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Alberto Grimaldi a,b,c,*, Francesco Demetrio Minuto a,b, Jacob Brouwer c, Andrea Lanzini a,b 

a Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy 
b Energy Center Lab, Politecnico di Torino, Via Paolo Borsellino 38/16, 10138 Torino, Italy 
c Clean Energy Institute, University of California, Irvine, CA 92697-3550, United States of America   

A R T I C L E  I N F O   

Keywords: 
Grid-scale battery energy storage 
Energy arbitrage 
Electricity markets 
Battery degradation 
Battery lifetime 
MILP optimization 

A B S T R A C T   

Grid-scale energy storage is becoming an essential element to effectively support the rapid increased use of 
renewable energy sources in the power network. The present work proposes a long-term techno-economic 
profitability analysis considering the net profit stream of a grid-level battery energy storage system (BESS) 
performing energy arbitrage as a grid service. The net profit is a cost function that includes the revenue derived 
by arbitrage, the import cost and the degradation cost induced by battery capacity fade. Three optimization 
techniques with a computationally efficient optimization logic are developed. The scenario with no-degradation 
is formulated as a linear programming (LP) problem, while the scenarios with and without degradation are 
formulated as mixed-integer linear programming (MILP), and as mixed-integer non-linear programming (MINLP) 
problems. The non-linearity is introduced by implementing a BESS dynamic charge/discharge efficiency that is a 
function of the BESS power rate. Based on the obtained BESS optimal scheduling, a long-term profitability 
analysis is developed during the whole BESS lifetime. In the proposed case study, historical electricity market 
prices from the CAISO electricity market in the United States, California, are used as input. We found that, even 
without degradation, the break-even investment cost that makes the BESS profitable with a power to-energy-ratio 
of 1 MW/2MWh is 210 $/kWh. By implementing a cycle-counting degradation model, we observed a remarkable 
battery degradation on BESS profitability corresponding to a yearly net profit reduction in the 13–24 % range. 
From a long-term application perspective, the BESS calendar lifetime could be extended by reducing the battery 
cycling. Such cycling reduction is obtained by adding a penalty cost in the objective function of the energy 
arbitrage optimization problem.   

1. Introduction 

In the modern power network, battery energy storage systems (BESS) 
are playing a crucial role as low-carbon flexible resources, due to their 
ability to address renewable energy intermittency [1] and to provide a 
wide range of grid services (e.g., energy arbitrage, frequency regulation, 
load-shifting) [2]. 

Energy storage deployment in electricity markets has been steadily 
increasing in recent years. In the U.S., from 2003 to 2019, 1044 MW 
power capacity of large-scale battery storage was installed, and an 
additional 10,000 MW is likely to be installed between 2021 and 2023, 

10 times the total amount of maximum generation capacity by all sys
tems in 2019 [3]. Almost one-third of U.S. large-scale battery storage 
additions will come from CAISO1 and PJM2 grid operators [3]. As of 
October 2022, 7.8 GW of utility-scale battery storage was operating in 
the United States. From 2023 to 2025, developers and power plant op
erators expect to add another 20.8 GW of battery storage capacity [4]. 
More than 75 % of the 20.8 GW of utility-scale battery capacity that 
owners and operators reported that they plan to install from 2022 to 
2025 is located in Texas (7.9 GW) and California (7.6 GW) [4]. Con
cerning the BESS capital cost, as reported by IEA World Energy Outlook 
2023 [5], the capital cost of utility-scale stationary batteries will have to 
decrease from 315 $/kWh in 2022 to 185 $/kWh in 2030, and to 140 
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1 CAISO (California Independent System Operator) is a non-profit Independent System Operator serving California.  
2 PJM (Pennsylvania-New Jersey-Maryland Interconnection) is a regional transmission organization in the United States, part of the Eastern Interconnection grid. 
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$/kWh in 2050. While, according to a recent analysis conducted by 
NREL [6], the capital cost of a complete 4-hour battery system will 
decrease from 482 $/kWh in 2022 to 226 $/kWh in 2050. 

Although BESS can provide several grid applications, energy arbi
trage represents the largest profit opportunity for BESS in the electric 
power grid [7]. The basic principle of economic energy arbitrage is to 
generate revenue by charging the battery under low-price conditions 
and discharging back to the electric grid when prices are higher. Ac
cording to the U.S. EIA annual electric generator report [8], during 
2021, 59 % of the 4.6 GW of utility-scale U.S. battery capacity was used 
for price arbitrage, up from 17 % in 2019. Considering the U.S. whole
sale electricity markets, >80 % of the battery capacity added in 2021 in 
the CAISO service territory was used for price arbitrage. In fact, as re
ported by the CAISO special report on battery storage [9], the largest 

positive revenue comes from day-ahead market energy schedules. For 
this reason, it is crucial to properly analyze the profitability of using 
BESS for energy arbitrage grid applications. 

1.1. Literature review 

In this perspective, there is a growing body of literature on BESS 
energy arbitrage modelling [7,10–12]. Compared to the voltage-current 
and concentration-current, the power-energy battery models are the 
most popular models to characterize the operation of BESS in techno- 
economic studies [2]. Assumptions about battery efficiency, battery 
lifetime and degradation are a key challenge to obtain realistic evalua
tions of profitability. 

However, as reported by the complete review of Vykhodtsev et al. 

Nomenclature 

Abbreviations 
BESS battery energy storage system 
CAISO California independent system operator 
EOL end of life 
LMP locational marginal price 
LP linear programming 
MILP mixed-integer linear programming 
MINLP mixed-integer non-linear programming 
SOC state of charge 

LP BESS energy arbitrage model (sets and index) 
T set of optimization time steps [h] 
t index of the optimization time steps 

Parameters 
Δt time interval of the optimization problem [h] 
Ebess

nom BESS nominal capacity [MWh] 
Pbess

nom BESS nominal power [MW] 
ηch battery charge efficiency [− ] 
ηdh battery discharge efficiency [− ] 
ηinv,LP inverter efficiency [− ] 
ηtr transformer efficiency [− ] 
ηBESS,ch,LP BESS charge efficiency [− ] 
ηBESS,dh,LP BESS discharge efficiency [− ] 

Variables 
Pbess

ch,LP(t) BESS charge power in period t [MW] 
Pbess

dh,LP(t) BESS discharge power in period t [MW] 
SOCLP(t) BESS state of charge in period t [MWh] 
ℙLP(t)/ℙcum

n profit in period t and its cumulative value [$] 
ℝLP(t)/ℝcum

LP export revenue in period t and its cumulative value [$] 
ℂimp,LP(t)/ℂcum

imp,LP import cost in period t and its cumulative value [$] 
λLMP(t) LMP energy price in period t [$/MWh] 

MILP/MINLP BESS energy arbitrage model (sets and indices) 
T set of optimization time steps [h] 
t index of the optimization time steps 

Parameters 
Δt time interval of the optimization problem [h] 
j episode considered to evaluate the degradation coefficient 

[− ] 
Ebess

nom BESS nominal capacity [MWh] 
Pbess

nom BESS nominal power [MW] 
ηch battery charge efficiency [− ] 
ηdh battery discharge efficiency [− ] 

ηinv,MILP inverter efficiency [− ] 
ηtr transformer efficiency [− ] 
ηBESS,ch,MILP BESS charge efficiency [− ] 
ηBESS,dh,MILP BESS discharge efficiency [− ] 
ηself − ch self-discharge losses during charge operations [%/h] 
ηself − dh self-discharge losses during discharge operations [%/h] 
ηself − idle self-discharge losses during idle operations [%/h] 
TBESS BESS calendar lifetime [years] 
EOL BESS end of life [fraction of initial capacity] 
Plim

grid grid power limit [MW] 

ℂbess
pen degradation penalty cost [$/MWh] 

i interest rate [− ] 
γ yearly battery cost escalation rate [− ] 
bigM bigM method constant 

Variables 
Pbess

ch (t) BESS charge power in period t [MW] 
Pbess

dh (t) BESS discharge power in period t [MW] 
SOC(t) BESS state of charge in period t [MWh] 
Cycrate(t) BESS fractional cycle rate in period t [− ] 
Cyccum

rate BESS cumulative fractional cycle rate in period t [− ] 
ηinv(t) inverter dynamic efficiency in period t [− ] 
ηBESS,ch(t) BESS dynamic charge efficiency in period t [− ] 
ηBESS,dh(t) BESS dynamic discharge efficiency in period t [− ] 
βch(t) Boolean charge indicator in period t [0,1] 
βdh(t) Boolean discharge indicator in period t [0, 1] 
ℙ(t)/ℙcum

n profit in period t and its cumulative value [$] 
ℝ(t)/ℝcum export revenue in period t and its cumulative value [$] 
ℂimp(t)/ℂcum

imp import cost in period t and its cumulative value [$] 
ℂdeg(t)/ℂcum

deg degradation cost in period t and its cumulative value 
[$] 

μdeg,j degradation coefficient evaluated during the episode j 
[$/MWh] 

Erem
start,j BESS remaining capacity at the start point of the episode j 

[%] 
Erem

end,j BESS remaining capacity at the end point of the episode j 
[%] 

Pbess
tot (t) sum between the BESS charge and discharge power at time 

t [MW] 
Ebess

rem,e(cyc) BESS remaining capacity function of the number of cycles 
[%] 

NPV net present value [$] 
NPVnorm normalized net present value [$/MWh] 
Prate(t) BESS power rate in period t [− ]  
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[2], only a limited number of studies have addressed, in detail, the issues 
about considering a dynamic efficiency and a cycle-counting degrada
tion model into a linear and non-linear optimization framework. One 
exception is the study conducted by Hesse et al. [13], where the battery 
dispatch for arbitrage markets is based on a computationally efficient 
implementation of a mixed-integer linear programming method, with a 
cost function that includes variable-energy conversion losses and a 
cycle-induced battery capacity fade. They highlighted the significance of 
considering both ageing and efficiency in battery system dispatch opti
mization. However, the impact on the whole BESS lifetime profitability 
is not considered. 

The battery lifetime is significantly related to the battery chemistry 
and BESS operation. Recently, Collath et al. [14] have developed an 
overview about relevant ageing mechanisms as well as degradation 
modelling approaches, confirming that the effects of degradation, in 
particular decreasing capacity, increasing resistance, and safety impli
cations, can have significant impacts on the economics of a BESS. In 
power system techno-economic studies, degradation effect due to bat
tery ageing is mainly modelled either enforcing operational limits 
[15,16], or using the energy throughput model [7], or employing the 
cycle-counting model [17]. Since the cycle-counting degradation 
method is more advanced than the energy throughput method [2], in 
this work it is adopted the cycle-counting model technique. It relies on 
the non-linear ageing occurring from battery cycling: cycles with smaller 
depth-of-discharge (DoD) contributes less than cycles into the degra
dation of the battery [17]. Each cycle with a certain DoD is assigned with 
a fixed amount of degradation to the energy capacity according to the 
cycle depth ageing stress function that can be obtained from the 
experimental data [2]. The cycle-counting method is incorporated into 
the optimization framework by including the cost of degradation into 
the objective function. This cost is calculated by benchmarking the 
amount of degradation with the battery replacement cost [18]. The 
cycle-counting degradation model used in this work it is described in the 
next Section 3.2.5. 

Concerning the battery efficiency modelling, the loss in a power- 
energy model is commonly considered through the introduction of the 
energy efficiency factor which can be assigned either separately for both 
charging and discharging operations [19], or as a round-trip efficiency 
for the whole cycle [20,21]. The generic power–energy model assumes 
fixed energy efficiencies and constant rated charging/discharging power 
that do not depend on the battery state of charge, or the rate of charging/ 
discharging current. In this work, a dynamic charge/discharge efficiency 
is considered in the MINLP optimization framework. This dynamic ef
ficiency depends on the actual battery output power rate. The BESS 
dynamic efficiency model is described in a detailed way in the next 
Section 3.2.4. 

In conclusion, it is worth noting that in this work historical electricity 
prices data from CAISO market are considered as input of the optimi
zation model, and the price-taker hypothesis is assumed. Price-taker 
means that the BESS operations do not affect the electricity prices. In 
[22] historical (not forecasted) price and demand and a price-taker 
model were used to assess the economic benefits of deploying energy 
storage into the New York electricity market. The effect of grid-scale 
BESS on electricity price formation was studied in [23]. Finally, the 
strategic behavior of a Li-Ion BESS operator under price uncertainty 
conditions in day-ahead and real-time electricity markets was examined 
in [24]. 

1.2. Aim and novelty of the study 

The analysis of the existing literature on BESS modelling in techno- 
economic studies has revealed a gap regarding proper assumptions 
about BESS efficiency, lifetime, and degradation. In particular, most 
linear and non-linear optimization frameworks were not considering a 
dynamic battery efficiency and a cycle-counting degradation model to 
account for the changing performance of the battery over time due to its 

usage and charge/discharge cycles. This includes the variation in energy 
losses during different operational modes and the impact of ageing on 
the battery’s ability to store and discharge energy effectively. By 
incorporating dynamic efficiency, the model can adjust battery usage 
based on real-time efficiency metrics, allowing for more precise control 
and improved profitability. Similarly, the cycle-counting degradation 
model accounts for the degradation effects due to varying depths of 
discharge, enabling a more accurate prediction of the battery’s lifespan 
and overall impact on economic returns. The present work expands on 
previous literature by developing a new BESS energy arbitrage model 
which explicitly considers both dynamic efficiency and battery degra
dation. The computational performance of the proposed power-energy 
BESS model is analyzed by comparing three Python-based optimiza
tion techniques. The scenario with no-degradation is formulated as a 
linear programming (LP) problem, while the scenarios with and without 
degradation are formulated as mixed-integer linear programming 
(MILP), and as mixed-integer non-linear programming (MINLP) prob
lems. The non-linearity is introduced by implementing a BESS dynamic 
charge/discharge efficiency that is a function of the BESS power rate. 
Therefore, the linear MILP problem, based on a constant efficiency 
value, is converted to a non-linear (MINLP) problem based on time- 
dependent efficiency values. Concerning the degradation due to 
ageing, a cycle-counting degradation model is used, based upon a semi- 
empirical degradation function. Finally, a long-term profitability anal
ysis is developed during the whole BESS lifetime considering one end-of- 
life (EOL) criterion. In this proposed case study, historical electricity 
market prices from the CAISO electricity market in the United States, 
California, are used as input. In fact, given that the focus of the paper is 
on battery dynamic efficiency and degradation, we use the standard and 
relatively simple assumption of perfect foresight about electricity mar
kets prices. The computational, ageing, and profitability analysis en
ables the investigation of different scenarios, offering a deeper 
understanding about their impacts on achievable profit from energy 
arbitrage and on how BESS operations should be adapted to account for 
these effects. Within this context, the primary objective of this work is to 
derive an optimization framework to address the optimal scheduling of a 
grid-scale BESS while providing energy arbitrage service in the whole
sale CAISO electricity market. Consequently, a long-term profitability 
analysis is conducted based on the BESS optimal scheduling simulated 
by the optimization model. It is selected the CAISO electricity market for 
having one of the highest RESs penetration and share of battery storage 
capacity in the United States [25]. 

To bridge the identified gap, the present study aims to:  

- Establish a powerful and easy-replicable optimization model to 
maximize the net profit derived by energy arbitrage by optimizing 
the battery dispatch operations in the wholesale electricity market.  

- Evaluate the break-even investment cost where BESS becomes 
profitable for energy arbitrage by conducting a long-term techno- 
economic analysis, considering as applicative case the CAISO 
wholesale electricity market.  

- Provide readers and power plant managers with guidelines to 
incorporate a dynamic efficiency behavior and a cycle-counting 
degradation model into the optimization model. In this way, it is 
possible to obtain realistic evaluations of profitability. 

The remainder of the work is organized as follows. In Section 2 it is 
presented the BESS layout and the operating principle of the energy 
arbitrage optimization problem. Section 3 describes the methodology 
implemented to build the LP, MILP, and MINLP BESS optimization 
models, including the dynamic efficiency and the cycle-counting 
degradation model. Section 4 provides a comprehensive discussion 
about the results obtained by the computational, ageing and profitability 
analysis of the proposed energy arbitrage case-study. Finally, conclu
sions and foreseen next steps are included in Section 5. 
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2. Battery energy storage system layout 

The system under investigation is a Li-ion BESS that provides energy 
arbitrage service to the electricity grid. A schematic of the system layout, 
along with the factors considered for net profit evaluations, is provided 
in Fig. 1. The battery energy storage system, managed by the proposed 
scheduling energy management system (EMS) model, is comprised of 
the battery with its battery management system, the DC/AC bidirec
tional inverter, and the transformer. The energy conversion losses 
caused by the battery and by the power electronic section (inverter and 
transformer) are introduced by considering the battery charge/ 
discharge efficiency ηch/dh, the dynamic inverter efficiency ηinv(t), and 
the transformer efficiency ηtr. Additionally, the self-discharge losses 
occurring during charge, discharge, and idle operations are included by 
ηself − ch, ηself − dh, and ηself − idle, respectively. Starting from the left (Fig. 1), 
the bi-directional inverter is responsible for converting the DC power 
flows downstream from the BESS into AC power flows, and vice versa. 
Then, the transformer is needed to match the voltage levels required by 
the power distribution grid and BESS. Finally, the AC power flows are 
exchanged through the grid interface and the energy arbitrage service is 
simulated. The basic principle of energy arbitrage consists of taking 
advantage of the electricity price volatility: buying energy at a low price, 
storing it, and selling it later at a higher price. For this reason, the net 
profit ℙ(t) is equal to the export revenue stream ℝ(t) minus the import 
cost stream ℂimp(t) and the degradation cost stream ℂdeg(t). A more 
comprehensive description about the energy conversion losses and the 
degradation model is reported in Section 3.2.4 and in Section 3.2.5, 
respectively. 

3. Methodology 

The problem of finding the most suitable operational strategy for 
energy arbitrage can be treated as an optimization problem. The LP, 
MILP, and MINLP optimization BESS models built in this work are based 
upon the assumption that the BESS owner has perfect foresight of 
electricity prices, leading to best-case financial returns. Thence, the 
BESS is assumed to be a price-taker, meaning its activities do not affect 
the price of energy. However, it is worth noting that previous research 
on energy arbitrage profits from the PJM market [26,27] suggests that 
the perfect foresight assumption may lead to overestimation of arbitrage 
revenue, but by a modest percentage (10–15 %) when compared to 
simpler strategies that rely on back casting of recent historical prices. 
Additionally, the model assumes that the battery trades in the real-time 
electricity market, which provides the best opportunity for energy 
arbitrage due to its high volatility. 

The time resolution of the presented models is Δt = 1 [h], which is 

the same as the time resolution of the input energy prices used for 
financial settlement in the CAISO electricity market in the United States. 
The proposed BESS energy arbitrage models are based on a T = 168 [h], 
i.e. one week, scheduling optimization time horizon with a Δt = 1 [h]
resolution. This scheduling procedure is repeated each week for one year 
of dispatch operations. This approach assumes a perfect forecast over 
one week at a time, mimicking a real working condition where accurate 
price forecasts typically have a time horizon of less than a week. Fig. 2 
illustrates the adopted scheduling mechanism. 

The BESS energy arbitrage models presented in this work are 
developed in a Python environment. Firstly, a linear programming (LP) 
model is built using the Python library pulp [28]. Linear programming 
means that the mathematical function describing the objective function, 
as well as the constraints of the system, can all be described as linear 
combinations of the decision variables, which define the operational 
strategy of the optimization problem. This first LP model, presented in 
Section 3.1, was developed to provide a basis for comparison for the next 
MILP and MINLP models. Furthermore, thanks to this comparison be
tween different optimization frameworks having the same input (hourly 
CAISO energy prices), it is possible to demonstrate the consistency of the 
simulated results. Secondly, a mixed-integer linear programming (MILP) 
model was created. In this case, the model was built using the Python 
pyomo environment [29]. Since in the LP and MILP cases the objective 
function and the constraints can be formulated as linear combinations of 
the decision variables, the BESS charge/discharge efficiencies must be 
assumed to remain constant for each time step t. Finally, a mixed-integer 
non-linear programming (MINLP) model is implemented also in the 
Python pyomo environment [29]: the non-linearity corresponds to 
introducing a dynamic BESS charge/discharge efficiency that depends 
upon the actual energy rate of the battery at each time step t. 

Regarding the degradation effect due to ageing, a cycle-counting 
degradation model is applied in the MILP and MINLP frameworks. 
Differently, in the LP model, the degradation penalty cost function is not 
considered in the objective function. More details about the imple
mented solvers are presented in Section 4.1, where a computational 
analysis is performed to compare the different optimization frameworks. 
The choice of using different optimization frameworks has the goal to 
compare the obtained simulation results by progressively increasing the 
degree of complexity and the computational cost, moving from an LP 
framework to a MILP framework, up to a non-linear MINLP framework. 

The following section provides an overview of the energy arbitrage 
models developed in this work. In Section 3.1 the LP model is presented. 
In Section 3.2 the MILP/MINLP models are described. We decided to 
describe the MILP and MINLP model in the same section because the 
equations implemented are the same, with the only difference being that 
in the MILP model the efficiency is a constant parameter, while in the 

Fig. 1. Schematic layout of the battery energy storage system (BESS), power system coupling, and grid interface components investigated in this work.  
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MINLP model the efficiency is a time-dependent variable. 

3.1. Linear programming (LP) BESS energy arbitrage model 

The LP model presented in this section has the objective to design an 
optimal operating strategy for a grid-connected battery system with a 
given set of operational constraints, assuming perfect foresight of elec
tricity prices. The hourly CAISO energy prices of the year 2022 are the 
locational marginal prices (LMP), which take into account the system 
marginal price, a congestion cost component and marginal loss 
component. In this first LP optimization framework, the degradation 
cost due to ageing and the self-discharge losses are not considered. These 
losses will be considered later in the more complex MILP and MINLP 
models. Being a linear model, the charge and discharge efficiencies are 
assumed to be constant. 

3.1.1. LP model: objective function 
As described by the objective function defined in Eq. (1), the goal is 

to maximize the net profit ℙLP(t) by netting the revenue ℝLP(t) and the 
import cost ℂimp,LP(t) resulting by energy arbitrage, given as input the 
hourly CAISO energy prices and the BESS parameters. 

max{obj} = max

{
∑8760

t=1
ℙLP(t)

}

= max

{
∑8760

t=1
ℝLP(t) − ℂimp,LP(t)

}

(1) 

The energy arbitrage service consists of buying energy during low 
price periods, storing it, and selling it later during high-price periods. 
High price volatility in the local electricity market is thus needed to 
make this service remunerative. Accordingly, the yearly cumulative 
revenue ℝcum

LP and the yearly cumulative import cost ℂcum
imp,LP are defined in 

the following Eqs. (2) and (3), respectively. 

ℝcum
LP =

∑8760

t=1
ℝLP(t) =

∑8760

t=1
λLMP(t)⋅

[
Pbess

dh,LP(t)⋅ηBESS,dh,LP⋅Δt
]
[$] (2)  

ℂcum
imp,LP =

∑8760

t=1
ℂimp,LP(t) =

∑8760

t=1
λLMP(t)⋅

[
Pbess

ch,LP(t)⋅Δt
/

ηBESS,ch,LP

]
[$] (3) 

From the grid point of view, the revenue is equal to the hourly LMP 
CAISO energy prices (λLMP(t)) times the discharge energy downstream 
from the BESS inverter. This is the reason why the discharge power is 
multiplied by the BESS discharge efficiency and by the one-hour time 
step (Pbess

dh,LP(t)⋅ηBESS,dh,LP⋅Δt). Otherwise, the import cost is equal to the 
hourly LMP CAISO energy prices (λLMP(t)) times the charge energy 
downstream from the BESS inverter. In this case, since the charge power 
flows in the opposite direction with respect to the discharge power, it is 
divided by the BESS charge efficiency (Pbess

ch,LP(t)⋅Δt/ηBESS,ch,LP). The charge 
power flow Pbess

ch,LP(t) and the discharge power flow Pbess
dh,LP(t), expressed in 

[MW] at each hourly time step t, are the decision variables of the LP 
problem. These power flows are understood to be converted to energy 
units in [MWh] through multiplication by the one-hour time step Δt. 

3.1.2. LP model: constraints 
The next equations (Eqs. (4)–(5)) define the bounds of the charge/ 

discharge power flow. In fact, for each time step t, the charge and 
discharge power must assume a value within the operating limits of the 
battery power flow: 

0 ≤ Pbess
ch,LP(t) ≤ Pbess

nom ∀t ∈ T (4)  

0 ≤ Pbess
dh,LP(t) ≤ Pbess

nom ∀t ∈ T (5)  

where Pbess
nom is the BESS nominal power [MW] corresponding to the 

maximum charge and discharge power, assumed equal in this work. 
Additionally, since the battery has limited capacity, one must consider 
the following operational constraint expressed by Eq. (6): 

0.2⋅Ebess
nom ≤

∑T

t=1
SOCLP(t) +

[
Pbess

ch,LP(t)⋅Δt
]
−
[
Pbess

dh,LP(t)⋅Δt
]
≤ Ebess

nom ∀t ∈ T

(6)  

where SOCLP(t) is the BESS state of charge at each time step t expressed 
in [MWh], while Ebess

nom is the BESS nominal capacity in [MWh]. This 
constraint ensures that the battery energy charge and discharge flows 
translate into the battery state of charge. It also ensures that the BESS 
energy content is maintained between the BESS minimum and 
maximum capacity for each time step t over the time horizon T. A 
technical minimum of 20 % of the battery nominal capacity is imposed 
to avoid over-discharge operations that may cause internal failures [30]. 
The mathematical model considers end of optimization time horizon 
state-of-charge as an initial condition for next time horizon. 

The total BESS efficiency considers the energy conversion losses 
derived by three electrochemical processes: the battery charge/ 
discharge efficiency ηch/dh, the inverter efficiency ηinv and the trans
former efficiency ηtr. Since it is assumed a symmetric behavior between 
charge and discharge phases, the charge and discharge efficiencies are 
assumed to be the same constant value defined by Eq. (7): 

ηBESS,ch,LP = ηch⋅ηinv⋅ηtr = ηBESS,dh,LP = ηdh⋅ηinv⋅ηtr = 0.96⋅0.982⋅0.982

= 0.885 (7) 

More details about the efficiency values are reported in the next 
Section 3.2.4. 

3.1.3. LP model: simulation set up 
Once the LP model is set up with the objective function and all 

constraints, the next task consists of solve the problem and report back 
the results. The LP problem solving is performed by introducing a 
Python-construct function that simulates the BESS operation for energy 
arbitrage over the course of a year accordingly to the imposed objective 
function and constraints. The inputs of this function are:  

- the initial state of charge at the start of the simulation SOCLP(t =
0) = 0.5⋅Ebess

nom[MWh]
- the price data frame with the hourly CAISO LMP price 

λLMP(t)[$/MWh]
- the maximum charge/discharge power capacity set to be equal to 

Pbess
nom [MW]

Fig. 2. Schematic diagram of the optimization dispatch approach implemented in the BESS arbitrage models based upon a T = 168 [h] scheduling horizon with a 
Δt = 1 [h] resolution. 
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- the minimum charge/discharge power capacity set to be equal to 
0 [MW]

- the maximum charge/discharge energy capacity set to be equal to 
Ebess

nom [MWh]
- the minimum charge/discharge energy capacity set to be equal to 

0.2⋅Ebess
nom [MWh]

- the constant BESS charge and discharge efficiency ηBESS,ch,LP =

ηBESS,dh,LP = 0.885 

After the simulation, the function returns the following outputs with 
a Δt = 1 [h] sampling rate:  

- the charge and discharge power flows at each hourly time step 
Pbess

ch,LP(t),P
bess
dh,LP(t) [MW]

- the state of charge level at each hourly time step SOCLP(t)[MWh]
- the timeseries profit ℙLP(t), revenue ℝLP(t), and import cost ℂimp,LP(t)

streams [$] 

These outputs permit one to examine the yearly BESS dispatch op
erations and to evaluate in this way the optimal profit derived by energy 
arbitrage, hence the optimal maximized revenue and the optimal 
minimized import cost. 

3.2. Mixed-integer linear/non-linear programming (MILP/MINLP) BESS 
energy arbitrage model 

The MILP and MINLP BESS energy arbitrage models illustrated in 
this section have the aim to maximize the BESS profit derived from 
energy arbitrage over a given time period T, given the historical CAISO 
hourly energy prices and imposing the BESS operational parameters. As 
for the LP model, the MILP/MINLP model considers the battery as a price 
taker and to properly compare them, the same hourly CAISO energy 
prices of year 2022 are used. Accordingly, a scheduling optimization 
time horizon of T = 168 [h] with a Δt = 1 [h] resolution is adopted. 
Differently from the LP model, in this MILP/MINLP optimization 
framework the degradation cost due to ageing is considered in the 
objective function. The implemented degradation model is incorporated 
in the MILP/MINLP BESS model, and it is based on a degradation cost 
function that evaluates the degradation cost iteratively after each opti
mization time horizon. 

Concerning the BESS charge/discharge efficiency, as before for the 
LP model, three different efficiencies are considered: the battery effi
ciency, the inverter efficiency, and the transformer efficiency. Two 
scenarios are simulated: the former is the MILP scenario based upon the 
same constant BESS efficiency value considered in the LP model 
(ηBESS,ch/dh, MILP = ηch/dh⋅ηinv⋅ηtr = 0.96⋅0.982⋅0.982 = 0.885), while the 
latter is the MINLP scenario which considers a time-dependent dynamic 
inverter efficiency ηinv(t) that is a function of the actual energy rate of 
the battery evaluated at each time step t. In this case, the BESS efficiency 
is equal to ηBESS,ch/dh(t) = ηch/dh⋅ηinv(t)⋅ηtr. The equations that define this 
time-dependent efficiency are presented in the following sections that 
refer to the MINLP scenario. All the equations implemented in the MILP 
and MINLP models are the same except for the inverter efficiency 
expression (assumed constant for the MILP case). 

3.2.1. MILP/MINLP model: objective function 
As reported in Eq. (8), the BESS net profit ℙ(t) is defined as the 

algebraic sum of the revenue obtained by exporting energy from the 
battery to the grid ℝ(t), the import cost ℂimp(t) due to importing energy 

from the grid to the battery, and the degradation cost due to battery 
ageing ℂdeg(t). The import and degradation cost are considered with a 
minus sign since the goal of the optimization problem is to minimize 
them, while maximizing the revenue. 

max{obj} = max

{
∑8760

t=1
ℙ(t)

}

= max

{
∑8760

t=1
ℝ(t) − ℂimp(t) − ℂdeg(t)

}

(8) 

As defined in Eq. (9), the yearly cumulative revenue component ℝcum 

is obtained by multiplying the LMP hourly energy price λLMP(t) with the 
BESS discharge power Pbess

dh (t) for reach time step Δt, taking into account 
the BESS discharge dynamic efficiency ηBESS,dh(t) and the self-discharge 
losses occurring during the discharge phase ηself − dh. At the contrary, 
the yearly cumulative import cost ℂcum

imp expressed in Eq. (10) is equal to 
the LMP hourly energy price λLMP(t) multiplied by the BESS charge 
power Pbess

ch (t) for each time step Δt, taking into account the BESS charge 
dynamic efficiency ηBESS,ch(t) and the self-discharge losses occurring 
during the charge phase ηself − ch. 

Considering now the yearly cumulative degradation cost ℂcum
deg re

ported by Eq. (11), it is defined as the sum between the charge and 
discharge power flow at each time step, multiplied by the degradation 
coefficient μdeg,j. The battery ageing model implemented in this work is 
described in Section 3.2.5. As illustrated in Eq. (12), the degradation 
coefficient represents the slope of the linear approximation of battery 
ageing, evaluated after each episode j. The time period of every episode j 
corresponds to the optimization time horizon T = 168 [h]. The numer
ator of the degradation coefficient is the difference between the BESS 
remaining capacity at the start Erem

start,j and at the end Erem
end,j of the episode j. 

The remaining capacity expresses the rate of the battery capacity fade 
based upon the battery charging/discharging frequency and it is eval
uated according to the degradation function described in the next Sec
tion 3.2.5. Since these components are defined as a percentage of the 
initial capacity, they are converted into energy terms by multiplying 
with the BESS nominal capacity Ebess

nom and by dividing by 100. As defined 
by Eq. (13), the denominator of the degradation coefficient is the sum 
between the BESS charge and discharge power flow Pbess

tot (t) evaluated 
during the episode j. The degradation coefficient is iteratively updated 
based upon the degradation results of the last episode j. Therefore, since 
the time period of every episode j corresponds to the optimization time 
horizon T, the degradation coefficient assumes a different value after 
each optimization time horizon (T = 168 [h]). Finally, the degradation 
coefficient is multiplied by the BESS penalty cost due to ageing ℂbess

pen , 
expressed in [$/MWh-year], assuming an end-of-life (EOL) criterion of 
80 %. This constant parameter provides an economical value of the 
battery capacity fade, and it can be interpreted as an annualized cost of 
replacing the battery after the battery’s lifespan. 

ℝcum =
∑8760

t=1
ℝ(t) =

∑8760

t=1
λLMP(t)⋅

[
Pbess

dh (t)⋅ηBESS,dh(t)⋅ηself − dh⋅Δt
]

[$] (9)  

ℂcum
imp =

∑8760

t=1
ℂimp(t) =

∑8760

t=1
λLMP(t)⋅

[
Pbess

ch (t)⋅Δt
/(

ηBESS,ch(t)⋅ηself − ch
) ]

[$]

(10)  

ℂcum
deg =

∑8760

t=1
ℂdeg(t) =

∑8760

t=1
μdeg,j⋅

[
Pbess

ch (t)+Pbess
dh (t)

]
⋅Δt (11)    

μdeg,j =

{
[((

Erem
start,j − Erem

end,j

)/
100

)
⋅Ebess

nom

]
/

∑Tj

t=1
Pbess

tot (t)⋅Δt

}

⋅
[
ℂbess

pen

/
(1 − EOL)

]
[$/MWh] (12)   
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Pbess
tot (t) = Pbess

ch (t) + Pbess
dh (t) [MW] (13)  

3.2.2. MILP/MINLP model: continuous constraints 
The continuous constraints refer to all those constraints necessary to 

describe the dispatching operations of the continuous variables of the 
MILP/MINLP energy arbitrage models. The first constraint defined in 
Eq. (14) ensures that the battery power discharge flow Pbess

dh (t) is less than 
the grid limit Plim

grid for all time steps. The grid limit corresponds to the 
maximum power that the grid can accept at the point of common 
coupling. The reference power grid limit is set to 10 [MW]. Similarly, the 
constraints defined by Eqs. (15) and (16) ensure that the battery charge 
and discharge power flows (Pbess

ch (t), Pbess
dh (t)) must be higher or equal to 

the minimum battery power (set equal to zero) and lower or equal to the 
maximum battery power, namely the battery nominal power Pbess

nom, for all 
time steps. The binary variable of charge βch(t) and discharge βdh(t) are 
introduced to prevent charging and discharging from occurring simul
taneously, which could otherwise occur during negative prices. 

Pbess
dh (t)⋅βdh(t) ≤ Plim

grid ∀t ∈ T (14)  

0 ≤ Pbess
ch (t)⋅βch(t) ≤ Pbess

nom ∀t ∈ T (15)  

0 ≤ Pbess
dh (t)⋅βdh(t) ≤ Pbess

nom ∀t ∈ T (16) 

The constraint described by Eq. (17) defines the admissible operative 
window of the state of charge variable, also considering the remaining 
capacity at the end of the episode j. There is a technical minimum of 20 
% of the battery nominal capacity that must be met to avoid over- 
discharge operations that may cause internal failures [30]. While the 
constraint of Eqs. (18a) and (18b) is split into parts a and b to account for 
the first time step, wherein the state of charge variable assumes a pre- 
defined value, and for every step greater than one, respectively. This 
constraint ensures that the battery energy charge and discharge flows 
translate into the battery state of charge. Here, the self-discharge losses 
ηself − idle are considered to take into account the energy conversion losses 
during idle operations. The mathematical model considers end of opti
mization time horizon state-of-charge as an initial condition for next 
time horizon. 

0.2⋅Ebess
nom⋅

(
Erem

end,j

/
100

)
≤ SOC(t) ≤ Ebess

nom⋅
(

Erem
end,j

/
100

)
∀t ∈ T (17)  

SOC(t)=0.2⋅Ebess
nom⋅

(
Erem

end,j

/
100

)
+
[
Pbess

ch (t)⋅Δt
]
−
[
Pbess

dh (t)⋅Δt
]
∀t∈T : t=0

(18a)  

SOC(t) = SOC(t − 1)⋅ηself − idle +
[
Pbess

ch (t)⋅Δt
]
−
[
Pbess

dh (t)⋅Δt
]

∀t ∈ T : t ≥ 1
(18b) 

Eq. (19) defines the battery cycle rate variable Cycrate(t), namely the 
fractional cycle-rate with respect to a full cycle during the 1-hour Δt 
period [13]. One unit of full cycle denotes one full charge (from the 
minimum to the maximum SOC value) and one full discharge (from the 
maximum to the minimum SOC value). The constraint expressed by Eqs. 
(20a) and (20b) allows one to evaluate the cumulative cycle rate step by 
step. As before, Eq. (20a) refers to the first time step, while (20b) defines 
the cumulative cycle rate for every step greater than one. The term 
cyclenum is the index used to count the number of cycles performed by the 
battery. 

Cycrate(t) =
[(

Pbess
ch (t) + Pbess

dh (t)
)
⋅Δt

/
Ebess

nom
]/

2 [ − ] (19)  

Cyccum
rate (t) = Cycrate(t) + cyclenum ∀t ∈ T : t = 0 (20a)  

Cyccum
rate (t) = Cyccum

rate (t − 1) + Cycrate(t) ∀t ∈ T : t ≥ 1 (20b) 

Similarly, Eq. (21) defines the normalized power rate Prate(t) variable 
expressed in per unit terms: it corresponds to the power level of the 

battery at each time step, divided by the BESS nominal power. This 
variable is useful to evaluate the dynamic charge and discharge effi
ciency. In fact, since the dynamic BESS inverter efficiency is a function of 
the power rate in per unit terms, the constraint defined in Eq. (22) allows 
one to update the efficiency value for each time step. Therefore, using 
the Python-construct function calculate efficiency, the dynamic inverter 
efficiency (considered equal during the charge and discharge processes) 
is evaluated for each Prate(t) value over the optimization time horizon T. 
The BESS dynamic inverter function applied in this work is defined in 
the next Section 3.2.4. 

Prate(t) =
[
Pbess

ch (t) + Pbess
dh (t)

]/
Pbess

nom [ − ] (21)  

ηBESS,ch(t) = ηBESS,dh(t) = calculate efficiency(Prate(t) ) ∀t ∈ T (22)  

3.2.3. MILP/MINLP: integer constraints 
This section presents the integer constraints used in the MILP/MINLP 

optimization problems. These constraints ensure that the battery can 
only either charge or discharge at each time step t. For this reason, the 
binary variable of charge βch(t) and discharge βdh(t) are introduced in 
the MILP/MINLP problem formulations. The binary variable of charge 
βch(t) assumes the value 1 if the BESS is charging, 0 otherwise. On the 
contrary, the binary variable of discharge βdh(t) assumes the value 1 if 
the BESS is discharging, 0 otherwise. Additionally, the bigM method [31] 
is implemented to bound the integer constraints. It consists of an 
extension of the simplex algorithm to problems that contain greater/ 
lower-than constraints. The simplex algorithm is one of the most com
mon methods used for solving MILP/MINLP optimization problems. 
However, to correctly apply it, the starting point, namely all the vari
ables at the first time step, must be a feasible point of the optimization 
problem. To obtain this initial feasible solution, it is necessary to add an 
artificial variable that provides an initial basic feasible solution. The 
artificial variable is the term bigM which refers to a large constant 
number, in our work we set this equal to 5,000,000; that is, at least two 
orders of magnitude greater than any feasible value. Therefore, thanks 
to this method it is possible to correctly introduce inequality constraints, 
greater-than and lower-than certain values, in the MILP/MINLP opti
mization problem. In fact, the greater- and lower-than constraints are 
associated with a large negative and positive constant, respectively, 
which would not be part of any optimal solution, if it exists. Eq. (23) 
defines the first integer constraint that is a greater-than inequality 
constraint considering the BESS charge power flow: if the BESS is dis
charging (βch(t) = 0), the BESS charge power flow Pbess

ch (t) must be 
greater than or equal to zero; if the BESS is charging (βch(t) = 1), the 
BESS charge power flow Pbess

ch (t) must be greater than or equal to a 
redundant negative lower limit ( − bigM = − 5,000,000) that is at least 
two orders of magnitude lower than any feasible value. 

Pbess
ch (t) ≥ 0 − bigM⋅βch(t) ∀t ∈ T (23) 

Differently, the second integer constraint expressed by Eq. (24) is a 
lower-than inequality constraint always considering the BESS charge 
power flow: if the BESS is discharging (βdh(t) = 1), the BESS charge 
power flow Pbess

ch (t) must be lower than or equal to zero; on the other 
hand, if the BESS is charging (βdh(t) = 0) the BESS charge power flow 
Pbess

ch (t) must be lower than or equal to a redundant positive upper limit 
(bigM = 5, 000,000) that is at least two orders of magnitude greater 
than any feasible value. 

Pbess
ch (t) ≤ 0 + bigM⋅(1 − βdh(t) ) ∀t ∈ T (24) 

The formulation of the third and fourth integer constraints is similar, 
but they are no longer related to the charge power flow, but instead to 
the discharge power flow. Eq. (25) defines the greater-than inequality 
constraint of the discharge power flow: if the BESS is discharging 
(βch(t) = 0), the BESS discharge power flow Pbess

dh (t) must be greater than 
or equal to a redundant negative lower limit ( − bigM = − 5,000,000) 
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that is at least two orders of magnitude lower than any feasible value; if 
the BESS is charging (βch(t) = 1), the BESS discharge power flow Pbess

dh (t)
must be greater than or equal to zero. 

Pbess
dh (t) ≥ 0 − bigM⋅(1 − βch(t) ) ∀t ∈ T (25) 

Consequently, Eq. (26) defines the lower-than inequality constraint 
of the discharge power flow: if the BESS is discharging (βdh(t) = 1), the 
BESS discharge power flow Pbess

dh (t) must be lower than or equal to a 
redundant positive upper limit (bigM = − 5, 000,000) that is at least 
two orders of magnitude greater than any feasible value; if the BESS is 
charging (βdh(t) = 0), the BESS discharge power flow Pbess

dh (t) must be 
lower than or equal to zero. 

Pbess
dh (t) ≤ 0 + bigM⋅βdh(t) ∀t ∈ T (26) 

In conclusion, the last integer constraint expressed by Eq. (27) en
sures that for each time step t, the sum between the binary variable of 
charge βch(t) and the binary variable of discharge βdh(t) must be lower 
than or equal to 1. This ensures that the BESS cannot simultaneously 
charge and discharge at the same time step t. 

βch(t) + βdh(t) ≤ 1 ∀t ∈ T (27)  

3.2.4. MILP/MINLP: BESS dynamic efficiency 
Literature tends to neglect the dynamics of efficiency losses and 

energy conversion losses caused by the battery, the inverter, and the 
transformer [32]. Firstly, considering the battery section, the battery 
charging/discharging efficiency is a non-linear function of the battery 
SOC and battery charge/discharge power. Cao et al. [33] have devel
oped a steady state equivalent circuit model to represent the Li-ion 
battery efficiency, comprised of an open circuit voltage and three re
sistors that represent the three main electrochemical process that cause 
an energy loss: ohmic, charge transfer, and membrane diffusion losses. 
The study reveals that the battery efficiency slightly improves for higher 
SOC and lower C-rate. The same result is observed in [34,35]. Accord
ingly, since the efficiency variation is modest, in this work a constant 

battery charging/discharging efficiency is assumed with a symmetric 
efficiency behavior between discharge and charge process. Hence, the 
charge efficiency is imposed to be equal to the discharge efficiency ηch =

ηdh = 0.96. Considering now the power electronic section comprised of 
the inverter and transformer, as proven in [32,36], these components 
comprise the main cause of energy losses. In addition, they are strongly 
dependent upon the power output levels, leading to quite low efficiency 
values (about 50–80 %) for power rates lower than 0.1, while a steadily 
higher efficiency value (about 90 %) for high power rates with a 
maximum efficiency at a power rate around 0.3. Typically, battery 
models developed to optimize energy arbitrage dispatch operations are 
based upon constant efficiency values. As reported by [2], there have 
been few studies that have assessed the impact of dynamic efficiency 
during BESS operations. To address this gap, in this work the empirical 
BESS inverter efficiency developed by Kim et al. [36] is adopted. We aim 
to introduce this dynamic behavior to better account for the effects of 
BESS working conditions on battery efficiency and life expectancy. Ac
cording to [37], the transformer efficiency is considered constant and 
equal to ηtr = 0.982. As given by Eq. (28), the inverter efficiency model 
developed in [36] is based upon a piecewise linear approximation 
depending on the current BESS exchanged power at each time instant t 
as follows: 

ηinv(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

5.5⋅Prate(t) + 0.53 if 0 ≤ Prate(t) ≤ 0.06
2.5⋅Prate(t) + 0.71 if 0.06 ≤ Prate(t) ≤ 0.08

0.875⋅Prate(t) + 0.84 if 0.08 ≤ Prate(t) ≤ 0.12
0.5⋅Prate(t) + 0.885 if 0.12 ≤ Prate(t) ≤ 0.16

0.037⋅Prate(t) + 0.959 if 0.16 ≤ Prate(t) ≤ 0.295
− 0.05⋅Prate(t) + 0.985 if 0.295 ≤ Prate(t) ≤ 0.695
− 0.082⋅Prate(t) + 1.00697 if 0.695 ≤ Prate(t) ≤ 1

(28)  

where Prate(t) is the normalized BESS power rate evaluated at each time 
instant t and previously defined in Eq. (21). Since in the pyomo envi
ronment a non-constant expression cannot be used in a Boolean context 
(e.g., using an “if” statement), the efficiency function previously defined 
is converted into an explicit form, as defined by Eq. (29): 

Fig. 3. BESS dynamic efficiency fitting curve as a function of the normalized BESS power rate. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.) 
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ηinv(t) =
α1⋅Prate(t)

α2 + Prate(t)
+ α3⋅Prate(t)+α4 (29) 

This dynamic BESS inverter efficiency function is obtained by fitting 
the piecewise efficiency function defined by Eq. (28). A similar fitting 
expression was adopted in [34,38]. The fitting procedure results are 
presented in the following Fig. 3. The orange curve corresponds to the 
inverter piecewise efficiency fitting curve. The black fitted points are 
obtained by using the inverter efficiency defined by Eq. (28). The four 
alpha coefficients and their goodness-of-fit statistical parameters (R- 
squared (R2) parameter, the sum of squares due to error (SSE), and the 
95 % confidence bounds (CB)) are reported in Table 1. In Fig. 3 it is also 
shown that the total BESS efficiency (blue curve), namely the product 
between the battery efficiency, the variable inverter efficiency, and the 
transformer efficiency, as defined by the following Eq. (30): 

ηBESS(t) = ηch/dh⋅ηinv(t)⋅ηtr (30) 

Since the introduction of a time-dependent and power-level depen
dent efficiency make the BESS optimization problem non-linear, it is 
considered only in the MINLP model. Differently, in the LP and MILP 
model it is considered a constant value of the inverter efficiency equal to 
ηinv,LP/MILP = 0.982 [37]. As defined by Eq. (31), the total BESS efficiency 
assumes a constant value of 88.5 %, in accordance with [34,35,37,38]: 

ηBESS,LP/MILP = ηch/dh⋅ηinv⋅ηtr = 0.96⋅0.982⋅0.982 = 0.885 [ − ] (31) 

Finally, another energy loss mechanism that occurs during both 
charge, discharge and idle phase considered in this work corresponds to 
self-discharge losses [39]. According to [40], self-discharge losses are 
assumed to be constant during charge, discharge, and idle operations 
equal to ηself − ch = ηself − dh = ηself − idle = 99.99 [%/h]. Considering a BESS 
with a nominal capacity of 2 [MWh], this means that its capacity is 
reduced by 0.0002 [MWh] per each hour if during this hour it operates at 
the nominal capacity. 

3.2.5. MILP/MINLP: BESS degradation model 
The objective function, constraints, and the dynamic efficiency 

above-mentioned are all contained within the BESS MILP/MINLP 
Python-construct class and the BESS MILP/MINLP arbitrage optimiza
tion Python-construct function. The update of the remaining capacity 
based on an empirical degradation function occurs outside the BESS 
MILP/MINLP arbitrage optimization Python-construct function. In fact, 
degradation is accounted for inside the BESS MILP/MINLP Python- 
construct class. To perform this updating process, the parameter 
cycnum is used. The empirical degradation function is defined by the 
following Eq. (32) and illustrated in Fig. 4. It is defined as a non-linear 
function with respect to the number of cycles performed by the battery, 
assuming a 6th-order polynomial behavior having a positive coefficient 
for the positive exponents, and a negative coefficient for the negative 
exponent. This equation has been derived by Xu et al. [41]: they pro
posed a semi-empirical lithium-ion battery degradation model obtained 
by combining fundamental theories of battery degradation and their 
observations in battery ageing test results.  

The degradation function described above represents the degrada
tion in percentage terms with respect to the initial capacity due to the 
battery ageing. This function is evaluated recursively after every j-th 
episode. As reported in the zoom of Fig. 4, the time period of every j-th 
episode is equal to the optimization time horizon T = 168 [h]. In this 
way, it is possible to calculate the remaining capacity at the start Erem

start,j 

and at the end Erem
end,j of every j-th episode. As previously defined by Eqs. 

(11), (12), these parameters are used to evaluate the degradation factor 
μdeg,j and, consequently, the degradation cost ℂdeg(t). 

The battery capacity decay is assumed to be a 6th-order polynomial 
function of the number of cycles performed by the battery. Battery 
degradation is a non-linear process with respect to the current state of 
life and external stress factors, such as state of charge, number of 
charge/discharge cycles, depth of charge/discharge, charge/discharge 
rate, and temperature [41]. The rate of capacity decrease, as a function 
of number of cycles, is significantly higher during the early cycles than 
during the later cycles, and then increases rapidly when reaching the 
end of life (EOL). At this EOL point, also named knee point, the battery 
degrades remarkably faster, and the remaining lifetime is extremely 
limited. Consequently, in this study we define one EOL criterion that is 
reached when the remaining fraction of the battery capacity achieves 80 
% of the initial capacity [42,43]. As a result, in the simulations the end of 
the battery life occurs when the remaining battery capacity reaches the 
defined EOL value. 

3.2.6. MILP/MINLP: Simulation set up 
Once the objective function and constraints are set-up, the next 

section of the MILP/MINLP model consists of effectively perform the 
optimization process. This procedure is done by introducing a Python- 
construct function that simulates the BESS operation for energy arbi
trage over the course of a year accordingly to the imposed objective 
function and constraints. More specifically, the inputs parameters are:  

- the initial state of charge at the start of the simulation SOC(t = 0) =

0.5⋅Ebess
nom [MWh]

- the price data frame with the hourly CAISO LMP price 
λLMP(t)[$/MWh]

- the maximum charge/discharge power capacity set to be equal to 
Pbess

nom [MW]

- the minimum charge/discharge power capacity set to be equal to 
0 [MW]

- the maximum charge/discharge energy capacity set to be equal to 
Ebess

nom [MWh]
- the minimum charge/discharge energy capacity set to be equal to 

0.2⋅Ebess
nom⋅

(
Erem

end,j/100
)
[MWh]

- in the MILP model, the constant BESS efficiency value ηBESS,MILP =

0.885  
- the initial value of the battery cycle rate variable set to be equal to 

Cycrate(t = 0) = 0  
- the initial value of the remaining capacity at the start and the end of 

the first episode j = 1, expressed as a percentage of the BESS capacity, 
set to be equal to Erem

start,j=1 = 100 [%] and Erem
end,j=1 = 0 [%]

- the initial value of the power flow variable used to evaluate the 
degradation cost, set to be equal to Pbess

tot (t = 0) = 0 

After the simulation, the function returns the following outputs with 
a Δt = 1 [h] sampling rate: 

Table 1 
Alpha coefficients, their 95 % confidence bounds (CB) and the goodness-of- 
statistic parameters (R2 and SSE) of the dynamic BESS inverter fitting function.  

R2 SSE Alpha coefficients (95 % CB) 

0.99553 0.0023938 α1  0.5992 (0.59, 0.6085) 
α2  0.02324 (0.02207, 0.02441) 
α3  − 0.1041 (− 0.1098, − 0.09845) 
α4  0.4424 (0.4331, 0.4517)  

Ebess
rem (cycnum) = 100 + 9.30− 20⋅cyc6

num − 1.35− 15⋅cyc5
num + 7.70− 12⋅cyc4

num − 2.52− 8⋅cyc3
num + 3.11− 5⋅cyc2

num − 0.0258⋅cycnum if 0 < cycnum ≤ 3771 (32)   

A. Grimaldi et al.                                                                                                                                                                                                                               



Journal of Energy Storage 95 (2024) 112380

10

- the charge and discharge power flow at each hourly time step Pbess
ch (t),

Pbess
dh (t) [MW]

- the state of charge level at each hourly time step SOC(t)[MWh]
- the binary variables of charge βch(t), and discharge βdh(t) [0, 1]  
- the cumulative cycle rate variable Cyccum

rate (t) [cyc] corresponding to 
the number of cycles performed by the battery  

- the timeseries profit ℙ(t), revenue ℝ(t), import cost ℂimp(t), and 
degradation cost ℂdeg(t) [$]

In addition, concerning the MINLP configuration, the optimization 
function returns the following outputs always with a Δt = 1 [h] sampling 
rate:  

- the normalized power rate Prate(t) variable expressed in per unit 
terms [p.u.]  

- the timeseries BESS dynamic efficiency variable ηBESS(t) [− ] 

3.3. LP and MILP/MINLP models: post-processing profitability analysis 

The above-mentioned LP and MILP/MINLP models are implemented 
to simulate the optimal BESS energy arbitrage dispatch operations 
chronologically over the BESS calendar lifetime TBESS. It is not compu
tationally feasible to solve the LP, MILP/MINLP problems for a time 
horizon of years [7]. Accordingly, the optimization process based upon 
the simulation time horizon T = 168 [h] is recursively repeated each 
week over one year of BESS operations. In fact, shorter optimization 
horizons reduce computational load and complexity: this allows the 
optimizer to better handle the high granularity of hourly price fluctua
tions and inter-temporal constraints of energy storage efficiently. 
Furthermore, extending the optimization horizon could enable the bat
tery to operate under a multi-week accumulation strategy, assuming 
perfect foresight of electricity price trends. However, current forecasting 
algorithms typically predict electricity prices with reasonable accuracy 

only up to one week [33]. Extending this to longer periods, while 
theoretically appealing for maximizing arbitrage opportunities, is 
currently impractical due to the limitations in predictive accuracy over 
extended time horizons. For simplicity, it is assumed that the yearly 
simulated operations continue year by year until the EOL criterion is 
reached. 

In the proposed case study, we used the real-time locational marginal 
market prices in a specific transmission node in the CAISO market, 
shown in Fig. 5. For simplicity, the simulation is based on the same 
market prices, i.e., for the year 2022, for all years of the simulation. In 
Fig. 6 the hourly CAISO LMP price λLMP(t) for the most profitable week of 
the year is shown: for most of the hours, the energy prices oscillate in the 
range of 0 − 200 $/MWh, while between 5500 and 6500 h the price 
volatility strongly increases reaching a maximum value of about 
1400 $/MWh. Before selecting the 2022 price in the CAISO SANTIA
GO_6_LN001 transmission node, different years and locations were 
investigated and evaluated. This selection process (see Supplementary 
materials) reveals that the most impactful drivers to make energy arbi
trage profitable is to have a high price volatility and a high average LMP 
value. Therefore, we decided to use the current profile of energy prices 
due to the high price volatility present in the late summer (between 
5500 and 65,000 h) and at the end of the year 2022 (after 8000 h), 
demonstrating in this way its impact on BESS revenue from energy 
arbitrage operations. Note that the price volatility of this particular 
CAISO market node can be considered representative of many future 
market nodes that will be present in highly renewable electric markets. 

Concerning now the profitability analysis, the discounted net present 
value (i.e., not accounting for the investment cost) of the cumulative 
profit derived by arbitrage over the BESS calendar lifetime TBESS was 
evaluated according to the following Eq. (33): 

NPV =
∑TBESS

n=1

ℙcum
n ⋅(1 + γ)n

(1 + i)n [$] (33)  

Fig. 4. Empirical degradation function incorporated in the MILP/MINLP optimization problem. It defines the remaining capacity cycle after cycle performed by the 
BESS. The zoom illustrates the degradation factor μdeg,j used to evaluate the degradation cost. It is evaluated considering the difference between the BESS remaining 
capacity at the start Erem

start,j and at the end Erem
end,j of the j-th episode. The time period of every j-th episode is equal to the optimization time horizon T = 168 [h]. 
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where ℙcum
n =

∑8760
t=1 ℙ(t) is the yearly BESS operating net profit derived 

by arbitrage, the subscript n refers to the number of years to reach the 
EOL criterion, while γ and i are the yearly battery cost escalation rate 
and the interest rate, respectively. This profitability analysis continues 
until the EOL criterion is reached. 

To effectively evaluate the impact of the net profit stream from en
ergy arbitrage on the net present value, the following parameter defined 
by Eq. (34) was used as the main comparison metric in the next results 
section: 

NPVnorm = NPV
/
Ebess

nom [$/MWh] (34) 

It corresponds to the net present value normalized with respect to the 

nominal BESS capacity. It can be interpreted as the break-even invest
ment cost where BESS becomes profitable for the given historical energy 
prices and dynamic dispatch scenario simulated. 

4. Results and discussion 

This section presents the simulated results obtained by applying the 
LP, MILP, and MINLP models described in Methodology section. Firstly, 
in Section 4.1 and in Section 4.2, the results obtained by the computa
tional and ageing analysis were presented. After that, Section 4.3 is 
focused on the profitability analysis. The results of the computational, 
ageing and profitability analysis are compared considering the three 

Fig. 5. Hourly locational marginal real-time energy prices in 2022 for the node SANTIAGO_6_LN001 in the CAISO electricity market. 
Source: CAISO [44]. 

Fig. 6. Hourly locational marginal real-time energy prices for the week Sep/03/2022-Sep/10/2022 for the node SANTIAGO_6_LN001 in the CAISO electricity 
market. 
Source: CAISO [44]. 
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different BESS models developed in this work. 

4.1. LP, MILP and MINLP performance comparison: computational 
analysis 

This section focuses on analyzing the optimal SOC profile simulated 
by the LP, MILP, and MINLP BESS models developed in this work. The LP 
model implements the pulp Python package [28]. The MILP model is 
created using the pyomo modelling language integrated with the gurobi 
optimization solver [45]. The Python-based package pyomo is an open- 
source software that supports different optimization capabilities for 
formulating, solving, and analyzing optimization problems [29]. 
Finally, a mixed-integer non-linear programming (MINLP) model is 
tested using the mixed integer non-linear decomposition toolbox in 
pyomo, namely the mindtpy solver [46]. This solver allows one to solve 
MILNP programs using decomposition algorithms. These decomposition 
algorithms rely upon the combined MILP and MILNP solution: in this 
work the MILP is solved using gurobi, while the MILNP is solved using 
the interior point optimizer (ipopt) solver [47]. As expected, passing 
from LP and MILP to MINLP framework, the computational cost signif
icantly increases. In fact, the simulation time and the memory usage, 
measured from the start of the first iteration to the end of the last iter
ation, passes from about 100 [s] and 5 [MB] in the LP and MILP 
framework, to about 2500 [s] and 67 [MB] in the MINLP framework. 

Fig. 7 compares the LP, MILP, and MINLP BESS optimal dispatching 
operations simulated during the most profitable week (from Sep/03/ 
2022 to Sep/10/2022). The left vertical axis refers to the simulated SOC 
profile of the LP (green curve), MILP (black curve), and MINLP (red 
curve). The orange curve refers to the right axis and corresponds to the 
CAISO 2022 LMP hourly energy prices occurring during the selected 
week. 

The most interesting aspect highlighted by the data presented in 
Fig. 7 is understanding how the different models operate to optimize the 
BESS dispatch operations while providing energy arbitrage services: the 
battery stores energy (SOC increases, charge phase) during low energy 
price periods, and releases it (SOC decreases, discharge phase) during 

high energy price periods. The simulated optimal SOC profile does not 
record substantial differences amongst the optimization frameworks. As 
expected, the SOC profile obtained using the LP model (green curve) 
exploits all the SOC admissible range achieving a value equal to the BESS 
nominal capacity of 2.0 [MWh], while the MILP (black curve) and 
MINLP (red curve) configuration presents a more conservative pattern, 
in fact the SOC when the charging phase is completed reaches about 1.9 
[MWh]. This occurs because, as defined previously by Eq. (17), the SOC 
is limited considering the remaining capacity at the end of the episode j 
evaluated by the degradation model. This slight difference in the SOC 
pattern affects the yearly cumulative net profit because the available 
amount of energy volume that can be exchanged with the grid is lower 
compared to the LP case. 

The cumulative net profit timeseries profile during the year 2022 
elaborated by the different programming techniques is presented in 
Fig. 8. In this work we compare three different models whose result is 
consistent with each other. This coherence of results represents a cross 
validation of the models’ accuracy and reliability. The consistent out
comes across the linear programming (LP), mixed-integer linear pro
gramming (MILP), and mixed-integer nonlinear programming (MINLP) 
frameworks demonstrate the robustness and generalizability of the 
proposed models. These results validate the effectiveness of the opti
mization techniques in capturing the complex dynamics of BESS oper
ations and economics. In fact, since the BESS models are developed in 
different optimization frameworks, the cumulative net profit, corre
sponding to the objective function of the optimization problem, presents 
a similar pattern and a similar final value for all the programming 
techniques. This consistency across various models underscores the 
credibility of the results obtained and supports the applicability of the 
developed frameworks in real-world scenarios. Adopting the LP 
approach achieves the highest yearly net cumulative profit at time t =
8760 [h] of about 46,573 [$/year]. While adopting the MILP and MINLP 
technique, it is recorded a yearly cumulative net profit of about 41,702 
[$] and 38,824 [$], respectively. These results are in accordance with 
those obtained in [48]. Regarding the cumulative net profit trend over 
the year 2022, it is evident that a dramatic increase occurs at t =

Fig. 7. Optimal BESS dispatch operations during the most profit week (Sep/03/2022-Sep/10/2022). The optimal SOC profiles simulated using the LP (green curve), 
MILP (gurobi solver, black curve), and MINLP (ipopt + gurobi solver, red curve), refer to the left axis. The right axis represents the CAISO hourly LMP energy prices 
during the most profit week of year 2022. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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6000 [h] and at t = 8200 [h]. This behavior is caused by the highest 
hourly energy price differences in these periods corresponding to the 
most profitable weeks of the year (from Sep/03/2022 to Sep/10/2022 
and from Dec/21/2023 to Dec/28/2023). This significative result sug
gests that, since the BESS provides several grid services that generate 
multiple revenue streams, it is crucial to set a prioritization procedure 
selecting the most profitable service in the most profitable period 
established by the market. Therefore, in this specific year, the BESS 
should provide energy arbitrage in late summer periods and at the end of 
the year 2022 due to high energy price volatility, while in the remaining 
part of the year the BESS should provide other grid services (e.g., fre
quency regulation, load-shifting). To address the issue of multiple ser
vices, a possible solution is to consider an optimal multi-temporal 
dimension able to operate in multiple regimes, e.g., both in real-time 
and planning operation [49]. 

4.2. LP, MILP and MINLP performance comparison: ageing analysis 

It is noteworthy that in the previous computational analysis section, 
to properly compare the LP with the MILP/MINLP programming tech
niques, the degradation cost due to ageing was set equal to zero. This 
means that the objective function (defined by Eq. (1) for LP and by Eq. 
(8) for MILP/MINLP) is comprised of only two components, export 
revenue and import cost. Thus, the implemented optimization procedure 
aims at maximizing the export revenue stream and to minimize the 
import cost stream derived by arbitrage. Differently, in the following 
section the degradation cost is considered in the MILP/MINLP frame
work. The addition of a new negative component in the objective 
function constitutes an additional variable that minimizes the degra
dation cost due to ageing. Consequently, since the degradation is 
directly linked to the cycle counting process, this added constraint limits 
the number of cycles per year that the BESS performs to provide energy 
arbitrage service. This aspect is highlighted in the following Fig. 9, 
where the LP optimal simulation (no degradation cost scenario and 
assuming a BESS lifetime of 10 years) is compared to the MILP and 
MINLP optimal simulations where both scenarios with and without 
degradation cost are simulated. The comparison is presented for BESS 
designs that have power-to-energy ratio of 1 MW/1MWh (a) and 1 MW/ 
2MWh (b). Concerning the left axis, the yearly revenue (blue bars), 
import cost (red bars), degradation cost (black bars), and net profit 
(green bars) are reported for different assumed values of the battery 

degradation penalty cost. The right axis shows the number of years to 
reach the EOL criterion. 

The most interesting aspect highlighted by this comparison is that 
the number of cycles per year simulated by the optimization model 
progressively decrease by increasing the battery degradation penalty 
cost. In fact, by introducing a penalty cost in the objective function of the 
arbitrage optimization model, leads to less cycling of the battery because 
cycling is prevented from occurring during small energy prices differ
ences. Consequently, this reduction in cycling corresponds to an increase 
of the number of years to reach the EOL criterion (violet curve). As a 
result, the maximum value of number of cycles per year in the MILP and 
MINLP scenario is obtained with a degradation penalty cost set at 0 $/ 
kWh-year: 451 (MILP) and 470 (MINLP) in the 1 MW/1 MW configu
ration, 410 (MILP) and 395 (MINLP) in the 1 MW/2MWh configuration. 
Assuming the same trend after the first year simulated, the EOL criterion 
is reached after about 8.4 years (MILP) and 8.0 years (MINLP) in the 1 
MW/1 MW configuration, and after about 9.2 years (MILP) and 9.6 years 
(MINLP) in the 1 MW/2MWh configuration. At the contrary, the mini
mum value of number of cycles per year in the MILP scenario is obtained 
assuming an annualized battery degradation cost of 40 $/kWh-year: 
about 201 cycles per year in 1 MW/1MWh and 183 cycles per year in the 
1 MW/2MWh configuration. The same minimum result assuming an 
annualized battery degradation cost of 40 $/kWh-year is obtained in the 
MINLP framework: 192 cycles per year in 1 MW/1MWh and 155 cycles 
per year in the 1 MW/2MWh configuration. These results highlight the 
relevance of considering a cycle-counting degradation model in long- 
term profitability analyses: it is crucial to predict the BESS lifetime 
and know a priori at which year the battery should be replaced over the 
entire project lifetime. 

4.3. LP, MILP and MINLP performance comparison: profitability analysis 

In this section, the normalized net present value (NPVnorm), defined 
by Eq. (34), is illustrated in Fig. 10(a–b) for different battery degrada
tion penalty costs assuming a 1 MW/1MWh (a), and a 1 MW/2MWh (b) 
configuration. While in Fig. 10(c), the normalized net present value is 
illustrated for different power-to-energy ratios considering the MILP 
framework and assuming a constant battery degradation penalty cost of 
20 $/kWh-year. The BESS yearly revenue (blue bars), import cost (red 
bars), degradation cost (black bars), and net profit (green bars) refer to 
the left axis. While the right axis compares the net present value 

Fig. 8. Optimal net cumulative profit timeseries profile during year 2022. The optimal net profit elaborated using the LP (green curve), the MILP (black curve), and 
MINLP (red curve) is expressed in $/year, and it refers to the left axis. The right axis represents the CAISO LMP hourly energy prices during year 2022. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. LP, MILP, and MINLP export revenue stream (blue bars), import cost stream (red bars), degradation cost stream (black bars), and net profit stream (green 
bars) simulated for different battery degradation penalty cost values expressed in $/kWh-year, considering as power-to-energy ratio 1 MW/1MWh (a) and 1 MW/ 
2MWh (b). The revenue, import cost, degradation cost, and net profit streams refer to the left axis and they are expressed in $ per year. The violet curve represents the 
number of years to reach the EOL criterion. It refers to the right axis and it is expressed in years. The text in black shows the number of cycles per year. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. (a–b): Export revenue (blue bars), import cost (red bars), degradation cost (black bars), and net profit streams (green bars) simulated for different battery 
degradation penalty cost values expressed in $/kWh-year, assuming as power-to-energy ratio 1 MW/1MWh (a) and 1 MW/2MWh (b). Panel (c): export revenue, 
import cost, degradation cost, and net profit stream for different power-to-energy ratios, assuming a battery degradation penalty cost of 20 $/kWh-year, and 
considering the MILP framework. The revenue, import cost, degradation cost, and net profit streams refer to the left axis and they are expressed in $ per year. The 
green curve represents the normalized NPV evaluated over the number of years after which the EOL criterion is reached. It refers to the right axis and it is expressed 
in $ per kWh. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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normalized with respect the BESS nominal capacity evaluated over the 
BESS calendar lifetime. Moreover, in Fig. 10(c), three different scenarios 
are considered: the base scenario (solid green curve) considers an in
terest rate equal to i = 6.52% [37], and a yearly battery escalation rate 
of γ = 4.0%. The upper and lower dashed curves refer to the optimistic 
and pessimistic scenarios, respectively. In the optimistic scenario it is 
considered an interest rate of i = 5%, while in the pessimistic scenario 
an interest rate of i = 8.0%. 

The results showed in Fig. 10(a–b) confirm that considering a cycle- 
counting degradation model and therefore a battery penalty cost due to 
ageing has a strong impact on the NPV of energy arbitrage. In the base 
scenario (i = 6.52%, γ = 4.0%), for a 1 MW/1MWh battery (a), the 
normalized NPV decreases from 240 $/kWh (LP, no-degradation case) to 
196 $/kWh (MILP, degradation case with a battery degradation penalty 
cost of 20 $/kWh-year) and to 189 $/kWh (MINLP, degradation case 
with a battery degradation penalty cost of 20 $/kWh-year). Similarly, 
for a 1 MW/2MWh battery (b), the normalized NPV decreases from 
210 $/kWh (LP, no-degradation case) to 192 $/kWh (MILP, degradation 
case with a battery degradation penalty cost of 20 $/kWh-year) and to 
188 $/kWh (MINLP, degradation case with a battery degradation pen
alty cost of 20 $/kWh-year). In percentage terms, the normalized NPV 
evaluated in the LP scenario is overestimated on average of about 24.1 % 
in the 1 MW/1MWh configuration, and about 13.3 % in the 1 MW/ 
2MWh configuration, compared to the MILP and MINLP scenario. In the 
scenarios where the degradation penalty cost is considered, the highest 
normalized NPV values of 196 $/kWh for a 1 MW/1MWh battery, and of 
192 $/kWh for a 1 MW/2MWh battery, are obtained in the MILP layout 
with a battery degradation penalty cost of 20 $/kWh-year. This value is 
higher than the case with a degradation penalty cost set at 0 $/kWh 
where it is obtained a value of 166 $/kWh (a), and of 171 $/kWh (b). 
This trend is due to the introduction of a penalty cost in the objective 
function that induces less cycling of the battery, thus preserving the 
BESS lifetime. This longer lifetime due to reduced battery cycling leads 
to lower profits in the initial BESS operating periods, but over the entire 
BESS lifetime it has to be considered as an economic advantage. Finally, 

comparing the MILP and MINLP scenario, no significant differences 
were found. As a result, since the MILP model is proved more efficient 
from a computational point of view compared to MINLP, it is imple
mented in Fig. 10(c) where a sensitivity analysis on BESS capacities is 
presented. 

The results presented were obtained using a fixed time horizon of 
168 h. These results may not represent a global optimum if a wider time 
horizon or a rolling time horizon, as proposed by Abomazid et al. [50], is 
considered. However, both methods would significantly increase 
computational time. Therefore, we chose a fixed time horizon to balance 
robustness and computational efficiency, in accordance with other au
thors in the literature [7]. 

In conclusion, concerning the correlation to different power-to- 
energy ratios illustrated in Fig. 10(c), the normalized NPV decreases 
with longer charge/discharge times. In the 1 MW/1MWh configuration, 
it is obtained a normalized NPV of 196 $/kWh (base scenario), which 
significantly decreases with longer charge/discharge durations reaching 
167 $/kWh for the 1 MW/4MWh case and 140 $/kWh for the 1 MW/ 
8MWh case. The NPV reduction from 1 MW/1MWh to 1 MW/8MWh in 
percentage terms is about 28.9 %. 

5. Conclusions and future work 

The current work presents a detailed techno-economic profitability 
analysis on BESS potential revenue from energy arbitrage. A power- 
energy BESS model with a computationally efficient linear (LP), 
mixed-integer linear (MILP), and mixed-integer non-linear (MINLP) 
optimization logic is developed to evaluate the optimal net profit by 
dispatching a BESS in an arbitrage market. The case-study, based upon 
historical real-time price data from a location in the CAISO electricity 
market in the United Sates, shows that considering battery degradation 
has a significant impact on the achievable NPV from energy arbitrage 
operation. The normalized NPV (expressed in [$/kWh]) evaluated in 
this case study can be interpreted as the break-even investment cost 
where BESS becomes profitable for the given historical prices. 

Fig. 10. (continued). 
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In summary, the profitability analysis shows that, even when 
assuming no degradation of the battery (LP scenario), the target break- 
even investment cost with a power-to-energy-ratio of 1 MW/2MWh is 
210 $/kWh. Comparing these normalized NPVs to today’s battery costs 
of 300–500 $/kWh [37], demonstrates that investing in BESS for energy 
arbitrage services only is currently not profitable under the assumptions 
used in this case study. Alternative locations with higher price volatility 
and considering a BESS that provides multiple grid services that 
generate additional revenue streams, could represent valuable strategies 
to make BESS profitable at today’s costs. Furthermore, as projected by 
the IEA World Energy Outlook 2023 [6], the total BESS investment costs 
for grid-level applications are forecasted to decrease to <185 $/kWh by 
2030 with a long-term goal of 140 $/kWh by 2050. At this 2050 target, 
the BESS would be profitable at the selected location under the 
assumption used in this case study. In addition, price volatility in highly 
renewable electricity markets may increase, which would increase the 
NPV that BESS could achieve in these future markets even with 
degradation. 

Considering a battery degradation cost via introducing a battery 
penalty cost in the objective function significantly decreases the 
normalized NPV compared to the case with no degradation. This 
reduction in percentage terms in the yearly net profit (or more in general 
in the normalized NPVs) due to degradation is about 22.4 % in the 1 
MW/1MWh case, and about 12.2 % in the 1 MW/2MWh case. Moreover, 
our analysis illustrates that the cycling of the battery is consistently 
reduced by adding a battery penalty cost in the objective function of the 
arbitrage optimization model. Because some BESS degradation inevi
tably occurs in all systems, a battery penalty cost that accurately char
acterizes the particular degradation costs of a BESS is crucial. 

The results obtained by the BESS optimization models used in this 
work suggest the relevance of considering battery degradation on BESS 
profitability analyses. Therefore, the proposed optimization models may 
present a powerful tool for power plant managers to maximize the net 
profit derived through energy arbitrage by optimizing the battery 
dispatch operations and by constantly evaluating and detecting the 
remaining capacity and degradation. 

In future works, we plan to further investigate how to obtain the 
optimal value of the battery penalty cost as a function of the battery 
operation and energy market dynamics. In this way, it is possible to 
capture the complex relationship between degradation and arbitrage 
profitability. A possible solution could be extending the current opti
mization model by evaluating the hourly difference energy prices that 
should activate the BESS operation assuming a specific battery degra
dation penalty cost. Additionally, by predicting the energy price having 
as input historical energy prices profile implementing memory models, 
it would be possible to simulate the BESS operations considering future 
price signals characterized by high renewables penetration. Finally, we 
plan to modify the proposed BESS model making it more applicable in 
real-world context, introducing for instance a renewable power plant 
integrated with the BESS and grid connected. In this context, it would be 
worthy to investigate the effect of considering a rolling optimization 
time horizon instead of the actual fixed optimization time horizon. 
Moreover, future research could use our modelling approach to simulate 
a hybrid energy storage system, selecting different storage technologies, 
tailored to fast and slow grid services provision, respectively. 
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