I0.5 +
(0.06+0.6B)|ZiZ j|I

(1+ 1.5
|ZiZ j|I )

2
+BI (B.6)

B is an empirical parameter which can be calculated or found in the literature [143].
For MgCl2, NaOH, and NaCl, B values from the table were used, while for Mg(OH)2,
the B value was estimated using the Bromley correlation:

B = Bcation +Banion +δcationδcation (B.7)

where Bcation, Banion, δcation, and δanion are values obtained from literature tables.
Eventually, concluding with the three steps list, it is possible to evaluate log(γ12) for
Mg2+−OH− in the considered multi-component solution with the equation:

log(γ±) =−
Aγ

(
∑i νiZ2

i
ν

)
I0.5

1+ I0.5 +
1
ν

∑
i

νiFi (B.8)

where ν = ∑i νi. This general form is simplified because the i index refers only
to the ions generated by the salt for which activity is required. In this case, i = 1,2
refers to Mg2+ and OH− ions. Therefore, in the present work, it results in the
equation:

log(γ12) =−
Aγ(ν1Z2

1 +ν2Z2
2)I

0.5

1+ I0.5 +
1
ν
(ν1F1 +ν2F2) (B.9)
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B.2 Micro-mixing modelling

As a test, we turned off the variance calculation in our model, effectively assuming
instantaneous mixing and precipitation upon entering the T-mixers. However, the
predictions for mean particle sizes based on this assumption were off, as shown in
Figure B.1:

Figure B.1 Characteristic sizes, from left to right and top to bottom, d10, d21, d32, d43,
derived from the measured PSD and predicted by the model. Comparison between the
model’s predictions using the inferred kinetics parameters set, deactivating the micro-mixing
model, and the experimental data (dataset #1).

The predictions failed to capture the correct values and trends observed in ex-
perimental data. We further understood the importance of the micro-mixing model
by comparing the supersaturation evolution predicted by the model both with and
without the micro-mixing, as shown in Figure B.2. Only when accounting for the
micro-mixing (Figure B.2, top) the correct trend was observed, with supersatura-
tion first generated by mixing and then consumed by precipitation. On the other
hand, when micro-mixing was neglected (Figure B.2, bottom), precipitation started
immediately, resulting in larger supersaturation levels.
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Figure B.2 Supersaturation profile obtained by employing the micro-mixing model (top).
Supersaturation profile obtained without employing the micro-mixing model (bottom).

We also optimized the model parameters by fitting the experimental data without
the micro-mixing model. Despite having the same number of parameters as the full
model, the resulting set was unable to reproduce the experimental trends shown in
Figure B.3:
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Figure B.3 Characteristic sizes, from left to right and top to bottom, d10, d21, d32, d43, derived
from the measured PSD and predicted by the model. Comparison between model (without
micro-mixing) outcome and experimental data used for fitting (dataset #1, top). Comparison
between model predictions and experimental data used for testing (dataset #2, bottom). Effect
of velocity on the PSDs in two different systems. Experimental results in the T2mm-mixer
(red squares) (i), experimental results in the T3mm-mixer (blue dot) (ii), simulations for the
T2mm-mixer (dashed line) (iii), computational prediction for the T3mm-mixer (cross marker)
(iv)
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We observed significant differences in all the parameters (Table B.1), especially
A1, which is involved in the homogeneous nucleation rate. The fact that A1 decreased
by three orders of magnitude, roughly corresponding to the increase in supersat-
uration shown in Figure B.2, highlights the crucial role of micro-mixing in our
description.

Parameter A1 A2 B1 B2 kg g C1 Ap

Set 1023 1015 315 50 10−12.2 1.1 4.4 2.67
Table B.1 The optimal set of parameters obtained from the comparison between the model without
micro-mixing and experimental data (dataset #1).

B.3 Computational Fluid Dynamics Simulations

CFD simulations might be used to estimate the mixing time and the Kolmogorov
timescale, which are important parameters in predicting the particle size distribution.(

ū
dᾱ

′2

dy

)
=−

Cφ

2
ε(y)
k(y)

ᾱ
′2 (B.10)

β
(turb)
i j =

√
8π

15

√
ε

ν

(
Li +L j

2

)3

(B.11)

The mixing time is the time required for two fluids to mix, and it is proportional
to the ratio between the turbulent kinetic energy (k) and the turbulent dissipation
rate (ε) (Eq. B.10). The Kolmogorov timescale is the smallest timescale at which
energy is dissipated in a turbulent flow, and it is proportional to the square root of the
kinematic viscosity (ν) divided by the turbulent dissipation rate (Eq. B.11). These
two parameters affect the degree of mixing, which in turn affects all the precipitation
phenomena, and therefore, the resulting particle size distribution. While it is true that
mixing time can be estimated using empirical correlations, such as those discussed
in our previous [11], the accuracy of the estimates for the ε value may not always be
high. For instance, it could be possible to estimate the ε value by passing through
the pressure drops. Nevertheless, empirical correlations would not provide a detailed
estimation of pressure drops, especially those due to the impingement between fluids.
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In this case, an underestimate of the ε value, could lead to a quite important deviation
of the model predictions as shown in Figure B.4.

Figure B.4 Characteristic sizes, from left to right and top to bottom, d10, d21, d32, d43, derived
from the measured PSD and predicted by the model. Model predictions at different values
(constants) of ε . The solid line refers to the model with the integration of the CFD component.
The dashed line refers to the model with a constant ε value of 105 m2/s3. The dash-dotted
line refers to the model with a constant ε value of 103 m2/s3. The dotted line refers to the
model with a constant ε value of 10m2/s3.

On the other hand, CFD simulations provide a more comprehensive understand-
ing of the mixing process and can account for the effect of various parameters, such
as fluid properties, mixer geometry, and flow rates, on the turbulence characteristics.
Therefore, although other methods may be used to estimate the mixing time and
turbulence parameters, CFD simulations remain a valuable tool for obtaining reliable
and comprehensive information on the mixing process.

B.4 Model parameters identification

A constrained optimization of the 8 model parameters was conducted by comparing
the model outcomes with experimental data. The experimental data were obtained
using the two different setups (T- and Y-mixer), which allowed us to generate 14
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PSDs. From each PSD, we calculated four characteristic sizes (d10, d21, d32, d43),
leading to a total of 56 experimental data points. We utilized 5 PSDs (equivalent to
20 experimental data points) obtained using the T-mixer to examine the influence
of MgCl2 concentration. These experimental data served as the tuning data set.
Additionally, 3 more PSDs (equivalent to 12 experimental data points) from the
T-mixer setup were used to validate the model’s performance under varying flow
rates. In this contribution, we extend our analysis by testing the model’s predictive
capability with a different system, namely the Y-mixer, and a broader range of
concentrations that were not included in the tuning dataset. For this purpose, we
utilized 6 PSDs (equivalent to 24 experimental data points). It is important to
notice that we used all the experimental data points during the tuning, validation,
and predictive capability assessments. The influence of the initial concentration of
MgCl2 on the characteristic sizes is shown in the Figure B.5 for the T-mixer and in
Figure B.6 for the Y-mixer:
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Figure B.5 Experimental sizes vs. model outcomes (T-mixer): d10 (top− left),
d21 (top− right), d32 (bottom− left), d43 (bottom− right)



150

0 0.25 0.5 0.75 1

20

40

60

80

100

120

0 0.25 0.5 0.75 1
0

40

80

120

160

200

240

280

Figure B.6 Experimental sizes vs model outcomes (Y-mixer): d10 (top− left),
d21 (top− right), d32 (bottom− left), d43 (bottom− right)

However, for clarity and focus, we have chosen to report and discuss the results
primarily based on the d10 characteristic size.

B.5 Confidence interval and simulation stability

In the process of parametric identification, it is advisable to give a first-attempt
estimate of the confidence interval for each parameter. Indeed, it should be remem-
bered that there are no rigorous methods for identifying this range but only rules of
thumb. In this work, therefore, we chose to run a statistically significant number of
simulations (i.e., 25) for each concentration by randomly varying the value of the
i-th parameter between ± 5 % of the mean value (i.e., for the i-th parameter is the
value given in Tables 2 and 3 reported in the manuscript):
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Figure B.7 d10 mean trend (solid black line) and d10 standard deviation (black bars)

Figure B.7 shows the confidence interval (in terms of the standard deviation of
the 25 simulations run) for the model with no modifications.
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Figure B.8 d10 mean trend (solid black line) and d10 standard deviation (black bars). Simula-
tions are run using the novel correction factor.

On the other hand, Figure B.8 shows the confidence interval (in terms of the
standard deviation of the 25 simulations run) for the model employing the novel
correction factor. In the first case (Figure B.7) we see that a variation of ± 5 %
has a fairly significant impact while in the second Figure B.8) such variation is less
significant resulting in a numerically more stable pattern.

B.6 Aggregation contribution

Figure B.9 can be used to indirectly analyze the effect of aggregation efficiency. It
shows an additional d10 trend as a function of the initial MgCl2 concentration. The
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orange line represents the d10 trend that ‘particles’ would have if the C1 parameter
were halved. A comparison of the green and orange lines shows that parameter C1

only contributes to the downward shift of d10 as the collision frequency decreases
and it does not change the trend (i.e., the minimum is preserved). It follows that
the collision frequency modulates the intensity of aggregation, and the aggregation
efficiency is responsible for the occurrence of the minimum.
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Figure B.9 d10 trends as a function of the initial MgCl2 concentration neglecting the turbulent
contribution of aggregation.

B.7 Turbulent properties

Computational fluid dynamics (CFD) simulations were used to extract turbulent
parameters, such as the turbulent kinetic energy (k) and the turbulent dissipation rate
(ε), which are needed for the prediction of the final particle size distribution (PSD)
of Mg(OH)2. A RANS simulation approach can be adopted to describe turbulence,
and the standard k − ε turbulence model was used. In RANS simulations, flow
field and turbulent properties are strongly related. The velocity is chosen based
on the experimental operative conditions. Orlewski and Mazzotti [41] performed a
preliminary mesh study to ensure a solution independent of the mesh. It resulted in a
final total cell number mesh of around 93000. Since spatial variations exist along
the mixing channel coordinates, k and ε profiles are extracted. For this, circular
cross-sections were taken, starting from the mixing point down the mixing channel.
The corresponding values were averaged along the cross-section surface at a given
mixing channel coordinate. Averaged profiles are reported in Figure B.10
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Figure B.10 The averaged k− ε profiles extracted from CFD simulations are shown for the
T-mixer setup (top) and the Y-mixer setup (bottom).

The turbulent properties in the T-mixer are one order of magnitude lower than those
in the Y-mixer. Indeed, this justifies that the dissipation of variance is slower in the
T-mixer than in the Y-mixer. Note that the flow and turbulent fields affect both the
molecular processes (i.e., nucleation and growth) as well as the secondary process
(i.e., aggregation) considered here. Thus, by comparing different systems, one can
investigate the effect of the fluid flow and compare the T-mixer with the Y-mixer.
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B.8 Deep learning training

The neural network used in this contribution is a deep learning fully-connected neural
network. The architecture consists of an input, three hidden, and an output layer. A
schematic representation is shown in Figure B.11
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Figure B.11 Schematic representation of the Mirror Model focusing on inputs and outputs

The input layer has five neurons: four are dedicated to the characteristic sizes
(d10,d21,d32,d43) and one to the initial Mg2+ concentration (ϑ ). The output layer
has eight neurons dedicated to the kinetics parameters (A1,A2,B1,B2,kg,g,C1,Ap).
Four combinations of hidden layers were explored: (1) 32-32, (2) 32-64-32, (3)
64-128-64, (4) 64-128-128-64 (the x-axis of each parameter in Figure B.12). Four
dataset sizes were explored: (a) 100, (b) 200, (c) 300 and (d) 400 (the four subplots
in Figure B.12) simulations with a 0.8/0.2 (training/testing) ratio.
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(b) 200 simulations
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(c) 300 simulations
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Figure B.12 Mirror model predictions using different dataset sizes (the four subplots) and
different architectures (the x-axis of all the parameters in each subplot)
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Figure B.12 reports the mirror model predictions for the four architectures at
different dataset sizes and at a constant value of learning rate (10−4) and epochs
(5000). The comparison shows that (i) the architecture has little influence on the
mirror model predictions and therefore the one reporting the largest standard de-
viation was chosen to be conservative and (ii) the dataset size beyond which the
model predictions remain nearly unchanged is 200. After choosing the dataset size,
the influence of learning rate on mirror model predictions was studied as shown in
Figure B.13:
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Figure B.13 Mirror model predictions using three learning rates: (1) 10−5, (2) 10−4, (3) 10−3

Figure B.13 illustrates that the impact of the learning rate on mirror model
predictions is limited. In contrast, Figure B.14 depicts the trend in loss, representing
the disparity between predicted values and actual ground truth, across both training
and testing datasets.
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Figure B.14 Losses for the training (black) and testing (red) datasets for three learning rates:
(a) 10−5, (b) 10−4, (c) 10−3

While the model predictions exhibit minimal variation, the loss trends for the
testing dataset (depicted by the red curves in Figure B.14) reveal three distinct
patterns. The first trend, illustrated in Figure B.14-(a), lacks a discernible minimum.
This suggests that the learning rate is relatively low concerning the number of epochs.
However, this is not the case for the other two learning rates. Between the second
(Figure B.14-(b)) and third (Figure B.14-(c)) trends, the former was ultimately
chosen as a compromise between computational cost and accuracy of results.

B.9 PBM: average trend and confidence interval

The mirror model was employed to generate predictions based on experimental
sizes under various operating conditions (dataset #1). Since there were five different
operating conditions in dataset #1, five parameter vectors (−→ϕ ) were derived. Sub-
sequently, we computed a vector that consists of both the average values (

−→̄
ϕ ) and

their corresponding standard deviations (
−→
ϕ̄

′2). We randomly selected 100 parame-

ter vectors. For each parameter, the value ranged between
−→̄
ϕ i−

−→
ϕ̄

′2
i and

−→̄
ϕ i+

−→
ϕ̄

′2
i.

Subsequently, we conducted PBM simulations.
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