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Abstract

Over the past decade, remarkable advances in science, engineering, and technology
have catalyzed the expansion of robotics. This transformative progress has given rise
to a surge in the widespread integration of robots that interact directly with humans.
In the scope of this dissertation, emphasis is placed on the examination of human
interaction with robots. Specifically, the study delves into two distinct categories of
interaction: firstly, the bystander, i.e. a human who assumes a non-interactive role
with the robot but coexists in the same physical space, and secondly, the supervisor,
i.e. a human who oversees robots and makes decisions related to critical situations.

Some examples of bystander-robot interaction are the offices, hospital and hotel.
In such context, the main aim of the human is the avoidance, instead, the main
aim of the robot is to guarantee not only physical safety but also consider the
psychological safety associated with coexisting in an environment with humans. To
achieve an optimal integration of both types of safety, it is necessary that robot moves
intending to minimize any disturbance to pedestrians, thus seeking to ensure its social
acceptability. This goal is achieved through the concept of socially-aware navigation.
Thus, in this thesis two socially-aware navigation algorithms are developed: the first
is based on game-theory (GT), and the second is based on the social force model and
the game theory (GTSFM). Each algorithm underwent rigorous evaluation, using
state-of-the-art quantitative metrics and collecting qualitative information through
participant-administered questionnaires.

Compared to the current state-of-the-art method, the GT algorithm achieved
better performance according to both types of evaluation.

Regarding the quantitative evaluation, GTSFM exhibited a smoother path com-
pared to the two state-of-the-art algorithms, resulting in a more natural motion. The
qualitative analysis, performed with a real-world experiment, did not identify any
algorithm that showed significant superiority over the others. This lack of distinction
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can be attributed to unaccounted factors. The robot’s appearance could have obscured
the distinction between the algorithms. Additionally, the limited velocity of the real
robot may have limited the range of conditions tested among the different algorithms
and, consequently, obscured the distinction between them.

These results represent a significant milestone in advancing the integration of
robots into social environments also leaving important hints for future research
development.

On the other hand, some instances of supervisor-robots interaction are evident in
scenarios characterized by complex and critical tasks such as rescue operations. In
such context, a multi-robot autonomous system is involved to handle the mission.
Instead, the human is responsible for crucial decision-making, particularly assessing
the mission’s overall success, ensuring the safety of human lives, and managing
unforeseen situations. Within this context, coordinating a multi-robot system with
human supervision is crucial. Thus, in this dissertation, a task allocation in a dynamic
environment is proposed obtaining promising results.
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Chapter 1

Introduction

Over the past decade, advances in science, engineering, and technology have influ-
enced the growth of robotics, creating a notable escalation in the proliferation of
robots engaging directly with humans [8].

Historically, the utilization of robots was primarily confined to industrial contexts,
due to their adeptness in executing repetitive tasks to increase productivity and quality
of the work [9].

Currently, the growing accessibility and competitive pricing of service robots
are driving their integration into homes, potentially impacting daily life. The grow-
ing prevalence of service robots is not just a possibility but a tangible reality, with
examples of mobile robots coexisting harmoniously with humans. Notably, the
strides made in healthcare service robotics, catalyzed by the challenges presented
by COVID-19, highlight the importance and the substantial impact that these tech-
nological advancements can have on our well-being [10]. Moreover, the spectrum
of applications for robots has expanded across different domains such as: space,
agriculture, construction, hazardous scenarios, surveillance and security, to name a
few [11].

The trends and future directions in robotics strongly indicate that the pervasive
utilization of robots is ready to revolutionize numerous facets of our world, surpassing
the bounds of imagination [8].

Depending on the application, humans have the opportunity to engage with robots
through various modes of interaction. At the state of the art [12], five distinct human
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roles are defined: the supervisor, the operator, the collaborator, the cooperator, and
the bystander.

The supervisor oversees the robot’s operations and provides instructive guidance
on task execution. Moreover, in critical scenarios (such as rescue missions), the
supervisor has a crucial role in decision-making due to ethical issues associated with
managing the situation [13].

The operator is a human that controls the robot. During this interaction, the
human is placed in a higher hierarchical position than the robot, which operates under
human control. An example of this interaction is the surgical da Vinci robot [14],
which is directly controlled by the surgeon ensuring precise movements and elimi-
nating the possible hand tremor of the surgeon.

The collaborator shares the goal with the robot, forming a symbiotic relationship
in which mutual success is based on cooperation. In this case, the human collaborator,
although dependent on the actions of the robot, is not burdened with managerial
duties. An example of this interaction is an industrial setting where a robot assists
a human counterpart by securely holding and rotating hefty workpieces. This
collaborative interaction emphasizes a lack of hierarchical distinctions between the
human and the robot, fostering an environment of equality and shared responsibility
for task accomplishment [12].

Also the cooperator interacts with the robot to achieve a common goal. Unlike
the collaborator role, the cooperator is not directly dependent on the robot’s actions
due to a strict task allocation between the human and the robot. Thus, both partners
contribute to the completion of the task independently, but their combined efforts
are essential for achieving the shared overall goal. This cooperative scenario is used
in the pick-and-place robots in manufacturing. Here, the human and the robot are
co-workers on an assembly line, each undertaking specific tasks autonomously but
collectively working towards the shared objective of producing a certain product [12].

The bystander is a human who assumes a non-interactive role with the robot
but shares the same physical space. Despite lacking direct interaction, the human
must maintain a cognitive awareness of the robot and its movements to prevent
collisions. Some examples of such human-robot interaction are the use of mobile
robots in museums [15], offices [16], hospitals [17], and hotels [18]. In all these
scenarios, even in the absence of shared goals, humans and robots must synchronize
their actions to effectively navigate in the shared space and prevent conflicts.
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Fig. 1.1 Role of humans as bystanders in a human-robot shared environment.

This thesis focuses on two distinct human roles, namely the bystander and the
supervisor. Firstly, this thesis explores the role of the human as a bystander, studying
the design of some trajectory planning to enhance human-robot interaction (see
Figure 1.1). Secondly, this thesis examines the role of the human as a supervisor in
a critical scenario involving the coordination of a multi-robot system to accomplish
a shared objective (see Figure 1.2).

Human 
supervisor 

Critical decisions

Critical scenario 

Real-time scenario

Fig. 1.2 Role of human as supervisor within a multi-robots system in a critical
scenario.



4 Introduction

1.1 Thesis contribution in socially-aware navigation
context

In the bystander-robot interaction, the aim of the human is the avoidance, while
the robot aims to navigate respecting both the physical and psychological safety
of humans sharing the environment. To achieve optimal integration of both safety
aspects, robots must prioritize pedestrian comfort by minimizing disturbance during
their movement towards the goal, thereby ensuring its social acceptability. This
objective is realized through the concept of socially-aware navigation, which is
defined in [19] as:

"the strategy exhibited by a social robot which identifies and follows social
conventions (in terms of management of space) in order to preserve a comfortable
interaction with humans. The resulting behavior is predictable, adaptable and easily
understood by humans."

Thus, this thesis aims to provide steps forward to design a socially-aware motion
planning for an autonomous robot to be acceptable to humans and not annoy them.

Considering this ambitious goal, navigation is transformed from a purely techni-
cal task to a complex interdisciplinary challenge, combining perception, dynamical
system theory, social conventions, human motion modeling, and psychology.

In the pursuit of enhancing trust, comfort, and social acceptance, robots must
recognize humans as intelligent agents capable of interacting and influencing each
other’s movements. Current approaches in socially-aware navigation often over-
simplify human motion models by portraying humans as dynamic obstacles or
employing basic motion models [20, 21]. These oversimplifications fail to describe
the intricate nature of the interactions between humans, resulting in trajectories that
lack predictability, smoothness, and, consequently, fail to meet human acceptance
standards. Learning models [22–25] offer a promising alternative, with the potential
for superior outcomes. However, this approach relies heavily on access to exten-
sive training data involving human subjects, a resource that is not always readily
available.

In this thesis, we present two socially-aware robot navigation algorithms that
accurately model human behavior using game theory. Game theory stands out
as a powerful choice, presenting considerable advantages over alternative model-
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ing approaches like reactive strategies [20, 21] and learning schemes [22–25]. In
contrast to reactive strategies, game theory excels in its capability to predict and
anticipate motion, modelling the decision-making inherent in human social contexts.
In comparison to learning schemes, it surpasses challenges related to explainability,
generalization, and the often demanding requirement for extensive training datasets.

While ensuring the social acceptability of algorithms remains challenging due to
the inherent subjectivity and context-dependence of the concept, Kruse et al. [26]
propose a study that identifies three key approaches to enhancing robot acceptance:
human comfort, naturalness, and sociability. Then, building upon the classification
framework presented in [26], the authors in [27] assign to each approach the most
suitable measurement method, as described below.

(i) Human comfort involves ensuring an interaction between humans and robots
avoiding any annoyance or stress. Human comfort comprises both physical and
psychological dimensions, assessed through objective spatial models and subjective
participant evaluations, respectively. Regarding the former, studies demonstrate a
well-established link between interpersonal distance and human comfort levels [28].
In particular, one of the key factors influencing pedestrian comfort during robot
interaction is the robot’s ability to respect individual personal space [29]. Regarding
psychological comfort, the state of the art provides different types of questionnaires
such as the Godspeed questionnaire [30], the BEHAVE-II instrument [31], and the
Human-Robot Interaction Evaluation Scale (HRIES) [7];

(ii) Naturalness is the likeness of robots to humans in low-level behavior patterns.
Specifically, the naturalness is assessed by considering the human-likeness and the
smoothness of robot movements [27], considering both geometric and velocity profile
aspects. Beyond quantitative approaches, qualitative scales can assess naturalness of
movement by evaluating the animacy of robotic behavior [7];

(iii) Sociability refers to how well the robot interacts with humans in a socially
acceptable manner. In this regard, the HRIES scale also includes a sociability
sub-dimensions, which qualitatively assesses this factor through a questionnaire.
Moreover, according to [27], sociability refers to the compliance with explicit cultural
social conventions in navigation behavior. Examples of such behavior include
walking on the right side of a hallway or standing in a queue. These behaviors
typically reflect socially imposed constraints and can contribute to conflict resolution
and establishing social order in navigation. However, ensuring sociability is highly
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complex, influenced by both the target culture and the specific context in which the
robot is deployed. For these reasons, to assess quantitatively the robot movement,
this thesis employs the first two approaches, omitting the utilization of the last one.
This choice ensures the development of generalizable algorithms that do not conform
to specific social cultures. Notably, both algorithms developed in this thesis are
designed to ensure physical comfort through the respect of human personal space.
Regarding the naturalness, the first algorithm exploits the concept of human-likeness.
For the second algorithm instead, naturalness is quantitatively evaluated by analyzing
the smoothness of planned trajectories through performance metrics of the state of
the art.

Moreover, both algorithms are qualitative evaluated through questionnaires,
administered to volunteers to comprehend how humans perceive trajectories.

During the qualitative evaluation, both algorithms exploit the concept of an-
thropomorphism, which reflects humans’ innate tendency to attribute intentions
and consciousness to non-human entities [32]. As a result of this attribution, the
development of robotic trajectories sharing certain aspects of human movement,
strengthens anthropomorphism and increases acceptability among humans [33].

The first algorithm is qualitatively evaluated through a variation of the Turing
test administered in the form of an online survey questionnaire to a pool of 691
participants. The anthropomorphism is evaluated by exploiting the human-likeness
measurement. Results reveal that although the first algorithm achieves superior
performance to the state-of-the-art, the participants found little difference between
the trajectories generated by our algorithm and those executed by humans.

On the other hand, the qualitative analysis of the second algorithm is performed
through an experiment with a real robot and a pool of 76 people. To verify an-
thropomorphism qualitatively, the HRIES scale is used, which includes measures
regarding comfort, naturalness and sociability. The results show that the participants
failed to identify a single algorithm that demonstrated significant superiority over
the others. This absence of differentiation could be attributed to unaccounted factors.
The robot’s appearance could have obscured the distinction between the algorithms.
Additionally, the limited velocity of the real robot may have limited the range of
conditions tested among the different algorithms and, consequently, obscured the
distinction between the algorithms.
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These findings represent a significant step forward in integrating robots into
social environments and provide valuable insights for future research advancements.

1.2 Thesis contribution in Multi-robot system context

The increasing complexity of tasks in various domains, coupled with the limitations
of single robots, has fueled the development of multi-robot systems (MRS). These
systems, comprising multiple robots collaborating to achieve a common goal.

Unlike traditional single-robot systems, MRS leverages the power of collective
intelligence and distributed capabilities, opening up new horizons in various do-
mains, including rescue operation [34], large scale assembly [35], hazardous waste
cleanup [36], security [37], and agriculture [38].

The key motivation behind MRS lies in the recognition that a group of robots
working together can outperform individual units in terms of efficiency, flexibility,
and adaptability. The potential benefits extend to enhanced productivity, robustness,
and scalability, making MRS an increasingly attractive solution for addressing real-
world problems.

Complex and life-critical tasks, like rescue operations, frequently necessitate the
utilization of MRS involving unmanned vehicles and human operator. This strategic
combination ensures a comprehensive approach, leveraging the strengths of both
unmanned technologies and human expertise to effectively address the complexities
inherent in such critical tasks. While advanced robotic technologies provide their
capabilities in performing tasks in hazardous environments, a human supervisor
provides indispensable qualities such as adaptability, intuition, decision-making
and responsibility that are challenging for autonomous systems to replicate entirely.
Furthermore, human supervisor possesses the capacity for empathy and ethical
considerations, which are crucial in situations where delicate choices have to be
made. The supervision ensures perfect integration with the robotic team, allowing
real-time adjustments and strategy refinement. This calls for the design of robust and
efficient mission planning for MRSs with human supervisor.

This thesis investigates the design of a mission planning system for MRS working
alongside a human supervisor in critical situations. The developed approach aims
to optimize teamwork through effective MRS coordination, ultimately leading to
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mission accomplishment. Notably, our mission planning framework comprises
two key components: task allocation and motion planning, facilitating the efficient
calculation of task costs.

The work presented in this thesis introduces numerous innovations and enhance-
ments when compared to the existing state of the art. First, we propose an auction-
based method as task allocation for a heterogeneous team operating in a dynamic
scenario with human supervision. This method handles complex real-world chal-
lenges like precedence constraints, rescue priorities, and on-the-go re-allocations–a
setting that was not entirely contemplated in the past [39–44]. It also incorporates
human intervention by dynamically adjusting task allocation through constraints,
ensuring safety and adaptation to unforeseen circumstances. Second, we employ a
multi-goal motion planner in conjunction with an auction-based allocation strategy,
resulting in a system that is not only fast and efficient but also responsive to distur-
bances. In this context, the multi-goal motion planner optimally exploits the features
of the auction by simultaneously computing the cost for each robot to execute a
designated task. Third, unlike existing work, this system integrates human supervi-
sion through dynamic constraints on the auction-based task allocator. This promotes
ethical decision-making in demanding environments, aligning robot actions with
human values and responsibilities.

An extensive simulation campaign in a rescue scenario validates our approach
in dynamic scenarios. We highlight the benefits of the proposed multi-goal strategy
by comparing it with single-goal motion planning strategies at the state of the
art. Finally, we provide evidence for the system’s efficiency by demonstrating the
powerful synergistic combination of the auction-based allocation and the multi-goal
motion planning approach.

1.3 Outline

This thesis is divided into three distinct parts. The first part, titled "Socially-aware
Navigation", presents two novel algorithms developed to enhance the robot’s social
acceptance. Chapter 2 presents an introduction to the key socially-aware navigation
concepts used in this part. Then, in Chapter 3 the game theoretical trajectory planning
is presented considering both the quantitative and qualitative results. In Chapter 4,
the game theoretical social force model (GTSFM) for human motion prediction
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is presented. Then, in Chapter 5, the model developed in Chapter 4 is used to
control a mobile robot’s movement. In addition, Chapter 5 presents quantitative
results to assess the algorithm’s performance. On the other hand, in Chapter 6,
the experimental details for testing the GTSFM algorithm accompanied by the
presentation of qualitative results are introduced.

The second part of this thesis, titled "Mission Planning with Human supervi-
sion", presents an auction-based task allocation and motion planning for multi-robot
systems with human supervision in a critical scenario.

Finally, the third part is devoted to the final conclusions of this thesis.



Part I

Part 1 Socially-aware Navigation





Chapter 2

Key Socially-aware Navigation
concepts used in this part

This chapter lays the groundwork for the subsequent chapters about socially-aware
navigation. Three key concepts are presented: (i) a foundational overview of socially-
aware navigation concepts and the rationale for employing game theory; (ii) a
comprehensive review of existing literature on socially-aware navigation algorithms;
(iii) a detailed explanation of the methodologies chosen in this thesis to evaluate the
designed algorithms.

In particular, the first concept is presented in Section 2.1. The latter provides
essential context by introducing the notion of socially-aware navigation. Further-
more, since the subsequent chapters will present two game theory-based algorithms,
this section will comprehensively justify the rationale behind our design choice of
employing game theory in this domain.

The second concept is presented in Section 2.2. The latter is important to
understand how the algorithms, presented in the following chapters, fit into the
broader picture of the scientific literature.

The last concept, presented in Section 2.3, aims to explain the metrics used to
quantitatively measure the trajectories generated by the algorithms presented in the
following chapters and, in some cases, also the real trajectories of people.
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2.1 Socially-aware Navigation: foundational concepts
and motivations for employing game theory

The widespread diffusion of service robots for diverse applications is making au-
tonomous robots more and more pervasive in our lives [45]. In the near future,
autonomous robots will likely coexist and share our very space, such as hospi-
tals [17], exhibitions [46], and office buildings [16], to name a few. Application
scenarios will be characterized by populated and dynamic environments, where
autonomous navigation has to ensure not only the physical safety of human subjects,
but also a great degree of social acceptability [26]. Trajectory planners at the state of
the art mostly aimed at ensuring the former requisite [47–50], while seldom tackling
the social acceptability issue. This is primarily due to the fact that most contem-
porary autonomous navigation algorithms model humans as inanimate dynamic
obstacles rather than social entities interacting with each other through complex and
strategized patterns [51]. However, the oversimplification of human behavioral traits
in the design of navigation algorithms may have severe consequences, such as the
emergence of the well-known “freezing robot problem” [52]. The freezing robot
problem occurs when the environment exceeds a certain level of complexity and the
robot is no longer able to manage it because of some deficiencies in the navigation
algorithm, for example in the prediction of the human motion model. This context
could lead to conditions in which the robot considers all paths unsafe, so it freezes
its motion (or makes unnecessary maneuvers) to avoid collision with humans [52].

This is where socially-aware navigation emerges as a fundamental requirement
for the design of social robots. Socially-aware navigation gives robots the ability to
become from simple obstacle-avoiding entities into socially aware participants in
navigation. Through sensor fusion and accurate human-motion predictions, robots
can: (i) perceive the social environment through sensors; (ii) understand and ad-
here to social norms; (iii) make decisions that are not only collision-free but also
socially appropriate, considering factors such as cultural norms, and anticipated
human behavior; (iv) plan and execute their movements mimic human behavior to
enhance human-robot interaction and social acceptability [33]. Thus, socially-aware
navigation is a complex concept that combines perception, dynamical system theory,
social conventions, human motion modeling, and psychology.
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In this thesis, to design the two socially-aware trajectory planning presented in
Chapters 3 and 5, we leverage the concept of anthropomorphism, i.e. the intrinsic
tendency of humans to attribute intentions and consciousness to non-human enti-
ties [32]. Due to such an attribution, designing robotic trajectories that share some
features with human trajectories would reinforce anthropomorphism, enhancing the
acceptability by humans [33]. Hence, developing accurate models of human motion
and decision-making processes while navigating in populated environments is a
problem of paramount importance.

Recent efforts in socially-aware navigation model humans as static entities [53] or
as agents driven by very simplistic motion models [54]. Such simplistic assumptions
may hardly cope with the complexity of human behavior and interaction, yielding
trajectories that are far from predictable, smooth, and in turn acceptable for humans.
Models based on learning theory, on the other hand, promise better results [55]
provided that a large training data set involving human subjects is available, which is
not always the case.

Game theory is a powerful and flexible mathematical paradigm to study strategic
interactions between different components of a system (in our scenario, moving
individuals) [56]. Because of such flexibility, game theory has rapidly increased in
popularity over the past decades and has found application in interdisciplinary studies
in multi-agent interactions in many fields, including smart mobility [57], opinion
dynamics [58], distributed control [59], epidemiology [60], building evacuation [61,
62], human-unmanned vehicle interaction [63], and multiple robot coordination [64–
66].

Game theory offers substantial benefits compared to alternative modeling meth-
ods, such as reactive strategies [20, 67, 68] and learning schemes [22–25]. With
respect to the former, game theory is able to perform motion prediction and an-
ticipation of the behavior of other humans, typical of human decision-making in
social contexts [69]. Compared to the latter, it overcomes their distinctive lack of
explainability, generalization, and the need for large training data sets. For a thorough
discussion of socially aware navigation literature, please refer to the subsequent
section.

Nevertheless, despite the well-known ability of the game theory to model different
aspects of human behavior, only a few efforts have attempted to incorporate it into a
mobile robot motion. This limited literature could be attributed to the inherent non-
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negligible computational complexity of the game theory which therefore leads to the
choice of computationally lighter solutions but at the expense of human prediction
accuracy.

The main bottleneck of the algorithms that adopt the game-theory is related
to the estimation of the Nash equilibrium- the condition in which no agent has an
incentive to unilaterally change its own action (or strategy) if the other players do
not change theirs. Despite this, in the design of the two algorithms presented in this
thesis, we adopt the game logic and we postulate that the players, involved in the
game, tend to reach a Nash equilibrium. This hypothesis is justified by the study
conducted by Turnwald [69], where the main result reveals that the Nash equilibrium
solution leads to trajectories that closely resemble human decision-making patterns.
Nevertheless, to handle the Nash equilibrium calculation in real-time in the two
algorithms, we used solutions that balance computational efficiency with the capacity
to model human behavior. In particular, in the first algorithm, each player (human
or robot) interacts only with those players whose initially estimated trajectories
intersected, as detailed in Chapter 3. This approach limits the number of players each
individual considers, reducing computational demands. Additionally, the actions
available for each player are discretized and restricted to seven, further simplifying
the decision-making process.

The second algorithm employs a similar strategy, limiting the number of choices
for each player to four to enable real-time calculation of Nash equilibrium.

Thus, the approaches presented above allow a trade-off between the computa-
tional feasibility and the ability to incorporate human anticipation into the navigation
algorithm.

Moreover, continuous advances in the computational power of microcontrollers
have opened up new possibilities to implement even computationally demanding
algorithms on modestly sized mobile robots. This technological advance paves the
way for exploring the potential of game theory based approaches in this domain.

For these reasons, this thesis presents two novel socially-aware navigation algo-
rithms exploiting the game-theory methodology. In particular, the first algorithm
leverages pure game theory (Chapter 3), while the second adopts a hybrid approach,
combining the game theory principles with the well-known social force model
algorithm (Chapters 4, 5, and 6).
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2.2 Literature review

Different surveys have proposed a wide range of solutions to classify the socially-
aware navigation approaches [26, 70]. In particular, in [70] authors enhance the
research done in [26] with the recent growth of deep learning approach. Following
the classification suggested in [70], the state of the art can be classified into: reactive
based, predictive based, model based and learning based. However, this type of
classification allows some algorithms to fit into multiple categories at the same time.
Therefore, in this thesis we chose to classify algorithms (according to [71]) in a more
general way: model-based and learning-based. Model-based algorithms rely on
human-motion mathematical models, like geometric rules or physics equations, to
enable the navigation robot process. On the other hand, learning algorithms, learn
from real human motion data, allowing them to better mimic human behavior in
navigation.

At the state of the art, many authors have treated the problem using the model-
based approach. A prominent representative in this category is the Social Force
Model (SFM). It leverages attractive and repulsive forces between agents (detailed
in Chapter 4) to simulate human-like movement based on the laws of Newtonian
mechanics. Motivated by the model’s potential for broader applicability, subsequent
research has focused on expanding its capabilities through the addition of new forces.
An example is in [72], where authors took a step forward by extending the social force
model to design a robot’s motion plan that seamlessly accompanies a person walking
alongside. This innovation involved introducing a force that specifically accounts
for the dynamics of human-robot interaction. To improve robot navigation in social
settings, the authors in [73] propose a novel approach that integrates human intention
into the social force model. By leveraging body pose and face human orientation, the
model infers human intent, enabling robots to react more appropriately in dynamic
social situations.

The Velocity Obstacle (VO) planner, introduced by Fiorini and Shiller in 1998 [48],
generates avoidance maneuvers by determining a permissible velocity for the robot
outside the collision cone. The latter represents the space of velocities that could
lead to a collision with the moving obstacle. However, VO does not consider the
reciprocal mutual avoidance typical of human behaviour during navigation. Thus,
recognizing this limitation, Berg et al. [49] introduced Reciprocal Velocity Obstacle
(RVO). While this approach effectively prevents collisions under specific circum-
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stances, it fails to offer a definitive guarantee for all scenarios (such as when both
agents choose the speed inside each other’s RVO), lacking the generality required
for comprehensive collision avoidance. To overcome this problem, RVO was further
refined in [21] with Optimal Reciprocal Collision Avoidance (ORCA).

The algorithms presented above adopt a reactive navigation strategy, primar-
ily reacting to the immediate presence of pedestrians through obstacle avoidance
maneuvers rather than anticipating their future movements. However, within the
model-based category, there also exist approaches that overcome the limitations of
reactive logic by incorporating predictions of human future movements within a
specific time horizon. An example of such approach is the adoption of game theory
to design motion planning for a mobile robot. Despite the well-known ability of the
game theory to model different aspects of human behavior, only a few efforts have
attempted to incorporate it into a mobile robot motion. In this context, Turnwald et
al. [69] modelled human navigation as a non-cooperative game. They evaluated five
different cost functions and conducted real-world experiments with two participants
to identify the most effective one. Notably, their findings suggest that path length
minimization produced the best results. However, the core contribution of their
work lies in real-world experiments on how pedestrians choose trajectories based
on achieving a Nash equilibrium. The same author in [74], investigates how the
game-theoretic human model can be further adapted for designing a human-like
motion planning.

While the model-based approaches have impressive advantages like rapid imple-
mentation without a training process with data and the generalizability to a more
complex environment, they face certain limitations. Firstly, the lack of human-like
behavior training with real data might lead to unnatural navigation patterns, po-
tentially causing confusion or discomfort in shared spaces. Secondly, fine-tuning
the model’s parameters for optimal performance in specific environments can be a
complex and time-consuming task.

On the other hand, the continuous advancements in deep learning technology and
the integration of deep neural networks are contributing to the growing popularity of
learning-based approach. The latter can be divided into three classes according to
their different functionalities: supervised learning, deep reinforcement learning and
inverse reinforcement learning.
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The supervised learning leverages real-world pedestrian trajectory data to train
algorithms that capture and reproduce the social interactions observed in human
navigation. Based on this line of research, Singh et al. [75] and Xie et al. [76] demon-
strate the effectiveness of supervised learning for robotic navigation in dynamic
environments.

The deep reinforcement learning algorithms mimic the way animals and humans
learn, adapting their behavior based on rewards. These latter are mathematically
represented as a score (reward function) that provides feedback on how well an
agent’s interaction with the environment aligns with its objectives. An example of
this method is adopted in [77, 55, 78]. However, designing reward functions for
deep reinforcement learning in robotics could be difficult, especially in complex
scenarios [70]. Thus, inverse reinforcement learning offers a solution by learning
from expert demonstrations to automatically deduce the underlying reward structure,
which can then be used by deep reinforcement learning for training social-aware
navigation policies [79]. Recent works by [80, 81] prove the successful application
of this method in the robot navigation context.

Unlike model-based approaches, learning-based methods leverage real-world
trajectory data to achieve behavior closer to human navigation. However, this ad-
vantage comes at the cost of extensive data requirements for training and limited
generalizability beyond the specific training scenarios. Moreover, the limited inter-
pretability of the output of these methods presents a significant challenge, creating
difficulties in comprehending the underlying causes of specific behaviors. Conse-
quently, debugging and diagnosing issues become more complex posing a major
drawback compared to model-based methods. Limited interpretability of the out-
puts in some cases may lead to unexpected and potentially dangerous behaviors in
human-shared environments. Careful design of recovery and emergency mechanisms
is crucial to ensure the robot’s movements remain safe and socially acceptable under
all circumstances.

2.3 Performance metrics

To enhance the robot’s acceptance, navigation algorithms should ensure both their
effectiveness in achieving goals and their ability to provide a natural and comfortable
experience for humans (for details see Section 1.1). This necessitates the use of
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Symbol Meaning
pi position of the agent i
p j position of the agent j
vi speed of the agent i

Tgoal number of time steps needed to reach the goal
θi(t) orientation of the agent i at time t

Table 2.1 Notation of the performance metrics.

precise performance metrics that quantitatively assess these aspects. Several state-of-
the-art performance metrics, such as those proposed by Biswas et al. [82] and Gao et
al. [27], have been developed for this purpose.

This section focuses on the chosen performance metrics adopted in this thesis.
Since some of these metrics will be also applied to human trajectory evaluation
(Chapter 3), henceforth the term agent is used to refer to both robot and human.

The notation used in this section is summarized in Table 2.1.

The performance metrics used to assess the trajectories’ performance are:

• Path Length Ratio (PLR)

This performance metric measures the ratio between the direct line-of-sight
distance between the starting and ending points of a path, and the actual
distance traversed by the agent between those two points:

PLR =
∥pi(Tgoal)−pi(0)|

∑
Tgoal
t=1 ∥pi(t)−pi(t−1)∥

(2.1)

where Tgoal is the number of time steps needed for the agent to reach its goal.
Hence, this performance metric takes values in the range [0,1]. Generally, a
high PLR is desirable, signifying that the agent tends to reach its destination
while minimizing the length of the path. By measuring this metric, we can
analyze how efficiently and successfully the agent navigates towards achieving
its goal;

• Average Speed (AS)

This metric represents the average speed of the agent along the entire trajectory,
a factor used sometimes in evaluating its overall performance:
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AS =
∑

Tgoal
t=1 vi(t)
Tgoal

(2.2)

However, this metric may also capture perceptions of comfort. Studies suggest
a negative correlation between robot speed and perceived safety, potentially
impacting comfort evaluations [83];

• Closest Pedestrian Distance (CPD)

This metric denotes the distance between the agent i and the nearest agent j
during the entire considered trajectory:

CPD = min
t, j
∥pi(t)−p j(t)∥ (2.3)

An increased CPD value signifies that the agent i has a propensity to stay
further away from the other agents. This contributes to increasing the level of
comfort for humans;

• Path Regularity (PR)

This metric evaluates naturalness by measuring the normalized rotations made
by the agent during navigation.

Such metric is computed as follows:

PR = 1− ∑
Tgoal
t=1 |θi(t)−θi(t−1)|

PImax
(2.4)

where θi(t) denotes the orientation of the agent at a given time instant t. The
denominator PImax normalizes the path irregularity factor and is calculated as
follows:

PImax = max
algorithm1,
algorithm2,
algorithm3

Tgoal

∑
t=1
|θi(t)−θi(t−1)| (2.5)

where the maximization should be intended across all considered algorithms.

The PR assumes values within the range of [0,1]. A value of 1 signifies a direct
path from the agent’s starting point to the goal. On the other hand, a value
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approaching 0 indicates a significant number of rotations during navigation.
For our purpose, it is preferred to obtain a PR value closer to 1, to have a
smooth motion with few sudden changes in direction.

Each algorithm, developed in this thesis, is evaluated using a tailored set of
presented metrics, carefully chosen to align with the specific context, algorithm
objectives, and intended evaluation scope.



Chapter 3

Game theoretical (GT) trajectory
planning to enhance robot social
acceptance

Since humans and robots are increasingly sharing portions of their operational spaces,
experimental evidence is needed to ascertain the safety and social acceptability of
robots in human-populated environments. Although several studies have aimed at
devising strategies for robot trajectory planning to perform safe motion in populated
environments, a few efforts have measured to what extent a robot trajectory is ac-
cepted by humans. In this chapter, we present a navigation system for autonomous
robots that ensures safety and social acceptability of robotic trajectories. We over-
come the typical reactive nature of state-of-the-art trajectory planners by leveraging
non-cooperative game theory to design a planner that encapsulates human-like fea-
tures of preservation of a personal space, recognition of groups, sequential and
strategized decision-making, and smooth obstacle avoidance. Social acceptability
is measured through a variation of the Turing test administered in the form of a
survey questionnaire to a pool of 691 participants. Comparison terms for our tests
are a state-of-the-art navigation algorithm (Enhanced Vector Field Histogram, VFH)
and purely human trajectories. The experiment revealed that participants easily
recognized the non-human nature of VFH-generated trajectories, but they had dif-
ficulty distinguishing between game-theoretical trajectories and human-generated
trajectories.
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The chapter is structured to provide a comprehensive overview of the study. In
particular, firstly we outline the methodological approach employed in this study
and we situate this approach within the existing body of research to understand its
relative novelty and contribution to the field. Then, we present the methodology
employed to design the algorithm, providing a detailed description of the technical
aspects. Following this, we present the results of the Turing test, offering insights
into the algorithm’s performance. Finally, we conclude the chapter with a discussion
that encourages further exploration.

For a comprehensive review of the key concepts and current state-of-the-art in
socially-aware navigation, please refer to Chapter 2.

3.1 Overview of the approach and main contributions

In this chapter, we present a socially-aware robot navigation strategy that accurately
models human behavior using game theory (see Figure 3.1 for a graphical abstract
of the procedure). In particular, our approach uses non-cooperative game theory [56]
to model the navigation behavior of multiple humans in populated environments,
positing that conditions of safe navigation, adherence to social norms, and psycho-
logical comfort correspond to a Nash equilibrium in the proposed game-theoretical
model. Differently from [69, 74], our model contemplates more than two players –a
feature that is essential to model populated environments. The human motion model
informs the design of a robotic trajectory planner, whereby the robot tends to mimic
human behavior during motion and interaction in a populated environment.

Our work marks an important milestone in the field of social robotics. It provides
an efficient, social-aware motion planning framework that encapsulates realistic
features of human crowds, remarkably enhancing the social acceptance of the planned
trajectories. Namely, we incorporate the human personal space (i.e. the region
around the human in which others cannot intrude without causing discomfort) [29],
the recognition of human groups [84], the sequential decision-making typical of
human beings [85], and a natural human-obstacle interaction [86] –features that are
often missing in many approaches, including those based on game theory [74].

The methodology proposed in this chapter is generally applicable to any kind of
mobile robot. To avoid confounds related to the choice of specific hardware setup
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Fig. 3.1 Graphical abstract of the procedure. a) Construction of the game-theoretical
model for human motion; b) creation of the game-theoretical trajectory planner based
on the model previous designed, creation of the virtual environment and evaluation
of the performance metrics; c) creation of the videos with pedestrians and the robot
controlled by our game-theoretical trajectory planner; d) survey questionnaire and
data collection.
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and focus on the assessment of human perception of the robot’s motion, validation
is executed on virtualized environments, where the humanly populated scene is
extrapolated from surveillance videos. Three different experimental conditions are
considered: the first involves only human subjects, the second contains a virtualized
mobile robot programmed through the state-of-the-art Enhanced Vector Field His-
togram (VFH [87]) algorithm moving through the population, the third replaces the
VFH algorithm with our game-theoretical approach.

Across the three experimental conditions, we perform a twofold validation of
our approach: first, we evaluate performance metrics typical of path planning (path
length ratio, path regularity, and distance to the closest pedestrian), and then we
analyze the results of a survey questionnaire to directly assess social acceptability
by human subjects. To this aim, we administered a variant of the Turing test to a
pool of 691 volunteers, who evaluated the human likeness of three sets of videos
corresponding to the three scenarios explained above. To conceal the appearance of
the agents, we masked humans and robots by replacing them with arrows so that the
volunteers could not distinguish between them.

Evidence from our experimental campaign reveals that trajectories generated by
our game-theoretical approach exhibit performance metrics that are efficient and
closer to those achieved by human subjects than VFH. Moreover, the outcome of
the survey questionnaire highlights the superior acceptability of game-theoretical-
generated trajectories with respect to those generated through VFH.

3.2 Methodology

Figure 3.1 schematizes the proposed procedure for the realization and validation of
our game-theoretical framework for the social acceptability of robotic trajectories.
The methodology can be subdivided into four main logical phases, corresponding
to the panels in the figure. First, a game-theoretical model of pedestrian motion is
devised and its parameters are tuned based on the analysis of human motion videos
(panel (a)). Second, a robotic trajectory planner informed by the game-theoretical
pedestrian model is realized. The robot is deployed and operated in a virtual humanly
populated environment, where humans execute real trajectories extracted from videos.
In this phase, three important performance metrics in robotic trajectory planning
(path length ratio, path regularity, and distance to the closest pedestrian) are evaluated
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across the three experimental conditions (panel (b)). Third, the virtual environments
containing humans and the robot are processed and prepared to be administered for
the validation questionnaire (panel (c)). Finally, the questionnaire is administered
and the results are collected and analyzed (panel (d)). In the following, the main
components that constitute our methodology will be illustrated in detail.

3.2.1 Game-theoretical model

Assumptions

Let us start with a description of all the assumptions supporting our game-theoretical
model for human motion. To improve readability, here and henceforth we will refer
to human subjects as agents. This term will be also used for the robot when no
distinction between the two categories is required.

All pedestrians are rational agents with common knowledge moving in a 2D
populated dynamic environment.

Rational behavior entails that agents only aim to reach their own individual
motion goal (i.e. the location to which the agents wish to go). In mathematical
terms, this translates into a minimization of an individual cost (equivalently, a
maximization of an individual benefit), such as their overall path length [88] or
energy consumption [89]. Practically, agents continuously update their navigation
behavior while walking in populated environments, based on the observation and
possible prediction of the motion of the surrounding agents.

The possession of common knowledge by agents in our game-theoretical model
implies that all agents have the same knowledge about what actions can be performed
to reach their final goal and how other pedestrians behave while walking.

Such an assumption is reasonable when dealing with models of human traits, as
individuals commonly learn these skills by experience during everyday life [74].

Specifically, we consider a populated dynamic environment, possibly busy, but
not crowded, such as typical streets occupied by pedestrians walking on sideways, or
populated indoor spaces, such as hotel halls [74]. We suppose that the environment
contains static obstacles, that have to be avoided by agents in a natural manner. Our
approach is based on a microscopic modeling strategy, whereby a single individual
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is mapped onto a single software agent, which mimics the individuals’ decision and
their interactions.

Game description

The proposed model for pedestrian motion is a non-cooperative, static, perfect
information, finite, and general-sum game with many players (or agents).

In our model, each agent aims at reaching its own goal individually, but the
minimization of its individual cost does not exclude the possibility of collaborating
with other agents, should this help to attain individual goals [90] as well.

Our model recognizes as groups those pedestrians that move close to each other
keeping a similar direction of motion. These groups of agents are considered as
single players, whereby members of the group share a common strategy and a
common motion pattern. This last assumption practically entails that the navigation
strategy of the robot in avoiding human groups would treat them as a compact group
of people that cannot be split to better attain its own navigation goal.

The game is static in the sense that agents move and take decisions simultane-
ously, it is based on perfect information, that is, each agent knows the current and
the previous actions of all agents, e.g. via direct observations.

The game is also finite, i.e., the game has a finite number N of agents belonging
to the agent set N , where each agent i ∈N can choose among a finite number of
actions available, defined with the action set Θ, which is supposed to be common to
all agents. In particular, we indicate with θi(t) ∈ Θ the action executed by agent i
at the discrete time t. In our application, the execution of action θi(t) corresponds
to a motion of agent i in the 2D plane at constant velocity v and constant heading
θi(t) over the whole discrete time step ∆t. We assume that agents have a bounded
visibility angle and the possible action θi(t) is designed to uniformly partition such
an angle. We denote with pi ∈R2 the position of agent i in the 2D environment, with
respect to a fixed orthogonal reference frame.

Moreover, the proposed model is a general-sum game, i.e., the sum of all gains
and losses of the utility functions over all agents is not necessarily equal to zero.

Similar to [69], we postulate that, in such a navigation task, agents tend to reach
a Nash equilibrium – the condition in which no agent has an incentive to unilaterally
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change its own action (or strategy) if the other agents do not change theirs. In other
words, a Nash equilibrium occurs when each agent achieves its best response, i.e., its
minimum individual cost, given the actions of the other agents. In general, however,
existence and uniqueness of a Nash equilibrium is not guaranteed in our setup, and
its analytical characterization is almost always impossible to have, thus making
numerical approaches for an approximate computational necessary. Here, the Nash
equilibrium is approximately computed via the sequential best response approach
[91].

Let us explain the idea of the sequential best response for two agents, A and B:
agent A observes the motion of agent B and then solves an optimization problem to
determine its own strategy, given the latest observed strategy of agent B. Afterwards,
a check action is performed, verifying if the strategies of both agents are the same
as those computed in the previous iteration; in such a case, the game has reached
a Nash equilibrium. Otherwise, agent B computes its optimal strategy, given the
latest observed strategy of agent A. The procedure is applied iteratively, until the
equilibrium condition is met. The same strategy identically extends to N agents.

Our modeling procedure assumes that all the agents in the planar space play the
game mentioned above. After the model has been identified, we will use it to control
a single, synthetic agent to navigate through the populated environment. Such an
agent is called robot player.

Optimization problem

The sequential best response approach in our game-theoretical model for the human
motion in a populated environment requires the solution of a set of interdependent
optimization problems, one for each agent moving in the environment. The goal
of the optimization problem for each agent i is to find the best sequence of actions,
θθθ
∗
i = (θi(t),θi(t +∆t),θi(t +2∆t), . . . ,θi(t +T ∆t)), over a finite prediction horizon

T ∆t, given the actions of the other agents. Without loss of generalization and to
improve readability, here and henceforth we assume a unitary discrete-time step, i.e.,
∆t = 1.

All agents seek for the Nash equilibrium by applying the sequential best response
strategy, solving their own optimization problem based on the observed behavior of
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the rest of the population. We define the optimization problem for each agent i ∈N

as

θθθ
∗
i = min

θθθ i
J(θθθ i) (3.1a)

s.t.
∥∥pi(t,θi(t))− p j(t)

∥∥
2 ≥ β ∀ t,∀i, j ∈N , i ̸= j (3.1b)

pi(t,θi(t)) /∈ Oobs ∀ t,∀i ∈N (3.1c)

with
pi(t,θi(t)) = pi(t−1,θi(t−1))+∆p(θi(t),v). (3.2)

The cost function J(θθθ i) in (3.1a) is defined as

J(θθθ i) = Φgoal(θθθ i)+Φsmooth(θθθ i)+Φobs(θθθ i), (3.3)

where the three summands are defined as follows:

(i) The term Φgoal(θθθ i) tends to reduce the overall path length for each agent i
and, hence, models the goal-oriented attitude of the agent:

Φgoal(θθθ i) =
T

∑
t=1

γ(t)∥pi(t,θi(t))− p∗i ∥ (3.4)

with γ(t) being a time-variant weight factor; pi(t,θi(t)) is the estimated position of
agent i at time t, considering a constant speed modulus v and the heading control
action θi(t) applied at time t, computed using the kinematic update Equation (3.2);
and p∗i is the estimate of agent i’s goal in the time horizon T . In the absence of an
explicit definition of a pedestrian’s goal, we assume that, within the horizon [t, t +T ],
the goal of agent i lays on a straight line starting in pi(t) and oriented along the
observed agent heading at time t. Under these assumptions, the practical meaning of
the time horizon T is the estimate of the time interval within which a pedestrian sets
up and maintains their walking goal.

(ii) The term Φsmooth(θθθ i) penalizes excessive rotations, thus promoting smooth
trajectories. In fact, during navigation, humans tend to avoid too many changes of
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orientation to minimize their energy consumption [89]:

Φsmooth(θθθ i) =
T

∑
t=1

(1− γ(t))|θi(t)−θi(t−1)| (3.5)

where θi(t), θi(t−1) are the orientation of the agent at time t and (t−1), respectively.
We observe that the term Φsmooth(θθθ i) is weighted in a complementary fashion to
Φgoal(θθθ i), to satisfy the assumption (further detailed in the Implementation section)
of their relative importance as long as the agent approaches its target.

(iii) The term Φobs(θθθ i) tends to optimize the natural interaction with static objects.
In fact, humans tend not to walk too close to static obstacles, unless it is necessary.
For this reason, we model this behavior as a soft constraint:

Φobs(θθθ i) =
T

∑
t=1

ρ

∥pi(t,θi(t))− pobs∥
(3.6)

where ρ is a weighting factor and the denominator in (3.6) is the distance between
the agent position pi(t,θi(t)) and the closest static obstacle pobs at time t. The
exact procedure to compute pobs will be explained later. Practically, Equation (3.6)
penalizes small distances between an agent and static obstacles.

The inequality in (3.1b) is a hard constraint imposing to avoid other agents,
assuming a circular region around agents as their personal space [29] to be avoided.
In this way, agent i is required to maintain at least a minimum distance β with other
agents in the observer scenario. Constraint (3.1c) models the avoidance of static
obstacles by imposing that the position pi(t,θi(t)) is outside the obstacle space Oobs,
defined as a subset, possibly disconnected, of the 2D planar space, occupied by
obstacles, where motion of agents is forbidden.

Equation (3.2) formalizes the kinematic update of the position of agent i at time
t, subject to a heading command θi(t), at a constant velocity v.

3.2.2 Validation of the game-theoretical model

The proposed game-theoretical human motion model is validated by conducting a
qualitative comparison between generated trajectories and human ones, observed in
open-source surveillance videos [92, 1]. These surveillance videos, used to validate
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the proposed model, show a typical urban scenario in which multiple agents walk
interacting with each other and avoiding static obstacles. Figure 3.2 illustrates the
frames, randomly selected, of the surveillance videos of two different scenarios.
Specifically, Figure 3.2 compares real trajectories executed by humans (Figs. 3.2a
and 3.2c with the estimated trajectories generated for all agents by the proposed
model solving our game-theoretical problem (Figs. 3.2b and 3.2d).

a) b)

c) d)
Fig. 3.2 Validation of our human motion model based on game-theoretical approach
with open-source surveillance videos [1].
a)-c) Real human trajectories; b)-d) Trajectories output of the game-theoretical
model.

We observe that, in both the illustrated scenarios, our game-theoretical approach
generates collision-free trajectories (Figs. 3.2b and 3.2d) that are smooth and re-
semble those executed by their human counterparts. However, we note that the
trajectories generated by our algorithm exhibit a sharper reaction than humans in
the vicinity of surrounding agents. This is evident while comparing Figure 3.2a and
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Figure 3.2b, focusing on the interaction between the green trajectory and the blue
one. A comparable circumstance can be observed in Figure 3.2c and Figure 3.2d,
with reference to the yellow trajectory. This phenomenon is most likely caused by
the discrete action set associated with each agent. Notably, in our implementation an
agent can choose one out of seven possible headings inside their own visibility zone,
resulting in a resolution of ±π/6 rad, in the attempt of minimizing the corresponding
cost function. On the other hand, human subjects can select their heading over an
infinite set.

A further cause of discrepancy between human and game-theoretical trajectories
resides in the kinematic update of the agent position in Equation (3.2) –a linear
update with constant heading and velocity over the whole sampling step– and the
estimation of the human target, assumed to be constant over an interval of duration
T –actually an unknown, subject to the very stochastic nature of human behavior.

3.2.3 Algorithm

The game-theoretical model of pedestrian motion described above is used to inform a
robotic trajectory planner for autonomous robots moving in populated environments.

Algorithm 1: Main algorithm
Initialization:
probot← InitializeRobotPosition
repeat

GroupRecognition
θθθ ← FirstEstimation
foreach agent i (robot included) do

Cobs← f alse
[flag defining the collision with obstacles for agent i]

Cagents← f alse
[flag defining the collision between agents for agent i]

Cobs,Cagents← CheckCollision(i,θθθ)
θθθ iii← ComputeSolution(i,θθθ ,Cobs,Cagents)

probot← UpdateRobotPosition
until probot = pgoal;

The main steps executed by the proposed trajectory planner are described in
Algorithm 1. First, the robot position (probot) is initialized using the function
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Algorithm 2: The ComputeSolution function
ComputeSolution(i,θθθ ,Cobs,Cagents)

if Cagents then
θθθ

gt
iii ← GTPlanner(θθθ) [Solution to Algorithm 3]

θθθ
dec
iii ← Decelerate

if Cost(θθθ gt
iii )≤ Cost(θθθ dec

iii ) then
θθθ iii← θθθ

gt
iii

else
θθθ iii← θθθ

dec
iii

else
if Cobs then

θθθ iii← IndividualOptimization

return θθθ iii

InitializeRobotPosition. Then, the algorithm executes an iterative procedure that
stops when the robot reaches its target position (pgoal). Here, we will refer to both
humans and the robot with the term “agent”. Each iteration performs five main steps:
recognition of groups of humans (GroupRecognition), first estimation of trajectories
for all agents (FirstEstimation), collision checking between agents and with obsta-
cles (CheckCollision), computation of the agent trajectory (ComputeSolution), and
update of the robot position using the computed trajectory (UpdateRobotPosition).
This iterative procedure predicts the agents’ motion and generates the robot’s op-
timal trajectory over the fixed time horizon T , by applying the strategy detailed
below. After such an optimal trajectory for the robot is computed, only the action
corresponding to the first time step is actually applied to the robot and the process is
repeated until the robot reaches its goal.

In the following, each step of the Algorithm 1 is detailed:

• GroupRecognition. The algorithm performs the group recognition of agents
considering the observed orientation of each agent, and the distances between
them. In fact, a group is typically moving maintaining a common orientation
and keeping a distance between agents shorter than the personal space typical
of the single agent. Upon recognition, groups are considered as unique entities
and treated as single agents in the subsequent phases.
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• FirstEstimation. A preliminary estimation of all agents’ trajectories (i.e., θθθ ) is
performed, projecting hypothetical rectilinear trajectories over the interval T .

• CheckCollision. Given the trajectories of all agents (θθθ ), previously estimated
by the FirstEstimation, the CheckCollision function detects the possible oc-
currence of collisions between an agent i with obstacles and other agents,
activating the flag variables Cobs and Cagents, respectively. Moreover, we refer
to the occurrence of a collision with other agents also when the individual
personal space of an agent is violated.

• ComputeSolution. Considering the estimated trajectories (θθθ ), and the flags
Cobs and Cobs, Algorithm 2 computes a solution to the motion planning problem
for an agent i selecting one of the possible cases:

(i). if a collision with other agents is envisaged, two alternative solutions
are evaluated. Hence, the solution that involves the lowest cost of Equa-
tion (3.3) will be selected.

The first solution (θθθ gt
iii ) is computed using the strategy defined in Algo-

rithm 3, where trajectories are generated seeking for a Nash equilibrium
solution of the game presented in the Game description section.

The second solution is computed through the Decelerate function, which
evaluates the opportunity to decelerate –a typical human behavioral trait
in navigation– to avoid the collision with other agents. In particular, after
identifying the discrete time step t at which a collision between agent i
and other agents is envisaged to occur, the cost associated with sixteen
different deceleration patterns is evaluated using the cost function (3.3),
provided that constraints in Equations (3.1b) and (3.1c) are satisfied;

(ii). if an agent is envisaged to collide with a static obstacle (Cobs), the agent
solves its individual optimization problem described above (without
playing the game and, hence, not seeking for the Nash Equilibrium);

(iii). if no collision between agents or static obstacles is envisaged, trajec-
tories are kept linear, maintaining the current heading and constant
velocity, practically implementing what was already computed in the
FirstEstimation procedure.
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• UpdateRobotPosition. Considering the computed trajectory of the robot, the
action corresponding to the first time step is executed and the robot position is
updated using Equation (3.2).

Algorithm 3: Nash trajectory computation
Initialization:

k← 1
[iteration index]

θθθ
k← 000
[straight paths for all agents as FirstEstimation]

i← 1
[agent index]

Iterate until convergence:
p̄k

j← (3.2), given θθθ
k, for all j

[present and future predicted positions of all agents]
θθθ

k+1
iii ← solution to Eq. (3.1a–3.1c), given

(
p̄k

j

)
j ̸=i

[best response to all other agents]
if i < N then

i← i+1
[move on to next agent]

else
i← 1, k← k+1
[move on to next iteration]

end

Implementation The algorithm presented above has been implemented in
Matlab and the main implementation choices are discussed in what follows.

The discrete time step has been set to ∆t = 1.2s. The time horizon for optimiza-
tion has been set to T = 4, that is, 4.8 seconds. In the following, we opted to keep a
unitary discrete time step, to enhance readability.

As previously stated, each agent can execute actions taken from an action set Θ of
finite size. Specifically, in our implementation, each agent has seven possible actions
for θi(t), which represents the heading within the agent visibility zone. Namely, θi(t)
is updated as θi(t) = θi(t−1)+u(t−1), where u(t−1) takes values in the finite set
Θ = {−π/2,−π/3,−π/6,0,π/6,π/3,π/2} rad. We remark that we limited the cardinality
of Θ to seven, pursuing a trade-off between satisfactory performance and reasonable
computational complexity of the algorithm.
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In Equation (3.1b), the β parameter is set considering the Hall convention [29]
that posits the existence of a personal space of circular shape that ensures comfort
conditions for human navigation. The value of β has been estimated through the
analysis of the open-source surveillance videos [92, 1].

In Equation (3.3), the term (Φobs(θθθ i)) can be neglected if the first estimation of
the agent trajectory does not intersect any static obstacle. Otherwise, Φobs(θθθ i) in
Equation (3.6) is computed referring to the closest obstacle, toward which the agent
is projected to collide. Then, the closest point of such obstacle to the agent position
is computed (pobs). To reduce the computational load, obstacles are mapped into
a discrete spatial map overlapping with the 2D environment. The map consists of
a rectangular matrix of 576x720 cells, which are marked as being occupied by an
obstacle or free from them. Each cell covers approximately a square of 1.8x1.8 cm.

The weight γ(t) in Equations (3.4) and (3.5) is selected as a time-varying term
that is used to balance the relative importance of terms Φgoal(θθθ i) and Φsmooth(θθθ i)

over the optimization horizon T . This choice emerges from the analysis of the avail-
able surveillance videos, where we observed that the minimization of the distance
to the goal typically prevails on the smoothness requirement as long as the agent
gets closer to their goal, and vice versa. Considering T = 4 time steps, we chose
the following sequence for γ(t), starting from a generic time instant t∗: γ(t∗) = 0.6,
γ(t∗+1) = 0.7, γ(t∗+2) = 0.8, γ(t∗+3) = 1.0.

3.2.4 Trajectories generation for performance metrics

We designed trajectories for a preliminary quantitative assessment using performance
metrics in three experimental conditions, which differ for the algorithm governing
the motion of a selected agent (i.e., either a robot or a human being): in the condition
humans only (HO), all the agents were human beings moving in a real environment;
in the condition humans and GT (GT), one of the agents was controlled by our
game-theoretical algorithm, while the other agents were human beings; and in the
condition humans and VFH (VFH), one of the agents was controlled by the VFH
algorithm [87], and the other were human beings. Each experimental condition
comprises seven different experiments (i.e. seven different trajectories), differing for
the start and the goal chosen for the selected agent, the number of human subjects
involved in the interaction, and their motion patterns.
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The virtualized environment is constructed by processing movies collected from
surveillance cameras of populated environments [92], obtaining a 2D arena where
virtual agents reproduce the human motion captured in the movies. In the HO
condition, the performance metrics are evaluated in the original arena, with reference
to a randomly selected human being. In the GT and VFH conditions, a virtual agent
is introduced in the arena and commanded to navigate through the existing virtual
agents (corresponding to human beings) using the given trajectory planner.

3.2.5 Survey questionnaire, a-priori power analysis

Survey questionnaire

The proposed methodology is validated using a variation of the Turing test [93],
which evaluates whether the robot behavior, controlled by the game-theoretical
method, is comparable to or indistinguishable from human navigation patterns.

The variation of the Turing test consists of an online survey questionnaire com-
posed of three main parts: (i) in the first part, the participant underwent a training
phase to become familiar with the working environment (see Figure 3.3a-b); (ii) in
the second part, the participant watched 21 videos reproducing the seven experiments
for each of the three experimental conditions, where both the background and the
agents are concealed –blue arrows over a gray background– (Figure 3.3c illustrates a
frame of a single experiment); (iii) in the third and final part, the participant watched
the same 21 videos (but in a different random order), where they were asked in
addition to focus on a circled arrow (Figure 3.3d illustrates an example of a frame of
a single experiment). The participant was unaware that the circled arrow targeted
a random human agent in the HO experimental condition and the robotic agent in
GT and VFH experimental conditions. We remark that the seven experiments used
for the survey questionnaire are identical to those used to evaluate the performance
metrics computed in the previous section.

The execution of each part entails answering specific questions. In the first part of
the survey questionnaire, the participants were required to provide their gender, age,
and level of experience in robotics field on a Likert scale [94] from 1 (no experience)
to 5 (expert).
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a) b)

c) d)
Fig. 3.3 Overview of the survey questionnaire.
a) Training part with open-source surveillance video [1]; b) Training part, intermedi-
ate scenario; c) Second part of the survey questionnaire, i.e. recognizing the motion
of the "weird" arrow in the videos, if any; d) Third part of the survey questionnaire,
i.e. follow the circled arrow.
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During the training part, the participant is guided from a typical urban scenario
of Figure 3.3a to the particular scenario used in the other parts of the test illustrated
in Figure 3.3c. The intermediate scenario of Figure 3.3b is designed to gradually
guide the participant to the final set-up.

In the testing scenario of Figure 3.3c, agents (pedestrians and robot) have been
replaced with arrows and the urban environment has been removed to prevent the
participant from focusing on the scenario, rather than on the movement of agents.

In the second part, the participant watches 21 videos randomly (about 15 sec-
onds each) consisting of three different experimental conditions: 7 videos show an
environment with only pedestrians (HO); other 7 videos a scenario with pedestri-
ans and a robot controlled with an algorithm at the state-of-the-art (the Enhanced
Vector Field Histogram [87]) (VFH); and the remaining 7 videos show a scenario
with pedestrians and a robot controlled with the proposed algorithm (GT). In all
experimental conditions, robot trajectories are re-planned with a frequency of 2 Hz.

To assess the level of social acceptance of our game-theoretical trajectories, in
the second part (following habituation), we asked the participants to say if they
perceived “weirdness” in the motion observed in the videos, and then to indicate
which is the perceived “weird” arrow, if any, as shown in Figure 3.3c.

In the third part, participants were requested to determine whether the circled
arrow was a human or not. Then, participants were asked to rate the naturalness
of the motion of the circled arrow on a Likert scale [94] defined in a range from 1
(completely unnatural) to 5 (completely natural).

All videos used in the survey questionnaire are generated from an open-access
dataset [92].

The test takes about 20 minutes to be completed properly. The test has three
rules: (i) the participant cannot pause the video; (ii) the participant can watch videos
only once; (iii) the participant should complete the test without interruptions or
distractions.

A-priori power analysis

Preliminary, we conducted an a-priori power analysis to estimate the number of
participants required to provide acceptable and significant statistical results [95].
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To this aim, we used the free software G*Power [96]. First, we identified our case
analysis as a non-parametric study, since non-parametric statistical tests make no
constraints and prerequisites on the data distributions [97]. Then, we assumed that
the data collected after the a-priori study would be analyzed via the non-parametric
Kruskal-Wallis test because our independent variables have more than two inde-
pendent groups (HO, GT, and VFH) and our dependent variables (the rating of the
weirdness motion, human-likeness, and naturalness of movement) are ordinal.

Based on [95], we computed the total sample size considering the ANOVA
test [98], i.e., the parametric-equivalent test of the Kruskal–Wallis one and then
multiplied the result by the corrective factor ARE, obtaining the equivalent sample
size of the non-parametric Kruskal–Wallis test. The result of the a-priori analysis
for our non-parametric test is about 152 volunteers, considering an alpha level equal
to 5%, power of the study 80% and the three number of groups, corresponding
to the three different experimental conditions. We recruited the participants using
the Institutional mail of Politecnico di Torino and then we distributed an online
questionnaire to students and university staff. Ultimately, we collected 691 responses,
exceeding the sample size of 152.

3.2.6 Statistical analysis

Experimental data (both the generated robotics trajectories and the responses to
the survey questionnaire) were preliminary assessed for normality distribution and
homoscedasticity of variance (Levene’s test). These analyses revealed that data
violated the assumptions for parametric statistics. Thus, we decided to adopt a
non-parametric test, i.e., Kruskal-Wallis [99].

First, the quality of the trajectories generated by the two algorithms and the
HO condition was evaluated. We first addressed whether they differed in terms of
variability of path length ratio, path regularity, and distance to the closest pedestrian
through the Levene’s tests [100]. Significance level was set at p < 0.05 [99] (for all
statistical tests performed in this study), and paired post-hoc comparisons have been
conducted – adopting a Bonferroni correction – when appropriate. Following these
preliminary analyses, trajectory data have been analysed through non-parametric
Kruskal-Wallis test.
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Survey questionnaire data have also been analysed through Kruskal-Wallis test
followed by Bonferroni post-hoc analyses [101]. These analyses were aimed at
assessing whether study participants exhibited a differential appraisal of the different
trajectories in terms of weirdness, human likeness, and naturalness. This statistical
approach was adopted for all the questions in the second and third part of the
survey questionnaire, except for the second question of the second part. In the latter,
participants were asked to indicate the perceived “weird” arrow, if any. We posit that
more weirdness should be perceived in agents driven by algorithms than in agents
associated with human beings. For this reason, the answers expressed relative to the
HO scenario were not considered, since all arrows corresponded to human beings
and an indication of weirdness would not make sense to our research question. As a
consequence, in this specific instance, only two experimental conditions had to be
compared (GT and VFH) and, to this aim, we used the Mann-Whitney test [102, 103].

3.3 Results

In this section, the results of the analysis conducted on the trajectories of the 21
experiments (seven experiments for each of the three experimental conditions) are
presented. Then, the results of the survey questionnaire are illustrated and com-
mented.

3.3.1 Analysis of performance metrics

Three widely adopted parameters, deemed as important for socially navigating robots,
were evaluated across the three experimental conditions: the Path Length Ratio
(PLR), the Path Regularity (PR), and the Closest Pedestrian Distance (CPD) [104]
(for further detail see Section 2.3).

The PLR is defined as the ratio between the length of the line-of-sight path
between the initial and final point of a path and the actual path length between
the same two points [104]. A higher path length ratio is usually preferred, since
it indicates that an agent minimizes the length of the path to reach its goal. We
computed the PLR for each experiment and we illustrate its average values across
the three experimental conditions in Figure 3.4a. The results in Figure 3.4a suggest
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that the HO scenario was characterized by the highest average PLR, followed by GT
and VFH.
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Fig. 3.4 The mean value and the standard deviation for each experimental condition
considering each performance parameter are plotted in the figure. The three experi-
mental conditions are: HO: video with humans only; GT: video with humans and a
robot driven by a game-theoretical trajectory planner; VFH: video with humans and
a robot driven by a vector field histogram algorithm. The performance metrics are:
a) PLR (Path Length Ratio); b) PR (Path Regularity); c) CPD (Closest Pedestrian
Distance).

The PR quantifies to what extent a path is similar to a straight line [104]. Follow-
ing normalization, PR = 1 corresponds to a straight path from start to goal. Values
of PR closer to one are preferable, since they are indicative of a smoother motion,
without excessive changes of direction. In Figure 3.4b, the average PR for each
experimental condition is illustrated, where the highest average value pertains to HO,
followed by GT and VFH. These results appear in line with the tenet that humans
tend to minimize their energy, thus avoiding sudden changes of orientation, and with
the design principle of the VFH algorithm, which avoids obstacles only when the
agent is close to them [87], entailing swift changes of orientation to get away from
them.

The CPD is defined as the distance from the closest pedestrian, normalized with
respect to the maximum length measurable during experiments, which is the diagonal
of the experimental arena. Also for this parameter, the attainment of values closer to
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one is desirable, as this implies a good tendency in staying clear from humans when
following planned trajectories. Average values of CPD in the three experimental
conditions are illustrated in Figure 3.4c, where the highest average value is related to
GT, followed by HO and VFH. The reason for the latter is presumably due to the
purely reactive design of the VFH algorithm. We posit that the intermediate ranking
of HO with respect to CPD is due to the ability of humans to evaluate situations on a
case-by-case basis.

While the rankings described above are suggestive of superior performance
metrics attained by GT over VFH, the verification of the statistical significance of
these comparisons is in order.

To preliminarily evaluate the quality of the trajectories generated by the two
algorithms and the HO, we first addressed whether they differed in terms of inter-
experiment variability of the three performance metrics through the Levene’s test [100].

Hypothesis 1 (H0) The variance of the three performance metrics (PLR, PR, CPD)
is statistically indistinguishable when computed over the three experimental condi-
tions (HO, VFH, GT).

Essentially, we evaluated the extent to which each algorithm generated trajec-
tories that were similar to one another. Our analysis revealed that there exists a
significant differential variability with respect to PR (F2,18 = 3.75, p = 0.043). Thus,
we performed a post-hoc analysis that revealed much more variability in the VFH
videos compared to HO and GT (VFH vs. HO: p = 0.038; VFH vs. GT: p = 0.040;
HO vs. GT: p = 0.97). The inter-experiment variability within each experimental
condition was indistinguishable concerning PLR (F2,18 = 3.22, p = 0.064) and CPD
(F2,18 = 2.31, p = 0.130). These results indicate that, albeit indistinguishable in
absolute values, the reproducibility and predictability of each experimental condition
in terms of PR were much higher in HO and GT than in VFH scenario.

With the Leven’s test described above, we have not only shown that the variances
of the 3 experimental conditions in PLR and CPD are equal but we have also shown
that for these two parameters the assumptions for doing the Kruskal-Wallis test are
satisfied. Thus, in line with this consideration, the null hypothesis for the Kruskal-
Wallis is defined as follows:
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Number of participants 691
Gender 58% male and 42% female

Age 29.44±11.30
Experience with robotics 1.5±0.86

Table 3.1 Demographic characteristics and experience with robotics on a scale from
1 (minimum experience) to 5 (maximum experience) collected during the first part
of the test.

Hypothesis 2 (H0) The two performance metrics (PLR, CPD) computed over the
three experimental conditions (HO, VFH, GT) are statistically indistinguishable
across experimental conditions.

To this aim, Kruskal-Wallis analysis [105] was executed across the two per-
formance metrics, revealing the non-achievement of significant statistical distin-
guishability (χ2 = 2.5, p = 0.286 for PLR; χ2 = 0.36, p = 0.834 for CPD). The
reason behind such observations is strictly related to the consideration of only seven
experiments for each experimental condition, with differential degree of variability,
and thus characterized by a limited statistical power.

For completeness, we did an a posteriori power study to verify the limited
statistical power, and what we found is that the statistical power considering only
seven experiments per group is 6%, thus very limited.

3.3.2 Survey questionnaire

We collected 691 responses to the survey questionnaire, where participants were in
majority men in their thirties with very little experience in robotics (Table 3.1). The
age range of our sample goes from 18 to 78 years old.

A power analysis [95] indicated that the adequate statistical power was guar-
anteed with 152 participants. Since the number of participants largely exceeded
the required sample size, we opted for a bootstrapping approach [106], in which
we randomly sampled 152 observations from the complete pool of responses and
iterated this process 100 times. Adopting this procedure, we kept the sample size to
the appropriate number (thus reducing the odds of obtaining biologically irrelevant
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findings [107]) and increased the generalizability of our findings by testing their
robustness against repeated observations.

Experimental outcomes were analyzed with the Kruskal-Wallis test to statistically
reject the H0 hypothesis and understand if there exist differences among experimental
conditions.

Our null hypothesis posits:

Hypothesis 3 (H0) All experimental conditions (HO, VFH, GT) are perceived by
participants as indistinguishable.

In the analysis of the results of the second part, in accordance with our expec-
tations, the VFH condition was characterized by the highest level of weirdness
compared to HO and GT conditions, which were, in turn, indistinguishable from one
another (Kruskal–Wallis test χ2 = 107±13.5 and p < 10−17 for all bootstrapping
iterations; post-hoc analysis: for HO-VFH p < 10−10 for all bootstrapping iterations,
for GT-VFH p < 10−14 for all bootstrapping iterations, for GT-HO p > 0.05 for 88
bootstrapping iterations out of 100, but the remaining has p > 0.01).

Figure 3.5a illustrates the mean rank (in light of the bootstrapping procedure) in
“weirdness” of motion (WM) along with its standard deviation.

Notably, GT and HO are indistinguishable from one another, while VFH is
significantly different from GT and HO. Specifically, while VFH was considered
“weird” in the majority of instances (61%), GT was considered “weird” much less
often than HO videos (33% and 37%, respectively) (See Figure 3.6).

We then asked the participants who detected weirdness in the videos to indicate
which of the arrows exhibited such weirdness. We posit that more weirdness should
be perceived in agents driven by algorithms than in agents associated with human
beings. Our experiments indicated that the agent judged as weird was actually
associated with a robot only in 16% of GT, while this proportion drastically increased
to 47% of VFH (see Figure 3.6 patterned bars). This finding, combined with the
Mann-Whitney test (U = 4(103)±489, p < 10−20 for all the bootstrapping iteration
considering the whole bootstrapping analysis), supports the view that the trajectories
generated by GT are perceived as much more natural than those generated by VFH.
Additionally, it suggests that the motion of the robot controlled by GT is perceived
as more human-like than the one generated by VFH.
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Fig. 3.5 Summary of the post-hoc Kruskal-Wallis test of the survey questionnaire.
The mean rank of each group is plotted for each part of the test with the corresponding
standard deviation considering all bootstrapping iterations. a) Second part of the test
in which the attention of the participant is not focused on one arrow in particular. WM:
weirdness motion. b) - c) Third part of the test in which the participant is focused on
the circled arrow. HLCA: human-likeness of the circled arrow; NCA: naturalness
of the circled arrow. HO: video with humans only; GT: video with humans and a
robot driven by a game-theoretical trajectory planner; VFH: video with humans and
a robot driven by a Vector Field Histogram algorithm. The blue asterisk highlights
the statistical difference from HO, instead the red diamond highlights the statistical
difference from GT.
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Fig. 3.6 Result of the second part of the survey questionnaire considering the partici-
pants that perceive a “weird” motion in the 3 groups of experimental conditions and
recognize the correct arrow (the robot) in the populated environment (GT rec., VFH
rec.). HO: video with humans only; GT: video with humans and a robot driven by a
game-theoretical trajectory planner; VFH: video with humans and a robot driven by
a vector field histogram algorithm.



48 Game theoretical (GT) trajectory planning to enhance robot social acceptance

In the third part, we further delved into the subjective rating of the three motion
patterns by asking participants to focus on the motion of a circled target agent and
evaluate whether such motion corresponds to a human or not (human likeness), along
with its degree of naturalness on a Likert scale from one (minimum naturalness) to
five (maximum naturalness). When focusing on the qualitative measurements of the
human likeness, we observed that VFH-related arrows were considered much less
human-like (41.11%) than both GT (64.59%) and HO (80.31%). Thus, as illustrated
in Figure 3.5b, VFH is judged as the least human-like ( χ2 = 142.55±15.12, p <

10−22 for all Kruskal-Wallis bootstrapping iterations; post-hoc analysis: p < 10−5

VFH-GT, p < 10−30 VFH-HO) which is consistent with the previous part of the
test, where VFH is perceived as generating the “weirdest” motion. Additionally,
GT-related arrows were considered significantly less human-like compared to HO
(p < 10−4 post-hoc analysis GT-HO).

Figures 3.5c and 3.7 illustrate the results related to the naturalness of the circled
arrow. The figure 3.7 shows the result about the average naturalness of motion of
the circled arrow on a Likert scale from 1 (minimum naturalness) to 5 (maximum
naturalness), computed over the 100 iterations of the bootstrapping procedure.

According to our expectations, HO exhibits the highest mean degree of natu-
ralness (4) with a standard deviation of 0.04, closely followed by GT (3.5) with a
standard deviation of 0.04, whereas a larger gap separates VFH (2.6) with a standard
deviation of 0.05.

Importantly, although significantly different from HO, GT values exceeded three.
This may indirectly suggest that while HO videos were deemed natural, also GT
videos may have been regarded as human-like. Yet, this preposition is currently
speculative whereby the intermediate value (three) was not marked with the anchor
natural. Therefore, future studies are needed to precisely detail the individual
appraisal of the naturalness of the GT trajectory.

3.4 Discussion

The main goal of our study was to design a navigation system for autonomous
robots moving through populated environments, characterized by a high degree of
acceptability by humans. Specifically, in light of the increasing use of autonomous
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Fig. 3.7 Result of the third part of the survey questionnaire. The participant assigns a
degree of naturalness on a Likert scale from 1 (minimum naturalness) to 5 (maximum
naturalness) considering the circled arrow in the 3 experimental conditions. The
red points on the figure show the average naturalness of each rate of the Likert
scale considering 100 iterations with the bootstrapping approach, and the error bars
represent the standard deviation. HO: the circled arrow is human; GT: the circled
arrow is a robot driven by the game-theoretical trajectory planner; VFH: the circled
arrow is driven by the Enhanced Vector Field Histogram algorithm.
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robots in real life, we tested whether a navigation system designed through the
principles of game theory would generate indistinguishable trajectories from those
walked by human beings. To this aim, we first leveraged game theory to develop
a model capable of predicting the intention of motion of humans in populated
environments, and then, based on this model, we devised a trajectory planning
algorithm for a mobile robot. Finally, to assess the social acceptance of the generated
robotic trajectories, we conducted a survey questionnaire on a statistically robust
group of volunteers using a variation of the Turing test.

For greater completeness and toward even more robust outcomes, before analyz-
ing the results collected from the test, we also analyzed the geometrical features of
the robotic trajectories, generated in the three experimental conditions (HO, GT, and
VFH), selecting three performance metrics from the state of the art (PLR, PR, CPD).
The ranking obtained through this analysis (HO, GT, VFH) is consistent with the
results obtained through the Turing test, except for the closest pedestrian distance
(CPD), in which the trajectories generated by our planner (GT) exhibit higher values
of the parameter than those measured in environments populated by humans only
(HO). We hypothesize that this exception is due to the fact that our model guarantees
by design a minimum safe distance to pedestrians to prevent collisions and to ensure,
in any case, a comfortable action space. On the other hand, humans on the walk
are more flexible in this respect, and evaluate circumstances on a case basis. While
the outcome of the Turing test is consistent with the analysis of the performance
metrics of the trajectories, the statistical analysis (Kruskal-Wallis) executed on the
latter shows that this finding is not statistically significant. To explain this non-
statistically significant result, we point out that the statistical analysis was conducted
on only seven experiments per group, with differential degree of variability, and thus
characterized by a limited statistical power.

Moreover, to preliminary evaluate the quality of the trajectories, we conducted a
systematic analysis (Levene’s test) to assess the degree of variability of the different
scenarios. In other terms, we evaluated the extent to which each algorithm generated
videos that were similar to one another. This analysis revealed that there exists a
significant variability with respect to the path regularity (PR), whereby the videos
with the robot controlled by the VFH are the most variable, compared to the HO
and GT experimental conditions. This finding suggests that the VFH algorithm is
less predictable (i.e., it provides less regular results) than our algorithm and a real
pedestrian.
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The variant of the Turing test comprises a first part that functions as a training
phase. The second part comprises two consecutive phases. The first phase is devoted
to compare the social acceptability of trajectories generated by either our game-
theoretical algorithm (GT) or a state of the art algorithm (VFH) against a reference
experimental condition, a complex social environment populated by humans only
(HO). To this aim, participants were asked to say if they perceived weirdness in
HO, GT, or VFH experimental conditions. The statistical test confirms that the
perceived weirdness in trajectories in which only human subjects are involved is
statistically indistinguishable from trajectories where the GT-controlled robot and
human subjects coexist. Conversely, the videos in which the trajectories are generated
by the VFH algorithm are perceived with a remarkably higher degree of overall
weirdness compared with either HO or GT scenarios.

In the second phase of the second part of the test, participants were asked to
indicate which is the perceived "weird" arrow, if any. In this regard, we observed that
the trajectories generated by the VFH algorithm were more frequently recognized as
“weird” than those generated by our GT algorithm.

In the third part of the test, participants were requested to focus on a circled arrow
(a human in the HO experimental condition, a robot in GT and VFH ones), and were
asked to evaluate whether or not the motion of the circled arrow corresponded to
human recordings, and then rate their degree of naturalness. We observed that, while
the arrow in VFH scenario was perceived as not human-like, the arrow controlled
through GT was considered human-like, albeit not as human-like as the one rated
in the HO experimental condition. We believe that this result is related to the fact
that, in this part of the test, participants were asked to focus on one arrow only, thus
being biased toward detecting an artificial behavior. The same ranking between the
three experimental conditions (HO, GT, and VFH) resulted from the analysis of the
naturalness of motion of the circled arrow. Indeed, HO has the highest degree of
naturalness, closely followed by our GT trajectory planner, and then by the VFH
planner.

We can conclude that, if participants are not guided to focus on a particular
arrow, they would not distinguish much difference between a real human and a robot
controlled through our game-theoretical framework and, therefore, the generated
trajectory is a good candidate for social acceptance. This implies that our trajectory
planning algorithm would help programming robots to blend well in populated
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environments, and, hence, to be perceived as more friendly, collaborative, and
non-hostile.

Our findings are consistent with other studies in the literature, such as [74], where
a different game-theoretical planner is perceived almost as human-like as human
recordings. However, in [74], the authors created a human-like motion planner
for mobile robots, still maintaining a simplified framework that does not comprise,
for example, human groups, obstacle avoidance performed by humans, and the
human desire to keep a safe personal space around them [29]. Moreover, their tests
only comprise simplified scenarios: a first test with either only humans, or only
robots; a second test in which the participant, based on virtual reality, interacts with
an agent who can move as a human or a robot. In our study, we went one step
further in modeling (including the personal space, the group recognition, and the
human-obstacle interaction) but also in the design of the variation of the Turing
test (considering a real case scenario in which a robot moves in a human populated
environment). Nevertheless, it is hard to make extensive comparisons with other
approaches, as the literature on variants of the Turing tests for assessing social
acceptability of a robot agent is scant.

Notably, the literature reports three main methods to evaluate the human-likeness
and the social acceptance of robot navigation: (i) definition of social rules or perfor-
mance metrics and, then, assessment of the adherence of the robot motion planner
to these principles [108–110]; (ii) comparison between simulated trajectories and
observed pedestrian behavior [111]; (iii) questionnaire based on a variation of the
Turing test [112, 74]. The main limitation of the first two methods is that they do not
consider how humans perceive the robot. However, these methods can be applied to
evaluate, as a preliminary test, some features of the generated trajectories. Indeed,
our analysis of the performance metrics of the generated trajectories falls within the
first methodology, whereas the second methodology has been used as a validation
criterion for our game-theoretical model of pedestrian motion.

Hence, toward our aims, we deemed the Turing as an effective means to study
the human-likeness and the social acceptability of the generated trajectories.

Unlike the Kretzschmar’s [112] and Turnwald’s [74] tests, where volunteers
watched videos in which the totality of agents moved either in an artificial way
or as real pedestrians, our questionnaire changes completely such a perspective.
In fact, our test videos reproduce a true use case scenario of the algorithm (an
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environment populated by people with a single robot moving within), where the
real nature of agents is masked and made uniform to eliminate any participants’
bias. Moreover, unlike Kretzschmar’s test [112], where the Turing test is executed
only on 10 participants, we performed an a priori power analysis to infer the correct
sample size to obtain statistically significant results. Due to the largely superior
size of collected data than the outcome of the power analysis, we carried out a 100-
iteration bootstrap, always getting consistent results across iterations, highlighting
the robustness of our results and further corroborating our hypothesis.

When interpreting the results of our study, we should also acknowledge the
limitations of the model and of the test design. Regarding the former, our model
does not take into account the uncertainties that arise from the interaction with the
external world. Importantly, the stochasticity of human behavior is not explicitly
modeled, although this is implicitly accounted for through tuning model parameters
identified from real trajectory data, extracted from surveillance cameras. A range of
simplifying assumptions were in order to handle the computational complexity of the
algorithm. The main one resides in the discrete nature of our model, whereby each
agent can choose between a fixed number of motion directions –an indispensable
trade-off between predictive accuracy and computational effort. Moreover, the
designed human motion model has been devised to operate with a limited number
of pedestrians: its computational complexity may be difficult to manage if the
number of agents increases to more than a dozen. The pedestrian model used in
this study only considers people’s goal-directed and collision-avoiding behaviors,
while ignoring other social activities that humans may perform in a pedestrian
urban scenario, such as waiting for a bus or wandering without a clear direction.
Thus, any pedestrian behavior that is not contemplated by our model breaks the
assumptions under which our system works. In addition, our method does not allow
customization of trajectories. For example, the prediction of a trajectory walked by
an elderly person may be coincident with that of a child.

The main limitations of the test design are two: (i) the choice of the navigation
algorithm chosen for comparison (VFH); (ii) the use of pre-recorded pedestrian
trajectories for the design of the videos. These trajectories do not account for the
potential influence of the robot on human motions.

Regarding the first limitation, ideally, more than one algorithm should have been
selected in order to mitigate algorithm-induced biases. However, since the execution
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of the Turing test already took about 20 minutes to the average participant, we prefer
to limit our comparison to only one algorithm at the state of the art, in order to avoid
increasing the time of the experiment for each participant, mitigate attention biases
and, in the end, achieve robust results.

Regarding the second limitation, while neglecting pedestrian reactions to the
robot’s movement might be considered a limitation, this design choice aligns with
the core objective of this test: assessing whether participants recognize the robot
controlled by the GT algorithm in a human-populated environment and whether
they perceive its generated trajectory as human-like. Incorporating pedestrian reac-
tions to the robot’s movement in the videos would have required a human motion
model. However, no perfect human motion model exists. Any such model would
inevitably incorporate assumptions about the nature of pedestrian walking behaviors,
introducing biases in aspects such as preferred speeds, accelerations, and acceptable
personal space. Thus, including a model that simulated human reactivity would
have introduced additional "artificial agents" into the videos, potentially introducing
significant biases for the ultimate objective of the study. To avoid this problem, we
opted to place the robot in an arena with pre-recorded human trajectories.

We acknowledge that real-world experiments are still necessary to provide a
complete picture of social navigation performance. However, we believe that our
simplified approach provides a valuable first step in evaluating the potential of our
algorithm to generate human-like robot trajectories in populated environments.

Our work can be extended in several directions. To manage and predict the motion
of big crowds, mean-field games could be adopted [113]. We remark, however, that
crowded and populated scenarios are different in many aspects, and the deployment
of a robot in the two scenarios would cover totally different application fields.

The lack of customization in the inference of trajectories by our model can
be mitigated by combining our approach with learning strategies as in [114], en-
compassing variegate behaviors across the experimental scenario. In fact, adding
variability to the pedestrian model might allow for a more accurate prediction of
human motion pattern and should allow the robot to better adapt to the needs of the
human with whom it is interacting. For example, if a robot recognizes a person who
has difficulties in walking, the robot should be able to predict their movement and
possibly reduce its speed. Moreover, it would be interesting to understand and assess
the quality of our generated trajectories considering not only social acceptability but
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also the comfort [54] feeling of participants, for instance by creating a real shared
environment with humans and a robot.



Chapter 4

Game theoretical social force model
(GTSFM) for human prediction

To operate efficiently in human-populated environments, robots must be able to
recognize and consider mutual influences between humans, particularly in navigation
scenarios where mutual avoidance maneuvers are necessary. Furthermore, achieving
social acceptability for robots requires them to exhibit human-like behavioral patterns,
as individuals are more inclined to trust and interact with robots perceived as similar
to themselves. For these reasons, it is of paramount importance to develop navigation
models that incorporate such a human motion feature. To achieve this goal, in
this chapter, we propose a novel human motion model in which we encapsulate a
game-theoretic decision-making mechanism within the established framework of
the social-force model (SFM). The proposed model is able to predict the decision of
multiple agents as they interact with each other during navigation, and to plan their
optimal path toward reaching their goal. The model is compared against the standard
SFM through the use of two state-of-the-art performance metrics (Path Length Ratio
and Path Regularity). Our numerical results, performed in different scenarios with
an increasing number of agents, indicate that the proposed model outperforms the
classical SFM in all scenarios. This model will be used in Chapter 5 to design a
trajectory planning for a mobile robot in a shared space with humans.

This chapter is organized as follows. Section 4.1 provides an outline of the
methodological approach employed to model the human motion in social robot
navigation, as well as a review of the state of the art in human behavior modeling. In
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Section 4.1.2, we preliminarily introduce the SFM. Then, Section 4.2 presents our
novel human motion model. Finally, Section 4.3 presents and discusses the results
of our simulation experiments.

For a comprehensive review of the key concepts in socially-aware navigation,
please refer to Chapter 2.

4.1 Overview of the approach and main contributions

In this chapter, we propose a novel model of human motion, building on the well-
established social-force model (SFM) [20] and utilizing a game-theoretic formalism
to integrate human decision-making within navigation tasks. Our model is designed
to provide a reliable tool for comprehending human intentions in populated environ-
ments, with the ultimate goal of utilizing this information to control the motion of
robots in populated environments, as described later in Chapter 5.

In literature, multiple approaches have been proposed to model human motion.
Among others, these methods include reactive models [20, 68], learning methods [22–
25], and game-theoretic approaches [69, 115, 61, 62, 116].

The SFM [20] is one of the pioneering human motion models, where humans
are modeled as particles subject to a set of forces, which includes an attractive force,
which guides the particles toward a desired goal, and one or multiple repulsive
forces, which ensure collision avoidance among pedestrians and obstacles. A sim-
ilar approach is proposed in [68], where a human motion model results from the
combination of attractive and repulsive potential fields. These models, which rely
on the laws of Newtonian mechanics, allow for implementations with low compu-
tational complexity. For this reason, they found successful real-world applications,
particularly in the context of multi-agent navigation [117].

Despite powerful, these modeling approaches have some key limitations. They
are purely reactive, whereby they overlook the fact that humans possess the ability to
make predictions, manage conflicts, and cooperate with others while navigating [118].
This simplicity may limit their performance in terms of optimality of the planned
path and of social acceptability [74].

Toward addressing this limitation, recent efforts have obtained promising re-
sults using learning-based approaches to predict human motion [22–25]. However,
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learning-based approaches often require large training data sets. Moreover, they suf-
fer in handling changes in scenarios, as they may require to be completely re-trained
upon such changes. Additionally, the black-box nature of learning-based approaches
limits the interpretability of the selected actions.

Alternative approaches rely on game theory. Despite the well-known ability of
the game theory to model different aspects of human behavior, only a few efforts have
attempted to incorporate it into human motion models. Hoogendoorn et al. [115]
combined optimal control and differential games to describe human motion as an
optimal feedback control trying to reach goals by minimizing the cost of navigation.
The solution of the game stems from the solution of an optimal control problem.
The main limitation of this work is the assumption that pedestrians react only to
pedestrians that are directly in front of them, while other pedestrians are neglected.
Rahamati et al [116] combines game theory and learning approaches modeling the
interaction between pedestrians and the nearest agent exploiting game theory. How-
ever, such approach relies on the assumption that human motion is only influenced
by the nearest neighbor, and more complex interactions are neglected. Turnwald [69]
uses two types of non-cooperative games and posits that the attainment of the Nash
equilibrium in a static game describes human planning and interactions more ac-
curately than the prediction of the behavior of single individuals. The interesting
conclusions arising from this work are affected by two important limitations: first,
the test is limited to two players, whereas settings with multiple pedestrians are ne-
glected. Second, the authors assume that the decision process is executed only once,
overlooking the possibility of changing a decision during navigation, a situation that
normally happens in human navigation [85].

Here, in line with the model developed in Chapter 3, we use non-cooperative
game theory [56] to model the navigation behavior of multiple humans in populated
environments. Specifically, we devise a game whose action set is a finite set of
possible trajectories for each pedestrian. However, unlike Chapter 3, these possible
trajectories are generated using the well-established and computationally-efficient
SFM over a fixed-time horizon. Then, each pedestrian selects their action toward
minimizing a cost function that takes into account their willingness to reach their
goal, the regularity of their trajectory, and their willingness to avoid interactions
with other individuals within their personal space. The general structure of our
game-theoretical social force model (GTSFM) is illustrated in Figure 4.1.
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Fig. 4.1 Conceptual structure of the game-theoretic social force model (GTSFM).

Our model extends the current state-of-the-art along many directions. First, our
model keeps the computational efficiency of the SFM, while using it to estimate
multiple trajectories over a fixed-time horizon for each pedestrian. Second, we
incorporate game theory into our approach to determine the optimal trajectory for
each individual, taking into account the mutual influences between humans. Third,
unlike prior works that focus just on binary interactions [115, 116], in our model
each pedestrian interacts by playing a game with all other pedestrians present in the
scene. Furthermore, in contrast to [69], in our model the decision-making process is
calculated at every time step rather than just once, mimicking the sequential nature
of human decision-making processes.

After formalizing our model, we run a campaign of numerical simulations to test
its performance. Specifically, we compare performance metrics (viz. Path Length
Ratio and Path Regularity) of the trajectories generated using our model with those
generated using the standard SFM in different scenarios of populated environments.
The results of our numerical validation suggest that the GTSFM always exhibit
superior performance than the SFM across all scenarios. Overall, there is a significant
improvement in performance (up to about 30% compared to the standard SFM). Such
an improvement becomes less evident when the environment becomes too crowded,
e.g., in settings with 20 pedestrians in a 10×16m environment, suggesting that our
method should be preferred in populated, but not densely crowded, environments.
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4.1.1 Notation

We gather here some notational conventions used throughout this chapter. The sets
of natural, real, real nonnegative, and strictly positive real numbers are denoted by
N, R, R≥0, and R>0, respectively. We use roman font to denote scalar quantities
(x ∈ R) and bold font to denote vectors in the plane (x ∈ R2). Given a vector

x = (x1,x2) ∈ R2, ∥x∥=
√

x2
1 + x2

2 denotes its Euclidean norm.

4.1.2 Social-Force Model

The SFM was introduced by D. Helbing and P. Molnar in [20] to reproduce the
motion of pedestrians in an environment. Over the years, numerous scholars have
suggested various enhancements to refine and improve the Helbing model [119–121].
In this study, we are inspired by the works of Helbing [20] and Ferrer [120].

The SFM considers a set N = {1, . . . ,n} of n ∈ N pedestrians, who move in
a continuous planar space X ∈ R2. Each pedestrian i ∈N is characterized by a
goal pgoal

i ∈ R2, that is, the final position that the pedestrian wants to reach, and two
time-varying vectors that determine their current state: their position pi(t) ∈ R2 and
their velocity vi(t) ∈ R2. Position and velocity evolve in continuous time, t ∈ R≥0.
The motion of each pedestrian is governed by a set of forces. In particular, the model
includes an attractive force Fgoal

i , which drives the pedestrian toward their goal, a set
of interaction forces of the form Fint

i j , which makes pedestrian i to avoid colliding
with pedestrian j, and a repulsive force related to the proximity of the pedestrian to
an obstacle or wall Fobs

i .

The motion of the generic ith pedestrian is obtained by representing the pedestrian
as a particle complying with the laws of Newtonian mechanics. The equations of
motion of pedestrian i are given by the following system of ordinary differential
equations discretized with a time step ∆t

vi(t +∆t) = vi(t)+∆t

[
Fgoal

i (t)+ ∑
j∈N \{i}

Fint
i j (t)+Fobs

i (t)

]

pi(t +∆t) = pi(t)+∆tvi(t),

(4.1)
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where in the first equation we have assumed, without any loss in generality, that
forces are re-scaled so that all pedestrians have unitary mass. In the following, we
detail the three types of forces present in Equation 4.1.

Attractive force: Pedestrian i is attracted to their goal pgoal
i by means of the driving

force Fgoal
i (t). Specifically, fixed a scalar parameter vd

i > 0, which is the
desired velocity of the individual toward their goal, we define

Fgoal
i (t) =

vd
i êi(t)−vi(t)

αi
, (4.2)

where êi(t) =
pgoal

i −pi(t)∥∥∥pgoal
i −pi(t)

∥∥∥
is the desired direction (i.e., the normalized vector

that points toward the pedestrian’s goal) and αi ∈ R>0 is a parameter that
captures the relaxation time. The latter regulates the rate of change of the
pedestrian –the smaller values mimic a stronger tendency to decisively move
toward the goal.

Interaction forces: The motion of pedestrian i is influenced by the interaction
with other pedestrians. In fact, pedestrians tend to feel uncomfortable when
unknown pedestrians get close to their personal space and consequently try
to avoid this situation [19]. In the SFM, the interaction of pedestrian i with
pedestrian j is modeled with a repulsive force F int

i j (defined for all j ∈N \{i}).
We denote by ri,r j > 0 the radii of the personal spaces of pedestrians i and
j, respectively (i.e., the space that a pedestrian tends to keep void of other
pedestrians), and by di j(t) := ||pi(t)−p j(t)|| the distance between the two
pedestrians. Then, the interaction force is defined as

Fint
i j (t) = Ai exp

{
ri + r j−di j(t)

Bi

}
Ffov(t)n̂i j(t), (4.3)

where the constant parameters Ai,Bi ∈ R>0 regulate the strength and range of
the interaction force for pedestrian i, respectively. Ffov(t) ∈ [0,1] is a (time-
varying) scaling factor, associated with the pedestrian’s field of view, detailed
in the following, and n̂i j(t) =

pi(t)−p j(t)
∥pi(t)−p j(t)∥ is the direction between the two

pedestrians.

Since pedestrians have a limited field of view when walking and are affected
mainly by the objects within their field of view, the repulsive force is scaled
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by an anisotropic factor Ffov(t) ∈ [0,1] depending on the bearing γi j(t) of
pedestrian j, measured from pedestrian i1.

Such a factor is defined as

Ffov(t) = λ +(1−λ )
1+ cos(γi j(t))

2
, (4.4)

where λ ∈ [0,1] is the strength of the anisotropic behavior: the closer λ is to
one, the smaller is the impact of a limited field of view.

Repulsive forces from obstacles/walls: During navigation, a pedestrian instinc-
tively maintains a specific distance from the edges of buildings, walls, and
obstacles. The discomfort increases as the individual approaches a border,
as greater attention is required to avert the risk of injury, such as accidental
contact with a wall. Consequently, a border of a generic obstacle elicits a
repulsive effect, which is characterized by the following expression:

Fobs
i (t) = Aobs exp

{
ri + ro−di,obs(t)

Bobs

}
F f ov

i,obs(t)n̂i,obs(t), (4.5)

where the constant parameters Aobs,Bobs ∈R>0 regulate the strength and range
of the interaction force for pedestrian i, respectively. ri,ro > 0 the radius of the
personal spaces of pedestrians i and a value to model a safety distance from the
nearest point of the nearest obstacle, respectively. di,obs(t) := ||pi(t)−po(t)||
is the distance between the pedestrian i and the obstacle. As discussed for the
repulsive force between pedestrians (Equation 4.3), also the repulsive force
for obstacle is scaled by a corresponding anisotropic factor F f ov

i,obs(t) defined as
follows:

F f ov
i,obs(t) = λ +(1−λ )

1+ cosγi,obs(t)
2

(4.6)

where λ ∈ [0,1] is the strength of the anisotropic behavior: the closer λ

is to one, the smaller is the impact of a limited field of view and γi,obs(t)
is the bearing angle of the considered obstacle measured from pedestrian i.
Moreover, in the definition of the Equation 4.5, there is n̂i,obs(t), i.e. direction

1More specifically, the bearing γi j(t) is the angle between the direction of motion of agent i and
the segment joining the positions of agent i and agent j.
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Table 4.1 Model variables and parameters.

Symbol Meaning
n number of pedestrians

X ∈ R2 planar space
pi(t) ∈ R2 position of pedestrian i at time t
vi(t) ∈ R2 velocity of pedestrian i at time t
pgoal

i ∈ R2 position of the goal of pedestrian i
Fgoal

i ∈ R2 attractive force for pedestrian i at time t
Fobs

i (t) ∈ R2 repulsive force of the closest obstacle on pedestrian i at time t
Fint

i j (t) ∈ R2 interaction force of pedestrian j on i at time t
ri ∈ R>0 radius of the personal space of pedestrian i
r j ∈ R>0 radius of the personal space of pedestrian j
vd

i ∈ R>0 desired velocity (in modulus) of pedestrian i
αi ∈ R>0 relaxation time of pedestrian i
Ai ∈ R>0 strength of interaction force for pedestrian i

Aobs ∈ R>0 strength of repulsive force from obstacle i
Bi ∈ R>0 range of interaction force for pedestrian i

Bobs ∈ R>0 range of repulsive force from obstacle
γi j(t) ∈ R bearing of pedestrian j measured by pedestrian i

Ffov ∈ [0,1] anisotropic factor in pedestrian interaction
F f ov

i,obs ∈ [0,1] anisotropic factor for pedestrian-object interaction
γi,obs(t) ∈ R bearing of the nearest obstacle measured by pedestrian i

λ ∈ [0,1] strength of anisotropic behavior

between the pedestrian i and the nearest point of the nearest obstacle defined
as n̂i,obs(t) =

pi(t)−po(t)
∥pi(t)−po(t)∥ .

All the parameters of the SFM are summarized in Table 4.1.

4.2 Methodology

4.2.1 Game-Theoretic Social-Force Model (GTSFM)

In this section, we present our model of human motion, which encapsulates a game-
theoretic decision process within the SFM. For this reason, in the following, we will
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refer to our model as the game-theoretic social-force model (GTSFM). To simplify
the presentation we will refer to pedestrians as agents.

In our game-theoretical model, all pedestrians are considered rational agents
operating in a 2-dimensional dynamic environment that is populated with other
agents. Furthermore, all agents possess common knowledge, that is, they have access
to the same set of available actions to reach their final goal and the behavior of other
pedestrians while walking. This assumption is particularly relevant in modeling
human behavior, as individuals tend to learn these skills through experience in their
daily lives [74].

4.2.2 Game-theoretic formalization

Here, we present our model for pedestrian motion, which is a non-cooperative, static,
perfect information, and finite game with a finite number of agents. In our game,
each agent aims to achieve its own goal individually.

In the proposed GTSFM, the n agents N = {1, . . . ,n} move according to the
SFM and use a game-theoretic mechanism to regulate the strength Ai of their interac-
tion forces with other agents. This mechanism models a rational decision process to
establish the relative importance of two social forces, namely, the intent to reach the
goal and the willingness to avoid other agents entering one’s own space.

Specifically, agent i can select the value of parameter Ai from a finite set of
possible values Ai. A cost function J(a) associates to each action a ∈Ai its cost. In
a general setting, such cost can be associated with different characteristics of the
motion, such as path length [88] or energy consumption [89]. The objective of each
agent is to minimize their cost function. Here, we posit that the optimal behavior for
humans is the convergence to a Nash equilibrium, a situation where no agent has an
incentive to unilaterally change their action without the others changing theirs [69].

In the following, we provide the details on the cost function defined for the
GTSFM, we illustrate the method used to compute the Nash equilibria of the game,
and we finally summarize our motion algorithm.
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4.2.3 Cost function

We assume that agents have perfect information, that is, they have information about
the current actions of other agents. This assumption is realistic, considering the
inherent human characteristic of interpreting others’ behaviour and predicting their
motion [69]. Furthermore, human decision-making can be susceptible to biases
and may not always account for potential interactions effectively. To address this
inherent uncertainty and incorporate also the reactive nature of humans, the SFM
logic is employed.

Using the SFM and the perfect information assumption, each agent can compute
the trajectory associated with each value of the parameter Ai. In particular, each
trajectory is computed by using Equation (4.1) over a fixed-time horizon (Tprev∆t),
where Tprev is the number of time-steps and ∆t is the duration of each time-step. To
enhance clarity and without sacrificing generalizability, here and henceforth, we
assume a unitary discrete-time step, i.e. ∆t=1.

Hence, to each a ∈ Ai, we associate the corresponding trajectory for agent i,
denoted as τa

i .

Finally, to evaluate the cost of each generated trajectory (τa
i ) for the ith pedestrian,

we define the cost function J(τa
i ) as the sum of three contributions:

J(τa
i ) = Φgoal(τ

a
i )+Φsmooth(τ

a
i )+Φint(τ

a
i ). (4.7)

Such a cost function is built on the cost function proposed in Chapter 3, enriched
with a term that accounts for the willingness to engage in social interaction (Φint(τ

a
i )).

Unlike Chapter 3, where interaction with other agents was implemented as a
hard constraint, here we incorporate it as a soft constraint within the cost function.
In particular, in the previous chapter, the hard constraint was useful because when
the algorithm generated candidate trajectories for each agent, it adopted a simple
combination of the agent’s possible actions. This approach resulted in a significant
number of infeasible candidate trajectories, such as trajectories that came too close
to other agents. Thus, these infeasible candidate trajectories necessitated post-
processing via a hard constraint for removal. In contrast, the current chapter leverages
the SFM to generate the candidate trajectories for each agent thus achieving two
key advantages: (i) the candidate trajectories for each agent already incorporate
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interaction with other agents. This eliminates the need for the post-processing
step; (ii) all candidate trajectories for each agent are feasible, requiring only the
selection of the optimal one through the evaluation of the designed cost function
(Equation 4.7).

Details on the three summands of Equation 4.7 are given in what follows.

Path length The first term is defined as

Φgoal(τ
a
i ) =

Tprev

∑
k=1
∥pi(t + k)−pgoal

i ∥, (4.8)

and accounts for the path length for agent i. Hence, minimizing such a term
captures the goal-oriented attitude of the agent.

Path regularity The second term is defined as

Φsmooth(τ
a
i ) =

Tprev

∑
k=1
|θi(t + k)−θi(t +(k−1))|, (4.9)

where θi(t + k), θi(t +(k−1)) are the orientation (angle) of the agent at time-
step (t + k) and (t +(k−1)), respectively. Such a term penalizes excessive
rotations, thus promoting smooth trajectories. In fact, during navigation,
humans tend to avoid too many changes of orientation to minimize their
energy consumption [89].

Interaction with other pedestrians The third term is defined as

Φint(τ
a
i ) = ∑

j∈N \{i}

Tprev

∑
k=1

ρ

∥pi(t + k)−p j(t + k)∥ , (4.10)

where ρ ∈ R≥0 is a (constant) weighting factor, and the denominator in Equa-
tion (4.10) is the distance between the agent position pi(t + k) and the other
pedestrians p j(t + k) at time-step (t + k). Hence, by minimizing this term,
humans tend to maintain a safe distance from others. The weighting factor ρ

determines the relative weight of this term with respect to the other two in the
cost function and, ultimately, the radius of the agents’ personal space.



4.3 Results of the human motion based on GTSFM 67

4.2.4 Numerical computation of Nash equilibria

Following [69], we assume that agents during navigation tend to converge to a Nash
equilibrium. This refers to a situation where no agent has an incentive to unilaterally
change its action without the others changing theirs.

However, the existence and uniqueness of a Nash equilibrium cannot be guar-
anteed in our setup, and its analytical characterization is unattainable. Therefore,
as employed in the algorithm presented in Chapter 3, we use numerical methods to
compute an approximate Nash equilibrium, specifically through the sequential best
response approach [91]. The details of this approach are given in Section 3.2.1.

The game-theoretical model for human motion presented above has been imple-
mented following the logic shown in Algorithm 4. During its main loop, Algorithm 4
invokes the game-theoretical strategy selection, which logic is described in Algo-
rithm 5.

Algorithm 4: Main algorithm performed by agent ag ∈ N.
pag← InitializeAgentPosition
τττ ← FirstEstimation [straight paths for all agents]
while pag ̸= pgoal do

y← 1 [iteration index]
τττy← τττ

while τττy ̸= τττ(y−1) do
y← y+1
foreach agent i (included ag) ∈ N do

(τ∗i )
y← StrategySelection (i, τττ)

pag← UpdateAgentPosition

4.3 Results of the human motion based on GTSFM

In this section, we perform a campaign of numerical simulations to test the per-
formance of the proposed GTSFM. Specifically, we consider 200 simulations
for each scenario, with an increasing number of pedestrians involved (viz. n ∈
{4,6,8,10,12,15,20}). In each scenario, the n pedestrians are positioned in a rect-
angular domain of size 16× 10 meters (equal in all scenarios). Initial positions,
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Algorithm 5: Computation of the actions with the SFM and strategy selec-
tion for an agent

StrategySelection(i, τττ)
foreach action a do

while k < Tprev do
mi

dvi
dt = Fgoal

i (t + k)+∑ j∈N \{i}Fint
i j (a, t + k)

vi(t + k) = vi(t +(k−1))+ dvi
dt

pi(t + k) = pi(t +(k−1))+ vi(t + k)∆t
k = k+1

(J(τa
i ))← CostComputation(τa

i )

(τ∗i )
y←MinimizationCost(J(τττ i))

return (τ∗i )
y

Number of agents (n) 4 6 8 10 12 15 20
Improvement PLR 31.61% 30.30% 30.87% 30.66% 25.62% 20.78% 9.59%

Improvement PR 19.51% 20.52% 18.33% 24.01% 24.68% 23.59% 19.50%
Table 4.2 Results of our numerical performance comparison between the SFM and
the GTSFM in terms of the improvement of the performance metrics of the GTSFM
with respect to the SFM.

as well as individuals’ goals, are sampled uniformly at random in the rectangular
domain, with the additional constraint that initial positions and goals of different
pedestrians are sufficiently separated, that is, preventing them from being one within
the personal space of another.

To compare the performance of the established SFM with the performance of
the proposed GTSFM, we consider two different performance metrics: the Path
Length Ratio (PLR) and the Path Regularity (PR) [82]. Given that this study involves
simulations with n agents, we adapt the performance metrics outlined in Section 2.3
for n agents.

The PLR is computed as

PLR :=
1
n

n

∑
i=1

∥pi(0)−pi(Tgoal)∥
∑

Tgoal
k=1 ∥pi(k)−pi(k−1)∥

, (4.11)

where Tgoal is the number of time steps needed for the agents to reach their goals,
considering a unitary duration of each time step for simplicity. A higher PLR value
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is generally desirable, as it suggests that the pedestrian takes the shortest possible
path to reach their destination.

The PR is computed as:

PR = 1− ∑
n
i=1 ∑

Tgoal
k=1 |θi(k)−θi(k−1)|

PImax
, (4.12)

where θi(k), is the orientation (angle) of the agent i at time k, and the denominator is
a normalizing factor defined as

PImax = max
n

∑
i=1

Tgoal

∑
k=1
|θi(k)−θi(k−1)|, (4.13)

where the maximization should be intended over all the realizations in the sample
set.

The index PR measures the (normalized) pedestrian rotation during their naviga-
tion. Such a normalized index takes values in [0,1]: PR = 1 indicates a straight path
from the starting point to the goal, while lower values of PR denote more rotation
during the execution of the trajectory. It is desirable to have PR values closer to 1
since they indicate a smoother motion with fewer sudden changes in direction.

In our simulations we fix the remaining parameters to ri = 1.2m, vd
i = 0.6m/s,

Ai = [0.05,0.06,0.07,0.08,0.09,0.1], Bi = 1m, λ = 0.6, Tprev = 5 time-steps of dura-
tion ∆t = 0.9s each. A representative comparison between two simulated trajectories
is reported in Figure 4.2, where we can immediately visualize how the proposed
GTSFM generates collision-free trajectories that are smoother than the one generated
with SFM —see, e.g., the red trajectory, which is sensibly straighter than the one of
the SFM, and reaches the goal in 10 steps instead of 12.

In view of the stochasticity of the simulation setting, for each of the 7 scenarios,
we perform 200 independent simulations in which we randomize initial position and
goals, and we average the results obtained adopting a Monte Carlo approach.

The results of our Monte Carlo numerical simulations are reported in Table 4.2.
In particular, in the table, we report the results in terms of the decrease in the gap
with respect to the value of the performance metrics in the ideal (but not necessarily
feasible) scenario of a straight path, where PRL = PR = 1, when using a GTSFM
with respect to the SFM. Results are averaged over the 200 simulations. Hence,
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Fig. 4.2 Comparison between the simulated trajectories of n = 6 agents in our
simulation setting, for (a) the SFM and (b) the GTSFM. The objective of each
pedestrian is to arrive at the goal indicated in the figure.
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the first entry of the table means that using the GTSFM instead of the SFM would
decrease the gap of path length ratio with respect to the optimal (not necessarily
feasible) trajectories on average by 31.61%, in environments with n = 4 agents.

Our numerical validation confirms that GTSFM shows a significant improvement
for all scenarios. In particular, it decreased the gap with respect to the ideal straight
path up to 31.61% over the SFM when considering the PLR. In terms of the PR, we
observed a significant improvement with respect to the SFM, spanning from 18.33%
up to 24.68%, indicating that the trajectories generated by our model steer clear of
unnecessary rotations and instead prioritize more direct paths. In light of this finding,
it can be concluded that our human motion model can sensibly improve the route of
a standard SFM while avoiding potential agents, ultimately leading to trajectories
that closely approximate the shortest possible path.

Similar performance metrics are observed in all the simulations. However, as
the environment becomes more crowded, the improvement decreases. In fact, in the
simulation setting with 20 agents, the performance of the GTSFM is still higher, but
the improvement between the two methods is less pronounced (especially, the PLR
improves only by 9.59%). We conjecture that the reason for such a performance
decrease is that, in highly crowded environments, the presence of many pedestrians
makes difficult to anticipate the movement of all of them. This is a common limitation
of human motion models, as different kinds of models are employed to reproduce
crowds, e.g., multiscale models [122].

4.3.1 Discussion

In this chapter, we presented a novel game-theoretic approach to predict human
motion in a populated environment. Our approach, termed game-theoretic social-
force model (GTSFM), relies on the encapsulation of a game-theoretic decision-
making mechanism within the well-established SFM [20]. The proposed model
inherits the computational efficiency of the SFM, while it incorporates the capability
of predicting others’ motion, typical of game-theoretic approaches. To test the
efficiency of the proposed approach, we have compared the performance of the
GTSFM with the one of a standard SFM in different scenarios, using two state-
of-the-art performance metrics [82]. Numerical results showed that the proposed
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GTSFM outperforms the standard SFM in all simulation scenarios, both in terms of
the path length ratio and the path regularity.

The presented preliminary results on GTSFM can be employed to design a
trajectory planner for a real mobile robot sharing space with humans. In fact, in
the following chapters (Chapters 5 and Chapters 6), GTSFM is used to create an
algorithm for a mobile robot to make it socially acceptable. In this context, we
evaluate the quality of the generated trajectory considering quantitative performance
metrics and qualitative measurements such as the naturalness of motion and the
human feeling of comfort [54].



Chapter 5

GTSFM trajectory planning to
enhance robot social acceptance
through quantitative analysis

This chapter presents a novel social navigation algorithm for mobile robots operating
in human-interactive environments. The algorithm prioritizes both human safety
and comfort while efficiently guiding the robot towards its designated goal location.
To reach this objective, the human motion model (developed in Chapter 4) informs
the design of a robotic trajectory planner, whereby the robot tends to mimic human
behavior during motion. Notably, in this chapter, we improve the GTSFM model by
adding the real-time estimation of the parameters for the SFM through a differential
evolution algorithm. To quantitatively assess the GTSFM algorithm, we conducted
a comparative analysis with two state-of-the-art algorithms using four established
performance metrics commonly employed in the field. These metrics specifically
evaluated the novel algorithm’s efficiency in achieving its goals and the smooth-
ness and comfort of the generated trajectories compared to existing state-of-the-art
approaches.

This chapter is organized as follows. Section 5.1 provides an outline of the
approach used in this study to design and evaluate the socially aware navigation
algorithm established based on the findings of Chapter 4. In Section 5.1.1, the novelty
of our approach is presented. In Section 5.2, the methodology used is described.
Then, in Section 5.3, the tools used to perform the quantitative analysis are presented.
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Finally, Section 5.4 presents and discusses the quantitative results of our simulation
experiments.

5.1 Overview of the approach

In Chapter 4, we used the non-cooperative game theory [56] combined with the
well-known social force model to model (SFM) the navigation behavior of multiple
humans in populated environments. Here, the human motion model informs the
design of a robotic trajectory planner, whereby the robot tends to mimic human
behavior during motion and interaction in a populated environment.

Similar to Chapter 3, the phenomenon of anthropomorphism is also leveraged
here (see Section 2.1 for further details).

By incorporating aspects of human movement into robotic trajectories, we aim
to amplify perceived anthropomorphism, ultimately leading to greater human accep-
tance [33].

Specifically, we devise a game whose action set is a finite set of possible tra-
jectories for each agent, generated using the well-established and computationally
efficient SFM over a fixed-time horizon. Then, each agent selects the action toward
minimizing a cost function. To find different SFM parameters sets and generate
different trajectories for each agent, a Differential Evolution (DE) algorithm [3] is
incorporated in the GTSFM framework. While the DE algorithm offers powerful pa-
rameter estimation capabilities, its high computational demand limits its application
in real-time scenarios. This study addresses this limitation by proposing a neural
network that, when properly trained, can mimic the behaviour of the DE algorithm,
enabling efficient and real-time parameter estimation. The general structure of our
game-theoretical social force model (GTSFM) is illustrated in Figure 5.1.

Following the formalization of our algorithm with the new real-time parameters
estimation logic, a quantitative evaluation of its performance is conducted. The
quantitative evaluation is done involving robot-human interaction in simulated sce-
narios. Focusing on navigation efficiency, trajectory smoothness and comfort, we
assess performance against two state-of-the-art algorithms using four performance
metrics. Notably, the results demonstrate that our algorithm generates significantly
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Fig. 5.1 Conceptual framework of GTSFM with real-time parameters estimation.

smoother paths compared to the other two state-of-the-art algorithms, potentially
leading to more natural robot motion.

Furthermore, the evaluation reveals that our approach outperforms the standard
SFM model across all considered performance metrics, highlighting its potential for
improved navigation efficiency and trajectory quality.

To complement the quantitative analysis, a qualitative evaluation using a real
robot is conducted in Chapter 6. This evaluation aimed to assess how our algorithm
is perceived in comparison to two other state-of-the-art algorithms. However, the
qualitative analysis does not identify any algorithm that shows significant superiority
over the others. This lack of distinction can be attributed to unaccounted factors.
The robot’s appearance could have obscured the distinction between the algorithms.



76
GTSFM trajectory planning to enhance robot social acceptance through quantitative

analysis

Additionally, the limited velocity of the real robot may have limited the range of
conditions tested among the different algorithms and, consequently, obscured the
distinction between the algorithms.

5.1.1 Our contributions

This thesis proposes a novel trajectory planning approach by combining the SFM
with the game theory logic (GTSFM). This combined approach offers significant ad-
vantages over existing methods within the model-based and learning-based categories
(for details on each category, please refer to the Section 2.2).

With respect to the former, our model extends the current state-of-the-art in many
directions. First, our model keeps the computational efficiency of the SFM, while
using it to estimate multiple trajectories over a fixed-time horizon for each pedestrian.
Second, we incorporate game theory into our approach to determine the optimal
trajectory for each individual, taking into account the mutual influences between
humans. Third, while similar approaches have been investigated in different contexts,
such as in a road-shared space with pedestrians and cars [123], the integration
of the SFM and game theory for socially-aware navigation appears to be novel.
Fourth, unlike prior works that focus just on binary interactions [115, 116], in our
model, each agent interacts by playing a game with all other agents present in the
scene. Furthermore, in contrast to [74], in our model the decision-making process is
calculated at every time step rather than just once, mimicking the sequential nature
of human decision-making processes. Finally, our approach can generate human-like
trajectories by using a differential evolution algorithm, which tries to approximate
real human trajectories as closely as possible.

On the other hand, our proposed approach offers several advantages over learning-
based methods. First, it does not require training on a specific scenario. This makes it
more generalizable to unseen situations, which is crucial for real-world applications.
Second, our model provides more interpretable results. This is because it is based
on a physics-based model of the human motion, rather than a black-box learning
model. This interpretability is essential for understanding the reasons behind the
robot’s decisions and for limiting potentially unsafe behaviors.

Since the GTSFM algorithm is built upon the SFM, the GTSFM inherits both
its strengths and limitations. A key strength of the SFM is the ability to accurately
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describe the dynamics of pedestrian movement and various navigational phenomena,
enhancing its utility in diverse research settings [117]. On the other hand, the main
limitation of the SFM is related to the parameter dependency of the model, which
results in two main problems: the calibration and homogeneity of the parameters.
About the former, the model is extremely sensitive to even slight changes in the
parameter values (see Figure 5.2). Notably, the SFM parameters may vary consid-
erably depending on the context in which the model is applied. Thus, finding the
optimal parameters for a given navigation scenario often requires an extensive and
time-consuming trial-and-error process.

While the model excels in capturing general pedestrian behavior, it currently faces
limitations in representing individual differences. Real-world navigation reveals
diverse responses to stimuli due to personal feelings and motivations, translating to an
ideal parameter value for each agent. However, the model’s difficulty in calibrating
parameters often necessitates using a single homogenous set for all agents. This
assumption compromises the model’s descriptive ability, as it cannot fully capture
the heterogeneity observed in human navigation.

Thus, to address the two problems presented above, we use a DE algorithm to
estimate the SFM parameters that best approximate real human trajectories.

This thesis employs the DE due to its advantageous features over the state of
the art algorithms, such as the Evolutionary algorithms (EA) [3]. Unlike many EAs,
DE eliminates the need for encoding real-valued parameters into bit strings, leading
to reduced computational complexity and implementation effort. Additionally, its
implementation requires minimal lines of code, making it accessible to researchers
across diverse fields. Furthermore, DE’s performance depends on tuning just a few
well-studied control parameters (population size, mutation factor, and crossover rate),
facilitating efficient parameter tuning.

Due to these characteristics, the DE has become one of the most popular opti-
mization algorithms used in research [3]. Notably, its impressive adaptability allows
the DE algorithm to tackle a wide range of optimization problems across diverse
fields, such as aircraft control [124], localisation problem of a robot [125], and
planning robot trajectories [126].

In our approach, DE is used to estimate the SFM parameters that best approx-
imate the trajectories of a real-human trajectory dataset (Thör [2]). While the DE
algorithm offers robust optimization, its computational demands limit its suitability
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Fig. 5.2 Simulations with 5 agents controlled by SFM with different sets of param-
eters: (a) Ai = 0.2,Bi = 0.1,ri = r j = 0.1; (b) Ai = 0.45,Bi = 0.3,ri = r j = 0.4; (c)
Ai = 1,Bi = 0.7,ri = r j = 0.7. For illustrative purposes, we introduced variability by
adjusting only the pedestrian interaction parameters while assuming that all pedes-
trians share identical values for the desired speed (vd

i ), relaxation time (αi), and
anisotropic strength (λ ). Nevertheless, it’s important to note that this simplification
does not always reflect the real-world situation accurately.
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for real-time parameter estimation. This study tackles this limitation by proposing a
neural network architecture. Following appropriate training on data representing the
outcomes of the DE algorithm, this neural network can mimic the behavior of the
DE algorithm, enabling efficient and real-time parameter estimation.

5.2 Overview of GTSFM with real-time parameters
estimation

In this chapter, a GTSFM algorithm with real-time parameter estimation is adopted.
In Figure 5.1, the general structure of the algorithm is presented. Specifically, we
devise a game whose action set is a finite set of possible trajectories for each agent,
generated using the well-established and computationally efficient SFM over a fixed-
time horizon. Then, each agent selects their action toward minimizing a cost function
that takes into account their willingness to reach their goal, the regularity of their
trajectory, and their willingness to avoid interactions with other individuals within
their personal space.

To find the best SFM sets of parameters approximating human behaviour and
generate different trajectories for each agent, a DE algorithm [3] is incorporated in
the GTSFM framework, as shown in Figure 5.1.

However, the excessive time needed to perform the parameter estimation makes
the DE algorithm inadequate for real-time applications. Thus, to overcome this issue,
the DE algorithm is approximated by a neural network. The latter is trained with
supervised data, leveraging a labelled dataset created by the DE algorithm. The
labelled dataset associates specific features of the scenario, such as the distance
between agents, with the optimal parameters for the SFM.

To compute the optimal parameters for the training dataset, the DE algorithm
computes the best sets of parameters for the SFM that approximate real human
trajectories of a public dataset (Thör [2]).

The proposed model will subsequently be employed to perform two distinct
tasks: (i) model and predict the motion of pedestrians; (ii) design a robotic trajectory
planner informed by the GTSFM model.
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Regarding the details of the SFM logic, please refer to Section 4.1.2. In the
following section, we overcome the game presented in the Section 4.2 where the
actions are generated modifying the value of Ai. Precisely, in Section 5.2.1, the focus
shifts from chosing only the Ai value to the selection of an entire parameters set,
offering a more realistic approach. Then, the three additional blocks are presented:
the dataset, the DE algorithm, and the neural network. Each of these blocks is
explained individually and comprehensively.

5.2.1 Game-theoretic formalization

Here, we present a game-theoretic methodology which is a non-cooperative, static,
perfect information, and finite game with a finite number of agents. In our game,
each agent aims to achieve its own goal individually.

In the proposed GTSFM, the n agents N = {1, . . . ,n} move according to the
SFM and use a game-theoretic mechanism to find the best set of parameters to
generate the best trajectory to reach the goal and avoid other agents.

Specifically, agent i can select the best set of parameters among a finite sets of pa-
rameters Si. We leverage the previously defined cost function J(a) (see Section 4.2.3
for details) to associate a cost to each action a ∈Si.

The objective of each agent is to minimize their cost function. Here, we posit
that the optimal behavior for humans is the convergence to a Nash equilibrium, a
situation where no agent has an incentive to unilaterally change their action without
the others changing theirs [69]. For the method used to compute the Nash equilibria
of the game please refer to Section 4.2.4.

We assume that agents have perfect information, that is, they have information
about the current actions of other agents. This assumption is realistic, considering
the inherent human characteristic of interpreting others’ behavior and predicting
their motion [69].

Using the SFM and the perfect information assumption, each agent can compute
the trajectory associated with each parameters set. In particular, each trajectory is
computed by using Equation (4.1) over a fixed-time horizon (Tprev∆t), where Tprev is
the number of time-steps and ∆t is the duration of each time-step. To enhance clarity
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and without sacrificing generalizability, here and henceforth, we assume a unitary
discrete-time step, i.e. ∆t=1.

Hence, to each a ∈Si, we associate the corresponding trajectory for agent i,
denoted as τa

i .

Finally, to evaluate the cost of each generated trajectory (τa
i ) for the ith pedestrian,

we define the cost function J(τa
i ) as the sum of three contributions:

J(τa
i ) = Φgoal(τ

a
i )+Φsmooth(τ

a
i )+Φint(τ

a
i ). (5.1)

Details on the three summands are given in Section 4.2.3.

5.2.2 Dataset for DE algorithm

To determine the optimal sets of parameters for SFM, the DE algorithm requires a
dataset comprising real human trajectories as input.

In this work, the Thör [2] dataset is used, since is an open-source dataset of
human motion trajectories in a controlled indoor environment. Such environment is
a laboratory room measuring 8.4 x 18.8 m. As described in Figure 5.3, five goals are
strategically positioned within the laboratory room to ensure interactions between
pedestrians during the navigation. Moreover, the presence of different obstacles
in the laboratory room prevents the possibility of walking directly to the goals in
a straight line. To record the scene, a fixed camera is mounted in a corner of the
laboratory room.

Fig. 5.3 Overview of the laboratory room where the real human trajectories are
recorded [2].
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To track the motion of humans in real-time, the authors use 10 Qualisys Oqus 7+
infrared cameras (Figure 5.4a) mounted around the perimeter of the laboratory room.
Such cameras are used to identify distinct markers on pedestrians’ helmets, which
can reflect infrared light (Figure 5.4b).

(a) (b)

Fig. 5.4 (a) Qualisys Oqus 7+ infrared cameras; (b) Helmets equipped with reflective
markers, designed for pedestrian tracking.

In the Thör dataset three types of scenarios are recorded:

1. One obstacle: pedestrians move in the environment without robots, with
only a static obstacle positioned at the central of the laboratory room (see
Figure 5.5a);

2. Moving robot: pedestrians and robot move in the same laboratory room, with
a static obstacle strategically positioned at the center of the room. Figure 5.5b
illustrates in black the trajectory of the robot, and the remaining colour the
trajectory for each participant in the experiment. The robot used in the ex-
periment is programmed to exhibit socially unaware behavior, adhering to
a predetermined path around the room and maintaining a constant speed and
trajectory without adjustments for the presence of surrounding humans;

3. Three obstacles: similar to the first scenario, pedestrians move in the laboratory
room in the absence of any robots. However, in this case, three static obstacles
are present within the room as shown in Figure 5.5c.
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Fig. 5.5 Real trajectories of pedestrians in the three experiments across the three
distinct scenarios [2]: (top) One obstacle - (centre) Moving robot - (bottom) Three
obstacles.

To compute the best sets of parameters, we exclude the use of the second scenario
because the robot moves in an unaware manner. This situation could create some
biases in the movement of the agents, resulting in a computation of biased parameters,
and we aim to avoid this. Moreover, we also exclude the third case because the
recorded trajectories are highly dependent on the placement of obstacles in the room.
Thus, to compute the best sets of parameters for the SFM, we used only the first
scenario of the Thör dataset, which seems to be the most generalizable scenario
among the three.

5.2.3 Differential Evolution Algorithm (DE)

The DE addresses the traditional challenge of optimization problems. Optimization
involves the process of discovering the most suitable solution for a problem while
adhering to predefined constraints. When optimizing the performance of a system,
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the objective is to determine a specific set of parameter values that will lead to
optimal system performance under predefined conditions.

Indeed, in this work, the DE is used to estimate the best sets of parameters for
SFM that approximate the real human trajectories derived from the Thör dataset.

The DE works with a population comprising NP D-dimensional real-valued
parameter vectors. NP denotes the number of parameter vectors within the pop-
ulation, while D is the number of parameters in each vector. These parameter
vectors are called chromosomes, and the parameters within them are called genes.
Each chromosome represents a potential solution to the optimization problem under
consideration.

As shown in Figure 5.6, the DE algorithm works through a sequence of phases.
In particular, the DE employs common Evolutionary Algorithm (EA) operations such
as mutation, crossover, and selection to identify the most promising chromosomes
for propagation to the next generation. This iterative process occurs for a specified
number of generations, denoted as NG.

Initialization
of the population

Difference-vector
based mutation

Crossover Selection

Fig. 5.6 Main phases of the DE algorithm [3].

The i-th chromosome in the population, given a generic generation j, are repre-
sented using the following notation:

XXX i, j =
{

x1
i, j, ...,x

D
i, j
}
, for i = 1, ...,NP and j = 1, ...,NG (5.2)

where each gene (xi, j) is a parameter defined as real number that controls the
performance of the SFM.

To select the chromosome that advances to the next generation, an objective
function f (XXX i, j) is defined to assess the performance of each chromosome in the
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population. This function is custom-designed according to the characteristics of the
system under analysis and relies on the parameters within each chromosome.

Thus, the primary objective of the DE is to search for the optimal chromosome,
(XXX∗i, j), which guarantees the minimization of the objective function ( f (XXX i, j)) among
all the chromosomes generated in the different generations (NG).

At the state-of-the-art, numerous adaptations of DE exist [127, 128], each dis-
tinguished by the specific strategies that the authors employ in the execution of the
main phases of the algorithm. In this thesis, the classical DE, developed by Storm
and Prince [128], is chosen.

Following the scheme represented in Figure 5.6, the details of each phase are
described below.

1. Initialization of Parameter Vectors:

The initial phase of the DE algorithm consists of generating an initial popula-
tion of parameter vectors. As described above, each chromosome is composed
of D real values, which correspond to the physical parameters of the SFM that
need to be optimized. These values are subject to constraints defined by the
physical nature of the quantity they represent. For example, if a parameter is a
mass or a length, negative values are invalid.

By establishing the boundaries of the intervals for all D parameters, the accept-
able value limits is defined as follows:

XXXmin =
{

x1
min, ...,x

D
min

}

XXXmax =
{

x1
max, ...,x

D
max

} (5.3)

As suggested in [3], the objective of the initial population is to comprehen-
sively span these intervals. This is achieved by uniformly randomizing the
chromosomes within the search space, taking into account the predefined
boundaries. Therefore, the initial value of the k-th parameter, belonging to the
chromosome XXX i,0, is determined as follows:

xk
i,0 = xk

min + rand [0,1]ki
(

xk
max− xk

min

)
, for k = 1, ...,D (5.4)
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where rand [0,1]ki is a uniformly distributed random number between 0 and 1,
generated independently for each parameter (k) of the i-th chromosome.

2. Mutation with Difference Vectors:

The mutation is the process whereby every chromosome in the current popu-
lation, known as target vector XXX i, j, undergoes a perturbation to obtain a new
mutant chromosome generated from it, known as donor vector VVV i, j:

VVV i, j =
{

v1
i, j, ...,v

D
i, j
}
, for i = 1, ...,NP (5.5)

The donor vector VVV i, j is generated by sampling three other chromosomes of the
current population, referred to as XXX ri

1, j
, XXX ri

2, j
, and XXX ri

3, j
. These chromosomes

are randomly selected by choosing within the range [1, NP]. Moreover, these
randomly selected chromosomes are mutually exclusive and distinct from the
current chromosome index i.

During the DE-mutation, the donor vector VVV i, j is computed as follows:

VVV i, j = XXX ri
1, j

+F
(

XXX ri
2, j
−XXX ri

3, j

)
(5.6)

where the difference between two randomly selected chromosomes is scaled
by a factor F , and the scaled difference is added to the first randomly selected
chromosome. The mutation procedure is illustrated in Figure 5.7.

The factor F , called mutation factor, has a significant role in the overall
performance of the DE algorithm. Indeed, this factor allows adjusting the
influence of the difference vector on the mutation of the target vector.

3. Crossover:

This phase is indispensable to create diversification among the chromosomes
present in the population. In particular, this phase aims to exchange genes
contained in a target tector XXX i, j with those associated with the donor vector
VVV i, j, to generate a new chromosome called trial vector UUU i, j:

UUU i, j =
{

u1
i, j, ...,u

D
i, j
}
, for i = 1, ...,NP (5.7)
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Fig. 2. Illustrating a simple DE mutation scheme in 2-D parametric space.

C. Crossover

To enhance the potential diversity of the population, a
crossover operation comes into play after generating the donor
vector through mutation. The donor vector exchanges its
components with the target vector �Xi,G under this operation
to form the trial vector �Ui,G = [u1,i,G, u2,i,G, u3,i,G, ..., uD,i,G].
The DE family of algorithms can use two kinds of crossover
methods—exponential (or two-point modulo) and binomial (or
uniform) [74]. In exponential crossover, we first choose an
integer n randomly among the numbers [1, D]. This integer
acts as a starting point in the target vector, from where the
crossover or exchange of components with the donor vector
starts. We also choose another integer L from the interval
[1, D]. L denotes the number of components the donor vector
actually contributes to the target vector. After choosing n and
L the trial vector is obtained as

uj,i,G = vj,i,G for j = 〈n〉D 〈n + 1〉D , ..., 〈n + L − 1〉D
xj,i,G for all other j ∈ [1, D] (4)

where the angular brackets 〈〉D denote a modulo function with
modulus D. The integer L is drawn from [1, D] according to
the following pseudo-code:
L = 0; DO

{
L = L + 1;
} WHILE ((rand(0, 1) ≤ Cr) AND (L ≤ D)).
“Cr” is called the crossover rate and appears as a control

parameter of DE just like F. Hence in effect, probability (L =
υ) = (Cr)υ − 1 for any positive integer v lying in the interval
[1, D]. For each donor vector, a new set of n and L must be
chosen randomly as shown above.

On the other hand, binomial crossover is performed on each
of the D variables whenever a randomly generated number
between 0 and 1 is less than or equal to the Cr value. In this
case, the number of parameters inherited from the donor has
a (nearly) binomial distribution. The scheme may be outlined
as

uj,i,G =

{
vj,i,G if (randi,j[0, 1] ≤ Cr or j = jrand)
xj,i,G otherwise

(5)

Fig. 3. Different possible trial vectors formed due to uniform/binomial
crossover between the target and the mutant vectors in 2-D search space.

where, as before, randi,j[0, 1] is a uniformly distributed ran-
dom number, which is called anew for each jth component of
the ith parameter vector. jrand ∈ [1, 2, ...., D] is a randomly
chosen index, which ensures that �Ui,G gets at least one
component from �Vi,G. It is instantiated once for each vector
per generation. We note that for this additional demand, Cr
is only approximating the true probability pCr of the event
that a component of the trial vector will be inherited from
the donor. Also, one may observe that in a 2-D search space,
three possible trial vectors may result from uniformly crossing
a mutant/donor vector �Vi,G with the target vector �Xi,G. These
trial vectors are as follows.

1) �Ui,G = �Vi,G such that both the components of �Ui,G are
inherited from �Vi,G.

2) �U/
i,G, in which the first component (j = 1) comes from

�Vi,G and the second one (j = 2) from �Xi,G.
3) �U//

i,G, in which the first component (j = 1) comes from
�Xi,G and the second one (j = 2) from �Vi,G.

The possible trial vectors due to uniform crossover are
illustrated in Fig. 3.

D. Selection

To keep the population size constant over subsequent gen-
erations, the next step of the algorithm calls for selection to
determine whether the target or the trial vector survives to the
next generation, i.e., at G = G + 1. The selection operation is
described as

�Xi,G+1 = �Ui,G iff ( �Ui,G) ≤ f ( �Xi,G)

= �Xi,G iff ( �Ui,G) > f ( �Xi,G) (6)

where f ( �X) is the objective function to be minimized. There-
fore, if the new trial vector yields an equal or lower value
of the objective function, it replaces the corresponding target
vector in the next generation; otherwise the target is retained
in the population. Hence, the population either gets better
(with respect to the minimization of the objective function)
or remains the same in fitness status, but never deteriorates.
Note that in (6) the target vector is replaced by the trial
vector even if both yields the same value of the objective
function—a feature that enables DE-vectors to move over

Fig. 5.7 DE-mutation description in a 2-D search space [3].

The number of replaced genes in the target vector is determined by another
important parameter of the algorithm, namely the crossover rate Cr. The
strategy adopted for performing crossover is the binomial crossover.

The binomial crossover is so named because the number of inherited parame-
ters from the donor vector exhibit a (nearly) binomial distribution, controlled
by the value of Cr [3]. Consequently, the k-th gene of the trial vector UUU i, j is
calculated as follows:

uk
i, j =





vk
i, j, if (randk

i [0,1]≤CR or k = krand)

xk
i, j,otherwise

(5.8)

where randk
i is a uniformly distributed random number between 0 and 1,

which is called for each k-th gene of the i-th chromosome. Moreover, krand ∈
[1,2, ...,D] is a randomly chosen index which guarantees that the trial vector
inherits at least one gene from the donor vector. krand is calculated once for
each chromosome per generation j. In this way, the trial vector UUU i, j is never
the same as the target vector XXX i, j.

4. Selection:

To keep the population size constant across successive generations, the DE
involves a selection process that determines whether the target or trial vector
is maintained for the next generation.
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The decision is made according to the objective function value computed for
each chromosome in the population:

XXX i, j+1 =





UUU i, j, if f (UUU i, j)≤ f (XXX i, j)

XXX i, j,otherwise
(5.9)

After completing these four phases for each chromosome of the population, a
new population of chromosomes is generated. This iterative process continues until
the stopping criterion is reached. In our case, the process continues iterative until the
maximum number of generations (NG) is reached.

Control Parameters of the algorithm

The DE algorithm performance depends on three key control parameters: the pop-
ulation size (NP), the mutation factor (F), and the crossover rate (Cr). Within this
section, the goal is twofold: first, we examine how each of these parameters impacts
the overall performance of the DE algorithm and second, we describe how each
control parameter is chosen for the implemented DE algorithm.

• Population Size NP: NP is the number of chromosomes in a population. As
indicated in [128], usually NP is chosen between 5D and 10 D, where D is
the number of genes (parameters) for each chromosome. In our problem, we
deal with the estimation of 7 parameters, thus, the population size was chosen
equal to 42;

• Mutation factor F: F is the factor used in Equation 5.6 to scale the difference
between the two selected random chromosomes. In [128], Storn and Price
suggest the range of choice of this parameter between 0.4 and 1. In Figure 5.8
the effects of the F factor on the difference vector are shown. In particular, the
F factor has a twofold purpose: first, it prevents to generate a duplication of
an existing chromosome (Figure 5.8a); second, it prevents to remain trapped
in a local minimum (Figure 5.8b). Indeed, choosing a value of F close to one
means increasing the capacity of the exploration in the solution space of the
algorithm. In our case, the value of the F factor was chosen equal to 0.5;
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Fig. 5.8 a) Effect of the Factor F in general; b) Effect of increasing the F factor [4].

• Crossover rate Cr: Cr is used in the crossover phase to generate the trial
vector. In particular, the Cr parameter controls how many genes from the
donor vector are given to the trial vector (see Equation 5.8). As suggested
in [3], the Cr is usually between 0 and 1.

For a low value of Cr (near to 0), a low number of genes from the donor vector
are transferred to the trial vector. Resulting in a minimal alteration of the
chromosome parameters from one generation and the other. On the other hand,
a high value of Cr (near to 1) leads to the transfer of a high number of genes
from the donor vector to the trial vector. Consequently, the chromosomes
in the new generation are more likely to exhibit significant differences when
compared to those in the previous generation.

Thus, in our algorithm, the Cr is chosen equal to 0.6.

In Table 5.1, the values chosen for each of the parameters of the DE algorithm
are summarized.

Symbol Value Meaning
NP 42 Population size
NG 90 Number of generations
F 0.5 Mutation factor
Cr 0.6 Crossover rate

Table 5.1 Control parameters values used for the implementation of the DE algo-
rithm.
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Symbol Meaning
Ai ∈ R>0 strength of interaction force for pedestrian i
Bi ∈ R>0 range of interaction force for pedestrian i
ri ∈ R>0 radius of the personal space of pedestrian i
R0 ∈ R>0 minimum admissible distance between robot and obstacle
λ ∈ [0,1] strength of anisotropic behavior
vd

i ∈ R>0 desired velocity (in modulus) of pedestrian i
αi ∈ R≤0 relaxation time of pedestrian i

Table 5.2 SFM parameters estimated by the DE.

5.2.4 DE applied on SFM and DE simulation results

Similar to [129], in this thesis the estimation of the SFM parameters has been made
exploiting the DE algorithm applied to an open source dataset (Thör [2]).

In particular, Johansson et al. [129] utilize an evolutionary algorithm to estimate
SFM parameters using data obtained from video tracking. Similarly, in this work,
we used the Thör dataset and we substituted (one at a time) each pedestrian within
the experiment with a simulated robot. Such robot is controlled by SFM with the
parameters estimated with the DE algorithm. This approach allows a comparison
between the positions of the simulated robot and the position of the real pedestrian.
The comparison is executed during the selection phase of the DE algorithm with the
following objective function:

f (XXX i, j) =
∑

Tprev
k=1 ∥probot(t + k∆t)−ppedReal(t + k∆t)∥

N
(5.10)

where probot(t+k∆t) and ppedReal(t+k∆t) are the position of the simulated robot
and the real pedestrians, respectively. N is the total number of points of the trajectory
produced by SFM over a finite time horizon Tprev∆t .

In Table 5.2 the seven parameters of the SFM estimated with the DE algorithm
are summarized.

The main steps to obtain the SFM parameters with DE, applied to the Thör
dataset are summarized in Algorithm 6.

The inputs of the Algorithm 6 are: the duration of each time-step ∆t , the number
of simulated time-steps Tprev, and the Thör dataset. The latter contains different
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trajectories for each pedestrian. Every point along each trajectory is identified by a
tuple (x, y, t), which contains the coordinates in the 2-D plane and the corresponding
time t.

For each real pedestrian (pedReal) belongs to the Thör dataset, the algorithm
saves all trajectories in PedTrajectoriesInfo using the function getTrajectoriesInfo
(line 3). In this way, all the start, goal positions, and the instant of reaching the goal
(T tr

goal) for each trajectory (tr) are known. Then, for each trajectory, the DE is applied
(line 4) until the time t achieves the T tr

goal (line 5). Moreover, at each time t the DE is
used to simulate over a fixed time horizon Tprev∆t . Thus, it is necessary to ensure
that the simulated trajectory does not extend beyond the real one (line 6). If the
simulated trajectory goes beyond the real one, then the algorithm proceeds to the
next trajectory (line 7). Otherwise, the best parameters of the SFM that approximate
the real trajectory over the time interval [t;(t +∆tTprev)] are estimated (line 8).

Then, the initial position of the robot is set to the position of the real pedestrian
(line 9). In line 10, the distance between the robot and the closest obstacle is
computed. Then, from line 11 to 13, the distances between the robot and the three
nearest pedestrians are computed.

The estimation of the best four parameter sets is accomplished using the function
BestEstPar, as indicated in line 15. The inputs of this function are: all the control
parameters of the DE algorithm (NP,F,Cr,NG), the boundaries of the intervals for all
D parameters (XXXmin,XXXmax), and the information regarding the simulation (∆t ,Tprev).

A more comprehensive explanation of this function can be found in Algorithm 7.

Ultimately, the four distances are associated with the four sets of estimated
parameters that most accurately approximate that section of the trajectory (line 16).
This part is crucial for generating a sufficiently large labelled dataset that can be
used as a training dataset for the neural network.

At the end of the algorithm, the time of the simulation has been updated (line
17).

The main goal of the Algorithm 7 is to compute the best sets (bestSets) that
approximate the real trajectory through the DE algorithm.

In particular, the DE is iteratively employed four times on the identical segment
of the real trajectory (line 2).
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Algorithm 6: Main algorithm of SFM parameters estimation with DE in
Thör dataset
1 Input: ∆t ,Tprev,ThorDataset
2 foreach pedReal ∈ ThorDataset do
3 PedTrajectoriesInfo← GetTragectoriesInfo(pedReal)
4 foreach tr ∈ PedTrajectoriesInfo do
5 while t < T tr

goal do
6 if (t +Tprev∆t)> T tr

goal then
7 break
8 else
9 probot(t) = ppedReal(t)

10 drobot,obs(t) = ∥probot(t)−pobs∥
11 drobot,ped1(t) = ∥probot(t)−pped1(t)∥
12 drobot,ped2(t) = ∥probot(t)−pped2(t)∥
13 drobot,ped3(t) = ∥probot(t)−pped3(t)∥
14 d3closestPed(t) = [drobot,ped1(t),drobot,ped2(t),drobot,ped3(t)]
15 bestSets← BestEstPar(NP,F,Cr,NG,XXXmin,XXXmax,∆t ,Tprev)
16 paramDataset← [drobot,obs(t),d3closestPed(t),bestSets]
17 t← t +∆t

For each set, the algorithm starts by initializing three variables: bestChrom,PPPcurr,

and bestObjVal (as indicated in lines 3-5).

The bestChrom variable ultimately stores the best chromosome, representing
the best parameter set approximating the real trajectory. The PPPcurr is initialized as
an empty vector, but during the computation will store the current population. The
bestObjVal is used to compare the best chromosome obtained within each generation
to the best chromosome across all generations, and it is initially set to a random
value.

To generate the initial population, the generateChromosome function is called
for each chromosome (lines 6-8). As inputs, the function takes the constraints of
each parameter of the SFM (XXXmin,XXXmax).

Then, at each generation j, the algorithm initializes an empty vector for the new
population PPPnew, the donor vector VVV i, j, and the trial vector UUU i, j (lines 10-12).

Successively, for each chromosome (XXX i, j) belongs to the current population
(PPPcurr), the DE algorithm performs the Mutation (line 15), the Crossover (line 16),
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and the Selection functions (line 17). At the end of this iterative procedure, a new
population of chromosomes is generated (PPPnew).

The Selection function chooses between the target vector (XXX i, j) and the trial
vector (UUU i, j). The chosen chromosome is denoted by XXX i, j+1, and the correspond-
ing value of the objective function is indicated with minObjVal. A more detailed
explanation of the Selection function is available in Algorithm 8.

To guarantee the selection of the best chromosome across all generations, after
each selection step the corresponding objective function value (minObjVal) is com-
pared to bestObjVal (line 19). If the minObjVal is lower than bestObjVal, the XXX i, j+1

is stored as the best chromosome (bestChrom) and the bestObjVal is updated (lines
20-21).

At the end of this iterative process, the new population is set as the current one
PPPcurr (line 22). Afterwards, if j is less than NG the process is iterated from line 10.

When the last generation is achieved, the best chromosome (bestChrom), i.e. the
chromosome with the lowest objective function value, is stored in bestSets (line 23).



94
GTSFM trajectory planning to enhance robot social acceptance through quantitative

analysis

Algorithm 7: The BestEstPar function implementing the DE algorithm
1 Inputs: F,Cr,NP,XXXmin,XXXmax,∆t ,Tprev
2 for nset = 1 : 4 do
3 bestChrom← zeros(D)
4 PPPcurr← zeros(D,NP)
5 bestObjVal = 1000
6 for i = 1 : NP do
7 XXX i,0← generateChromosome(XXXmin,XXXmax)
8 PPPcurr← XXX i,0

9 for j = 1 : NG do
10 PPPnew = zeros(D,NP)
11 VVV i, j = zeros(D)
12 UUU i, j = zeros(D)
13 foreach XXX i, j ∈ PPPcurr do
14 (XXX ri

1, j
,XXX ri

2, j
,XXX ri

3
)← SamplingRandomChromosome(PPPcurr)

15 VVV i, j←Mutation(XXX ri
1, j
,XXX ri

2, j
,XXX ri

3, j
,F,XXXmin,XXXmax)

16 UUU i, j← Crossover(XXX i, j,VVV i, j,Cr)
17 (XXX i, j+1,minObjVal)← Selection(XXX i, j,UUU i, j,∆t ,Tprev)
18 PPPnew← XXX i, j+1
19 if minObjVal≤ bestObjVal then
20 bestObjVal = minObjVal
21 bestChrom = XXX i, j+1

22 PPPcur = PPPnew

23 bestSets← bestChrom

Focusing on Algorithm 8, the Selection function takes as inputs: the target vector
XXX i, j, the trial vector UUU i, j, the duration of each time-step ∆t , and the number of
simulated time-steps Tprev.

Considering each chromosome (i.e. the target vector XXX i, j, trial vector UUU i, j) one
by one (line 2), the setSFMparams function sets the chromosome as the parameters
of the SFM to drive the robot (line 3).

For each time step (k), the algorithm computes the distance between the robot
and the real pedestrian, and stores it in drobot,ped (line 5). Afterwards, it advances
the robot to the subsequent position by applying the SFM, as outlined in line 6.

Following the generation of the trajectory for a given chromosome (lines 4-6),
the algorithm evaluates the objective function value associated with that specific
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chromosome using the evaluateObjFunc function, in line 7. The evaluateObjFunc
function uses the Equation 5.10 to compute the value of the objective function. This
value is saved in the ObjValues vector.

Then, when the objective function values linked to each chromosome are stored
in the ObjValues vector, the algorithm chooses the minimum value (minObjVal)
and the corresponding chromosome (SelectedChrom) and then returns them to the
Algorithm 7, see line 8-10.

Algorithm 8: The Selection function
1 Input: XXX i, j,UUU i, j,∆t ,Tprev
2 foreach chromosome ∈ [XXX i, j,UUU i, j] do
3 robot← setSFMparams(chromosome)
4 for k = 1 : Tprev do
5 drobot,ped ←∥probot(t + k∆t)−ppedReal(t + k∆t)∥
6 probot(t +(k+1)∆t)← ComputationOfNextPositionWithSFM()

7 ObjValues← evaluateObjFunc(drobot,ped)

8 (minObjVal,SelectedChrom)← min(ObjValues)
9 XXX i, j+1← SelectedChrom

10 return XXX i, j+1,minObjVal

In Figure 5.9, some results of the DE algorithm applied to the Thör dataset are
shown. In particular, in green is shown the real human trajectory and in black the
trajectory generated by the SFM with the parameter estimated by the DE algorithm.
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Start

Robot
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Robot

          Pedestrian

Start

Goal 1

Goal 5

Goal 2

Goal 3
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Fig. 5.9 Comparison between the real human trajectory (in green) and the trajectory
generated by the SFM with the parameters obtained through the DE (in black).
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5.2.5 Real-time parameters estimation through Neural Network

The training and testing phase of the Neural Network (NN), and the use of the NN in
the GTSFM algorithm are summarized in Figure 5.10.

In particular, for the creation of the NN, a training labelled dataset obtained from
the DE algorithm is used. Then, a testing phase is performed, using another dataset
obtained from the DE algorithm (Figure 5.10a). Once the model has been trained
and tested, it is ready to be used in the GTSFM algorithm (Figure 5.10b). Indeed, the
GTSFM algorithm uses the NN to receive different sets of parameters to generate,
through the SFM, the set of trajectories for each agent. Then, the best trajectory for
each agent is chosen through the game theory logic.

In this study, the NN has been trained and tested using TensorFlow [130], an
open-source machine learning framework developed by Google Brain. Then, the final
NN was integrated into ROS in order to ensure the integration into the navigation
algorithm of the mobile robot.

In Figure 5.10b, the inputs, the outputs and the inner structure of the NN are
highlighted. Starting from the description of the inputs, the NN has four input
parameters: the distance between the considered agent i and the nearest obstacle,
and the distances between the same agent i and the three nearest pedestrians. As a
result of this setup, the input layer comprises four neurons.

The outputs are a total of 28 parameters, namely 7 parameters for each set, which
in this case are 4. As a result of this setup, the output layer comprises 28 neurons. In
Figure 5.10b, for the purpose of illustration, 4 neurons are represented as outputs of
the NN, indicating the 4 sets.

Regarding the inner structure, the NN includes three hidden layers containing
200 neurons each. These neurons employ the ReLU (Rectified Linear Unit) function
as activation function, to elaborate the combination of inputs from the preceding
layer.

To obtain the final NN, the training and testing phases must be executed. In
both phases, the same metric has been used to evaluate performances, i.e. Mean
Absolute Error (MAE). In this thesis, the training phase was executed leveraging
the adam optimizer, an optimization algorithm that employs a stochastic gradient
descent method. In this phase, a dataset of 420 labelled data is used. In total, the NN
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is trained for 100 epochs, obtaining a final MAE of 0.2665. In the testing phase, a
testing dataset of 100 labelled data is used, obtaining a final MAE of 0.2676.
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Fig. 5.10 a) Training and testing of the neural network; b) Neural network in the
GTSFM algorithm.

5.2.6 Integration of GTSFM algorithm within ROS

This section outlines the implementation details of integrating the GTSFM algorithm
into Robotic Operating System (ROS).

For mobile robot navigation, ROS provides the navigation stack framework,
where the main component is the move_base package. The primary role of the
move_base is to take a goal pose as input and calculate the necessary linear and
angular velocity commands to attain the specified final pose [131]. As shown in
Figure 5.11, the move_base package is composed of different nodes. Since our goal
is to create a motion planning that can generate socially acceptable trajectories, we
focus mainly on the local planner node. Thus, to implement the GTSFM without
the NN in ROS, we substitute the local planner node with our GTSFM algorithm
through the design of a new plugin.
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Instead, the design and the integration of the NN with GTSFM within ROS can
be summarized in the following three steps:

1. Building the Neural Network:

for the development, training and testing of the NN, the TensorFlow framework
is used. At this stage, the NN is completely independent from ROS.

In TensorFlow is essential to set different characteristics of the model: number
of hidden layers, number of neurons for each layer, activation functions, cost
function and optimization method for the training phase.

After testing the model, it can be saved by storing the weights and biases of its
different layers obtained during the training phase. This enables the reloading
of the same model, even across different code scripts.

2. Creating a ROS node:

to integrate the NN into the ROS environment, a straightforward standard
node needs to be established. Upon initialization, the node imports the NN
saved in the previous step. This enables the model to leverage standard
ROS functionalities and interfaces, facilitating communication with other
components of the robot.

3. Design of ROS interface:

to enable the communication between the local planner (GTSFM) and the NN
a service communication is implemented. In this way, the NN acts as a server,
performing the relevant prediction, and providing as output the parameter sets
required for the GTSFM algorithm.

In Figure 5.11, the system architecture and the communication interface between
the NN and the move base package are shown.
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Fig. 5.11 Representation of the system architecture composed by the move_base
ROS package and the neural network ROS node.

5.3 Simulation setup

Before conducting the real-world experiment, it is crucial to evaluate through quanti-
tatively measurement the developed navigation algorithm. To achieve this objective,
a series of numerical simulations are conducted to rigorously assess its performance.
The simulated scenario mimics the real-world experiment, where different pedestri-
ans and a robot share the same space during navigation. In particular, the simulations
are executed on a simulated mobile robot, ideally identical to the one used in the
real-world experiment. Leveraging the Locobot WX250s, available in our Com-
plex Systems Laboratory, we use its simulated model within Gazebo to evaluate its
navigation capabilities.

The following sub-sections outline the methods employed in the simulation
campaign. Initially, an a-priori power analysis is discussed, which estimates the
minimum number of simulated trajectories required to obtain statistically significant
results. Subsequently, the two simulation software platforms (Gazebo and Rviz)
utilized in the experimental simulations, are introduced. Furthermore, a compre-
hensive description of the simulation scenario is provided, ensuring the interaction
between robots and pedestrians. Finally, the last section of this chapter presents the
quantitatively results of the simulation campaign.
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5.3.1 A-priori power analysis for simulation campaign

The final goal of the simulation campaign is to reject the following null hypothesis:

Null Hypotesis All experimental conditions (GTSFM, SFM, ORCA) are statisti-
cally indistinguishable considering the state-of-the-art performance metrics testing
social navigation.

To estimate the minimum number of trajectories and thus obtain an acceptable
statistical result to reject the null hypothesis, we performed an a-priori power anal-
ysis [95] using the free software "G*Power" [96]. First, we identified our analysis
case as a nonparametric study, since as stated in [97] nonparametric statistics do not
place constraints on the distribution of the data. Then, we assumed that the data
collected after the a-priori study would be analyzed via the Kruskal-Wallis test. This
choice was motivated by the non-parametric nature of the test and our intention to
compare 3 independent groups (GTSFM, SFM, ORCA).

Based on [95], we computed the total sample size considering the ANOVA
test [98], i.e., the parametric-equivalent test of the Kruskal–Wallis one and then
multiplied the result by the corrective factor ARE, obtaining the equivalent sample
size of the non-parametric Kruskal–Wallis test. The result of the a-priori analysis
for our non-parametric test is about 152 trajectories for each group, considering an
alpha level equal to 5%, power of the study 80% and the three groups, corresponding
to the three different experimental conditions.

5.3.2 Simulation tools

Gazebo

To simulate the navigation of agents and the scenario, where various pedestrians and
a robot coexist within the same environment, we decided to use Gazebo.

Gazebo [132] is an open-source simulator that is commonly used in robotics
in conjunction with ROS. Gazebo enables the modeling of the physical behavior
of various types of robots, including mobile robots, drones, and anthropomorphic
robotic arms. Moreover, Gazebo allows the integration of virtual set of sensors
such as cameras, lidar, and ultrasound sensors. These sensors deliver realistic data
mimicking real-world sensors. Gazebo, coupled with ROS, facilitates a realistic
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simulation environment for robots by enabling control through standard ROS nodes
and communication protocols (topics and services). By leveraging Gazebo’s feature,
researchers can design, test, and refine robotic system functionalities within a virtual
environment before real-world deployment. This simulation-based approach offers
significant advantages, including accelerated development timelines and reduced
costs associated with physical prototyping and real-world experimentation.

Considering all the reasons mentioned above, Gazebo has emerged as the ideal
simulator for our simulation campaign to test the developed algorithm.

SFM plugin for pedestrians in Gazebo

To simulate a real-world scenario, which involves multiple pedestrians and a robot
navigating in the same environment, one of the essential requirements is to identify a
tool capable of simulating pedestrians and their movements.

In its default configuration, Gazebo provides the option to incorporate pedestrians,
called "actors", into the simulation. Within the virtual environment, simulated actors
initiate from designated starting points and navigate towards designated endpoints
along predefined trajectories of varying complexity. However, this conventional
approach does not guarantee that the simulated pedestrians exhibit "rational" behavior.
Indeed, the simulated pedestrians adhere to their predefined trajectories, even in the
presence of potential obstacles, such as walls or other pedestrians. This results in a
form of navigation that significantly deviates from the behavior of a real pedestrian.

In [82], the authors introduce a framework for simulating scenarios involving
both robot and pedestrians, with a focus on evaluating social navigation. This
framework uses real-world pedestrian trajectories, coming from UCI [92] and ETH
datasets [1], to simulate pedestrians’ navigation. However, a key limitation of this
simulator lies in its inability to model the dynamic influence of robot motion on
pedestrian trajectories. Furthermore, this simulator lacks integration with the ROS,
and the robot used in the scenario cannot be customized.

Although the presented framework offers valuable functionality, it is unable to
satisfy our specific requirements for the simulation of realistic human-robot interac-
tions. In particular, our research requires pedestrians with responsive capabilities
also with the robot, to accurately model the interactions. Furthermore, to ensure a
real simulation of the real-world experiment, we need a comprehensive simulation
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that includes both the physical characteristics of the robot and the communication,
tools and functionalities provided by ROS. Unfortunately, the limitations of this
framework prevent it from aligning with our main research goals.

Therefore, a different methodology is employed to simulate pedestrians and
ensure realistic interactions between agents during the navigation. In particular, an
alternative solution is to use a plugin in Gazebo. A plugin is a software that permits
users to incorporate specific functionalities into the simulator. In particular, in our
simulation campaign an open-source SFM plugin [133] is implemented to replicate
pedestrian movement within Gazebo. The SFM plugin is based on the original model
established by Helbling et al. [20] and its subsequent extensions [134] [135].

This plugin allows pedestrians to respond actively to the robot’s presence, mim-
icking real-world interactions. This responsiveness is achieved by modeling pedes-
trian movement according to the principles of the SFM.

Moreover, within the simulation campaign, each agent possesses its set of individ-
ual parameters. This approach ensures a more realistic and customizable simulation
than the default configuration.

Fig. 5.12 A scenario with a robot and two pedestrians simulated using the SFM
plugin within the Gazebo environment.

RViz (Robot Visualization) tool

In our simulation campaign, we used also a 3D visualization tool included in ROS,
known as RViz [136]. An example of RViz in our simulation is shown in Figure 5.13.

We decided to use RViz because it provides different functionalities such as:
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• Real-time visualization: RViz allows the graphical visualization of a diverse
set of data coming from sensors (e.g. LiDAR and cameras). This data is
exchanged within the topics between different active nodes. Furthermore,
RViz enables users to design and visualize the model of a robot and any other
objects that might be present within the environment;

• Planning and simulation: This tool offers the capability to dynamically
specify the goal pose that the robot needs to achieve and to display it directly
on the map. By accessing particular topics, RViz allows the visualization of
the path generated by the global planner, the adjustments made by the local
planner during navigation, and the real-time movement of the robot within the
environment;

• Debugging: Since RViz allows the data visualization and monitoring of the
real-time behaviour of the robot, it serves as a versatile tool for debugging and
testing, applicable in simulated environments (e.g. Gazebo) and real robots.

Fig. 5.13 Example of the visualization of the Locobot and the walls through the
global costmap in RViz.

5.3.3 Simulations description

The primary objective of the simulation campaign is to evaluate the effectiveness
of the designed navigation algorithm considering the state-of-the-art performance
metrics testing social navigation (for details see Section 2.3). In particular, we use
the PLR and AS to evaluate the overall efficiency of the algorithm. Then, we use
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the CPD and the PR to measure the comfort and the smoothness of the trajectories,
respectively.

To evaluate the GTSFM motion planner, a comparative analysis is performed, in-
volving two state-of-the-art algorithms: SFM [20] and Optimal Reciprocal Collision
Avoidance (ORCA) [21].

The simulation campaign includes 180 simulations (trials) for each of the algo-
rithms under consideration. The rationale behind selecting 180 trials is presented
in Section 5.3.1, where the a-priori power analysis is described to estimate the min-
imum number of trajectories to obtain an acceptable statistical result to reject the
null hypothesis. Moreover, in Section 5.3.1, it is stated that the estimated minimum
number of trajectories required for each algorithm is 152. However, a slightly larger
number, specifically 180, is chosen for our purposes.

The 180 trials consist of two distinct navigation scenarios: the first scenario,
consisting of 90 trials, involves three pedestrians, while the second scenario, also com-
prising 90 trials, incorporates four pedestrians. Both scenarios have been designed
to replicate navigation situations characterized by low crowd density conditions,
while simultaneously introducing a degree of variability in potential interactions
between robots and pedestrians. In these scenarios, all pedestrians navigate from
an initial position to a final destination using the SFM Gazebo’s plugin presented
in Section 5.3.2. The deployment of this plugin is crucial for enabling simulated
pedestrians to exhibit avoidance behaviors when encountering the robot, thereby
enhancing the authenticity of assessments related to socially-aware navigation.

The simulation environment is created in Gazebo and characterized by the fol-
lowing dimensions: 8.5m x 5.5m. Thus, the overall area comprises approximately
47 m2, which is consistent with the dimensions of environments commonly refer-
enced in literature for conducting real-world experiments [74] [137]. Furthermore,
this size closely aligns with the dimensions of the real room employed for testing the
algorithms in a real-world context.

To guarantee that each simulation involves a minimum of one interaction between
pedestrians and robot the following methodology is adopted. First, the simulation
environment is partitioned into six distinct fictitious zones, as shown in Figure 5.14.
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Fig. 5.14 Simulated environment with six fictitious zones.

Specifically, each fictitious zone z is defined by a set of coordinates ranges:

ZZZx =
{

xz
min;xz

max
}

ZZZy =
{

yz
min;yz

max
} (5.11)

Second, the spawn zones, denoting the simulation starting points, and the goal
zones are strategically configured for each agent to guarantee the occurrence of
interactions between agents, as summarized in Table 5.3.

Spawn zone Goal zone
A D, E
B D, F
C E, F
D A, B
F C

Table 5.3 Each spawn zone is paired with corresponding goal zones.

For each trial, zone F is utilized to spawn the robot during its initialization within
the simulated environment. On the other hand, zones A, B, C, D are designated for
the spawning of pedestrians.
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Before the start of each trial, each pedestrian i, within the simulated environment,
autonomously selects its spawn zone z from the available options, using a uniform
distribution. Then, each pedestrian i stochastically determines its initial position
within the chosen zone z, with the following equations:

xz
i = xz

min + rand(0,10)
xz

max− xz
min

10
(5.12)

yz
i = yz

min + rand(0,10)
yz

max− yz
min

10
(5.13)

where rand(0,10) is a uniformly distributed random number ranging from 0 to
10. Instead, xz

min,x
z
max,y

z
min,y

z
max are the ranges of the chosen zone z.

The spawn zones are mutually exclusive, indicating that once a zone is chosen as
a spawn location by one pedestrian, it becomes unavailable for selection by another
pedestrian.

After determining its initial position, each pedestrian proceeds to randomly
select the goal zone based on the principle outlined in Table 5.3. Subsequently,
each pedestrian performs the calculation to determine the final goal position to
reach within the chosen zone. This process is carried out using the same method
employed for the calculation of initial position described in Equations 5.12 and 5.13.
In this context as well, the chosen goal zones are mutually exclusive to prevent the
occurrence of multiple pedestrians sharing a common target area.

5.4 Simulation results of the GTSFM trajectory plan-
ning

The outcomes of the performance metrics, obtained through a Monte Carlo numerical
simulation, are shown in Figure 5.15.

For each performance metric, a Kruskal-Wallis test is conducted to statistically
reject the following null hypothesis:
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Fig. 5.15 Mean value and standard deviation of the considered performance metrics
for each algorithm: SFM (Social Force Model), ORCA (Optimal Reciprocal Colli-
sion Avoidance), GTSFM (Game-theoretic Social Force Model). The performance
metrics are: a) PLR (Path Length Ratio), b) AS (Average Speed), c) CPD (Closest
Pedestrian Distance), d) PR (Path Regularity).

Null Hypotesis All algorithms (GTSFM, SFM, ORCA) are statistically indistin-
guishable considering the state-of-the-art performance metrics testing social naviga-
tion.

Then, since for each performance metric, a statistically significant difference is
identified (p < 0.05, χ2 = 173,22 for PLR; p < 0.05, χ2 = 222,00 for AS; p < 0.05,
χ2 = 53,18 for CPD; p < 0.05, χ2 = 435,16 for PR), a post-hoc analysis, involving
pairwise comparison of algorithms, is conducted and below is discussed.

In general, our numerical validation confirms that GTSFM exhibits a significant
improvement over SFM across all four performance metrics.

In particular, in Figure 5.15a, the PLR for each algorithm is shown and reveals
that the SFM is characterized by the lowest average PLR, followed by ORCA and
GTSFM in a tie. Although ORCA has a very similar mean value to GTSFM, post-
hoc analysis reveals a presence of significant statistical difference (p = 0.02). This
result is justified by the fact that the post-hoc analysis compares the mean of the
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calculated ranks and not the mean of the values (mean rank SFM= 148,11; mean rank
ORCA=353.59; mean rank GTSFM=309.79). When examining the remaining pairs
of groups, a statistically significant difference is observed (SFM-ORCA p < 0.05;
SFM-GTSFM p < 0.05). Regarding the standard deviation, ORCA and SFM exhibit
a higher variability compared to GTSFM. This result indicates that in terms of PLR,
the repeatability and predictability of each experimental condition are much higher
in GTSFM compared to ORCA and SFM.

The average speed (AS) in the three experimental conditions is illustrated in
Figure 5.15b, where the highest average value is related to ORCA, followed by
GTSFM and SFM, which are in turn distinguishable from one another (post-hoc
analysis: for SFM-ORCA p<0.05; for SFM-GTSFM p < 0.05; for ORCA-GTSFM
p < 0.05). The highest mean value of ORCA is justified by the fact that ORCA is
designed to maximize the velocity of the robot maintaining a safe distance from
other agents. GTSFM maintains a higher mean value than SFM because one of
the distinctive features of GTSFM lies in its predictive logic. Unlike SFM, which
tends to avoid agents when it is nearby, GTSFM adopts a strategy of reducing speed
and selecting a trajectory that avoids people in advance. Similar to SFM, ORCA
is a reactive method and thus fails to predict the trajectories of other agents along
a consistent time horizon. This limitation results in higher standard deviations for
ORCA and SFM compared to GTSFM, suggesting their potential for less stable
navigation in dynamic environments. This result highlights the fact that the average
speed of the GTSFM remains about the same in the 180 trial indicating a greater
repeatability capacity of the GTSFM than the other two algorithms.

Although the results are promising, the average speed values obtained are not yet
comparable to human speed values. This limitation is tied to the physical constraints
of the Locobot, which has a maximum speed limit of 0.5 m/s.

Average values of CPD in the three experimental conditions are illustrated in
Figure 5.15c, where the highest average value is related to GTSFM, followed by
ORCA and SFM. The reason for this ranking is presumably due to the purely reactive
design of the ORCA and SFM algorithm. Although GTSFM has a higher mean value
than ORCA, post-hoc analysis reveals an absence of significant statistical difference
(p = 0.79), proving that both algorithms try to maintain a certain distance from
people to ensure their comfort. When examining the remaining pairs of groups, a
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statistically significant difference is observed (SFM-ORCA p < 0.05; SFM-GTSFM
p < 0.05).

The metric that most clearly underlines the significant advantage of employing
game theory in navigation is path regularity (PR). In Figure 5.15d, the average PR for
each experimental condition is illustrated, where the highest average value pertains
to GTSFM, followed by SFM and ORCA, each of which is distinguishable from the
others (post-hoc analysis: for SFM-ORCA p < 0.05; for SFM-GTSFM p < 0.05;
for ORCA-GTSFM p < 0.05). The highest mean value of the GTSFM is probably
justified by the incorporation of game theory enables the identification of optimal
parameters within the SFM to execute evasive maneuvers as smoothly as possible.



Chapter 6

Qualitative evaluation of the GTSFM
algorithm through a real-world
experiment

In this chapter, the focus is detailing the real-world experiment designed to quali-
tatively assess the GTSFM algorithm presented in Chapter 5. This chapter delves
into various aspects of the experiment, such as the hardware, the questionnaires to
gather subjective feedback, and the statistical analysis to provide significant statisti-
cal results. Then, the chapter proceeds to present the result of the experiment and
engage in a thorough discussion of the quantitative and qualitative findings, aiming
to provide insights into the algorithm’s performance and effectiveness across the
different analyses.

6.1 Hardware description

To validate qualitatively the trajectories generated by our motion planning we conduct
a real-world experiment. This experiment entails the utilization of the Locobot
WX250s (Figure 6.1). Additionally, an external camera (Zed2) is employed to
monitor participants and acquire data on their positions and velocities. Therefore,
the primary objective of this section is to provide a comprehensive description of
the hardware components of the Locobot WX250s and the camera employed in the
context of the real-world experiment.
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Fig. 6.1 The mobile robot (Locobot WX250s-6DOF) used in the real-world experi-
ment.

6.1.1 Mobile robot hardware

The real-world experiment employs the Locobot WX250s (Figure 6.1), developed
and commercialized by Trossen Robotics. The system is composed of several
components, each of which is essential for its functioning. In the following, a
detailed description of each component is provided.

Mobile base

The mobile base is the hardware that facilitates the robot’s mobility within its
environment. The specific platform utilized as the mobile base is the Create3,
developed by iRobot. This platform is designed to be compatible with various
connectivity options such as Wi-Fi, Bluetooth, Ethernet, or USB connections [5].
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Fig. 6.2 Create3 mobile base [5] from above (on the left), from the bottom (on the
right).

The entire software of the mobile base is implemented using ROS2, which means
that sensor data and actuator commands are transmitted or received through this
framework. To ensure compatibility with ROS1, the mobile base uses a "bridge"
that facilitates real-time communication among the different versions of ROS. This
strategy allows the development and deployment of navigation algorithms in ROS1
into the mobile base [138]. Thanks to this bridge, all the algorithms were developed
using ROS1, and then, we effectively conducted the real-world experiment on our
robot, achieving successful results.

The mobile base has two independent drive wheels, as shown in Figure 6.2 on
the right. Moreover, to enhance stability during the motion, the mobile base has
a "caster", strategically positioned to shift the centre of gravity to its vertical axis,
because by default the centre of gravity is shifted forward to its vertical axis. Further-
more, each wheel has current sensors, encoders, and odometry sensor. Data collected
from these sensors is integrated with information from the Inertia Measurement Unit
(IMU) to produce a unified odometry estimate [139].

Intel NUC Mini PC

The processing system of the robot, responsible for enabling its operations and su-
pervising the sensors, is a NUC computer equipped with the following specifications:
8th Gen Intel Dual-Core i3, 8GB DDR4 RAM, 240 GB Solid State Drive (SSD), Intel
Iris Plus Graphics 655, Wi-fi, Bluetooth 5.0, Gigabit Ethernet, USB, Thunderbolt 3,
Ubuntu 20.04 [140].
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Fig. 6.3 Intel NUC Mini PC.

Unlike the mobile base, the NUC is powered by an independent 50000 mAh
secondary battery, which is responsible for powering other robot components, as
described below.

WidowX-250 Robot arm

WidowX-250 Robot arm (Figure 6.4) is a manipulator with six degrees of freedom
and it is controlled using nine smart servos from DYNAMIXEL-X Series Actuators
developed by Robotis. These features provide excellent manoeuvrability, enabling a
maximum reach of 650 mm and a complete 360° rotation [141].

Fig. 6.4 WidowX-250 6DOF Robot arm.

Since our primary focus is the investigation of social navigation without the
need for object manipulation, the robotic arm was not employed for the scope of the
real-world experiment.

RPLIDAR A2M8

The RPLIDAR A2M8 is a 360-degree 2D LiDAR system designed specifically for
indoor environments (Figure 6.5). It is positioned on the top of the robot and with its
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rapid rotation, it can capture up to 8000 laser-ranging samples per second within a
range of 12 meters [138].

The resulting 2D point cloud data produced by the Lidar is used for dual purposes:
(i) for Simultaneous Localization and Mapping (SLAM); and (ii) for navigation.
In the context of our real-world experiment, this LiDAR system is used for both
purposes. Indeed, it facilitated the precise execution of the SLAM process and the
detection of the nearest obstacles.

Fig. 6.5 RPLIDAR A2M8.

The main limitation of the LiDAR is its incapacity to offer vertical information.
Since the LiDAR is a 2D sensor, it can scan only in the plane perpendicular to
its rotational axis. Consequently, it cannot detect obstacles lower or higher than
its scanning plane, which restricts its capacity to fully explore and recognize the
environment. For this reason, an additional sensor has been placed on the robot
that allows for information even below and above the LiDAR scanning plane: Intel
RealSense Depth Camera.

Intel RealSense Depth Camera D435

The RealSense Depth Camera D435, an Intel product, is a 3D camera designed
to deliver real-time depth data and reconstruct three-dimensional environments
(Figure 6.6). It achieves this by utilizing two synchronized stereoscopic cameras to
capture images from different perspectives. Moreover, the RealSense has a depth
sensor with infrared that measures the distance between the camera and the objects
within the scene. This capability allows for the acquisition of precise depth maps of
the captured objects. This camera is primarily employed in robotics, virtual reality,
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and augmented reality applications. Notably, it demonstrates versatility by being
suitable for use in both indoor and outdoor settings [142].

Fig. 6.6 Intel RealSense Depth Camera D435

The RealSense is placed on the Locobot, approximately 53 cm above the floor,
and its primary application is during the SLAM phase. Following this phase, the
data collected from the camera is merged with the data from the LiDAR to generate
a static map, which will be utilized for real-time navigation.

6.1.2 Zed2 camera

Since a Social Navigation algorithm requires real-time data of pedestrians’ positions
and velocities within the experimental environment, pedestrian tracking becomes
indispensable.

Although the robot is equipped with a stereo camera that provides visual infor-
mation about its surroundings, it cannot track all pedestrians participating in the
experiment. Furthermore, the provided information could be partial and limited by
the camera’s field of view. Consequently, pedestrians positioned outside this field of
view remain unidentified by the camera.

To overcome this problem and thus protect the safety of our participants, we use
a second camera, the ZED2 Camera (Figure 6.7). The ZED2 camera is designed by
Stereolabs to produce a stereoscopic 3D image, mimicking the way human vision
works.
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Fig. 6.7 Zed2 camera used in real-world experiment.

The main characteristics of the ZED2 are:

• Stereo camera: as shown in Figure 6.7, the ZED2 is equipped with two
synchronized cameras that capture images from different prospective, closely
emulating the functioning of the human eye. This stereoscopic configuration
allows the camera to estimate depth and motion information analyzing the
pixel displacement between the left and right images [143];

• Resolution and frame rate: both cameras can be calibrated to different resolu-
tion settings. Depending on the resolution set, there will also be a maximum
frame rate limit [144];

• Field of view: The camera has a wide field of view of approximately 110°(H)
x 70°(V) [143];

• Modes of use: The ZED2 can be used to perform various operations such as:

1. Positional tracking (or Motion tracking): this mode enables the camera to
estimate its position in the world. This tracking can be used in real-time
to track the device on which the camera is mounted [145];

2. Spatial mapping: this mode allows the generation of a 3D map of the
environment [146];

3. Object detection: this mode enables the camera to identify objects in the
image. The stereo camera can identify only limited object classes, such as
people, vehicle, bag, animal, electronics, fruit and vegetables. Moreover,
using this mode, the camera can provide the 2D and 3D coordinates of
the identified object [147];

4. Body tracking: the identification of some specific keypoints of human
body helps in reconstructing a representation of the people’s skeleton in
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the image. Then, by utilizing the depth and positional tracking performed
by the previous mode of the camera, the 3D position of each keypoint
can be determined [6]. An example of this mode is shown in Figure 6.8.

Fig. 6.8 An example of the body tracking mode of Zed2 [6].

The camera offers compatibility with development in both ROS1 and ROS2 [148].
This flexibility allows the the stereo camera to communicate with the Locobot
framework, as both are ROS compatible.

People detection and tracking with Zed2

During the real-world experiment, the object detection mode (specifying the class
people) is used to identify pedestrians in the environment. Then, the corresponding
people coordinates, referred to the static map generated in the SLAM process, are
obtained.

Below, a detailed description of people detection mode is provided [147].

1. Data acquisition: the Zed2 captures images from different angles using its
two cameras. These images are exploited to obtain depth data, which allows
the camera to reconstruct a three-dimensional map of the scene;

2. People recognition: the Zed2 attempts to identify the objects present in both
left and right cameras using AI and neural networks and computes their 3D
position and velocity;

3. Tracking initialization: In this phase, the system initiates the tracking pro-
cess, which involves assigning a unique identifier to the detected person and
estimating a bounding box. The bounding box is initially obtained in 2D by
recognizing individual pixels that belong to the boundary of the identified
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person. Subsequently, the equivalent 3D bounding box is derived from the
integration of the 2D version with depth information;

4. Object tracking: Using depth data and observing its variation over time, the
Zed2 camera is able to estimate the distance, direction and speed of a detected
object’s movement in three-dimensional space, in real time.

6.2 Questionnaire

To evaluate how humans perceive robots controlled by the GTSFM algorithm, the
Human-Robot Interaction Evaluation Scale (HRIES [7]), is adopted.

We choose the HRIES scale because, unlike the state of the art [31, 149], the
authors in [7] developed the HRIES scale using different types of robots (not just
humanoids), making the scale generalizable to all types of robots. Additionally,
unlike other scales that validate the questionnaire with static images [149], the
authors in [7] validate the scale by conducting tests with robots in motion (via
videos). Furthermore, the authors in [7] also conduct a test with a real robot to
further assess the validity of the scale.

Since, for conducting the real-world experiment, we use a non-humanoid robot
that navigates and shares the environment with humans, the aforementioned scale is
particularly well-suited for our case.

Figure 6.9 illustrates the scale developed in [7]. The scale is designed to assess
how humans perceive robots, with a particular focus on anthropomorphism. However,
the concept of anthropomorphism is too broad to be measured directly. Therefore,
the authors identify four factors (shown on the right in Figure 6.9) that are measured
through what they refer as items (depicted on the left in Figure 6.9).

The factors on the scale are: sociability, animacy, agency, and disturbance.
Sociability is characterized by the capacity of an individual or group to interact
effectively and with positive engagement with others. The animacy suggests human
characteristics for non-human agents. The agency is the capacity of a robot to act
independently and make its own decisions, thus is strictly linked with the perceived
intelligence of the robot. The disturbance captures the negative valence associated
with perceptions of robot, including feelings of discomfort and specific negative
evaluations.
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The questionnaire is available in English and Italian, allowing participants to
choose the language they feel most comfortable responding in. The Italian translation
of the HRIES scale is presented in Table 6.1. The translation of the items is conducted
with the assistance of the scale author, Dr. Spatola.

Regarding the practical use of the scale, we follow the instructions reported
in [7], tailoring the research question to align with the robotic behavior of interest:
the robot’s movement. In particular, each item is rated using a 7-point Likert scale,
answering the following question:

"Using the provided scale, how closely are the words below associated with the
robot’s motion during the experiment?"

By collecting data on the anthropomorphization of the robot’s behavior, we
collect information about how humans perceive the robot. Specifically, the algorithm
that is perceived with the highest anthropomorphism probably shares more human-
like characteristics than the other algorithms, being the most socially accepted [33].

Fig. 6.9 The Human-Robot Interaction Evaluation Scale (HRIES) [7].
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Items in English Items in Italian
Warm Caloroso

Likeable Piacevole
Trustworthy Affidabile

Friendly Amichevole
Alive Vivo

Natural Naturale
Real Reale

Human-like Sembianze umane
Self-reliant Autonomo

Rational Razionale
Intentional Intenzionale
Intelligent Intelligente

Creepy Raccapricciante
Scary Spaventoso

Uncanny Inquietante
Weird Strano

Table 6.1 Italian translation of the items in HRIES.

6.3 Experimental setup

The room of the real-world experiment is approximately 40 m2. The involved partic-
ipants are 2 and one robot (Locobot WX250), as shown in Figure 6.10. Within the
experiment, every participant is assigned a specific starting point and a corresponding
goal to achieve.

Fig. 6.10 Scenario real-world experiment with two participants and the robot.
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The experimental protocol comprises three phases:

1. Explanation of the experiment and collection of participant general infor-
mation.

In this phase, each participant receives detailed information regarding the re-
search objectives, experimental procedure, risks and benefits of the experiment,
and the right to withdraw at any time from the experiment. Additionally, each
participant is given a consent form to sign, granting their participation in the
research project. Then, the participants are required to provide their gender,
age, and level of experience in the robotics field on a Likert scale from 1 (no
experience) to 5 (expert). This phase is expected to take about 6 minutes;

2. Participant training.

During this phase, participants are allowed to walk in the room for 3 minutes
without the robot. Subsequently, participants have another 3 minutes to walk
in the same room but with the robot. This phase is essential to allow each
participant to get familiar with the environment and the experiment scenario;

3. Experiment.

In this phase, participants walk from a predefined starting point to a goal. This
phase will consist of 3 sessions, one for each algorithm. Within each session,
4 trials are conducted. At the end of each session, each participant completes
an online questionnaire based on the HRIES scale [7].

The order of the sessions for each experiment is randomized to avoid collecting
data with biases related to the order of execution of the different algorithms. An
example of session randomization is described in Figure 6.11. Each session is
expected to take about 5 minutes. To complete the entire experiment, each participant
needs approximately 30 minutes.
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Session 1 Session 2 Session 3

1st experiment
SFM 
4 times

Questionnaire
GTSFM 
4 times

Questionnaire
ORCA 
4 times

Questionnaire

2nd experiment
GTSFM 
4 times

Questionnaire
ORCA 
4 times

Questionnaire
SFM 
4 times

Questionnaire

3rd experiment
ORCA 
4 times

Questionnaire
GTSFM 
4 times

Questionnaire
SFM 
4 times

Questionnaire

4th experiment
GTSFM 
4 times

Questionnaire
SFM 
4 times

Questionnaire
ORCA 
4 times

Questionnaire

5th experiment
SFM 
4 times

Questionnaire
ORCA 
4 times

Questionnaire
GTSFM 
4 times

Questionnaire

6th experiment
ORCA 
4 times

Questionnaire
SFM 
4 times

Questionnaire
GTSFM 
4 times

Questionnaire

Fig. 6.11 Randomization of test sessions across different experiments.

6.4 A-priori power analysis

Our study aimed to investigate the subjective perception of the GTSFM algorithm by
comparing it with SFM and ORCA algorithms. To estimate the number of partici-
pants ensuring the reliability and validity of our findings [95], we conducted a rigor-
ous a-priori power analysis, employing the freely available software G*Power [96].
The HRIES questionnaire, chosen in our study for the real-world experiment, was
validated through different studies in [7], where a normal distribution of data was
assumed. Based on these previous studies, we also assumed that our data adhere to
a normal distribution. Consequently, this allows us to confidently support the use
of parametric tests in our analysis [150]. Then, we assumed that the data collected
during the real-world experiment would be analyzed via the parametric one-way
ANOVA because our independent variables were more than two independent groups
(GTSFM, SFM and ORCA) and our dependent variables (the factors of the ques-
tionnaire) were continuous since the factors were computed through the Principal
Component Analysis [151]. The result of the a-priori analysis for the one-way
ANOVA is 66 volunteers, considering an alpha level equal to 5%, power of the
study 80% and the three groups, corresponding to the three different algorithms.
We recruited the participants using the Institutional email of Politecnico di Torino
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and then, we invited them to come to the lab, where the experiment took place.
Ultimately, we collected 76 responses, exceeding the sample size of 66.

6.5 Statistical analysis of data

The objective of the statistical data analysis of the qualitative data is to reject the
following null hypothesis:

All algorithms (GTSFM, SFM, ORCA) are perceived by participants as indistin-
guishable.

To achieve this objective, first of all, it is necessary to reduce the dimension of
the dataset from the items to the possible factors through the principal component
analysis (PCA) [151]. Before performing the PCA analysis, the merging of the data
collected for each algorithm is necessary, since the PCA requires a single dataset
of all the data collected. Then, to ensure that all items have the same scale, the
standardization of the data is performed. Subsequently, the PCA is performed and
the loadings are rotated. The rotation of the loadings is a post-processing step
that can improve the interpretability of the results by making the loadings more
meaningful [151]. Finally, the score of each principal component for each participant
is computed, considering the linear combination of the standardized data with the
computed loadings.

Then, to reject the null hypothesis, the one-way ANOVA is performed on the
computed score. If the one-way ANOVA test produces a statistical significance
value (p-value) below 5%, it means there is the presence of at least one group that
has a significant difference from the others in terms of some factor. To discover
which groups are classified as significantly different, a post-hoc analysis is performed
considering two pairs of groups at a time.

6.6 Results

We collected 76 responses for the real-world experiment, where the average age
of the participants was approximately 25, having limited robotics experience. The
gender composition was unbalanced toward men (Table 6.2).
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Number of Participants 76
Gender Male 73.7% and Female 26.3%

Age 24.99±3.91
Experience with robotics 2.03±1.07

Table 6.2 Demographic characteristics and participants’ levels of experience with
robotics, assessed on a scale ranging from 1 (indicating minimal experience) to
5 (indicating maximal experience). This data is gathered in the first phase of the
experiment.

Firstly, experimental outcomes were analyzed with the PCA to reduce the dimen-
sion of the dataset through the identification of the latent factors. Then, the one-way
ANOVA was performed to statistically reject the following null hypothesis.

Our null hypothesis posits: All algorithms (GTSFM, SFM, ORCA) are perceived
by participants as indistinguishable.

A summary of the PCA loadings for each item is presented in Figure 6.12. The
latter highlights the four main components that exhibit the highest variances. We
focused on these four components because we wanted to interpret each component
with the factor of the HRIES scale. However, as can be easily deduced from the
figure, only the first two components can be directly associated with two factors of
the scale. The remaining two factors do not align significantly with any of the PCA
components. In particular, the first component exhibits a significant concentration
of items associated with agency, while also displaying a moderate influence from
animacy and sociability. The second component predominantly comprises items as-
sociated with disturbance. Nevertheless, the lack of interpretability for the remaining
two components associated with sociability and animacy factors might be attributed
to the non-human appearance of the robot, which precludes reliable assessments for
these factors.

Mean and standard deviation of component scores are presented in Figure 6.13.
Specifically, the measure of the perceived agency across the three algorithms is
illustrated in Figure 6.13a, where the SFM is characterized by the highest average
score, followed by GTSFM and ORCA. However, despite the initial indications
of the one-way ANOVA (F = 4.54, p = 0.01) of significant differences in agency
scores among the algorithms, a post-hoc analysis (Table 6.3) revealed that only the
pair SFM-ORCA was statistically different. Participants perceived the remaining
pairs as being indistinguishable.



6.6 Results 125

Latent factor Item 1st Component 2nd Component 3rd Component 4th Component
Sociability Warm -0,0588 0,0200 -0,5046 -0,0033
Sociability Likeable 0,0105 -0,0224 -0,2807 -0,2751
Sociability Trustworthy 0,2358 -0,1018 -0,1567 -0,0793
Sociability Friendly 0,0561 -0,1098 -0,5934 0,1916
Animacy Alive 0,1870 0,1652 -0,2116 -0,1057
Animacy Natural -0,0224 0,0741 -0,1025 -0,4938
Animacy Real 0,2165 0,0325 -0,0163 -0,2919
Animacy Human-like -0,0359 0,0642 -0,3922 -0,1257
Agency Self-Reliant 0,6017 -0,0831 -0,0042 0,2245
Agency Rational 0,4628 -0,0189 0,0080 -0,0032
Agency Intentional 0,4327 0,0812 0,1757 -0,1421
Agency Intelligent 0,2469 0,0565 -0,0083 -0,3085
Disturbance Creepy -0,0589 0,5444 0,0289 -0,0125
Disturbance Scary 0,0562 0,5741 0,1091 -0,0366
Disturbance Uncanny -0,0477 0,4997 -0,1532 0,0520
Disturbance Weird 0,1441 0,2145 -0,1157 0,5961

41,33% 16,95% 7,18% 4,89%Percentage of  explained variance

Fig. 6.12 Loadings for each item considering 4 principal components as suggested
by the HRIES scale [7]. In bold is highlighted the maximum value for each item.
Highlighted in yellow are the items that make the most significant contributions to
that component.

On the other hand, the measure of the perceived disturbance across the same
algorithms is illustrated in Figure 6.13b, where ORCA is characterized by the highest
average score, followed by GTSFM and SFM. Nevertheless, the one-way ANOVA,
conducted on disturbance scores, reveal the absence of statistically significant differ-
ences (F = 0.67, p = 0.51). These findings indicate that participants were unable to
detect differences in comfort between the three algorithms.
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Algorithm 1 Algorithm 2 p-value
SFM ORCA 0.009
SFM GTSFM 0.119

ORCA GTSFM 0.586
Table 6.3 Post-Hoc analysis on the score of the 1st component. In yellow is high-
lighted the statistically different pair.
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Fig. 6.13 Mean and standard deviation of component scores across different algo-
rithms: SFM (Social Force Model), ORCA (Optimal Reciprocal Collision Avoid-
ance), GTSFM (Game-theoretic Social Force Model). The components are: a) 1st
Component is the perceived agency, b) 2nd Component is the perceived disturbance.

6.7 Discussion

This study aims to develop a navigation system that generates trajectories for au-
tonomous robots to ensure the social acceptance of humans by leveraging the concept
of anthropomorphism. To achieve this goal, we employed the social force model com-
bined with game theory (GTSFM) to model human motion intentions and devised a
trajectory planning algorithm based on this model.
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To assess the social acceptability of the generated robotic trajectories, we con-
ducted a twofold validation: first, we evaluated quantitatively the performance of
the generated trajectories across three experimental conditions (SFM, ORCA and
GTSFM) through four performance parameters of the state of the art (PLR, AS,
CPD, and PR). This validation was done through a Monte Carlo simulation cam-
paign. Then, we performed a qualitative analysis through a survey questionnaire
with a statistically significant group of volunteers using the HRIES scale [7]. This
validation was done through a real-world experiment.

The most significant finding of the quantitative analysis is that the GTSFM algo-
rithm produces smoother paths than the two state-of-the-art algorithms, resulting in a
more natural motion. Moreover, through numerical validation, we have consistently
observed that GTSFM outperforms SFM across the four performance metrics. In
particular, the results suggest that GTSFM excels in finding shorter, smoother paths
with a higher speed than SFM, reducing the time to reach the goal while maintaining
a safer distance from humans. This finding highlights the effectiveness of GTSFM
in achieving more efficient and natural navigation compared to SFM.

While ORCA excels in speed (AS) and efficiency (PLR), its social navigation
capabilities are lower than GTSFM. Indeed, ORCA’s trajectories tend to be less
smooth and closer to pedestrians, potentially increasing the risk of collisions and
pedestrian disturbance.

Nevertheless, these quantitative findings are not consistent with the qualitative
results. The latter revealed that none of the considered principal components showed
a statistically significant difference between the algorithms, except for SFM and
ORCA in the case of agency (the first component). This apparent contradiction be-
tween the two types of analysis raises interesting questions about the reasons behind
these findings. This discrepancy could potentially stem from the influence of unac-
counted factors. One such factor might be the robot’s appearance, which obscures
the distinction between the algorithms. Additionally, the limited velocity of the real
robot (0.5 m/s) compared to the average human walking velocity (1.4 m/s [152])
might have hindered the identification of a potentially anthropomorphic algorithm.

Algorithm acceptability is evaluated through both quantitative and qualitative
measures, each addressing distinct aspects. Nonetheless, some measures aim to
understand shared underlying factors, allowing for a unified discussion of these
measures.
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Quantitative measures, such as PLR, AS, CPD, and PR, provide objective as-
sessments of algorithm performance. PLR indicates the overall efficiency of the
algorithm, while AS and CPD measure how comfortable the generated trajectories
are for humans. In particular, the human comfort decreases as the robot’s speed
of movement increases [83]. Instead, the human comfort increases as the robot’s
distance from humans increases [83]. PR assesses the smoothness of the trajectories,
which is related to the naturalness of the robot’s movements [27].

On the other hand, the qualitative measurement based on the HRIES scale,
focuses on the anthropomorphism of the robot’s motion. These measures include
sociability, animacy, agency, and disturbance.

Building upon this explanation, further insight could be gained by bridging
the gap between quantitative and qualitative results. This could be achieved by
analyzing the relationship between objective measurements like AS and CPD with
the subjective evaluation of perceived disturbance captured by the HRIES scale.

Considering the AS, the ORCA algorithm has the highest average speed value
which turns out to be the one with the highest perceived disturbance among the three
algorithms, although there is no statistical difference across the considered algorithms.
This statistical indistinguishability between the algorithms may be attributed to the
limitations of the robot’s velocity (0.5 m/s). While the ORCA algorithm might
theoretically promote faster movements compared to other algorithms, the robot’s
hardware limitations restrict its maximum achievable velocity. This velocity may
be insufficient to elicit feelings of discomfort in human subjects which may lead to
the absence of an identification of a statistically significant difference between the
algorithms.

While the GTSFM exhibited a greater average CPD compared to the SFM, real-
world experiments did not translate this objective metric into a higher perceived
comfort for GTSFM than SFM. This discrepancy can be explained by considering the
different contexts in which the measurements were taken. Quantitative measurements
were conducted in a simulated environment, where pedestrians exhibited rational
movements and interacted with the robot as another human in a shared space. In
contrast, the real-world experiment showed that despite the robot being programmed
to maintain a specific distance, participants tended to approach closer than they would
with a real person (maybe for curiosity reasons), thereby obscuring the distinctions
between the different algorithms.
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Another potential comparison between quantitative and qualitative analyses
could be made by correlating PR measurements with the evaluation of animacy.
This comparison is justified because when a robot exhibits smooth movements,
resembling the typical non-nervous motions of humans. Thus, the robot is perceived
as more human-like [27]. Unfortunately, this comparison cannot be made since
after the PCA, the animacy cannot be uniquely attributed to any of the identified
components, thus failing to be interpreted and discussed. We encountered a similar
challenge regarding sociability, as we could not unequivocally attribute a principal
component to this factor.

We have reason to believe that probably these two problems are caused by the
robot’s appearance. Although the questions were about the robot’s movement, it is
impossible to completely separate the robot’s movement from its appearance. This
makes the measures of animacy and sociability unreliable for further discussion.

These findings are consistent with other studies in literature [153, 33], where the
authors have shown that the physical appearance of a robot plays a significant role
in shaping how people perceive and interact with it. This highlights the importance
of considering the appearance of a robot when developing a socially-aware robot
algorithm. Moreover, in [154], authors have investigated how the appearance and
movement characteristics of a robot can influence people’s perceptions of its animacy.
The main result of the study in [154] is: when the robot has a human-like appearance,
humans perceive naturalistic motion as more animate compared to mechanical
motion. This difference is not perceived when the robot lacks human-like appearance.
This finding aligns with our results on animacy, where we observed quantitative
differences between algorithms but no qualitative distinctions.

When interpreting the results of our study, we should also acknowledge the
limitations of the quantitative and qualitative validation. Regarding the former, it
was conducted in a simulated environment where humans were not real people but
rather controlled by a human motion model. This model was used to simulate various
human behaviors by adjusting different parameters. However, this approach has two
limitations: first, it does not explicitly model the stochastic nature of human behavior,
even though this is implicitly accounted for through parameter tuning. Second, it
is not possible to accurately assess real human-robot interaction, as humans simply
avoid the robot as another peer human in the simulation.
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On the other hand, one of the main limitations of the qualitative validation lies
in the constrained movement speed imposed upon the participants. This artificial
restriction was necessary to ensure interaction with the robot, as its maximum speed
is 0.5 m/s. Furthermore, such restricted speed of the robot may have limited the range
of conditions tested among the different experimental conditions and consequently,
the ability to comprehensively assess perceived comfort in human subjects.

The non-humanoid appearance of the robot and its relatively small size likely
contributed to limitations in measuring sociability and animacy. Moreover, during
the experiment, participants did not engage in a peer-to-peer interaction with the
robot, instead assuming a leader-follower interaction. This phenomenon could be
attributed to the robot’s non-humanoid characteristics, such as the absence of a face,
two arms and a typical body structure. Additionally, the robot’s height of 63 cm,
significantly below the Italian average height of humans (1.68 m [155]), contributes
to an appearance reminiscent of a toy-like aesthetic. This lack of human-like features
may have hindered the development of a peer-to-peer rapport.

Throughout the experiment, participants consistently approached the robot more
closely than they did other humans. This behavior may be attributed to either the
participants’ natural curiosity or the perceived non-threatening nature of the robot,
possibly influenced by its small size.

Our work can be extended in several directions.

To make the quantitative analysis as realistic and precise as possible, a real
experiment should be created by placing the robot in a real environment (such as
a corridor in a hospital or at university). In this way, we would have real people
interacting with the robot, rather than agents simulated by models. In this ideal test,
reliable data could also be collected about human-robot interaction (as people would
feel free without the constraints and biases of laboratory experiments). This approach
allows us to collect more realistic data than our simulated data. Furthermore, this
approach could help to understand the type of interaction between humans and robot,
whether it is a peer-to-peer or leader-follower interaction.

Regarding the qualitative analysis, we believe that the experiment protocol is
reliable and the biggest limitations were the limited robot’s speed and its appearance.
Therefore, we recommend repeating the experiment proposed in this study, choosing
a robot that has a speed comparable to humans (1.4 m/s [152]). In addition, the
author in [33] showed that in evaluating how humanlike a robot appears, the robot’s
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head and face receive considerable attention, since this body part is crucial in human-
human communication. Therefore, we recommend a robot that has this body part.
The choice of the robot’s height is also essential [156]. For this reason, a robot with
a height very similar to humans (1.68 m) should be chosen.

The main result of this study is that probably the choice of the robot is essential
to ensure an interaction as similar as possible to that of humans to obtain statistically
significant results even at the level of motion measurement.
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Part 2 Mission Planning with Human
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Chapter 7

Auction-based task allocation and
motion planning for multi-robot
systems with human supervision

This chapter presents a task allocation strategy for a multi-robot system with a
human supervisor in a dynamic scenario. The human supervisor can intervene in
the operation scenario by approving the final plan before its execution or forcing
a robot to execute a specific task. The proposed task allocation strategy leverages
an auction-based method in combination with multi-goal motion planning. The
latter is used to evaluate the costs of execution of tasks based on realistic features of
paths. An extensive simulation campaign in a rescue scenario validates our approach
in dynamic scenarios comprising a sensor failure of a robot, a total failure of a
robot, and a human-driven re-allocation. We highlight the benefits of the proposed
multi-goal strategy by comparing it with single-goal motion planning strategies at
the state of the art. Finally, we provide evidence for the system’s efficiency by
demonstrating the powerful synergistic combination of the auction-based allocation
and the multi-goal motion planning approach. At the end of this chapter, a discussion
of the results is provided.
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7.1 Background

In the near future, multi-robot systems (MRS) are envisaged to significantly impact
different social fields [157]; from surveillance missions [39] to industrial applica-
tions [158], from rescue operations [34] to agriculture [38].

MRSs exhibit significant advantages over Single-Robot Systems (SRS), due
to their redundancy, flexibility, efficiency, and the absence of a single point of
failure [159, 160]. However, communication, coordination, and control overhead are
required in order to orchestrate the action of the team as a whole.

Complex and life-critical tasks, such as rescue operations, often involve the
adoption of MRSs consisting of unmanned vehicles and human operators, where
humans are in charge of important decisions and of some aspects of the coordination
of the operations, especially those related to the evaluation of the overall success
of the work plan, the safety of human lives, and the management of unforeseen
situations. Rescue operations, in particular, involve a large quota of human operators
within the team, which may attain up to two humans for each robot [161].

Reducing the number of human operators in such teams is desirable to enhance
safety, avoid confounding factors emerging from the adoption of contrasting strate-
gies by different operators in the team, and reduce the odds of human mistakes [162].
On the other hand, operations that involve ethical challenges related to decision-
making [163] and responsibility on decision [164] will continue to require human
intervention or supervision in the unforeseeable future [13].

For example, choices about allocating resources in emergency situations, includ-
ing where to concentrate rescue efforts, assessing risks, determining the order of
people to be rescued, prioritizing medical treatment, managing who must be left to
wait, and optimizing the utilization of scarce resources are unplausible to be made by
teams constituted by robots only [163]. In this context, Harbers et al. [164] raise the
issue related to moral and legal responsibility, where the former concerns blame and
the latter concerns accountability. These issues, according to the authors, occur when
robots are not supervised by a human. If a robot undergoes a malfunctioning, behaves
inappropriately, makes an error, or causes harm, it can be difficult to determine who
is responsible for the resulting damage. This issue becomes even more complex
when the robot has some level of autonomy, self-learning abilities, or is capable of
making decisions that were not explicitly programmed.
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This calls for the design of robust and efficient mission planning to coordinate the
MRSs with human supervisors, referred as to HMRS in the following. Our mission
planning framework comprises two key components: task allocation and motion
planning, facilitating the efficient calculation of task costs.

In this work, we propose a task allocator strategy for a HMRS with heterogeneous
capabilities, where the human supervisor can be either a pilot of one of the robots
or an external coordinator. The proposed task allocation can manage a dynamic
environment, involving both changes in the operation requirements or in the robots’
capabilities. Also, a human supervisor can intervene in the planning process by:
(i) approving or canceling a proposed plan; or (ii) introducing new constraints to a
proposed plan; for example, by assigning a specific task to a given robot, along with
a given execution time set for safety reasons or due to a change in the capabilities
required to execute a given task. We advance the state of the art along two main
directions. First, our task allocation combines an auction-based strategy [165] with a
motion planner [166] enhanced with a multi-goal approach, to take full advantage of
the features of the sequential single-item auction and leverage real and measurable
features of the path of to be accomplished, rather than its mere description. Second,
flexibility in operations is attained through dynamic re-allocation, which can be
triggered at any time, either by changes in the operational conditions or by the
human supervisor.

7.1.1 Previous works

Our contribution falls in the broad category of multi-robot task allocation problems
(MRTA) [167] –a variant of the multiple Traveling Salesman Problem (mTSP) [167],
which is notoriously NP-hard.

Main approaches to the solution of task allocation problems are Mixed-Integer
Linear Programming (MILP) [168, 40], and auction-based techniques [39, 165, 41,
169, 42, 43, 170].

The former may lead toward the optimal solution at the cost of an often unaf-
fordable computational complexity, which calls for the combined usage of heuristics
and the consequent attainment of suboptimal solutions. In the context of HMRS,
the support of a human supervisor was included in [40] to evaluate the intermediate
solutions of the MILP based on objective or subjective quality criteria and personal
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expertise. In this way, also sub-optimal solutions may be adopted, and the solver can
be conducted to an early termination. However, in this case, the human supervisor
is continuously required to evaluate operational scenarios, practically providing
heuristic criteria to reduce the computational load of the solver, at the expense of
their own cognitive load, entailing an increase in the level of stress and subtracting
precious intellectual resources to the execution of complex tasks.

The latter, on the other hand, consists of an iterative strategy based on the opti-
mization of the interest of selfish agents, typically leading to sub-optimal solutions
with a reasonable computational complexity. Auction algorithms have grown in
popularity within the robotics community [165] to handle task allocation prob-
lems [39, 171] efficiently and robustly [41]. In an auction, each robot (the bidder)
places a bid to commit to the execution of each task (item) based on a given cost
function. Then, a coordinator (the auctioneer) assigns (sells) the items to the highest
or the lowest bidder, depending on whether the considered cost function should
be maximized or minimized [165]. Auctions are particularly suitable for dynam-
ically changing environments and can be deployed in centralized, decentralized,
and distributed architectures [172]. Specifically, the calculations of the auctioneer
and the bidders can be done on a single system (centralized), multiple systems
(decentralized), or without a unique and centralized auctioneer (distributed).

In the literature, auction-based methodologies have been used in different appli-
cations with MRS, such as exploration and destruction, patrolling, and surveillance
mission, [39, 41, 44]. Notably, [39] adopts an auction-based methodology to solve a
task allocation problem of a HMRS in a dynamic scenario with priority constraints
between tasks. Differently from our approach, however, the human-controlled vehi-
cle has neither supervisory features nor specific privileges. This makes the solution
of the problem equivalent to that computed for a fully automated team.

Some works in the literature aimed at combining a task allocation strategy with
a motion planning. In [173] a MILP is combined with an RRT*-based algorithm,
while in [174] an integer programming model integrates a motion planner based on
a genetic algorithm. Instead, authors in [43, 175] integrate an auction-based task
allocator with the A* algorithm. Specifically, in [43], the authors apply the auction
in a dynamic environment for UAVs where the mission is continuously allocated and
executed autonomously.
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Auction-based task allocation is also combined with RRT-based algorithms [176,
177]. RRTs are suitable for supporting task allocation because they can rapidly
compute a path in the search space by constructing an incremental exploration
tree [178]. However, studies in [176, 177] exploit the standard RRT algorithm,
which has the drawback of computing non-optimal solutions. The optimality of the
motion planning is an essential feature for the quality of the task allocation because
the computed paths are evaluated to assign the task to the robot that offers the best
solution. For this reason, differently from [176, 177], our motion planner guarantees
an optimal path thanks to the RRT # algorithm [166].

7.1.2 Our contributions

The HMRS aims to handle a complex operation happening in a dynamic environment.
We assume that such an operation may be decomposed according to a hierarchical
structure, illustrated in Figure 7.1.

Such a complex operation consists of some independent sub-operations that
must be executed by a robot with appropriate capabilities. Each sub-operation may
have a priority. Each sub-operation is in turn composed of several tasks, subject to
precedence constraints.

The operation structure mentioned above is relevant to many complex operation
scenarios, such as people rescuing. In this context, the operation consists of some
sub-operations equal to the number of people to be rescued. In particular, each
sub-operation consists of all the actions (tasks) necessary to save one person (target).
Each target has a priority that is related to the urgency of the rescue. Each task
coincides with the visit of a location in the operational scenario.

The HMRS consists of a team of heterogeneous robots, i.e. each robot has a set
of capabilities, which allow it to execute certain tasks. The dynamic nature of the
environment where the HMRS operates may elicit re-allocation upon changes in
the operational conditions, also called perturbations. For instance, a robot or one
of its capabilities may become unavailable due to a collision, a system failure, the
exhaustion of its battery; or the human supervisor demands a re-allocation, due to
safety reasons or other technical considerations not intelligible by machines. More
specifically, the human supervisor may trigger a re-allocation of the HMRS through
one of the following actions: (i) rejecting the computed plan before its execution;
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Fig. 7.1 Hierarchical structure of operation, sub-operations, and tasks.

or, (ii) forcing a particular robot to execute a task. Regarding the rescue operation,
the former is typically related to an overall approval of the plan, in light of ethical
or safety implications, while the latter may relate to on-the-go decisions that may
increase the chances of safety in light of the actual operational conditions. Such a
dynamic scenario is summarized in the flow chart of Figure 7.2.

Our effort presents several novelties and improvements compared to the state
of the art. First, we propose an auction-based method for a heterogeneous team
operating in a dynamic scenario with human supervision, which supports prece-
dence constraints between tasks, priority between sub-operations, and on-the-go
re-allocation due to perturbations, coming either from the environment or from the
human supervisor –a setting that was not entirely contemplated in the past [39–44].
Along the lines of [40, 179], we design a system able to simulate the intervention of
the human supervisor by dynamically adding constraints to the auction-based task
allocation, such as forcing a robot to execute a specific task within a given completion
time or changing the capability required for a given task. This scenario may arise for
safety reasons or, for example, to adjust the allocation problem when a malfunction
occurs, thus enabling the operation to be completed. However, the MILP approach
used in [40] hampers its concrete applicability to complex and dynamically changing
scenarios, due to its inherent computational burden. Conversely, Hussaini et al
in [179] describe a scenario where the multi-robot system is supervised by a human
operator who can actively address corrective actions in the assignment plan based on
the estimated or the notified contingencies. However, their re-allocation process is
handled by using a heuristic-based task allocation, which may face scalability issues,



140
Auction-based task allocation and motion planning for multi-robot systems with

human supervision

START

Computation of the scheduling

Yes

Re-scheduling

No

Execution of the scheduling 

Scheduling 
approval by 

human 
supervisor?

Is there a 
perturbation?

Yes

The human supervisor sets further
constraints on the scheduling

Re-scheduling

No

Fig. 7.2 Dynamic scenario of operations and re-allocation mechanisms.

making it inefficient or impractical to find a suitable allocation within a reasonable
time.

Second, along the lines of [180], we use a multi-goal motion planner in combi-
nation with the auction-based allocation, achieving an overall method that is fast,
effective, and reactive to perturbations. However, in [180], the authors are focused
more on the optimality of the planning rather than on the responsiveness of the whole
system. Also, the efficiency of the strategy claimed in [180] is hampered by the as-
signment of capacity constraints to each robot. Notably, besides six scheduled tasks
for each robot, the computational burden tends to become unmanageable. Here, such
constraints are not posed and efficiency is privileged, if necessary, through a trade-off
between computational burden and pursuit of optimality. Moreover, in [180] the
authors use the general logic of the auction but the motion planner does not leverage
any particular feature of the auction to work in synergy with it. In fact, the motion
planner creates a general graph that is used to evaluate the effect of the candidate task
on the entire robot schedule. In particular, the graph is useful to evaluate different
links (robot-task and task-task) and finally to compute the best solution for the
TSP problem. Here, on the other hand, the multi-goal motion planner is used to
fully leverage the features of the sequential single-item auction by simultaneously
computing the cost for each robot to accomplish a given task.
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To the best of our knowledge, there are no works that describe a system incorpo-
rating a human supervisor with the aforementioned functions, imposing constraints
on an auction-based task allocator with the described features, specifically designed
to address ethical challenges in demanding environments.

Moreover, we remark that, although the strategy proposed in this thesis is tailored
to a rescue scenario for illustrative purposes, the application field is extensive and
may embrace robots of heterogeneous nature, such as ground, aerial, or underwater.

The rest of the chapter is structured as follows. Section 7.2 explains the problem
statement and states the assumptions of our approach. Section 7.3 presents our
methodology, based on an auction-based task allocator and a multi-goal RRT#

algorithm. The effectiveness and robustness of our methodology are demonstrated
by simulations in Section 7.4. Finally, in Section 7.5, we draw our conclusions and
offer a discussion toward further developments.

7.2 Problem statement

In the following, we use roman font to denote scalar quantities (x ∈R), low bold font
to denote vectors (xxx ∈ R2), and upper bold font to denote set (XXX ∈ RN) and matrices
(XXX ∈ RN×M).

We assume a two-dimensional operational space XXX ∈ R2 defined as a Euclidean
state space in which each element xxx ∈ XXX represents a possible location for a robot.
The subset XXXobs ⊆ XXX contains locations where a robot cannot be located, e.g. those
occupied by obstacles. We assume that the positions of the obstacles are known
a-priori to the task allocator and the motion planner. XXX free === XXX \\\XXXobs includes the
remaining positions where a robot can be located, also called the valid locations.

The HMRS comprises m robots and is identified by the set RRR = {r1,r2, . . . ,rm}.
The set XXX r = {xxx(r1),xxx(r2), . . . ,xxx(rm)} indicates the position of each robot, with
xxx(ri)∈ XXX free, i = 1, . . . ,m.

The set CCCaaappp = {p1, p2, . . . , pl} indicates the l available capabilities used to
execute all the tasks by the multi-robot system. A capability is a particular feature that
empowers a robot to accomplish a particular operation; for example, the capability
of moving hazardous materials or to illuminate the scene at night.
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Each robot has different capabilities that may change over time. They are
summarized in a boolean time-varying matrix RRRCCC(((ttt))) of dimensions m× l. The
element RC(t)i, j is set to one if the robot i, with i = 1, . . . ,m, is equipped with the
capability j, with j = 1, . . . , l, and to zero otherwise.

The operation to be allocated aims to manage s targets defined by the set GGG =

{g1,g2, ...,gs}. The set XXXg = {xxx(g1),xxx(g2), . . . ,xxx(gs)} indicates the position of each
target g∈XXX free. Each target has a priority defined by the set GGGPPP= {gp1,gp2, ...,gps}
that defines which target has to be managed first, with gpi ∈ N, i = 1, . . . ,s.

In particular, the higher the priority, the more urgent the target to manage.
Nevertheless, it might also happen that two or more sub-operations have the same
priority, then the auction will try to handle them in parallel, when possible.

Hence, the operation consists of s sub-operations because each sub-operation is
responsible for managing only one target while respecting its priorities.

Each sub-operation consists of several tasks. The set KKKiii =
{

ki
1,k

i
2, . . . ,k

i
ni

}

denotes the list of ni tasks that form the sub-operation i, with i = 1,2, ...,s, in which
the subscript represents the sequencing of the tasks. Tasks must be performed
sequentially. For instance, task ki

2 has to be performed after the task ki
1. KKKtot = KKK111∪

KKK222∪ . . .∪KKKsss represents the set of all tasks, with cardinality ntot = n1 +n2 + ...+ns.

Each task has to be performed in a specific location. The set XXXk ⊆ XXX free includes
the positions of the free space, where all tasks must be executed. The notation
xxx(ki

j) ∈ XXXk ⊆ XXX free indicates the position of a task k j of the sub-operation i = 1, ...,s.
We assume that the task allocator and the centralized motion planner know the
positions of every robot xxx(ri)∈ XXX r and every task xxx(ki

j)∈ XXXk.

The subdivision of the operation in sub-operations and, subsequently, in tasks
is shown in Figure 7.1. The decomposition of the complex operation in its tasks is
out of the scope of this thesis; hence, we assume that the sets of sub-operations and
tasks are made available to the task allocator by an external mechanism.

Each task requires some capabilities to be performed. The combination of
tasks and capabilities is summarized in a boolean matrix TTTCCC of dimensions ntot× l.
Element TCi, j is set to one if the task i, with i = 1,2, . . . ,ntot requires the capability
j, with j = 1,2, . . . , l; it is set to zero otherwise.

The role of the task allocation is to handle the ntot tasks to the HMRS composed
by m robots equipped with different capabilities l. The computed plan is designed
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to optimize the total time of the operation, guaranteeing that tasks are executed by
the robots that possess proper capabilities, respecting the prioritization between sub-
operations and precedence constraints between tasks. Re-allocation can be triggered
by perturbations, which can be external or internal .

An external perturbation is caused by an external and unexpected event, such
as a system or sensor failure which can cause the loss of a robot or the loss of its
capabilities.

An internal perturbation occurs when it is caused by an internal event, e.g. a
change of strategy forced by the human supervisor, such as changing capability for a
given task or assigning a task to a particular robot.

In the following, the term tnew defines the time instant when a perturbation occurs
considering a continuous time.

The intervention of the human supervisor is defined by the boolean matrix TTTCCCH

of dimension ntot× l, in which each element TCH
i, j defines if the human supervisor

forces the capability j, with j = 1,2, . . . , l to perform the task i, with i = 1,2, . . . ,ntot.
Instead, the matrix CCCp of dimension ntot×m includes the completion time forced
by the human supervisor. Each element Cp(i, j) defines to whom the task i, with
i = 1,2, . . . ,ntot is assigned to the robot j, with j = 1,2, . . . , l and when the task i
must be completed.

7.3 Methodology

In this thesis, a centralized approach is adopted since the human supervisor must have
the possibility to approve the final plan and to take action (e.g. change capabilities
for a given task or assign a task to a particular robot) about the plan in two different
situations: when the plan is in execution; and when the human supervisor does not
approve the plan.

Once the plan is approved, assigned tasks are executed in a completely au-
tonomous fashion. That is, each robot can move toward the assigned position and
autonomously execute its task, counting only on its capabilities. We also assume
that, once scheduled, each robot is able to perform the planned tasks successfully.
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Fig. 7.3 Overview of the methodology for each block of the HMRTA.

The centralized system is composed of a task allocator based on a sequen-
tial single-item auction, and a centralized motion planner based on RRT# with a
multi-goal approach. These blocks continuously interact to compute all the paths
connecting robots and tasks and estimate their costs in order to compute the plan
which will be checked by the human supervisor, as shown in Figure 7.3.

The communication between the two blocks is assumed as ideal –without delays
and losses of information.

In the following section, each algorithm is detailed.
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7.3.1 Algorithms

Auction-based Task Allocator

A traditional auction is composed of two steps: the bidding step and the winner
determination step. In the bidding step, the auctioneer informs the robots about the
tasks for sale. Then, each robot evaluates the tasks, calculates the bid, and returns
the bid to the auctioneer. Then, during the winner determination step, the auctioneer
determines the winner for each task and informs the winning robots. These two steps
compose the so-called round of the auction.

In our problem, we choose a sequential single-item (SSI) auction where the
auctioneer (the centralized task allocator) sells one item (task) for each round in an
order selected respecting the priority of targets s.

In the proposed strategy, a centralized motion planner is called at each round to
compute the bids of all robots to perform a task. In fact, the bid returned by a robot
includes the cost of moving toward the task’s position.

During the winner determination step, the auctioneer assigns the task to the
robot rbest with the right capabilities and with the lowest bidder.

In particular, our algorithm based on a sequential single-item auction with the
decision of the human supervisor is summarized in Algorithm 9.

The inputs of the task allocator are: the set of all the tasks KKKtot, the set of robots
RRR, the possible instant of perturbation tnew, the set of priority for each sub-operation
GGGPPP, the matrix with the combination of robots and capabilities RRRCCC(((ttt))), the matrix
with the combination of tasks and capabilities TTTCCC, the operational space XXX including
obstacles and free space, the vector of robots’ positions XXX r, the vector of tasks’
positions XXXk, the matrix with the assignment of tasks to robots made by the human
supervisor CCCp, and the matrix TTTCCCH with the assignment of sensors to tasks made by
the human supervisor.

The Algorithm 9 is split into two macro steps: Initialization and Auction.

The Initialization is fundamental in order to create and initialize variables
essential for the auction.

CCC is the matrix of the completion time for all the tasks, where the element C(k,r)
denotes the completion time of the task k ∈ KKKtot performed by the robot r ∈ RRR (line
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Algorithm 9: Task allocation algorithm based on Auction

1 Input: KKKtot,RRR, tnew,GGGPPP,RRRCCC(((ttt))),TTTCCC,XXX ,XXXobs,XXX r,XXXk,CCCp,TTTCCCH

2 Initialization:
3 CCC← zeros(ntot,m)
4 TTT 0← zeros(ntot)

5 if TTTCCCH is not empty then
6 TTTCCC← HumanChoiceCapabilities(TTTCCCH)

7 Auction:
8 MMMst← CreationStaticMask(TTTCCC,RRRCCC)
9 if ControllingFeasibleOperation(MMMst) = True then

10 LLLpr← CreationListPrioritizedTask(KKKtot,GGGPPP)
11 (KKKforced,CCC)← HumanChoiceTasksRobot(CCCp,LLLpr)
12 foreach task kpr ∈ LLLpr do
13 if kpr /∈ KKKforced then
14 (MMMdyn, t

exp
0 (kpr))←

CreationDynamicMask(MMMst,CCC,KKKtot,kpr, tnew)
15 (Costs,Times)← GetCosts(MMMst,XXX ,XXX r,xxx(kpr))
16 if ControllingAvailabilityRobots(kpr,MMMdyn) = False then
17 rbest← SelectionBestRobot(Costs,MMMst)
18 t0(kpr)←max(CCC(k, rbest)) ∀k ∈ KKKtot

19 else
20 rbest← SelectionBestRobot(Costs,MMMdyn)

21 t0(kpr)← texp
0 (kpr)

22 C(kpr,rbest)← t0(kpr)+Times(rbest)
23 xxx(rbest)← xxx(kpr)

24 else
25 return warning to supervisor
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3). T0 is the vector of the starting times of all the tasks ntot, where t0(k) is the starting
time of task k ∈ KKKtot (line 4).

TTTCCCH is the matrix with the capabilities assigned to the tasks by the human
supervisor. Each element TCH

i, j defines if the task i, with i = 1,2, ...,ntot requires the
capability j, with j = 1,2, ..., l. If the TTTCCCH matrix is empty, the human supervisor
has not added any constraint on the capabilities for the tasks. Otherwise, the function
HumanChoiceCapabilities updates the TTTCCC matrix with the information of TTTCCCH

(line 6).

The Auction represents the main task allocation algorithm. In this macro step, if
at least a robot performing each task exists, the auction handles sequentially each
task according to the list of prioritized tasks.

In the following, we describe each function of Algorithm 9:

• CreationStaticMask: the main goal of this function is to create a static mask
that defines which robot is able to do which task. In particular, the MMMst is a
boolean matrix, where the element Mst(k,r) denotes if the robot r is able to
perform the task k;

• ControllingFeasibleOperation: given the static mask MMMst, this function con-
trols if at least a robot is able to perform each task. If not, the task allocation
cannot solve the problem and the function returns a False state, warning the
supervisor (line 25). Otherwise, the auction can be performed;

• CreationListPrioritizedTask: this function computes the list LLLpr, in which each
task is ordered sequentially starting with the one with the highest priority. If
two tasks have the same priority, then the algorithm randomly chooses the task
to be evaluated first. This situation could happen when there are sub-operations
with the same priority;

• HumanChoiceTasksRobot: given the matrix with the assignment of tasks to
robots CCCp forced by the human supervisor and the list of the prioritized tasks
LLLpr, this function updates the matrix of the completion time CCC and computes
the vector of the tasks already assigned by the human supervisor KKKforced;

• CreationDynamicMask: if the selected task kpr is not located in KKKforced (line 13),
the task kpr has not already been allocated and, then, the auction tries to assign
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the task. Given the static mask MMMst, the matrix of the completion time CCC, the
lists of sub-operations with the corresponding sequences between tasks KKKtot,
the task to be handled kpr, and the eventual instant of perturbation tnew (if we
are in the re-allocation phase), this function computes the time in which the
task kpr should start texp

0 (kpr) ∈ TTT exp
000 and the dynamic mask MMMdyn. MMMdyn is a

boolean matrix that allows the algorithm to know which robot is busy when the
algorithm is assigning the task kpr (texp

0 (kpr)) and does not have the capabilities
to perform the task kpr. For completeness, the dimensions of the dynamic
mask MMMdyn are the same as the static mask MMMst;

• GetCosts: this function provides the interaction with the motion planner im-
plementing the bidding step of the auction. Given the static mask MMMst, the
operational space XXX , the robots’ positions XXX r, the task position xxx(kpr), the
motion planning computes the costs (Costs) and execution times (Times) to
reach the task xxx(kpr) by each robot that has the capabilities. In our problem,
we solely consider the time required to reach the position of a task, as we
assume that the execution time of the task is typically negligible than the time
to reach its position.

More details about this function have been provided below with the description
of Algorithm 10;

• ControllingAvailabilityRobots: this function controls if at least one robot is
available to perform the task kpr at the expected starting time texp

0 (kpr) exists
by checking the dynamic mask MMMdyn. If it does not exist, the function returns a
False value. This condition means that at the instant of assignment (texp

0 (kpr))
there is no free robot because robots that would have the capabilities to perform
the task kpr are busy;

• SelectionBestRobot: this function provides the second step of the auction: the
winner determination step.

If no robot can perform the task kpr at the expected starting time texp
0 (kpr) (i.e.

ControllingAvailabilityRobots() = False), the SelectionBestRobot function
selects the robot with the minimum cost to perform the task kpr but considering
the static mask MMMst. This detail is important because in this case, the choice of
the best robot (rbest) is made only in consideration of who has the capabilities
to do it and thus not considering the availability at the expected starting time
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Fig. 7.4 Example of the exploration graph constructed by the RRT# algorithm rooted
from the task position. The graph (in blue) explores the map reaching all the robots
(in red) avoiding the obstacles (in black). The computed path per each robot is the
branch connecting task and robot positions.

texp
0 (kpr). For this reason, the real starting time t0(kpr) for the task kpr is updated
considering the maximum value between the completion time of the tasks
already assigned to the winner robot (line 18).

On the other hand, if at least a robot to perform the task kpr exists (i.e.
ControllingAvailabilityRobots() = True), the SelectionBestRobot() function
selects the robot with the minimum cost to perform the task kpr but, unlike the
previous case, considering the dynamic mask MMMdyn since we want to allocate
the task at texp

0 (kpr). Then, in line 21 the actual starting time (t0(kpr)) for the
task kpr is updated with the expected one (texp

0 (kpr)).

Finally, the completion time for task kpr is computed (line 22), and the position
of the winner robot is updated with the position of task kpr (line 23).

Motion planner

As previously defined, the motion planner algorithm is called several times by
the task allocation algorithm with the function GetCosts. The motion planner is
implemented using the RRT# algorithm extended with a multi-goal strategy. In
fact, in this work, the well-known RRT# is exploited to construct an asymptotically
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optimal graph exploring the entire map (i.e. the search space). The graph is rooted
from the task position and is constructed by randomly sampling and connecting states
of the search space as in [166]. Hence, we use the constructed graph to compute all
the paths connecting the task position with the robot positions. In fact, as with all
the RRT-based algorithms, only one branch of the graph exists connecting the origin
of the graph (i.e. the task position) and any other state of the graph. This strategy is
perfectly suited to the centralized task allocator because only one exploration graph
is constructed to compute all the paths and their costs, instead of computing all the
paths sequentially as commonly performed in the literature. An example of this
strategy is shown in Figure 7.4.

Algorithm 10: The GetCosts function implementing the multi-goal RRT#.
1 GetCosts(MMMst,XXX ,XXX r,xxx(kpr))
2 xxx0 = xxx(kpr);
3 G←{xxx0};
4 for i = 0 to N do
5 xxxrand← Sample();
6 G ← Extend(G ,xxxrand);
7 Replan(G );

8 foreach xxxr ∈ XXX r do
9 if MMMst(r) = True then

10 T ← SpanningTree(G ,xxxr);
11 if T =∅ then
12 Costs←{NaN};
13 Times←{NaN};
14 else
15 Costs←{c(T )};
16 Times←{t(T )};
17 else
18 Costs←{NaN};
19 Times←{NaN};

20 return Costs,Times

The pseudocode of the motion planner is described in Algorithm 10. The inputs
of the function are: the set XXX r with the robot positions; the position xxx(kpr) of the
task kpr; the matrix MMMst that defines which robots have the capabilities to execute the
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task kpr; and the operational space XXX that determines the search space of the motion
planning problem including obstacles.

First, the task position is added to the graph G as the initial state (lines 2 and
3). Then, the iterative procedure that constructs the exploration graph starts and
continues until a certain number of states are added to the graph (lines 4 to 7). At
each iteration, a new state xxxrand is randomly sampled in the search space (line 5),
and it is added to the graph G with the Extend() procedure (line 6). The Extend()
procedure is an essential step of the RRT# algorithm because it extends the current
graph by connecting xxxrand to the state with the minimum cost. Then, the Replan()
procedure propagates all the updated costs on the graph, in order to update the
graph accordingly (line 7). The Extend() and Replan() procedures are implemented
exactly as in the original RRT#, for more details refer to [166]. After the graph is
constructed, the algorithm defines the path for each robot position (lines 8 to 19).
First, the algorithm verifies if the robot r with position xxxr ∈ XXX r has the capabilities to
perform the task kpr. In case, the branch T connecting the task and robot positions is
extracted from the graph (line 10), and the corresponding cost and time are included
in the vector of Costs and Times, respectively. If a solution connecting the robot
position xxxr and the task position xxx(kpr) does not exist, the cost and the time related to
the robot-task combination are defined as NaN (Not a Number) (lines 12 and 13). A
similar condition occurs if the robot is not suitable to perform the task (lines 18 and
19). Otherwise, when a solution connecting the robot position and the task position
exists, the cost is defined considering the cost function used to compute the path, i.e.
the path length in this thesis. Instead, the time to reach the task position is estimated
assuming that a robot moves at a constant speed. Then, the vectors Costs and Times
are returned to the task allocation (line 20).

7.4 Results

In this section, the proposed task allocation and motion planning strategy is tested
through simulations. The proposed strategy is implemented using the ROS (Robot
Operating System) framework [181]. Specifically, the auction-based task alloca-
tion is implemented as a ROS node using Python, while the motion planner node
is implemented using C++ and exploiting the OMPL (Open Motion Planning Li-
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Fig. 7.5 The basic scenario evaluated in this work with the multi-robot system
composed of 3 robots indicated with red circles in the upper left corner.

brary), an open-source library that contains several sampling-based motion planning
algorithms [182].

In the following, the results have been split into four parts: first, we show how
the proposed strategy is able to handle a basic scenario; second, the results related to
dynamic scenarios with a human supervisor action are shown; third, we focus on the
motion planner, showing the advantages of the proposed multi-goal strategy; finally,
we show the advantages of adopting a synergetic combination of the auction-based
allocation and the multi-goal RRT# motion planning.

7.4.1 Basic scenario

In this paragraph, we introduce the basic scenario considering a rescue operation as
shown in Figure 7.5. The main goal of the operation is to rescue two people with
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Sub-operation Tasks
1 Fix(Zone_1)→ Operate(Zone_1)→ Fix(Zone_2)→ Operate(Zone_2)→ Rescue(Target_1)
2 Fix(Zone_3)→ Operate(Zone_3)→ Fix(Zone_4)→ Operate(Zone_4)→ Rescue(Target_2)

Table 7.1 Tasks with precedence for each sub-operation considering the basic sce-
nario of Figure 7.5.

the same priority in the areas denoted as Target_1 and Target_2, therefore, in this
example, the targets (s) are 2.

The black zones are obstacles (Xobs), while yellow areas (Zone_1, Zone_2,
Zone_3, and Zone_4) are zones to be adjusted to unlock the passage (Fix task), and,
then, to be managed for example by extinguishing the fire (Operate task) to enable
the navigation in that area by the robot in charge of rescue people (Rescue task).

In this example, the hierarchical structure shown in Figure 7.1 is observed.
Indeed, the final goal of the operation is to rescue two targets, i.e. two people with
the same priority. Thus, the sub-operations are two and are composed of tasks with
precedence. The tasks for each sub-operation are described in Table 7.1.

The first sub-operation, in Table 7.1, is to handle the Zone_1, Zone_2 and
Target_1 sequentially. Instead, the second sub-operation is to handle the Zone_3,
Zone_4 and Target_2 sequentially. Both the sub-operations have the same priorities
and, then, can be performed simultaneously. Practically, the sub-operations force
that Zone_1 and Zone_3 must be adjusted and managed before Zone_2 and Zone_4
and, lastly, people can be rescued in Target_1 and Target_2.

We assumed that each robot can have at most 4 capabilities (i.e. l = 4). Table 7.2
shows the capabilities of each robot (RRRCCC) belonging to the heterogeneous multi-robot
system during the entire simulation time of the basic scenario. Thus, in this case, the
capabilities of each robot remain unchanged throughout the simulation.

The capabilities p1, p2, p3 and p4 are particular features that empower a robot to
accomplish a particular operation. In a practical rescue scenario, these capabilities
aim to enhance the robot’s effectiveness in saving lives and providing assistance dur-
ing the emergency situations. For example, p1 may refer to the ability to manipulate
objects within the scenario, enabling to move obstacles and clearing the path required
to reach the person in need of rescue. In our simulations, this capability is used in
the “fix” task. Furthermore, p2 may improve the robot performance during nighttime
rescue operations. By incorporating special equipment to rescue the person (e.g.
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p1 p2 p3 p4

r1 x x x x
r2 x x
r3 x x x

Table 7.2 Capabilities for each robot (RRRCCC) considering the entire simulation time of
the basic scenario.

rescue ropes) and night vision, the robot is equipped to navigate and rescue people
even in low-light conditions. On the other hand, p3 may focus on daytime rescue
operations. This capability provides the robot with equipment to rescue the person
but does not include night vision, limiting its effectiveness to daylight hours. Lastly,
p4 may address the specific hazard of fires encountered during rescue operations.
This capability, used in the “operate” task in our simulations, equips the robot with
fire extinguishers.

Table 7.3 summarizes the capabilities needed for the execution of each task.

The auction-based task allocation, through the ongoing support of the motion
planner, is able to successfully manage the basic scenario. Figure 7.6 shows the
resulting plan that respects the precedence constraints between tasks, the heterogene-
ity of the team, and the prioritization between sub-operations. The time to reach
the position for each task is estimated by the motion planner, considering the robot
moving at constant speed.

7.4.2 Dynamic scenario

The results of this section are obtained by evaluating the basic scenario of Figure 7.5
but considering different perturbations at different instants. Thus, the auction-based
task allocation is tested by simulating a dynamic scenario, and performing a re-
allocation of the basic plan.

Specifically, results show how the system is able to handle both a sensor or a
robot failure, and both the intervention of the human supervisor that decides to assign
a task to a specific robot.
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Task p1 p2 p3 p4

Fix zone 1 x
Operate zone 1 x

Fix zone 2 x
Operate zone 2 x

Fix zone 3 x
Operate zone 3 x

Fix zone 4 x
Operate zone 4 x
Rescue target 1 x
Rescue target 2 x

Table 7.3 Capabilities for each task (TTTCCC).

p1 p2 p3 p4

r1 x x x x
r2 x
r3 x x x

Table 7.4 Capabilities for each robot after a sensor failure

Figures 7.7 and Figure 7.8 show the resulting plan after two different perturba-
tions.

In the first condition, starting from the basic scenario, the re-allocation phase is
triggered at the time instant of 500 s due to a failure of capability 4 on the second
robot (see Table 7.4). Thus, the task allocator is called and the plan is re-allocated
(see Figure 7.7), thanks to the auction and the multi-goal motion planner.

In the second condition, starting from the basic scenario, the re-allocation phase
is triggered at the time instant of 1500 s due to a total failure of the third robot. Thus,
the whole system re-allocates the plan and the result is summarized in Figure 7.8.

Another simulation is performed including an action of the human supervisor.

Starting from the basic scenario, Figure 7.9 shows the plan after the action of
the supervisor that forces the assignment of the task Fix(Zone_1) to the third robot.
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Fig. 7.6 Allocation of the basic scenario.

Here, the task allocator complies with this additional condition and allocates all other
tasks accordingly, while respecting all the constraints we have detailed above.

7.4.3 Multi-goal Motion Planner

As previously defined, the motion planner plays a crucial role in the proposed strategy.
Table 7.5 shows how the proposed motion planning improves the performance in
terms of computational time without compromising the quality of the solution
(i.e. the path length). The results of Table 7.5 compare the use of the standard
RRT # algorithm with the one with the multi-goal strategy proposed in this thesis.
Specifically, the values of Table 7.5 are the average ones of 20 executions of the
scenario of Figure 7.6.

The use of the standard RRT# requires the computation of each path between
a robot and task position. Hence, the motion planner is called several times in the
scenario of Figure 7.6. On the contrary, the use of the multi-goal RRT# reduces
the number of calls of the motion planner, since it computes simultaneously the
paths between a task position and all the robot positions. As a consequence, the
computational time is reduced. Moreover, Table 7.5 affirms that the quality of the
solution in terms of path length does not change. The solution costs of the multi-
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Fig. 7.7 Re-allocation starting from the basic scenario due to a failure of capability 4
of the second robot.

goal RRT# and original RRT# are very similar. The small difference is due to the
non-deterministic nature of the algorithm that never computes the same solution at
each execution.

Another analysis is shown in Figure 7.10, where the computational time between
the multi-goal RRT# and the original RRT# is plotted as a function of the number of
robots. Here, the path is computed between a fixed task position and several robots
distributed in the scenario. Both multi-goal and original RRT# generate an explo-
ration graph of 5000 states to compute the path. As result, the computational time
required by the multi-goal RRT# increases slowly compared with the computational
time of the original RRT#. This graph affirms that the effectiveness of the proposed
multi-goal RRT# increases with the number of robots in the scenario.

7.4.4 Auction and Multi-goal Motion Planner

To demonstrate the effective synergy of the sequential-single item auction with the
multi-goal motion planner, we conducted a computational time analysis for the basic
scenario shown in Figure 7.5. The analysis compares the computational time required
by the sequential-single item auction implementing the original RRT# with the one
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Fig. 7.8 Re-allocation due to a total failure of robot 3 starting from the basic scenario.

implementing the multi-goal RRT#, evaluating both the computation of the initial
scheduling of Figure 7.6 and the dynamic scheduling of Figure 7.8. Simulations
were executed on a laptop with the Intel Core i5-10210U processor.

Regarding the initial scheduling, the proposed approach with the multi-goal RRT#

computes the solution of Figure 7.6 in 2.27 seconds. Instead, the computational time
required to compute a solution using the original RRT# increases to 5.32 seconds.
As previously discussed, this difference in the computational time is caused by the
fact that the standard RRT# is executed m (number of robots) times per each round
of the auction. On the other hand, the multi-goal RRT# is called only once per each
round of the auction.

A similar trend is shown evaluating the dynamic scheduling of Figure 7.8. The
use of the multi-goal planner requires 1.16 seconds, while the use of standard RRT#

implies a computational time of 2.03 seconds. In this scenario, the computational
time is lower because the task allocation problem involves only 2 robots and 6 tasks.
This test highlights the benefits introduced by the proposed approach. Moreover,
as also shown in Figure 7.10, the benefits of our approach become evident as the
number of robots increases.
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Fig. 7.9 Basic scenario with a supervisor decision. Indeed, the allocation of the task
"Fix zone 1" has been assigned to the third robot by the supervisor and the remaining
tasks have been allocated by the auction algorithm.

Computational
Time [s]

Solution
Cost [s]

original
RRT# 1.716 (+45%) 356.609 (-0.1%)

multi-goal
RRT# 1.182 356.953

Table 7.5 Comparison between the original and multi-goal RRT# applied in the
scenario of Figure 7.5.
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Fig. 7.10 Comparison of the computational time between the original and multi-goal
RRT# as a function of the number of robots.

7.5 Discussion

In this thesis, a dynamic task allocation and a motion planning strategy for a team of
heterogeneous robots are proposed by also including the interaction with a human
supervisor. Specifically, the proposed solution consists of an auction-based task
allocation, and a sampling-based motion planning based on the RRT# algorithm and
enhanced with a multi-goal approach.

We decided to adopt a centralized architecture composed of a centralized task
allocator and a centralized motion planner because it offers three important advan-
tages First, the task allocator can directly interact with the motion planner, without
avoiding delays caused by the communication with each agent of the HMRS. Second,
the motion planner can parallelize path calculations. This logic could not have been
adopted with the decentralized structure. Third, a centralized architecture is suitable
for the interaction with a human supervisor. In this way, the supervisor has the
possibility to intervene in the planning of the operation from a global point of view.
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The proposed framework is tested in a simulation environment proving that
our strategy is able to tackle a complex operation composed of different tasks in a
dynamic scenario.

First, the proposed strategy is capable of handling the rescue operation of the
basic scenario, as well as handling perturbation events, e.g. sensor and robot failures.
Results indicate that our approach can handle a multi-robot heterogeneous system
in a dynamic scenario respecting precedence between tasks and priorities among
sub-operations having computational efficiency as the main constraint since the
system must be able to re-allocate on-the-go. This peculiarity is fulfilled by two
features of our methodology: (i) the use of an auction-based task allocation with a
human supervisor that is computationally efficient compared with MILP [168] and
heuristic [179] approaches; (ii) the adoption of a motion planner with the multi-goal
approach to take full advantage of the features of the sequential single-item auction.

The proposed multi-goal motion planner introduces several benefits to the overall
system. A comparative analysis conducted in this study highlights the effectiveness
of the proposed multi-goal motion planner in terms of computational time compared
with the single-goal motion planner. This analysis proves the advantages introduced
by the proposed method in terms of the scalability of the number of robots in the
system and demonstrates the superiority of the sequential-single item auction when
paired with the multi-goal RRT#.

Furthermore, unlike [176, 177], in this study we demonstrate that the multi-goal
RRT# guarantees an optimal path in the exploration graph. This is an essential
feature because the quality of the solution of the auction-based task allocation strictly
depends on the quality of the computed paths.

Moreover, the simulations with the interaction of the human supervisor led to
promising results. The human supervisor is capable of constraining the plan by
forcing the assignment to a specific robot or changing the capabilities required
for tasks. Also in this scenario, the auction computes a valid plan respecting the
constraints of the human supervisor. This is an important achievement since in the
auction literature the human supervisor is rarely included [39, 169, 43].

Despite the promising results, the proposed approach is not exempt from limita-
tions. First, we do not account for the stochasticity of the duration of a task due to an
event that was not predicted in the scenario. Second, although in the interest of the
system’s responsiveness, the solution obtained by the task allocation is suboptimal,



162
Auction-based task allocation and motion planning for multi-robot systems with

human supervision

since the adopted task allocation is based on a single-item auction. Our approach
does not also take into account the possibility of collaborations between robots
to perform tasks, nor does it contemplate temporal windows or deadlines for task
completion. Moreover, the formulation of a low-level controller is required for the
practical execution of the task on hardware.

The analysis of the limitations paves the way for possible improvements in the
proposed strategy. For example, the uncertainty can be included in the estimation of
the task execution time through the consideration of a specific probability distribution,
along the lines of [183].

The suboptimality of the solution can be improved without affecting too much the
computational efficiency by complementing the auction with heuristic approaches [184].

Collaborative tasks may be contemplated, similar to [39], where more than one
agent collaborates in executing a task, together with time constraints in the execution
times. The inclusion of all these aspects will affect the formulation and efficiency of
the optimization problem –an aspect that notoriously leads to significant trade-offs.

In addition, a future implementation on hardware will call for the design of a
low-level controller to materially execute the planned task once scheduled. Several
well-established techniques have been proposed in the literature, such as in [185],
where the authors present a control methodology for a mobile robot in dynamic
environments that contain both fixed and moving unforeseeable obstacles.

Furthermore, different operational aspects can involve different criteria for the
design of the objective function, such as the minimization of the risk of the opera-
tion [186, 187], the travel distance, or the fuel consumption. The selection of these
criteria could be operated automatically, or by the human operator according to his
analysis of the operational scenario.

Finally, also unreliable communications between the robots and the task allo-
cation unit should be considered and managed. This is a crucial issue in critical
scenarios, such as in rescue operations in adverse weather conditions [169].
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Part 3 Conclusions





Chapter 8

Conclusions

This thesis investigates the interaction between humans and robots, aiming to de-
velop innovative technologies that enhance human lives through an interdisciplinary
approach. What makes this approach so essential?

The introduction of robots into society was initially intended to alleviate physical
labour, leaving the more conceptual demanding tasks to humans. However, the
pervasiveness of robotics and artificial intelligence (AI) has surpassed this original
vision. We are moving towards a society in which these technologies not only
improve but also invade the conceptual work.

The rapid advancement of robotics and AI has raised profound questions about
our place in the future. What will distinguish us from these intelligent machines? Our
ability to approach problems in an interdisciplinary way, considering both immediate
consequences and the broader human impact, is a unique strength that robots and AI
may struggle to replicate. This thesis uses this interdisciplinary approach, advocating
for research that prioritizes human needs and well-being.

This methodology is applied to address the socially-aware navigation challenge,
aiming to devise two game theory-based algorithms that prioritize not only the
physical safety but also the psychological well-being of pedestrians. The performance
of the algorithms is evaluated through quantitatively and qualitatively analysis. The
first approach, with an engineering focus, employs quantitative methods to evaluate
the efficiency and naturalness of the generated trajectories. In contrast, the second
approach delved into the psychological aspects, exploring the extent to which the
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generated trajectories can be anthropomorphized by humans and therefore perceived
as socially acceptable.

Moreover, the interdisciplinary approach is also applied to address mission
planning in this thesis. While the state of the art of managing missions in critical
environments mainly focuses on developing fully autonomous systems, this thesis
takes a more comprehensive approach by considering both the engineering aspects
and the ethical and legal implications of the decision-making process in a critical
environment.

The take-home messages regarding this thesis are the following:

• Bridging the gap between technology and human science.

The coexistence of humans and robots is a problem that technology alone will
not be able to solve. It is necessary to involve the human sciences, such as
psychology, to address this issue.

• Designing for Acceptance: The Role of Anthropomorphism in Robotic Design.

One crucial aspect to consider in human-robot interaction is the anthropomor-
phization of robots. By making robots more human-like in appearance and
behavior, we can increase their acceptability to humans.

• Optimizing Human-Robot Interactions: A Game-Theoretic Approach.

Game theory, a mathematical framework used in economics, has shown
promise in improving the level of anthropomorphization of robots. By mod-
eling the interactions between humans and robots as a game, we can identify
strategies that can lead to more cooperative and mutually beneficial outcomes.

• Unlocking the Robotics Revolution: the power of Open-Source Tools.

Open-source tools democratize access to a shared pool of expertise and inno-
vation. ROS (Robot Operating System) is one such tool that has revolutionised
the field of robotics, democratising access beyond the confines of academia.
ROS has accelerated technological advances in robotics by leveraging the
collective knowledge of a global community of coders and academics.

• Beyond the Motion: The Impact of Robot Appearance on Anthropomorphism.
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To evaluate the anthropomorphism of the robot’s motion, the robot’s appear-
ance should not be overlooked, as it can significantly influence people’s per-
ception of its movements.

• Laboratory prototypes lack readiness for real-world applications.

Research-based implementations often lack the necessary maturity for real
applications because they focus on validating theoretical concepts in controlled
laboratory environments. The simulated experimentation phase often encoun-
ters similar limitations, leading to the need for significant re-evaluation and
adaptation when moving from prototypes to real-world applications.

• Bridging the gap between technology and ethical consequences.

Human supervision is essential for robotic systems deployed in critical envi-
ronments where final decisions have life-and-death consequences. This aspect
should be considered by all researchers working in this field as the ethics
associated with technologies are not completely separate from the technology
itself but are an integral part of it.

Motivated by the findings presented in this thesis, I would suggest several direc-
tions for future research to tackle the challenges identified in this work.

• Testing of the algorithms in a real environment.

To comprehensively evaluate the anthropomorphism of robot movements,
conducting real-world tests in authentic settings (such as hospitals or office
corridors) would offer more reliable insights. These tests could allow for a
better understanding of how human participants interact with and perceive the
robot. Moreover, researchers could investigate whether interactions between
humans and robot follow a peer-to-peer model or a leader-follower logic.

• Multiscale Integration for Enhanced Performance in Crowded Scenarios.

The numerical simulations presented in Chapter 4 suggest that the perfor-
mance of the proposed GTSFM decreases as the environment becomes highly
crowded. In this regard, we envisage integrating multiscale approaches in our
model [122] toward generating specialized behaviors according to the spatial
scale of interpersonal interactions.
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• Realistic Mission Planning: adding new features.

To enhance the realism and effectiveness of mission planning, key features
need to be incorporated into the system. These features should address the
challenges of stochasticity of task duration, collaborative tasks, and realistic
communication logic.

Stochasticity, or unpredictable changes in task durations, can significantly
impact mission execution. To effectively handle these variables, the planning
system should incorporate probabilistic modeling and adaptive strategies. Col-
laborative task allows multiple robots to work having a shared goal, enhancing
teamwork and decreasing the time to perform that particular task. Moreover,
addressing the issue of unreliable communication between robots and the task
allocation unit is crucial, especially in critical scenarios like rescue operations
in hazardous environments.

By incorporating these features, mission planning can become more adapt-
able, collaborative, and responsive to real-world situations. This will lead
to more efficient and successful mission execution in complex and dynamic
environments.
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