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Abstract

This work focuses on the development of statistical methods which permit to make
use of available evidence to support decision-making. In particular, it deepens three
research areas: the incorporation of historical data in early phase clinical trials, a
novel method to perform adaptive screening in a certain sub-population and the
comparison of different estimation methods in adaptive designs with time-to-event
endpoints. Four methodologies are presented. The first one regards the incorporation
of healthy volunteer data on receptor occupancy in a phase II proof of concept
trial. The second one regards an analysis on the incorporation of preclinical animal
toxicological data in a phase I trial. The third one, motivated by a case-study on a
COVID-19 screening in a university community, regards a novel methodology to
test adaptively whether a certain subpopulation proportion follows the same time
evolution as the general population proportion. The last one is a comparison of
different estimation methods to account for selection bias in adaptive enrichment
designs with time-to-event endpoints.

These methodologies are valuable quantitative tools to include available evidence
to support decision-making. They have strong theoretical foundations and have been
tested in real life case studies. Moreover, they can potentially be applied to a variety
of other problems and provide useful tools that can help to make more accurate and
informed decisions.
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Chapter 1

Introduction

1.1 Recent developments of statistical methods

As the name suggests, Statistics was born as the "science of the state". Therefore,
its original intent was to deal with questions of general administration, such as
counting armaments, resources and people. Its main mathematical developments
were launched in the 16th and 17th century by the work of Cardano, Fermat and
Pascal in probability, mainly applied to the theory of gambling, and were prosecuted
by the great names of Mathematics in the following centuries, like Laplace, Bernoulli
and Gauss, just to name a few. The foundation of modern Statistics in the 20th century
traces back to the work of Pearson and Fisher, who are often referred as the fathers
of modern Statistics. Most of their research and, in general, of the 20th century
Statistics is focused on what today is called frequentist statistics. However, by the
end of the century, the work of the English reverend Thomas Bayes, which dated back
three hundred years, has been rediscovered and Bayesian statistics has been renewed.
It aims at combining some sort of previous knowledge with data from the current
process, obtaining an estimation which is able to take both information sources
into account. In the early days, Bayesian statistics was used just for simple and
special cases, where analytical solution of the calculations were available. However,
thanks to modern computational capacity, Bayesian complex and time-consuming
computations have been made feasible and every year new and modern updates
permit to improve existing methods.



2 Introduction

Notwithstanding its humble origins, Statistics today is widely used to support
decision-making in many different fields, using methods from both a Bayesian and
frequentist background. New niches of research are continuously carved in this frame
by researchers, who then explore and analyse the newfangled crafted possibilities.

Novel studies, novel ideas and novel methodologies have been the engine of
innovation over the history of humankind, from Pythagoras to Fisher, and permit-
ted the world to advance. However, sometimes it may happen that these novelties
collide with the ongoing regulations. The regulatory framework is constructed to be
conservative and encourage well understood and tested methods. This is especially
true in healthcare regulations, where protecting, curing and, as the name suggests,
taking care of people are its foundations and main goals. Statistics researchers have
to pursue their main activity with this in mind and find novel methodologies that
permit to reduce patient burden and make more informed decisions. Then, they
have to demonstrate to the regulators the safety and superiority of those methods.
This was especially true during the last four years, a time in which the world has
experienced a terrible historic event which led to concentrate all of its strength on
a possible resolution. Indeed, the Covid-19 pandemic, a trauma for the whole hu-
mankind, has been an extremely good example of human cooperation and interaction.
Statisticians have been of fundamental importance in the critical context of handling
the emergency. The newspapers all over the world were full of statistical indexes
of contagion, of prediction, of vaccine and treatment efficacy. Statistics was back
to its original role, in some sense, serving each state of the world with its scientific
rigour. However, in this case, the discoveries of the great statisticians of the past
were applied, reminding the true role of researchers in society: explore, analyse and
craft novel methodologies, ideas and possibilities, hoping that their discoveries can
be of support for posterity.

1.2 Bayesian statistics in healthcare regulatory ap-
proval

Most documents released by regulatory authorities deal with statistical concepts, like
p-values, significance tests and confidence intervals, related to classical frequentist
approaches. On the other hand, Bayesian statistics is focused on the concept of prior
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distribution, which is updated via the observed data to obtain a posterior distribu-
tion. This posterior distribution is used for statistical inference and, in turn, may
become a prior distribution for a subsequent model. Very few documents mentioned
Bayesian approaches, until, in 1998, the International Council for Harmonisation
of Technical Requirements for Pharmaceuticals for Human Use (ICH) E-9 “Guid-
ance on Statistical Principles for Clinical Trials” [2] for pharmaceutical products
has been released. In its content, the guidance explicitly mentions that, due to the
predominance of frequentist approaches in the statistical community, it largely refers
to terms and concepts related to a frequentist framework. However, it clarifies that
other approaches, explicitly mentioning the Bayesian one, can be considered for
analysis, when the reasons for their use is clear and the results and analyses are
sufficiently robust. This first guidance was pioneering the use of Bayesian analyses
in the regulatory framework.

The United States of America Food and Drug Administration (FDA) started a
discussion in the same year to consider Bayesian submission for regulatory approval
of medical devices. This discussion ended in the publication of the FDA "Guidance
for the Use of Bayesian Statistics in Medical Device Clinical Trials" [3], in 2010.
This is the first FDA released guidance which refers to Bayesian statistics in its title.
The rationale behind the publication of this guidance specifically for medical devices
is twofold. The first reason is that medical devices usually evolve and, therefore, the
previous version of the device may be very similar to the following version. The
updates of medical devices are usually released after a few years and contain lot of
information to be used as prior data for the newer device. The second reason is that
their mechanism of action is often local and well understood, unlike what happens
in drug development. The guideline outlines the importance of quantitative data
over subjective data in the definition of the prior. The latter may cause controversies
when it comes to their evaluation. However, it is clearly stated that the use of
Bayesian models may accelerate drug development and decrease burden for patients,
permitting to use all available evidence to make more informed decisions. The reason
why this guideline was published at this time is that the technological advance in
computational capacity and speed had made possible to define and test complex and
realistic Bayesian models. Still, software and technologies are only a part of the
process of planning a Bayesian design. At first, specific statistical and computational
expertise have to be gained by the organization planning the trial. Subsequently, the
prior definition, the amount of information obtained from the trial and the model to
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combine the two have to be defined. These require extensive model planning and
model building. At last, after the trial has been conducted, calculations have to be
double checked, using for example a different software, and it needs to be reminded
that Bayesian and frequentist approaches may differ in their conclusion. Therefore,
the use of Bayesian models requires at least the same diligence in constructing the
design as the one of a classical clinical trial. The objectives, endpoints, conditions,
population and statistical analysis of the trial have to be clearly defined and a sound
planning and execution is fundamental, as it is the adjustment for covariates, which
may affect the results, and the choice of appropriate controls.

Another point of interest raised when dealing with Bayesian design is exchange-
ability. In the guideline, it is stated that "units (patients or trials) are considered
exchangeable if the probability of observing any particular set of outcomes on those
units is invariant to any reordering of the units". While for the patients in a single
trial this is a common assumption, things are a little different when dealing with trials
themselves. These are usually conducted in different points in time and, therefore,
changes in the general population or general methods to test or treat the patients
and their condition may have arisen, causing the trials not to be fully exchangeable.
Bayesian models have to take into account these possibilities and are required to
be robust enough to handle this situation. Additionally, other considerations in the
design of a Bayesian trials regard the sample size. While for classical frequentist
designs the sample size is usually fixed, for Bayesian trials (and more recent frequen-
tist designs), stopping criteria for efficacy, significance, clinical relevance or other
pre-specified hypothesis are used, which entail variable sample sizes. FDA recom-
mends to pre-specify at least a minimum and maximum sample, in order to comply
with economic, ethic and regulatory considerations and to reach adequate operating
characteristics of the trial. In fact, operating characteristics like type I error, type II
error and power are fundamental for drug regulation and need to be assessed both in
the planning of the Bayesian trial and in its subsequent analysis, such to evaluate
the performance of the design under various conditions. Assessing the operating
characteristics of a Bayesian design is an important step in determining the validity
and reliability of the trial results, as it helps to ensure that the design is well-suited
for the specific research question being addressed. To sum up, the guideline suggests
a list of additional information to enclose in a Bayesian design, which includes: prior
information, success criteria, trial sample size determination rationale, operating
characteristics, prior probability of the study claim, posterior effective sample size
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and the code used for the study. Alongside, a sensitivity analysis, which involves
investigations into various factors that could potentially affect the trial results, such
as deviations from distributional assumptions or alternative prior distribution, is also
recommended.

In 2016, the FDA released a second guidance focused on the use of Bayesian
models in efficacy of medical devices assessment in pediatric population, named
"Leveraging Existing Clinical Data for Extrapolation to Pediatric Uses of Medical
Devices" [4]. Conducting clinical trials in the pediatrics is a challenging activity
due to several factors, like limited patient availability, differences in treatment
response compared to adults, ethical considerations, and logistical difficulties, such
as coordinating with multiple caregivers or obtaining informed consent from parents
or guardians. Despite, it is important to ensure that new treatments are safe and
effective for this very delicate population. The aim of the document is to increase
the availability of safe and effective pediatric devices by providing guidance on
using existing clinical data to demonstrate safety and effectiveness in pre-market
approval applications, de novo requests, and humanitarian device exemptions. It also
outlines when it is appropriate to use existing clinical data to support pediatric device
indications and labeling, the approach of the FDA in determining if extrapolation is
appropriate and to what extent data can be leveraged, describing statistical methods
that can be used to leverage data in a way that improves precision for pediatric
inferences. There are two main differences with the previous guideline. The first
one is that it is clearly stated that other sources of data can be either other pediatric
or adult studies and that the data can be borrowed both for the control and the
experimental arm. The second one is that it contains in appendix details on a specific
three layer hierarchical modelling structure for borrowing information. Bayesian
borrowing methods are considered useful for including all available evidence in the
trial and of help in performing faster and more precise trials, reducing patient burden.

1.3 The use of Bayesian models in early phase drug
development

While the aforementioned guidelines focus on the needs and recommendations from
regulatory authorities for drug approval, the same methods may be used for the early
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phase assessment of drug efficacy. The use of statistical techniques that borrow
information from historical data has become more common in recent years, thanks to
the availability of statistical software and the development of platforms that provide
access to historical studies. This approach has the potential to greatly speed up the
drug development process, as it allows researchers to leverage existing data rather
than starting from scratch in every new study.

When using historical data in early phase there are at least three main aspects to
be taken into account. First, it is important to ensure that there is a clear rationale
for using the data. This means that the data should be relevant to the current study
and should be able to provide valuable insights into the safety and effectiveness of
the drug. In addition to having a clear rationale for using historical data, it is also
important to ensure that the data meets predetermined quality standards. This means
that the data should be accurate, reliable, and relevant to the current study. It is
also important to consider the potential biases or limitations of the data, as these
could affect the results of the study. Finally, it is important to ensure that there is
enough information to weigh the risks and benefits of using historical data. For
example, if the data comes from a small or unrepresentative sample, it may not be
reliable enough to support the conclusions of the study. Similarly, if the risks of
using the data outweigh the potential benefits, it may not be advisable to use the
data. Therefore, borrowing information from historical studies can be a useful tool,
but it is not without its limitations, since the data may not be directly applicable to
the current study, or there may be differences in the study populations or treatment
regimens that make it difficult to directly incorporate results from previous trials.

One important milestone in the use of historical data can be the incorporation of
data from healthy volunteers in phase II studies in patients. Methodologies of this
type can help in assessing the efficacy and clinical relevance of a new compound,
since phase II studies are typically the first time that a drug is tested in a small
group of patients and are designed to evaluate the effectiveness and safety of the
drug in a more controlled setting. A second, but not less important, milestone can
be the incorporation of preclinical animal data in phase I studies. This can provide
valuable information about the safety and effectiveness of a drug. Preclinical animal
studies, usually conducted before a drug is tested in humans, can help to identify
any potential safety concerns regarding the dosing and potential toxicities related
to the use of the new compound. In both cases, the data used for borrowing may
come from external datasets, as well as internal studies. In any case, it is important
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that internal drug assessments using the incorporation of historical data via Bayesian
models meet the same standards seen in Section 1.2 as regulatory standards. This
means that the internal protocols should contain at least the same information that
would be included in a submission to the regulatory authority, and the analyses and
studies should be performed with the same diligence as if a submission were the next
step.

Despite the challenges and limitations of using historical data, the possibilities
and new horizons opened by these approaches are significant. In particular, they
have the potential to greatly benefit the development of drugs for target therapies or
rare diseases, where there may be limited data available, alongside their current use
in pediatrics. However, it is important to carefully consider the risks and benefits
of using historical data, and to ensure that the data meets predetermined quality
standards. As such, the use of historical data in early phase drug development should
be approached with caution, but also with an eye towards the potential benefits it
can provide. In conclusion, the use of statistical techniques that borrow information
from historical data can be a useful tool in the early phases of drug development.
It is important to ensure that there is a clear rationale for using the data, that the
data meets predetermined quality standards, and that there is enough information
to weigh the risks and benefits of using the data. By carefully considering these
factors, researchers can take advantage of the potential benefits of historical data
while minimizing the risks. In the future, it is likely that the use of historical data
will become more common and will help to accelerate the drug development process,
not only for rare diseases or pediatric populations.

1.4 Adaptive design trials

In recent years, novel statistical methodologies have been proposed to enhance
drug development. Adaptive design trials have been constructed to allow for pre-
planned modifications during the trial, such as refining sample size, stopping the
trial or specific doses for lack of efficacy, stopping the trial for success, reshuffling
patients among treatment arms, selecting populations more likely to benefit from
the treatment [5]. These designs are mainly regulated by the FDA’s Guidance for
Industry on Adaptive Designs for Clinical Trials of Drugs and Biologics [6], issued in
2019. The guidance emphasizes the benefits of utilizing adaptive designs in clinical
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trials while underscoring the importance of adhering to key principles for regulatory
approval.

Adaptive designs offer several advantages, including the ability to adapt the
trial based on interim analyses, enabling informed decision-making. These designs
enhance various aspects, such as the statistical efficiency of trials, particularly in
terms of power, potentially reducing the number of patients receiving ineffective
treatments and providing ethical advantages. Additionally, adaptive designs facilitate
a better understanding of a drug efficacy, especially if it proves more effective in
specific subgroups within the overall population. Lastly, adaptive designs may
be more appealing to sponsors and patients since they allow for modifications to
randomization, making them more useful to these stakeholders.

On the other hand, the drawbacks of adaptive designs are also highlighted in the
guidance. The primary disadvantage is the necessity for specific analytical methods
to prevent erroneous calculations or biased estimates. Additionally, some of the
benefits of adaptive designs may be counterbalanced by trade-offs in other areas,
such as a lower minimum sample size that may be offset by a higher maximum one.
In terms of trial conduct, adaptive designs introduce logistical challenges to maintain
trial integrity. Lastly, the final results of an adaptive design may differ from the
initial findings, thereby increasing the complexity of interpreting the results.

Hence, when preparing for an adaptive design trial, various considerations must
be addressed. Firstly, it is crucial to control the likelihood of erroneous conclusions
and calculations resulting from the nature of the design. Consequently, reliable
estimations of the true treatment and control effects are necessary, which directly
impact the determination of the drug’s efficacy. Careful trial planning becomes
highly significant, encompassing factors such as the number and timing of interim
analyses, the type of adaptation, the selection of statistical inferential methods, and
the specific algorithms governing adaptation decisions. Prespecifying these aspects
allows for consistent results during the simulation and determination of the design
operating characteristics, thereby facilitating interpretability. Ultimately, ensuring
trial integrity is of utmost importance in order to obtain reliable results.

The statistical literature encompasses numerous studies and analyses to enable
a more informed use of these novel techniques. In this scenario, the statistical
community plays a pivotal role in offering methods that enable the use of available
evidence to enhance decision-making processes. Statisticians play a central role in
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constantly uncovering and expanding new areas of research, enabling humankind to
enhance their current circumstances and continually progress in the most appropriate
way possible.

1.5 The support of the statistical community during
the Covid-19 pandemic

The COVID-19 pandemic has had a major impact on people lives globally. Since the
end of 2019, when the first news about a new virus in the Wuhan market were coming
from, what seemed, a far and distant China, a long way has come. Unfortunately,
Italy has been the first European country to be heavily affected by the pandemic,
being struck by a bolt from the blue. The news of the first lockdown in Italy in
March 2020 spread all over the world, seeming an incredible and extraordinary
event. Unfortunately, it was not an isolated case. Already in those first confused
days fighting against the new disease, the role played by statisticians was considered
crucial. This was the first time when the majority of the world population started to
hear those statistical indexes of diffusion, which would become part of the common
vocabulary of those days. One after another, the SARS-CoV-2 virus spread to all
European countries, and then to the world, showing what was statistically clear, i.e.
that borders cannot stop a disease, but just slow it. As fast as it was possible, medical
research started its processes and looked for a possible cure and vaccine for the virus.

During summer 2020, while the first long steps in medical research were taken,
a partial easing of restrictions was put in place by governments. When winter was
coming, without a proper cure or vaccination, but already with a working Covid-19
screening infrastructure, Italy has seen the rise of differentiated lockdowns. Different
regions were put under different restrictions according to the local state of the
pandemic and health services in that precise time. Again, statistical indexes of
contagion and of hospital occupancy played a crucial role in political decisions and
various models were used to contain the virus, not only in Italy but on a global basis.
In this context, also private and public organizations, like universities, started their
own screening campaigns to try to intercept and avoid outbreaks.

The first good news since the start of the pandemic came by the end of the year
2020, with the publication of the first two studies on vaccine efficacy [7, 8] which
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showed protection against Covid-19 and gave a concrete hope for a possible end
of the emergency. In the following month, these were flanked by two other interim
analyses [9, 10] which showed the efficacy of as many vaccines. Humankind had
shown an incredible spirit of cooperation which lead the research on vaccine to be as
fast as to break all records.

Therefore, the year 2021 started with the organization of the vaccination cam-
paigns in many countries and the effects of the vaccination were rapidly seen. Taking
this into account, the statistical community started to update the models used to
support political decisions with the ultimate developments of the pandemic, like the
vaccination rate or the re-infection rate. During the whole summer 2021, while the
vaccination campaign proceeded expeditiously, statisticians were always at the centre
of the public attention, given their importance in that specific historical moment. In
the following months, from winter to spring, the restrictions based on differentiated
lockdown were still in place in Italy but, thankfully, the high vaccination rate avoided
the worst.

During 2022, a continuous easing of the restriction has been experienced, caused
by the modified and less severe symptoms of the illness, rather than a slowdown
of the spread of the virus. Notwithstanding, the vaccination campaigns were still
ongoing, flanked by the ones on common flu, and statisticians were still analysing
data, trying to keep the spread of the virus under control and identify possible sudden
modifications of its behaviour. The pandemic seemed to be going towards an end,
with very few restrictions still in place.

Today, the impact of the pandemic is still profound and clear in people’s mind
throughout the world. In this context, the crucial role played by statisticians in under-
standing and combating the disease has been highlighted. From analyzing data and
developing models to support decision-making, to designing and analyzing clinical
trials and other research studies, the statistical community has been instrumental in
advancing the understanding of the disease and finding ways to deal with it. As the
pandemic continues to evolve, the work of statisticians will remain vital in helping
to control and eventually overcome the emergency.
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1.6 Content of this report

There are many statistical methods that can be used for including available evidence
to support decision-making, also in the topic discussed in this introduction. In
particular, this report focuses on three research axes: the incorporation of historical
data in early phase (Chapter 2 and 3), a novel method to perform adaptive screening
in a certain sub-population (Chapter 4) and a comparison of estimation methods in
adaptive designs (Chapter 5).

The chapters in this report are self-contained and correspond to articles published
in a statistical journal, except for one which is ongoing work. The preambles for
each chapter provide some context about the publication.

Specifically, Chapter 2 presents a novel methodology to incorporate available
evidence from pharmacokinetics data on a new compound in a phase II trial. A phys-
iology based pharmacokinetic model, which has been tuned on healthy volunteers,
is used to obtain prior information on patients in an upcoming phase II trial, taking
into account the peculiar differences due to the illness.

In Chapter 3, the incorporation of available evidence from pre-clinical animal data
in a phase I oncology trial is discussed. Methods are based on the Bayesian logistic
regression model and a comparison of different approaches and dose-escalation
criteria is described.

In Chapter 4, a novel methodology to test adaptively whether a sub-population
proportion follows the same time evolution as the population proportion is presented.
The motivating case study is the COVID-19 screening in a university community,
taking into account the time evolution of the pandemic in the whole country.

Chapter 5 discusses a comparison of estimation methods to account for selection
bias in adaptive enrichment designs with time-to-event endpoint. The different
methods are analysed applied to a case study in heart failure.

Chapter 6 provides concluding remarks.



Chapter 2

Incorporation of healthy volunteers
data into a phase II proof-of-concept
trial

Background

This chapter is published as:

Fulvio Di Stefano, Christelle Rodrigues, Stephanie Galtier, Sandrine Guilleminot,
Veronique Robert, Mauro Gasparini and Gaelle Saint-Hilary. Incorporation of
healthy volunteers data on receptor occupancy into a phase II proof-of-concept
trial using a Bayesian dynamic borrowing design. Biometrical Journal, 2023. DOI:
10.1002/bimj.202200305.

2.1 Introduction

Extrapolation of relevant information from existing research has emerged as a
focal point within the field of statistical pharmaceutical investigation. The evolving
landscape of clinical trials occasionally yields reduced sample sizes during the testing
phases, as noted in Bradley et al. (2012) [11]. In specific situations, such as when
dealing with targeted therapies and personalized approaches, performing extensive
studies may not be a viable or realistic option. The consequence of smaller sample
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sizes is a predictable reduction in precision. Fortunately, there exist innovative
solutions to face this challenge, including the leveraging of historical data.

This chapter introduces an approach that integrates data extrapolated from a
minimal physiology-based pharmacokinetic (mPBPK) model observed in healthy
volunteers into the design of clinical trials involving patients. This strategy is
a component of the broader Model-based Drug Development framework, a field
with an abundant literature on optimizing trial designs and making well-informed
decisions [12].

The extrapolation of data from healthy volunteers to patients is a well-explored
subject in the pharmacometrics literature [13]. Previous research within this domain
has predominantly focused on extrapolating data from adults to pediatric populations
[14, 15]. Additionally, some researchers have examined bridging models to identify
disparities between healthy volunteers and patients [16, 17]. Within the statistical lit-
erature, several publications have focused on the extrapolation from pharmacokinetic
models to clinical data [18], and increasing attention has been given to the integration
of historical data [19–21]. The principal benefit of these approaches lies in their
capacity to estimate treatment effects with precision and increase study power, all
while controlling, or even diminishing [22], type I errors in cases of consistency be-
tween historical and concurrent data. However, in instances of conflict between prior
and current data, type I errors might be exacerbated. Bayesian dynamic borrowing
(BDB) techniques have been designed to address this challenge [23, 24] and offer
the advantage of down-weighting historical data during analysis when they differ
from the study data [22, 25–27]. These techniques have also undergone evaluation
in the context of platform trials [28].

In the subsequent sections, we present a motivating case study and outline
the primary steps of our proposed approach in Section 2.2. Section 2.3 presents
the methodology, encompassing the mPBPK model, the extrapolation process for
obtaining informative priors, and the BDB design. The proposed approach is then
applied to an immuno-inflammation case study in Section 2.4, where we present
comprehensive operating characteristics for various designs to determine the most
suitable one. Additionally, we conduct a hypothetical analysis as if study data were
available, providing insight into the prospective final analysis. Finally, Section 2.5
serves as a concluding discussion.
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2.2 Motivating example

The motivation for this study stemmed from a real-life case in immuno-inflammation,
where there was a need to leverage historical receptor occupancy (RO) data from a
phase I study involving healthy volunteers. The intention was to use this historical in-
formation to inform the design of a phase II proof-of-concept (PoC) study in patients.
The rationale behind this approach was driven by ethical considerations and practical
constraints imposed by the rarity of the disease, which limited the available sample
size for the phase II investigation. To construct a robust understanding of the drug’s
behavior, RO data from healthy volunteers, in conjunction with pharmacokinetic
data, were used to develop a mPBPK model for the drug at the conclusion of the
phase I study. RO, defined as the fraction of receptors occupied by a specific drug
out of the total receptor population, plays a pivotal role in elucidating or confirming
the mechanism of action of certain medications [29]. It enables the quantification
and characterization of the drug’s binding profile to the target [30]. RO serves as a
valuable pharmacodynamic biomarker for characterising the relationship between
drug exposure and response, especially when coupled with a pharmacokinetic profile.
Its evaluation in phase I studies aids in forecasting treatment efficacy and facilitates
dose selection in subsequent investigations. In the context of this study, the model
developed in healthy volunteers was extended to patients, accounting for both the
variability in population parameters and the peculiar differences attributable to the
pathological condition.

Simultaneously, a phase II PoC study was considered, designed as a randomized,
double-blinded, two-arm trial assessing both efficacy and safety. This study employed
a multiple dosing regimen spanning 13 weeks and enrolled 45 patients, with 30
allocated to the treatment group and 15 to the control group. The clinical endpoint
was continuous, with negative values signifying improved efficacy, denoting an
enhancement in the pathological condition compared to baseline. A reduction
of 3 units in the clinical endpoint was considered clinically relevant. The clinical
endpoint is assumed to follow a normal distribution with a reported standard deviation
of 6 from the literature. Furthermore, a linear relationship between RO and the
clinical endpoint at the patient level had been estimated from a prior, internal, and
unpublished study.

To design the study, BDB methods, which will be expounded upon in the next
sections, were employed to integrate prior evidence from the phase I data on RO
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obtained from healthy volunteers. The primary objectives were to enhance the
study’s statistical power while keeping the sample size manageable and to enable
informed decision-making at the conclusion of the PoC study by incorporating all
available evidence from both current and past investigations.

Regrettably, specific details regarding the disease in question cannot be disclosed
due to confidentiality constraints. Nonetheless, the scientific inquiry and simulations
performed here are presented in an anonymised manner to offer valuable insights
for potential future applications. Although the decision was ultimately made not
to pursue this particular approach, the research presented here lays out a general
framework that can be applied to various disease areas where RO is expected to be
linked to drug efficacy. This includes, but is not limited to, domains like monoclonal
therapeutic antibodies in oncology [31, 32] or certain neurological disorders [33]. In
other applications, these methods could also facilitate the substitution of RO with
a biomarker closely tied to the desired clinical endpoint, potentially resulting in a
stronger correlation and/or reduced variability, depending on the available previous
data or literature in the context of the project.

2.3 Methods

In the upcoming section, we will present the approaches utilized to model RO in both
healthy volunteers and patients, outlining the methods used to integrate historical
data into a BDB design, and elucidating the techniques employed for extrapolating
from phase I to phase II data.

2.3.1 mPBPK model

Physiology-based pharmacokinetic (PBPK) models are mathematical frameworks
employed to predict how a drug will behave in terms of exposure and response
under various dosing regimens within a specific target population. In contrast to
traditional pharmacokinetic models, PBPK models rely on established anatomical,
physiological, physical, and chemical principles for parameterization. These models
often feature a larger number of compartments, with multiple differential equations
capturing the drug’s dynamics across these compartments. To streamline the im-
plementation of PBPK models, mPBPK models were developed. These mPBPK
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models simplify the complexities of PBPK models by grouping tissues with similar
kinetic properties into two categories based on their endothelial structure: "tight" and
"leaky" compartments. For an in-depth exploration of PBPK and mPBPK models,
please refer to Jones at al. (2013) [32] and Cao and Jusko (2014) [34], respectively.

In the context of the upcoming case-study, the subsequent differential equation
elucidates the behavior of RO within the leaky compartment, responsible for generat-
ing the relevant secretions. A comprehensive depiction of the full mPBPK model
employed in this case study can be found in the Supplementary Material and is
generally represented as a function f (·).

∂Cleaky

∂ t
= f

(
Cleaky,C f ree,Vmax,Km,Vleaky

)
RO =

Cleaky

Cleaky +Km
.

Table 2.1 Key parameters of the mPBPK model. Vmax and Km are individualized parameters
derived from prior investigations involving healthy volunteers. Vleaky is a constant volume ap-
plicable to all individuals. Additional information regarding the model and these parameters
can be located in the Supplementary Material.

Parameter Description
Cleaky Concentration of the drug in the leaky compartment

CP Concentration of the drug in the plasma
Vmax Maximum binding capacity in the binding site
Km Concentration of the free (not bound) drug

Vleaky Volume of the distribution of the drug in the leaky compartment

The main parameters used in the model are shown in Table 2.1.

The unique nature of the disease mandates a modification in the mPBPK model
for patients. Specifically, the maximum binding capacity at the binding site (Vmax)
for patients must be scaled by an individual factor denoted as λ . This scaling factor
is assumed to follow to a log-normal distribution, and its parameters are estimated
based on data from external studies. This adjustment is considered the sole difference
between the mPBPK model applied to healthy volunteers and that applied to patients.
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2.3.2 Bayesian dynamic borrowing design

The upcoming phase II PoC study is designed as a BDB design, aiming to incorporate
historical data to enhance the evidential basis for informed decision-making.

Let θT and θC represent the true mean values of the clinical endpoint within
the treatment and control arms of the new study, respectively. Furthermore, let πT

and πC denote the informative continuous prior distributions corresponding to θT

and θC, respectively, which encapsulate the knowledge derived from the clinical
endpoint data in the phase I study (as discussed in Section 2.3.3). To address potential
conflicts between the prior information and the concurrent data, these distributions
are robustified by adopting a mixture prior approach. This approach combines them
with two less informative distributions, denoted as πV

T and πV
C , which exhibit the

same mean but substantially larger variance. The robustified distributions are derived
as:

π
R
T = wπT +(1−w)πV

T

π
R
C = wπC +(1−w)πV

C

The distributions πR
T and πR

C will serve as the prior distributions for θT and θC in
the phase II PoC study.

The prior weight, denoted as w, represents the level of confidence, prior to
observing the phase II data, in the relevance of the information extrapolated from
phase I to the phase II study. For simplicity, the same prior weight is applied to
both the treatment and control arms, under the assumption that the extrapolated data
holds equal relevance for both arms. However, if there are scientific justifications,
distinct prior weights could be considered for each arm. The choice of the prior
weight(s) necessitates careful deliberation, typically striking a balance between the
preconceived expectations regarding the extrapolated data relevance and the frequen-
tist operational characteristics. A comprehensive examination of the operational
characteristics of the adopted methodology is furnished in the ensuing case-study to
facilitate the selection of design parameters, including the prior weight assigned to
the extrapolated data. Additionally, a sensitivity analysis known as a tipping point
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analysis [35] is presented to illustrate the process of assessing the robustness of the
outcomes following the data collection phase.

2.3.3 Extrapolation

The extrapolation from phase I to phase II data involves two sequential steps: firstly,
utilizing data from healthy volunteers to predict RO in patients, and secondly, em-
ploying the predicted RO values in patients to estimate the clinical endpoint. The
methodology for both treatment arms is essentially identical; however, for simplicity,
we present the methodology specifically for the treatment arm, denoted as T .

Let NT represent the number of patients in the treatment arm, and γi denote
the logit transformation of the true RO value for patient i = 1, ...,NT , defined as
γi = logit(ROi) = log(ROi/(1−ROi)). Furthermore, let θi signify the true treatment
effect on the clinical endpoint for each patient i = 1, ...,NT . Consequently, the true
mean of the clinical endpoint in the treatment arm is θT = 1

NT
∑

NT
i=1 θi. The association

between the logit transformation of RO and the clinical endpoint for each patient
is assumed to have been previously estimated, either through existing literature or
prior studies. While this assumption holds to a certain extent if the post-phase I dose
selection relies on RO results, in practical scenarios, the estimation of this relationship
may be uncertain and may need to be substituted with clinical assumptions.

Following a similar approach to Saint-Hilary et al. (2018) [36], a Bayesian
regression model is applied, where θi ∼ N(ai + biγi,τ

2
i ) for i = 1, . . . ,NT , with

ai ∼ N(µa,σ
2
a ), bi ∼ N(µb,σ

2
b ), and τi ∼ HN( 1

µτ
).

The prior distribution πT for θT is approximated using the following methodol-
ogy:

• Generate K sets of γ̂i,k values for each patient i = 1, ...,NT and for each simu-
lation k = 1, ...,K using the mPBPK model.

• Sample values for ai,k, bi,k, and τi,k from the estimated distributions of ai, bi,
and τi for each patient i = 1, ...,NT and each simulation k = 1, ...,K.

• Sample θ̂i,k values for each patient i= 1, ...,NT and each simulation k = 1, ...,K
from normal distribution N(ai,k +bi,kγ̂i,k, τ2

i,k).
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• For each patient i = 1, ...,NT , select a single value θ̂i,k∗ from the set of θ̂i,k

values, where k∗ represents a fictive trial.

• Calculate the mean effect on the clinical endpoint for the entire treatment arm
in the trial, denoted as θ̂T,k∗ =

1
NT

∑
NT
i=1 θ̂i,k∗ .

• Reiterate the previous two steps a large number of times to approximate the
distributions of the mean clinical endpoint in the trial.

This procedure yields estimates of the mean effect on the clinical endpoint for
the treatment arm, denoted as θ̂T,k∗ , which are utilized to approximate the prior
distribution πT . The same steps are replicated to obtain an approximation of the prior
distribution πC for the control arm.

2.4 Case-study in immuno-inflammation

The methodologies proposed in this paper are now applied to a practical case study.
The analyses involving the mPBPK model were conducted using Simulx Version
2020R1, while the BDB design was implemented using R Version 4.0.5, along with
the RBesT package Version 1.6.1. It’s important to note that, as previously mentioned,
the data used in this section are simulated due to confidentiality constraints.

In this study, a dual criterion for success is considered. First, it involves achieving
a statistically significant reduction in the clinical endpoint within the treatment
group compared to the control group at a one-sided 10% significance level. This is
translated into a posterior probability condition as P[(θT −θC)< 0]> 0.9. Second,
there is an emphasis on ensuring a reasonably high level of confidence that the
reduction in the clinical endpoint in the treatment group is at least 3 points greater
than that in the control group, expressed in terms of posterior probability as P[(θT −
θC)<−3]> 0.5. These criteria were selected to strike a balance between feasibility
and risk, with the second criterion chosen to mitigate the risk of making incorrect
decisions [37]. As outlined in Chuang-Stein and Kirby (2017) [38], the rationale for
a "Go" decision under this approach is to have at least a 50% confidence that the true
treatment effect exceeds a predefined clinical threshold while maintaining sufficient
precision to be confident that the true treatment effect is greater than zero.
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In a frequentist framework, which is equivalent to a Bayesian design assuming
an implicit improper conjugate Normal prior with zero precision, the utilization of
these two criteria results in an overall type I error rate of approximately 5.2% and a
statistical power of 50% in scenarios where the true difference between treatment
and control is just 3 points. This implies that the study, without employing any
borrowing techniques, is designed to have a false positive rate of approximately 5%
when there is no true difference between treatment and control. Additionally, the
study exhibits a power of less than 14% for detecting true differences of less than 1
point between treatment and control, while it boasts a power of around 70% when
the genuine difference between treatment and control reaches 4 points.

2.4.1 mPKPB model and BDB design

The distribution of the factor λ , which is used to adjust the maximum binding
capacity (Vmax) in patients compared to healthy volunteers, is estimated based on
external studies as follows: log(λ ) ∼ N(1.297,0.6042). This distribution has a
median of approximately 3.659, indicating that Vmax tends to be substantially higher
in patients compared to healthy volunteers.

Following the procedures outlined in Section 2.3.3, we simulated a total of 1000
clinical trials to derive the prior distribution for each arm. The choice of this number
was made after assessing that further increasing the number of simulations did not
significantly enhance the overall precision of the results. It’s worth noting that
the required number of iterations may vary in different contexts, and it should be
determined on a case-by-case basis.

The replicates of ROs at the end of week 13 were generated using Simulix.
The histograms of the logit-transformed ROs, denoted as γ̂i,k for i = 1, ...,NT (or
NC for the control) and k = 1, ...,K, are provided in the Supplementary Material.
The relationship between RO and the clinical endpoint for each patient had been
established in a previous (internal and unpublished) study, with the parameters set
as follows: θi ∼ N(ai +biγ,τ

2
i ), ai ∼ N(−2.893,0.0292), bi ∼ N(−0.181,0.0032),

and τi ∼ HN( 1
5.040) for i = 1, ...,NT (or NC for the control).

The two informative prior distributions obtained are as follows:
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πT ∼ N(−3.786,1.1482)

πC ∼ N(−0.018,1.5952)

To robustify these informative priors, vague priors πV
T and πV

C were introduced.
These vague priors have the same mean as the informative priors but a standard
deviation of 6, which corresponds to the sampling standard deviation of the clinical
endpoint observed in external studies. Therefore, the vague prior components are
equivalent to the information equivalent of "one patient" in each arm.

Table 2.2 presents key characteristics of various mixtures of the treatment and
control priors for different values of the prior weight assigned to the informative com-
ponent (w). These characteristics include the mean, standard deviation, and effective
sample size (ESS) as calculated using the ELIR method [39]. The informative priors
collectively contribute an ESS of 41 patients, with the treatment prior having an ESS
of 27 patients and the control prior having an ESS of 14 patients, both slightly lower
than the number of patients enrolled in their respective arms. As the prior weight
on the vague component increases, the ESS decreases until it reaches an ESS of 2
patients when the phase I information is entirely disregarded (w = 1), as expected
based on the construction of the priors.

Table 2.2 Characteristics of various priors corresponding to different weights (w) allocated
to the informative component. A weight of 1 signifies the full incorporation of information
without any robustification, whereas a weight of 0 implies exclusive reliance on the vague
priors. ESS stands for Effective Sample Size, as calculated through the ELIR method.

Weight
(w)

Treatment
Mean

Treatment
Standard
Deviation

Treatment
ESS
(ELIR)

Control
Mean

Control
Standard
Deviation

Control
ESS
(ELIR)

Total ESS
(ELIR)

1 -3.786 1.148 27 -0.018 1.595 14 41
0.8 -3.786 2.873 18 -0.018 3.039 9 27
0.65 -3.786 3.668 13 -0.018 3.775 7 20
0.5 -3.786 4.320 9 -0.018 4.390 5 14
0 -3.786 6 1 -0.018 6 1 2
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2.4.2 Operating Characteristics

Fig. 2.1 The figure depicts the relationship between the Type I error and the effect size in
both arms, assuming equal effect sizes, while considering 30 patients in the treatment arm,
15 patients in the control arm, and varying prior weights (w) assigned to the informative
component.

Fig. 2.2 The figure displays the power within the BDB design as a function of the discrepancy
between the effects in each arm. This analysis assumes a control effect of θC =−1, involves
30 patients in the treatment arm, 15 patients in the control arm, and various prior weights (w)
assigned to the informative component. It’s worth noting that a smaller difference between
the treatment and control effects indicates a more favorable treatment outcome. The vertical
dotted line signifies the minimum clinically significant difference of -3.
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Table 2.3 Summary of the operating characteristics for BDB designs with 30 patients in the
treatment arm, 15 patients in the control arm, varying prior weights (w) on the informative
component, and design without borrowing. The plausible for the treatment and control
effects is specified as [-7.3, 4.9].

Design Type I error
when θT =

θC =−1

Maximum type
I error over the
plausible range
(value at which
occurs)

Range of values
where type I er-
ror is greater than
10% (probability
under πT and πC)

Power when
θT =−4 and
θC =−1

BDB with
w=1

11.2% 12.3% (-7.3) [-7.3, 4.9] (99.8%) 64.9%

BDB with
w=0.8

9.3% 10.5% (-2.8) [-4.4,-1.6] (10.7%) 62.8%

BDB with
w=0.65

8.4% 9.7% (-2.6) - 61.0%

BDB with
w=0.5

7.6% 8.9% (-2.6) - 59.1%

BDB with
w=0

5.7% 7% (-7.3) - 51.2%

Frequentist 5.2% 5.2% (all) - 50%

Operating characteristics are presented to assess the performance of the BDB design
and facilitate the selection of an appropriate weight for the informative component
(w). Figure 2.1, Figure 2.2, and Table 2.3 offer insights into the type I error and
power for various w values, taking into account the phase II PoC study’s parameters.
Plausible ranges for the treatment and control effects were established using the 0.1%
percentile of πT as the lower bound and the 99.9% percentile of πC as the upper
bound. These percentiles define a range of plausible values spanning from -7.3 to
4.9, according to prior knowledge.

Figure 2.1 illustrates the type I error across different assumptions regarding the
true effect on the clinical endpoint, assuming it is identical for both the treatment
and control arms. The type I error rates remain below 10% when the weight on the
informative component is zero (w = 0). However, they increase as the true effect
decreases due to the unbalanced design. The vague priors used for both arms contain
the same amount of information (equivalent to one subject’s observation). Therefore,
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the prior has a greater impact on the control arm because there are more patients
in the treatment arm to counterbalance it. Consequently, when the true effect is
lower than the effect extrapolated from RO, the posterior estimate for the control
arm decreases to a lesser extent than that of the treatment arm. This leads to an
increased posterior estimate of the difference between treatments and an increased
type I error. Conversely, when all prior information is borrowed (w = 1), there is a
substantial increase in the type I error, exceeding 10% for all values and increasing
as the true effect decreases, again due to the unbalanced nature of the design. It’s
important to note that this scenario, where w = 1 and the effective sample size (ESS)
of the borrowed data nearly matches the phase II study’s sample size, is likely to be
excessive and is presented for illustrative purposes only. However, for intermediate
values of w, the increases in type I error are smaller and less pronounced. The type
I error surpasses 10% within the plausible range only when w = 0.8 and the true
effect falls within [−4.4,−1.6], reaching a peak of 10.5% when the true effect is
-2.8. The probability that both the treatment and control effects fall within the range
[−4.4,−1.6] is only 10.7% based on πT and πC. For true values lower than -4.4, the
type I error remains between 10% and the type I error for the BDB design when the
informative prior is completely ignored (w = 0). However, for true values higher
than -1.6, the type I error decreases rapidly, remaining below the type I error with
w = 0 for nearly all positive values of the true effect.

Figure 2.2 portrays the power as a function of the difference between treatment
and control group effects, assuming a control effect of -1. The vertical dashed line
signifies the second component of the dual success criterion: a mean reduction
in clinical endpoint in the treatment group of 3 points or more than the control
group. In this context, the design without borrowing has a power of 50%, by design.
Conversely, the BDB designs exhibit increased power with higher weights: 59.1%
(w = 0.5), 61% (w = 0.65), 62.8% (w = 0.8), and 64.9% (w = 1). Notably, the
BDB design with w = 0 already displays greater power (51.2%) compared to the
design without borrowing due to the incorporation of information equivalent to one
observation in each arm via the vague priors.

Table 2.3 summarizes the operating characteristics of the design without bor-
rowing and the BDB designs, encompassing type I error, maximum type I error,
the range where the type I error exceeds 10%, and power. These results illustrate
that integrating extrapolated RO data and employing a BDB design can elevate the
study’s power while curbing the inflation of the type I error in most scenarios. This
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approach effectively augments the sample size, equivalent to adding 14 to 41 patients
according to the ELIR method, which is especially valuable in early-phase PoC
studies with limited sample sizes.

It can be observed from the figure in Supplementary Material that γ in the
treatment arm exhibits bimodal behavior. This arises because some patients may
experience a faster or slower decay in RO, influenced by individual characteristics.
An additional analysis, detailed in the Supplementary Material, addresses this behav-
ior through an extension of the mixture prior. This extension incorporates an extra
informative component to better capture such a distribution. The resulting model
and operating characteristics closely resemble those presented here.

Furthermore, the Supplementary Material provides additional operating char-
acteristics. Heatmaps reveal that both pointwise type I error and maximum type I
error tend to increase with higher weights and smaller sample sizes. Conversely,
power tends to rise with increased weights and diminished sample sizes. Separate
heatmaps are generated for the first success criterion (statistical significance) and
the second success criterion (clinical relevance) only. The results indicate that the
second success criterion, which requires a clinically significant difference between
treatment and control arms (P[(θT − θC) < −3] > 0.5), primarily influences the
overall operating characteristics of the designs.

While the choice of the weight for the informative component should be evaluated
on a case-by-case basis depending on project-specific considerations, let’s assume,
for now, that a weight of w = 0.8 is deemed appropriate. According to Table 2.3,
this weight results in a type I error of around 10% and a power of 62.8%. With
this weight, the long-term operating characteristics of the BDB design, accounting
for potential deviations between the true treatment/control effects and the prior
means, are presented. The findings indicate that the average posterior weight on
the prior distribution increases when the prior and true effects align closely, leading
to a narrower posterior credibility interval (CrI) compared to a design without
borrowing in cases of prior data consistency. However, as deviations increase, less
weight is assigned to the RO-informed evidence, resulting in reduced precision
gains. Additional results, including bias and illustrative outcomes under selected
data scenarios, are presented to provide a comprehensive understanding of the BDB
designs.
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2.4.3 Fictive Analysis

To prepare for the final analysis of the trial, simulated and analyzed fictive results
are presented in Table 2.4. The 80% credible intervals (CrI) are reported to ensure
alignment with the first success criterion, which corresponds to a one-sided type I
error of 10%. In the simulated data, the observed treatment mean is −4 with an 80%
CrI of [-6.1, -1.9] in a cohort of NT = 30 patients, while the observed control mean
is −1 with an 80% CrI of [-4, 2] in a cohort of NC = 15 patients.

The analysis of the design without borrowing is presented in the bottom row,
revealing an observed treatment difference of −3 with an 80% CrI that encompasses
zero. Consequently, neither of the success criteria is met. In contrast, the Bayesian
analysis in the top row combines evidence from the current study data and the
extrapolated data from RO. The posterior treatment difference is −3.5, slightly
influenced by the informative priors, and exhibits better precision than the analysis of
the design without borrowing. The 80% CrI does not include zero, and both success
criteria are satisfied.

Sensitivity analyses, such as the tipping point analysis [35] illustrated in Figure
2.3, are crucial for comprehending and evaluating the robustness of the findings.
By exploring the impact of different weights on the conclusions, these analyses
offer valuable insights into the design’s sensitivity to the prior belief regarding the
relevance of the extrapolated RO data to the new study’s effects. In this particular
case, the analysis demonstrates that the conclusions of the BDB design remain robust
even with variations in the weight, as the first success criterion is only met for
weights greater than w = 0.1, underscoring the design’s reliability.

A hypothetical scenario involving a false positive is presented in the Supplemen-
tary Material to illustrate that incorrect decisions can be averted through appropriate
analysis and the application of sensitivity assessments.
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Fig. 2.3 Sensitivity analysis conducted using hypothetical but realistic data, displaying the
posterior mean and 80% credible interval (CrI) for the estimated treatment difference in
relation to the prior weight. The two dashed lines on the graph represent the two success
criteria thresholds: (P[(θT −θC)< 0]> 0.9) and (P[(θT −θC)<−3]> 0.5).

Table 2.4 Summary of the primary analysis on the treatment difference, treatment and control
response, utilizing hypothetical but realistic data. The lower row showcases the simulated
observed data from a design without borrowing, clearly illustrating a failure to meet the
success criteria. In contrast, the upper row presents the outcomes achieved by combining
fictive observed data and informative components using a BDB design with a weight of
w = 0.8 demonstrating the fulfillment of the success criteria.

Evidence
Source

Treatment
difference
[80%CrI]

Treatment ef-
fect [80%CrI]

Control effect
[80%CrI]

Phase I + phase
II

-3.5 [-5.7;-1.3] -3.9 [-5.1;-2.6] -0.4 [-2.2;1.4]

Phase II only
(frequentist)

-3 [-6.6;0.6] -4 [-6.1;-1.9] -1 [-4;2]
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2.5 Discussion

This work introduces a methodology for integrating data gathered in a phase I study
on RO in healthy volunteers as prior information for a phase II PoC study in patients.
The results and comprehensive assessment of the design demonstrate that incorporat-
ing extrapolated RO data through a BDB design leads to enhanced study power while
maintaining the type I error at acceptable levels. These findings support previous
studies employing historical data borrowing [22, 25–27]. Importantly, they also
facilitate the evaluation of the influence of the prior weight choice on the outcomes,
enabling more informed decisions rather than relying solely on external beliefs [36].
The fictive analyses presented here illustrate how results can be presented and their
robustness assessed when real study data are available. Furthermore, they illustrate
how additional evidence from RO data can reduce the risk of leaving phase II results
in a "consider zone" [40], where decisions about drug development continuity are
unclear. Additional analyses detailed in the Supplementary Material further under-
score the value of such assessments. Incorporating RO data significantly contributes
to the study, potentially doubling the effective sample size (ESS). Nevertheless, the
analysis indicates that using an informative prior with w = 1 is unlikely, given its
impact on operating characteristics. In more practical scenarios, integrating RO data
leads to sample size increments ranging from one-third to two-thirds of the study’s
total sample size.

While specific details about the disease motivating this work remain confidential,
the statistical methodology presented here has broader applicability in other drug
development scenarios where drug efficacy is expected to correlate with some RO.
This approach can be a valuable tool for optimizing the design and analysis of such
trials. It’s important to emphasize that this method is intended for use in early-phase
studies and should not replace the need for later-stage randomized trials to confirm
drug effects.

The 50% power observed in our example may raise concerns for some readers.
However, this is inherent in the utilization of a dual-criterion design based on both
statistical significance and clinical relevance [41, 42]. In such designs, trial success
is determined not only by achieving statistical significance but also by surpassing
a clinically meaningful threshold for the treatment effect estimate. The power
calculated at this threshold value is approximately 50% because, if the true parameter
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equals the threshold, there is an equal probability that the effect estimate will fall on
either side of it.

The proposed methodology has some limitations, primarily linked to the extrap-
olations from healthy volunteers to patients and from RO to the clinical endpoint,
which require external evidence. Indeed, while the BDB design has several ad-
vantages over traditional designs, potential issues should be considered. One such
concern is that the prior evidence used may not represent the current study popu-
lation accurately or could be based on flawed or incomplete information. This can
lead to biased estimates, especially if the relationship between RO and the clinical
endpoint is incorrectly estimated, potentially propagating errors or biases to the cur-
rent study. However, mPBPK models are well-established in the literature [43] and
regulatory frameworks [44, 45], and their predictive performance can be validated
on independent datasets [46].

Additionally, we assume that the relationship between RO and the clinical end-
point has been previously estimated based on the literature or past studies. While
this assumption should be somewhat accurate when the dose is intended to be chosen
based on RO results, the estimation of this relationship may be impractical in practice
and replaced by clinical assumptions. We strongly discourage selecting doses based
on RO without a reliable empirical estimation of the relationship between RO and
the clinical endpoint, acknowledging that this assumption is the primary limitation
of our proposed methodology.

Before progressing to human trials, a translational framework should have demon-
strated a clear connection between drug target exposure, the desired pharmacody-
namic effect (biomarker), and model efficacy [11]. RO serves as a marker indicating
the direction and magnitude of treatment activity, offering insights into whether the
drug is achieving the desired effect. However, there may be other, more proximate
biomarkers that are closer to the clinical endpoint, such as proof of principle (POP)
biomarkers or Proof of Concept (PoC) biomarkers [11]. Employing these biomarkers
alongside RO could further enhance confidence in the relationship with the clinical
endpoint. Surrogate markers measuring the pharmacological treatment effect [47] or
available pre-clinical information can also be valuable for guiding dose selection. In
the example presented, the PoC study assesses a well-established clinical endpoint in
the target indication, enriched with information borrowed from a surrogate marker.
If RO were found to be an inadequate predictor of the clinical response, the risk of



30 Incorporation of healthy volunteers data into a phase II proof-of-concept trial

misguided borrowing from RO data is mitigated by the BDB design, which discards
prior data in cases of conflicts with new data. Furthermore, the impact of the strength
of the relationship between RO and the clinical endpoint on design properties could
be further evaluated, as demonstrated for probabilities of success [36].

It’s essential to note that the number of simulated patients in the fictive trial
affects the precision of the prior distributions. If this number exceeds the number
of enrolled patients (N), the prior distributions may have an effective sample size
larger than N. To address this concern, downweighting the prior could be considered
by increasing the variance of all components by the same factor, as demonstrated in
recent studies [48]. This approach allows new data to have sufficient weight when
the prior has a high effective sample size, ensuring that the posterior distribution
appropriately reflects the agreement or conflict between prior beliefs and current
data. Therefore, in our proposed methodology, simulating a number of patients equal
to N enables the consideration of prior-data conflicts while allowing the current data
to guide decisions. The downweighting approach can be applied if the prior has a
high effective sample size.

The proposed methodology builds upon the approach proposed in Saint-Hilary
et al. (2018) [36] by extending it to incorporate healthy volunteer RO data. In this
work, the focus is on using historical data from a phase I study in healthy volunteers
to inform the design and analysis of a phase II PoC study in patients. One natural
extension of this methodology is to consider a seamless Phase I/II design within
a Bayesian framework, where data from the Phase I stage inform the analysis of
the Phase II stage. As another potential extension, a longitudinal analysis could
explore the behavior of RO over time and its relationship with the clinical endpoint.
Additionally, sensitivity analyses regarding the factor λ , which relates RO in healthy
volunteers to patients, could be performed under different assumptions about its
distribution to assess its impact on the BDB design’s operating characteristics. Lastly,
the current study assumes a fixed, independent distribution for ai, bi, and τi in all
patients i = 1, ...,N. However, considering different distributions based on patient
characteristics could be explored, with the joint distribution estimated accordingly
[36]. Moreover, alternative relationships between the logit of RO and the clinical
endpoint could be investigated, such as linear improvements in the clinical endpoint
for the logit of RO above a minimum level or piece-wise relationships.
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In conclusion, the proposed methodology is expected to be a valuable tool
for supporting decision-making in early phases, where the number of patients is
limited. It has the potential for broader application in various contexts and with
different biomarkers or activity criteria, demonstrating the possibility of improving
the efficiency of PoC trials by leveraging historical information in drug development.



Chapter 3

Incorporation of pre-clinical animal
toxicology data in phase I trials

Background

This chapter presents a discussion on an ongoing work.

3.1 Introduction

Nowadays, preclinical animal data in oncology studies are mainly used for clinical
consideration, such as pharmacological safety and general toxicology, and for the
determination of the pharmacokinetic and pharmacodynamic profile of a new drug
in view of the first in human study [49]. Also, data collected in animal studies, such
as toxicity events, are used to determine the maximum safe starting dose for the
first-in-human trial, according to the current regulation based on allometric scaling
and some additional safety factors [1]. The allometric scaling principle is based on
proportionality between doses and dimension of the animals in terms of body weight
or body surface area [50], and is widely used in the field.

The animal data contain lots of information that could be used more formally in
the design via borrowing methods and may help in determining the safety profile
of new compounds in a context where, usually, the available sample size for the
trial is limited. In this sense, several approaches have been proposed to incorporate
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historical data into new studies [26, 22] and some studies have already made use of
historical controls in exploratory, or even confirmatory, trials [25, 51, 48]. Among
them, the meta-analytic predictive (MAP) approach [23, 24, 52] and the power prior
approach [53–55] are some of the most widely used. Both are Bayesian approaches,
accounting for the variation across the different sources of evidence and assigning
some ‘weight’ on their contribution to the combined evidence. The fundamental
difference between the two methods relies on how they treat a possible inconsistency
of the new study data with the historical data, so-called prior-data conflict [56] or
drift [22]. This inconsistency could bias the assessment of the estimated effects,
leading to incorrect decisions (e.g. pursue the development of ineffective therapies, or
incorrect early stop). The power prior discounts the historical data by elevating their
likelihood to a certain power. The robustified version of the MAP approach consists
in a hierarchical model with a prior defined as a mixture between the distribution
obtained from historical data with a certain vague prior, defined as a distribution
with high variance, inducing a discounting of historical data in case of drift. In
both methods, one concern that is often raised is how to determine the appropriate
parameters [23, 24, 52, 53, 55, 57, 58], in particular the prior confidence given on
the historical data. These choices should rely on clinical judgments regarding the
relevance of the historical data to the current trial and operating characteristics to
assess their impact on the model and the conclusions.

The objective of this chapter is to explore the integration of pre-clinical animal
data into Phase I oncology trials using the MAP and the power prior approaches,
employing a Bayesian logistic regression model (BLRM) [59]. In the following, a
motivating case study is introduced in section 3.2. The different methodologies are
presented in Section 3.3. A discussion and some concluding remarks are provided in
Section 3.4.

3.2 Motivating case study in oncology

This work is motivated by a case study in oncology. The objective is to evaluate
the safety profile of a new drug and to determine its maximimum tolerated dose
(MTD). The dose escalation procedure of the study is governed by the BLRM. This
model, used to estimate the dose-response relationship, is widely used and has
demonstrated good operating characteristics. It permits to allocate more patients to
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the maximum tolerated dose (MTD) and to identify it with higher probability with
respect to other models [60, 61]. BLRM is also very flexible and permits to use
different dose-escalation procedures. A maximum of 30 patients will be enrolled
in the study, divided in cohorts of 3. The following doses are planned for testing:
25, 50, 100, 200, 400, 800, 1400 mg. The starting dose is fixed at 50mg, selected
according to the International Conference Harmonization (ICH) S9 guidelines for
choosing a starting dose for a first-in-human trial conducted in patients with cancer
[49]. Cohorts of patients will be treated with the drug until the MTD(s) are identified.
After each cohort of patients is completed, the dose recommendation by the model
is based on the probability that the true dose limiting toxicity (DLT) rate for each
dose lies in one of the following categories: [0,16%] under-dosing, (16%,33%)
targeted toxicity, [33%,100%] excessive toxicity. The choice of the thresholds has
been carefully determined and is a fairly common choice in this kind of trials. For
extended safety, it is prescribed that doses for the next cohort will not be more
than doubled, independently from the escalation criteria used. Dose escalation will
continue until the following conditions are met: all patients have been treated or
all doses are declared overtoxic. It can be noted that the dose recommended by the
model at any stage of the trial is based on the entire history of all available DLT
information from previous cohorts, as opposed to only the number of DLTs observed
in the last group of patients. The MTD(s) will be chosen, at the end of the trial, as
the dose(s) with the highest probability of targeted toxicity. The final recommended
dose for the phase II studies will be based on the MTD(s) estimated by the model or,
if no DLTs are experienced, a recommended dose for expansion will be determined.

Given the small sample size available for the phase I study and the availability
of pre-clinical toxicological data from rats and monkeys, there is interest for the
incorporation of the evidence from these pre-clinical data to make dose-escalation
decisions and final recommendations. Different methodologies for the incorporation
of toxicological animal data in the phase I dose-escalation study are described
in the present work. The robust MAP approach (following existing methodology
[62, 63]) and the power prior approach are presented to show how robust is the
informative prior they build from animal data. A novel methodology is hereby
introduced regarding the determination of parameters for both approaches, utilizing
external data as a basis. Finally, stopping rules that can be added to the models to
avoid overdosing are shown, using two different approaches: the escalation with



3.3 Methods 35

overdose control (EWOC) [64] criterion and one of its most recent extensions, the
unit probability mass (UPM)-based add-on rule [65].

3.3 Methods

Considering a phase I dose escalation trial in oncology. Pre-clinical data, namely D0,
consist of a certain number of studies I, which have been previously conducted on
certain animal species. A single animal species has been treated with the target drug
on different dose levels Di = {di1, ...,diJi;di1 < ... < diJi} in each study i = 1, ..., I.
Moreover, only one species was tested in each study. A certain number of DLT ri j

are observed over a certain number of tested animals ni j for each dose j = 1, ...,Ji.

3.3.1 Bayesian Logistic Regression Model

Zheng et al. [62] define the following model to incorporate preclinical animal data
into oncology studies, based on the BLRM. The number of toxicities ri j are supposed
to follow a binomial distribution with probability of toxicity pi j, dependent on each
dose tested j = 1, ...,Ji in study i = 1, ..., I:

ri j|pi j,ni j ∼ Binomial(pi j,ni j)

logit(pi j) = θ1i + exp(θ2i)log(δidi j/dRe f ) (3.1)

In formula (3.1), dRe f is a given reference dose. δi represent allometric scaling
factors. However, the δi are not treated as fixed values, but as lognormal random vari-
ables, to account for the inherent uncertainty of these factors. The parameters of the
lognormal distributions are defined to be consistent with the FDA recommendation
on allometric scaling [1]. The median value corresponds to the reference value in the
FDA guidelines, while the 2.5th and 97.5th percentile correspond to the associated
working range. In Table 3.1 the distributions and the FDA reference values can be
found, while the methodology to obtain the parameters of the distributions is treated
in detail in Zheng et al. [62]. θ i are the parameters of the BLRM model for the
species considered in study i = 1, ..., I. These are defined as:



36 Incorporation of pre-clinical animal toxicology data in phase I trials

Table 3.1 Log-normal prior parameters LN(λ ,ν2) for species-specific allometric translational
factors, using body surface area (BSA) and body weight (BW) reference and working range
values from the FDA guidelines [1].

BW (kg) HED (mg/kg) HED (mg/m2)
Species Reference Working range BSA (m2) λ ν λ ν

Mouse 0.02 (0.011, 0.034) 0.007 -2.562 0.298 1.050 0.283
Hamster 0.08 (0.047, 0.157) 0.016 -2.002 0.302 1.609 0.287

Rat 0.15 (0.080, 0.270) 0.025 -1.820 0.323 1.792 0.309
Ferret 0.30 (0.160, 0.540) 0.043 -1.669 0.323 1.943 0.309

Guinea pig 0.40 (0.208, 0.700) 0.050 -1.532 0.315 2.079 0.301
Rabbit 1.80 (0.900, 3.000) 0.150 -1.127 0.290 2.485 0.274
Dog 10 (5, 17) 0.500 -0.616 0.301 2.996 0.286

Monkeys 3 (1.400, 4.900) 0.250 -1.127 0.273 2.485 0.256
Marmoset 0.35 (0.140, 0.720) 0.060 -1.848 0.401 1.764 0.389

Squirrel monkey 0.60 (0.290, 0.970) 0.090 -1.715 0.269 1.897 0.252
Baboon 12 (7, 23) 0.600 -0.616 0.306 2.996 0.291

Micro-pig 20 (10, 33) 0.740 -0.315 0.284 3.297 0.268
Mini-pig 40 (25, 64) 1.140 -0.054 0.258 3.558 0.240

θ i|µ i,Ψ ∼ BV N(µ i,Ψ)

µ i =

(
µ1i

µ2i

)
and Ψ =

(
τ2

1 ρτ1τ2

ρτ1τ2 τ2
2

)
τ1 ∼ HN(σ1), τ2 ∼ HN(σ2), ρ ∼U(−1,1) (3.2)

where µ i represents a species/study-specific mean vector and Ψ is a variance
matrix representative of the between-trial variability. HN(σ) represents the distri-
bution N(0,σ2) truncated to cover the positive values, while U [a,b] represents the
uniform distribution between a and b. In Zheng et al. model one additional "layer"
is added to (3.2), to account for another source of variance representative of the
between-species variability. However, since in our motivating example (and often in
the reality), only one species is tested in each study, this additional layer is excluded
from this analysis.

Meta Analytic Predictive Approach

For the first-in-human study (indexed by i∗) the robust meta-analytic predictive
approach [23, 24] is described. The first part of the model reflects equation (3.1):
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ri∗ j|pi∗ j,ni∗ j ∼ Binomial(pi∗ j,ni∗ j), for j = 1, ...Ji∗

logit(pi∗ j) = θ1i∗ + exp(θ2i∗)log(di∗ j/dRe f ) (3.3)

However, no allometric factor is used, since it is 1 for the human study. Then:

θ i∗ =
I

∑
i=1

wiπi +wrπr

πi ∼ BV N(µ i,Ψ)

πr ∼ BV N(mr,Rr)

mr =

(
mr1

mr2

)
and Rr =

(
σ2

r1 0
0 σ2

r2

)
(3.4)

where mr1, mr2, σr1 and σr2 are fixed values.

The πi distributions are informative distributions which carry the information
on the animal data in study i = 1, ..., I. According to this model, the contribution of
the studies to the first-in-human trial depends on the expected prior probability of
exchangeability wi for i = 1, ..., I. This is the prior belief that the behaviour of the
drug in humans is comparable to the one of the species present in the studies. On the
other hand, a certain prior probability wr is placed on a robust vague prior πr, which
accounts for the fact that the behaviour of the drug in human may differ completely
from the one in animals. This distribution has large variance, which permits to
discount prior data in case of conflict between the animal and the current data. In
the end, the prior based on animal data for the first-in-human trial is determined
from the mixture of these distributions, each with its own weight, implying that
(∑I

i=1 wi)+wr = 1.

Power Prior Approach

The main idea of the power prior approach [53–55] is to add variability to (and
therefore robustify) the animal data by elevating their likelihood to a given power
0 ≤ αi ≤ 1 for each study i = 1, ..., I. The power prior approach can be implemented
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in the previous model by leaving equations (3.1), (3.2) and (3.3) unchanged. Then,
considering a vague prior distribution πr(θ i∗) on the parameters for the first-in-human
study, equation (3.4) is replaced by:

π(θ i∗|D0,α) ∝

I

∏
i=1

L (θ i|D0i)
αiπr(θ i∗)

πr(θ i∗)∼ BV N(mr,Rr) (3.5)

As for the weight in the MAP prior approach, the determination of each exponent
requires some special attention. Some approaches suggest to make use of the same
data D0 to determine the exponent [55, 66, 67], since the use of a random exponent
can lead to an intractable analytical calculation and highly computationally intensive
model [57, 58]. However, in this case, we obtain a data-dependent prior that may
lead to difficulties in interpreting the Bayesian model [68].

3.3.2 Determination of the parameters of the model

A novel methodology to derive the parameters for the aformentioned approaches is
presented. It is based on a survey conducted by Olson et al. [69] on the concordance
of toxicity studies in animals and humans which reports the number of concordant and
non-concordant studies for animal species, alongside the pre-clinical concordance by
therapeutic class for all animal data. The proportion of reported concordant studies
for rats (R) is pR = 86

86+75 , where 86 are concordant and 75 are non-concordant, and
for monkeys (M) is pM = 41

41+17 , where 41 are concordant and 17 are non-concordant.
The general pre-clinical concordance from animal data in anti-cancer therapies is
wA = 0.84.

Using this independent source, it can be calculated the prior weight for the rat
data in a MAP model as wR = pR

pR+pM
wA and the weight for the monkey data as

wM = pM
pR+pM

wA. It results that the weight for the robust component is equal to wr =

1−(∑I
i=1 wi) = 1−wA and is interpreted as the prior probability of non-concordance

between pre-clinical animal data and human data in anti-cancer therapies. The
exponents for a power prior approach can be set to αR = pRwA and αM = pMwA for
rat and monkey data, respectively, without the need to further re-scale them.
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3.3.3 Dose escalation procedure and overdose control

The BLRM suggests as the next dose to be tested the one which has the highest
probability of target toxicity. This may result in an overly aggressive escalation
[59]. Therefore, an overdose control rule is commonly integrated into the BLRM to
prevent overdosing.

In the following, two different procedures for overdose control are described.
The first is the dose escalation with overdose control (EWOC) [64] criterion:

dsel = max{di∗ j ∈ Di∗ : P(pi∗ j > 0.33|D)≤ 0.25} (3.6)

where dsel is the selected dose for the next cohort and D is the data collected up
to the current point in the phase I trial. This choice is widely used in clinical trials
with BLRM and is also suggested in Neuenschwander et al. [59].

Critics argue that this criterion, which is constructed taking into account just the
overdose probability, may result in an excessively conservative escalation [70]. For
this reason, Zhang et al. [65] propose to integrate the EWOC with the following
UPM-based add-on rule:

Ui∗ j(under)> g(r j)Ui∗ j+1(over) (3.7)

where U j(under) is the probability of underdosing in dose di∗ j divided by the
length of the underdosing interval (0.16 in this case), U j(over) is the probability of
overdosing in dose di∗ j divided by the length of the overdosing interval (0.67) and r j

is the ratio di∗ j+1/di∗ j. In this second rule, the impact of the width of the interval
on the overdosing and underdosing probabilities is taken into account. With the
same observed data, the wider the interval, the higher the probability of falling into
it. Therefore, dividing the probabilities by the width of the corresponding intervals
helps in addressing this issue and yields to the the unit probability mass (UPM) used
in the mTPI design [71]. Moreover, the ratio of the two consecutive doses r j is also
taken into account, giving the possibility to better control the procedure from this
point of view.
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Practically, after each cohort, the rule (3.7) will be checked and, if met, will
imply escalation to dose di∗ j+1. Otherwise, the dose escalation procedure will be
conducted according to rule (3.6). According to Zhang et al. [65], this method
assigns more patients to the MTD and allows better accuracy in its identification.

3.4 Discussion

The primary contrast between the power prior and robust MAP approaches is that
the former employs static borrowing, with pre-defined exponents, while the latter
employs dynamic borrowing. As a consequence, the power prior is unable to
accommodate unforeseen disparities between historical and current data, and it is
necessary to maintain the same level of confidence in the historical data regardless
of the present outcome [22, 72]. The analysis of other extensions of the power
prior, such as the modified power prior, is possible. However, these methods are
known to require extensive computing [55, 57, 58], have the potential to excessively
attenuate the influence of historical data [22], and may require highly informative
distributions for the exponential parameters [72]. Therefore, in scenarios where
there is a conflict between prior and current data, the robust MAP approach is
expected to outperform the power prior approach. In contrast, the power prior is
anticipated to exhibit lower variance compared to the robust MAP approach [26].
This is because the robustification process substantially increases the overall variance
of the distribution and the quantity of information contained in the tails. As a
result, if there is agreement between the historical and current data, the power prior
might outperform the robust MAP approach. However, if there is high variability
between animal studies, the contrary is expected. This is because the power prior
is not designed to handle potential high variability between historical trials, as it is
not based on a hierarchical model and lacks appropriate safeguards against such a
situation [26].

When it comes to overdose control, the BLRM with EWOC is considered to
be a highly safe option, that is unlikely to select a toxic dose as the MTD [70].
Additionally, this approach is known to have a low risk of overdosing a significant
portion of patients due to its explicit assessment of overdosing control through the
use of EWOC [59, 70]. On the contrary, the UPM-based add-on rule, although less
intuitively interpretable than classical probabilities, considers both underdosing and
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overdosing. As a result, it is expected to achieve greater accuracy in identifying the
MTD compared to EWOC. It is likely to enroll more patients at the MTD, increase
the number of patients at higher doses, and have a higher DLT rate [65]. In the safest
scenarios, the add-on rule is anticipated to facilitate faster dose escalation [59] while
delivering comparable results to the EWOC criterion in a scenario where all doses
are toxic [65]. For this reason, the requirement to at most double the dose provides a
guiding constraint for more aggressive escalation without significantly increasing
the risk of harm to patients [65].

The novel methodology to define the parameters for the robust MAP and power
prior approach is expected to help the study designers to choose the parameters of the
models. Its main advantage relies on the possibility to use external data to define the
parameters for the model, which can have an easy interpretation for communication
with the clinical teams. It permits to compare the two models here presented on equal
terms, which means with the same given prior probability of concordance between
the animal data and the current data. The calculation of operating characteristics, as
presented in chapter 2, are still needed to assess the behaviour of the designs. Expert
knowledge elicitation [73] is another option to determine the parameters. In the case
of the power prior, other methods have been proposed in the literature to select the
prior exponents, but these methods require extensive numerical calculations or the
use of current data in defining a parameter that should be selected "a priori" [58].
Additionally, the creators of the power prior method also note that the use of a fixed
exponent is more easily interpretable [55]. Therefore, the methodology presented in
this study can be valuable in the presence of appropriate data from external sources,
such as the literature or internal studies that are distinct from the ones used in the
model.

One of the limitations of the current study is the reliance on allometric scaling
to convert animal doses to human doses. While allometric scaling is appropriate
for some drugs, it may not be appropriate for others [50]. However, the use of a
random allometric parameter helps to account for the uncertainty in such cases and
evaluate the suitability of the scaling method [62]. Moreover, it should be noted that
the methods presented in this work rely on the availability of multiple pre-clinical
trials conducted on different animal species. However, if only a single pre-clinical
trial is available, hierarchical models can still be employed by setting a conservative
prior distribution to the between-trial standard deviation [23], which will remain
unchanged in the posterior. On the other hand, the power prior models can still be
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applied without modification to the methodology. In addition, it is important to note
that phase I MTD trials with a small number of patients (20-40), particularly if the
dose-toxicity curve is relatively flat and the MTD is at a high dose, may identify a
dose as the MTD despite the possibility of high uncertainty in this conclusion [59].

As regards the study conducted by Olson et al., it is worth noting that no restric-
tions on the time frame for submitting qualifying data sets were imposed, and that
the inclusive years of data collection for the entire database are not disclosed, making
it unclear whether the unevenness of study designs over time may have affected the
database analysis results. Furthermore, the study did not consider the "false positive"
and "true negative" outcomes to assess the predictive value of prospective preclinical
toxicity biomarker signals in identifying human toxicities [69]. Finally, no attempt
to optimize the parameters for the compared methods has been made and, instead,
the parameters are fixed based on existing literature. It is possible that different
parameters for the borrowing mechanism could lead to better performance of some
methods over others.



Chapter 4

Adaptive screening of a
sub-population

Background

This chapter is published as:

Fulvio Di Stefano and Mauro Gasparini. Adaptive Covid-19 screening of a
sub-population. In Studies in Theoretical and Applied Statistics. Springer, 2023.
DOI: 10.1007/978-3-031-16609-9_8.

4.1 Introduction

In the context of the ongoing pandemic, certain working, studying, or social com-
munities require intensified screening to promptly detect outbreaks within their
members, as mentioned in [74]. Our specific case study focuses on Politecnico di
Torino (POLITO), a public university, where a screening process is planned to pre-
vent clusters among students attending in-person classes during the first semester of
the academic year 2021-2022, spanning from 27 September 2021 to 14 January 2022.
The objective of this study is to compare methods that dynamically and repeatedly
test whether a particular sub-population remains similar to the general population it
is a subset of with regards to a binary characteristic, like infection status (infected/not
infected), that changes over time.
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The literature extensively addresses outbreak detection, with various studies
conducted on this subject [75, 76]. Existing methods like Tukey’s fences [77] and
other static outlier detection techniques [78] aim to identify the presence of excessive
characteristics in random samples. Attribute control charts, as seen in [79], apply
similar concepts to time series data. This work goes beyond those models by intro-
ducing forecasting techniques, creating a comprehensive methodology that combines
characteristic forecasting with subpopulation anomaly detection. By integrating the
forecasting aspect, the methodology combines the strengths of control charts, which
effectively identify sudden and substantial deviations in the characteristic of interest
[76], with a forecasting technique that considers data variability. The developed
methodology is applied to the case study at POLITO, where it obtains adaptively
varying thresholds for COVID-19 screening. These thresholds consider the time
evolution of the pandemic across the entire country, resulting in alert thresholds that
are not fixed but can adjust to the predicted future progression of the pandemic.

4.2 Methods

4.2.1 Modeling time evolving proportions

Consider a general population of approximately constant size NP, where Pt represents
the proportion of individuals carrying a characteristic of interest for all time points
t ≥ 0. The value of Pt is uncertain and follows an unknown stochastic process, indi-
cating that the number of individuals with the characteristic varies over time. Within
this population, there exists a specific well-defined subpopulation of interest with a
size denoted by NS, where NS ≤ NP. The proportion of individuals carrying the char-
acteristic of interest in this subpopulation at each time point t ≥ 0 is represented by
pt . This value, pt , follows its own distinct stochastic process, reflecting the dynamic
nature of the proportion of interest within the subpopulation. If the subpopulation is
conformal to the general population it belongs to, meaning the subpopulation and
the general population are homogeneous at all possible scales of observations, then
the proportion pt of the characteristic of interest within the subpopulation should be
approximately equal to Pt within the general population. However, it is possible for
the characteristic of interest to evolve differently in the subpopulation compared to
the general population. At a specific time point t0, we have estimates of Pt for past



4.2 Methods 45

time steps t ≤ t0, denoted as P̂t for all t ≤ t0. These estimates are based on samples of
varying sizes. However, this work disregards the additional uncertainty arising from
these sample sizes for reasons that will be explained in detail later on. The objective
of this methodology is to predict Pt0+1 based on estimates of Pt for all t ≤ t0, and
subsequently conduct a statistical test to determine if the subpopulation proportion
pt0+1 is significantly higher than Pt0+1. The focus here is on one-sided upper tests
because we are specifically concerned with the possibility of an excessively high
proportion pt compared to Pt . This concern is exemplified by the POLITO case study,
where detecting evidence of an excessive proportion within the subpopulation would
lead to the implementation of stricter measures, such as confinement or distance
learning, to control the situation.

4.2.2 Forecasting using ARMA models

With the available observed time series P̂t for all t ≤ t0, one of the main objectives
is to predict the future value Pt0+1. There are two key reasons for this: firstly,
to establish a reference value that adapts with the progression of the underlying
characteristic of interest in the general population, and secondly, to incorporate all
the gathered information up to the current point into the next prediction.

Prominent methods for predicting future values of a time series when the under-
lying process is unknown are ARMA models (an excellent introductory resource
can be found in [80]), widely popular in the econometric literature. ARMA mod-
els have been extended in various ways and can be easily adapted to various time
series. While we do not claim that ARMA models are universally adequate for all
predictions, we propose employing them as a practical tool to update a population
reference value.

Each ARMA model is characterized by two order parameters denoted as (p,q).
These parameters need to be "identified" through an empirical model selection
process based on available data, and several unknown regression parameters must
be estimated from the data as well. We can apply a generic ARMA(p,q) model to
our variable of interest, Pt , after an initial logarithmic transformation. This choice
has been motivated by the inherent positivity of Pt , which is bounded above by
1 and has typically a small value much closer to 0. In addition, the logarithmic
transformation permits to take into account the inherent etheroschedasticity of the
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model, allowing a more accurate prediction. An alternative choice might have been
the logit transformation, which is, however, almost equivalent for values close to 0.
The model is constructed as follows:

log(Pt) = K +a1log(Pt−1)+ ...+aplog(Pt−p)+ εt +b1εt−1 + ...+bqεt−q

where K represents the underlying mean of the process, the εt are the error terms.
The model involves coefficients ai for i = 1, ..., p, which are associated with the
auto-regressive part, and coefficients b j for j = 1, ...,q, which are associated with
the moving average part. The error terms εt are assumed to be independent and
identically distributed, following a normal distribution with mean 0 and variance σ2.

The literature extensively covers the estimation of the model’s order and co-
efficients [80, 81], which is beyond the scope of this work. However, it is worth
mentioning briefly that the values of p and q can be selected to minimize the Bayesian
information criterion (BIC) [81, 82].

In our specific setup, the estimates P̂t for all t ≤ t0 can be utilized as proxies
for Pt to estimate the model’s parameters. After determining the order (p,q) of the
model and estimating the parameters âi and b̂ j for i = 1, ..., p and j = 1, ...,q, as
well as K̂ and σ̂2, and obtaining the realizations of the errors ε̂t for all t ≤ t0, we can
proceed with the forecasting. Taking into account all available information up to t0,
the prediction for the next time-step can be calculated as follows:

log(P̃t0+1) = K̂ + â1log(P̂t0)+ ...+ âplog(P̂t0−p)+ b̂1ε̂t0 + ...+ b̂qε̂t0−q

This quantity can be considered to be approximately normally distributed with a
variance of σ2, which is estimated as σ̂2 for practical purposes.

4.2.3 Detecting excessive presence of the characteristic of interest
in the subpopulation

After forecasting for the next time period in the entire population, we can make
inferences regarding the presence, particularly potential excessive presence, of the
characteristic of interest in the subpopulation. To accomplish this, we consider a
random sample of nS individuals out of the total NS individuals in the subpopulation.
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Let Xt represent the number of individuals who carry the characteristic of interest
among the tested individuals (nS) at time t. The distribution of Xt can be modeled
using a hypergeometric distribution with a discrete density given by:

Probpt (Xt = x) =

(NS pt
x

)(NS(1−pt)
nS−x

)(NS
nS

)
which, given NS >> nS, can be approximated by a Binomial distribution:

Probpt (Xt = x) =
(

nS

x

)
px

t (1− pt)
nS−x

where pt is an unknown parameter that changes over time. We aim to formally
test the following system of hypotheses at a significance level of 1−α:

H0 : pt0+1 = Pt0+1

HA : pt0+1 > Pt0+1

Based on the methods discussed in the previous section, at time t0, we have a
forecast P̃t0+1 for the next period along with an estimate σ̂ of its uncertainty. With
this information, we have various options for further steps to take.

Method 1: direct thresholding. Utilize the normal approximation obtained from
the ARMA model to derive an explicit threshold. τ1,t0+1 and use the decision
rule

“Reject H0 if Xt0+1 > τ1,t0+1 := nS exp(log(P̃t0+1)+ z1−α σ̂)”,

where z1−α is the 1−α quantile of the normal distribution.

Method 2: binomial testing. A more conventional approach, which does not ac-
count for the uncertainty surrounding Pt0+1, would involve conducting a stan-
dard binomial test at a significance level approximately equal to α (accounting
for the discreteness of the binomial distribution). The decision rule would be
as follows:

“Reject H0 if Xt0+1 > τ2,t0+1”,
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where τ2,t0+1 is the (1−α)-quantile of the binomial distribution with parame-
ters nS and P̃t0+1.

Method 3: normal testing. When the sample size nS is sufficiently large, the bino-
mial distribution can be approximated by a normal distribution, allowing for a
precise α significance level. As a result, a threshold similar, but not equal, to
the previous one can be established following the decision rule:

“Reject H0 if Xt0+1 > τ3,t0+1 = nSP̃t0+1+z1−α

√
nSP̃t0+1(1− P̃t0+1)”.

The underlying concept of these techniques is to leverage the primary benefit of
control charts, which excel in identifying significant and abrupt deviations from the
average [76], while simultaneously incorporating a forecasting technique capable of
considering the temporal evolution of the characteristic of interest.

4.2.4 A naive fixed threshold

The three previously discussed methods contrast with a naive approach, where
an alert is triggered if, at a given significance level α , the null hypothesis H0 :
pt = pN is rejected at time t ≥ 0 using binomial testing. In this approach, pN

represents a predetermined acceptable level of the characteristic’s prevalence within
the subpopulation. This procedure is formally equivalent to a binary attribute control
chart [79] and does not consider the temporal evolution of the characteristic of
interest over time.

Method 4: naive fixed threshold binomial testing. Binomial testing using a fixed
threshold.

“Reject H0 if Xt0+1 > τN”,

where τN , is the (1−α)-quantile of the binomial distribution parameters nS

and pN .
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4.3 A case study: COVID-19 testing at Politecnico di
Torino.

4.3.1 Current testing.

During the first semester of the academic year 2021-2022 at POLITO, an estimated
21,870 students were planning to attend in-person classes. To develop an outbreak
prediction system, the university implemented a cluster detection mechanism in
conjunction with regular screening and preventive measures mandated by the national
system. Hereafter, we propose not to test the POLITO students sub-population
stand-alone, but to compare it with to the whole Italian population in order to
better detect possible clusters. The screening process involves conducting 250
oropharyngeal swabs every Monday, Wednesday, and Friday, totaling 750 swabs
each week. Although the upcoming discussion will focus on the test using 250
swabs, in practice, the same test is repeated three times per week. The screening
is carried out on a random sample of students who have scheduled to attend their
lessons on the respective day. While students have the option to decline testing,
the number of refusals has been minimal up to December 3, 2021. It is noteworthy
that symptomatic students who test positive tend to avoid coming to campus, opting
instead to attend online lessons. Therefore, a reliable screening procedure is crucial
to identifying potential hidden clusters, such as those resulting from asymptomatic
cases, within the university environment.

Following the methods described in Section 4.2, the probability of a positive test
on a particular day t ≥ 0 is denoted as pt . Thus, in accordance with Method 4, an
alert will be triggered if, at some significance level α for the type I error, the null
hypothesis H0 : pt = pN is rejected at time t ≥ 0. By utilizing α = 0.20,nS = 250,
and pN = 0.015, an approximate estimation of the average pandemic situation in
the country in September 2021, we obtain τN = 5 as the threshold (the reason for
choosing such a large level of type I error will be explained below). This particular
procedure is currently implemented in POLITO, with assistance from the authors
who have contributed to its establishment. Up until December 3, 2021, the screening
process has resulted in very few positive tests, which remain well below the threshold.
This is mainly due to the stringent rules enforced for accessing the POLITO site.
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The current procedure neglects the evolving nature of the pandemic over time.
In Italy, the pandemic’s progression is closely monitored by the Istituto Superiore
di Sanità and Protezione Civile, which provide daily data on its evolution [83].
These data offer insights into how the pandemic is unfolding in the country. It
is expected that if the pandemic worsens on a national scale, it will likely also
worsen at POLITO, given that the assumption of homogeneity holds true. The use
of national data instead of regional (Piemonte) data serves two purposes. Firstly,
despite the current regulations categorizing Italian regions into different risk areas
based on regional spread, restrictions on movements (such as traveling between
regions) and many social constraints do not apply to individuals possessing the
"green pass certification", which is mandatory to access physical university facilities.
Secondly, just over a third of POLITO students residing in Italy originate from the
Piemonte region. A significant number of students come from the south of Italy, and
a considerable portion also hails from the center and north-east regions. Given the
diverse regional composition of students planning to attend in-person classes and the
freedom granted to green pass holders, exempting them from regional constraints,
national data are considered more representative of the considered subpopulation.

In Figure 4.1, the weekly percentage of positive tests in Italy since the beginning
of the pandemic is displayed on left, with a focus on the last weeks on the right.
However, it is essential to acknowledge that these data do not accurately represent
the proportion of infected individuals at time t due to the way they are collected in
Italy.

The use of both molecular tests, which are more accurate, and antigenic tests
in the data collection process creates certain complexities. Molecular tests are
predominantly conducted to confirm cases reported via antigenic tests, which may
result in multiple reports for the same case, thereby inflating the estimate of positive
cases. On the other hand, the data from antigenic tests can lead to an underestimation
of positive cases since they are often administered by unvaccinated individuals to
meet work-related requirements in compliance with current regulations. Furthermore,
the number of weekly antigenic tests is approximately twice that of molecular tests
during this phase of the pandemic, but this ratio varies over time.

As a result, the percentage of positive tests likely overestimates the true propor-
tion of infected individuals at time t. Quantifying the magnitude of this overestima-
tion is challenging. However, we believe it is preferable to work with the original
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data and employ a large type I error. This choice follows the principle that prevention
is better than cure, and a false alarm does not result in severe consequences. If the
authors detect an alarming situation based on the screening process data, appropriate
actions will be taken. In response to an alarm, a series of containment measures
will be implemented, beginning with retesting positive cases using more precise
molecular tests. Subsequent measures may include quarantining individuals and
potentially transitioning to online teaching for entire classes. Accordingly, we will
adopt a significant level of α = 0.20 and consider the estimates P̂t for all t ≥ 0, as
displayed in Figure 4.1. These estimates are obtained by dividing the total number
of new cases reported in a specific week by the total number of tests conducted
(including both antigen and molecular tests) during that week. Utilizing percentages
rather than raw counts is justified because percentages are known to mitigate the
impact of inconsistent case reporting, a well-known aspect in outbreak detection
[75].

Utilizing the dataset from the Istituto Superiore di Sanità and Protezione Civile
and the previously described methodology, we can generate a forecast for the per-
centage of positive tests in Italy for the upcoming week. The ARMA(p,q) model
will offer an appropriate prediction if the pandemic is either worsening or improving
nationwide. This prediction can then be utilized to enhance the accuracy of the alarm
system compared to a fixed threshold. By using weekly time series data, we obtain
a quantity that can be directly compared to the percentage of positive tests among
students at POLITO. The data are aggregated on a weekly basis for two reasons.
Firstly, the number of tests conducted during the week is not constant but depends
on the day of the week. Secondly, the tests at Politecnico are not scheduled daily,
unlike those conducted across the entire country.

Lastly, considering the highly non-stationary nature of the pandemic’s evolution,
influenced by various factors like restrictive measures, vaccination efforts, seasonal-
ity, and variations in screening intensity (e.g., different search rates for asymptomatic
individuals), it is advisable to focus on the most recent portion of the time series. In
this study, we utilize only the last 16 weeks of observations and dynamically discard
previous data when analyzing different t0 times.

Various more accurate methods for predicting the number of SARS-CoV-2
positives in a general population exist in the literature. These methods include
the SIS model [84], the SIPRO model [85], the SIDARTHE model [86], and its



52 Adaptive screening of a sub-population

extensions [87], the Covasim model [88], as well as several others (e.g., [89–91]).
However, the challenges arise due to the fluctuating number of weekly tests in
Italy and the continuous implementation of social and economic measures by the
government to curb the pandemic. These factors make obtaining a precise estimation
of Pt very challenging. In this context, it is important to note that the proposal in
this work is not to present ARMA models as an elaborate and realistic model for
epidemic prevalence. Instead, the suggestion is to use ARMA models as a practical
and adaptive tool that performs acceptably well for making one-time step-ahead
predictions, and not for predicting further into the future.

Fig. 4.1 Left: percentage of weekly positive SARS-CoV-2 tests in Italy since the beginning
of the pandemic (Week 0 is 24-02-2020) up to the end of November 2021 (Week 91 is
28-11-2021). Right: focus on the weeks 75 to 91.

4.3.2 A proposal for adaptive testing

Applying the methodology described in Section 4.2, we use R version 4.1.2 and the
forecast package [92] to analyze the dataset. The estimation process commences at
week 74 after the beginning of the pandemic, which corresponds to July 25, 2021.
At this date, the weekly percentage of positive tests in Italy is P̂74 = 0.025, and the
trend shows a slight increase. Using R, we can fit an ARMA(p,q) model to the
dataset using the preceding 16 weeks’ data.
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Based on the BIC minimization, the best fitting model is ARMA(4,0). The
estimated parameters are as follows: â1 = 2.723, â2 = −3.334, â3 = 2.235, â4 =

−0.705, K̂ = −3.876, and σ̂2 = 0.009. Using this model, we can forecast P̃75 =

0.026. As anticipated, this value is higher than P̂74, indicating a slight worsening
of the pandemic during this period. Additionally, we calculate the three thresholds
discussed in subsection 4.2.3: τ1,75 = 8, τ2,75 = 9, and τ3,75 = 9, with τ1,75 and τ3,75

rounded up to the next integer. Consequently, if the number of positive cases on
Monday, Wednesday, or Friday of week 75 among the 250 swabs at Politecnico is
greater than or equal to the specified threshold, an alert is triggered. This is because
we reject the null hypothesis that the proportion of positive cases in the university
p75 is equal to the proportion of positive cases in the whole country P75, indicating
evidence of an ongoing outbreak at POLITO.

After obtaining the national data for week 75, we can proceed with estimating
the threshold for the following week and repeat this process over time. Figure 4.2
displays the three distinct thresholds calculated from week 75 to week 92 since the
beginning of the pandemic, using all available data from the previous 16 weeks.
Comparing this figure with Figure 4.1, it is evident that the model effectively incorpo-
rates the progress of the pandemic. The decrease in the weekly percentage of positive
cases after week 77 is captured by the variable thresholds, as is the rising trend after
week 86. Among the three different thresholds, τ1 is the most conservative, resulting
in the lowest number of positive cases needed to trigger an alarm. On the other hand,
τ2 and τ3 yield very similar results, with τ2 being slightly more conservative of the
two. This similarity arises because the rationale behind the two thresholds is the
same, but τ3 is derived from a normal approximation of the binomial distribution,
akin to the widely used asymptotic test for proportions, while τ2 represents the
exact quantile of a binomial distribution. In any case, all three methods outperform
the fixed threshold τN , which fails to capture any fluctuations in the progress of
the pandemic. Consequently, τN may result in either a lower or higher threshold
compared to the other methods during different phases of the pandemic, leading to
potential inefficiencies in detecting outbreaks.
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Fig. 4.2 The variable and fixed thresholds for the SARS-CoV-2 swabs at Politecnico di
Torino.

Fig. 4.3 Type I error for the different thresholds. The solid line is 0.2.
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Fig. 4.4 Power for the different thresholds. The solid line is 0.8.

4.3.3 Operating characteristics of adaptive testing

With the available data on the pandemic’s progress P̂t , we can calculate various
operating characteristics for the different thresholds to assess their properties. As
an example, let’s start with the previously determined values τ1,75 = 8, τ2,75 = 9,
τ3,75 = 9, and τN,75 = 5, along with the actual percentage of positive tests in Italy for
week 75, P̂75 = 0.028. Using this information, we can determine the power and type
I error of the thresholds for this week. The type I error represents the probability
of surpassing the specified threshold when the true value of p75 is actually equal
to P̂75, leading to a false alarm. On the other hand, the power is the probability of
exceeding the given threshold when the true value of p75 is three times P̂75, resulting
in a correct alarm. We assume that the positive tests at POLITO follow a binomial
distribution with parameters nS and p75. The type I error can then be defined as
follows:

αi,75 = 1−
τi,75

∑
x=1

(
nS

x

)
(P̂75)

x(1− P̂75)
nS−x
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for i = 1,2,3,N; while the power can be defined as:

(1−βi,75) = 1−
τi,75

∑
x=1

(
nS

x

)
(3 · P̂75)

x(1−3 · P̂75)
nS−x

for i = 1,2,3,N. The numeric example above leads to α1,75 = 0.271, α2,75 = 0.168,
α3,75 = 0.168, αN,75 = 0.705, (1−β1,75) = 0.999, (1−β2,75) = 0.998, (1−β3,75) =

0.998, (1−βN,75) = 1.

In Figure 4.3 and Figure 4.4, we present the type I error and power for the
different thresholds. These values are calculated using the available weekly data of
P̂t from week 75 to 91, as mentioned earlier. Here are some key observations from
the analysis:

• The fixed threshold exhibits an extremely high type I error and a very high
power when the pandemic is worsening. However, its type I error is controlled
below 0.20, and its power decreases to 0.429 during regressive phases of the
pandemic. This indicates that in expansive phases, there is a high risk of false
alarms due to the more plausible high number of positives. On the other hand,
during regressive phases, it is more realistic to not detect possible clusters
within the university due to the high threshold.

• The τ1 threshold maintains a type I error between 0.07 and 0.30, with a peak
of 0.431 at week 87 (when the weekly percentage of positive tests changes its
convexity and starts increasing again). However, its power remains above 0.8
throughout all weeks.

• Both τ2 and τ3 exhibit similar results. Their type I error is controlled below
0.20 for the most part, except around week 87, with τ2 peaking at 0.256 at
week 86 and at 0.221 at week 87, and τ3 peaking at 0.221 at week 87. The
power of τ2 remains above 0.8 at all times, while the power of τ3 is also above
0.8, except for weeks 86 and 88 where it decreases to about 0.640.

Overall, the variable thresholds τ1, τ2, and τ3 demonstrate better performance
compared to the fixed threshold, especially in capturing fluctuations in the progress
of the pandemic and reducing the risk of false alarms.

A concise overview of the operating characteristics is presented in Table 4.1,
revealing that the variable thresholds outperform the fixed threshold. The proposed
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methodology yields a reduced number of false alarms and better detection of potential
outbreaks.

Table 4.1 Summary of the operating characteristics of the different thresholds.

Threshold Fixed Type I error Power

τ1 No (0.07,0.44) (0.80,1)
τ2 No (0.07,0.26) (0.80,1)
τ3 No (0.02,0.23) (0.64,1)
τN Yes (0.01,0.80) (0.42,1)

4.4 Discussion

This study introduces a methodology aimed at assessing the similarity between
a subpopulation and a general population concerning the distribution of a binary
variable. The motivation for this approach stemmed from a case study on SARS-
CoV-2 tests conducted at POLITO. The objective was to detect outbreaks within the
university through a screening process involving oropharyngeal swabs on three days
each week.

By utilizing a very general ARMA(p,q) model, three time-varying thresholds
have been derived to test the equality of the proportion of individuals with a specific
characteristic in both the subpopulation and the general population. Through the
case study, it has been demonstrated that these variable thresholds effectively track
the evolution of the underlying process, outperforming a fixed threshold in terms of
operating characteristics. The three thresholds presented exhibit distinct properties:
while threshold τ1 demonstrates excellent power, it lacks control over type I error at
the chosen significance level of α = 0.20; on the other hand, thresholds τ2 and τ3

maintain controlled type I error around the α = 0.20 level but possess slightly less
power compared to τ1.

This work acknowledges some limitations and potential areas for future improve-
ment. One aspect pertains to the possibility of employing a more precise model
for predicting the COVID-19 pandemic in Italy, which could yield more accurate
thresholds for the case study. Nevertheless, the primary objective of this study is to
maintain a broad and adaptable approach that can be applicable to diverse scenarios.



Chapter 5

A comparison of estimation methods
in adaptive enrichment designs with
time-to-event endpoints

Background

This chapter is published as:

Fulvio Di Stefano, Matthieu Pannaux, Anne Correges, Stephanie Galtier, Veronique
Robert, Gaelle Saint-Hilary. A comparison of estimation methods adjusting for se-
lection bias in adaptive enrichment designs with time-to-event endpoints. Statistics
in Medicine, 2022. DOI: 10.1002/sim.9327.

5.1 Introduction

Over the past years, there has been significant progress in the development of adaptive
designs (ADs) for clinical trials for improving drug development processes. These
designs allow for pre-planned modifications to be made during the trial’s interim
analyses, which include actions such as adjusting the sample size, halting the entire
trial or specific dosages in case of insufficient efficacy, discontinuing the entire trial
in case of success, redistributing patients among different treatment groups, and
selecting a population more likely to benefit from the treatment [5]. Enrichment
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AD trials offer the possibility to select at interim analyses specific sub-populations
that are expected to benefit the most from a treatment, thus optimizing resources by
focusing on the most promising patient groups. In such trials, patients are categorized
into sub-groups based on certain biomarkers or covariate values (e.g., tumor size,
baseline heart rate). The treatment’s efficacy and safety are evaluated both within
each group and overall at interim analyses. If, based on pre-defined criteria, certain
sub-groups show more significant benefits from the experimental drug compared
to others, the trial’s recruitment is then restricted to these particular patients for the
remainder of the study.

While employing ADs appears highly promising, this increased flexibility does
come with certain drawbacks. It is widely acknowledged that the selection rule used
in ADs can lead to a biased estimation of the treatment effect [5, 93, 94]. Figure
5.1, obtained similarly to Pallmann et al [5], shows that when the lowest treatment
effects are omitted while retaining the highest ones, the treatment effect tends to be
overestimated. This occurs because an estimator that neglects the selection process
yields positively biased results. Similarly, the estimation derived from the excluded
data is biased as well, but in a negative direction. Indeed, in two-stage ADs, the stage
1 naive estimators (obtained using data before the interim analysis) are subject to
bias due to the applied selection rule. On the other hand, the stage 2 naive estimators
(derived from data after the interim analysis) provide unbiased estimations of the true
treatment effect for the selected treatments [94, 95], as no selection rule is applied to
them.

In their 2019 Guidance for Industry on Adaptive Designs for Clinical Trials of
Drugs and Biologics [6], the FDA acknowledges the ethical advantages of using AD
trials but emphasizes the importance of adhering to key principles for regulatory
approval. Specifically, the sponsor must assess the potential bias in the estimates and,
if available, pre-specify methods to adjust the estimates and minimize or eliminate
this bias. This precautionary step is crucial to prevent an overly optimistic estimation
of the treatment effect and to control the inflation of type I errors resulting from
incorporating data used for selection in the final analysis. The regulatory requirement
served as the driving force behind the research presented in this chapter.

In the subsequent sections, our emphasis lies on two-stage adaptive designs that
involve sub-population selection, also known as enrichment designs, and time-to-
event data. This particular design allows for the selection of the sub-population that
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Fig. 5.1 Illustration of bias caused by early stopping for futility. Derived similarly to Pallmann
et al [5]. In red there are two of 20 simulated two-arm trials with zero treatment effect that
are excluded because of the threshold (blue cross), resulting in optimistic estimation of the
effect.

gains the most benefit from the treatment during a single interim analysis conducted
within the trial. Drawing from the research conducted by Kimani et al. [96] on
adaptive threshold enrichment clinical trials with normally distributed endpoints, we
explore various approaches extended to accommodate time-to-event data:

• Uniformly minimum variance conditional unbiased estimator (UMVCUE),
developed to estimate the true treatment effect with no bias. A first unbiased
estimator was developed for treatment selection and presented by Cohen and
Sackrowitz in 1989 [97]. This work was continued by Bowden and Glimm
[98]. Kimani et al [99] present a version adapted for sub-population selection
with time-to-event data.

• Shrinkage estimators aim to mitigate bias without completely eliminating
it. These estimators work by shrinking the stage 1 estimates towards the
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stage 1 overall mean, thereby reducing the bias. In this study, we assess two
approaches proposed by Carreras and Brannath [95] and Brückner et al [100].

• Bias-Adjusted Estimators are mainly developed by Whitehead [101] and Stal-
lard and Todd [102]. The core concept behind these procedures is to iteratively
calculate an estimation of the bias and subsequently subtract it from the origi-
nal naive estimator.

Brückner et al [100] conducted a comparison on some of these estimators within
the framework of multi-arm two-stage trials, involving treatment selection and time-
to-event endpoints. Kunzmann et al [103] conducted a comparison of six other
estimators within the context of adaptive enrichment designs, focusing on normally
distributed endpoints. The study recommended a hybrid estimator, which combines
the UMVCUE with a conditional moment estimator, as a general rule. In the
context of enrichment adaptive design (AD) clinical trials with normally distributed
endpoints, Kimani et al. [96] compared these estimators and suggested the unbiased
estimator as a general rule. In a follow-up study [99], they derived expressions for an
unbiased estimator in a two-stage adaptive design with time-to-event data and focused
on the construction of confidence intervals. The objective of this study is to expand
upon previous research and conduct a comprehensive comparison of six treatment
effect estimators within the context of two-stage enrichment adaptive designs with
time-to-event data. The paper aims to offer recommendations on the most suitable
estimators that, in the authors’ opinion, adhere well to regulatory requirements and
effectively support internal decision-making. It is essential to highlight that the
primary focus of this paper is on accurately estimating the treatment effect in the
selected sub-populations. Consequently, the estimators provided are conditional
on the selection made. While unconditional estimators may be relevant in other
scenarios, it is crucial to recognize that reducing the unconditional bias does not
guarantee a reduction in bias conditioned on a specific selection [104], which is the
primary concern of this study.

The following of this chapter is organized as follows. The methodology to
retrieve the different treatment effect estimators is presented in Section 5.2. In
Section 5.3 the methods are applied to a case-study in cardiology. In Section 5.4
it is presented a comprehensive simulation study on the performances of the six
estimators with regard to their bias, variance and mean squared error (MSE). A
discussion concludes in Section 5.5.
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5.2 Methods

We explore the context of adaptive clinical trials involving two treatment arms - an
experimental drug and a control group - where sub-population selection occurs at
a single interim analysis, and the data collected are of time-to-event nature. The
approach involves dividing the patient population into different sub-populations,
denoted by indices i = 1, ...,K, based on specific biomarker values, and analyzing
these sub-populations separately. We establish sub-populations such that patients
within each sub-population possess a biomarker value falling between predefined
upper and lower thresholds, ensuring that the sub-populations are mutually exclusive.
The data collected before the interim analysis is referred to as stage 1 data, while the
data gathered after the interim analysis is referred to as stage 2 data. d ji denotes the
number of events in sub-population i = 1, ...,K at stage j = 1,2. In our setting, d2i

does not contain the events in d1i.

In the context of time-to-event data, we focus on examining the log hazard
ratio (HR) between the two treatment arms within each sub-population, defined as
δi = log

(
hti(t)
hci(t)

)
for i = 1, ...,K, where hti(t) and hci(t) are, respectively, the hazard

functions of the treatment and the control in sub-population i. We employ a Cox
proportional hazard model to calculate the estimates. In this context, a negative
value of the log HR indicates a reduction in the risk of the event with the treatment,
implying the treatment’s efficacy compared to the control. Furthermore, if the log
HR in one sub-population is lower than in another, it suggests that the treatment
is more effective in that specific sub-population. The log HR is assumed to follow
a normal distribution, and the stage 1 and stage 2 estimators are δ̂1i ∼ N(δi, τ2

1i)

and δ̂2i ∼ N(δi, τ2
2i) for i = 1, ...,K, respectively. The variances τ̂2

1i and τ̂2
2i are also

estimated from the Cox model.

We establish a selection rule at the interim analysis defined as follows: given
a threshold value b for the log hazard ratio (HR) between treatment arms, each
sub-population i ∈ (1, ...,K) will not proceed to stage 2 if its stage 1 estimate is
not lower than b (δ̂1i ≥ b). In case the stage 1 estimates for all sub-populations are
greater than or equal to b, the trial is stopped for futility. We denote the set of indices
corresponding to the selected sub-populations continuing to stage 2 as S .

In this context, one notable aspect of adaptive clinical trials with time-to-event
data is that some stage 1 patients might not have experienced the event of interest by
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the time of the interim analysis. If we include these patients in the stage 2 analysis,
the test statistics from stage 1 and stage 2 will be correlated, leading to potential bias
in the estimation. Indeed, the calculation of the forthcoming estimators relies on
the assumption of an independent increment structure, where the test statistics from
stage 1 and stage 2 are independent. However, if the same patients continue from
stage 1 to stage 2, the independent increment structure holds only approximately,
even when the timing of the interim and final analysis is independent of each other
[99, 105]. To avoid the correlation, it would be necessary for patients from stage 1
to exit the study at the interim analysis. However, such a practice is clearly unethical
and impractical, as patients cannot be asked to stop the study before completing a
minimum treatment period. Instead, we employ an intermediate rule to address this
issue, following Kimani et al [99] and Jenkins et al [105]. Let T1 represent the time
of the interim analysis, and T2 denote the time of the final analysis, which are defined
as the point when a specific number of patients have experienced the event of interest.
We introduce T̃1 (with T1 ≤ T̃1 ≤ T2) as the time until which the stage 1 patients are
followed up. By implementing this approach, we enhance the independent increment
structure, leading to more precise estimations. Additionally, this method is realistic
as in many therapeutic areas, it is possible to pre-specify a maximum follow-up time
for all patients in the study protocol. It is worth to note that since T2 is predetermined
in terms of events, the number of events in stage 2 for each selected sub-population
d2i (where i ∈ S ) depends on both the hazard ratios and the number of selected
partitions. However, the sum of events across all selected sub-populations, ∑i∈S d2i,
remains constant.

Following the approach outlined in Kimani et al. [99] and Bruckner et al. [100],
the following methodology is employed to obtain the estimators. Initially, using data
solely from stage 1, and utilizing survival times up to the time of the interim analysis
(T1), the estimators δ̂1i and τ̂2

1i are directly estimated through the score process of
a Cox proportional hazard model. At the conclusion of the trial, considering all
available evidence (i.e., using survival times up to the time of the final analysis
T2), the naive estimators δ̂i,N and τ̂2

i,N for the selected sub-populations are also
directly estimated using a Cox proportional hazard model. Subsequently, the stage

2 estimators for the selected sub-populations are calculated as τ̂2
2i =

(
1

τ̂2
i,N

− 1
τ̂2

1i

)−1

and δ̂2i = τ̂2
2i

(
δ̂i,N

τ̂2
i,N

− δ̂1i
τ̂2

1i

)
∀i ∈ S .
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5.2.1 Naive estimator

The naive estimator is calculated as:

δ̂i,N =
τ̂2

2i δ̂1i + τ̂2
1i δ̂2i

τ̂2
1i + τ̂2

2i
∀i ∈ S

and δ̂i,N = δ̂1i ∀i /∈ S .

This estimation is biased by the selection process [5, 93, 94], and our primary
focus is to handle this bias. However, this estimator assumes the independent
increment structure and pools all available data at the end of the study. Therefore,
there is also a bias component stemming from the inclusion of stage 1 patients in
stage 2, leading to a correlation between the stages. While this correlation bias is
mostly mitigated by independently selecting T1 and T2 and fixing T̃1 beforehand, it is
not further adjusted in the subsequent calculations. As a result, this estimator is not
entirely naive, as the correlation between stages has been reduced.

5.2.2 UMVCUE

Building upon the approach introduced by Kimani et al. [99], we compute the
uniformly minimum variance conditional unbiased estimator (UMVCUE), designed
to handle the selection bias. However, due to the correlation bias between stages
1 and 2, this estimator may not achieve perfect unbiasedness. For the selected
sub-populations, it is:

δ̂i,U = δ̂i,N −
τ̂2

2i√
τ̂2

1i + τ̂2
2i

φ(g(b))
Φ(g(b))

, ∀i ∈ S

where φ and Φ denote the density and cumulative distribution functions of a

standard normal distribution, respectively, and g(x) =
√

τ̂2
1i+τ̂2

2i
τ̂2

1i

(
δ̂i,N − x

)
. This

estimation, applied to the selected treatments and not available to the dropped ones,
effectively eliminates the bias caused by the selection process. However, the bias
eradication comes at the expense of an increased variance in these estimates.
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5.2.3 Shrinkage estimators

The goal of these estimators is to reduce bias compared to a naive estimator, without
increasing the variance. While stage 2 estimates offer an unbiased estimation of
the treatment effects, stage 1 estimations are biased due to the selection process
[94, 95]. The concept underlying these estimators involves shrinking the stage 1
estimates towards the overall average log HR of stage 1 to mitigate bias. We explore
two shrinkage estimators. The first one, labeled as S1, was introduced by Carreras
and Brannath [95]. We define δ̂1· =

1
K ∑

K
i=1 δ̂1i as the overall stage 1 average log HR

and ti =
d1i

d1i+d2i
as the information fraction at the time of the interim analysis. The

shrinkage estimator S1 is calculated for the selected sub-populations as:

δ̂i,S1 = ti
[
Ĉ+

i δ̂1i +(1−Ĉ+
i )δ̂1·

]
+(1− ti)δ̂2i ∀i ∈ S

while they are δ̂i,S1 = [Ĉ+
i δ̂1i +(1−Ĉ+

i )δ̂1·] ∀i /∈ S , with Ĉ+
i defined as follows.

If K ≥ 4:

Ĉ+
i = max(0,Ĉi), Ĉi = 1−

(K −3)τ̂2
1i

∑
K
j=1

(
δ̂1 j − δ̂1·

)2 ,

while if K = 2,3:

Ĉ+
i = max(0,Ĉi), Ĉi = 1−

(K −1)τ̂2
1i

∑
K
j=1

(
δ̂1 j − δ̂1·

)2 .

The second shrinkage estimator S2 was proposed by Brückner et al [100] and
comes from a Bayesian framework. Suppose to have a prior distribution of the vector
of true log HRs δ = (δ1, ...,δK), which is a multivariate normal MV N(µ, ν2IK) (IK

is the KxK identity matrix). This is updated with the data δ̂
Stage1 ∼ MV N(δ , Σ) to

get a posterior estimation for δ . The posterior log HR of δ is Cδ̂
Stage1

+(IK −C)µ ,
where C = IK −Σ(ν2IK +Σ)−1. Because sub-populations are disjoint, Σ is a diagonal
matrix containing the τ2

1i on the diagonal. This matrix is unknown and we use an
estimation Σ̂ containing τ̂2

1i on the diagonal. We define the prior log HR µ as a vector
of length K with the overall average stage 1 log HR δ̂1·. An estimate ν̂2 of ν2 is
obtained iteratively :

• Step 1: Define an initial guess of ν̂2.



66
A comparison of estimation methods in adaptive enrichment designs with

time-to-event endpoints

• Step 2: Define weights wi = (ν̂2 + Σ̂
2
ii)

−1 for i = 1, ...,K.

• Step 3: Update the estimate calculating

ν̂
2 =

∑
K
i=1 wi

[
(δ̂1i − δ̂1·)

2 − Σ̂
2
ii

]
∑

K
i=1 wi

.

• Step 4: If ν̂2 < 0, set ν̂2 = 0.

• Step 5: Go back to step 2 using the updated ν̂2, until convergence.

An estimate ν̂2 is available when the approach converges and is used to calculate
Ĉ = IK − Σ̂(ν̂2I+ Σ̂)−1. The stage 1 estimator is:

δ̂
Stage1
S2 = Ĉδ̂

Stage1
+(IK −Ĉ)1δ̂1·

where 1 is the vector with all entries equal to 1. The shrinkage estimator is calculated
as:

δ̂i,S2 = ti δ̂
Stage1
i,S2 +(1− ti)δ̂2i ∀i ∈ S ,

and
δ̂i,S2 = δ̂

Stage1
i,S2 ∀i /∈ S .

5.2.4 Bias-Adjusted Estimators

Finally, we explore bias-adjusted estimators based on the work of Whitehead [101]
and Stallard and Todd [102]. The primary concept behind these estimators is to
estimate the bias of the naive estimator and then subtract this bias from the naive
estimator. In this study, we compare two approaches: the single-iteration estimator
(SI) and the multi-iteration estimator (MI). The single-iteration estimator is computed
as follows:

δ̂i,SI = δ̂i,N − b̂i(δ̂ i,N)

where b̂i(δ̂ i,N) is an estimator of the bias for the naive estimator, where true log
hazard ratios are replaced with the naive estimators themselves. In the multiple-
iteration procedure, iterative values are used to replace the true log hazard ratios
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in the expression for bias. The iterative process begins with step 1, where naive
estimates are used, making the single-iteration bias-adjusted estimator a special
case of the multiple-iteration bias-adjusted estimator. In step 2, the single-iteration
bias-adjusted estimator replaces the true log hazard ratios in the bias estimation.
Subsequently, we calculate a new estimator by subtracting the newly estimated
bias from the naive estimator and repeat the process until convergence is achieved.
Given that the single-iteration approach is a special case of the multi-iteration, in
the following, we demonstrate the calculation of the bias at a generic iteration with
estimator δ̃ :

b̂i(δ̃ i) = ti(E[δ̂1i|S, δ̃i]− δ̂i,N) ∀i ∈ S ,

and
b̂i(δ̃ i) = (E[δ̂1i|S, δ̃i]− δ̂i,N) ∀i /∈ S .

The E[δ̂1i|S, δ̃i] i ∈ (1, ...,K) is calculated as follows:

E[δ̂1i|S, δ̃i] =

b∫
−∞

x φ

(
x− δ̃i

τ̂1i

)
dx ∀i ∈ S ,

and

E[δ̂1i|S, δ̃i] =

∞∫
b

x φ

(
x− δ̃i

τ̂1i

)
dx ∀i /∈ S .

where φ is the probability density function of a normal distribution. This formula
is derived with the consideration that a sub-population is selected if the treatment
exhibits a log HR lower than b, whereas it is dropped if not.

5.3 Case-study

The analyses presented in this chapter were inspired by a real case-study in heart
failure. The original study employed a group sequential design without population
selection. However, after the analysis, certain subgroups with varying efficacy levels
were identified, leading to the realization that the design could have been more
effectively conducted as an adaptive enrichment design. Due to confidentiality
reasons, the data used in this section are simulated data. The comparison is made
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between an experimental treatment and a placebo, with the initial patient population
being divided into K = 3 sub-populations based on their baseline heart rate: low
heart rate (below 75 bpm); medium heart rate (between 75 and 81 bpm); and high
heart rate (above 81 bpm). The primary endpoint of the study is the time from
randomization to either cardiovascular death or hospital admission for worsening of
heart failure. The main analysis involves a Cox proportional hazard model that is
adjusted for previous beta-blocker intake at randomization, and the treatment effect
is estimated using the hazard ratio between the two treatment arms. The interim
analysis is performed once 630 events have occurred, and the stage 1 patients are
followed up for a maximum of 18 months after the analysis. The final analysis is
conducted when a total of 1260 events have occurred, allowing for the detection of a
hazard ratio of 0.85 with a power of 82% and a one-sided type 1 error of 2.5%. The
futility threshold on the log-hazard ratio scale is set to b =−0.1, which corresponds
to a hazard ratio of 0.9.

In Table 5.1, we present the stage 1 and stage 2 estimations obtained from the
Cox proportional hazard model. During the interim analysis, the low heart rate
sub-population is dropped as it falls below the futility threshold, while the other
sub-populations continue to stage 2. In stage 1, the medium heart rate sub-population
shows a substantial treatment effect, but this effect diminishes in stage 2 due to
sampling variations. On the other hand, the high heart rate sub-population exhibits
a significant treatment effect in both stage 1 and stage 2. Notably, since the stage
1 estimates are considerably different from b in both cases, we expect the various
estimates to be quite close. At the conclusion of the study, we proceed to estimate
the treatment effect in the selected sub-populations, and the results are displayed in
Table 5.2:

• Among the sub-population with medium heart rate, the UMVCUE, single-
iteration, multiple-iteration bias-adjusted, and second shrinkage estimators
offer comparable and slightly more conservative estimations in comparison to
the naive one. The differences among these estimators are minimal. However,
the first shrinkage estimator yields even more conservative estimations.

• In the high heart rate sub-population, the naive estimator also shows the most
optimistic result. However, the UMVCUE, single-iteration, and multiple-
iteration bias-adjusted estimators remain comparable to each other and to
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the naive one. The shrinkage estimators provide slightly more conservative
estimations in this case.

Table 5.1 Case-study in heart failure: stage 1 and stage 2 MLE estimators of the log HR.

Log HR Low Heart Rate Medium Heart Rate High Heart Rate
δ̂1i(τ̂1i) -0.075 (0.155) -0.397 (0.150) -0.358 (0.121)
δ̂2i(τ̂2i) - -0.109 (0.109) -0.313 (0.097)

Table 5.2 Case-study in heart failure: comparison of the estimators of the log HR.

Log HR Estimator Medium Heart Rate High Heart Rate
Naive estimator (N) -0.209 -0.330

UMVCUE (U) -0.188 -0.329
Shrinkage 1 (S1) -0.180 -0.315
Shrinkage 2 (S2) -0.189 -0.317

Single-iteration (SI) -0.187 -0.327
Multiple-iteration (MI) -0.191 -0.328

Table 5.3 Case-study in heart failure: Sidak[106], Bonferroni[107] and selection-adjusted[99]
confidence intervals.

95% confidence intervals Medium Heart Rate High Heart Rate
Sidak [-0.396;-0.021] [-0.491;-0.170]

Bonferroni [-0.421; 0.003] [-0.511;-0.149]
Selection-adjusted [-0.391; 0.045] [-0.509;-0.140]

For comprehensive analysis, Table 5.3 displays 95% confidence intervals for
the selected sub-populations. In addition to the Sidak [106] and Bonferroni [107]
confidence intervals, we include the selection-adjusted confidence intervals from
Kimani et al. [99]. It is observed that the Bonferroni confidence intervals are wider
than the Sidak’s intervals, as anticipated, and the one for the medium heart rate sub-
population contains zero. However, it is crucial to note that these confidence intervals
rely on the assumption that the overall estimate is normally distributed and do not
account for the selection process. Consequently, the selection-adjusted confidence
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intervals appear more conservative. In the medium heart rate sub-population, the
lower bound is higher compared to the other two intervals, and the upper bound
is above zero, suggesting that there might be no significant difference between
the treatment and the placebo. In the high heart rate sub-population, the lower
bound is similar to Bonferroni’s, while the upper bound is higher, leading to a wider
confidence interval. It is important to highlight that the selection-adjusted confidence
intervals are based on both the stage 1 and stage 2 estimates, and thus, the confidence
interval for the medium heart rate sub-population incorporates zero due to its smaller
effect in stage 2.

5.4 Simulation study

In this section, we conduct simulations to compare the performances of the six
previously presented estimators in terms of bias, variance, and mean squared error
(MSE). While bias is the most critical metric of interest, as these estimators aim to
reduce or eliminate it, variance is also significant. An unbiased estimator with high
variance may not be preferred over a slightly biased but more precise alternative,
as the latter can better support decision-making. The MSE combines both bias and
variance information, providing a comprehensive measure for evaluating the overall
performance of the estimators.

5.4.1 Setting

Consider a scenario inspired by the case study with three sub-populations and two
treatment arms: an experimental treatment and a control. The recruitment of patients
takes place evenly from the three sub-populations over a maximum period of 3 years,
and they are equally allocated to the treatment arms (randomization ratio 1:1). The
maximum follow-up time is set at 9 months. Assuming that the hazard function
remains constant for all treatments and is equal to hc = 0.0005 for the control group, a
total of 632 events is required to detect a hazard ratio of 0.8 with a power of 80% and
a one-sided type 1 error of 2.5%. An interim analysis is scheduled when half of the
total events are observed. Thus, we establish the following time points: the interim
analysis T1 occurs after 316 events; the stage 1 patients are followed up until stage 2
at T̃1, which is set to 6 months after the interim analysis; and the trial concludes at
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T2 when a total of 632 events are observed, accounting for stage 1 patients followed
up until T̃1. Moreover, the number of events remains fixed regardless of the selected
sub-populations, while the number of patients required to reach these events may
vary depending on the scenarios and selected sub-populations. However, a maximum
of 3000 patients is allocated to each sub-population.

We consider three cases of log HR: treatment being ineffective in all sub-
populations δ = (0 ,0 ,0); treatment being effective in only one sub-population
δ = (0 ,0 ,−0.3); and treatment exhibiting a linear effect on the sub-populations
δ = (−0.1,−0.2,−0.3). For all cases, the threshold is fixed at b =−0.1. We con-
ducted simulations for each scenario until we obtained 10000 simulated clinical trials
with a stage 2, i.e., not stopped for futility at the interim analysis. Table 5.4 presents
the empirical selection probabilities.

Table 5.4 Empirical probability of selection for the different sub-populations in the simulation
study according to their log HR.

Log HR δi = 0 δi =−0.1 δi =−0.2 δi =−0.3
Probability of selection 30% 49% 69% 84%

For completeness, the Supplementary Material includes additional simulation
scenarios where: (1) the threshold is set to b = 0; (2) T̃1 is set to 3 months after the
interim analysis; and (3) we compare 4 sub-populations while keeping the other
parameters consistent with this setting.

5.4.2 Results

This section presents the estimates for the bias, variance and MSE of the estimators
in the simulation study. We define Si as the set of simulations where sub-population i
is selected, and δ̂ s

i,· as a generic estimator of δi in a simulation s ∈ Si. The bias in each
sub-population is estimated via 1

|Si| ∑s∈Si(δ̂
s
i,·−δi) and the MSE via 1

|Si| ∑s∈Si(δ̂
s
i,·−

δi)
2; the variance is calculated as (MSE - bias2). Figure 5.2 illustrates the outcomes of

our analysis. Each row corresponds to one of the three settings examined: treatment
being ineffective in all sub-populations (top row), treatment being effective only in
one sub-population (center row), and linear effect on the sub-populations (bottom
row). The columns present the three metrics of interest: bias (left column), variance
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(center column), and MSE (right column). In this Figure, if more than one sub-
population is selected, the results for bias, variance, and MSE are averaged over all
selected sub-populations.

We observe that the bias of the estimators is generally higher in the top row.
In this scenario, the optimal decision would be to stop the entire trial for futility
since none of the underlying log HRs is larger than the threshold. Consequently, a
sub-population is selected only when the estimated effect significantly outperforms
the true effect in that sub-population. Among the estimators, the naive estimator
exhibits the greatest bias, followed by the shrinkage estimators, where S1 slightly
outperforms S2. Next, the bias-adjusted estimators perform better, with the single-
iteration outperforming the multiple-iteration. As expected, the UMVCUE provides
an almost unbiased estimation in this case, but it tends to over-correct, leading to
a positive bias. However, this bias is of lower magnitude compared to the other
estimators’ bias and may be attributable to the remaining correlation bias. Regarding
variance, the naive estimator and the shrinkage estimators demonstrate the best
performance, followed by the bias-adjusted estimators performing equally well, and
lastly, the UMVCUE, which is the least precise. In terms of MSE, the S1 and S2
(in this order) are the best-performing estimators, followed by the single-iteration
bias-adjusted estimator and the multi-iteration bias-adjusted estimator. The naive
estimator ranks slightly worse in terms of MSE, while the UMVCUE shows the
worst performance.

The second row corresponds to clinical trials where, at the interim analysis, the
only sub-population on which the treatment is effective should be selected, and it
notably differs from the other ones. Therefore, the extent of bias is lower than in
the first row. In this case, the best-performing estimator in terms of absolute bias is
the multiple-iteration bias-adjusted estimator, followed by S1, SI, S2, UMVCUE,
and the naive estimator in that order. However, it is still evident that the UMVCUE
over-corrects the bias, resulting in a positive bias of similar magnitude compared to
the previous scenario. Regarding variance, the naive estimator performs the best,
followed by the shrinkage estimators and the bias-adjusted estimators, with the
UMVCUE ranking last. In terms of MSE, the shrinkage estimators and the naive
estimator perform the best, followed by the bias-adjusted estimators performing
equally well, and finally, the UMVCUE shows the least favorable performance.
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Fig. 5.2 Estimators’ performances. Top row: treatment ineffective in all sub-populations
δ = (0,0,0); Middle row: treatment effective only in one sub-population δ = (0 ,0 ,−0.3);
Bottom row: linear effect on the sub-populations δ = (−0.1,−0.2,−0.3). Left column:
Bias; Centre column: Variance; Right column: Mean Squared Error.
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In the third row, the correct choice is to select the two sub-populations where the
treatment is more effective. Again, the naive estimator exhibits the highest absolute
bias, followed by UMVCUE, SI, and MI, with S1 and S2 performing equally well
and showing the least bias. However, the single-iteration bias-adjusted estimator,
multi-iteration bias-adjusted estimator, and the UMVCUE tend to over-correct the
bias, resulting in a positive bias in their case. Regarding variance, the UMVCUE has
the highest variance, followed by SI, MI, the naive estimator, and finally, the most
precise estimators are the shrinkage estimators. Eventually, in terms of MSE, the
unbiased estimator has the highest value, followed by SI and MI, the naive estimator,
and the shrinkage estimators in that order.

At this point, we aim to gain a more precise understanding of the behavior of
the estimators in each sub-population. Figure 5.3, shows the results in each sub-
population in the case of δ = (−0.1,−0.2,−0.3). We first observe that the variance
and MSE of the estimators show minimal variation from one sub-population to
another, maintaining the same order as noticed in the bottom row of Figure 5.2, with
only slight differences in their magnitudes across the rows. On the other hand, the
bias varies substantially from one sub-population to another. The bias of the naive
estimator is higher in the top row and gradually decreases with an increasing effect,
as expected when moving from the threshold, approaching zero in the case of an
effect equal to −0.3. In contrast, the bias of the UMVCUE remains constant across
the three sub-populations and is positive, indicating an over-correction that may be
attributable to the remaining correlation bias. The bias of the shrinkage estimators,
which appears to be approximately zero when averaged over the sub-populations
in the bottom row of Figure 5.2, is actually substantially variable. When the effect
is equal to −0.1, the bias of the shrinkage estimators matches that of the naive
estimator. For an effect equal to −0.2, the bias is almost zero, with S1 outperforming
S2. However, when the effect is equal to −0.3, the bias becomes positive, with
S1 showing a higher bias compared to the UMVCUE, and S2 having a similar
performance to SI. Regarding the bias of the bias-adjusted estimators: in the top row,
it is approximately zero for both, with the SI outperforming MI; in the middle row, it
is positive but lower than the UMVCUE’s for the SI, with the MI outperforming the
SI in this case; in the bottom row, the results are similar to the middle row.

Supplementary Material presents the results of additional simulation scenarios.
When setting b = 0, the bias is generally lower for all the estimators since they
are further from the threshold. However, the overall order for the estimators’ bias,
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Fig. 5.3 Estimators’ performances in each sub-population in case of linear effects on the
sub-populations. Top row: effect equal to -0.1; Middle row: effect equal to -0.2; Bottom
row: effect equal to -0.3. Left column: Bias; Centre column: Variance; Right column: Mean
Squared Error.



76
A comparison of estimation methods in adaptive enrichment designs with

time-to-event endpoints

variance, and MSE remains the same. When T̃1 is set to 3 months after the interim
analysis, the performance metrics are similar to those presented in this study. In
the scenario with 4 sub-populations, we observe a higher overall bias, and the S1
and UMVCUE perform better, with the latter being almost unbiased. This might be
attributed to the fact that the decision is made with a smaller information fraction
compared to the previous case where there were only three sub-populations. As a
result, the stage 2 data have a greater impact on the overall estimates’ derivation
[95, 99]. In this case, we also analyze the results in each sub-population with linear
effects, and the same pattern as seen in Figure 5.3 is obtained.

In summary, the performance of each estimator can be characterized as follows:

• The naive estimator (N) exhibits the highest bias but very low variance, result-
ing in a moderate MSE compared to the other estimators.

• The UMVCUE (U) shows a small constant positive bias (which is not zero
due to correlation bias), and it has the highest variance, resulting in the highest
MSE.

• The single-iteration (SI) bias-adjusted estimator has a small bias but higher
variance compared to the naive estimator, resulting in a comparable MSE.

• The multiple-iteration (MI) bias-adjusted estimator tends to provide less conser-
vative estimations than the single-iteration approach and has similar variance
and MSE.

• The first shrinkage estimator (S1) demonstrates a noticeable bias that varies
substantially across sub-populations, but it has very low variance, resulting in
a very low MSE.

• The second shrinkage estimator (S2) performs similarly to S1.

These observations are consistent across all scenarios considered, and they align
with results previously published in different settings [95, 96, 98, 100].

5.5 Discussion

This chapter focused on addressing the issue of selection bias [94] in the context of
two-stage enrichment adaptive designs with time-to-event data. To achieve this, we
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explored various estimators available in the literature [95, 97–102]. This study was
motivated by the FDA Guidance for Industry on Adaptive Design Clinical Trials
for Drugs and Biologics [6], which requires sponsors to evaluate the reliability and
extent of bias in treatment effect estimation using appropriate methods in adaptive
design trials. We applied these different methods to a cardiology case-study and
compared their performances in various scenarios with a selection rule based on a
futility threshold. Comparative studies in the literature have primarily focused on
adaptive designs with treatment selection [95, 100] or sub-population selection with
normally distributed endpoints [96, 103].

We conducted a comprehensive simulation study to compare the performance
of the estimators in terms of bias, variance, and mean squared error (MSE). While
bias remains the primary focus, the variability can also influence the choice of one
estimator over another. In addition to the maximum likelihood estimator (MLE) used
in the primary analysis, we recommend presenting the unbiased estimator and the
single-iteration bias-adjusted estimator in sensitivity analysis to address regulatory
requirements. The unbiased estimator completely corrects the selection bias, but
it may be highly variable compared to the naive estimator. On the other hand, the
single-iteration bias-adjusted estimator is less biased than the naive estimator and
only slightly more variable. Thus, including both these estimators allows us to assess
the extent of bias in the naive estimator and provides a more precise and less biased
estimation for decision-making purposes. To provide a comprehensive overview, a
simulation study can be added as a supplement to identify the estimator that best
suits the context and objectives of the trial, as suggested in the literature [104]. This
additional analysis will further aid in making informed choices regarding estimator
selection.

The current study has several limitations that should be acknowledged. Firstly, it
focuses on clinical trials with a single interim analysis and only two arms, consisting
of one experimental treatment and one control. Future extensions could involve
incorporating multiple interim analyses or additional treatment arms to explore more
complex scenarios. Another limitation is that we considered disjoint sub-populations,
while some other studies have explored non-disjoint sub-populations [96, 99]. In-
cluding such scenarios could provide a more comprehensive understanding of the
estimators’ performance. In this study, we chose a selection rule based on comparing
the hazard ratio (HR) to a pre-specified threshold. Alternative selection rules based
on conditional power or predictive power could have been explored, but it is expected
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that similar conclusions would be reached [108]. Additionally, the literature offers
various methods for calculating appropriate confidence intervals, such as simulta-
neous inference [109], bootstrap resampling [100], confidence regions based on
orderings [102], or simultaneous inference based on the duality between hypothesis
testing and confidence intervals [99]. Each of these methods has its advantages and
limitations, and further exploration of these techniques could be beneficial. For more
in-depth information, we refer readers to the relevant literature.

Despite its limitations, this study offers valuable insights into the performance of
various estimators for mitigating bias in enrichment adaptive designs with time-to-
event data. The findings provide essential information to enhance decision-making
and meet regulatory requirements effectively.



Chapter 6

Conclusion and perspectives

This thesis contains the examination of some statistical methods for incorporating
available evidence in order to support decision-making. The methods presented in
this work have been thoroughly analyzed and discussed, with each chapter providing
a detailed description of the methods, along with a case study demonstrating their
application and a discussion of the topic and its strengths and weaknesses. The
goal is to provide a thorough understanding of these methods and their potential
applications, in order to aid in the decision-making process.

This report focuses on three main research axes: the incorporation of historical
data in early phase trials, a novel methodology to test repeatedly and adaptively
whether a certain sub-population is conformal with respect to the general population
it is a subset of, and a comparison of estimation methods adjusting for selection bias
in adaptive enrichment designs with time-to-event endpoints. The use of all available
evidence to support decision-making is the aim of the proposed methodologies.

For the incorporation of historical data in early phase trials, it has been shown that
the methods presented can assist in making more informed decisions in case where
there is concordance between the historical data and the concurrent data. They also
perform at least as good as the other methods which do not include any historical
data in the study. Therefore, the use of historical data in early phase permits to
improve decision making. Encouraging the use of quantitative data for constructing
the prior can help mitigate potential controversies during result evaluation. Moreover,
operating characteristics before the start of the trial are instrumental when combining
historical data with concurrent data, in order to identify potential weaknesses and
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fallacies, and a sound planning and execution of the trial is also fundamental. Surely,
the proposed methodologies have the potential to be applied to various other stages
of early phase drug development and can be the foundation for further exploration
and analysis by the scientific community. Alongside, the analyses presented here
can serve as a starting point for those interested in investigating the topic.

For the application on the adaptive Covid-19 screening of a sub-population, it
is clear that the use of all available evidence provides better results for the testing
with respect to a classical fixed threshold. In fact, even using a model for prediction
which is non-native for the problem presented, the results overcome the classical
methodology in terms of operating characteristics. Certainly, the application shown
is specific of the time in which it was designed but, in general, it can be applied to
any problem in outbreak detection, finance or even statistical quality control. Of
course, adaptations are needed in case of a different use of the methods, but valuable
insides can be retrieved from the analyses here presented.

The study on the comparison of estimation methods in adaptive enrichment
designs with time-to-event endpoints provides valuable insights on the topic. It
identifies two estimators which have better operating characteristics with respect to a
naive one, each with its own peculiarities. The first one completely eradicates the
selection bias, at the price of an increase in variance. The second one is less biased
with respect to the naive one, but only slightly more variable. By enhancing the
understanding of these estimators and their trade-offs, this work not only advances
our knowledge but also facilitates improved decision-making when choosing between
them. Even acknowledging its limitations, such as focusing on trials with one interim
analysis and two arms, and disjoint sub-populations, the study paves the way to
future ones on the topic. They will enhance the possibility for the patients, both those
enrolled in trials and those who struggle everyday, to receive the most appropriate
treatment for their condition.

In conclusion, the statistical methods presented are shown to be effective in
supporting decision-making by using available evidence. They provide performances
at least as good as the ones where no other information were included, obtaining
better results under certain appropriate conditions. The methods can potentially
be applied to a variety of other problems, taking into account adaptations may be
necessary. However, they provide a useful tool that can help in making more accurate
and precise decision in the future.



References

[1] Food and Drug Administration. Estimating the maximum safe starting dose
in initial clinical trials for therapeutics in adult healthy volunteers - guidance
for industry, 2005.

[2] European Medicines Agency. ICH topic E9 - Statistical principles for clinical
trials, 1998.

[3] Food and Drug Administration. Guidance for the use of bayesian statistics in
medical device clinical trials, 2010.

[4] Food and Drug Administration. Leveraging existing clinical data for extrapo-
lation to pediatric uses of medical devices, 2016.

[5] Philip Pallmann, Alun W. Bedding, Babak Choodari-Oskooei, Munyaradzi
Dimairo, Laura Flight, Lisa V. Hampson, Jane Holmes, Adrian P. Mander,
Lang’o Odondi, Matthew R. Sydes, Sofía S. Villar, James M. S. Wason,
Christopher J. Weir, Graham M. Wheeler, Christina Yap, and Thomas Jaki.
Adaptive designs in clinical trials: why use them, and how to run and report
them. BMC Medicine, 16(1), February 2018. 10.1186/s12916-018-1017-7.

[6] Food and Drug Administration. Adaptive design clinical trials for drugs and
biologics guidance for industry, 2019.

[7] Fernando P. Polack, Stephen J. Thomas, Nicholas Kitchin, Judith Absalon,
Alejandra Gurtman, Stephen Lockhart, John L. Perez, Gonzalo Pérez Marc,
Edson D. Moreira, Cristiano Zerbini, Ruth Bailey, Kena A. Swanson, et al.
Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. New England
Journal of Medicine, 383(27):2603–2615, December 2020.

[8] Lindsey R. Baden, Hana M. El Sahly, Brandon Essink, Karen Kotloff, Sharon
Frey, Rick Novak, David Diemert, Stephen A. Spector, Nadine Rouphael,
C. Buddy Creech, John McGettigan, Shishir Khetan, et al. Efficacy and safety
of the mRNA-1273 SARS-CoV-2 vaccine. New England Journal of Medicine,
384(5):403–416, February 2021.

[9] Merryn Voysey, Sue Ann Costa Clemens, Shabir A Madhi, Lily Y Weckx,
Pedro M Folegatti, Parvinder K Aley, Brian Angus, Vicky L Baillie, Shaun L
Barnabas, Qasim E Bhorat, Sagida Bibi, Carmen Briner, , et al. Safety and



82 References

efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2:
an interim analysis of four randomised controlled trials in Brazil, South Africa,
and the UK. The Lancet, 397(10269):99–111, January 2021.

[10] Jerald Sadoff, Mathieu Le Gars, Georgi Shukarev, Dirk Heerwegh, Carla
Truyers, Anne M. de Groot, Jeroen Stoop, Sarah Tete, Wim Van Damme,
Isabel Leroux-Roels, Pieter-Jan Berghmans, Murray Kimmel, et al. Interim
results of a phase 1–2a trial of Ad26.COV2.S Covid-19 vaccine. New England
Journal of Medicine, 384(19):1824–1835, May 2021.

[11] Edward Bradley. Incorporating biomarkers into clinical trial designs: points
to consider. Nature Biotechnology, 30(7):596–599, July 2012. DOI:
10.1038/nbt.2296.

[12] R L Lalonde, K G Kowalski, M M Hutmacher, W Ewy, D J Nichols, P A
Milligan, B W Corrigan, P A Lockwood, S A Marshall, L J Benincosa, T G
Tensfeldt, K Parivar, M Amantea, P Glue, H Koide, and R Miller. Model-based
drug development. Clinical Pharmacology & Therapeutics, 82(1):21–32, May
2007. DOI: 10.1038/sj.clpt.6100235.

[13] Igor Radanovic, Naomi Klarenbeek, Robert Rissmann, Geert Jan Groeneveld,
Emilie M. J. van Brummelen, Matthijs Moerland, and Jacobus J. Bosch.
Integration of healthy volunteers in early phase clinical trials with immuno-
oncological compounds. Frontiers in Oncology, 12, August 2022. DOI:
10.3389/fonc.2022.954806.

[14] Phylinda L.S. Chan, Lynn McFadyen, Andrea Quaye, Heidi Leister-Tebbe,
Victoria M. Hendrick, Jennifer Hammond, and Susan Raber. The use of extrap-
olation based on modeling and simulation to support high-dose regimens of
ceftaroline fosamil in pediatric patients with complicated skin and soft-tissue
infections. CPT: Pharmacometrics & Systems Pharmacology, 10(6):551–563,
May 2021. DOI: 10.1002/psp4.12608.

[15] Reza Khosravan, Steven G. DuBois, Katherine Janeway, and Erjian Wang.
Extrapolation of pharmacokinetics and pharmacodynamics of sunitinib in
children with gastrointestinal stromal tumors. Cancer Chemotherapy and
Pharmacology, 87(5):621–634, January 2021. DOI: 10.1007/s00280-020-
04221-x.

[16] E. Niclas Jonsson, Fiona Macintyre, Ian James, Michael Krams, and Scott
Marshall. Bridging the pharmacokinetics and pharmacodynamics of UK-
279, 276 across healthy volunteers and stroke patients using a mechanisti-
cally based model for target-mediated disposition. Pharmaceutical Research,
22(8):1236–1246, August 2005. DOI: 10.1007/s11095-005-5264-x.

[17] Stefan Willmann, Eleonora Marostica, Nelleke Snelder, Alexander Solms,
Markus Jensen, Maximilian Lobmeyer, Anthonie W. A. Lensing, Claudette
Bethune, Erin Morgan, Rosie Z. Yu, Yanfeng Wang, Shiangtung W. Jung,



References 83

Richard Geary, and Sanjay Bhanot. PK/PD modeling of FXI antisense oligonu-
cleotides to bridge the dose-FXI activity relation from healthy volunteers to
end-stage renal disease patients. CPT: Pharmacometrics & Systems Pharma-
cology, 10(8):890–901, June 2021. DOI: 10.1002/psp4.12663.

[18] Fabiola La Gamba, Tom Jacobs, Helena Geys, Thomas Jaki, Jan Serroyen,
Moreno Ursino, Alberto Russu, and Christel Faes. Bayesian sequential inte-
gration within a preclinical pharmacokinetic and pharmacodynamic modeling
framework: Lessons learned. Pharmaceutical Statistics, April 2019. DOI:
10.1002/pst.1941.

[19] Fanni Natanegara, Beat Neuenschwander, John W. Seaman, Nelson Kinners-
ley, Cory R. Heilmann, David Ohlssen, and George Rochester. The current
state of bayesian methods in medical product development: survey results and
recommendations from the DIA bayesian scientific working group. Pharma-
ceutical Statistics, 13(1):3–12, September 2013. DOI: 10.1002/pst.1595.

[20] Mercedeh Ghadessi, Rui Tang, Joey Zhou, Rong Liu, Chenkun Wang, Ki-
ichiro Toyoizumi, Chaoqun Mei, Lixia Zhang, C. Q. Deng, and Robert A.
Beckman. A roadmap to using historical controls in clinical trials – by
drug information association adaptive design scientific working group (DIA-
ADSWG). Orphanet Journal of Rare Diseases, 15(1), March 2020. DOI:
10.1186/s13023-020-1332-x.

[21] Hans Ulrich Burger, Christoph Gerlinger, Chris Harbron, Armin Koch, Martin
Posch, Justine Rochon, and Anja Schiel. The use of external controls: To
what extent can it currently be recommended? Pharmaceutical Statistics,
April 2021. DOI: 10.1002/pst.2120.

[22] Kert Viele, Scott Berry, Beat Neuenschwander, Billy Amzal, Fang Chen,
Nathan Enas, Brian Hobbs, Joseph G. Ibrahim, Nelson Kinnersley, Stacy
Lindborg, Sandrine Micallef, Satrajit Roychoudhury, and Laura Thompson.
Use of historical control data for assessing treatment effects in clinical trials.
Pharmaceutical Statistics, 13(1):41–54, aug 2013. DOI: 10.1002/pst.1589.

[23] Beat Neuenschwander, Gorana Capkun-Niggli, Michael Branson, and David J
Spiegelhalter. Summarizing historical information on controls in clinical trials.
Clinical Trials, 7(1):5–18, January 2010. DOI: 10.1177/1740774509356002.

[24] Heinz Schmidli, Sandro Gsteiger, Satrajit Roychoudhury, Anthony O'Hagan,
David Spiegelhalter, and Beat Neuenschwander. Robust meta-analytic-
predictive priors in clinical trials with historical control information. Biomet-
rics, 70(4):1023–1032, October 2014. DOI: 10.1111/biom.12242.

[25] Jessica Lim, Rosalind Walley, Jiacheng Yuan, Jeen Liu, Abhishek Dabral,
Nicky Best, Andrew Grieve, Lisa Hampson, Josephine Wolfram, Phil Wood-
ward, Florence Yong, Xiang Zhang, and Ed Bowen. Minimizing patient
burden through the use of historical subject-level data in innovative confir-
matory clinical trials: Review of methods and opportunities. Therapeutic



84 References

Innovation & Regulatory Science, 52(5):546–559, September 2018. DOI:
10.1177/2168479018778282.

[26] Joost van Rosmalen, David Dejardin, Yvette van Norden, Bob Löwenberg,
and Emmanuel Lesaffre. Including historical data in the analysis of clinical
trials: Is it worth the effort? Statistical Methods in Medical Research,
27(10):3167–3182, February 2017. DOI: 10.1177/0962280217694506.

[27] Claire L. Smith, Zachary Thomas, Nathan Enas, Katharine Thorn, Michael
Lahn, Karim Benhadji, and Ann Cleverly. Leveraging historical data into
oncology development programs: Two case studies of phase 2 bayesian
augmented control trial designs. Pharmaceutical Statistics, 19(3):276–290,
January 2020. DOI: 10.1002/pst.1990.

[28] Elias Laurin Meyer, Peter Mesenbrink, Cornelia Dunger-Baldauf, Ekkehard
Glimm, Yuhan Li, and Franz König and. Decision rules for identifying com-
bination therapies in open-entry, randomized controlled platform trials. Phar-
maceutical Statistics, 21(3):671–690, January 2022. DOI:10.1002/pst.2194.

[29] Arthur Christopoulos and Esam E. El-Fakahany. Qualitative and quantitative
assessment of relative agonist efficacy. Biochemical Pharmacology, 58(5):735–
748, September 1999. DOI: 10.1016/s0006-2952(99)00087-8.

[30] Meina Liang, Martin Schwickart, Amy K. Schneider, Inna Vainshtein, Christo-
pher Del Nagro, Nathan Standifer, and Lorin K. Roskos. Receptor occupancy
assessment by flow cytometry as a pharmacodynamic biomarker in biophar-
maceutical development. Cytometry Part B, 90(B):117–127, July 2016. DOI:
10.1002/cyto.b.21259.

[31] F Junker, P Gulati, U Wessels, S Seeber, KG Stubenrauch, L Codarri-Deak,
C Markert, C Klein, P Camillo Teixeira, and H Kao. A human receptor
occupancy assay to measure anti-pd-1 binding in patients with prior anti-pd-1.
Cytometry A, 99(8):832–843, 2021. DOI: 10.1002/cyto.a.24334.

[32] H Jones and K Rowland-Yeo. Basic concepts in physiologically based phar-
macokinetic modeling in drug discovery and development. CPT Pharmaco-
metrics Syst Pharmacol, 2(8):e63, 2013. DOI: 10.1038/psp.2013.41.

[33] N Srinivas, K Maffuid, and ADM Kashuba. Clinical pharmacokinetics and
pharmacodynamics of drugs in the central nervous system. Clin Pharma-
cokinet, 57(9):1059–1074, 2018. DOI: 10.1007/s40262-018-0632-y.

[34] Yanguang Cao and William J. Jusko. Incorporating target-mediated drug
disposition in a minimal physiologically-based pharmacokinetic model for
monoclonal antibodies. Journal of Pharmacokinetics and Pharmacodynamics,
41(4):375–387, July 2014. DOI: 10.1007/s10928-014-9372-2.

[35] N Best, RG Price, IJ Pouliquen, and ON Keene. Assessing efficacy in im-
portant subgroups in confirmatory trials: An example using bayesian dy-
namic borrowing. Pharmaceutical Statistics, 20(3):551–562, 2021. DOI:
10.1002/pst.2093.



References 85

[36] Gaelle Saint-Hilary, Valentine Barboux, Matthieu Pannaux, Mauro Gasparini,
Veronique Robert, and Gianluca Mastrantonio. Predictive probability of
success using surrogate endpoints. Statistics in Medicine, 38(10):1753–1774,
December 2018. DOI: 10.1002/sim.8060.

[37] B Neuenschwander, N Rouyrre, N Hollaender, E Zuber, and Branson M. A
proof of concept phase ii non-inferiority criterion. Statistics in Medicine,
30(13):1618–27, 2011. DOI: 10.1002/sim.3997.

[38] C Chuang-Stein and S Kirby. Quantitative Decisions in Drug Develop-
ment. Cham, Switzerland: Springer International Publishing AG, 2017. DOI:
10.1007/978-3-319-46076-5.

[39] Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony
O'Hagan. Predictively consistent prior effective sample sizes. Biometrics,
76(2):578–587, April 2020. DOI: 10.1111/biom.13252.

[40] Paul Frewer, Pat Mitchell, Claire Watkins, and James Matcham. Decision-
making in early clinical drug development. Pharmaceutical Statistics,
15(3):255–263, March 2016. DOI: 10.1002/pst.1746.

[41] S Roychoudhury, N Scheuer, and B Neuenschwander. Beyond p-
values: A phase ii dual-criterion design with statistical significance
and clinical relevance. Clinical Trials, 15(5):452–461, 2018. DOI:
10.1177/1740774518770661.

[42] G Saint-Hilary, V Robert, and M Gasparini. Decision-making in drug devel-
opment using a composite definition of success. Pharm Stat, 17(5):555–569,
2018. DOI: 10.1002/pst.1870.

[43] Edmund S. Kostewicz, Bertil Abrahamsson, Marcus Brewster, Joachim
Brouwers, James Butler, Sara Carlert, Paul A. Dickinson, Jennifer Dress-
man, René Holm, Sandra Klein, James Mann, Mark McAllister, et al. In
vitro models for the prediction of in vivo performance of oral dosage forms.
European Journal of Pharmaceutical Sciences, 57:342–366, June 2014. DOI:
10.1016/j.ejps.2013.08.024.

[44] Food and Drug Administration. Physiologically based pharmacokinetic analy-
ses — format and content guidance for industry, 2018.

[45] Food and Drug Administration. The use of physiologically based pharma-
cokinetic analyses — biopharmaceutics applications for oral drug product
development, manufacturing changes, and controls - draft guidance for indus-
try, 2020.

[46] Jennifer E. Sager, Jingjing Yu, Isabelle Ragueneau-Majlessi, and Nina Isoher-
ranen. Physiologically based pharmacokinetic (PBPK) modeling and simula-
tion approaches: A systematic review of published models, applications, and
model verification. Drug Metabolism and Disposition, 43(11):1823–1837,
August 2015. DOI: 10.1124/dmd.115.065920.



86 References

[47] Paul Rolan. The contribution of clinical pharmacology surrogates and models
to drug development-a critical appraisal. British Journal of Clinical Pharma-
cology, 44(3):219–225, September 1997. DOI: 10.1046/j.1365-2125.1997.t01-
1-00583.x.

[48] Luca Richeldi, Arata Azuma, Vincent Cottin, Christian Hesslinger, Susanne
Stowasser, Claudia Valenzuela, Marlies S. Wijsenbeek, Donald F. Zoz, Florian
Voss, and Toby M. Maher. Trial of a preferential phosphodiesterase 4b
inhibitor for idiopathic pulmonary fibrosis. New England Journal of Medicine,
386(23):2178–2187, June 2022. DOI: 10.1056/nejmoa2201737.

[49] European Medicines Agency. Ich guideline s9 on nonclinical evaluation for
anticancer pharmaceuticals, 2008.

[50] Vijay Sharma and John H McNeill. To scale or not to scale: the principles of
dose extrapolation. British Journal of Pharmacology, 157(6):907–921, July
2009. DOI: 10.1111/j.1476-5381.2009.00267.x.

[51] Nina Magnolo, Külli Kingo, Vivian Laquer, John Browning, Adam Reich,
Jacek C. Szepietowski, Deborah Keefe, Philemon Papanastasiou, Weibin
Bao, Pascal Forrer, and Manmath Patekar. Efficacy of secukinumab across
subgroups and overall safety in pediatric patients with moderate to severe
plaque psoriasis: Week 52 results from a phase III randomized study. Pediatric
Drugs, 24(4):377–387, June 2022. DOI: 10.1007/s40272-022-00507-0.

[52] Heinz Schmidli, Beat Neuenschwander, and Tim Friede. Meta-analytic-
predictive use of historical variance data for the design and analysis of clinical
trials. Computational Statistics & Data Analysis, 113:100–110, sep 2017.
DOI: 10.1016/j.csda.2016.08.007.

[53] Ming-Hui Chen and Joseph G. Ibrahim. Power prior distributions
for regression models. Statistical Science, 15(1), feb 2000. DOI:
10.1214/ss/1009212673.

[54] Ming-Hui Chen and Joseph G. Ibrahim. The relationship between the power
prior and hierarchical models. Bayesian Analysis, 1(3), September 2006. DOI:
10.1214/06-ba118.

[55] Joseph G. Ibrahim, Ming-Hui Chen, Yeongjin Gwon, and Fang Chen. The
power prior: theory and applications. Statistics in Medicine, 34(28):3724–
3749, sep 2015. DOI:10.1002/sim.6728.

[56] Timothy Mutsvari, Dominique Tytgat, and Rosalind Walley. Addressing
potential prior-data conflict when using informative priors in proof-of-concept
studies. Pharmaceutical Statistics, 15(1):28–36, November 2015. DOI:
10.1002/pst.1722.

[57] Beat Neuenschwander, Michael Branson, and David J. Spiegelhalter. A note
on the power prior. Statistics in Medicine, 28(28):3562–3566, sep 2009. DOI:
10.1002/sim.3722.



References 87

[58] Byron J. Gajewski. Comments on ’a note on the power prior’. Statistics in
Medicine, 29(6):708–709, feb 2010. DOI: 10.1002/sim.3824.

[59] Beat Neuenschwander, Michael Branson, and Thomas Gsponer. Critical
aspects of the bayesian approach to phase i cancer trials. Statistics in Medicine,
27(13):2420–2439, 2008. DOI:10.1002/sim.3230.

[60] Thomas Jaki, Sally Clive, and Christopher J. Weir. Principles of dose finding
studies in cancer: a comparison of trial designs. Cancer Chemotherapy and
Pharmacology, 71(5):1107–1114, January 2013. DOI: 10.1007/s00280-012-
2059-8.

[61] Lei Nie, Eric H. Rubin, Nitin Mehrotra, José Pinheiro, Laura L. Fernandes,
Amit Roy, Stuart Bailey, and Dinesh P. de Alwis. Rendering the 3 + 3 design
to rest: More efficient approaches to oncology dose-finding trials in the era of
targeted therapy. Clinical Cancer Research, 22(11):2623–2629, May 2016.
DOI: 10.1158/1078-0432.ccr-15-2644.

[62] Haiyan Zheng, Lisa V Hampson, and Simon Wandel. A robust bayesian
meta-analytic approach to incorporate animal data into phase i oncology trials.
Statistical Methods in Medical Research, 29(1):94–110, January 2019. DOI:
10.1177/0962280218820040.

[63] Haiyan Zheng and Lisa V. Hampson. A bayesian decision-theoretic approach
to incorporate preclinical information into phase i oncology trials. Biometrical
Journal, 62(6):1408–1427, April 2020. DOI: 10.1002/bimj.201900161.

[64] James Babb, André Rogatko, and Shelemyahu Zacks. Cancer phase i
clinical trials: efficient dose escalation with overdose control. Statis-
tics in Medicine, 17(10):1103–1120, may 1998. DOI: 10.1002/(sici)1097-
0258(19980530)17:10<1103::aid-sim793>3.0.co;2-9.

[65] Hongtao Zhang, Alan Y. Chiang, and Jixian Wang. Improving the performance
of bayesian logistic regression model with overdose control in oncology dose-
finding studies. Statistics in Medicine, apr 2022. DOI: 10.1002/sim.9402.

[66] Isaac Gravestock and Leonhard Held and. Adaptive power priors with empir-
ical bayes for clinical trials. Pharmaceutical Statistics, 16(5):349–360, jun
2017. DOI: 10.1002/pst.1814.

[67] Adrien Ollier, Satoshi Morita, Moreno Ursino, and Sarah Zohar. An adaptive
power prior for sequential clinical trials – application to bridging studies.
Statistical Methods in Medical Research, 29(8):2282–2294, nov 2019. DOI:
10.1177/0962280219886609.

[68] Bradley Carlin and Thomas Louis. Bayes and Empirical Bayes Methods for
Data Analysis, Second Edition. Chapman and Hall/CRC, June 2000. DOI:
10.1177/1740774510382799.



88 References

[69] Harry Olson, Graham Betton, Denise Robinson, Karluss Thomas, Alastair
Monro, Gerald Kolaja, Patrick Lilly, James Sanders, Glenn Sipes, William
Bracken, Michael Dorato, Koen Van Deun, Peter Smith, Bruce Berger, and
Allen Heller. Concordance of the toxicity of pharmaceuticals in humans and
in animals. Regulatory Toxicology and Pharmacology, 32(1):56–67, aug 2000.
DOI: 10.1006/rtph.2000.1399.

[70] Heng Zhou, Ying Yuan, and Lei Nie. Accuracy, safety, and reliability of
novel phase i trial designs. Clinical Cancer Research, 24(18):4357–4364,
September 2018. DOI: 10.1158/1078-0432.ccr-18-0168.

[71] Yuan Ji, Ping Liu, Yisheng Li, and B. Nebiyou Bekele. A modified toxicity
probability interval method for dose-finding trials. Clinical Trials, 7(6):653–
663, October 2010. DOI: 10.1177/1740774510382799.

[72] Brian P. Hobbs, Bradley P. Carlin, Sumithra J. Mandrekar, and Daniel J. Sar-
gent. Hierarchical commensurate and power prior models for adaptive incorpo-
ration of historical information in clinical trials. Biometrics, 67(3):1047–1056,
March 2011. DOI: 10.1111/j.1541-0420.2011.01564.x.

[73] Anthony O’Hagan. Expert knowledge elicitation: Subjective but scientific.
The American Statistician, 73(sup1):69–81, March 2019.

[74] European Center for Disease prevention and Control. Covid-19 clusters and
outbreaks in occupational settings in the eu/eea and the uk, 2020.

[75] David L. Buckeridge, Howard Burkom, Murray Campbell, William R. Hogan,
and Andrew W. Moore. Algorithms for rapid outbreak detection: a research
synthesis. Journal of Biomedical Informatics, 38(2):99–113, April 2005.

[76] Brice Leclère, David L. Buckeridge, Pierre-Yves Boëlle, Pascal Astagneau,
and Didier Lepelletier. Automated detection of hospital outbreaks: A system-
atic review of methods. PLOS ONE, 12(4):e0176438, April 2017.

[77] John W Tukey. Exploratory data analysis. Addison-Wesley Pub. Co., 1977.

[78] Douglas M Hawkins. Identification of Outliers. Springer, 1980.

[79] Douglas C Montgomery. Introduction to Statistical Quality Control. John
Wiley & Sons, 2019.

[80] Peter J Brockwell and Richard A Davis. Time Series: Theory and Methods.
Springer, 2009.

[81] Petre Stoica and Yngve Selen. Model-order selection. IEEE Signal Processing
Magazine, 21(4):36–47, July 2004.

[82] Gideon Schwarz. Estimating the dimension of a model. The Annals of
Statistics, 6(2), March 1978.

[83] https://github.com/pcm-dpc/COVID-19/. Accessed 20 Dec 2021.



References 89

[84] William O. Kermack and McKendrick Anderson G. A contribution to the
mathematical theory of epidemics. Proceedings of the Royal Society of London.
Series A, Containing Papers of a Mathematical and Physical Character,
115(772):700–721, August 1927.

[85] Martina Amongero, Enrico Bibbona, and Gianluca Mastrantonio. Analysing
the Covid-19 pandemic in Italy with the SIPRO model. In Book of short papers
- SIS 2021. Pearson, 2021.

[86] Giulia Giordano, Franco Blanchini, Raffaele Bruno, Patrizio Colaneri,
Alessandro Di Filippo, Angela Di Matteo, and Marta Colaneri. Modelling the
COVID-19 epidemic and implementation of population-wide interventions in
italy. Nature Medicine, 26(6):855–860, April 2020.

[87] Giulia Giordano, Marta Colaneri, Alessandro Di Filippo, Franco Blanchini,
Paolo Bolzern, Giuseppe De Nicolao, Paolo Sacchi, Patrizio Colaneri, and
Raffaele Bruno. Modeling vaccination rollouts, SARS-CoV-2 variants and the
requirement for non-pharmaceutical interventions in italy. Nature Medicine,
27(6):993–998, April 2021.

[88] Cliff C. Kerr, Robyn M. Stuart, Dina Mistry, Romesh G. Abeysuriya, Kather-
ine Rosenfeld, Gregory R. Hart, Rafael C. Núñez, Jamie A. Cohen, Prashanth
Selvaraj, Brittany Hagedorn, Lauren George, Michał Jastrzębski, et al. Cov-
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Appendix A

Incorporation of healthy volunteers
data into a phase II proof-of-concept
trial: supplementary material

A.1 mPBPK model

The extrapolation of the healthy volunteer model to the patients was based on several
hypothesis:

• Affinity association and dissociation constants were considered similar in
healthy volunteers and patients, as noted from internal data;

• Same quantity of membran-bound target in plasma for patients and healthy
volunteers;

• Presence of a median of 95 interleukin receptors in healthy volunteers and 347
in patients, which is the rationale behind the λ parameter.

∂Ctotal

∂ t
=

Input
Vp

+
1

Vp

[
Clymph ·L−CP ·L1 · (1−σ1)−CP ·L2 · (1−σ2)−CLp ·CP −

Vmax ·CP

Km +CP

]
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∂Ctight

∂ t
=

1
Vtight

[
CP ·L1 · (1−σ1)−Ctight ·L1 · (1−σL)

]

∂Cleaky

∂ t
=

1
Vleaky

[
CP ·L2 · (1−σ2)−Cleaky ·L2 · (1−σL)−

Vmax ·Cleaky

Km +Cleaky

]

∂Clymph

∂ t
=

1
Vlymph

[
Ctight ·L1 · (1−σL)+Cleaky ·L2 · (1−σL)−Clymph ·L

]

∂Rs

∂ t
= ksyn − kdeg ·Rs +

kdeg ·Rs ·CP

KSS +CP

CP = 0.5 ·
[
(Ctotal −Rs −KSS)+

√
(Ctotal −Rs −KSS)2 +4 ·KSS ·Ctotal

]

RO =
Cleaky

Cleaky +Km
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Fig. A.1 Representation of the mPBPK model.
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Table A.1 Key parameters of the mPBPK model.

Parameter Description
Input Input concentration of the drug
Ctotal Total concentration of the drug
Clymph Concentration of the drug in the lymph volume

CP Concentration of the drug in the plasma
Ctight Concentration of the drug in the tight compartment
Cleaky Concentration of the drug in the leaky compartment

VP Plasmatic volume
Vmax Maximum binding capacity in the binding site
Vtight Volume of the distribution of the drug in the tight compartment
Vleaky Volume of the distribution of the drug in the leaky compartment
Vlymph Total lymph volume

L Lymph flow
L1 Flow in the tight compartment
L2 Flow in the leaky compartment
σ1 Vascular reflection coefficient for the volume of tight compartment
σ2 Vascular reflection coefficient for the volume of leaky compartment
σL Lymphatic reflection coefficient

CLP Systemic clearance
Km Concentration of the free (not bound) drug
Ksyn Constant for soluble receptor degradation
Kdeg Free soluble receptor degradation rate
KSS Quasi-stationarity constant
Rs Amount of soluble receptor
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A.2 Histogram of ROs

Fig. A.2 Histogram of the distribution of γ = logit(RO) in the treatment and control arm.
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A.3 Heatmaps

In this supplementary material we present additional simulation scenarios cited in
the main article. We start from the heatmaps on type I error, maximum type I error
and power. We considered the first efficacy criteria only, the second efficacy criteria
only and both efficacy criteria.

Fig. A.3 Heatmap of Type I Error with the first efficacy criteria only for robust priors with
different weights varying the total sample size with (2:1) randomization. The treatment effect
is equal to the expected control effect (-1).
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Fig. A.4 Heatmap of Type I Error with the second efficacy criteria only for robust priors
with different weights varying the total sample size with (2:1) randomization. The treatment
effect is equal to the expected control effect (-1).

Fig. A.5 Heatmap of Type I Error considering both efficacy criteria for robust priors with
different weights varying the total sample size with (2:1) randomization. The treatment effect
is equal to the expected control effect (-1).
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Fig. A.6 Heatmap of the maximum Type I Error with the first efficacy criteria only for robust
priors with different weights varying the total sample size with (2:1) randomization. The
treatment effect is equal to the expected control effect and spans in [−7.3;4.9].

Fig. A.7 Heatmap of the maximum Type I Error with the second efficacy criteria only for
robust priors with different weights varying the total sample size with (2:1) randomization.
The treatment effect is equal to the expected control effect and spans in [−7.3;4.9].
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Fig. A.8 Heatmap of the maximum Type I Error with both efficacy criteria for robust priors
with different weights varying the total sample size with (2:1) randomization. The treatment
effect is equal to the expected control effect and spans in [−7.3;4.9].

Fig. A.9 Heatmap of power reached with the first efficacy criteria for robust priors with
different weights varying the total sample size with (2:1) randomization. The treatment (-4)
is more effective than the control (-1).
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Fig. A.10 Heatmap of power reached with the second efficacy criteria for robust priors with
different weights varying the total sample size with (2:1) randomization. The treatment (-4)
is more effective than the control (-1).

Fig. A.11 Heatmap of power reached with both efficacy criteria for robust priors with different
weights varying the total sample size with (2:1) randomization. The treatment (-4) is more
effective than the control (-1).
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A.4 Long-run operating characteristics

Here we present the long-run operating characteristics for the BDB design with
w = 0.8 and different true responses for the treatment and the control. We provide
the type I error, the power, the average posterior weight, the average gain in precision
and the average bias in posterior estimation. These are calculated via 100000
simulations. The average gain in precision is defined as 1 - (width of the 80%
credibility interval / width of the 80% confidence interval). The bias in posterior
estimation is the difference between the posterior mean and the true response.

Table A.2 Long-run operating characteristics of BDB design with w=0.8, using different
assumptions for the true treatment effect. We have considered a control response of -1 and a
study with 45 (2:1) patients and a patient standard deviation of 6.

Assumed
true treat-
ment
response

Drift rel-
ative to
the prior
treat-
ment
mean

Pointwise
type I
error
(assuming
treatment
equal to
control)

Power
(assuming
control
response
equal to
-1)

Average
posterior
weight on
prior dis-
tribution

Average
gain in
precision
(with
respect to
a design
without
borrow-
ing)

Average
bias in
posterior
estima-
tion

-8 -4.21 9.7% 99.1% 0.39 -12% 0.7
-6 -2.21 9.6% 91.2% 0.80 26% 0.8
-4 -0.21 10.2% 62.8% 0.92 26% 0.1
-2 1.79 10.3% 22.7% 0.85 23% -0.7
0 3.79 7.3% 2.7% 0.49 -14% -0.8
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Table A.3 Long-run operating characteristics of BDB design with w=0.8, using different
assumptions for the true control effect. We have considered a treatment response of -4 and a
study with 45 (2:1) patients and a patient standard deviation of 6.

Assumed
true
control
response

Drift rela-
tive to the
prior con-
trol mean

Pointwise
type I
error
(assuming
treatment
equal to
control)

Power
(assuming
control
response
equal to
-1)

Average
posterior
weight on
prior dis-
tribution

Average
gain in
precision
(with
respect to
a design
without
borrow-
ing)

Average
bias in
posterior
estima-
tion

-3 -2.98 10.5% 25% 0.78 25% 1.1
-2 -1.98 10.3% 41.9% 0.85 26% 0.8
-1 -0.98 9.3% 62.8% 0.89 26% 0.4
0 0.02 7.3% 80.3% 0.90 26% 0
1 1.02 4.7% 91.6% 0.88 21% -0.4
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A.5 Posterior probability distribution

Here we present the posterior distributions of the BDB design with w = 0.8 and
different observed responses for the treatment and the control. We provide: the
point estimate and the 80% credibility interval for the treatment or control in the
design without borrowing; the point estimate and the 80% credibility interval for the
treatment difference in the design without borrowing; the posterior weight on the
prior distribution; the posterior median and 80% credibility interval for the treatment
or control; the posterior median and 80% credibility interval for the treatment
difference.
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A.6 Approximation by mixtures of two normal distri-
bution

The histogram displaying the empirical distribution of γ = logit(RO) reveals a bi-
modal distribution in the treatment arm. This bimodality arises from the variation
in the rate of decay of RO following the last treatment dose among individual pa-
tients. Some patients experience a rapid decline, while others exhibit a slower decay,
depending on their unique patient-specific parameters.

An intriguing possibility to address this observed bimodal distribution is to extend
the mixture prior introduced in the main paper. This extension involves adding an
extra informative component to better capture this bimodal shape. Utilizing the data
presented in the main paper and modeling the treatment arm data as a mixture of two
Normal distributions, we obtain the following results:

πT ∼ 0.612×N(−3.467,1.1082)+0.388×N(−4.290,1.0222)

πC ∼ N(−0.018,1.5952)

Figure A.12, A.13, and Table A.6 replicate the analysis results presented in the
main paper for the scenario described above. These results closely resemble those
previously discussed, with the only noticeable difference occurring in the type I
error rates at the extreme levels, where, beyond the defined plausible range, the two
distributions exhibit significant differences in their tails.
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Fig. A.12 The plot depicts the relationship between the Type I error and the effect size in
both arms, assuming equal effect sizes, while considering 30 patients in the treatment arm,
15 patients in the control arm, and varying prior weights (w) assigned to the informative
component.

Fig. A.13 The plot displays the power within the BDB design as a function of the discrepancy
between the effects in each arm. This analysis assumes a control effect of θC =−1, involves
30 patients in the treatment arm, 15 patients in the control arm, and various prior weights (w)
assigned to the informative component. It’s worth noting that a smaller difference between
the treatment and control effects indicates a more favorable treatment outcome. The vertical
dotted line signifies the minimum clinically significant difference of -3.
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Table A.6 Summary of the operating characteristics for BDB designs with 30 patients in the
treatment arm, 15 patients in the control arm, varying prior weights (w) on the informative
component, and design without borrowing. The plausible for the treatment and control
effects is specified as [-7.3, 4.9].

Design Type I error
when θT =

θC =−1

Maximum type
I error over the
plausible range
(value at which
occurs)

Range of values
where type I er-
ror is greater than
10% (probability
under πT and πC)

Power when
θT =−4 and
θC =−1

BDB with
w=1

11.0% 11.8% (-4.4) [-7.3, 4.9] (99.8%) 65.1%

BDB with
w=0.8

9.3% 10.6% (-2.9) [-4.4,-1.6] (10.7%) 63.0%

BDB with
w=0.65

8.4% 9.8% (-2.8) - 61.2%

BDB with
w=0.5

7.6% 9.0% (-2.6) - 59.3%

BDB with
w=0

5.7% 7% (-7.3) - 51.1%

Frequentist 5.2% 5.2% (all) - 50%
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A.7 Fictive and sensitivity analysis in a false positive
scenario

Similar to the fictive analysis presented in the main paper, a case-study, if combined
with an inappropriate application of the methods, could lead to a false positive
decision. Such a scenario is illustrated in Table A.7. In this case, the final results
are heavily influenced by the extrapolated data, which do not provide additional
evidence to the phase II study. This observation underscores the significance of the
tipping point sensitivity analysis shown in Figure A.14. It becomes evident that both
success criteria are far from being met in the phase II study alone, and a weight as
high as 0.8 (the weight chosen for incorporation) on the informative component is
required to satisfy both criteria, unlike the favorable case presented in the main paper.
In such a trial, a Go decision should not be made.

Table A.7 Summary of the primary analysis on the treatment difference, treatment and control
response, utilizing hypothetical but realistic data. The lower row showcases the simulated
observed data from a design without borrowing, clearly illustrating a failure to meet the
success criteria. In contrast, the upper row presents the outcomes achieved by combining
fictive observed data and informative components using a BDB design with a weight of
w = 0.8 demonstrating the fulfillment of the success criteria.

Evidence
Source

Treatment
difference
[80%CrI]

Treatment ef-
fect [80%CrI]

Control effect
[80%CrI]

Phase I + phase
II

-3 [-5.6;-0.1] -3.4 [-4.9;-1.9] -0.4 [-2.6;1.7]

Phase II only
(frequentist)

0 [-6.1;6.1] -2 [-5.5;-1.5] -2 [-7;3]



A.7 Fictive and sensitivity analysis in a false positive scenario 111

Fig. A.14 Sensitivity analysis conducted using hypothetical but realistic data, displaying
the posterior mean and 80% credible interval (CrI) for the estimated treatment difference in
relation to the prior weight. The two dashed lines on the graph represent the two success
criteria thresholds: (P[(θT −θC)< 0]> 0.9) and (P[(θT −θC)<−3]> 0.5).



Appendix B

A comparison of estimation methods
in adaptive enrichment designs with
time-to-event endpoints:
supplementary material

B.1 Additional simulation scenarios

In this supplementary material we present additional simulation scenarios cited in the
main article. In Figure B.1 we set the threshold to b = 0. In Figure B.2 we set T̃1 to 3
months after the interim analysis. We also compare 4 sub-populations while keeping
the other parameters as in the main setting and in Figure B.3 we present the results
averaged in all sub-populations, while in Figure B.4 we show the performance of the
estimators in each sub-population in the case of linear effects on the sub-populations.
In Tables B.1, B.2 and B.3 we present also the empirical probabilities of selection
for the different sub-populations in the different scenarios.

Table B.1 Empirical probability of selection for the different sub-populations in the simulation
study when b = 0, according to their log HR.

Log HR δi = 0 δi =−0.1 δi =−0.2 δi =−0.3
Probability of selection 50% 70% 84% 93%
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Table B.2 Empirical probability of selection for the different sub-populations in the simulation
study when T̃1 = T1 +90 days, according to their log HR.

Log HR δi = 0 δi =−0.1 δi =−0.2 δi =−0.3
Probability of selection 30% 50% 69% 83%

Table B.3 Empirical probability of selection for the different sub-populations in the simulation
study when 4 sub-populations are included, according to their log HR.

Log HR δi = 0 δi =−0.1 δi =−0.2 δi =−0.3
Probability of selection 33% 50% 65% 80%
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B.2 Threshold equal to zero

Fig. B.1 Estimators’ performances in case of three sub-populations and b = 0. Top row:
treatment ineffective in all sub-populations δ =(0,0,0); Middle row: treatment effective only
in one sub-population δ = (0 ,0 ,−0.3); Bottom row: linear effect on the sub-populations
δ = (−0.1,−0.2,−0.3). Left column: Bias; Centre column: Variance; Right column: Mean
Squared Error.
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B.3 Stage 1 patients followed for 90 days after interim
analysis

Fig. B.2 Estimators’ performances in case of three sub-populations and T̃1 = T1 +90 days.
Top row: treatment ineffective in all sub-populations δ = (0,0,0); Middle row: treatment
effective only in one sub-population δ = (0 ,0 ,−0.3); Bottom row: linear effect on the
sub-populations δ = (−0.1,−0.2,−0.3). Left column: Bias; Centre column: Variance;
Right column: Mean Squared Error.
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B.4 4 sub-populations

Fig. B.3 Estimators’ performances in case of four sub-populations. Top row: treatment
ineffective in all sub-populations δ = (0,0,0,0); Middle row: treatment effective only in
one sub-population δ = (0 ,0 ,0 ,−0.3); Bottom row: linear effect on the sub-populations
δ = (0 ,−0.1,−0.2,−0.3). Left column: Bias; Centre column: Variance; Right column:
Mean Squared Error.
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B.5 Sub-population specific bias, variance and MSE
with 4 sub-populations

Fig. B.4 Estimators’ performances in each sub-population in case of four sub-populations
and linear effects on the sub-populations. From top row to bottom row effect equal to:
0,−0.1,−0.2,−0.3. Left column: Bias; Centre column: Variance; Right column: Mean
Squared Error.
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B.6 Boxplots of the estimators

For completeness, we present also boxplots for the estimators.

Fig. B.5 Estimators’ boxplots for the different sub-populations in case of three sub-
populations and effect equal to: δ = (0,0,0).

Fig. B.6 Estimators’ boxplots for the different sub-populations in case of three sub-
populations and effect equal to: δ = (0,0,−0.3).
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Fig. B.7 Estimators’ boxplots for the different sub-populations in case of three sub-
populations and effect equal to: δ = (−0.1,−0.2,−0.3).

Fig. B.8 Estimators’ boxplots for the different sub-populations in case of four sub-populations
and effect equal to: δ = (0,0,0,0).
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Fig. B.9 Estimators’ boxplots for the different sub-populations in case of four sub-populations
and effect equal to: δ = (0,0,0,−0.3).
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Fig. B.10 Estimators’ boxplots for the different sub-populations in case of four sub-
populations and effect equal to: δ = (0,−0.1,−0.2,−0.3).
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